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ABSTRACT
Influence Maximization (IM) is the problem of finding a set of

influential users in a social network, so that their aggregated

influence is maximized. The classic IM problem focuses on the

single objective of maximizing the overall number of influenced
users. While this serves the goal of reaching a large audience,

users often have multiple specific sub-populations they would

like to reach within a single campaign, and consequently multi-

ple influence maximization objectives. As we show, maximizing

the influence over one group may come at the cost of signifi-

cantly reducing the influence over the others. To address this,

we propose IM-Balanced, a system that allows users to explicitly

declare the desired balance between the objectives. IM-Balanced
employs a refined notion of the classic IM problem, called Multi-

Objective IM, where all objectives except one are turned into

constraints, and the remaining objective is optimized subject to

these constraints. We prove Multi-Objective IM to be harder to

approximate than the original IM problem, and correspondingly

provide two complementary approximation algorithms, each suit-

ing a different prioritization pertaining to the inherent trade-off

between the objectives. In our experiments we compare our so-

lutions both to existing IM algorithms as well as to alternative

approaches, demonstrating the advantages of our algorithms.

1 INTRODUCTION
Social networks attracting millions of people, such as Twitter

and LinkedIn, have emerged recently as a prominent marketing

medium. Influence Maximization (IM) is the problem of finding a

set of influential network users (termed a seed-set), so that their

aggregated influence is maximized [23]. IM has a natural applica-

tion in viral marketing, where companies promote their brands

through the word-of-mouth propagation. This has motivated ex-

tensive research [7, 26], emphasizing the development of scalable

algorithms [20, 33].

The classic IM problem focuses on the single objective of

maximizing the overall number of influenced users, given a bound

on the seed-set size. While this serves the goal of reaching a large

audience, IM algorithms may obliviously focus on certain well-

connected populations, at the expense of other demographics

of interest. Indeed, marketing campaigns often have multiple

objectives, and consequently multiple subpopulations they would

like to reach within a single campaign. In this paper we refer to

the subpopulations of interest as emphasized groups, and assume

the existence of boolean functions over user profile attributes,

which identify these groups. We introduce the Multi-Objective

IM problem, which refines the IM problem, handling multiple

emphasized groups.

Ideally, one would like to find a seed-set which simultaneously

maximizes the influence over all emphasized groups. However, as

we demonstrate, maximizing influence over one group may come
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at the cost of significantly reducing the influence over another

group. Hence, we devise a framework enabling users to explicitly

specify the desired trade-off. Concretely, our system, called IM-
Balanced, allows the user to prioritize the objectives and declare

what portion of the influence over specific groups she is willing

to compromise, in order to increase influence over the others.

For simplicity of presentation, we initially focus on the case

where the user has two (possibly overlapping) emphasized groups,

denoted as 𝑔1 and 𝑔2, and she is willing to compromise a certain

percentage of the maximal possible influence over one group

for an influence increase over the other. We then extend our

discussion to multiple groups, and shortly discuss alternative

problem definitions.

We illustrate the problem that we study in this paper via the

following two examples.

Example 1.1. Consider a government office aiming to spread

a message regarding a new vaccination policy, across a social

network. The main goal is to reach the largest possible number

of users, but at the same time, it is also desirable to maximize the

number of reached anti-vaccination users. Here 𝑔1 consists of all

users, and 𝑔2 is the group of anti-vaccination users. A standard

IM algorithm will maximize the overall influence (𝑔1), possibly

at the expense of not reaching sufficient 𝑔2 members. A partial

solution can be found in targeted IM algorithms (e.g., [9]), which

maximize the influence over a particular group (here - 𝑔2). But

if this (possibly small) group is somewhat socially isolated, the

message may not reach a sufficient number of users overall.

Example 1.2. Consider a tech company running a recruitment

campaign over a social network, with the goal of hiring both

engineers (𝑔1) and researchers (𝑔2). Assume that there are far

more engineers than researchers, and that the two groups are

not strongly connected socially (though some users may belong

to both groups). A targeted IM algorithm focusing, e.g., on users

belonging to the union of the groups, may fail to reach a suffi-

ciently large fraction of the researchers. On the other hand, a

targeted IM focusing on the researchers may result in too few

engineers being reached.

In both examples, there is a trade-off between the influence

over two groups of interest. One simple solution is to split the

budget (i.e., seed-set size) and run two separate (single-objective)

targeted IM algorithms. However, it is not clear how to split the

seed-set to obtain the desired balance between the objectives.

An alternative approach to tackle multi-objective optimization

problems is the weighted-sum approach, where the objectives

are combined into a single objective. In the IM setting this in-

volves assigning each user a weight depending on the groups(s)

to which she belongs (e.g. [26, 31]). A main difficulty in applying

this approach is assigning the weights that achieve a desired

influence balance [21]. Indeed, as we demonstrate in our exper-

iments, the exploration for the optimal weights results in poor

runtime performance.

Another more direct approach to multi-objective optimization

problems is the constraints method [12], where all objectives

except one are transformed into constraints, and the remaining
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objective is optimized subject to these constraints. Our work

employs this approach for IM. Concretely, in IM-Balanced users

can define the emphasized groups, and specify for each group

the fraction of its optimal influence that they are willing to com-

promise in order to increase influence over other groups. An

easily operated UI allows users to view the maximal possible

influence for each group (and what influence it entails over other

groups), specify the constraints, and view the corresponding

derived influence.

Continuing with Example 1.1, if the UI indicates that the over-

all number of users that can be influenced is rather high, one

may be willing to sacrifice a certain amount in order to increase

the influence over anti-vaccination users. In Example 1.2, assum-

ing that the company is interested in recruiting a small number

of researchers and a larger number of engineers, one can set a

constraint on the minimal number of researchers to be informed,

and maximize the influence over engineers under this constraint.

Next, we provide a brief overview of our contributions.

Multi-Objective IM. To allow users to balance the objectives

we formalize the Multi-Objective IM problem, which extends the

IM problem as follows. Given two emphasized groups 𝑔1 and 𝑔2
and a threshold 0 ≤ 𝑡 ≤ 1, we add a requirement that the solution

must exceed a 𝑡-fraction of the optimal influence over 𝑔2. Then,

subject to this constraint, we maximize the influence over 𝑔1. For

𝑡 = 0 one gets a single-objective targeted IM problem solely over

𝑔1 users, whereas for 𝑡 = 1 one gets a single-objective targeted

IM solely over 𝑔2 users (Section 3).

Approximation lower bound. We prove that, like IM, Multi-

Objective IM is 𝑁𝑃-hard. We show that when the constraint

threshold 𝑡 is > (1 − 1

𝑒 ), then no seed-set satisfying the con-

straint can be found in PTIME. Moreover, we prove that the

(1 − 1

𝑒 )-approximation factor for 𝑔1, which is optimal in the (un-

constrained) IM problem, is unattainable in our setting. We show

however that it can nevertheless be achieved if the constraint

imposed on 𝑔2 is also approximated by a (1 − 1

𝑒 ) factor. This
bound exposes the trade-off between the approximation factor

for the 𝑔1 users and the relaxation of the constraint imposed on

the𝑔2 users. We therefore provide two approximation algorithms,

each suiting a different prioritization pertaining to this trade-off.

The MOIM algorithm. Our first algorithm is simple yet highly

efficient. It follows the budget splitting approach mentioned

above, but rather than requiring the user to specify the parti-

tion, it derives it by itself. MOIM runs two single-objective tar-

geted IM algorithms, each focusing on a different group, and

combines their outputs. It guarantees that the constraint is fully

satisfied, while providing a (1 − 1

𝑒 · (1−𝑡 ) )-approximation for the

𝑔1 users, which equals 1− 1

𝑒 for 𝑡 = 0, but decreases as 𝑡 increases.

A key advantage of MOIM is its modularity: MOIM maintains

the properties of its input IM algorithm, carrying over all of its

optimizations, and therefore it achieves near linear time perfor-

mance. Such good performance is critical for scaling successfully

to massive networks (Section 4).

The RMOIM algorithm. To get a tighter approximation ratio

one needs to compromise on (i) how strictly the constraint is

maintained, and (ii) performance. The RMOIM algorithm relaxes

the constraint, allowing its approximation by a (1 − 1

𝑒 ) factor,
achieving in return near optimal approximation ratio for the

influence over 𝑔1. RMOIM extends a Linear program (LP) for

Maximum Coverage [38], and thus its performance becomes

polynomial (but still practical for real-life social networks includ-

ing tens of thousands users, as our experiments indicate). One

point to note is that building the LP assumes knowledge of the

optimal influence over the constrained 𝑔2 group. As this value is

incomputable in PTIME, we approximate it, and provide worst

case guarantees for this as well.

Implementation and Experimental study. We have imple-

mented our algorithms as part of the IM-Balanced system and ex-

perimentally compare our algorithms to (targeted) IM algorithm

and alternative approaches. We show that while the weighted-

sum approach, when assigned optimal weights, is able to achieve

results of quality close to ours, our algorithms are significantly

more efficient. In terms of runtime performance, we show that the

quality advantage comes with a reasonable performance cost for

MOIM, which scales well for massive networks. For RMOIM the

decrease in scalability turns out to be moderate, proving it practi-

cal for non-massive networks, while often exceeding worst-case

guarantees to satisfy the constraint (Section 6).

A demonstration of IM-Balanced’s usability and its suitabil-

ity to end-to-end employment was presented in [16]. The short

paper accompanying the demonstration provides only a brief,

high-level description of the system, whereas the present paper

provides the theoretical foundations and algorithms underlying

the demonstrated system, as well as the experimental study.

For space constraints, all proofs are deferred to our technical

report [3].

2 PRELIMINARIES
This section presents the standard IM problem, and introduces

the auxiliary problem of Group-Oriented IM. Our multi-objective

variant of the IM problem is then presented in the next section.

2.1 Influence Maximization
We model a social network as a weighted graph 𝐺=(𝑉 , 𝐸,𝑊 ),
where𝑉 is the set of nodes and every edge (𝑢, 𝑣)∈𝐸 is associated

with a weight𝑊 (𝑢, 𝑣)∈[0, 1], which models the probability that

𝑢 will influence 𝑣 . Given a function 𝐼 (·) dictating how influence

is propagated in the network, the IM problem [23] is defined as

follows.

Definition 2.1 (IM [23]). Given a weighted directed graph 𝐺

and a natural number 𝑘 ≤ |𝑉 |, find a set 𝑂 that satisfies: 𝑂 =

𝑎𝑟𝑔𝑚𝑎𝑥 {𝑇 :𝑇 ⊆𝑉 , |𝑇 |=𝑘 }𝐼 (𝑇 ), where 𝐼 (𝑇 ) is the expected number of

nodes influenced by the seed set 𝑇 .

Naturally, every node 𝑣 in a seed set 𝑇 is influenced by itself,

and hence, by definition, 𝑇 is influenced by 𝑇 with probability 1.

In what follows, we refer to influenced nodes as covered.
The function 𝐼 (·) is defined by the influence propagation

model. The majority of existing IM algorithms apply for the

two most researched models [7, 20], the Independent Cascade

(IC) and the Linear Threshold (LT) models. Both models define

the function 𝐼 (·) as non-negative, submodular and monotoni-

cally rising. Our results hold under both models. For simplicity

of presentation, in our numeric examples throughout the paper

we focus on the LT model.

In the LT model, each node 𝑣 chooses a threshold 𝜃𝑣∈[0, 1]
uniformly at random, which represents the weighted fraction of

𝑣 ’s neighbors that must become covered in order for 𝑣 to become

covered. Given a random choice of thresholds and an initial set

of seed nodes, the diffusion process unfolds deterministically

in discrete steps: in step 𝑡 , all nodes that were covered in step
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Figure 1: Example social network with two emphasized groups.

𝑡−1 remain covered, and we cover any node 𝑣 for which the

total weight of its covered neighbors is at least 𝜃𝑣 . To illustrate,

consider the example network presented in Figure 1, ignoring for

now the users’ border colors. For 𝑘=2, the optimal 2-size solution

is 𝑂={𝑒, 𝑔}, where 𝐼 (𝑂)=5. Throughout the paper, the threshold
for each node was sampled uniformly at random from [0, 1].

Existing IM algorithms. Selecting the optimal seed set is NP-

hard, and hard to approximate beyond a factor of (1− 1

𝑒 ) [23].The
subsequentwork on IM following [23], which had already achieved

the optimal approximation, has focused on scalability [7, 13, 29].

In what follows, whenever we refer to an IM algorithm, we in

fact refer to a probabilistic algorithm, which, given the param-

eters 0≤𝜖, 𝛿≤1, achieves, with probability ≥(1−𝛿), the optimal

approximation factor up to an additive error of 𝜖 . To ease the pre-

sentation, we omit the discussion of 𝜖 and 𝛿 whenever possible.

State-of-the-art IM algorithms are based on the Reverse In-

fluence Sampling (RIS) framework, achieving near optimal time

complexity [33] of Θ̃(𝑘 ·( |𝑉 |+|𝐸 |)). The RIS framework utilizes

sampling over the transpose graph, to reduce the problem to

an instance of the Maximum Coverage (MC) problem [38]. For

completeness of this paper, we formally define this problem.

Definition 2.2 (MC [38]). Given subsets 𝑆1, ..., 𝑆𝑚 of elements

from 𝑈 = {𝑢1, ..., 𝑢𝑛} and a natural number 𝑘 ≤ 𝑚, the goal is to

find 𝑘 subsets from 𝑆1, ..., 𝑆𝑚 so as to maximize the number of

covered elements in their union.

The well-known MC problem has a simple greedy approxima-

tion procedure [38], achieving an optimal approximation factor

of (1− 1

𝑒 ). The RIS framework consists of two steps: First, 𝜃 nodes

are sampled uniformly, then, for each sampled node 𝑢, a back-

ward influence propagation is simulated from it, with all nodes

covered in a simulation constituting a Reverse Reachability (𝑅𝑅)

set. This 𝑅𝑅 set plays the role of possible influence sources for 𝑢.

Next, each node is associated with the set of 𝑅𝑅 sets containing it,

then, using a greedy algorithm, 𝑘 nodes are selected with the goal

of maximizing the number of covered 𝑅𝑅 sets. The observation

underpinning this approach is that influential nodes will appear

more frequently in 𝑅𝑅 sets, and that the share of 𝑅𝑅 sets covered

by a seed set implies an unbiased estimator for its influence.

Example 2.3. Let𝑘=2, 𝜃=4 and four random𝑅𝑅 sets𝐺𝑑1={𝑏, 𝑑, 𝑓 },
𝐺𝑒={𝑒},𝐺𝑑2={𝑑, 𝑓 } and𝐺𝑏={𝑎, 𝑏, 𝑒} are generated from the graph

depicted in Figure 1 (𝑑 was sampled twice). The correspond-

ing MC instance is: 𝑆𝑏={𝐺𝑑1 ,𝐺𝑏 }, 𝑆𝑑={𝐺𝑑1 ,𝐺𝑑2 }, 𝑆𝑓 ={𝐺𝑑1 ,𝐺𝑑2 },
𝑆𝑒={𝐺𝑏 ,𝐺𝑒 }, 𝑆𝑎={𝐺𝑏 }. W.h.p. the sets 𝑆𝑒 , 𝑆𝑓 will be selected by

the greedy algorithm for MC, as they cover all 𝑅𝑅 sets, and hence

the nodes 𝑒, 𝑓 will be selected as the seed nodes.

Most recent works focused on optimizing this approach by

minimizing the number of sampled 𝑅𝑅 sets [20, 28, 34].

An important observation is that the second step of RIS can

also be achieved using Linear Programming (LP), yielding the

same guarantees. However, in terms of time complexity, IM algo-

rithms are nearly linear, compared to PTIME LP solvers [22].

2.2 Group-Oriented IM
In our setting users are associated with profile properties such

as their profession or political opinion. Characterized by these

properties, the end-user provides her emphasized groups, i.e.,
groups which she wishes to ensure are sufficiently covered. An

emphasized group may be defined using a boolean query over

(multiple) user profile attributes. Figure 1 depicts two emphasized

groups: the group of users with red border (𝑔1), and the group

of users with blue border (𝑔2). In this example, user 𝑑 belongs to

both groups and user 𝑏 to none.

Recall that 𝐼 (𝑆) denotes the expected number of nodes covered

by a seed-set 𝑆 . Let 𝑔⊆𝑉 be a group of emphasized users, and

𝐼𝑔 (𝑆) denote the expected number of 𝑔 members covered by 𝑆 , re-

ferred to as the 𝑔-cover. We present the auxiliary Group-Oriented
IM problem, denoted as 𝐼𝑀𝑔 , which instead of maximizing 𝐼 (·),
maximizes 𝐼𝑔 (·).

Definition 2.4 (The 𝐼𝑀𝑔 problem). Given a group 𝑔 ⊆ 𝑉 and a

number𝑘≤|𝑉 |, find a set𝑂𝑔 satisfying:𝑂𝑔 = 𝑎𝑟𝑔𝑚𝑎𝑥 {𝑇 :𝑇 ⊆𝑉 , |𝑇 |=𝑘 }𝐼𝑔 (𝑇 ).
To illustrate, consider the following example.

Example 2.5. Consider again Figure 1 and assume that 𝑘=2.

The optimal solution for𝑔2 is𝑂𝑔2={𝑑, 𝑓 }, where 𝐼 (𝑂𝑔2 )=𝐼𝑔2 (𝑂𝑔2 )=2
and 𝐼𝑔1 (𝑂𝑔2 )=0. The solution that maximizes the 𝑔1-cover is

𝑂𝑔1={𝑒, 𝑔}, where 𝐼𝑔1 (𝑂𝑔1 )=4 and 𝐼𝑔2 (𝑂𝑔1 )=0.5. Observe that cov-
ering a greater number of users from one group may come at

the cost of significantly reducing the cover size of users from

another group.

The hardness result of IM also applies to this variant, following

a straightforward reduction from IM, where 𝑔=𝑉 .

Proposition 2.6. The 𝐼𝑀𝑔 problem is hard to approximate
beyond a factor of (1 − 1

𝑒 ) in PTIME.

In Section 4.1 we explain how a given IM algorithm can be

adapted to its group-oriented version, retaining all its theoretical

properties. Note that this variant can be seen as a special case

of the Targeted IM problem [26], where the goal is to maximize

influence over a targeted group of users, with relevance of users

modeled by weights in [0, 1]. The 𝐼𝑀𝑔 problem is further im-

posing a dichotomy where the weights are in {0, 1}, modeling

discrete properties.

3 PROBLEM FORMULATION
As mentioned, our results support multiple, possibly overlapping,

emphasized groups. However, for simplicity, we initially focus

on the two groups scenario and imposed a size constraint on one

group. In Section 5.1we extend our results tomultiple emphasized

groups, and discuss alternative problem definitions.

3.1 Multi-Objective IM
Let 𝑔1, 𝑔2 to be two emphasized groups. Our goal is to assure the

obtained solution will ensure sufficient cover of the two groups.

To this end, we add a constraint on the 𝐼𝑀𝑔2 problem (pertaining

to the 𝑔2 group), which explicitly models how much the user is

willing to settle on the 𝑔2-cover, in order to increase the 𝑔1-cover.
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Definition 3.1 (Multi-Objective IM). Given a network 𝐺 , two

emphasized groups 𝑔1, 𝑔2 ⊆ 𝑉 , a threshold parameter 0 ≤ 𝑡 ≤ 1

and a number 𝑘 , find a 𝑘-size seed-set 𝑂∗ that maximizes the

𝑔1-cover size, subject to the constraint on the 𝑔2-cover being

above a 𝑡-fraction of its optimal size. Namely, find a set 𝑂∗ s.t:

𝑂∗ = 𝑎𝑟𝑔𝑚𝑎𝑥 {𝑇 : |𝑇 |=𝑘,𝐼𝑔
2
(𝑇 ) ≥𝑡 ·𝐼𝑔

2
(𝑂𝑔

2
) }𝐼𝑔1 (𝑇 )

where 𝐼𝑔1 (𝑇 ) (resp., 𝐼𝑔2 (𝑇 )) denote the expected size of the 𝑔1
(resp., 𝑔2) cover by𝑇 , and𝑂𝑔2 denotes the optimal 𝑘-size solution

for 𝑔2.

Throughout the paper, we refer to the expected 𝑔1 and 𝑔2
influences, resp., as the objective and the constraint. To illustrate,

in Example 1.1, one may wish to maximize the influence over the

anti-vaccination users, while ensuring that the influence over all

users is at least 60% of its optimal value. Alternately, continuing

with Example 1.2, a user may wish to maximize the influence over

engineers, while ensuring that the influence over researchers is

no less than 50% of its optimal value.

To illustrate how the constraint affects the selected seed-set,

consider the following example.

Example 3.2. Consider again Figure 1 and let 𝑘 = 2. For

𝑡 = 0.1 the optimal solution is 𝑆 = {𝑒, 𝑔} since 𝐼𝑔2 (𝑆) = 0.5 ≥
0.1 ·𝐼𝑔2 (𝑂𝑔2 ) = 0.2 (𝑂𝑔2 is the optimal solution for𝑔2), and among

all 2-size seed-sets satisfying the constraint, its 𝑔1-cover size is

maximal with 𝐼𝑔1 (𝑆) = 4. However, for 𝑡 = 0.5, 𝑆 no longer

satisfies the constraint, and 𝑆 ′ = {𝑒, 𝑑} becomes the optimal solu-

tion, with 𝐼𝑔1 (𝑆 ′) = 3.25 and 𝐼𝑔2 (𝑆 ′) = 1. This demonstrates that

higher values of 𝑡 put more emphasis on the 𝑔2-cover, possibly

at the expense of eliminating seed-sets with high approximation

factor for the 𝑔1-cover.

Recall that the IM problem is closely related to theMC problem,

as explained in Section 2.1. We define the Multi-Objective MC
problem, analogous toMulti-Objective IM, which will serve us for

deriving our lower bound and for devising the RMOIM algorithm.

Definition 3.3 (Multi-Objective MC). Given subsets 𝑆1, . . . , 𝑆𝑚
of elements from 𝑈 = {𝑢1, . . . , 𝑢𝑛}, two groups of elements

𝑔1, 𝑔2 ⊆ 𝑈 , a threshold parameter 0 ≤ 𝑡 ≤ 1, and a number

𝑘 ≤ 𝑚, a constraint is imposed on the number of covered ele-

ments from 𝑔2, requiring it to exceed a 𝑡-fraction of the optimal

cover size. The goal is to find, among all 𝑘 sets from 𝑆1, . . . , 𝑆𝑚
satisfying the constraint, the one covering a maximal number of

elements belong to 𝑔1.

The constraint threshold. Before presenting our algorithms, let

us highlight important properties of the constraint threshold

parameter 𝑡 .

First, consider again Example 3.2, demonstrating that setting

higher values for 𝑡 restricts the solution space and diminishes

the optimal value for the objective among remaining 𝑘-size seed-

set. This exposes the inherent trade-off between the objective

and the constraint threshold. A higher threshold is at odds with

optimizing the main objective.

We note that the actual value of the optimal 𝑔2-cover size,

𝐼𝑔2 (𝑂𝑔2 ), can only be approximated up to a (1 − 1

𝑒 ) factor in
PTIME. Thus, the exact value can only be referred to implicitly.

Hence, to allow the user to make an informed decision for the

value of 𝑡 , our system uses an 𝐼𝑀𝑔 algorithm (as we explain

in Section 4), yielding the optimal PTIME approximation for

𝐼𝑔2 (𝑂𝑔2 ).
Observe that setting 𝑡 to 0 nullifies the constraint, producing

the 𝐼𝑀𝑔 problem for 𝑔1. Therefore, we only examine cases where

𝑡 > 0. Moreover, it is easy to show that for 𝑡 > 1 − 1

𝑒 , following

the hardness results of IM [23], merely finding a single (not nec-

essarily optimal) 𝑘-size seed set satisfying the constraint cannot

be done in PTIME.

Corollary 3.4. A 𝑘-size seed set satisfying the constraint can
always be found in PTIME only if 0 ≤ 𝑡 ≤ (1 − 1

𝑒 ). For higher 𝑡
values, this claim no longer holds.

We therefore restrict our attention to cases where 0 ≤ 𝑡 ≤
(1 − 1

𝑒 ). In cases where the user is interested in higher values of

𝑡 , as no PTIME algorithm which satisfies the constraint exists,

one would need to employ an exhaustive search over the |𝑉 |𝑘
possible 𝑘-size seed-sets to find the optimal solution.

3.2 Approximation lower bound
In order to devise efficient algorithms for Multi-Objective IM,

it is useful to understand which properties are attainable for a

PTIME algorithm. We next formally define the solution space,

then present a lower bound for Multi-Objective IM.

The solution space. We generalize the solution space to bicrite-
ria approximation, where an algorithm approximates the objec-

tive andmay also approximate the constraint, up to multiplicative

factors of 𝛼 and 𝛽 , resp. For 𝛽=1 the solution strictly satisfies the

constraint. To accommodate practical algorithms we consider, as

in standard IM, randomized algorithms that may add an error

margin 𝜖 to the approximation factors, while requiring the stated

factors to holdwith probability ≥(1−𝛿). Formally, given 0≤𝜖, 𝛿≤1,
an algorithm computes a (𝛼, 𝛽)-solution 𝑆 , with 0≤𝛼, 𝛽≤1, if for
every instance (𝐺,𝑔1, 𝑔2, 𝑘, 𝑡) of Multi-Objective IM, the follow-

ing holds with probability ≥1−𝛿 : 𝐼𝑔2 (𝑆)≥(𝛽−𝜖) · 𝑡 · 𝐼𝑔2 (𝑂𝑔2 ) and
𝐼𝑔1 (𝑆) ≥ (𝛼−𝜖)𝐼𝑔1 (𝑂∗), where 𝑂∗ is the optimal constrained so-

lution w.r.t. Def. 3.1. We assume 𝜖 and 𝛿 are implicitly provided.

However, for simplicity, we omit discussions of these parameters

whenever possible.

We emphasize that 𝛼 is derived from comparing the returned

solution not to the optimal unconstrained solution, but rather to

an optimal solution which satisfies the constraint. This highlights

the difference between approximating the constraint by a factor

of 𝛽 and replacing 𝑡 with 𝛽 · 𝑡 , as the solution space is affected

only in the latter case. Namely, when examining a seed-set which

relaxes the constraint, the optimal value for the objective is still

taken only over the subset of solutions satisfying the constraint.

We refer to an algorithm as dominant over another algorithm if it

computes an approximated solution for higher values of at least

one parameter (𝛼, 𝛽), with the other parameter being at least

equal. We refer to a tuple (𝛼, 𝛽) as an optimum, if no (PTIME)

algorithm that generates an approximated solution dominant

over it exists. One immediate such optimum is (1 − 1

𝑒 , 1), which
follows directly from the hardness result of IM [23]. However, as

we prove, there exists no PTIME algorithm which can achieve

this bound. Moreover, we show that to achieve 𝛼 = (1 − 1

𝑒 ), 𝛽
must be reduced to (1 − 1

𝑒 ) as well.

Hardness of approximation. As mentioned, the optimal objec-

tive approximation of Multi-Objective IM is 𝛼=1− 1

𝑒 . We next

prove that in order to achieve this optimal 𝛼 value, a relaxation

of the constraint is necessary. Concretely, we prove that Multi-

Objective IM has no PTIME algorithm with approximation guar-

antees (even in expectation) dominant over (1 − 1

𝑒 , 1 −
1

𝑒 ), via a
reduction from MC. This result is independent of 𝑡 , yet, surpris-

ingly, holds for all its values in (0, 1 − 1

𝑒 ].
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Theorem 3.5. Multi-Objective IM has no approximation factor
dominant over (1 − 1

𝑒 , 1 −
1

𝑒 ) (unless 𝑁𝑃 = 𝐵𝑃𝑃 ).

Next, we provide a proof sketch for Theorem 3.5 using a novel

reduction from MC.

Proof. (sketch). Given an MC instance along with 𝑘 and 𝑡 , let

𝑘𝑡 denote the smallest natural number s.t. 𝐼 (𝑂𝑘𝑡 ) ≥ 𝑡 · 𝐼 (𝑂𝑘 ). We

first fix any arbitrary𝑘 and 𝑡 ∈ (0, 1− 1

𝑒 ], then sample two disjoint

MC instances, I1 and I2, s.t. the seed set size requirements are

𝑘 − 𝑘𝑡 and 𝑘𝑡 , resp. We construct a Multi-Objective MC instance

by taking the union of both collection of sets, and defining the 𝑔1
and 𝑔2 groups as follows: 𝑔1 comprises of all elements of I1, and
𝑔2 comprises of all elements of I2. The cardinality constraint is 𝑘

along with threshold 𝑡 . This construction implies a dichotomy

where choosing sets from the 𝑔1 collection only affects the objec-

tive, while choosing sets from the 𝑔2 collection only affects the

constraint. We show that, in the worst case, one needs to choose

as many 𝑔2 sets as in the optimal solution (i.e. 𝑘𝑡 sets), up to a

𝑜 (1) factor, to achieve a (1 − 1

𝑒 ) approximation of the constraint,

and therefore with the remaining slots one cannot guarantee any

factor beyond (1 − 1

𝑒 ) for the objective.
Last, we extend this result to Multi-Objective IM via a reduc-

tion from Multi-Objective MC. In essence, we reduce a given

Multi-Objective MC instance to a graph s.t. each element is

mapped to a new node, carrying over any membership in 𝑔1
and 𝑔2 groups. Additionally, for each subset 𝑆𝑖 , we create a new

node, and add an edge from it into every nodes corresponding to

an element in this set, with the constant edge weight of 1. □

Note that this lower bound holds even for the easier version

of the problem, where explicit values are known for both the con-

straint threshold and the constrained optimum for the objective.

4 ALGORITHMS
As mentioned, the approximation factor of the objective depends

on how strictly the constraint is preserved. We, therefore, pro-

vide two complementary algorithms for Multi-Objective IM. Our

first algorithm, named the Multi-Objective IM (MOIM) algorithm,

finds a seed-set that strictly satisfies the constraint, at the cost

of influence decrease for the objective. Its key advantage is that

it achieves near-linear time complexity, which, as we show, is

critical for scaling successfully to massive networks. To get a

tighter approximation ratio for the objective, our second algo-

rithm, named the Relaxed Multi-Objective IM (RMOIM) algorithm,

relaxes the constraint, allowing its approximation by a (1− 1

𝑒 )-
factor, achieving in return near optimal approximation for the

objective. This however comes at the cost of performance - its

time complexity is polynomial.

4.1 The MOIM algorithm
MOIM is a simple yet efficient algorithm achieving state-of-the-

art performance by leveraging existing IM algorithms. Intuitively,

using a modular approach where given an IM algorithm, it gener-

ically modifies it to create two group-oriented versions of it, then

combines them together to produce a single seed set. We next

detail our modification of a given IM algorithm, followed by the

full algorithm scheme.

Given an IM algorithm A and an emphasized group 𝑔, we

define A𝑔 as its 𝐼𝑀𝑔 counterpart - an analogous algorithm that

maximizes 𝐼𝑔 (·) instead of 𝐼 (·). Any RIS-based algorithm, A,

can be adapted to A𝑔 via a single modification: the 𝑅𝑅 sets are

generated from nodes from 𝑔 only, independently and uniformly

as before. We can prove that A𝑔 outputs a seed-set covering at

least (1 − 1

𝑒 ) · 𝐼𝑔 (𝑂𝑔 ) nodes from 𝑔, which is optimal [23].

A method of weighted RIS sampling for solving Targeted IM

was presented in [26]. Concretely, instead of using the uniform

distribution, nodes are sampled according to their weights, which

model their relevance to a given context. Our adaptation for

𝐼𝑀𝑔 can be seen as a special case of this method with binary

weights. Nonetheless, the authors of [26] have focused in cases

where there is only one emphasized group. As we show in our

experiments, choosing the weights achieving sufficient covers

for more than one group requires further effort.

Algorithm 1 The MOIM algorithm.

1: Input: A network𝐺 ; emphasized groups 𝑔1, 𝑔2 ⊆ 𝑉 ; 𝑘 ∈ [𝑛];
𝑡 ≤ 1 − 1

𝑒 ; an IM algorithm A.

2: Output: A 𝑘-size seed set 𝑆 .

3: We run independently the following two procedures:

i 𝑆1 ← Run algorithm A𝑔2 , where the seed set size is

fixed to ⌈− ln (1 − 𝑡) · 𝑘⌉.
ii 𝑆2 ← Run algorithm A𝑔1 , where the seed set size is

fixed to ⌊(1 + ln (1 − 𝑡)) · 𝑘⌋.
4: 𝑆 ← 𝑆1 ∪ 𝑆2
5: if |𝑆 | < 𝑘 then
6: Run A𝑔1 on the residual network until enough seeds are

gathered.

7: end if
8: return 𝑆

The MOIM algorithm is depicted in Algorithm 1. MOIM runs

independently two procedures: The first ensures satisfaction of

the constraint (line 3.i), while the second maximizes the objective

(line 3.ii). We return the union 𝑆 of the selected seeds (line 4). If

𝑆 contains less than 𝑘 seeds, we runA𝑔1 on the residual problem

(by eliminating the respective sets of the seeds selected so far),

s.t. additional nodes are added to 𝑆 (lines 5-7). In practice, this

could be achieved by initially runningA. Note that this can only

improve the accuracy guarantees. In our analysis we assume that

the returned set is of size exactly 𝑘 .

We now state the approximation factor of MOIM.

Theorem 4.1. For 0 ≤ 𝑡 ≤ 1 − 1

𝑒 , MOIM provides a (1 −
1

𝑒 · (1−𝑡 ) , 1)-approximation to the Multi-Objective IM problem.

Example 4.2. Consider again Figure 1, and let 𝑘=2. Recall that

the optimal solution for 𝑔2 is 𝑂𝑔2={𝑑, 𝑓 }, with 𝐼𝑔2 (𝑂𝑔2 )=2. For
𝑡=1− 1

𝑒 , MOIM would be equivalent to running A𝑔2 with 𝑘=2. It

would w.h.p. output, if not𝑂𝑔2 , then a set 𝑆 , s.t. 𝐼𝑔2 (𝑆)≥2·(1− 1

𝑒 ) ≈
1.26, with no particular regard for𝑔1 cover, whichmay be as small

as 1.5 (for 𝑆={𝑐, 𝑓 }), or as high as 3 (for 𝑆={𝑒, 𝑓 }). For 𝑡=1− 1√
𝑒
,

MOIM runsA𝑔1 andA𝑔2 while setting𝑘=1 for both, whichwould

presumably output {𝑒} and {𝑓 } resp., combining for a seed set 𝑆

s.t 𝐼𝑔1 (𝑆)=3 and 𝐼𝑔2 (𝑆)=1.75. This approximated solution comes

close to both 𝑂𝑔1 and 𝑂𝑔2 , in terms of 𝑔1/𝑔2 cover size, resp.

The time complexity of MOIM depends only on that of its

input IM algorithmA, which is assumed to be near optimal [33].

4.2 The RMOIM algorithm
We first describe a theoretical algorithm which, given the optimal

cover size of 𝑔2, 𝐼𝑔2 (𝑂𝑔2 ), exactly matches our hardness bound.

We then discuss the practical case where 𝐼𝑔2 (𝑂𝑔2 ) is unknown
(and can only be approximated in PTIME), proving that the scale

of the reduction in the approximation factors is not too high.
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Theorem 4.3. There exists a PTIME randomized algorithm that,
given 𝐼𝑔2 (𝑂𝑔2 ), in expectation, outputs a (1− 1

𝑒 , 1−
1

𝑒 ) approxima-
tion for the Multi-Objective IM problem.

We described the reduction from IM to MC suggested in [7],

utilized by the RIS framework. We extend this reduction to the

multi-objective variants, implying that any algorithm for Multi-

objective MC can be extended to Multi-Objective IM, retaining

the same guarantees. Therefore, all that is left to prove is that one

can get a (1− 1

𝑒 , 1−
1

𝑒 )-approximation for Multi-Objective MC.

Given an instance I of Multi-Objective MC with𝑚 subsets

𝑆1, ..., 𝑆𝑚 and two groups 𝑔1, 𝑔2⊆𝑈 , we construct LP(I), the cor-
responding LP instance, where𝑌=|𝑔2\𝑔1 |, 𝑍=|𝑔1\𝑔2 |,𝑊 =|𝑔1∩𝑔2 |:
variables: 𝑥1, . . . , 𝑥𝑚, 𝑦1, . . . , 𝑦𝑌 , 𝑧1, . . . , 𝑧𝑍 ,𝑤1, . . . ,𝑤𝑊 (𝑥𝑖 is an

indicator for selecting 𝑆𝑖 , 𝑦𝑖 for covering element in 𝑔2\𝑔1, 𝑧𝑖
for covering element in 𝑔1\𝑔2, and𝑤𝑖 for covering elements in

𝑔1
⋃
𝑔2)

constraints:
∑𝑚
𝑖=1 𝑥𝑖 = 𝑘 (cardinality constraint)∑

𝑖:𝑢 𝑗 ∈𝑆𝑖
𝑥𝑖 ≥ 𝑦 𝑗 ,

∑
𝑖:𝑢 𝑗 ∈𝑆𝑖

𝑥𝑖 ≥ 𝑧 𝑗 ,
∑

𝑖:𝑢 𝑗 ∈𝑆𝑖
𝑥𝑖 ≥ 𝑤 𝑗 (coverage constraint)

(
𝑌 ′∑
𝑖=1

𝑦𝑖 ·
𝑌

𝑌 ′
+

𝑊 ′∑
𝑖=1

𝑤𝑖 ·
𝑊 ′

𝑊
) ≥ 𝑡 · 𝐼𝑔2 (𝑂𝑔2 ) (size constraint)

∀𝑖 ∈ {1, ...,𝑚}, 0 ≤ 𝑥𝑖 ≤ 1; ∀𝑖 ∈ {1, . . . ,𝑊 ′}, 0 ≤ 𝑤𝑖 ≤ 1

∀𝑖 ∈ {1, . . . , 𝑌 ′}, 0 ≤ 𝑦𝑖 ≤ 1; ∀𝑖 ∈ {1, . . . , 𝑍 ′}, 0 ≤ 𝑧𝑖 ≤ 1

objective: maximize

∑𝑍 ′
𝑖=1 𝑧𝑖 +

∑𝑊 ′
𝑖=1𝑤𝑖 .

where 𝐼𝑔2 (𝑂𝑔2 ) is the optimal 𝑔2-cover size and 𝑌
′, 𝑍 ′,𝑊 ′ are the

number of sampled nodes from 𝑔2\𝑔1, 𝑔1\𝑔2 and 𝑔1∩𝑔2, resp.
The solution is determined by the values of the variables 𝑥𝑖 ,

indicating the selected sets. This LP relaxes the Integer LP which

precisely models the Multi-Objective MC problem. We can com-

pute an optimal solution by using any LP solver, then apply

the following randomized rounding procedure [30]: (1) Interpret

the numbers
𝑥1
𝑘
, ..,

𝑥𝑚
𝑘

as probabilities corresponding to 𝑆1, .., 𝑆𝑚 ,

resp. (2) Choose 𝑘 sets independently w.r.t. the probabilities. By

adapting the proof in [32], we show that this procedure yields a

seed set whose cover, in expectation, for each group separately,

is at least a 1 − 1

𝑒 fraction of the corresponding optimal cover

size, thus proving Theorem 4.3.

Omitting the optimal-value knowledge assumption. As men-

tioned, the optimal value of the 𝑔2-cover is uncomputable in

PTIME. We, therefore, first run a 𝐼𝑀𝑔2 algorithm which outputs

a seed set 𝑆 , s.t. 𝐼𝑔2 (𝑂𝑔2 ) · (1 − 1

𝑒 ) ≤ 𝐼𝑔2 (𝑆) ≤ 𝐼𝑔2 (𝑂𝑔2 ). We then

set the constraint threshold in 𝐿𝑃 (I) to 𝑡 · (1 − 1

𝑒 )
−1 · 𝐼𝑔2 (𝑆) in-

stead of 𝑡 · 𝐼𝑔2 (𝑂𝑔2 ), with the rest of the algorithm remaining the

same. This substitution can only increase the constraint thresh-

old, which in turn, reduces the set of valid solutions, possibly

diminishing the objective value of the optimal solution subject

to the stricter constraint. However, as we prove, the scale of the

reduction in 𝛼 is not arbitrarily large.

The RMOIM algorithm is depicted in Algorithm 2. Given an IM

algorithmA, we first runA𝑔2 to estimate 𝐼𝑔2 (𝑂𝑔2 ) (line 3). Next,
usingA, we sample the𝑅𝑅 sets needed for constructing theMulti-

Objective MC instance, and build the corresponding LP (lines

4 − 5). Then, we employ an LP solver, obtaining the fractional

solution (line 6). Last, we employ the rounding procedure to

select 𝑘 sets for the Multi-Objective MC instance, and return

their corresponding nodes as the selected seed-set 𝑆 (lines 7 − 8).
Given an 𝐼𝑀𝑔 algorithm, let 𝑆 denote its output. We define

𝜆 ∈ [0, 1

𝑒−1 ] s.t. 𝐼𝑔 (𝑆) = (1 + 𝜆) · (1 −
1

𝑒 ) · 𝐼𝑔 (𝑂𝑔 ).

Algorithm 2 The RMOIM algorithm.

1: Input: A network𝐺 ; emphasized groups 𝑔1, 𝑔2 ⊆ 𝑉 ; 𝑘 ∈ [𝑛];
𝑡 ≤ 1 − 1

𝑒 ; an RIS-based IM algorithm A and an LP solver.

2: Output: A 𝑘-size seed set 𝑆 .

3: 𝐼𝑔2 ( ˜𝑂𝑔2 ) ← Run A𝑔2 on the input.

4: RR← Construct the 𝑅𝑅 sets using A.

5: LP(I)←Construct the LP from RR, replacing 𝑡 ·𝐼𝑔2 (𝑂𝑔2 ) with
𝑡 ·(1− 1

𝑒 )
−1·𝐼𝑔2 (𝑂̃𝑔2 ).

6:
®𝑋 ← Solve LP(I), and output the values for the 𝑥𝑖 variables.

7: 𝑆 ← Run the randomized rounding procedure on ®𝑋 .

8: return 𝑆

Theorem 4.4. The RMOIM algorithm provides, in expectation,
a ((1 − 1

𝑒 ) · (1 − 𝑡 · (1 + 𝜆)), (1 + 𝜆) · (1 −
1

𝑒 )) approximation to
Multi-Objective IM, where 𝜆 ∈ [0, 1

𝑒−1 ].
The time complexity of RMOIM is dominated by its input LP

solver, whose complexity is polynomial in the input size [22].

5 EXTENSIONS
We present an extension of our results to multiple groups, then

briefly discuss on alternative problem definitions. We conclude

with a discussion regarding a well-studied related problem.

5.1 Multiple Emphasized Groups
The Multi-Objective IM problem naturally extends to multiple

groups. Given𝑚 emphasized groups, the user can impose size

constraints on all but one groups, and subject to these constraints,

maximize the cover size of the remaining group. W.l.o.g. let us

assume that the user imposed size constraints on the last𝑚 − 1
groups. Given the𝑚−1 constraint threshold parameters 𝑡2, ..., 𝑡𝑚 ,

analogously to the binary scenario, we can show that a 𝑘-size

seed set satisfying all constraints can always be found in PTIME

if 0 ≤ ∑
𝑖 𝑡𝑖 ≤ (1 − 1

𝑒 ). We prove that in PTIME, one cannot

attain an approximation factor dominant over (1 − 1

𝑒 , . . . , 1 −
1

𝑒 ).
Moreover, our generalized random algorithm matches our lower

bound for multiple groups.

Both our algorithms can be generalized to solve the multiple

groups scenario. In MOIM we run (independently)𝑚−1 𝐼𝑀𝑔𝑖 , 𝑖 ∈
[2,𝑚] algorithms, where the seed set size in each algorithm is

fixed to ⌈− ln (1 − 𝑡𝑖 ) ·𝑘⌉, and run an IM𝑔1 algorithm, where the

seed set size is fixed to ⌊(1+ ln (1 −∑𝑖 𝑡𝑖 )) ·𝑘⌋. As in Algorithm 1,

we then return the union of the selected seeds. We can show that

this algorithm provides a (1− 1

𝑒 · (1−∑𝑖 𝑡𝑖 )
, 1, . . . , 1)-approximation

to Multi-Objective IM with𝑚 emphasized groups.

In RMOIM, we first estimate the 𝐼𝑔𝑖 (𝑂𝑔𝑖 ) values for the con-
strained 𝑚 − 1 groups, to include these values in the LP de-

scribed in Section 4.2. Given an 𝐼𝑀𝑔𝑖 algorithm, let 𝑆𝑖 denote

its output. Recall that 𝜆𝑖 ∈ [0, 1

𝑒−1 ] was defined s.t. 𝐼𝑔𝑖 (𝑆𝑖 ) =
(1 + 𝜆𝑖 ) · (1 − 1

𝑒 ) · 𝐼𝑔𝑖 (𝑂𝑔𝑖 ). We prove that RMOIM provides, in

expectation, a ((1 − 1

𝑒 ) · (1 −
∑
𝑖 𝑡𝑖 · (1 +

∑
𝑖 𝜆𝑖 )), (1 + 𝜆1) · (1 −

1

𝑒 ), . . . , (1 + 𝜆𝑚−1) · (1 −
1

𝑒 ))-approximation to Multi-Objective

IM with𝑚 emphasized groups.

5.2 Alternative problem definitions
We next briefly discuss alternative problem definitions. An alter-

native variant of Multi-Objective IM is where the user specifies

an explicit value constraint (rather than specifying a fraction of

the optimal possible value). For instance, continuing with Exam-

ple 1.2, one may request to maximize the cover over engineers,

subject to a constraint requiring that at least 1K researchers
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are influenced. Both our algorithms support this variant as well.

Specifically, in MOIM, we can run an 𝐼𝑀𝑔2 algorithm until it

exceeds the constraint value, and with the remaining seeds we

run an 𝐼𝑀𝑔1 algorithm, which can only improve the guarantees

as we no longer overestimate the constraint. In RMOIM, the prob-

lem becomes much simpler, since now the exact value for the

size constraint is known. Therefore, here RMOIM is optimal as it

matches our lower bound (which holds here as well). We focus on

the implicit size constraint variant, as the analysis of the explicit

value constraint variant is contained in it as a simpler case.

Our definition provides cardinality guarantees over the em-

phasized groups. An alternative definition may be to constrain

the ratio of different cover cardinalities. We note that this defini-

tion is essentially different form our definition, as maximizing

the ratio between the cover cardinalities can dramatically reduce

the number of covered users from each group. Therefore, such

definition is ill-suited to our motivation where the underlying

goal is to reach as many as possible users from the emphasized

groups. We further note that the analysis of such ratio-based

definitions differs from the one we have provided, and therefore

we leave the study of ratio-based constraints for future research.

In our analysis so far the user imposes constraints on all but

one group. Our results also support the case where the user

imposes constraints on all emphasized groups (see details in [3]).

5.3 Connection to the RSOS problem
The closely related problem of multi-objective maximization of

monotone submodular functions subject to a cardinality con-

straint (known as the RSOS problem) was introduced in [24].

Given𝑚 monotone submodular functions 𝑓𝑖 (·), 𝑖 ∈ {1, ..,𝑚}
and a target value 𝑉𝑖 for each function 𝑓𝑖 , the goal in the RSOS

problem is to find a 𝑘-size set 𝐴 s.t. ∀𝑖 : 𝑓𝑖 (𝐴) ≥ 𝑉𝑖 , or provide

a certificate that there is no feasible solution. A solution 𝑆 is an

𝑎𝑙𝑝ℎ𝑎-approximation if ∀𝑖 : 𝑓𝑖 (𝑆) ≥ 𝛼 ·𝑉𝑖 .
In contrast to Multi-Objective IM, where users can specify for

each group the fraction of the optimal influence that they wish

to retain, in RSOS only explicit values can be used. Nonetheless,

we establish the connection between the two problems. Specif-

ically, we prove that the two problems are equally hard, and

that any algorithm solving RSOS, could in principle also solve

Multi-Objective IM. However, as we show in our experiments, top

performing RSOS algorithms can only process small networks.

We next briefly present our main results.We restrict our anal-

ysis of the RSOS problem to its applicability in an IM setting, s.t.

all functions are IM-functions. To simply the presentation, we

focus here on the two groups scenario, and defer the analogous

results regarding multiple groups to [3].

We reduce RSOS to Multi-Objective IM, showing that any

(𝛼, 𝛼)-approximation to Multi-Objective IM implies an

𝛼-approximation to RSOS. It follows that leveraging existing tech-

niques in RSOSworks yields at best an (1− 1

𝑒 , 1−
1

𝑒 )-approximation

for Multi-Objective IM, which is an optimum we have already

achieved with RMOIM.

Theorem 5.1. RSOS ≤𝑝 Multi-Objective IM.

We further provide a reduction in the other direction, showing

that any 𝛼-approximation algorithm for RSOS, implies an (𝛼, 𝛼)-
approximation algorithm for Multi-Objective IM.

Theorem 5.2. Multi-Objective IM ≤𝑝 RSOS.

Table 1: Datasets.

Datasets Dimensions Profile properties

Facebook |V|=4K, |E|=168K Gender, Education type.

DBLP |V|=80K, |E|=514K Gender, country, age, h-index.

Pokec |V|=1M, |E|=14M Gender, age, region

Weibo-Net |V|=1.5M, |E|=369M Gender, city.

YouTube |V|=1M, |E|=3M -

LiveJournal |V|=4.8M, |E|=69M -

However, to do so, we need to know both the optimal cover size

of the constrained group 𝐼𝑔2 (𝑂𝑔2 ) (as in RMOIM), and (addition-

ally) the constrained optimal objective value 𝐼𝑔1 (𝑂∗). 𝐼𝑔2 (𝑂𝑔2 )
may be estimated, as done in RMOIM, by running an 𝐼𝑀𝑔2 algo-

rithm. Here again, we may overestimate this value by a (1 − 1

𝑒 )
factor, yielding the same guarantees as RMOIM. To efficiently

estimate 𝐼𝑔1 (𝑂∗), we can examine only 𝑂 (𝑙𝑜𝑔(𝑛)) guesses for
𝐼𝑔1 (𝑂∗), which increases the time complexity of an RSOS algo-

rithm by an 𝑂 (𝑙𝑜𝑔(𝑛)) factor.
A state-of-the-art algorithm for RSOS, which achieves the

optimal (1− 1

𝑒 )-approximation, has been introduced in [36]. Aswe

show in our experiments, this algorithm can only process small

networks (even without the 𝑙𝑜𝑔(𝑛) multiplicative overhead).

6 EXPERIMENTAL STUDY
We have implemented our prototype in Python 2.7. We use as

the input IM algorithm, for both of our algorithms, 𝐼𝑀𝑀1
[33], a

top performing IM algorithm. We solve the LP in RMOIM using

Gurobi LP solver [2]
2
. We have conducted an experimental study

to evaluate (1) The quality of results achieved by our algorithms.

We demonstrate the advantages of our algorithms in multiple

scenarios over real-life datasets, compared to existing and alter-

natives approaches; (2) The performance of our algorithms in

terms of execution times and scalability.

6.1 Experimental setup
We conducted all experiments on a Linux server with a 2.1GHz

CPU and 96GBmemory. Next, we describe the examined datasets,

the considered emphasized groups, the competing algorithms,

and the parameters setup.

Datasets. We have focused on social networks which include

user profile properties, to characterize the emphasized groups.

We have examined 6 commonly used datasets: Facebook, DBLP,

Pokec, Weibo-Net, Twitter and Google+ (extracted from [4, 25]).

For space constraints, we omit the results over Twitter andGoogle+,

as they were similar to those obtained over the other 4 datasets

(depicted in Table 1). To further examine our algorithms scalabil-

ity, we considered two additional large-scale datasets: YouTube

and LiveJournal [25]. These datasets do not include user proper-

ties. To nevertheless examine them in our context, we randomly

assigned users to emphasized groups (see details below). Follow-

ing the conventional method as in [28, 34], we set the weight of

each edge (𝑢, 𝑣) as 𝑤 (𝑢, 𝑣) = 1

𝑑𝑖𝑛 (𝑣) , where 𝑑𝑖𝑛 (𝑣) denotes the
in-degree of 𝑣 . To ensure uniformity, undirected networks were

made directed by considering, for each edge, the arcs in both

directions (as was done in [5]).

1
We used the corrected version described in [10].

2
Our code will be publicly available upon acceptance.
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Emphasized groups. The benefit that our approach brings is in

particular critical for subpopulations that are typically not cov-

ered by standard IM algorithms. To identify such groups, we have

run, for each network, a grid search over the extracted profile

properties. We have considered all groups that are characterized

by a single or a combination of two profile properties. For each

such group 𝑔, we have examined the expected 𝑔-cover size of

standard IM algorithms, as well as the expected 𝑔-cover size of

their 𝐼𝑀𝑔 counterparts. We are focusing here only on groups

in which the results showed that standard IM algorithms tend

to overlook their users, while targeted IM algorithms showed

that a different choice of seed-set significantly increase their ex-

pected cover size. Interestingly, our experiments indicate that

all analyzed datasets include several such groups. For example,

female Indian researchers in DBLP and females over the age of

50 in Pokec, are typically neglected by standard IM algorithms.

Additional examples are provided in [3]. For YouTube and Live-

Jornal, we have considered random emphasized groups, defined

as follows. Given a number 𝑐 ∈ (0, 1] (sampled uniformly at ran-

dom), every node 𝑣 ∈ 𝑉 is a member of the emphasized group

with probability of 𝑐 . Note that this simple definition allows for

overlapping emphasized groups of different cardinalities.

Examined scenarios. We examine the following two scenarios:

Scenario I. In this scenario the user wishes to maximize the over-

all influence (𝑔1), subject to a constraint requiring that at least a

given portion of a group’s members (𝑔2) are influenced (a scenario

analogous to that of Example 1.1). We focus on this particular

scenario as it allows to compare, in a single setting, algorithms

for standard IM (that maximize the overall influence), targeted

IM (that maximize the influence solely over the 𝑔2 members), and

ours. We present the results while setting 𝑔2 to be a group which

is not covered by standard IM algorithms (see full details in [3]).

We have also run all experiments while choosing all possible

pairs of 𝑔1 and 𝑔2 to be groups that are typically not covered by

standard IM algorithms. We report that all experiments show sim-

ilar trends and therefore we omit from presentation these results.

Scenario II. Next we consider multiple-groups, to demonstrate

the effect of multiple objectives on performance. We present a

scenario where the user provides 5 emphasized groups, specifies

constraints on 4 of them, and asks to maximize the influence

over the remaining group, subject to these constraints. We have

also experimented with other numbers of emphasized groups

and report that all results have shown similar trends. In real-life

scenarios, the number of emphasized groups is typically small

[26, 36] and thus we focus on realistic number ranges (2 − 10).
Here again we have considered groups that are typically not

covered by standard IM algorithm.

Competing algorithms. We consider the following baselines.

Standard IM algorithms. We have examined the results of

𝐼𝑀𝑀 [33] and SSA [28], top preforming RIS-based algorithms, as

well as SKIM [13] and Celf++ [17], greedy-based IM algorithms.

As all algorithms demonstrated similar trends, we detail here

only 𝐼𝑀𝑀 .

(Single objective) Targeted IMalgorithms.Weexamine 𝐼𝑀𝑀𝑔 ,

a variant of 𝐼𝑀𝑀 (based on [26]) which maximizes exclusively

the cover of a given emphasized group 𝑔. In scenario 𝐼 𝐼 we have

defined the target group to be the union of all emphasized groups.

Weighted IM. An alternative is to assign different weights to

users, reflecting their relevance to the objectives. The authors of

[26] introduced a weighted RIS sampling method, that maximizes

the influence over a targeted group. We examined the results for

Weighted 𝐼𝑀𝑀 (𝑊𝐼𝑀𝑀), a variant of 𝐼𝑀𝑀 which is based on

a weighted RIS sampling method presented in [26]. We apply a

(multi-dimensional) binary search to find the optimal weights
3
.

We examined the results while substituting the weights of users

in the constrained group(s) and the objective group with 𝑐𝑖 and

1 −∑𝑖 𝑐𝑖 , resp
4
., for varying values of 𝑐𝑖 ∈ [0, 1].

We have also examined a variant of𝑊𝐼𝑀𝑀 that skips the search

and instead uses some default weights given as input. RSOS al-
gorithms.We examine the RSOS algorithm of [36] (used to solve

Multi-Objective IM). Additionally, the authors of [36] have stud-

ied the problem of fair resource allocation in IM, and proposed

two fairness concepts:𝑀𝑎𝑥𝑀𝑖𝑛, which maximizes the minimum

fraction of users within each group that are influenced, and Di-

versity Constraints (𝐷𝐶), which guarantees that every group

receives influence proportional to what it could have generated

on its own, based on a number of seeds proportional to its size.

They have shown that both fairness concepts can be reduced to

RSOS, for which they provided the state-of-the-art algorithm. For

completeness, we have included the𝑀𝐴𝑋𝑀𝐼𝑁 and𝐷𝐶 baselines.

As we show, all RSOS-based algorithms can only process small

networks. A more recent fairness-aware IM framework was pre-

sented in [15]. However, in this work as well, only small-size

networks were examined
5
.

Parameter Settings. Recall that RMOIM requires to estimate

𝐼𝑔𝑖 (𝑂𝑔𝑖 ), the optimal cover cardinality for all constrained groups

𝑔𝑖 . For that we use the following estimation strategy (as described

in Section 4.2): for each emphasized group 𝑔 we ran 𝐼𝑀𝑀𝑔 for 10

times, selecting the minimal obtained value to derive an estimate

for 𝐼𝑔 (𝑂𝑔 ). Unless mentioned otherwise, we set 𝑘 = 20, and

𝜖 = 0.1. In scenario 𝐼 we have set the threshold parameter 𝑡 = 0.5 ·
(1 − 1

𝑒 ), and in scenario 𝐼 𝐼 we have set the threshold parameters

𝑡𝑖 = 0.25 · (1− 1

𝑒 ),∀𝑖 ∈ 1, ..., 4. We also use, as a default setting, the

LT model (when setting uniformly random threshold for every

node). In all experiments, the time-out limit is 24 hours (or out of

memory exception). For the RSOS baselines, we use the default

parameters as provided in [1]. We report for each baseline the

averaged measurements of 10 runs.

6.2 Quality Evaluation
Scenario I results. The results are depicted in Figure 2, where

the 𝑥 and 𝑦 axes represent, resp., the 𝑔1 and 𝑔2 influences, and

red lines are the estimated constraint thresholds. A desirable

solution should be above (or near) the red lines (i.e., satisfying the

constraint), and, at the same time, the right as much as possible

(i.e., covering as many 𝑔1 users as possible). For 𝑊𝐼𝑀𝑀 , we

present the results obtained by selecting the optimal weights

for each dataset (pink points). We have also examined multiple

settings of default weights for𝑊𝐼𝑀𝑀 , however, none of these

options yielded satisfying results across all datasets. In particular,

the optimal weights per network were different, and to illustrate

that, we show how the optimal weights for DBLP operate on the

other datasets (yellow points).

In all cases, MOIM managed to match (and sometimes even

exceed) the results of𝑊𝐼𝑀𝑀 , which uses the optimal weights

for each dataset. For example, over Facebook, while𝑊𝐼𝑀𝑀 and

MOIM influenced almost the same number of 𝑔1 users (601 and

3
The optimal choice is the one that satisfies all constraints, while maximizing the

value for the objective.

4
Users belong to multiple groups are assigned with the sum of weights of their

groups.

5
In both [36] and [15], the largest examined network included 500 nodes.
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Figure 2: Expected influence with 2 emphasized groups. The red horizontal lines represent the estimated constraints.

0

100

200

300

400

500

g1 g2 g3 g4 g5

In
fl

u
e

n
ce

Emphasized groups

RMOIM MAXMIN MOIM RSOS

DC WIMM IMM_gi IMM

(a) Facebook.

0

200

400

600

800

1000

1200

g1 g2 g3 g4 g5

In
fl

u
e

n
ce

Emphasized groups

RMOIM MOIM IMM_gi WIMM IMM

(b) DBLP.

0

2000

4000

6000

8000

10000

g1 g2 g3 g4 g5

In
fl

u
e

n
ce

Emphasized groups

IMM_gi RMOIM WIMM MOIM IMM

(c) Pokec.

0

2000

4000

6000

8000

10000

g1 g2 g3 g4 g5

In
fl

u
e

n
ce

Emphasized groups

MOIM WIMM IMM_gi IMM

(d) Weibo-Net.

0

2000

4000

6000

8000

10000

12000

g1 g2 g3 g4 g5

In
fl

u
e

n
ce

Emphasized groups

IMM_gi IMM WIMM MOIM

(e) YouTube.

0

2000

4000

6000

8000

10000

12000

g1 g2 g3 g4 g5

In
fl

u
e

n
ce

Emphasized groups

IMM_gi MOIM WIMM IMM

(F) LiveJournal.
Figure 3: Expected influence with 5 emphasized groups. The red horizontal lines represent the estimated constraints.

599, resp.), MOIM succeeded in covering more 𝑔2 users (19 vs.

12 for MOIM and𝑊𝐼𝑀𝑀 , resp.). Observe that using the optimal

weights for DBLP over Pokec for𝑊𝐼𝑀𝑀 , result in not satisfying

the constraint. The exploration of𝑊𝐼𝑀𝑀 for optimal weights sig-

nificantly increases its runtime, making it impractical for massive

networks like Weibo-Net, YouTube and LiveJournal (exceeded

our time cutoff). In all cases, not only did MOIM satisfy the con-

straint, it also came very close to the results of 𝐼𝑀𝑀𝑔2 in terms

of covering 𝑔2 users, which returns the optimal solution. For

example, over Pokec, where 𝐼𝑀𝑀𝑔2 covered 189 𝑔2 users, MOIM

covers 159, as opposed to 𝐼𝑀𝑀 covering only 73 such users.

Although RMOIM allows for some relaxation of the constraint,

it in-fact fully satisfied it in most cases. Moreover, its overall influ-

ence was consistently higher than those of𝑊𝐼𝑀𝑀 and MOIM. In

particular, in all but one of the cases, the 𝑔1 influence of RMOIM

was very close to that of 𝐼𝑀𝑀 . For example, over DBLP, RMOIM

and 𝐼𝑀𝑀 covered 1, 661 and 1, 712 users, resp., with RMOIM

covering over 6 times more 𝑔2 members. RMOIM is incapable of

processing massive networks like Weibo-Net (out of memory).

Not surprisingly, the results RMOIM and 𝑅𝑆𝑂𝑆 were similar.

Nonetheless, as opposed to RMOIM, all RSOS-based baselines

were incapable of even processing medium-size networks (ex-

ceeded our time cutoff). Recall that𝑀𝐴𝑋𝑀𝐼𝑁 aims to maximize

the minimum influence over the emphasized groups, and there-

fore here it behaves similarly to 𝐼𝑀𝑀𝑔2 (as 𝑔2 ⊆ 𝑔1). As for 𝐷𝐶 ,

since it guarantees that every group receives influence propor-

tional to what it could have generated on its own, it ignores

the constraint. This demonstrates that 𝑀𝐴𝑋𝑀𝐼𝑁 and 𝐷𝐶 are

ill-suited for Multi-Objective IM.

Observe that the single objective algorithms were either far

from satisfying the constraint (𝐼𝑀𝑀) or covered significantly less

𝑔1 users (𝐼𝑀𝑀𝑔2 ). Contrarily, both our algorithms succeeded in

covering almost as many𝑔1 users as 𝐼𝑀𝑀 , and almost as many𝑔2
users as 𝐼𝑀𝑀𝑔2 . For example, over DBLP, 𝐼𝑀𝑀 covered only 2 𝑔2
users and 1, 712 users in total (𝑔1 users), whereas 𝐼𝑀𝑀𝑔2 covered

33𝑔2 users, and less than 155 in total. MOIM and RMOIM covered

20 and 13 𝑔2 users, resp., and covered each more than 1, 050 users

in total. This demonstrates the advantage of our approach over

solutions which are focused only on a single objective.

Last, consider Figures 2 (e) and (f). Among all competitors that

satisfy the constraints, MOIM has influenced the largest number

of users. Interestingly, even though the emphasized groups were

randomly generated, 𝐼𝑀𝑀 did not satisfy the constraints. As for

𝐼𝑀𝑀𝑔𝑖 , it influences significantly less users than MOIM. This

demonstrates that existing single-objective IM algorithms do not

ensure the desired balance between the objectives. Note that here

the differences in the cover cardinalities among all competitors
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were smaller than in other networks. This stems from the fact

that the benefit our approach provides is particularly critical for

groups that are typically not covered by standard IM algorithms

(which is mostly not the case in random emphasized groups).

Scenario II results. The results are depicted in Figure 3, where

the 𝑦-axis is the influence over the emphasized groups, and red

lines represent the estimated constraint thresholds. A desirable

solution should be above (or near) the red lines for the constrained

groups 𝑔1, . . . , 𝑔4 groups, and, at the same time, should be as

high as possible for 𝑔5 (i.e., maximizing the objective). For the

𝑊𝐼𝑀𝑀 baseline we only present the results obtained by using

default weights set to 0.2 for all 5 groups (we report that similar

results were obtained when using other weighting schemes), as

the search for the optimal weights was infeasible in all cases (it

exceeded our time cutoff).

MOIM is the only algorithm satisfying all constraints over each

dataset. On top of that, its 𝑔5 influence (i.e., objective value) com-

petes nicely with all competitors. For example, over Weibo-Net,

MOIM succeeded to cover the greatest number of 𝑔5 members,

while over YouTube it covered 510 𝑔5 members, compared with

the best competitor (here - 𝐼𝑀𝑀𝑔𝑖 ) that covered 810 𝑔5 users (yet

did not satisfy the constraints). In the datasets which RMOIM has

managed to process, its 𝑔5 influence was the best or slightly be-

low the best value achieved. E.g., over Pokec, RMOIM and 𝐼𝑀𝑀𝑔𝑖

covered 4036 and 4090 𝑔5 users, resp., while over Facebook and

DBLP RMOIM covered the greatest number of 𝑔5 users.

Here again, all RSOS baselines could only process the small

Facebook network (exceeded our time cutoff in other datasets),

and, as expected, the results of 𝑅𝑆𝑂𝑆 and RMOIM were similar.

Here,𝑀𝐴𝑋𝑀𝐼𝑁 also behaves similarly to RMOIM, however, as

noted above, in other scenarios it may behave differently. This

stems from the fact that 𝑀𝐴𝑋𝑀𝐼𝑁 optimizes for equality of

outcomes, which may be undesirable when some groups are

much better connected than others. For instance, if one group is

poorly connected,𝑀𝐴𝑋𝑀𝐼𝑁 would require that a large number

of seeds is “spent" on reaching it, even though these seeds may

have a relatively small impact on other groups. As the𝐷𝐶 baseline

ignores the constraints, it did not satisfy them.

As opposed to the binary scenario where the objective was to

maximize the overall influence, here 𝐼𝑀𝑀 has no advantage over

the competitors. Indeed, in all except one of the examined cases,

𝐼𝑀𝑀 ’s objective value was the lowest among all algorithms. Fur-

thermore, regarding 𝐼𝑀𝑀𝑔𝑖 , as can be seen, covering a greater

number of users from one group may come at the cost of signifi-

cantly reducing the cover sizes of users from other groups. For

example, in LiveJournal (Figure 3 (F)), while the 𝑔4 and 𝑔5 cover

sizes of 𝐼𝑀𝑀𝑔𝑖 were the largest, its 𝑔1 and 𝑔2 cover sizes were

significantly lower than the competitors (and below the required

constraints). This demonstrates that existing (single-objective)

IM algorithms do not ensure the desired balance between the

objectives.

6.3 Parameter Tuning
Next, we examine how varying the input parameters affects the

results. To illustrate, we present here the results using a range

of values for 𝑘 and 𝑡 over the DBLP dataset (the other datasets

show similar trends). We note that a desirable behavior of a

Multi-Objective IM algorithm is as follows. As 𝑘 increases, we

expect both the𝑔1 (i.e., overall) and the𝑔2 (i.e., emphasized group)

influences to increase as well. As 𝑡 increases, i.e., the constraint

threshold is elevated, the 𝑔2 influence should increase, possibly

at the cost of reducing the 𝑔1 (i.e., overall) influence. Naturally, as

only our algorithms and𝑊𝐼𝑀𝑀 take into account the parameter

𝑡 , other competitors are indifferent to it.

The results are depicted in Figure 4. We first examine Figure

4(a). Interestingly, for all examined 𝑘 values, the targeted IM

algorithm, 𝐼𝑀𝑀𝑔 , has shown almost no growth in the overall

number of influenced users (less than 400), compared to 𝐼𝑀𝑀

and RMOIM, which, already for 𝑘 = 10, are influencing twice

as many users (more than 800). Analogously, for all 𝑘 values,

there is almost no increase in the number of emphasized users

influenced by 𝐼𝑀𝑀 (8 such users at most), while 𝐼𝑀𝑀𝑔 , already

for 𝑘 = 10, influenced twice as many emphasized users (more

than 18 such users). Contrarily, MOIM, RMOIM and 𝑊𝐼𝑀𝑀

have demonstrated the desired behavior when 𝑘 increases. As

expected, MOIM, RMOIM and𝑊𝐼𝑀𝑀 , as 𝑡 increases, cover a

greater number of 𝑔2 users, and fewer users in total, as illustrated

in Figure 4(b). Note that in these experiments𝑊𝐼𝑀𝑀 exhibit the

desired behavior, almost identical to that of MOIM. However, as

we will see next, its execution times are significantly longer.

6.4 Performance Evaluation
We next measure the cost of enriching the IM problem by incor-

porating multiple objectives, studying how different parameters

affect running times of our algorithms. For brevity, we present

the results only for scenario 𝐼 𝐼 , as the results for scenario 𝐼 show

similar trends (see [3]).

Recall that MOIM runs targeted IM algorithms (i.e., 𝐼𝑀𝑀𝑔 )

as subroutines. As we show, the overhead for MOIM turns out

to be negligible compared to 𝐼𝑀𝑀𝑔 , and it can process massive

networks efficiently. Naturally, MOIM behaves similarly to its

current input algorithm 𝐼𝑀𝑀 , whose optimizations and short-

comings both carry over to MOIM. In particular, as mentioned

in [33], when 𝑘 decreases, so does the optimal expected influ-

ence, 𝐼 (𝑂) (resp. 𝐼𝑔 (𝑂𝑔 )), in which case it is more challenging for

𝐼𝑀𝑀 (resp. 𝐼𝑀𝑀𝑔 ) to estimate 𝐼 (𝑂) (resp. 𝐼𝑔 (𝑂𝑔 )). Contrarily, for
larger 𝑘 values, 𝐼𝑀𝑀 (resp. 𝐼𝑀𝑀𝑔 ) is optimized to reuse 𝑅𝑅 sets

produced in earlier stages. Thus, the two main factors affecting

𝐼𝑀𝑀 (resp. 𝐼𝑀𝑀𝑔 ) are 𝑘 and 𝐼 (𝑂) (resp. 𝐼𝑔 (𝑂𝑔 )). Consequently,
these factors have a similar effect on MOIM. Regarding RMOIM,

we show that solving an LP is indeed costlier than employing an

IM algorithm. We will see that when it comes to medium or large

scale networks, RMOIM’s overhead turns out to be moderate, but

when it comes to massive networks it is incapable of processing

them. We further show that RMOIM’s scalability is not affected

by the same factors as MOIM, and its running times are barely

affected by those of its input IM algorithm.

Network size. . We first report the running times for the cases

presented above in Figure 5(a). Naturally, all competitors’ run-

ning times increase for larger networks. Although we see that

MOIM and RMOIM are naturally slower than 𝐼𝑀𝑀 and 𝐼𝑀𝑀𝑔 ,

they run in approximately 2 and 7 minutes, resp., even on Pokec,

which includes 1M nodes and 14M edges. That is, both our al-

gorithms can process large-scale networks in feasible running

times. Importantly, note that the running times of MOIM are very

close to those of 𝐼𝑀𝑀𝑔𝑖 (i.e., MOIM and 𝐼𝑀𝑀𝑔𝑖 have processed

YouTube in 5.7 and 5.3 minutes, resp.). When it comes to mas-

sive networks such as Weibo-Net, while MOIM processed it in

less than 49 minutes (in comparison, 𝐼𝑀𝑀𝑔𝑖 processed it in 47

minutes), RMOIM can not process it, since the LP program was

too big for the LP solver to handle (out of memory). According

to our experiments, RMOIM is feasible for graphs including up
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Figure 4: The expected influence of different baselines on the DBLP network, using varying values of 𝑘 and 𝑡 .
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Figure 5: Averaged execution times (for scenario 𝐼 𝐼 ).

to 20M edges and nodes. Regarding𝑊𝐼𝑀𝑀 , as it searches for

optimal weights, its running times were significantly longer than

both our algorithms. For example, on Facebook, it took𝑊𝐼𝑀𝑀

16 seconds - almost 4 times slower than MOIM (which ended

after 4.5 seconds). Observe that all RSOS-based algorithms ran in

more than 6 hours, even on the small Facebook instance network.

In what follows we focus on the Pokec dataset, as this is the

largest dataset RMOIM can process. We omit the results of the

RSOS-based and𝑊𝐼𝑀𝑀 baselines, as they cannot process it.

Propagation model. We present the effect of the propagation

model on running times in Figure 5(b). As reported in [5], while

𝐼𝑀𝑀 scales well under the LT model, it shows inferior perfor-

mance under the IC model, as it samples more 𝑅𝑅 sets. Conse-

quently, all 𝐼𝑀𝑀 variants, MOIM included, run slower under the

IC model. Indeed, it took all 𝐼𝑀𝑀 variants almost twice the time

to process Pokec when using the IC model. Contrarily, as RMOIM

is less sensitive to the increase in the number of 𝑅𝑅 sets, and it

behaves similarly under both propagation models (the difference

was less than a minute). As explained in [5], besides 𝐼𝑀𝑀 , multi-

ple top performing IM algorithms are not robust across different

propagation models (e.g., [18], [34]). This property of 𝐼𝑀𝑀 is

naturally carried over to MOIM. In cases where the user is inter-

ested in a different propagation model, she can take a different

IM algorithm optimized for this model (e.g., [13] for IC) as an

input for MOIM.

Seed-set size. . In Figure 5(c) we examine the effect of the

parameter 𝑘 on running times. As mentioned, when 𝑘 increases

𝐼𝑀𝑀 employs an optimized computation and hence we observe

almost no change in running times for all 𝐼𝑀𝑀 variants, MOIM

included. This behavior of MOIM is a consequence of employing

𝐼𝑀𝑀 , and therefore using an alternative IM algorithm (e.g., [17])

could lead to a linear growth in running times. As expected,

RMOIM demonstrates nearly linear growth as a function of 𝑘 , as

more 𝑘-size seed sets are considered.

Constraint threshold parameter. . In Figure 5(d) we examine

how the parameters 𝑡𝑖 , 𝑖 ∈ [1, 4] affect performance. Here we

tested all 𝑡𝑖 values of the form 𝑡𝑖 = 0.25 · 𝑡 ′ · (1 − 1

𝑒 ), where
𝑡 ′ ∈ [0.1, 0.2, . . . , 1]. Note that this parameter only affects the

behavior of our algorithms. In MOIM it dictates the required

seed-set size for the procedures it employs. Observe that when

all 𝑡𝑖 = 0 MOIM only runs 𝐼𝑀𝑀𝑔5 , while for other 𝑡𝑖 values it

employs 5 versions of 𝐼𝑀𝑀𝑔𝑖 with smaller 𝑘 values, therefore it

cannot use 𝐼𝑀𝑀 optimizations for large 𝑘 values. On the other

hand, as the solution space becomes smaller for higher 𝑡𝑖 values

(i.e., less 𝑘-size seed-sets satisfy the constraint), the running time

of RMOIM decreases.

7 RELATEDWORK
The seminal work of [23], the first to formulate the IM problem,

has motivated extensive research [5, 13], which can be classified

into three main approaches: (i) The greedy framework [18, 23, 29],

which iteratively adds nodes to the seed-set, maximizing the ex-

pectedmarginal influence gain; (ii) The RIS framework [7], where,

while retaining optimal accuracy, running times were gradually

improved, resulting in highly scalable algorithms [20, 28, 33];

(iii) In cases where scalability is preferred over accuracy, there

are heuristic algorithms that have been shown to perform well

in practice (e.g., [11]), despite not having theoretical guaran-

tees. Any greedy or RIS-based IM algorithm can be embedded

in MOIM, retaining the same features and drawbacks. In our

experiments we have examined the results of top performing IM

algorithms (e.g., [17, 33]), showing them all to be ill-suited for

the Multi-Objective IM problem.

An extension of IM, which we also examined in our experi-

ments, is targeted IM, where the goal is to maximize the influence

over a target group of users [6, 9, 26]. As demonstrated, this ex-

tension as well is ill-suited for the Multi-Objective IM problem,

as maximizing the influence over one group of users may come at

the cost of influence decrease for other groups. Therefore, unlike

our solutions, it does not provide theoretical guarantees for the

influence over each emphasized group separately.

Multi-Objective optimization problems (also known as Pareto

optimization) involve several (possibly conflicting) objectives,

which are required to be optimized simultaneously. Such prob-

lems have been studied in numerous fields, including economics

[27], finance [35], social-network analysis [19] and engineering

[14]. A classic approach to tackle such problems, which was

adopted by targeted IM algorithms [26, 31]), is the weighted-sum

method (e.g., [21]), which scalarizes the objectives into a single

objective, by assigning to each objective a user-defined weight

(which is chosen in proportion to its relative importance). In the

IM setting, the relative weights of users in the overall influence

sum are altered in accordance with a context-based function
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[6, 9, 26]. The main disadvantage of this method is the difficultly

in setting the weights obtaining the desired trade-off between the

objectives. Indeed, as we show in our experiments, adopting the

weighted-sum approach for our context requires an exploration

for the optimal weights which strike the desired balance. Hence,

this solution results in poor performance.

An alternative, more direct approach to multi-objective op-

timization problems is the constraints method (e.g., [12]), that

transforms all except one objectives into constraints, optimizing

the remaining objective subject to these constraints. A typical

challenge when applying this method is that the constraints have

to be chosen within the minimum/maximum values of the indi-

vidual objectives (which are generally unknown). Our solution

follows this approach, which enables the user to prioritize her

objectives and provides lower bound guarantees for all of them.

As mentioned, to assist the user in choosing the minimum values

of the objectives, IM-Balanced indicates to the user the range of

possible constraints per objective.

We have discussed on the connection betweenMulti-Objective

IM and the RSOS problem [24]. The authors of [8] provided an

optimal (1− 1

𝑒 )-approximation algorithm for RSOS (assuming that

number of objectives is𝑚 = Ω(𝑘)), which runs in𝑂 (𝑛8). Udwani
[37] has recently introduced two more efficient algorithms. The

first is an optimal (1 − 1

𝑒 )-approximation algorithm, which runs

in 𝑂̃ (𝑚𝑛8). The second is a more efficient algorithm which runs

in 𝑂 (𝑛 log𝑚 log𝑛), yet achieves only a (1 − 1

𝑒 )
2
approximation.

More recently, the authors of [36] remedy this gap by providing

an optimal (1 − 1

𝑒 )-approximation algorithm, whose runtime is

comparable to the second algorithm of Udwani. Asmentioned, we

have included this algorithm in the experimental study, showing

that, unlike our algorithms, it fails to process large networks.

8 CONCLUSION AND FUTUREWORK
We have presented the IM-Balanced system, which employs

Multi-Objective IM, a refined notion of the IM problem, handling

multiple objectives. We motivate the practical relevance of this

problem, and propose two algorithms: MOIM and RMOIM. IM-
Balanced employs RMOIM for social networks including up to

20M users and links, and MOIM for larger networks. Our experi-

mental study demonstrates the advantages of our algorithms in

multiple real-life scenarios, compared to alternative approaches.

We are currently pursuing complementary Multi-Objective

IM definitions, e.g., definitions aiming to maximize the ratio of
different cover cardinalities, inspired by recent work on fairness-

aware IM [15, 36]. We identify several interesting directions for

future research, which include confirming the tightness of MOIM,

and identifying other optimum values for Multi-Objective IM.
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