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ABSTRACT
The problem of studying the effective contact between different
moving objects (MOs) has received great interest in recent years.
However, the uncertain nature of trajectory data poses significant
challenges for the researchers. Most of the existing studies focus
on range query or similarity join. But they cannot find MOs who
may contact each other for a long enough time in the same loca-
tion. In this paper, we study how to evaluate the effective contact
amongMOs. More specifically, we provide a purposeful definition
for measuring the contact effectiveness, called Contact Simi-
larity. Based on this notion, we introduce a novel query called
Contact Similarity Query (CSQ). A necklace-based model is
used for representing uncertain trajectories, in which a bead (or
an ellipse) indicates the possible locations of an object in-between
two successive trajectory observations. To enable efficient query
processing, we design a novel data structure called UTM-tree (i.e.,
Uncertain Trajectory M-tree) for indexing the necklace-based
trajectories. Experiments have been conducted on a real-world
dataset, and the results demonstrate that our proposed solution
significantly outperforms the baseline approaches.

1 INTRODUCTION
With the increasing availability and rapid development of global
positioning technologies, moving objects (MOs)’ trajectories can
be utilized by Location-Based Services (LBS) in many applica-
tions, such as vehicle navigation, traffic management, and co-
occurrence analysis. However, due to sensor devices’ physical
and resource limitations or privacy considerations, MOs’ trajec-
tories are often captured at low sampling rates, and the time
interval between two consecutive observations is quite long. In
such uncertain courses, no information can be found about the
whereabouts of MOs in-between two successive points. Recently,
the problem of querying uncertain trajectory has been studied
by many works, e.g., [1, 2, 5, 6, 10, 13]. However, most of them
focused on retrieving qualified results regarding either probabilis-
tic range query or similarity join. The existing approaches are
not applicable to the problem of modeling the effective contact
among individuals, which is a research topic of great importance.
As follows, a real-world example is presented to describe a moti-
vational scenario.
Example 1. Fig. 1 shows the uncertain trajectories of three vis-
itorsm1,m2, andm3 in one day. They are equipped with a GPS
device in their car, and they periodically reported their real-time
locations along their trajectories. But we don’t know where they
are in-between two consecutive reports. We can see thatm1 andm3
may have a very high trajectory similarity since the spatial and
temporal distance between their observations can be very small.
However,m1 andm3 may never come in contact with each other.
On the other hand, assume that along the trip,m1 parked the car at
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location A, disembarked the car, walked into the Park and stayed
there for a while. Then m1 went back to A to board the car and
continued with the trip. Perhapsm2 can take similar action at loca-
tion B, i.e.,m2 may also stay in the Park for a while during his/her
trip. Therefore, even thoughm1 andm2 have very low trajectory
similarity, they may have an effective contact either in the Park or
in the Shopping District. But such a result can never be captured
by the traditional trajectory similarity query. Besides, assume that
several days later,m1 found him/herself as an infected individual
of a highly contagious disease (e.g., Covid 19). To help determine
other susceptible persons who might be infected,m1 provided more
details about his/her trajectory to an authorized third-party, such
as a local public health agency (LPHA). For example,m1 stayed in
the Park from 10:00 am to 10:50 am, and then went to the Shopping
District from 11:35 am to 12:30 pm. Next, given this information,
LPHA discovered thatm1 andm2 may have possible contact with
each other, and may like to know the effectiveness of their contact
(e.g., the chance of their contact and how long they may contact
with each other). Moreover, hundreds of people may have visited
the neighboring areas on the same day. LPHA wants to find the
susceptible individuals from the big group of candidates who may
have effective contact withm1.
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Figure 1: An real-world example of possible contacts be-
tween MOsm1,m2, andm3

To address the problem described above, it is important to
answer the following questions successively:

Q1: How to calculate the potential contact area and the possible
longest contact time duration betweenm1 andm2?

Q2: How to measure the effective contact betweenm1 andm2?
Q3: How to efficiently retrieve the qualified results from a large

number of people who visited the park on the same day asm1?
To the best of our knowledge, little or no systematic and theo-

retical study has been conducted to address the abovementioned
questions. Aiming to fill this research gap, we propose a study
on analyzing the effective contact between MOs over uncertain
trajectories. Specifically, the main contributions of this work are
three-fold as follows.

• We propose a definition of Contact Similarity over uncer-
tain trajectories and a novel query called Contact Similarity
Query (CSQ). With CSQ, we can assess the effectiveness of con-
tact between MOs in free space.
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Figure 2: An example of bead Bi given the information of oi ,oi+1, and vmax .

Table 1: The summary of notations

Notation Definition
Trajectory Notations

MO Moving object
T = {o1, o2, ..., on } An uncertain trajectory
ti /(xi , yi ) Timestamp/coordinates of oi in T
vmax The maximum speed of a MO
Tneck The necklace of T
Bi A bead in Tneck
P A virtual landmark
t s /t e The arrival/departure time of P

Query Notations
Rint The intersection area ratio
τ (P, Bi ) The possible longest time duration
SimP∩Bi

cont Contact similarity at bead level
D A MO database
SimP∩T

cont Contact similarity at trajectory level
t̄ s The earliest arrival time
t̄ e The latest departure time

•We design a novel data structure called UTM-tree (Uncertain
Trajectory M-tree) for indexing uncertain trajectories, which
significantly improves the efficiency for processing CSQ.

•We conduct an extensive experimental evaluation of the pro-
posed approaches, demonstrating the effectiveness and efficiency
of the methodology proposed in this work.

The rest of this paper is organized as follows. In Section 2, we
introduce the preliminaries and problem definition. In Section 3,
we propose the novel indexing structure for managing uncertain
trajectories. In Section 4, we present the details of our experi-
ments and the evaluation results, followed by the related works
in Section 5. Finally, we recap the conclusions in Section 6.

2 PRELIMINARIES
In this section, we briefly introduce the preliminaries of this work.
The frequently used notations are listed in Table 1.

2.1 Trajectories, Beads, and Necklaces
We first introduce the definitions of trajectory, beads, and neck-
laces. A trajectory is defined as follows.

Definition 1. A trajectory T of a MO is defined as finite, time-
ordered observations T = {o1,o2, ...,on }, where oi = (xi ,yi , ti ) for
i ∈ [1,n], with (xi ,yi ) being a sample point in Euclidean space,
and ti being a timestamp.

The possible locations of a MO in-between two observations
can be defined by a bead (or ellipse) [10] as follows.

Definition 2. Letvmax denote the maximum speed that an object
can take betweenoi andoi+1. A bead Bi = {(xi ,yi , ti ), (xi+1,yi+1, ti+1)}

is defined as all points (x ,y, t ) that satisfy the following constraints:
ti ≤ t ≤ ti+1
(x − xi )

2 + (y − yi )
2 ≤ (t − ti )

2 ×v2
max

(x − xi+1)2 + (y − yi+1)2 ≤ (ti+1 − t)2 ×v2
max .

(1)

From Fig. 2 (a), we can see that from time ti to tcurr (tcurr >
ti ), the MO’s possible travel area is a circle with (xi ,yi ) being the
center and ri = (tcurr − ti ) × vmax being the radius. Similarly,
from time tcurr to ti+1 (tcurr < ti+1), the possible locations are
included in a circle centered at (xi+1,yi+1) with radius ri+1 =
(ti+1 − tcurr ) ×vmax . So, the overlapped area in Fig. 2 (a) of the
two circles includes MO’s possible locations at current time tcurr .
Based on [8], all the possible locations from time ti to ti+1 form
an ellipse (or bead) with foci at (xi ,yi ) and (xi+1,yi+1) (see in
Fig. 2 (b)). According to [10], the equation of the bead B is:

(x − xe )
2/a2 + (y − ye )

2/b2 = 1, (2)

where (xe ,ye ) is the center of the ellipse; a and b represents the
semi-major axis and semi-minor axis of the ellipse, as follows.

xe =
xi + xi+1

2 , ye =
yi + yi+1

2 , a =
vmax × (ti+1 − ti )

2

b =

√
v2
max × (ti+1 − ti )2 − (xi+1 − xi )2 − (yi+1 − yi )2

2 .

(3)

Definition 3. A trajectory T = {o1,o2, ...,on } can be represented
as a sequence of beads, which is called a necklace and denoted as
Tn = {B1, B2, ..., Bn−1} (see an example in Fig. 2 (c)), such that oi
and oi+1 form the bead Bi for i ∈ [1,n − 1].

2.2 Contact Similarity
In this section, we introduce the essential definitions for contact
similarity.

Definition 4. A virtual landmark P is a place where two MOs
can contact with each other. P can be either meaningful locations
(e.g., a shopping district or a park) or non-meaningful locations (e.g.,
a crossroad). For simplicity sake, any P in this work is considered
as a circle that is centered at Oc = (xc ,yc ) with a given radius rc .
Hence, the equation of P is (x − xc )

2 + (y − yc )
2 = r2

c .

Definition 5. For a MOm1, he/she stayed at P for a certain period
time. For anotherMOm2, his/her necklace is Tn = {B1, B2, ..., Bn−1}.
If P spatially overlaps with one bead Bi for i ∈ [1,n − 1] (denoted
as P ∩S Bi , ∅), then the intersection area ratio Rint is

Rint = Areaint /AreaP , (4)

where Areaint is the intersection area between the P and Bi , and
AreaP is the area of P.
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Figure 3: Examples of overlap between a virtual landmark and a bead with different intersection points

Fig. 3 shows different scenarios that P (the circle) overlaps
with a bead B (the ellipse), with two, three, and four intersection
points, respectively. Then, we difine the possible longest contact
time duration between MOs as follows.

Definition 6. ForMOm1, he/she stayed at P from time ts to te . For
another MOm2, his/her necklace Tn = {B1, B2, ..., Bn−1}. Moreover,
if one of the beads Bi (for i ∈ [1,n − 1]) temporally overlaps with P
(denoted as P∩T Bi , ∅), then the possible longest time duration
τ (P, Bi ) betweenm1 andm2 can be calculated as

τ (P, Bi ) = min{te , t̄e } − max{ts , t̄s }, (5)

where t̄s means the possible earliest time form2 to arrive at P, and
t̄e means the possible latest time form2 to leave P.

Example 2. Ifm1 stayed at P from ts = 10:00 am and te = 10:50
am. For m2, t̄s = 10:05 am and t̄e = 10:35 am, then τ (P, Bi ) =
min{10:50, 10:35} -max{10:00, 10:05} = 30 min.

Next, inspired by [7], we formally propose the definition of
contact similarity as below.

Definition 7. Form1, he/she stayed at P from time ts to te . For
m2, his/her necklace is Tn = {B1, B2, ..., Bn−1}. If ∀Bi ∈ Tn for
i ∈ [i,n − 1] such that P ∩S Bi , ∅ and P ∩T Bi , ∅, then the
contact similarity at bead level SimP∩Bi

cont betweenm1 andm2
at P in terms of Bi can be calculated as:

SimP∩Bi
cont = 1 − (1 − Rint )

τ (P,Bi ) (6)

We assume that the intersection area ratio Rint indicates the
possible opportunities thatm1 may be in contact withm2 at P
per unit time. Therefore, (1 − Rint )

τ (P,Bi ) denotes the probability
thatm1 andm2 have no effective contact during the time period
τ (P, Bi ). Consequently, SimP∩Bi

cont (m1,m2) = 1 − (1 − Rint )
τ (P,Bi ).

A larger value of SimP∩Bi
cont (m1,m2) indicates a higher probability

that an effecitive contact may happen betweenm1 andm2 at P.

Definition 8. Let B denote a set of beads in Tn , such that for
∀Bi ∈ B, P ∩S Bi , ∅ and P ∩T Bi , ∅. Then, the contact
similarity at trajectory level SimP∩T

cont can be calculated as:

SimP∩T
cont =

∑
Bi ∈B Sim

P∩Bi
cont

|B|
. (7)

Here, |B| denotes the number of beads in B.

2.3 Problem Definition
Definition 9. For m1, the query trajectory Tq is defined as a
sequence of P(s) thatm1 visited, i.e., Tq = {P1, P2, ..., Pd }. Pk =
(xck ,y

c
k , r

c
k , t

s
k , t

e
k ) for k ∈ [1,d]. Here,m1 stayed at Pk from tsk to

tek , (x
c
k ,y

c
k ) and r

c
k are the center and radius of Pk , respectively.

Definition 10. Given a query trajectory Tq = {P1, P2, ..., Pd }, a
MO databaseD that contains s necklaces (e.g.,D = {Tn1, Tn2, ..., Tns }),
and a predefined threshold α , for each Pk ∈ Tq where k ∈ [1,d], the
Contact Similarity Query (CSQ) finds all the necklaces Tnj ∈ D

for j ∈ [1, s], such that SimPk∩Tnj
cont ≥ α .

Example 3. In Fig. 1, Tq ism1’s query trajectory. For example,m1
stayed in the park P1 from 10:00 to 10:50 am, thenm1 went to the
shopping district P2 and stayed there from 11:35 am to 12:30 pm. D
is a MO database that contains 1000 people’s trajectory necklaces
who visited the neighboring areas on the same day, and let α = 0.8.
For every virtual landmark Pk thatm1 visited, the CSQ finds all
the trajectory necklaces Tnj ∈ D such that SimPk∩Tnj

cont ≥ 0.8.

2.4 Calculation of Areaint and τ (P, Bi )
In this section, we discuss how to calculate Areaint and τ (P, Bi ),
followed by the workflow for CSQ.

Given the Pwith equation (x −xc )
2+ (y−yc )2 = r2

c and the Bi
with equation (x−xe )2/a2+(y−ye )2/b2 = 1, it is straightforward
to calculate Areaint as follows.

• There are two or three intersection points between the vir-
tual landmark P and the bead Bi (see Fig. 3 (a) and (b)).

Areaint =

∫ xA

xB
(
b

a

√
a2 − (x − xe )2+ye+

√
r2
c − (x − xc )2−yc )dx

(8)
• There are four intersection points between the virtual land-

mark P and the bead Bi (see Fig. 3 (c)).

Areaint =πr
2
c −

∫ xA

xB
(

√
r2
c − (x − x2

c ) + yc −
b

a

√
a2 − (x − xe )2 − ye )dx

−

∫ x
′

A

x ′

B

(ye −
b

a

√
a2 − (x − xe )2 +

√
r2
c − (x − xc )2 − yc )dx

(9)
In Fig. 3, we can easily know that S is the earliest point that

oneMO can arrive at P, and E is the latest point that MO can leave
P. Therefore, given the maximum speed vmax , we can calculate
t̄s and t̄e as follows.

t̄s = ti +
|oiS |

vmax
, t̄e = ti+1 −

|oi+1E |
vmax

(10)

Based on t̄s and t̄e , we can calculate τ (P, Bi ) by Eq. (5). Af-
ter calculating Rint and τ (P, Bi ), given an uncertain trajectory
necklace database D and a trajectory query Tq , we can com-
pute SimP∩Bi

cont and SimP∩T
cont by Eq. (6) and (7), respectively. If

SimP∩T
cont ≥ α , the result should be returned. We repeat the above

mentioned process untill all the necklaces have been visited.
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3 THE INDEXING STRUCTURE FOR CSQ
M-tree [4] is a popular indexing structure for efficient range query
and k-nearest neighbor query. But we cannot directly adopt it in
this work, because M-tree cannot handle entries like ellipse or
beads. Therefore, based on M-tree, we propose a novel indexing
structure called Uncertain Trajectory M-tree (UTM-tree), which
is discussed next.

3.1 Decomposing the Necklace
First, we decompose the necklaces into beads. After decompo-
sition, we use a circle to approximate each bead, and the circle
is centered at the center of the bead (x ,y) with radius r = a/2
(see in Fig. 4). Each circle is considered an individual entry and
is stored independently in the leaf node of the UTM-tree.

Algorithm 1: The Inserion Algorithm: Insert(Ei ,Nj )
Input :A new entry Ei = [ei , ri , ti , ti+1, TID, Ptr(Ep ), Ptr(En )], a

tree node Nj = [Ej , Rj , tmin, tmax , ptr]
Output :A UTM-tree with Ei added

1 if Nj is not a leaf node then
2 for all the child nodes N sub

j of Nj do
3 Let Rsubj denote the covering radius of N sub

j , calculate
d (Ei , N sub

j );
4 if ∃ at least one N sub

j s.t. d (Ei , N sub
j ) + ri ≤ Rsubj then

5 Insert(Ei , N sub
j ) where d (Ei , N sub

j ) is minimun;

6 else
7 Insert(Ei , N sub

j ) where d (Ei , N sub
j ) + ri − Rsubj is

minimum;

8 else
9 if Nj is not full then
10 Add Ei into Nj , update tmin and tmax ;
11 if d (Ei , Nj ) + ri > Rj then Rj = d (Ei , Nj ) + ri ;
12 else Split(Ei , Nj ) ;
13 return An updated UTM-tree after inserting Ei into Nj

3.2 Building the UTM-tree
Next, we describe how to construct a UTM-tree, including the
format of an entry/node, entry insertion, splitting policy, selec-
tion of routing objects, and query processing. An illustration of
the UTM-tree is shown in Fig. 5.

3.2.1 Format of the entry. Same as the M-tree, in a UTM-tree,
all the entries are stored in the leaf nodes. And also, each node
in the tree can store at mostM entries, which is also called the
capacity of the tree. Specifically, we consider each circle as the
entry of the UTM-tree, and each entry is in format of Ei . Here,
Ei = [ei , ri , ti , ti+1, TID, Ptr(Ep ), Ptr(En )], where ei = (xi ,yi )
and ri are the center and radius of the approximating circle, ti and
ti+1 are the observation timestamps from the original trajectory
that form the bead, TID is the trajectory identifier which the
bead belongs to, and Ptr(Ep ) and Ptr(En ) are doubly linked list

pointers for the previous/next entry that corresponding to beads
in the original trajectory.

In the UTM-tree, each node selects an entry from the leaf node
as its routing object (similar to M-tree). The format of a node
is represented as Nj = [Ej ,Rj , tmin , tmax , ptr(N

sub
j )], where

Ej is its routing object, Rj is the covering radius that covers all
the entries stored in Nj . tmin and tmax are the minimum and
maximum time for all the entries stored inNj , and ptr is a pointer
pointing to its child node N sub

j if Nj is a non-leaf node.

3.2.2 Insert an Entry. First, we define the distance between an
entry Ei and a node Nj as d(Ei ,Nj ) =

√
(xi − x j )2 + (yi − yj )2,

where (xi ,yi ) is the center of Ei , and (x j ,yj ) is the center of the
rounting object of Nj . The insert algorithm recursively descends
the tree to locate the most suitable leaf node for Ei . We first find
the leaf node such that after adding Ei , no enlargement of the
covering radius is needed, i.e., d(Ei ,Nj ) + ri ≤ Rj . If more than
one child nodes are found, then the node that is closest to Ei
will be chosen. However, if no such node exists, the choice is to
minimize the increase of the covering radius, i.e.,d(Ei ,Nj )+ri−Rj
is minimum. After inserion, if d(Ei ,Nj )+ri > Rj , then we update
Rj = d(Ei ,Nj )+ri . Besides, tmin and tmax for all the visited nodes
should be updated as well. After inserting all the entries into the
UTM-tree, we use a doubly linked list to connect those from
the same trajectory (see in Fig. 5). The details of the insertion
algorithm is shown in Algorithm 1.

Algorithm 2: The Split Algorithm: Split(Ei ,Nj )
Input :An entry Ei = [ei , ri , ti , ti+1, TID, Ptr(Ep ), Ptr(En )], a leaf

node Nj = [Ej , Rj , tmin, tmax , ptr]

Output :A UTM-tree that splits Nj into N 1
j and N 2

j
1 Let Nj be the set of all Nj ’s entries plus Ei ;
2 Select two routing objects E1

j and E
2
j from Nj based on m_RAD algorithm

[4], and then partition Nj into two sets, N1
j and N2

j ;
3 Allocate a new node N ′

j , store N
1
j in Nj and N2

j in N ′
j ;

4 Replace Nj ’s rounting object Ej with E1
j , update Nj ’s Rj ;

5 Set E2
j as N

′
j ’s rounting object, and update N ′

j ’s R
′
j ;

6 if Nj is not the root of the tree (N
par
j is Nj ’s parent) then

7 if N par
j is full then Split(N ′

j , N
par
j ) ;

8 else add N ′
j into N

par
j ;

9 else Allocate a new root node Nr , set Nr as parent node for Nj and N ′
j ;

10 Update tmin and tmax for all the visited nodes;
11 return An updated UTM-tree after spliting Nj by Ei

3.2.3 Split a Node. Ei cannot be inserted into a leaf node Nj
if there areM entries in Nj . we need to split Nj into two nodes.
Particularly, let Nj denote the set of all Nj ’s entries plus Ei . We
find two rounting objects E1

j and E
2
j fromNj and partitionNj into

two nodes N 1
j and N 2

j based on the m_RAD algorithm [4]. After
partitioning, the sum of the covering radius R1

j + R
2
j is miminum.

The split algorithm is shown in Algorithm 2.

3.2.4 Data Filtering for CSQQuery. In this part, we discuss
how to filter qualified candidates for CSQ using UTM-tree.

Given a root nodeNr and a query trajectory Tq = {P1, P2, ..., Pd }
where Pk = (xck ,y

c
k , r

c
k , t

s
k , t

e
k ) for k ∈ [1,d], we can first filter all

the entries Ei = [ei , ri , ti , ti+1, TID, Ptr(Ep ), Ptr(En )] such that
(1) d(ei , (xck ,y

c
k )) ≤ ri + r

c
k and (2) ti ≤ tsk and ti+1 ≥ tck for all

pairs of (Nr , Pk ). Next, based on the filtered entries, we can get a
list of trajectory identifiers TID (s). For each trajectory T from this
list, we can calculate SimPk∩T

cont , and then check if SimPk∩T
cont ≥ α .

The UTM-tree indexing structure can significantly reduce the
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Figure 5: An example of the UTM-tree with capacity of 5

number of trajectories to be visited, thus it can greatly increase
the performance of theCSQ query. The details of the data filtering
algorithm is shown in Algorithm 3.

Algorithm 3: The filtering algorithm: Filter(Nr , Pk )
Input :A root node Nr , and Pk where Pk = (xck , y

c
k , r

c
k , t

s
k , t

e
k )

Output :A list of the trajectories IDs that satisfy the query
1 if Nr is not a leaf node then
2 for all the children nodes N sub

r in Nr where

N sub
r = [Esubr , Rsubr , t submin, t

sub
max , ptr(N

sub(sub)
r )] do

3 if (t submin, t
sub
max ) ∩ (t sk , t

e
k ) , ∅ then

4 if d (Esubr , (xck , y
c
k )) ≤ r ck + R

sub
r then

Filter(N sub
r , Pk );

5 else Prune N sub
r ;

6 else Prune N sub
r ;

7 else
8 for every Ei = [ei , ri , ti , ti+1, TID, Ptr(Ep ), Ptr(En )] in Nr do
9 if (ti , ti+1) ∩ (t sk , t

e
k ) , ∅ then

10 if d (ei , (xck , y
c
k )) ≤ r ck + ri then Add TID into an ID list;

11 else Prune Ei ;
12 else Prune Ei ;

13 return The ID list

4 EXPERIMENTAL EVALUATION
We implemented the systemswith Python on an Intel(R) Core(TM)
i7-6700 CPU @3.60GHz running Windows 64-bit OS with 32 GB
RAM. The details of experimental settings and the performance
evaluation are discussed as follows.

4.1 Settings
In this part, we discuss the datasets, experimental settings, and
the basic approaches in this work.

• Beijing Taxi Dataset: This dataset [12] contains the GPS
trajectories of 10357 taxis from Feb. 2 to Feb. 8, 2008 in Beijing.
The total number of points in this dataset is about 15 million,
and the total distance traversed by the trajectories is 9 million
kilometers. The average sampling interval is 177 seconds, with
an average length of 623 meters.

Table 2: The summary of simulation settings

Parameters Settings
# of observations in one trajectory (Numo ) 30
# of trajectories (NumT) 25K, 50K, 100K, 250K, 500K
Radius of each virtual landmark (r ck ) 5m, 10m, 15m, 20m, 25m
# of virtual landmark in a query (NumP) 20, 25, 30, 35, 40
Query time interval (τq ) 1h, 2h, 4h, 6h, 8h

• Experimental Settings: There are two metrics for evaluating
the performance of the proposed UTM-tree, they are (1) running
time and (2) the number of visited trajectories. Table 2 shows all
the parameter settings in the experiment. Specifically, for a vir-
tual landmark Pk = (xck ,y

c
k , r

c
k , t

s
k , t

e
k ) ∈ Tq , query time interval

equals τq = tek − tsk . Moreover, considering a day with 24 hours,
τq is randomly selected from 8:00 am to 6:00 pm in the same day.
For each Pk , its coordinates (xck ,y

c
k ) are randomly selected such

that xck ∈ (116.1650, 116.6201) and yck ∈ (39.7133, 40, 0070). Be-
sides, the maximum speed vmax in-between any two continuous
observations is set to a random number in [10 km/h, 50 km/h].

• Other approaches evaluated: To evaluate the performance of
the UTM-tree, we implemented two other approaches for compar-
ison purposes, they are (1) baseline method and (2) temporal-first
matching (TF-matching). In the baseline method, we do not index
the trajectories at all. More specifically, we evaluate every pair of
(Bi , Pk ) for the CSQ query. In the TF-matching method, we follow
the steps in [9] to build a temporal filtering tree. Specifically, we
split a day into 12 time slots by considering every two hours as a
time slot. And then, we store each trajectory into the correspond-
ing nodes. In the TF-matching method, all the trajectories are
processed by the temporal filtering tree.
4.2 Performance Evaluation
This section compares the proposed UTM-tree with the baseline
and the TF-matching in terms of query running time and the
number of visited trajectories. The number of visited trajectories
means howmany trajectories from the original database still need
to be considered after using the UTM-tree for spatial filtering
and temporal filtering.

First of all, for the three approaches, the query running time
(in Fig. 6 (a)) and the number of visited trajectories (in Fig. 7
(a)) are increasing as NumT increase. Second, we can see that
the UTM-tree is much faster than the baseline method and the
TF-matching method. For instance, the UTM-tree is 6.9× faster
than the baseline method and 3.5× faster than the TF-matching
method with 500K trajectories. Third, we found that for the UTM-
tree, as NumT becomes larger, the increase for the query running
time and the number of visited trajectories is not significant.

Next, the comparison results for three approaches under the
different NumP are shown in both Fig. 6 (b) and Fig. 7 (b). We can
see that NumP has the least influence on the performance of the
UTM-tree. In contrast, the performance of the baseline method
and the TF-matching approach is degraded dramatically.

The influence of τq on the three approaches under different ex-
perimental settings are shown in both Fig. 6 (c) and 7 (c). The run-
ning time and the number of visited trajectories in TF-matching
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Figure 6: The comparison of baseline method, TF-matching, and UTM-tree for query running time
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Figure 7: The comparison of baseline method, TF-matching, and UTM-tree for number of visited trajectories

approach increase significantly when τq becomes wider. How-
ever, the UTM-tree is more stable against the changes in τq .

Last, Fig. 6 (d) and 7 (d) compare the performance of the three
approaches under different rck . Both the three approaches do
not change significantly with different rck . Overall speaking, the
UTM-tree is more efficient and stable than the baseline method
and the TF-matching approach in terms of running time and the
number of visited trajectories under different experiment settings.
Specifically, the UTM-tree runs faster than other approaches and
is less sensitive to query time intervals, virtual landmark radius,
and the number of virtual landmarks in each query.

5 RELATEDWORK
(1) Indexing uncertain trajectories. There are a number of index-
ing structures, which have been proposed for uncertain spatio-
temporal data, such as UTH [13], Grid-based indexing [3], and
UST-tree [5]. However, UTH-tree was used for indexing uncer-
tain trajectories on the road network. UST-tree was used for
approximating diamond-based moving objects that follow the
Markov-chain model. Grid-based approach was not efficient for
indexing beads and necklaces since it is time-consuming to com-
pute the overlapped region between grids and ellipses. Therefore,
we devise a novel indexing structure called UTM-tree, which
is based on the classic M-tree and is efficient for indexing the
uncertain trajectories in the form of beads.

(2) Queries for uncertain trajectories. There are many studies
that were proposed for querying uncertain trajectories, such as
spatio-temporal similarity join [9], semantic similarity join [3],
nearest-neighbor queries [11], and top-k similarity query [6].
However, most of them retrieved qualified trajectories based on
some spatial/temporal criteria. None of the previous works study
the problem of contact similarity in terms of spatial intersection
and longest contact time duration among trajectories. This work
is the first research to formally define the problem of contact
similarity and propose the corresponding CSQ for the problem.

6 CONCLUSION
In this work, we have formally defined the concept of contact
similarity and proposed a novel query, called CSQ. Next, we de-
signed a novel indexing structure called UTM-tree, for managing
and querying uncertain trajectories. Besides, we conducted exten-
sive experiments on the Beijing Taxi dataset. The experimental
results demonstrated the efficiency and stability of the UTM-tree
on CSQ. There are many interesting future directions, e.g., (1) con-
tact modeling between MOs on road networks, (2) indoor contact
modeling between MOs, (3) CSQ in terms of contact frequency,
(4) second-generation contact between MOs, and (5) performance
evaluation with more real-world datasets.
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