
covRew: a Python Toolkit for Pre-Processing Pipeline
Rewriting Ensuring Coverage Constraint Satisfaction

Demonstration Paper

Chiara Accinelli, Barbara Catania, Giovanna Guerrini, Simone Minisi
DIBRIS - University of Genoa, Genoa - Italy

name.surname@dibris.unige.it

ABSTRACT
This demo presents covRew, a Python toolkit for rewriting slic-
ing operations in pre-processing pipelines (i.e., pipelines to be
executed before further tasks, such as data analytics and machine
learning) so that the pipeline execution ensures that protected
groups are adequately represented (i.e., covered) in the result. The
toolkit includes: (i) an analyzer, which identifies candidate oper-
ations for rewriting; (ii) a rewriter, which transforms operations
for ensuring coverage satisfaction with respect to user specified
constraints; (iii) an impact evaluator, allowing the user to assess
the impact of the rewriting on the obtained results.

1 INTRODUCTION
One of the main current challenges in data processing is the devel-
opment of technological solutions satisfying non-discriminating
requirements. Themes such as diversity, non-discrimination, fair-
ness, protection of minorities, and transparency are increasingly
crucial when processing and analyzing data.

Analytical pipelines processing real data are often very com-
plex and various systems have been designed for supporting the
user in the design and the execution of processing pipelines in a
non-discriminating way. Among them, we recall: Fair-DAGs [11],
an open-source library aiming at representing data processing
pipelines in terms of a directed acyclic graph (DAG) and identify-
ing distortions with respect to protected groups as the data flows
through the pipeline; FairPrep [10], an environment for inves-
tigating the impact of fairness-enhancing interventions inside
data processing pipelines; AI Fairness 360 [5], an open-source
Python toolkit for algorithmic fairness, aimed at facilitating the
transition of fairness-aware research algorithms to usage in an
industrial setting and at providing a common framework to share
and evaluate algorithms.

The complexity of data processing pipelines does not only
depend on the used analytical or learning tasks but also on the
types of pre-processing operations applied to input datasets for
filtering, projecting (thus slicing), or merging together input ob-
jects. Indeed, it has been recognized that data pre-processing
tasks can introduce bias at different levels [10]. As an example,
classical data transformation operations, often defined in terms of
Selection-Projection-Join (SPJ) operations over tabular data, can
reduce the number of records related to some protected or disad-
vantaged groups, defined in terms of some sensitive attributes,
even if such attributes are not directly used in the specification of
the data transformation operation. As a consequence, some pro-
tected or disadvantaged categories can be under-represented in
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(uncovered by) the result of a transformation, possibly introducing
bias in the following analytical steps.

As already recognized [3, 11], we believe that it is important
to support the user in the design of non-discriminating data pre-
processing tasks, with a special reference to data transformations
defined in terms of slicing and merge operations. Additionally,
following what stated in [9], we believe that such design can
be improved by the usage of specific diversity or fairness-aware
data transformations, where the idea is to minimally rewrite
the transformation operation so that certain non-discrimination
constraints are guaranteed to be satisfied in the transformation
result. Through minimal rewriting, the revised process takes into
account the original transformation goals and is traced for further
processing, thus guaranteeing transparency.

Starting from these considerations, in our recent work [2],
we designed an approach for minimally rewriting slicing and
merge operations with the aim of satisfying specific coverage con-
straints [4, 6], guaranteeing that there are enough entries related
to specific protected groups of interest in the result obtained
by applying a given transformation, thus increasing diversity
with the aim of limiting the introduction of bias during the next
analytical steps. The problem we address is closely related to
[3], where a constraint-based optimization approach is proposed
for identifying a filter-based transformation generating a dataset
satisfying a given input set of soft constraints. However, dif-
ferently from [3], we consider the rewriting of transformations
corresponding to SPJ queries with the aim of satisfying (hard)
coverage constraints through a rewriting approach that can be
easily integrated inside a pre-processing pipeline.

The aim of this demonstration is to showcase the techniques
proposed in our recent work [2] by presenting covRew, a Python
toolkit for rewriting data transformations specified inside pipelines
described in Pandas [7], ensuring the satisfaction of a set of
coverage constraints provided in input. The toolkit includes: (i)
a pipeline analyzer, which identifies candidate operations for
rewriting, (ii) a pipeline rewriter, which transforms operations
that are selected by the user according to the input coverage
constraints, and (iii) an impact evaluator, assessing the impact
of the rewriting of the selected operations by comparing the
result of the execution of the rewritten pipeline with that of the
original one, according to the solution-based accuracy measures
proposed in [1]. We showcase our toolkit in action with vari-
ous scenarios on real-world datasets, demonstrating its usability
in coverage constraint enforcing and the provided support for
analyzing the impact of coverage-based rewriting. Notice that,
though the approach supports merge operations and works on
multiple datasets, in the demonstration, for the sake of simplic-
ity, we will rely on a single dataset and will not consider merge
operations. This way, indeed, the analysis of the impact of the
proposed rewriting on the obtained results is clearer.
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Figure 1: covRew flow

The remainder of the paper is structured as follows. In Sec-
tion 2, we present the covRew architecture, illustrating the tech-
niques underlying each step. In Section 3, we present the demon-
stration scenarios, with a special reference to the user interaction.
Section 4 concludes and outlines some future work directions.

2 OVERVIEW
covRew is a Python toolkit focusing on the rewriting of data pre-
processing pipelines, with the aim of satisfying specific coverage
constraints on the results of slicing operations. In the following,
we describe the characteristics of input data, processing pipelines,
and the main covRew tasks. The covRew logical architecture is
illustrated in Figure 1.

2.1 Input specification
Input data for covRew are: a dataset, with the related sensitive
attribute specification, for the identification of protected groups;
a processing pipeline represented as a Pandas script; a set of
coverage constraints.
Dataset. covRew takes as input a tabular dataset 𝐼 , represented
as a Pandas Data Frame. We assume that some discrete valued
attributes 𝑆1, ..., 𝑆𝑛 of the input dataset are of particular concern
since they allow the identification of protected groups and we
call them sensitive attributes. Examples of sensitive attributes are
the gender (with values in {𝑓 𝑒𝑚𝑎𝑙𝑒,𝑚𝑎𝑙𝑒}) and the race (with
values in, e.g., {𝑎𝑠𝑖𝑎𝑛, 𝑏𝑙𝑎𝑐𝑘, ℎ𝑖𝑠𝑝𝑎𝑛𝑖𝑐,𝑤ℎ𝑖𝑡𝑒}).
Pipelines. covRew focuses on pre-processing pipelines repre-
sented in Pandas and in particular on Pandas data preparation
tasks corresponding to data slicing operations.1 The slicing opera-
tions we are interested in correspond to monotonic Select-Project
(SP) queries over input tabular data that might alter the represen-
tation (i.e., the coverage) of specific groups of interests, defined
in terms of sensitive attribute values. To this aim, we focus on
SP queries that return, among the others, at least one sensitive
attribute (called sensitive SP operations or queries). The sensitive
attributes returned by an SP query 𝑄 are called reference sensi-
tive attributes for 𝑄 . We further assume the user is satisfied by
the specified transformations and she does not want to lose the
obtained results through rewriting.

In the following, when needed, we denote 𝑄 by 𝑄 ⟨𝑣1, ..., 𝑣𝑑 ⟩
or 𝑄 ⟨𝑣⟩, 𝑣 ≡ (𝑣1, ..., 𝑣𝑑 ), where 𝑣1, ..., 𝑣𝑑 are the constant values
appearing in the selection conditions contained in𝑄 that, for the
sake of simplicity, we assume to be numeric.2

1https://pandas.pydata.org/pandas-docs/stable/getting_started/intro_tutorials/
03_subset_data.html
2We remark that the proposed approach can however be easily extended to deal
with any other ordered domain.

Coverage constraints. Conditions over the number of entries
belonging to a given protected group of interest returned as
result by the execution of SP queries can be specified in terms of
coverage constraints [4, 6]. Given an SP query 𝑄 with reference
sensitive attributes 𝑆1, ..., 𝑆𝑛 , given a value 𝑠𝑖 belonging to the
domain of 𝑆𝑖 , 𝑖 ∈ {1, ..., 𝑛}, a coverage constraint with respect to
𝑆𝑖 and 𝑠𝑖 is denoted by |𝑄 ↓𝑆𝑖𝑠𝑖 | ≥ 𝑘𝑖 and it is satisfied by 𝑄 over
the input dataset 𝐼 when |𝜎𝑆𝑖=𝑠𝑖 (𝑄 (𝐼 )) | ≥ 𝑘𝑖 holds.

2.2 Pipeline analysis
In the first step, given the dataset, the list of sensitive attributes,
the Pandas script, and the coverage constraints, covRew ana-
lyzes the script for identifying the sensitive SP queries and pre-
annotates the script by highlighting them.

The user can then select, among the sensitive SP queries, those
that, from her point of view, should be used for guaranteeing
input coverage constraint satisfaction and, if needed for exper-
imental purposes and for increasing system flexibility, she can
change input coverage constraints. The output of this phase is
a script annotated with information about the operations to be
rewritten and related coverage constraints, if changed. By select-
ing different selective SP operations, during different covRew
executions, the user can examine the impact of different coverage-
based rewritings on the generation of the final result.

As an example, Figure 2 shows a Pandas script to be run on the
US Adult Census database3 containing information about 48,842
individuals from the 1994 U.S. census, taking sex as sensitive
attribute and |𝑄 ↓𝑠𝑒𝑥

𝑓 𝑒𝑚𝑎𝑙𝑒
| ≥ 100 as coverage constraint, thus

requesting that at least 100 females are returned by the selected
SP operations. The pipeline analysis returns lines 7 and 17 as
sensitive SP operations and the user can select one or both lines
for the rewriting. In the following, we suppose line 17 is selected.

2.3 Pipeline rewriting
In the second step, covRew rewrites each selected sensitive SP
query 𝑄 into another query 𝑄 ′, according to what presented in
[2], so that 𝑄 ′ is the minimal query relaxing 𝑄 guaranteeing
coverage constraint satisfaction when evaluated over the input
dataset. More precisely, according to what stated in Section 2.1:
(i) 𝑄 ′ ≡ 𝑄 ⟨𝑢⟩, thus it is obtained from 𝑄 without changing the
original transformation goal; (ii) 𝑄 ⊆ 𝑄 ′, thus the result of the
original transformation is kept by the rewriting;4 (iii) all coverage

3https://archive.ics.uci.edu/ml/datasets/census+income
4We remark that covRew can be easily extended by relaxing assumption (ii), in case
query relaxation is not mandatory.
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1 data = pd.read_csv(‘DEMO/dataset/adult.csv’)
2
3 # projection
4 data = data[[‘capital_gain’,‘age’,‘education_num’,‘sex’,

‘capital_loss’,‘hours_per_week’,‘marital_status’,‘label’]]
5
6 # filtering
7 data = data.loc[(data[‘hours_per_week’] <= 70) &

(data[‘capital_gain’] > 200)]
8
9 # OneHotEncoder considering marital_status

10 data = pd.concat([data[[‘age’,‘education_num’,
‘sex’,‘capital_gain’,‘capital_loss’,‘hours_per_week’
‘label’]],pd.get_dummies(data[‘marital_status’])], axis=1)

11
12 new_columns = list(data.columns)
13 new_columns.remove(‘label’)
14 new_columns.remove(‘sex’)
15
16 # filtering
17 data = data.loc[(data[‘education_num’] >= 15) &

(data[‘hours_per_week’] > 40)]
18
19 # model
20 model = SVC()
21 model.fit(data[new_columns], data[‘label’])

Figure 2: Pandas script over the Adult dataset

constraints associatedwith𝑄 are satisfied by𝑄 ′(𝐼 ). The coverage-
based rewriting should be optimal, i.e.: (iv) there is no other query
𝑄 ′′ satisfying conditions (i), (ii), and (iii) such that𝑄 ′′(𝐼 ) ⊂ 𝑄 ′(𝐼 )
(thus, 𝑄 ′ is the minimal query satisfying (i), (ii), and (iii)); (v)
𝑄 ′ ≡ 𝑄 ⟨𝑢⟩ is the closest query to𝑄 ⟨𝑣⟩ according to the Euclidean
distance between 𝑣 and 𝑢, satisfying (i), (ii), (iii), and (iv), in a
normalized space in which the values for each dataset attribute
are between 0 and 1, potentially increasing user satisfaction.

In order to compute the optimal coverage-based rewriting of
an SP query 𝑄 ⟨𝑣⟩, given a set of coverage constraints 𝐶𝐶 and an
instance 𝐼 , we follow the approach presented in [2].
Canonical form generation. We first translate the selected SP
queries into a canonical form, in which each selection condition
containing operators (>, ≥, =) is translated into one or more
equivalent conditions defined in terms of operator <. For example,
any predicate of the form 𝐴𝑖 > 𝑣𝑖 can be transformed into the
predicate −𝐴𝑖 < −𝑣𝑖 . An optimal coverage-based rewriting of a
canonical query is obtained from the original one by replacing
one or more selection predicates 𝑠𝑒𝑙𝑖 ≡ 𝐴𝑖 < 𝑣𝑖 with a relaxed
predicate 𝑠𝑒𝑙 ′

𝑖
≡ 𝐴𝑖 < 𝑣 ′

𝑖
with 𝑣 ′

𝑖
≥ 𝑣𝑖 . Relaxed queries generated

through coverage-based rewriting starting from 𝑄 ⟨𝑣⟩, 𝐼 , and 𝐶𝐶
have the form𝑄 ⟨𝑢⟩, with 𝑢 ≥ 𝑣 , and can be represented as points
𝑢 in the 𝑑-dimensional space defined over the selection attributes,
thus satisfying conditions (i) and (ii) of the reference problem.
Pre-processing. During the pre-processing step, we organize the
reference space for the detection of a coverage-based rewriting
of 𝑄 ⟨𝑣⟩ as a multi-dimensional grid. The grid has 𝑑 axes, one for
each selection attribute in 𝑄 ⟨𝑣⟩, and each axis is discretized into
a fixed set of bins, by using the equi-depth binning approach,
typical of histogram generation. Each cell in the resulting grid
corresponds to a sensitive SP query containing𝑄 ⟨𝑣⟩, in line with
condition (ii) of the reference problem. The grid represents the
search space for identifying the optimal coverage-based rewriting.
The approach is approximate because a smaller coverage-based
rewriting of the input query might exist but, if lying inside one
grid cell, it cannot be discovered by the algorithm. Notice that
the grid is computed starting from 𝐼 and 𝑄 (𝐶𝐶 is not used).
Processing. During the processing step, the multi-dimensional
grid is visited starting from the cell corresponding to the input

query, one cell after the other, at increasing distance from 𝑄 . For
each cell (𝑢), we check whether the associated query 𝑄 ⟨𝑢⟩ is a
coverage-based rewriting of 𝑄 ⟨𝑣⟩ by estimating the cardinality
of |𝑄 (𝐼 ) | and one cardinality for each coverage constraint. The
properties of the grid and of the canonical form are considered
for pruning cells that cannot contain the solution and for further
improving the efficiency and the scalability of the process [2].

The processing step requires fast and accurate cardinality
estimates. To make the processing more efficient and scalable,
similarly to [8], we rely on estimators based on (uniform, inde-
pendent, and without replacement) samples of the input dataset,
dynamically constructed during the rewriting phase. covRew
then allows the user to select two different rewriting modalities:
fast, but potentially inaccurate, execution due to the usage of
sample-based approaches for cardinality estimation (as a conse-
quence, some constraints might not be satisfied when evaluated
over the real dataset); accurate, but potentially slower execu-
tion, by detecting cardinalities in a precise way through query
execution over the real dataset.

As a result of the pipeline rewriting step, covRew generates
a rewritten script whose impact is evaluated in the final phase.
In our example, line 17 of the original script is rewritten into:
data = data.loc[(data[‘education_num’] >= 14) &
data[‘hours_per_week’] > 37)].

2.4 Impact evaluation
In the last phase, for each rewritten sensitive SP query, covRew
shows many statistics useful for evaluating the impact of rewrit-
ing. In case the user is not satisfied by the rewriting, she can
discard the changes and go back to the pipeline analysis pane,
for changing her selections. More precisely, for each rewritten
query, covRew returns (see Figure 3):

• the result of the rewriting of each original selection condi-
tion (in the example data[‘education_num’] >= 14 and
data[‘hours_per_week’] > 37), with information about
the data distribution related to the selected attributes, be-
fore and after the rewriting;

• the maximum and the minimum approximation error due
to the pre-processing, defined as the maximum and the
minimum diagonal length of grid cells, normalized be-
tween 0 and 1, and the approximation error of the de-
tected solution, corresponding to the grid-based accuracy
proposed in [1] (0.04, 0.28, and 0.07 in Figure 3);

• the percentage of additional tuples returned, due to the
rewriting, corresponding to the relaxation degree pro-
posed in [1, 2] (66% in Figure 3);

• the Euclidean distance, in the normalized space, between
the rewritten solution and the original one, corresponding
to the proximity measure proposed in [1] (0.08 in Figure 3);

• the absolute and percentage distribution of protected groups
in the result of the original query and of the rewritten one,
(121 wrt to 22, 19.3 wrt 10.5 in Figure 3);

• information about the satisfaction of the coverage con-
straints on the result of the original query when evaluated
on the input dataset (satisfied, in Figure 3).

The impact evaluation pane gives the user the opportunity
to revise the annotation, if the accuracy is not satisfactory, and
select the accurate execution if, due to the estimation error of
the fast approach, some coverage constraints are not satisfied by
the result of the rewritten queries over the input dataset. After
this revision, the final script is returned to the user.
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Figure 3: Impact evaluation pane

3 DEMONSTRATION SCENARIOS
In the demonstration of covRew we pursue three goals: (i) to
ascertain the feasibility of rewriting slicing operators to ensure
adequate protected group representation by means of coverage
constraints; (ii) to explore the effects of such rewriting with
respect to protected group membership on result accuracy; (iii)
to compare executions of alternative rewritten pipelines sharing
the same goal in terms of coverage, but using different rewriting
approaches (efficiency vs accuracy). In the following, we discuss
the foreseen user interactions and how these interactions realize
the most relevant scenarios for our demonstration goals.
Datasets and sensitive attributes. As first operation, the user
can select one dataset to work on ( 1 in Figure 1). Two datasets
are available: the already mentioned US Adult Census database.
and the Diabetes US5 dataset representing 10 years (1999-2008) of
clinical care at 130 US hospitals and integrated delivery networks
(100,000 instances). For each dataset, a short description of the
dataset and the list of attributes is shown. The user is asked to
select the sensitive attributes from this list for the task at hand
and to define coverage constraints over them ( 1 in Figure
1). For example pipelines, we select the sex/gender and race
attributes for both datasets.
Input scripts. For each dataset, three different scripts are al-
ready available and will be proposed as a starting point. The user
is allowed to freely modify the code as well as to enter her own
code ( 1 in Figure 1). A sample script is shown in Figure 2
and has been discussed in Section 2. The other scripts allow us
to demonstrate different combinations of projection and filter-
ing operations, with multiple conditions on different attributes,
allowing to obtain a different ratio among different groups for
sensitive attributes.
Script annotation and impact evaluation. In addition to se-
lecting the input dataset and sensitive attributes, among those
available, the user interacts with the toolkit in the pipeline analy-
sis phase ( 2 in Figure 1), when she can select the operations to
rewrite, choose for each of them the execution type (fast rather
than accurate) and, if needed, modify the input coverage con-
straints. The user can also provide a feedback after impact evalu-
ation ( 3 in Figure 1) when, by looking at the statistics about
execution, she might want to reconsider some of the choices
made in script annotation with reference to one or more slicing
operations, thus producing a new annotated script.
5https://archive.ics.uci.edu/ml/datasets/Diabetes+130-US+hospitals+for+years+
1999-2008

In the online demonstration, active user involvement for sev-
eral simultaneous demonstration attendees will be fostered by
using clickers/instant polling tools to select the input to provide
to the system in the various steps.
Realized scenarios. The demonstration will be conducted in
such a way to show, with reference to cases in which one or more
operations are rewritten and one ore more coverage constraints
are specified, different possible scenarios of interest, namely:

• the coverage constraints are satisfied and the user is fine
with the rewriting;

• the coverage constraints are not satisfied on the input
dataset and the user changes the type from fast to accurate;

• the user is not satisfied by the results, either because she
deems the pre-processing approximation too high or be-
cause the rewriting has a too high impact on result accu-
racy, and decides to revise the choices she made, going
back to the pipeline analysis pane.

In addition to the prefigured scenarios, the user will be given
the opportunity to suggest modifications to the pipelines and
even to submit her own script, on one of the reference datasets.

4 CONCLUSIONS
We have presented covRew, a user-friendly Python system for
rewriting sensitive slicing operations that can lead to the viola-
tion of coverage constraints with respect to the protected groups
of interests. In the demonstration, we illustrated the main cov-
Rew functionalities over predefined and user-specified pipelines.
As future work, we plan to extend covRew with functionalities
for automatically identifying sensitive operations to be rewrit-
ten with the highest accuracy. Further extensions concern the
relaxation of the containment property between the original
query and the rewritten one, a comparison of covRew with the
approach proposed in [3], the integration with different types
of fairness constraints, a graph-based representation of input
scripts, similarly to [11], for simplifying pipeline analysis.
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