Short Paper

O

proceedings

Robust and Memory-Efficient Database Fragment Allocation
for Large and Uncertain Database Workloads

Rainer Schlosser*
Hasso Plattner Institute, Potsdam, Germany
rainer.schlosser@hpi.de

ABSTRACT

Database replication and query load-balancing are mechanisms
to scale query throughput. The analysis of workloads allows load-
balancing queries to replica nodes according to their accessed
data. As a result, replica nodes must only store and synchronize
subsets of the data. However, balancing the load of large-scale
workloads evenly while minimizing the memory footprint is
complex and challenging. State-of-the-art allocation approaches
are either time consuming or the resulting allocations are not
memory-efficient. Further, partial replication approaches usu-
ally optimize only against a single fixed workload. If the actual
workload deviates from this expected one, load-balancing can be
highly skewed, resulting in severe performance degradation.
This paper proposes a novel approach to compute memory-
efficient fragment allocations that enable balancing multiple po-
tential future workloads. Applied on the TPS-DS benchmark and
a large-size enterprise workload, we show that, compared to
state-of-the-art allocations, our solutions are (i) more flexible, (ii)
require up to 50% less data, (iii) have competitive runtimes, and
(iv) are more robust against uncertain out-of-sample workloads.

1 INTRODUCTION

Increasing demand for database processing capabilities can be
managed by scale-out approaches, using additional servers. Anal-
yses of enterprise workloads have shown that both OLTP and
OLAP are read-dominant [9]. Database replication is an approach
to scale-out read-only queries, which can be executed on snap-
shots of a primary server without violating consistency [4].

Given that most queries require only a limited set of tuples
and attributes, partial replication is an efficient approach: In-
stead of duplicating all data to all replica nodes, partial replicas
store only a subset of the data while being able to process a
large workload share. Thereby, splitting the overall workload
evenly among the replica nodes is essential to scale the query
throughput linearly with the number of nodes. Partial replication
consists of two steps, which are typically separated from each
other to better deal with the problem complexity [11]. First, the
data set is partitioned horizontally and/or vertically into disjoint
data partitions/fragments. Second, the individual fragments are
allocated to one or multiple nodes.

This paper addresses the second step, i.e., a fragment allocation
problem (given a fixed data partitioning). Calculating efficient
fragment allocations that minimize the replicas’ memory con-
sumption while evenly balancing the query load is challenging,
because the data allocation and the workload distribution are
mutually dependent. As the calculation of optimal allocations
is an NP-hard problem, heuristic approaches have to be used

“Both authors contributed equally to this research.

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the
24th International Conference on Extending Database Technology (EDBT), March
23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Series ISSN: 2367-2005

367

Stefan Halfpap
Hasso Plattner Institute, Potsdam, Germany

stefan.halfpap@hpi.de

for large problem sizes. Rabl and Jacobsen propose a greedy al-
location approach with short computation times [12]. We have
previously proposed a decomposition approach [5] based on lin-
ear programming (LP), which calculates allocations with up to
23% lower memory consumption for the TPC-H benchmark.

Allocations for larger workloads are harder to solve, but typ-
ically offer greater potential for sophisticated approaches com-
pared to simple heuristics. However, when using the LP-based
decomposition approach for larger problems, computation times
increase, and problems may finally become practically intractable,
e.g., for an application in dynamic settings, in which model inputs
change and quick recalculations are required. Considering mul-
tiple potential workloads to increase an allocation’s robustness
increases the problem complexity even further. However, such
robustness is necessary in practice, when workloads fluctuate,
and query costs or frequencies cannot be predicted precisely.

The goal of this paper is to overcome the limitations of existing
allocation approaches. Applied to TPC-DS and a real-world ac-
counting workload, we show that the greedy rule-based heuristic
[12] is not memory-efficient, while the solver-based solution [5]
provides low robustness against diversified workloads and has
unacceptable runtimes to be used in practice. To fill this gap, we
propose a heuristic LP-based clustering approach to flexibly com-
bine robustness, memory-efficiency, and a short calculation time
for large-scale problems. Our contributions are the following:

First, we derive robust and memory-efficient fragment allo-
cations, which enable an even load balancing against multiple
potential future workloads. Second, exploiting the skewness of
workloads, we use partial clustering techniques to compute solu-
tions for large-scale workloads quickly. Third, for the TPC-DS
and a large real-world workload, we show that, with our tech-
niques, the trade-off between memory-efficiency, robustness, and
a short calculation time can be smoothly balanced in a targeted
way. Fourth, we verify the robustness of our allocations by con-
fronting them with unseen out-of-sample workloads.

2 FRAGMENT ALLOCATION PROBLEM
AND LIMITS OF EXISTING APPROACHES

2.1 Problem Description and Difficulty

The scale-out of workloads to partially replicated databases leads
to a coupled data assignment and workload distribution problem.
We consider a horizontally and/or vertically partitioned database
consisting of N disjoint fragments.

The workload input can be described as follows. We consider
the case where data (fragments) can be stored on K nodes to
distribute a given workload. The size of a fragment i is a;, | =
1, ..., N. Further, we consider a set of Q queries j, characterized by
fragments accessed, i.e., g; € {1,..,N}, j = 1,..,Q. We assume
that the costs of queries j are independent of the executing node
k,k=1,..,K, and determined by cj, j = 1, ..., Q. Query costs are
numerical and can, e.g., be modeled as average processing times.
We assume that the queries j occur with a given frequency f;,
j=1,...,Q. The total workload costs C are C := 3;_1 o fj - ¢j-

10.5441/002/edbt .2021.36

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2021.36

The allocation problem can be described as follows. The goal is
to decide (i) on which node to put which fragments and (ii) which
query is executed at which node to which extent (workload share).
Our objective is to minimize the total amount of data at all nodes
such that the workload can be evenly distributed between them.
Further: (i) A query j can only be executed at node k if all relevant
fragments are stored on node k. (ii) For each of the Q queries, the
workload shares, assigned to the different nodes, have to sum up
to one. (iii) At each of the K nodes, the workload share has to be
1/K such that the overall query throughput can be scaled. (iv)
Further, as high calculation times may limit the applicability in
practice, we want to compute optimized allocations quickly. (v)
The allocation should work for multiple given workload scenarios
and should be robust against new unseen ones.

2.2 Existing Fragment Allocation Approaches

2.2.1 Optimal Solution via Linear Programming. For a single
given workload, the described fragment allocation problem can be
formulated as a linear mixed integer problem, cf. [5, 12]. However,
the complexity of the linear program quickly increases with the
number of queries (Q), fragments (N), and nodes (K). For this
reason, the optimal solution can only be derived as long as the
size of the problem is sufficiently small.

2.2.2 Greedy Heuristic. Rabl and Jacobsen [12] start to assign
queries with the largest workload share and accessing the most
data. Queries are ordered by the product of the workload share
and the total size of accessed fragments. A query is assigned to
the node with the largest overlap of already allocated fragments
and those accessed by the query. Nodes with no assigned queries
are thereby treated as if they have a complete overlap. If a query’s
workload share exceeds the assigned node’s load capacity, the
node is filled up to its limit. The query with its remaining work-
load is merged back into the list of queries and assigned later.

2.2.3 LP-Based Decomposition. We proposed to iteratively
split the workload into smaller workload packages (chunks) such
that the data redundancy is minimized in each step [5]. In a
split with B subnodes, each subnode b represents ny final nodes,
b =1,..,, B, and takes the workload share wy, := nj, /K. The special
case B = K corresponds to the optimal solution, cf. Section 2.2.1.
The workload splits are obtained using small-sized LP subprob-
lems similar to the LP structure of optimal solutions. In the LP, the
following variables are used: The binary variables x; ;. € {0,1},
i =1,.,N, k = 1,..,K, indicate whether fragment i is allo-
cated to node k (1) or not (0). The binary variables y; ;. € {0,1},
j=1,..0,k=1,..,K, indicate whether query j can run on node
k (1) or not (0). The continuous variables z; . € [0,1],j =1,...,Q,
k =1,..,K, represent the workload share of query j executed at
node k. The sum of shares has to sum up to one for all queries.
Further, by W/V, the replication factor is denoted, where the total
amount of data used

w Zi:l Nok=1,.. K Xk ")

is normalized by the amount of overall accessed data
V= ai. 2
Zier:l,“,,Q:fPo {g;} " @

2.3 Large and Skewed Workloads

The results of [5] and [12] were shown for the TPC-H benchmark,
which consists of Q = 22 queries and N = 61 fragments/columns.
We use the more complex TPC-DS benchmark (Q = 99, N = 425)
and a real-world enterprise workload (Q = 4461, N = 344).

368

o
10w
<

@
0.8T
@
o

0.6
S

°
N
°
N

B
047

3
023
S
soossonosooe | 0.0 §
40 so 0 10 50 ¢
query rank ordered by workload share

=]
-
=3
-

workload share per query

°
o

workload share per query

0 10 20 30
query rank ordered by workload share

(a) TPC-DS
Figure 1: Distribution of top 50 query workload shares in
decreasing order, cf. (a) Section 2.3.1 and (b) Section 2.3.2.

2.3.1 TPC-DS Workload. To obtain model inputs, we loaded
the tables with scale factor 1 into a PostgreSQL 12.2 database
system. We use vertical partitioning with each column as an
individual fragment. We deployed single column indices on all
primary key columns. Fragment sizes a;, i = 1, ..., 425, are mod-
eled by using the function pg_column_size() to calculate the
pure value sizes, abstracting from the PostgreSQL page layout
with meta-information and padding. In case the column is part
of a primary key, the index size increases the associated frag-
ment size. We use the command pg_table_size(index_name)
to calculate index sizes. We derived query costs c; as average
execution time for query template j with varying parameters. For
TPC-DS queries 1, 4, 6, 11, and 74, the set timeout of 120 s was
exceeded. Thus, we omitted them in our experiments, resulting
in Q = 94 queries.

o
o

20 30 40

(b) Accounting workload

2.3.2 Real-World Accounting Workload. We got access to meta-
data of an enterprise’s central accounting table and a summary
of a workload trace against this table in the form of query tem-
plates and statistics. The metadata enabled us to derive all re-
quired model inputs for calculating fragment allocations using
vertical partitioning. The anonymized workload metadata and
source code to reproduce the allocations are publicly available
online [1]. The analyzed table stores accounting information and
has N=344 columns. The summary of the workload trace consists
of Q=4461 SQL templates with aggregated execution properties
of individual queries. Thereby, the most important properties for
our research are query frequencies f; (occurrences) and costs c;,
i.e., the average execution time per query (template).

2.3.3 Workload Skewness. Figure 1 shows the distribution of
and cumulative query workload shares f; - ¢, j = 1,..., Q. For
both workloads, the distribution is highly skewed: The queries
with the 50 highest workload shares account for more than 97%
of the TPC-DS and more than 92% of the real-world workload.

2.4 Limitations of Existing Approaches

To study the suitability of existing approaches, we calculated allo-
cations for TPC-DS and a real-world workload, cf. Section 2.3. For
different numbers K, Table 1 summarizes memory consumption
and runtime of existing allocations approaches. We used f; := 1,
forall j =1,..., Q. The LP-results of [5] were achieved using the
Gurobi solver (version 9.0.0) (single-threaded). For the compari-
son with [12]’s approach, we implemented their algorithms in
Python 3, and declare the runtime as an upper limit (<).

The upper part of both subtables shows the memory consump-
tion (W /V) and required runtime for the optimal solution, cf. WP
without chunking, for up to K = 6 (TPC-DS) and K = 5 (account-
ing workload) nodes compared to the greedy heuristic, cf. WC.
We could not compute optimal allocations for larger numbers of
nodes K within 8 hours. The optimal replication factors provide
a useful reference to verify the quality of heuristic approaches.
In this context, we observe that the greedy heuristic requires up
to 100% more data than the optimal solution.

Table 1: Advantages and disadvantages of existing ap-
proaches: the greedy heuristic [12] (W), cf. Sec. 2.2.2, vs.
the decomposition heuristic [5] (WP), cf. Sec. 2.2.3, includ-
ing optimal solutions, cf. Sec. 2.2.1, (*no decomposition).

(a) TPC-DS; K =2,...,12, N =425, 0 = 94.

D G
K chunks W? solve timey,p % solve timey;c
2 2 1.126* 1s +1% <0.1s
3 3 1.205* +53% <0.1s
4 4 1.298* +94% <0.1s
5 5 1.393* 407 s +88% <0.1s
6 6 1.457* 1074 s +100% <0.1s
4 2+2 1.310 2s +93% <0.1s
5 3+2 1.466 +79% <0.1s
6 3+3 1.519 +92% <0.1s
8 4+4 1.874 +65% <0.1s
10 5+5 2.076 517s +61% <0.1s
12 6+6 2.201 2146s +60% <0.1s

(b) Real-world workload; K = 2, ...,12, N = 344, Q = 4461, cf. source [1].

D G
K chunks WT solve timeyyp % solve timey,c
2 2 1.322% +51% <3s
3 3 1.775* 6236s +50% <3s
4 4 2.104* 9356s +74% <3s
5 5 2.473% 13738 s +57% <3s
3 2+1 1.811 384s +47% <3s
4 2+2 2.126 225s +72% <3s
5 2+2+1 2.499 5922s +55% <3s
6 3+3 2.855 778 s +59% <3s
8 3+3+2 3.499 8859s +87% <3s
10 443+3 4.462 49233 s +74% <3s
12 4+4+4 5.162 47207 s +82% <3s

The lower part of the subtables shows the results of the de-
composition heuristic compared to the greedy heuristic. The
decomposition and greedy approach make it possible to solve
the problem for larger K heuristically. We observe that the de-
composition approach (WP) yields better replication factors than
the greedy approach (WC), which requires up to 93% and 87%
more data for TPC-DS and the accounting workload, respectively.
Further, the decomposition approach performs close to optimal
compared to the optimal solution results (for K < 6, see Table 1a
and for K < 5, see Table 1b). However, the decomposition ap-
proach requires high computation times if the problem becomes
large, e.g., in the case of the accounting workload. In contrast,
the greedy approach is fast and requires only seconds.

2.5 Uncertain Future Workloads

In general, future workloads are not entirely predictable. Thus,
a further weakness of existing approaches is that they are only
optimized for a single workload and can perform poorly if actual
workloads differ. Hence, it is crucial to take potential workload
scenarios into account to obtain a robust performance. Poten-
tial future workload scenarios can be determined, e.g., based on
previously observed (seasonal) workloads or forecasts. In this
context, fragment allocations should be such that the workload
can be successfully balanced in any scenario. We assume that a
workload scenario is characterized by a set of queries with given
frequencies and costs within a certain time span.

In [12], Rabl and Jacobsen also describe an extension of their
approach to cope with multiple workload scenarios. They pro-
pose to calculate a separate allocation for each scenario indepen-
dently. Individual allocations are merged pairwise, mapping each
node of the first allocation to a node of the second allocation.

369

A merged allocation enables an even load balancing for both
input allocations. The Hungarian method allows calculating an
optimal mapping, which minimizes the memory consumption of
the merged allocation (in polynomial time). However, because
entire nodes are merged, optimization potential is given away.
Overall, we observe that existing approaches have different
strengths and weaknesses (runtime vs. memory-efficiency). Fur-
ther, from a practical perspective, solutions are required that can
provide a reasonable combination of (i) memory-efficiency, (ii)
robustness against different workloads, and (iii) short runtimes.
Our goal is to design a heuristic approach that is of that kind.

3 ROBUST FRAGMENT ALLOCATION FOR
MULTIPLE POTENTIAL WORKLOADS

3.1 LP-Based Robust Solution Approach

In the following, we consider S potential workload scenarios.
Each scenario s, s = 1, ..., S, is characterized by query frequencies
fi,s and associated workload costs Cs := X ;=1 o fjs - ¢j. <P
Section 2.1. Note, in this framework, also uncertain query costs
cj can be expressed similarly by using potential scenario-based
costs ¢j s without increasing the model’s complexity.

The core idea is finding a single allocation that enables an even
load balancing for all S potential workloads scenarios. Further, by
enabling an even load balance for specific diversified scenarios,
such enriched allocations also allow improved load balancing
for unseen scenarios, which may be similar to mixtures of input
scenarios. Thereby, an allocation’s robustness can be increased
by choosing a larger number of diverse scenarios.

Our robust multi-scenario model is an extension of the LP-
based decomposition approach, cf. Section 2.2.3, which considers
one deterministic workload, cf. S = 1. Compared to [5], we use
extended variables (cf. z), to model workload shares for each
scenario s, s = 1,...,S. Based on the decomposition concept of
[5], we propose the following extended LP model to allocate data
fragments and to distribute workload shares to multiple nodes
in the presence of multiple potential workloads:

minimize
XibsYjb € {0, 1}’Zj,b,s € [0,1],0 < L < 1, (given %, §j, Zj s)
i=1,.,N,j=1,..,0,b=1,...Bs=1,..S

% ' Zi:l,..‘,N,b:I,.,.,B;xizl Xip-ai+a-L 3)
SRVTRTIED Y T e S
Ghs<un 3oy Ul O
Zj=l,...,Q:gj=1 fis - ¢j/Cs/wp - zjps < L, f:ll SB ©)
Siramms=ts 18T 0

The overall idea is that the model allocates the fragments such
that the workload can be distributed evenly for all workload
scenarios s, s = 1,..., S. Note, scenario probabilities are not used
and thus do not have to be quantified in advance.

The objective (3) minimizes the replication factor W/V, cp.
(1) - (2). Constraint (4) guarantees that a query j can only be
executed on node b if all relevant fragments are available, see
Section 2.1. The cardinality term |g;| expresses the number of
fragments used in query j. Constraint (5) ensures that a query j
can only have a positive workload share on node b in scenario s
if it can be executed on node b. Constraint (6) guarantees that,

in all scenarios s, all nodes b do not exceed the workload limit L.
Here the workload is normalized by the total workload cost Cs
of scenario s and the workload share wy, := ny, /K, cf. Sec. 2.2.3.
Finally, (7) ensures that a query’s workload shares on nodes k
sum up to the shares assigned to the chunk, cf. z. To minimize
the worst-case workload share over all nodes and scenarios, in
(6) we use a continuous variable L and add a penalty term & - L
in the objective (3). Hence, to achieve an even load balance, the
parameter « has to be sufficiently large compared to K (e.g., @ =
1000); note, the factor W/V is bounded by K, cf. full replication.

The recursive decomposition principle of the LP (3) - (7) works
as follows. Let x*, y*, and z* denote the optimal solution of the
LP (3) - (7) for a certain split. Then, for each subnode b, the input
for its associated subproblem on the next level is characterized by
the selected fragments (i.e., where %; := xzb is 1), the executable
queries (i.e., where ;5 = yj*.’b is 1), and the assigned workload
shares (i.e., where z;
top node represents the total workload, initially characterized
by Xi=1,7;:=1,Zj:=1,foralli=1,..,Nand j=1,..,Q.On
the next decomposition level, the LP (3) - (7) is applied again for
the new input. Recall, that for B = K and wj, = 1/K, i.e., without
using chunks, the LP guarantees an optimal allocation.

= z%, _is positive). In this context, the
J:b.s

3.2 Heuristic Relaxation: Partial Clustering

The complexity of the LP (3) - (7) grows with the number of
queries Q, fragments N, nodes K, and considered scenarios S.
As a result, runtimes can get too large when considering huge
workloads with thousands of queries and dozens of scenarios.
While the decomposition heuristic allows dealing with larger
numbers K, this does not solve the issue. As S can be chosen
in a targeted way, the main limitation of our LP-based concept
are large Q and N as they appear in real-world workloads (cf.
Q = 4461, Section 2.3.2). Particularly Q is critical for the LP’s
complexity as the variables y and z as well as constraints (4), (5),
and (7) are involved; instead, N is only relevant for x and does not
affect the number of constraints. To still allow for short runtimes,
we seek to address this problem by heuristically relaxing our LP.

The analysis of real-world workloads reveals, cf. Section 2.3,
that the workload distribution of queries and accessed fragments
is highly skewed (see Figure 1). Exploiting this property, we clus-
ter queries and, in turn, simplify the complexity of the allocation
problem as follows: (i) The majority of queries that represent
only a small share of the workload are clustered within a set
denoted by QF and assigned to the same node. (ii) The set of
remaining (costly) queries denoted by, cf. (i),

Q= {1,..0}\ Q" ®
are used as (a smaller) input for the fragment allocation problem
with K nodes, including the replica used for step (i). Following
this concept, we propose the following approach.

Partial Clustering Approach: Order the queries according to
their expected loads over all scenarios s = 1,..., S, cf. E(fjs) - ¢j (if
no distribution for s is given, we use uniform probabilities). Then,
assign the F queries with the smallest (expected) workload share,
ie., QF :={1,..., F}, to one (e.g., the first) of the K nodes. Note,
the number F has to be sufficiently small such that the workload
share of the queries assigned to QF is (significantly) smaller than
1/K. The remaining workload QR := {F +1,..., Q}, cf. (8), has to
be allocated to the other K — 1 nodes and the residual resources of
the first cluster node (k = 1). The approach can be directly included
in our LP model (3) - (7) via the additional constraints

zj1=1 VjeQf.)

370

Note, the constraints (9) imply y;; = 1forall j € OF cf. (5),
as well as the allocation of all required fragments to the cluster
node 1, cf. (4). If chunks are used, (9) is only active for the parent
chunk b = 1 that is associated to the leaf node k = 1. Leaving
some space on the cluster node allows the LP to assign other data-
intensive queries to that node. Naturally, the LP’s complexity
decreases in F as we have fewer flexible queries (Q — F).

4 NUMERICAL EVALUATION
4.1 Results for a Single Fixed Workload

In this section, we compare the memory consumption and run-
time of our partial clustering heuristic, cf. (3) - (9), against existing
allocation approaches (see Section 2.2) for a single fixed workload
scenario (S = 1) with fj 1 :=1, j = 1,..., Q, for all queries.

4.1.1 TPC-DS Workload. For different numbers of nodes K,
Table 2a summarizes the replication factor % and runtime of our
partial clustering heuristic (3) - (9). We used the penalty factor
a = 1000 and the Gurobi solver (version 9.0.0) (single-threaded).

The partial clustering approach allows reducing runtimes (by
F via |QF| = F and |QR| = Q — F) and is compatible with the
decomposition approach. The results (Table 2a) show that our
approach exploits both heuristics in a mutually supportive way.
For instance, while for K=6 (TPC-DS), the optimal solution yields
W /V =1.457in 1074 s, cp. Table 1a, our heuristic solution obtains
W/V = 1.584in 6 s. Compared to [12] (W) and [5] (WP) we ob-
serve that via F we obtain a convenient mix of memory-efficiency
and runtime, which has not been possible before.

4.1.2 Real-World Accounting Workload. We also applied our
partial clustering approach for the real-world workload, cf. Sec-
tion 2.3.2. For the example of F = 4361 fixed and Q — F = 100
flexibly assignable queries (being responsible for about 95% of
the workload), Table 2b presents the results of our approach
compared to the heuristics [5] and [12]. Compared to Table 1b,
our partial clustering heuristic yields a competitive memory-
efficiency (cf. W/WP < +7%) and runtimes below 10 s. Overall,
we find that our approach can address both the performance
limitations of [12] and the runtime limitations of [5].

Table 2: Best of both worlds: Memory-efficiency vs. run-
time results achieved by partial clustering (S = 1): Our so-
lution (W) with F fixed queries vs. [5] (WP) and [12] W©).

(a) TPC-DS; K =4,...,12, N =425, 0 =94

K F chunks 37 solve timew % %

4 36 4 1.314 13s +1.2% -47.9%
5 47 5 1.501 2.0s -42.7%
6 4 343 1.584 55s +43% -45.7%
8 15 4+4 1.957 26s +44% -36.9%
10 47 545 2.330 5.0s -30.4%
12 15 4+4+4 2416 7.0s -31.2%

(b) Real-world workload; K =4, ..., 12, N = 344, Q = 4461, cf. source [1]

K F chunks % solve timeyy, % %
4361 4 2.124 38s +09% -41.9%
5 4361 5 2.492 +0.8% -35.8%
6 4361 3+3 2.942 09s +3.0% -351%
8 4361 4+4 3.534 21s +1.0% -45.9%
10 4361 5+5 4.638 40s +39% -40.2%
12 4361 6+6 5.226 +1.2% -44.5%
12 4361 4+4+4 5.489 33s -41.7%

With decreasing F, the memory W decreases (improves), be-
cause the allocation gets more flexible. However, the runtime
increases due to the larger remaining problem size. We observe
that if the number of flexibly assigned queries |QF| is large, the
performance increase due to additional flexible queries is dimin-
ishing and does not justify the higher runtimes anymore.

Remark 1 The partial clustering heuristic, cf. (3) - (9), is ef-
fective and flexible as it combines: (i) the reduction of problem
complexity with workload knowledge and (ii) the possibility to ex-
ploit decomposition techniques (cf. Section 2.2.3). Combining these
techniques allows balancing the solution quality and computation
time in a targeted way such that memory-efficient solutions can be
computed within short and plannable response times. Compared
to the greedy heuristic (WG), we find that the combined LP-based
approach (W) requires (up to 48%) less data (within a similar com-
putation time). Compared to the decomposition approach (WC), we
obtain solutions orders of magnitude (up to X 10 000) faster (using
only slightly more memory).

4.2 Multiple Workloads and Robustness

In this section, we compare fragment allocations for multiple
scenarios, cf. S > 1. For workload scenario s = 1, we again let
fj.1 = 1 for all queries j. For all other scenarios, we consider
randomly generated query frequencies fj s via fj s :=if U(0,1) <
p then 1/p - U(0,2) else 0, i.e., each query occurs only with
probability p (cf. workloads with different queries, ad-hoc queries,
etc.) and, on average, we have E(fjs) =1,j=1,..,0,5 =2,..,,S.
In our examples, we use p = 0.75. Out-of-sample workloads, cf.
§=1,..,5, for verification purposes are generated in the same
way. Scenario-specific input details are available online [1].

4.2.1 TPC-DS Workload. Table 3a shows the results of our
combined approach (3) - (9), cf. W(S), for different numbers
F =0,15,47,62 of fixed queries and different numbers of seen
scenarios S (up to 100). While our approach without fixed queries
(F = 0) is time-consuming, the partial clustering approach is
again effective and allows deriving allocations for dozens of sce-
narios S quickly. We find that the required amount of data % is
overall (concave) increasing in S. Our replication factor is still
significantly below K (cf. full replication) and (for the same S) far
better than those of [12]’s merge approach, cf. WG (S), Section 2.5.

Moreover, we compared the robustness of our approach to the
merge approach of [12] by analyzing the allocations’ performance
for unseen workloads. To calculate the worst (highest) workload
share over all nodes (denoted by L) for a given scenario §, we
can directly use the LP (3) - (7) without chunking (B = K) to
evaluate a given fragment allocation J?f,-x by fixing the variables
X 1= Xpjy; (this also determines y, cf. (4)). When solving the LP
for a new (randomly generated) workload scenario §, § = 1, ..., S,
the remaining variables z and L are then chosen such that L is as
small as possible and coincides with L. The average worst-case
workload share over all § unseen scenarios is denoted by E (L).

Table 3a shows the results for S = 100 unseen randomly gener-
ated workload scenarios. If more scenarios are taken into account,
cf. S, the robustness improves, while the required amount of data
and runtime increase. We observe that the average difference
of E(L) and 1/K over all unseen (out-of-sample) scenarios is
(concave) decreasing in the number of seen scenarios S. In our
example, considering S = 10 (randomly chosen) scenarios were,
on average, enough to obtain a fragment allocation that is robust
against various unseen workloads by achieving an optimality gap
for a node’s highest workload share of E® (L) - 1/K < 0.0089,

371

Table 3: Adding Robustness: Performance comparison
with § = 100 random unseen workloads for different num-
bers seen workloads S. Memory vs. average out-of-sample
workload limits L of our partial clustering (W(S)) com-
pared to the greedy merge approach [12] (WS (S)).

(a) TPC-DS; K = 8 =4+ 4, N = 425, QO = 94, F fixed queries, cf. (9)

Approach S F % solve time E(L) — % E (I/TK)
W(S) 1 0 1874 0.0641 0.693
W(S) 30 2208 0.0538 0.736
W(S) 5 0 3456's
W(S) 7 0 286.0 s
W(S) 10 0 561.8's
W(S) 1 47 2079 18s 0.0681 0.679
w(S) 3 47 2455 29s 0.0537 0.732
W(S) 5 47 29s 0.0388 0.798
W (S) 7 47
W (S) 10 15
wW(S) 10 47
W(S) 20 47
W (S) 50 47
W(S) 100 47 33155 0.0010 0.994
W(S) 100 62 0.0005 0.997

wa(s) 1/ <1s 0.0654 0.689
wG(S) 2/ <ls 0.0414 0.782
wo(s) 3/ <1s

we(s) 5/ 4162 <1s

Wb (s) 10/ 4372 <2s 0.0017 0.989
wE(s) 20 /459 <3s 0.0005 0.996
wo(s) 50 / 5528 <65 0.0000 1.000

(b) Real-world workload; K = 8 = 4 + 4, N = 344, Q = 4461, cf. source [1]

Approach S F % solve time E (L) - % E (I/TK)
wW(S) 1 4361 3.534 21s 0.0435 0.769
W(S) 3 4361 3.906 2.8's
W(S) 5 4361 3.953
w(s) 10 4361
W(S) 10 4411
w(S) 20 4361 0.0007 0.995
wW(S) 50 4361 0.0001 0.999
w(S) 100 4361 0.0001 0.999
wW(S) 100 4411 0.0000 1.000

wa(s) 1 / <3s

wé(s) 3 /

we(s) 5 /6913

wé(s) 10 / 7.040 0.0000 1.000

which is by far better than the standard S = 1 solution (cf.
E®) (L) - 1/K = 0.0641 for F = 0) that optimizes only against the
expected load. Naturally, the higher robustness with S = 10 is
achieved by using more data, i.e., a higher replication factor of
2.721 (in 562 s, F = 0) and 3.145 (in 20 s, F = 47), instead of 1.874
(F = 0) and 2.079 (F = 47) when using only one scenario (S = 1).
Note, compared to achieving robustness via full replication (with
W/V = K = 8), this is a remarkable result.

Further, we evaluated the robustness of the merge approach,
of. WG(S), for the same (S) unseen workloads. For S = 5, we
obtained the average worst-case workload limit E OGN (D)-1/K =
0.0041 and replication factor WC(S)/V = 4.162. Compared to
that, our S = 10 solution with F = 47 fixed queries obtains a better
robustness (cf. E®) (L)-1/K = 0.0037) and requires clearly less
memory WO (S)/V = 3.145. The better combinations of memory
(W/V) and robustness can be observed over the full range of S.
Figure 2a visualizes this result: For selected S, the figure shows the
expected throughput (average over S = 100 unseen workloads)

memory consumption W/V

(a) Memory consumption vs. average rela-
tive throughput over 100 unseen scenarios.

E] .

aQ =

'g‘l.O X 1.0 g & BRBRE aRan tLisEll EEE LR LR e L L b LR L e bRl EL L R RS

g = glonas oo . o o 6 om o 8 8% o8 ° o 90 @ by H 8 0 by . :30

2os 50810 5o ol o0 s o 6 O O, N P e o e B R B o

Los6 90.61 % ° s 1 ° ° o °

© 3 o o o o o o o

0.4 — £04 * —

= full replication = full replication

L 0.2/ = merge approach (S=1, 2, 3, 4, 5, 10) 202 o merge approach (S=2)

g <~ partial clustering (S=1, 3, 5, 10, 100) | % = partial clustering (S=10)
0.0 wo.

s 1 2 3 4 5 6 7 8 2o 00 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

workload scenario §

(b) Relative throughput for all 100 unseen scenarios.

Figure 2: Performance of allocation approaches for § = 100 unseen workload scenarios based on TPC-DS; K = 8.

per memory consumption for full replication, the merge approach,
and our partial clustering. For merged allocations with S = 2
and our partial clustering with S = 10 input scenarios, Figure 2b
shows the expected throughput (1/K) /L for all S = 100 individual
unseen scenarios.

Naturally, the specific results depend on underlying random
numbers. However, using repeated simulations, we verified that
the overall properties remain.

4.2.2 Real-World Accounting Workload. The results for the
real-world workload (see Table 3b) show that our solution also
remains applicable for larger workloads. The number of fixed
queries F can be chosen such that for up to 20 scenarios, the run-
time is below 10 s. A good trade-off (depending on the targets in
practice) between robustness, runtime, and memory is achieved
for 5 to 20 in-sample scenarios, cf. S.

Compared to the merge approach, cf. W (S), we again obtain
that our approach clearly outperforms their combinations of
memory and throughput robustness against uncertain workloads.
Moreover, our approach provides the flexibility to tune results by
adjusting S and F according to a decision-maker’s preferences.

Compared to TPC-DS, we find that, for all S, the optimality
gap EW)(L) — 1/K is on average lower, while replication fac-
tors are higher. This difference indicates that, in such cases, a
smaller number of scenarios might be necessary to obtain a cer-
tain robustness. It can be explained by the fact that the workload
is distributed over a higher number of queries Q, making the
impact of single query frequencies, on average, less important.

Remark 2 We find that optimizing the memory for an expected
workload only is not robust against unseen workloads. Less memory-
efficient approaches as [12] and particularly its merge extension
are (indirectly) more robust against out-of-sample workloads as
they systematically allocate more data. However, our approach to
directly minimize required memory for multiple seen workloads,
yields a better robustness using the same or even less data. The
memory-efficiency of our LP-based approach allows including more
scenarios within a certain memory budget than the merge approach
[12]. Being able to deal with more representative workload scenarios,
in turn, allows to better deal with altered unseen ones.

5 RELATED WORK

Database replication is a means to improve availability and in-
crease processing capabilities, and is supported in many systems,
e.g., in HANA [10], Postgres-R [8], and as replication middle-
ware [3]. Thereby, most systems implement full replication.

To calculate partial allocations, Rabl and Jacobsen propose
a greedy algorithm (Section 2.2.2). For the same problem, we
propose an LP-based decomposition approach [5] (Section 2.2.3).
In both papers, the authors only consider a comparably small
benchmark workload (TPC-H) and do neither (i) derive results for

372

large-size workloads, (ii) study techniques to reduce the computa-
tion time for allocations, nor (iii) evaluate robustness against un-
certain workloads. In [6], we visualize calculated allocations and
investigate the intermediate steps taken by different algorithms.
In 7], we visualize the load balancing behavior of allocations.

Ozsu and Valduriez present a general overview of allocation
problems in the field of distributed database systems [11]. They
point out that allocation problems differ in constraints and opti-
mization goals, such as performance, costs, and dependability.

Archer et al. [2] address an allocation problem, which is sim-
ilar to ours. They evenly load-balance queries for web search
containing multiple terms, which correspond to the fragments
in our model. They cluster queries with a distributed balanced
graph partitioning tool.

6 CONCLUSIONS

To overcome the limitations of existing allocation approaches
[5, 12], we proposed a novel heuristic that combines different con-
cepts. First, to achieve memory-efficiency, instead of rule-based
heuristics, we leverage the power of LP techniques. Second, for
short calculation times, we exploit that (real-world) workloads are
skewed and reduce the problem complexity by a partial cluster-
ing approach that assigns a majority of queries with comparably
small workload shares to a fixed node. Third, to add robustness,
we force the allocation to be prepared against multiple diver-
sified workloads. Moreover, we are able to balance the three
target dimensions of the problem flexibly. Using TPC-DS and a
large real-world workload, we verified the applicability and effec-
tiveness of our approach, which clearly outperformed existing
approaches regarding the mix of the three key dimensions.

REFERENCES

[1] [n.d.]. GitHub repository containing the workload data and source code.
https://hyrise.github.io/replication/.

[2] Aaron Archer et al. 2019. Cache-aware load balancing of data center applica-

tions. PVLDB 12, 6 (2019), 709-723.

Emmanuel Cecchet et al. 2008. Middleware-based database replication: the

gaps between theory and practice. In SIGMOD. 739-752.

Jim Gray, Pat Helland, Patrick E. O’Neil, and Dennis Shasha. 1996. The Dangers

of Replication and a Solution. In SIGMOD. 173-182.

Stefan Halfpap et al. 2019. Workload-Driven Fragment Allocation for Partially

Replicated Databases Using Linear Programming. In ICDE. 1746-1749.

Stefan Halfpap and Rainer Schlosser. 2019. A Comparison of Allocation

Algorithms for Partially Replicated Databases. In ICDE. 2008-2011.

Stefan Halfpap and Rainer Schlosser. 2020. Exploration of Dynamic Query-

Based Load Balancing for Partially Replicated Database Systems with Node

Failures. In CIKM. 3409-3412.

Bettina Kemme et al. 2000. Don’t Be Lazy, Be Consistent: Postgres-R, A New

Way to Implement Database Replication. In VLDB. 134-143.

Jens Kruiger et al. 2011. Fast Updates on Read-Optimized Databases Using

Multi-Core CPUs. PVLDB 5, 1 (2011), 61-72.

Juchang Lee et al. 2017. Parallel Replication across Formats in SAP HANA for

Scaling Out Mixed OLTP/OLAP Workloads. PVLDB 10, 12 (2017), 1598-1609.

M. Tamer Ozsu and Patrick Valduriez. 2011. Principles of Distributed Database

Systems, Third Edition. Springer.

Tilmann Rabl and Hans-Arno Jacobsen. 2017. Query Centric Partitioning and

Allocation for Partially Replicated Database Systems. In SIGMOD. 315-330.

(3]
(4]

(5

[

(]
[10]
(1]
[12]

	Robust and Memory-Efficient Database Fragment Allocation for Large and Uncertain Database WorkloadsRainer Schlosser, Stefan Halfpap

