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ABSTRACT
Numerous data are stored in semi-structured �les with ad-hoc
layout. Such data are valuable digital assets for various data-
driven applications. This work introduces the notion of verbose
CSV �les. Verbose CSV �les include content serving di�erent
purposes in various positions. They are designed for human
visual inspection or statistical report collection. An important
preliminary task for extracting information from such �les is
structure detection, in particular classifying lines or cells by their
purpose. As manual e�orts are infeasible and error-prone for
large �les or large sets of �les, automatic approaches are desirable.

This work addresses both the line and the cell classi�cation
problems on verbose CSV �les. Strudel is a supervised learning
approach based on a random forest classi�er, combined with
a set of novel features that fall into three categories: content
features, contextual features, and computational features. We an-
notated �ve real-world datasets from various domains, on which
we tested our approach. Our in-depth experiments show the ad-
vantages of Strudel over baseline and state-of-the-art approaches
in both line and cell classi�cation tasks.

1 INTRODUCTION
The rapidly growing amount of data promises to be of great value
for everyone’s day-to-day life, for example, assisting doctors in
personalizing healthcare solutions to their patients, scientists
conducting open data-based citizen researches, and enterprises
making better business decisions. To enable such applications,
raw data must be properly processed and analyzed before gener-
ating insights. While some data are saved in well-de�ned formats,
such as relational tables or as key-value pairs, that can be readily
parsed by dedicated tools, a large quantity of other data are stored
in documents with unique structures, for example, CSV �les. CSV
�les are comma-separated values �les that provide a great num-
ber of data sources for various data-driven tasks, such as data
pro�ling [10, 24], data curation [22, 26, 30], and information ex-
traction [9, 16]. Although there is a standard1 that stipulates how
data shall be stored in CSV �les in theory, in practice users and
applications do not always conform to it, producing documents
with very unique structures.

This work addresses one such type of document: verbose CSV
�les. Later, we formally de�ne a comma-separated value �le as
verbose if its raw values serve various purposes, such as data,
metadata, group headers or notes, and appear in various positions.
An example of a real-world verbose CSV �le from the “Crime In
the US” (CIUS) dataset is given in Figure 1, where groups of cells
with di�erent roles are highlighted. This �le cannot be directly

1As decribed by RFC 4180: https://tools.ietf.org/html/rfc4180
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Arrest Table
Arrests for Drug Abuse Violations
Percent Distribution by Region, 2007
Drug abuse violations United States totalNortheast Midwest South West
Total1 100 100 100 100 100
Sale/Manufacturing: Total 17.5 22.5 18.3 17.1 15

Heroin or cocaine 
and their derivatives 7.9 14.2 6.2 7.9 5.5
Marijuana 5.3 5.7 7.7 4.6 4.7
Synthetic or 
manufactured drugs 1.5 1.1 1.1 2.6 0.7
Other dangerous 
nonnarcotic drugs 2.8 1.6 3.3 2 4.2

Possession: Total 82.5 77.5 81.7 82.9 85
Heroin or cocaine 
and their derivatives 21.5 22.3 14.7 22.8 22.7
Marijuana 42.1 44.2 53.1 47.9 29.6
Synthetic or 
manufactured drugs 3.3 2.3 3.2 4.3 2.8
Other dangerous 
nonnarcotic drugs 15.6 8.6 10.7 7.8 29.9

1 Because of rounding, the percentages 
may not add to 100.0.
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Figure 1: A real-world verbose CSV �le with di�erent cell-
level and line-level content classes. Here, the line-class is
determined by the majority of its cell classes.

ingested by common RDBMS tools, as it contains much additional
information, aside from a table with its header and data rows.

While standard CSV �les contain data in the form of a struc-
tured table, a verbose CSV �le is more similar to a spreadsheet,
in terms of its �exible content layout. Researchers have sug-
gested that only a minority of spreadsheets (22% of 200 randomly
selected spreadsheets) can be directly converted to relational
tables [6]. A similar observation by Dong et al. states that less
than 3% of spreadsheet tables are “machine-friendly” [11]. Spread-
sheets are not the only source for verbose CSV �les. We randomly
selected 26,140 �les from data that we crawled from theMendeley
data portal2, and manually checked their �le types. We grouped
all �les into three broad categories: (i) application-speci�c �les,
such as Microsoft o�ce �les; (ii) plain-text �les; (iii) multi-media
�les. Amongst all plain-text �les, we are interested in those with
at least one table. Out of these �les with tabular structures, there
are 4,459 �les that are verbose, accounting for around 20% of all
inspected plain-text �les. These verbose plain-text �les can be
easily transformed to CSV �les by applying �le-speci�c delim-
iters. In our experiments, we tested our approach on verbose CSV
�les derived from both spreadsheets and arbitrary plain-text �les
that contain data lines/cells.

Verbose CSV �les are prevalent media to store data that aim
at aiding human visual inspection or collecting statistical reports.
These data often need to be shared amongst communities. There-
fore, plain-text �les, such as CSV �les, are favored due to their
generality over those with proprietary �le types, such as spread-
sheets, that are used by speci�c applications. However, compared
to application-speci�c �les, verbose CSV �les are harder to parse,
as they do not necessarily follow a speci�c format. Various open
data portals include such �les, sometimes labeled as ‘ASCII’ data3.

2https://data.mendeley.com
3https://data.gov.uk/, https://www.govdata.de/, https://data.europa.eu/euodp/en/
data/
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Figure 2: Architecture of the Strudel algorithm.

To obtain insightful information from these �les, the �rst step is
to understand their structure, i.e., detect the types of cells, lines,
or data blocks. In practice, this is a challenging task due to (i) the
wide range of ad-hoc layout variants that can be found and (ii) the
lack of rich stylistic features that have been exploited by previous
work [2, 11, 18]. Manual inspection to recognize �le structure
and acquire valuable information is extremely time-consuming
for many and large verbose CSV �les; automatic methods can
support this task.

Information in verbose CSV �les is usually organized in a
tabular fashion, where each cell is an atomic content unit. File
structure is often re�ected in the sequence of classes of horizontal
lines, as data organized in verbose CSV �les usually conforms to
the common top-to-bottom data presentation logic. For example,
consider the line class labels of the example �le in Figure 1. These
classes show a natural logic of organizing information: metadata,
such as captions, come �rst, followed by the main body of a table
incorporating table headers, derived (aggregated) lines and data
lines, and �nally a few footnote lines conclude the �le. In this
work, we aim at verbose CSV �le structure detection by means of
classifying �le content in two granularities: lines and cells.

Obtaining manually labeled datasets with known line and cell
annotations to evaluate an approach for the structure detection
problem is di�cult, as ascertaining these classes in a verbose
CSV �le is a di�cult task even for experienced practitioners. In
our study, even by using a tool with a sophisticated graphical
interface, practitioners 1) took on average of two minutes to
label the lines in a single �le, because they needed to spend a
lot of time understanding the unique structure of each �le; 2) at
times disagreed with each other on the annotations of individual
lines. These observations highlight the challenge of automatically
classifying lines and cells in verbose CSV �les.

To address the line/cell classi�cation problem, we propose
the Structure Detection in Verbose CSV Files (Strudel) approach,
which is grounded on a multi-class random forest classi�er. Fig-
ure 2 shows the architecture of the approach. It �rst detects the
dialect of a text �le, and creates a verbose CSV �le from it, based
on the dialect. Then Strudel classi�es �rst lines and then cells
therein with the proposed feature sets. Cells of di�erent types are
distinguished by colors. Sections 4 and 5 describe Strudel for line
and cell classi�cation, respectively. We propose sophisticated fea-
tures to model the individual classes for both classi�cation tasks.
The features can be categorized into three groups: 1) content fea-
tures parsing the values of cells or lines, such as cell length and
amount of words; 2) contextual features comparing the inspected
cell or line with its neighbors, such as the similarity of data types

between lines/cells; 3) computational features seeking to connect
lines/cells with each other by inspecting arithmetic correlations
between them. The contributions of this work are summarized
as follows:

(1) A supervised learning approach with novel features to
address the structure detection problem for verbose CSV
�les.

(2) A dataset with more than 97,000 annotated lines in 226
�les, reforged labels of datasets from related work based
on our perspective on cell classes, and a dataset with 62
�les transformed from plain-text �les.

(3) An experimental comparison of Strudel with baseline and
state-of-the-art approaches.

In the next section, we introduce the related work on line and
cell classi�cation tasks and other relevant areas. In Section 3, we
formally de�ne the classi�cation problem and introduce the set
of line and cell classes. Section 4 and 5 describe the core idea of
Strudel, followed by Section 6, where we present the results and
analysis of our experiments. We conclude in Section 7.

2 RELATEDWORK
Extracting information from semi-structured documents has been
a growing research �eld in recent years. Relevant research ques-
tions include how to locate tabular content in documents such
as PDF �les [20], and spreadsheets [12], how to distinguish rela-
tional tables from non-relational tables [4, 29], and how to extract
relational tables from heterogeneous sources [5, 13, 14, 25].

Prior to extracting information from a semi-structured docu-
ment, understanding its structure is necessary. Some techniques
have been proposed to address the structure detection problem on
various documents, such as web tables and spreadsheets, which
include tabular material and have �exible layout. We summarize
these works focusing on structure detection by classifying lines
or cells, respectively.

2.1 Line classi�cation
Pinto et al. suggest a conditional random �eld (CRF) learning
approach to predict the label for lines of plain-text documents
crawled from a open data portal [23]. For each document, a
sequence of features is computed for its lines. The sequences
of all documents are used by the CRF classi�er to infer the la-
bel. This approach was later adopted to infer spreadsheet table
schemata [28] and extract relational data from spreadsheets [5].
Moreover, it was extended by Adel�o et al. to recognize line
classes in web tables and spreadsheets [2]. The authors suggest
feature binning to generalize the training data and show the ef-
fectiveness of their approach on recognizing line classes in both
HTML tables and spreadsheets crawled from several open data
portals. However, the approach assumes the presence of stylis-
tic features, such as font styles, or built-in spreadsheet formula
features, which are not available in verbose CSV �les.

A recent work has proposed the rule-based approach Pytheas
for CSV �le line classi�cation [8]. To classify lines in a CSV �le,
the approach �rst determines for each line whether it is data or
non-data by consulting a set of fuzzy rules, whose weights have
been learned beforehand with a training dataset. These binary
results are then used to determine the top/bottom borders of
tables in the �le. Finally, the approach exploits additional class-
speci�c rules on the discovered table/non-table areas to further
ascertain the class of each line. The core of this approach is the
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design of the fuzzy rule set, which signi�cantly impacts the con-
sequences of table border discovery, and also line classi�cation.
However, such a �xed set of rules might fail to generalize to new
circumstances in unseen data.

2.2 Cell classi�cation
Finer-grained cell classi�cation in tabular documents has been
the subject of academic interest in recent years. Abraham et al.
developed the UCheck framework, which includes a component
to detect “cell roles”, such as header and footer, in spreadsheets
using several heuristics [1]. Cell roles are then used by the system
to detect spreadsheet errors. The goal of their approach is to
correlate cells in a table with their corresponding headers, thus
they assume spreadsheets with only table regions as input data.

Koci et al. suggest a supervised learning approach with a post-
processing component to repair classi�cation errors [19]. The
authors introduce �ve misclassi�cation patterns and suggest that
the occurrence of them in the results hints at a misclassi�cation.

To reduce the amount of manual annotation e�ort, Chen et
al. integrated an active learning technique into their spreadsheet
cell classi�cation approach [7]. In their iterative algorithm, a
sheet selector presents the most uncertain spreadsheet to human
labelers. The sheet is then labeled and included into a training
set that is used to train a spreadsheet property classi�er.

Ghasemi-Gol et al. suggest a recursive neural network (RNN)
architecture on two seperately trained cell embeddings that cap-
ture the contextual and the stylistic semantics of cells, respec-
tively [18]. Even though the authors mention the contextual
impact on a cell from both neighboring and distant cells, they
considered only the former ones in their approach. They built
the stylistic features upon those suggested by [19].

In summary, these works all make use of stylistic features of
their input. However, no such information can be obtained in
verbose CSV �les. In this work, we compare our approach with
the RNN-based approach of [18], as it was reported to outper-
form the other approaches. In spite of using stylistics features to
solve the task, the authors also reported the performance of their
algorithm without their usage, enabling a direct comparison to
our approach.

3 DEFINITIONS AND PROBLEM
STATEMENT

We �rst de�ne the notion of verbose CSV �les. Then, we present
the taxonomy of element classes used to label our datasets and
present the detailed de�nition of each class. Based on these con-
cepts, we formally state the problem addressed by our approach.

3.1 Verbose CSV �les
A standard CSV �le, according to RFC 4180, contains an optional
header line at the beginning of the �le, followed by a number
of data lines. In contrast to that, a verbose CSV �le may include
elements of heterogeneous classes (which will be introduced
in Section 3.2), possibly with empty visual separators. Here, an
element is either a non-empty cell or a line that includes at least
one non-empty cell.

Definition. A verbose CSV �le is a comma-separated values
�le with values including one or more of metadata, header, group,
data, derived, and notes at arbitrary positions. Each line of the �le
may be composed of cells of one or more classes. Empty cells may
represent either missing values or serve layout purposes.

A standard CSV �le stores a single table that is machine-
readable, whereas a verbose CSV �le may include multiple tables,
and make use of empty cells and further cell types to improve
human readability, leading to various con�gurations. Informa-
tion of di�erent kinds may be organized as connected clusters of
cells throughout the �le: each such cluster may include informa-
tion of di�erent types, such as data, metadata, or aggregations; a
table may be divided by blank visual separators into several table
fractions; etc.

3.2 Class taxonomy
Our taxonomy includes six semantic classes and is similar to that
of [2], which addressed the line classi�cation problem on web
tables and spreadsheets. While in principle content of any class
may appear at any location in a verbose CSV �le, we enforce
a few practical constraints on their possible position, re�ecting
the usual reading convention: from left to right and from top
to bottom, assuming that tables are stacked only vertically. We
describe in detail each class in the following list.

• metadata.Metadata are the descriptive text above a table. Such
text may include the title of a table, or additional information
on the content of the table. A metadata area may span across
one or more lines and columns.
• group. In verbose CSV �les, tables are often split into sev-
eral fractions, each including data of a particular group. A
group (a.k.a. group header) element serves as the label of such
a fraction. We have seen in our datasets the group elements
appearing both above and below header areas. Therefore, we
allow both cases in our de�nition. Group cell may also serve
as the leftmost string cells in a derived line, e.g., the ‘Sale/Man-
ufacturing:’ cell in Figure 1.
• header. Headers are the column labels in the top area of a
table (or table fraction). Headers may span multiple cells. In
our de�nition, the header elements are located above the data
area, and below any metadata block of the table.
• data. Data elements are the content of a table that cannot be
derived from any other elements. Because they constitute the
main body of a table, data elements of a section of a table are
always below header and group elements that indicate this
section.
• derived. A derived cell aggregates the values of some other
numeric cells in the same table. In verbose CSV �les, derived
cells are usually organized as the top- or bottom-most lines, or
the left/right-most columns of the data area of a table.
• notes. Notes are descriptive text that follow a table. They may
give explanations of particular parts of a table, explain the
meaning of marks used in the table, or indicate the data source
origin.

Any line or cell in a verbose CSV �le can be associated with
exactly one of the classes introduced above. We address the fol-
lowing problem: Given a verbose CSV �le and the group of pos-
sible element classes, how can we determine the classes of all el-
ements? We consider elements of two natures addressing two
sub-problems under the same problem de�nition: lines, re�ecting
the usual vertical arrangement within a �le, and cells, as the most
�ne-grained element of a structured �le.

4 LINE CLASSIFICATION
In this section, we describe Strudel! – the Strudel approach to
deal with the line classi�cation problem. Strudel! is based on a
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multi-class random forest classi�er. Its input includes a set of
features extracted from the two-dimensional tabular data.

Various kinds of features have been proposed by previous
work to address the line classi�cation problem, including content
features, contextual features, spreadsheet formula features, and
stylistic features [2]. In our case, formula and stylistic features
cannot be applied, as CSV �les do not preserve these rich-text
information. Instead, we design a set of content features, con-
textual features, as well as computational features. We build the
features of Strudel! on top of the applicable features from the
previous work [2]. Table 1 lists our complete set of features, di-
vided into the three groups. The context features can include
information from both the line above and the line below. Thus,
the features marked by a star are applied twice – once for the line
above and once for the line below. To distinguish derived cells
from data cells, we propose novel computational features that
check whether the value of a numerical cell can be calculated by
applying a speci�c aggregation function on the numbers in the
vicinity, i.e., the cells in the same row or column.

Table 1: Line classi�cation features: ‘∗’ marks contextual
features applied to both lines above and below the in-
spected line; ‘†’ are adapted from [19].

Category Feature Value

Content

EmptyCellRatio† [0.0, 1.0]
DiscountedCumulativeGain [0.0, 1.0]
AggregationWord† 0/1
WordAmount [0.0, 1.0]
NumericalCellRatio† [0.0, 1.0]
StringCellRatio† [0.0, 1.0]
LinePosition† [0.0, 1.0]

Contextual
DataTypeMatching* [0.0, 1.0]
EmptyNeighboringLines* [0.0, 1.0]
CellLengthDi�erence* [0.0, 1.0]

Computational DerivedCoverage [0.0, 1.0]

Here, we describe and explain only the novel features used in
our approach and refer to related work for the others.
• DiscountedCumulativeGain (DCG) calculates the discounted
cumulative gain on a vector created from the cells of a line.
The vector has the same length as the number of cells in a
line. An element is set to ‘1’ if the corresponding cell in the
line is non-empty, or ‘0’ if it’s empty. This feature is exploited
to model the pattern of empty cells. DCG gives more weight
to left-more positions than to right-more positions, modeling
users laying out data from left to right.
• AggregationWord checks whether a line contains any word
that belongs to a pre-made dictionary of terms associated
with aggregation in tables (case-insensitive): total, all, sum,
average, avg, mean, and median. An existence of any keyword
gives ‘1’ to this feature, otherwise ‘0’. Using a dictionary of
such kind of keywords proves to be e�ective [19].
• WordAmount calculates the number of words in all cells of a
line. A word is a sequence of alphanumeric characters. The
feature values are normalized per �le by using a min-max
normalization strategy.
• DataTypeMatching calculates the percentage of line cells whose
data types match with those of the adjacent line (above or be-
low). Note that some �les insert an empty line between every

pair of non-empty lines to visually highlight the content. How-
ever, comparing the data type of a line with an empty adjacent
line does not carry much information. Therefore, an adjacent
line refers to the closest non-empty line. Data and derived lines
tend to have numerical cells while header lines usually contain
alphanumeric values. Other functional lines, such as metadata,
notes, and group lines tend to have many empty cells, as they
often contain values for only the �rst cell in a line.
• EmptyNeighboringLines calculates the percentage of empty
lines in the �ve lines above or below the inspected line. Empty
lines are often used as visual separators in verbose CSV �les.
Using such a separator between data lines within a table is
uncommon, but placing them between two classes of lines,
such as header-data and derived-notes is more common.
• CellLengthDi�erence calculates the cell value length di�erence
between two adjacent lines by calculating the Bhattacharyya
histogram di�erence on the sequence of cell value length of the
two lines. When computing this feature, we compare only a
line with its closest non-empty neighboring line, similar to that
applied for the DataTypeMatching feature. While data lines
tend to have similar cell-wise value lengths, as they usually
describe the same property and thus draw values from the
same domain and range, non-data lines might have natural
language form values that are of arbitrary value lengths.
• DerivedCoverage counts the number of numeric cells that
are recognized as derived cells by the derived cell detection
Algorithm 2 in the next section. The feature is normalized by
the number of numeric cells in this line.

Note that these line classi�cation features are all local features,
i.e., describing the characteristics of individual lines. We have
tested a few global features that re�ect properties of the entire
�le, namely percentage of empty lines in a �le, width and length
of a �le, and the number of empty line blocks in a �le. However,
our experiments show no positive impact on the classi�cation
problem.

All features are normalized and passed to a random forest
classi�er that predicts one class for each line. When used as the
Line class probability feature in (CAD34;� (Section 5.4), the output
is a set of vectors, each of which stands for a probability vector
of all classes for a line.

5 CELL CLASSIFICATION
Our cell classi�cation approach Strudel� is, like Strudel! , based
on a multi-class random forest classi�er. For the input of this
classi�cation task, we have again constructed a set of features
that include both the e�ective ones from previous work, and
novel ones. The predictions for line classes are used as a set of
features in Strudel� . Therefore, the Strudel! approach is executed
beforehand to obtain the line prediction probabilities that are
then transformed into the features of Strudel� . We leave the
detailed description to Section 5.4.

5.1 Feature extraction
Previous work has proven the e�ectiveness of content features,
stylistic features, spreadsheet formula features, and contextual
features [18, 19]. We ignore spreadsheet-speci�c formula features
and stylistic features, as they cannot be constructed from verbose
CSV �les. Table 2 lists all features involved in our approach, which
fall into three groups: content, contextual, and computational
features.
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Table 2: Cell classi�cation features; ‘∗’ marks contextual
features applied to each of the eight surrounding cells of
the inspected cell; ‘†’ marks features from related work.

Category Feature Value

Content

ValueLength† [0.0, 1.0]
DataType† [0..4]
HasDerivedKeywords† 0/1
RowHasDerivedKeywords† 0/1
ColumnHasDerivedKeywords† 0/1
RowPosition† [0.0, 1.0]
ColumnPosition† [0.0, 1.0]
LineClassProbability (?1, ..., ?6)

Contextual

IsEmptyRowBefore 0/1
IsEmptyRowA�er 0/1
IsEmptyColumnLe� 0/1
IsEmptyColumnRight 0/1
RowEmptyCellRatio† [0.0, 1.0]
ColumnEmptyCellRatio† [0.0, 1.0]
BlockSize [0.0, 1.0]
NeighborValueLength* [0.0, 1.0]
NeighborDataType* [0..5]

Computational IsAggregation 0/1

The features marked with ‘†’ in Table 2 are based on those
used in [18, 19]. Some of the original features are integrated
in our feature set without modi�cation, such as ValueLength
and DataType, while others are adapted to a certain extent. For
instance, a Boolean feature used to mark the existence of derived
cell keywords is extended to a row or a column (RowHasDerived-
Keywords and ColumnHasDerivedKeywords), i.e., whether the
row or the column that contains the inspected cell contains any
derived cell keywords. Features without ‘†’ are new. ValueLength
counts the number of characters in the value of the cell.DataType
in this work has four possible values, corresponding to four
data types: int, �oat, string, and date. In the next subsections,
we explain the intuition and implementation of the four most
sophisticated of them.

5.2 Block size
A verbose CSV �le may contain multiple tables in various posi-
tions, rather than a single relational table. Apart from tables, a
verbose CSV �les may contain non-data regions composed of ag-
gregation cells, notes, or metadata cells. In our datasets, non-data
regions are usually smaller than tables.

To model this phenomenon, we create for each non-empty cell
a BlockSize feature, which is calculated as the size of the con-
nected component that contains this cell. A connected component
is composed of a group of connected, non-empty cells. Two cells
are connected if they are either vertically or horizontally adjacent
to each other, or there is at least one connective path between
them. Algorithm 1 describes how the value of this feature is
produced for each cell in a given verbose CSV �le. It takes all
non-empty cells in a table as input, and outputs key-value pairs
where keys are these non-empty cells and values are their respec-
tive block sizes. To obtain the block size for all non-empty cells,
the algorithm employs a depth-�rst strategy to iterate over all of
them in a given �le. It starts from a single cell block (line 4-7),
and continuously adds adjacent cells to expand the block until no
more non-empty adjacent cell can be found (line 8-13). The block
size is normalized to [0, 1] by the size of the �le (line 14). The

algorithm terminates once all cells have been touched. Regarding
the complexity of this algorithm, assume there are = non-empty
cells in a verbose CSV �le. On the one hand, each cell will be
visited once and only once, resulting a $ (=) complexity. On the
other hand, the four directions of a cell are checked once the cell
is visited, leading to a $ (4=) complexity. Therefore, the overall
algorithm complexity is $ (=) +$ (4=) = $ (=).

Algorithm 1: Block size calculation
Input: The set of non-empty cells in a table �
Output: The set of key-value pairs �( from cells to block

size
1 �( ← {};
2 + ← {} # visited cells ;
3 while � −+ ≠ ∅ do
4 2 ← random cell in � −+ ;
5 1B ← 1;
6 + ← + ∪ 2;
7 � ← {2};
8 while there exist cells in � −+ adjacent to � do
9 203 9 ← an adjacent cell in �;

10 1B ← 1B + 1;
11 + ← + ∪ 203 9 ;
12 � ← � ∪ {203 9 };
13 end
14 1B ← normalize(1B);
15 foreach 2 ∈ � do
16 �( ← �( ∪ {2 : 1B};
17 end
18 end
19 return �(

5.3 Neighbor pro�le
Cells of some classes may be likely to have particular kinds of
neighboring cells. For example, to highlight group header cells,
users often separate them from other cells with empty cells, or
they place derived cells at the margin of a table, as a way to
summarize data. These observations bring our focus on the adja-
cency context of a cell: for each cell, we gather the data types and
value lengths of all eight surrounding cells and present each as a
single feature in the feature vector. The neighbor pro�le of a cell
includes all these NeighborValueLength and NeighborDataType
features. For the cells on the margins of a �le, some adjacent
cells do not exist. We set a default value for these non-existent
adjacent cells, i.e., −1 for value length and data type.

5.4 Line class probability
Despite the possible �exible layout, verbose CSV �les are usually
organized in some structurally meaningful way. Lines tend to
organize mostly homogeneous types of cells to ease human un-
derstanding. For example, a data line contains mostly data cells,
while a header line contains mostly header cells. Table 3 displays
statistics about the cell class diversity degree of all lines in our
datasets. The cell class diversity degree of a line is its number
of distinct non-empty cell classes. We observe that most lines a
have diversity degree of 1: for the cells in these lines, their classes
are trivially determined by the class of the line. Therefore, when
determining the class of a cell, the class of the line it is located in
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is likely a useful feature. In fact, we use this feature alone as one
of our baselines.

Table 3: Percentage of lines under di�erent diversity de-
grees.

Diversity degree
Dataset 1 2 3 4 5
SAUS 86.3% 13.7% 0% 0% 0%
CIUS 88.7% 11.2% 0.1% 0% 0%
DeEx 95.3% 4.6% 0.1% 0% 0%

To obtain the line class information, we �rst run Strudel! to
obtain the prediction for each line. The result of this execution is,
however, a probability vector of all classes, instead of a single pre-
dicted class. We interpret this probability vector as the classi�er’s
con�dence for these classes. Each element of the 6-dimensional
vector accounts for a feature for the cell class detection.

5.5 Derived cell detection
If a cell is indeed a derived cell, it should be possible to derive
its value by aggregating values of some other neighboring cells.
This fact has not been considered by previous work, possibly
due to computational cost. We propose a derived cell detection
algorithm that seeks to identify derived cells by arithmetically
correlating their values with other numeric cells.

We made three observations while investigating the datasets:
(i) a derived cell usually aggregates the values of cells from its
own row or column; (ii) a derived cell tends to aggregate values
close to it; (iii) sum and mean are the two dominant aggregation
functions used in verbose CSV �les. We integrate these insights
into our Algorithm 2. For conciseness, it shows only the approach
for detecting derived sum cells.

The algorithm takes as input a table as a two dimensional array,
the derived keyword dictionary to look for anchoring cells, an
aggregation delta 3 to give some slack to aggregation results, and
a coverage threshold 2 that controls the generality of aggregation
results. Executing the algorithm produces all detected derived
cells.

We �rst determine derived cell candidates, as calculating all
aggregation possibilities for all numeric cells is prohibitively ex-
pensive. We found that some indicative words usually appear in
a cell in the same row or column where there exist many derived
cells. For example, for a row with many summing cells, words
such as ‘Total’ are likely to appear in a cell of this row. Therefore,
we mark those cells with any of our aggregation keywords (intro-
duced in Section 4) as anchoring cells (line 2). Based on our �rst
observation, only numeric cells in the same row or column as an
anchoring cell are treated as derived cell candidates (line 6-8).

For the candidates in the same row as the anchoring cell, the
algorithm looks �rst upwards and then downwards for possible
aggregating relationships (line 9-19), whereas for the candidates
in the same column as the anchoring cell, the algorithm looks
left or right (line 20-30). When looking upwards, the algorithm
adds numeric values of a row each time to the sum vector cor-
respondingly, and inspects whether the current sum vector is
element-wise close enough (according to 3) to the candidates.
If the coverage of the close enough elements in the sum vector
surpasses 2 , the candidate is treated as a derived cell (line 14-17).
Due to our second observation, a row closer to the row where
the candidates are is inspected earlier than a row farther away.

Algorithm 2: Derived cell detection
Input: Table) , keywords  , aggregation delta 3 , coverage 2
Output: All detected derived cell��

1 �� ← {};
2 �←getAnchoringCells(), ) ;
3 if � is empty then
4 return�� ;
5 foreach 0 in � do
6 80, 90 ← row index of 0, column index of 0;
7 �', 22ind ← the list of numeric cells in row 80 and their

column indices;
8 �� , A2ind ← the list of numeric cells in column 90 and their

row indices;
/* line 9-19 for upwards detection */

9 sum← (0...0) ;
10 for 8 = 1 to∞ do
11 if 80 − 8 < 0 then
12 break;
13 else
14 E> ← numeric values at 22ind in row (80 − 8);
15 BD< ← BD< + E> ;
16 if coverage of (�' − sum < 3) > 2 then
17 �� ← �� ∪�'

18 end
19 end

/* repeat line 9-19 for downwards detection */

/* line 20-30 for leftwards detection */

20 sum← (0...0) ;
21 for 8 = 1 to∞ do
22 if 90 − 8 < 0 then
23 break;
24 else
25 E> ← numeric values at A2ind in column (90 − 8);
26 BD< ← BD< + E> ;
27 if coverage of (�� − sum < 3) > 2 then
28 �� ← �� ∪��

29 end
30 end

/* repeat line 20-30 for rightwards detection */

31 end
32 return��

6 EVALUATION
In this section, we �rst describe the datasets and all algorithms
used in our experiments. After that, we present our experimental
evaluation on Strudel, including its comparison with referenced
approaches, analysis of feature importance and four advanced
features on cell classi�cation, and di�cult case study for both
line and cell classi�cation tasks.

6.1 Datasets and experimental setup
This section �rst lists the datasets used in our evaluations, and
the preprocessing steps applied thereon. In practice, verbose CSV
�les may have unique dialects. The dialect of a �le speci�es the
delimiter, quoting character, and escape character, enabling to
parse the lines and cells correctly. Therefore, as a general prepro-
cessing, we �rst applied dialect detection on each �le with the
approach of van den Burg et al. [27]. This approach takes a text
�le as input, and produces its detected dialect. The scope of each
cell or line is determined by that dialect. The second part of this
section describes the list of baseline and competing approaches,
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our Strudel approach, and their respective con�gurations for
evaluation.

6.1.1 Datasets. Our datasets with verbose CSV �les come
from various sources, as summarized in Table 4. Only non-empty
lines and cells are counted. The content of our datasets is given
in the English language and follows a top-bottom / left-right
organisation. Non-Western verbose CSV �les might organize
the content in a di�erent fashion, which could be an interesting
future work.

We created the dataset GovUK by crawling all data �les in
Microsoft Excel format (both in .xls and .xlsx) from an open
data portal4 and transforming them into corresponding CSV
format with the Apache POI library5. While converting them
to CSV �les, we omitted both �les that contain macros or were
not otherwise processable by the library and empty sheets. We
randomly selected a subset of 226 �les from the dataset, and
created a line-level ground truth for them. To perform the actual
annotation, we implemented a tool to annotate each line as one
of our element classes. Each line of each �le in the created dataset
was annotated by three human experts. In case of disagreement,
which a�ected only 1% of the annotated lines, we used majority-
vote to determine the annotation. For the lines with complete
disagreement (fewer than 250 lines in our dataset), we employed
an independent fourth annotator to determine which one of
the three answers to apply. In the end, we obtained the ground
truth for in total more than 110,000 annotated lines. We make all
datasets publicly available6.

Table 4: The dataset overview.

Dataset # �les # lines # cells
GovUK 226 97,212 1,382,704
SAUS 223 11,598 157,767
CIUS 269 34,556 367,172
DeEx 444 77,852 784,229
Mendeley 62 195,598 1,359,810
Troy 200 4,348 23,077

Three other datasets SAUS, CIUS, and DeEx were created and
annotated by Ghasemi-Go et al. for cell classi�cation [18]. The
�rst two are administrative datasets, while the last one is a busi-
ness dataset. More detailed descriptions of each dataset can be
found in their original paper. The datasets were annotated by the
original authors with a slightly di�erent taxonomy. To reconcile
their annotations to ours, we partly re-annotate their labels. In
summary, they annotated all left-most headers of a table as at-
tributes, while we consider them as data of their columns. In the
example of Figure 1, they treat the cells that indicate the drug
types in the second column as attributes, while we annotate them
as data, as we model them as a data column of the table without a
header. We also note that some clearly derived cells were marked
as data: understandable errors due to their similarity, which we
corrected. In many cases, derived cells form an entire line, with
the exception of the leading cell, which is usually textual. This
textual cell often includes keywords, such as ‘Total’, and is nei-
ther a derived cell nor a header cell. We treat it as group in our
system, because a derived line often serves as a section separator

4https://data.gov.uk/
5http://poi.apache.org/index.html
6https://hpi.de/naumann/projects/data-preparation.html

Table 5: The number of lines or cells per class in the
dataset SAUS, CIUS, and DeEx as a whole.

class # lines # cells
# cells
per line

metadata 2,213 2,479 1.12
header 2,232 19,047 8.53
group 1,767 6,143 3.48
data 114,354 1,202,058 10.51
derived 1,406 76,996 54.76
notes 2,036 2,445 1.20
Overall 124,006 1,309,168 -

in a table. Table 5 presents the class distribution of these three
datasets with the reforged annotations.

Our Mendeley data is a set of plain-text �les collected from
Mendeley’s data sharing platform7 of experimental data. These
data are stored in research projects. We crawled all 2,214 projects
whose data are stored on Mendeley’s own server and that contain
at least one plain-text �le, i.e., whose MIME type is “text/*”. This
MIME type corresponds to a wide variety of actual �le formats:
not only �les with table structures and verbose information, such
as verbose CSV �les, but also programming scripts, HTML pages,
etc. We randomly selected 100 projects that include at least one
suitable verbose text �le, and obtain one such �le from each
project. Given the intricate dialects of these plain-text �les, the
dialect detection approach of [27] cannot reliably discover the
correct dialect for all �les. A �le is parse-able if the dialect for the
table region (including header, data, group, and derived) is correct.
For our experiments, we kept the 62 parse-able verbose CSV �les.
Note that this dataset is used only to verify the performance of
our approach on verbose plain-text �les and is not part of. the
training set. We observe a high line-to-�le and cell-to-�le ratio,
because the �les of this dataset are mostly used to store data, e.g.,
experimental results, rather than presenting statistical tables.

The last dataset, Troy, contains 200 CSV �les collected from
various government websites [17]. Embley et al. used this dataset
in their work to convert di�erent statistical tables to relational
tuples [15]. We kept the dataset unseen during the design of Stru-
del to test the out-of-domain generalizability of our approach
with this dataset.

In our data preparation process, we cropped each �le by re-
moving the marginal empty lines or columns, as some of our
features are sensitive to the number of empty cells in the lines,
and leading/trailing empty lines are trivial cases. Values of span-
ning cells in original spreadsheets are copied only to the top-left
cell in the CSV �le, instead of to all covered cells for two reasons:
(i) the top-left is well-de�ned for all shapes of spanning cells and
(ii) copying the values to all covered cells creates too many re-
peated characters, confusing the models that cause unnecessary
over-�ttings towards these values. To ease future study on this
topic, we will publish all datasets and their annotations.

6.1.2 Setup of experiments. The list below contains all algo-
rithms used in the evaluation, along with their corresponding
con�gurations. All algorithms were implemented in Python with
the scikit-learn library8. The superscript in the name of an algo-
rithm indicates the type of elements detected by this algorithm,
i.e., ‘L’ and ‘C’ represent line and cell classi�cation, respectively.

7https://data.mendeley.com/, last crawled on 3. August 2020
8https://scikit-learn.org/stable/index.html
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Table 6: Per-class and overall F-1 score on each dataset for line classi�cation (top) and cell classi�cation (bottom).

metadata header group data derived notes accuracy macro-avg

GovUK
CRF! .789 .379 .898 .991 .339 .752 .979 .733

Pytheas! .446 .444 .172 .986 - .545 .970 .518
Strudel! .670 .774 .919 .989 .361 .797 .978 .751
# lines 878 519 850 93,584 665 716 - -

SAUS
CRF! .893 .651 .817 .963 .477 .980 .931 .797

Pytheas! .884 .768 .741 .973 - .814 .944 .836
Strudel! .984 .960 .882 .987 .599 .984 .976 .899
# lines 469 565 289 9,346 279 650 - -

CIUS
CRF! .994 .961 .992 .996 .749 .988 .992 .947

Pytheas! .988 .867 .000 .970 - .637 .943 .692
Strudel! .994 .972 .984 .996 .834 .978 .993 .960
# lines 1,034 435 1,074 30,890 449 674 - -

DeEx
CRF! .753 .373 .027 .970 .244 .480 .942 .475

Pytheas! .564 .406 .137 .980 - .433 .957 .420
Strudel! .797 .807 .357 .989 .548 .761 .976 .710
# lines 710 1,299 407 74,116 678 712 - -

metadata header group data derived notes accuracy macro-avg

SAUS

Line� .963 .915 .451 .970 .332 .888 .930 .753
RNN� .977 .925 .466 .956 .345 .902 .919 .762
Strudel� .987 .972 .752 .983 .689 .957 .968 .890
# cells 469 4,769 825 142,301 8,708 695 - -

CIUS

Line� .991 .973 .361 .929 .156 .937 .824 .725
RNN� .987 .976 .679 .904 .443 .963 .850 .825
Strudel� .993 .993 .916 .946 .465 .989 .895 .884
# cells 1,035 3,838 4,228 310,354 47,043 674 - -

DeEx

Line� .630 .625 .155 .981 .258 .520 .955 .528
RNN� .623 .772 .347 .952 .244 .413 .930 .559
Strudel� .689 .801 .444 .988 .683 .598 .977 .700
# cells 975 10,314 1,216 749,403 21,245 1,076 - -

• CRF! is a conditional random �eld-based learning approach
dedicated to line classi�cation from the work of Adel�o et
al. [2] as the current state of the art. We applied this approach
with the logarithmic binning technique introduced by the au-
thors, as this setting was reported to gain the best performance.
• Pytheas! is a rule-based approach that discover the locations
of tables, and further classi�es the lines in CSV �les [8]. We
use the parameter values introduced in the original paper for
our experiments.
• Strudel! is our proposed approach for line classi�cation. The
underlying random forest classi�er used the default settings
in the scikit-learn library.
• Line� is a baseline approach for cell classi�cation. This ap-
proach simply extends the predicted class of a line from the
result of a Strudel! execution to each non-empty cell in this
line.
• RNN� is based on the state of the art by Ghasemi-Gol et al.,
which classi�es cell types with a recursive neural network
using pre-trained cell embeddings [18]. For our experiment,
we used the same settings as introduced in the original paper.
• Strudel� is our approach for cell classi�cation. Again, we used
the default settings of the random forest classi�er in the scikit-
learn library. In our experiment, we do not observe a substantial
di�erence in the result with di�erent values of the aggregation
delta 3 and coverage 2 . We set them to 0.1 and 0.5, respectively.

Apart from using content and spatial features, both original
CRF! and RNN� applied stylistic or spreadsheet formula features.

Because the input data in our use-case are style-less, verbose CSV
�les, we remove all stylistic features from the two approaches so
as to conduct fair comparisons. Each algorithm is evaluated using
10-fold cross validation. When creating the folds, our process
ensures that all elements from a single �le appear in either the
training or the test set. We repeat the 10-fold cross validation ten
times to reduce bias leaning to particular fold splits. The results
of all repetitions are averaged to obtain the �nal score.

We have tested several classi�cation algorithms for Strudel,
including Naïve Bayes, KNN, SVM, and random forest. Random
forest consistently outperformed the other candidate algorithms
on our datasets for both classi�cation tasks. Therefore, we chose
it as the backbone supervised learning algorithm of Strudel. The
advantage of random forest over the other algorithms is that it
reduces the risk of over-�tting by considering the results from
multiple base classi�ers, which is crucial for unbalanced datasets,
such as verbose CSV �les.

6.2 Comparative evaluation
This section presents the comparative evaluation results between
Strudel and the referenced approaches. We use the F1 measure
to evaluate the classi�cation correctness of each approach for
both line and cell classi�cation tasks. When comparing the over-
all result amongst algorithms, we focus on the macro average,
which does not weigh the average score with the support of
individual classes, thus avoiding the bias from the number of
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per-class instances, which is crucial for supervised learning tasks
on imbalanced data.

6.2.1 Line classification. We compared Strudel! with CRF!

and Pytheas! . CRF! uses a set of features, including content fea-
tures, contextual features, and stylistic features to train a con-
ditional random �eld based classi�er on web tables and spread-
sheets. Pytheas! uses a number ofweighted rules to decidewhether
a line is data or non-data. The binary results are used to draw
the table top/bottom boundaries, on top of which the approach
utilizes some additional rules to determine line classes.

Table 6 (top) reports the per-class andmacro-average F1 scores,
and accuracy for the three approaches. Note that Pytheas! can
classify a line as one of only �ve classes that correspond re-
spectively to ours, missing the derived class. Therefore, when
calculating the measurements for this approach, we leave out the
derived lines from our datasets. Overall, our approach leads on
macro-average for all datasets. Pytheas! does not perform well in
general on the minority classes in all but the SAUS datasets, as its
proposed rules are not suitable for these datasets: they produce
poor results already for the binary data/non-data classi�cation,
which disrupts the subsequent table discovery and line classi�ca-
tion. Group lines are particularly di�cult for Pytheas! : the scope
of group lines is constrained to lines between data lines and has
only the leftmost cell non-empty. While the group lines in SAUS
mostly follow this de�nition, those in the other datasets do not.
Most header lines of both SAUS and CIUS are across few lines
and with simple structures. Therefore, recognizing those headers
correctly is easier. Since the rule used to determine metadata
lines is dependent only on the positions of headers, it is also
easier to recognize metadata in these two datasets.

For CRF! and Strudel! , classifying header, group, derived and
notes correctly is in general more challenging, compared to meta-
data and data, according to the per-class scores. Both algorithms
perform better on CIUS than on the other datasets, because many
�les in this dataset are essentially the reports from di�erent years
on the same themes with the same templates – there are few �le
structure outliers. Both approaches do not work well on derived
in SAUS, because the dataset has many unanchored derived cells.
GovUK and DeEx are di�cult to both approaches, because they
both have many heterogeneous �les regarding their structures.

In summary, Strudel! outperforms CRF! without using its
stylistic features on our datasets, showing that our approach is
more e�ective when fewer assumptions can be made about the
input. Strudel! is also more �exible than rule-based approaches
such as Pytheas! in predicting cases that are not covered by the
given rule set.

6.2.2 Cell classification. For the cell classi�cation task, we
compare Strudel� with two aforementioned algorithms: (i) Line�
provides a reasonable baseline, as most lines have homogeneous
cells; (ii) RNN� is based on an advanced deep learning architec-
ture. The authors of RNN� evaluated their approach also without
stylistic features, which allows a fair comparison to Strudel� . Ta-
ble 6 (bottom) summarizes the comparative result in terms of the
per-class and macro-average F1 score, and accuracy. Strudel� sur-
passes its competitors . Meanwhile, the macro-average of RNN�
shows an advantage against the baseline approach, although the
per-class scores of the two approaches are on par with each other.
Even though cell classi�cation is a more imbalanced task than
line classi�cation, the performance of our Strudel� approach is
comparable to its line counterpart.

Similar to the line classi�cation problem, metadata, group,
derived and notes are the di�cult classes in general. Group cells
are challenging for all approaches, as cells of this class are partic-
ularly rare. However, unlike other rare classes, such as metadata
and notes, group cells are more likely to co-occur in the same
line with data cells. Line� reported low F1 score particularly on
group and derived cells across datasets. In fact, both group and
derived cells often co-occur with other types in the same lines:
some tables contain a group cell in a line with several derived
cells; other tables have derived columns rather than lines, there-
fore causing the few derived cells in a same line with multiple
data cells. Group and derived cells usually account for a minor
amount in these cases.

Line� applies a majority-take-all strategy to extend the line
prediction result of a line to all its non-empty cells, and therefore
causes false negative for group and derived cells in the above two
cases. RNN� shows a low F1 score on the group class, which is not
considered in the original paper [18], showing that the approach
cannot be directly adapted to it. The set of the reforged derived
cells, many of which were misplaced in the original annotations,
is also troublesome for RNN� , which does not involve value
calculation mechanisms to detect them.

6.3 Strudel performance evaluation
In this section, we present experimental results to gain insights
on the following questions: (i) When does Strudel mis-classify
an instance of a particular class, and which class is most likely to
be considered? (ii) Whether our approaches generalize to plain-
text �les that do not stem from spreadsheets? (iii) How do the
features exploited in this work a�ect performance? (iv) What are
the typical reasons that cause these incorrect predictions?

6.3.1 Line classification. Table 6 has introduced the per-class
and overall F1 results of Strudel! . In this section, we present our
analysis of the classi�cation results by using the confusionmatrix.
Figure 3 (top) shows the confusion matrix on executing Strudel!
per dataset. Due to space limitations, we leave out the matrix
for SAUS, which is very similar to that for GovUK. To create
a confusion matrix with the repeated 10-fold cross validation
setting, we concatenate for each line in the �les the predictions
of all repetitions, and construct an ensemble prediction for it with
the majority voting strategy. To resolve possible ties, we stipulate
that the fewer instances of a class included in the dataset, the
more prior the class is. We normalize the confusion matrix by
the number of instances with particular classes.

Correctly identifying derived lines is the most challenging
task across all datasets. These lines are mostly misclassi�ed as
data. The two main reasons for this are the lack of derived line
training instances and the high similarity between derived and
data lines, w.r.t. data types and spatial characteristics. Around
11.4% of the derived lines are treated as headers for GovUK. We
observed this to happen in many tables where derived lines are
between header and data areas and separated from these two
areas by empty lines. Note that when a line of a minority (non-
data) class is misclassi�ed, the wrong prediction tends to be ‘data’,
as the data class has much more instances than any other class.
Apart from derived lines, header, group, and notes lines in DeEx
also incorrectly lean towards the data class, because this dataset
contains many tables of complicated structures. We discuss the
kinds of mistakes in these categories in Section 6.3.6.
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Figure 3: Confusion matrices to describe the pair-wise performance of Strudel! (top) and Strudel� (bottom) on individual
datasets. The numbers are normalized by the amount of instances per class.

6.3.2 Cell classification. Similar to line classi�cation experi-
ments, we performed a set of experiments for evaluating Strudel�
and show the results in this section. Figure 3 (bottom) depicts the
per-dataset confusion matrix on executing Strudel� . To create
it, we applied on the repeated cross validation results the same
procedure used to create the confusion matrix for Strudel! .

Compared to the confusion matrix of Strudel! , more classes
have a higher mis-classi�cation ratio for all three datasets, show-
ing that cell classi�cation is a more challenging task than its
line counterpart. On the one hand, the tendency to mark the
instances of the minority classes as data is still prevalent. On the
other hand, as the complexity of the problem increases, we do
not observe many classi�cation errors between two non-data
classes, showing the e�ectiveness of our approach to distinguish
between pairs of elements belonging to minority classes. About
two-thirds of the derived cells are treated as data for CIUS. This
is because a number of �les share a �xed table schema that uses
no keywords to indicate derived columns. Therefore, they are
e�ectively ignored by the derived cell detection component.

6.3.3 Out-of-domain classification performance. To test the
out-of-domain classi�cation performance of Strudel, we kept the
Troy dataset unseen during its design. We used a model trained
on the collection of SAUS, CIUS, DeEx datasets to predict the line
and cell classes of each �le in this dataset.

The results in Table 7 show that group and derived cells are
challenging for Strudel. After inspection, we found out that most
of the derived cells lay in the lines that do not contain any derived
keyword, such as ‘total’. These derived cells are excluded from
the candidate set, because our derived cell detection algorithm
(Algorithm 2) relies on these keywords to anchor the candidates
in order to reduce the search space. A typical derived line contains
few group cells (usually the left-most) with indicative strings,
such as ‘total’ and a number of numerical derived cells. Many
of these derived lines are mis-classi�ed as data, leading to the
group cells therein also being mistaken.

6.3.4 Performance on plain-text files. To verify the e�ects of
our Strudel algorithms on more di�cult plain-text �les that are
not converted from spreadsheets, we tested the Strudel algorithm
on theMendeley dataset. We trained a model of our algorithm on

Table 7: Per-class and overall F1 score on the Troy dataset.

Strudel! # lines Strudel� # cells

metadata .935 317 .921 321
header .798 278 .840 1,341
group .667 42 .232 294
data .937 2,898 .936 18,600
derived .070 239 .216 1,935
notes .971 575 .952 592
macro-avg .730 4349 .683 23,083

the collection of SAUS, CIUS, and DeEx datasets, using the whole
Mendeley dataset for testing.

Table 8 displays the per-class and overall F1 score for this
experiment. As mentioned above, �les of the Mendeley dataset
are mostly used to store (tabular) data. Therefore, the minority
classes in the Mendeley dataset have very few instances.

While the overall F1 scores in this experiment are inferior to
the respective ones shown in Table 6, they do show that even for
such di�cult �les our approaches are well able to distinguish data
from non-data. The values in Mendeley’s plain-text �les show
properties di�erent from traditional spreadsheets, e.g., length of
metadata and notes areas, width of �les. The second reason is
that no data from Mendeley was included in the training phase.
Therefore, dataset-speci�c properties are not learned properly
by the classi�ers. Last but not least, di�erent areas in a plain-text
�le might have their own delimiters. As the delimiter of the table
areas is used across the �le, it is possible to destroy the intrinsic
structures of other areas, e.g., when using comma as the delimiter,
the value of a note line is split across multiple cells.

Regarding the results of individual classes, our model treats
quite a few metadata lines as data, as the delimiter of metadata
and data areas are di�erent. At times, the delimiter dilemma also
confuses our model of header lines in �les where these lines are
not split correctly. Out of the few derived cells, most are located
in a single �le, where the derived cells form a table by themselves,
and aggregate on the values from another table, which is not
recognizable by our model.

As the Mendeley dataset holds the biggest �les across all our
datasets, we also tested the scalability of our approach. The over-
all runtime on classifying cells of a �le includes that of dialect
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detection, feature creation, and cell class prediction. Our experi-
ments show that the overall runtime is linear to the �le size. For a
�le of around 10MB, the whole procedure takes around 256s on a
1.4 GHz MacBook Pro with 16GB RAM. Most of the time is spent
on creating the feature vectors, which could be easily parallelized
if possible. While we have few big �les of such size, most �les
are only several kilobytes, probably because �les with verbose
information are usually used to show limited key information,
rather than store a big amount of data.

Table 8: Per-class and overall F1 score for Mendeley.

Strudel! # lines Strudel� # cells

metadata .623 604 .245 2,152
header .406 86 .629 769
group .263 27 .303 44
data .999 194,786 .999 1,356,635
derived .364 9 .051 99
notes .448 86 .380 111
macro-avg .517 195,598 .435 1,359810

6.3.5 Feature analysis. To understand which features exert
more in�uence than others on particular classes, we calculated
the feature importance for both Strudel! and Strudel� models.
There are a variety of techniques to calculate feature impor-
tance [3, 21]. As many of our features are low-cardinality cate-
gorical features, we exploited permutation feature importance,
because it does not favor high cardinality features [3]. Permu-
tation feature importance indicates the ability of one feature to
distinguish instances of one class from those of another in a bi-
nary classi�cation scenario. To adapt this metric to our multiclass
classi�cation problem, we trained a model for each class in a one-
vs.-rest fashion, and use the permutation feature importance of
each such binary classi�er to represent the ability of our model
to detect instances of the particular class. The permutation of
each feature was repeated �ve times and averaged.

Figure 4 illustrates the per-class feature importance for Strudel!

(top) and Strudel� (bottom) with 100% stacked bars. The mod-
els are trained on the collection of SAUS, CIUS, and DeEx. We
grouped all neighbor pro�le features (Section 5.3) into neighbor
value length and neighbor data type to reduce the complexity of
the �gure, as each individual feature has little importance on the
cell classi�cation task. Up to �ve most important features whose
proportions are higher than 10% are highlighted.

The line type probability feature is the most crucial feature for
notes, metadata, and header. The percentage of empty cells in the
row is also quite useful for notes and metadata. The percentage
of empty cells in a column is most important to discover group
cells: many group cells are in the left-most column (also indicated
by the importance of the column position feature) of a �le and
span multiple rows. Neighbor pro�le features are most useful on
discovering group cells, proving that group cells tend to locate in
speci�c places. The novel feature signifying whether the value
of a cell is the aggregation of other cells in the same line or
column plays a great role in detecting derived cells, proving its
e�ectiveness. Besides that, the existence of derived keywords,
such as ‘total’ in the same column is also important, indicating
that users tend to use these words to mark the derived columns.
However, the existence of derived keywords in the same line
shows quite limited importance in our experiment, although we
expected similar importance of it as its column counterpart.

6.3.6 Analysis of di�icult cases. The confusion matrices shed
light on which classes are most commonly mis-predicted, either
in the line or cell classi�cation task. Here, we identify typical
causes of those errors. The list below describes the pairs of com-
mon mis-classi�cation cases (with > 10% incorrect classi�cation
in the class), e.g., mis-classifying ‘derived as data’, each followed
by an error analysis after manually inspecting the results.
• Derived as data. Errors of this type usually happen because
derived lines without keywords, such as ‘total’, in any of the
cells are ignored by the derived cell detection algorithm, which
uses these words to determine candidates, or because derived
lines aggregate values from non-consecutive lines, which are
ignored by the detection algorithm.
• Header as data. A header line with a number of non-textual
values adjacent to a data line may be mis-classi�ed as part of
the data area. Examples include numeric headers, such as year
and date. Files with multiple vertically-stacked tables may also
be a�ected by this sort of error, as the headers of the tables
towards the bottom of the stack have unusual line positions.
• Notes as data. Organizing notes as a small table is not uncom-
mon, particularly in DeEx. Therefore, these tables of notes are
likely to be treated as data. In some cases, authors place notes
to the right of a table. Therefore, they are likely to be treated
as data areas during cell classi�cation.
• Group as data. One reason for this type of error is that some
�les have multi-level group columns, such as ‘country-state-
city’, to the left of a table, followed by a number of data columns
to the right. As most tables have few group columns, the classi-
�er may mis-interpret these rare cases as data. Another reason
is that these group cells lay in the same lines as those derived
cells, who are not captured by the derived cell detection algo-
rithm, because there is no keyword in the same row or column.
• Metadata as data. Tables may have elaborate metadata or-
ganized as small tables. Due to the tabular features of these
metadata tables, Strudel tends to interpret them as data cells.
In summary, there are three aspects that mostly a�ect the

correctness of our approach: (i) the geographical characteristic of
vertically stacked multi-table �les; (ii) the arithmetic calculation
method for derived lines; (iii) the similarity between numeric
header lines and data lines. These facts o�er directions for im-
proving our approach in the future work.

7 CONCLUSIONS
Often, valuable data are stored in semi-structured documents and
cannot be directly parsed by common data management tools.
Prior to extracting information from these �les, it is necessary to
understand their structure, by means of element classi�cation,
at either line or cell level. Previous works have addressed the
line or cell classi�cation problem for style-enriched documents,
such as web tables or spreadsheets. In this work, we address both
tasks on verbose CSV �les that, similar to spreadsheets, organize
data in a �exible layout, yet lack rich-text features. We addressed
the two classi�cation problems separately and designed a set of
features for each of them, including content features, contextual
features, and computational features.

Based on the experimental evidence, we discovered that with
well-designed features, it is possible to reach decent performance
of classifying lines and cells in a verbose CSV �le and spread-
sheets even if the stylistic features are not available. To conduct
fair comparison between Strudel and related work, we use only
the non-stylistic features.We summarize a handful of reasons that
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Figure 4: Feature importance of Strudel! (top) and Strudel� (bottom) trained on the collection of SAUS, CIUS, and DeEx.
Several most important features for each class are highlighted.

cause common misclassi�cation cases, and recognize the e�ec-
tiveness of computational features that are neglected by former
studies, drawing key insights for further structure understanding
research: (i) how to improve the prediction quality with semantic
features; (ii) how can we extend the derived cell detection algo-
rithm by recognizing more aggregation functions; (iii) whether
column classi�cation can help boost the classi�cation quality.
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