
Declarative Languages for Big Streaming Data
A database Perspective

Riccardo Tommasini
University of Tartu

riccardo.tommasini@ut.ee

Sherif Sakr
Unversity of Tartu
sherif.sakr@ut.ee

Emanuele Della Valle
Politecnico di Milano

emanuele.dellavalle@polimi.it

Hojjat Jafarpour
Confluent Inc.

hojjat@confluent.com

ABSTRACT
The Big Data movement proposes data streaming systems to
tame velocity and to enable reactive decision making. However,
approaching such systems is still too complex due to the paradigm
shift they require, i.e., moving from scalable batch processing to
continuous data analysis and pattern detection.

Recently, declarative Languages are playing a crucial role in
fostering the adoption of Stream Processing solutions. In partic-
ular, several key players introduce SQL extensions for stream
processing. These new languages are currently playing a cen-
tral role in fostering the stream processing paradigm shift. In
this tutorial, we give an overview of the various languages for
declarative querying interfaces big streaming data. To this ex-
tent, we discuss how the different Big Stream Processing Engines
(BigSPE) interpret, execute, and optimize continuous queries ex-
pressed with SQL-like languages such as KSQL, Flink-SQL, and
Spark SQL. Finally, we present the open research challenges in
the domain.
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1 GOALS & OBJECTIVES
The world is accelerating; every day, hour, minute, and second
the amount of data that we produce grows quicker. Initially,
Big Data systems focused on scalable batch processing, and
MapReduce [12] led the analytics market for more than a decade.

Recently, with the growing interest for (near) real-time in-
sights, we observed a paradigm-shift, i.e., from data at rest and
post-hoc analyses, to data-in-motion and continuous analyses.
Thus, Big Data systems evolved to process streams with low
latency and high throughput. Nowadays, the state of the art in-
cludes many alternative solutions, such as Storm, Flink, Spark
Structured Streaming, and Kafka Streams) to name the most
prominent ones.

Models for continuous data processing have been around for
decades [15]. However, the advent of the Big-Data dramatically
increased the popularity of data streams in several application
domains. For example, developers aim at implementing efficient
and effective analytics on massive flows of data for realizing the
Smart X phenomena (e.g., Smart Home, Smart Hospital, Smart
City). Stream processing systems are designed to support a large
class of applications in which data are generated from multiple
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sources and are pushed asynchronously to servers which are
responsible for processing them [13].

To facilitate the adoption, initially, most of the big stream
processing systems provided their users with a set of API for
implementing their applications. However, recently, the need for
declarative stream processing languages has emerged to simplify
common coding tasks; making code more readable and main-
tainable, and fostering the development of more complex appli-
cations. Thus, Big Data frameworks (e.g., Flink [9], Spark [3],
Kafka Streams1, and Storm [19]) are starting to develop their
own SQL-like approaches (e.g., Flink SQL2, Beam SQL3, KSQL4)
to declaratively tame data velocity.

In general, declarative languages are extremely useful when
writing the optimal solution is harder than solving the problem
itself. Indeed, they leverage compilers to catch programming
mistakes and automatically transform and optimize code. They
fill the gap between expert and normal users. They also increase
the acceptance and usability of the system for the end-users. The
aim of this tutorial is to provide an overview of the state-of-the-
art of the ongoing research and development efforts in the domain
of declarative languages for big streaming data processing. In
particular, the goals of the tutorial are:

• providing an overview of the fundamental notions of pro-
cessing streams with declarative languages;

• outlining the process of developing and deploying stream
processing applications;

• offering an overview of state of the art for streaming query
languages, with a deep-dive into optimization techniques
and examples from prominent systems; and

• presenting open research challenges and future research
directions in the field.

The content of this tutorial is highly relevant for EBDT-2020
attendees, as it focuses on database-related aspects that concern
SQL-like domain-specific languages for stream processing.

2 TUTORIAL PROGRAM OUTLINE
The tutorial introduces the various approaches for declarative
stream processing for Big Data. It is centered on providingmotiva-
tions, models, and optimization techniques related to declarative
Stream Processing languages, e.g., EPL, KSQL, Flink-SQL and
Spark Structured Streaming. In the following, we provide
an overview of program followed by a detailed description of
the different lectures. Notably, we aim at preparing also practi-
cal examples and exercises for the audience to interact with the
presented tools.
1https://kafka.apache.org/documentation/streams/
2https://ci.apache.org/projects/flink/flink-docs-stable/dev/table/sql.html
3https://beam.apache.org/documentation/dsls/sql/overview/
4https://www.confluent.io/product/ksql/
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Figure 1: Adoption of Declarative Interfaces for Stream Processing.

(1) A Brief History of Stream Processing and Its Models.
(2) Big Stream Processing Engines

• Apache Flink [9]
• Apache Spark [22]
• Apache Kafka and Kafka Streams [6]
• Esper5

(3) Declarative Languages for Stream Processing
• The Continuous Query Language [2]
• Flink SQL (i.e.,Apache Calcite [7])
• Spark SQL [3]
• KSQL [14]

(4) Conclusion and Research Directions

2.1 A Brief History of Stream Processing
During this part, we will focus on describing the motivations that
led to the development of stream processing [20]. Besides, we
present the state of the art, surveying from seminal models [5, 8]
to the more recent ones [1, 17].

SECRET [8] is a model to explain the operational semantics
of window-based SPEs. SECRET focuses on modeling stream-to-
relation operators using four abstractions:

• the Scope function maps an event time instant to the time
interval over which the computation will occur.

• the Content function maps a processing time instant to the
subset of stream elements that occur during the event-time
interval identified by the scope function.

• the Report dimension identifies the set of conditions under
which the window content become visible to downstream
operators.

• the Tick dimension shows the conditions that cause a
report strategy to be evaluated.

The Dataflow Model [1] presented a fundamental shift on the
approach of stream processing, leaving the user the choice of the
appropriate trade-off between correctness, latency and cost. The
model describes the processing model of Google Cloud Dataflow.
In particular, it operates on streams of (key, value) pairs using
the following primitives.

• ParDo for generic element-wise parallel processing pro-
ducing zero or more output elements per input.

• GroupByKey for collecting data for a given key before
sending them downstream for reduction.

Being data unbounded GroupByKey needs windowing in order
to be able to decide when it can output. Windowing is usually
treated as key modifier, this way GroupByKey will group also
by window. The model addresses the problem of window com-
pleteness, claiming the Watermarking an insufficient mechanism
5http://www.espertech.com/

to regulate out-of-order arrival. Therefore, the Dataflow Model
introduces Triggers to provide multiple answers for any given
window. Windows and Triggers are complementary operators.
The former determines when data are grouped together for pro-
cessing using event time; the latter determines where the results
of groupings are emitted in processing time.

The Stream and Table Duality [17] includes three notions,
i.e., table, table changelog stream and a record stream. The static
view of an operator’s state is a table, updated for each input record
and has a primary key attribute. Record streams and changelog
streams are special cases of streams. A changelog stream is the
dynamic view of the result of an update operation on a table. The
semantics of an update is defined over both keys and timestamps.
Replaying a table changelog stream allows to materialize the
operator result as a table. On the other hand, a record stream
represents facts instead of updates. A record streams model im-
mutable items and, thus, each record has a unique key. Stream
processing operators are divided in stateless and stateful ones,
may have one or multiple input streams and might be defined
over special types of input streams only.

2.2 Big Stream Processing Engines
During this section of the tutorial, we provide an overview of
the following Big Stream Processing Engines (BigSPE). Figure 1
reports the system publication timeline, indicating in light-grey
to that are in the scope of the tutorial.

Apache Flink [9] is an open source platform for distributed
stream and batch processing. Flink uses a streaming dataflow
engine that provides data distribution, communication, and fault
tolerance for distributed computations. Apache Flink features
two relational APIs - the Table API and SQL - for unified stream
and batch processing. Flink’s Streaming SQL support is based on
Apache Calcite which implements the SQL standard.

Apache Spark [3] is a general-purpose cluster computing
system. It provides high-level APIs in Java, Scala, Python and R,
and an optimized engine that supports general execution graphs.
Spark’s main abstraction are resilient distributed datasets (RDDs).
An RDD is a collection of elements partitioned across the nodes
of the cluster that can be operated on in parallel.

Apache Kafka [21] is a distributed streaming platform. Kafka
is run as a cluster on one or more servers, called brokers, that
can span multiple datacenters. The Kafka cluster stores streams
of records in unbounded append only logs called topics. Each
record consists of a key, a value, and a timestamp. Kafka Streams
is a stream processing library built on top of Apache Kafka pro-
ducer/consumer APIs. It is based on the Stream/Table duality
model, which combines the Dataflow model and CQL.
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2.3 Declarative Stream Processing Languages

Figure 2: Expressiveness vs Simplicity w.r.t. Declarative
Stream Processing Languages

In the context of Big Data Streams, declarative languages suffer
from the absence of a shared formal framework that clarifies
execution models and time-management approaches. Therefore,
existing systems have developed their declarative languages with
a primary focus on meeting specific industrial needs.

The Continuous Query Language (CQL) [2] is the first at-
tempt to extend relational algebra to process streams of data.
CQL defines three families of operators, i.e., Stream-to-Relation
(S2R) operators that produce a relation from a stream, Relation-
to-Relation (R2R) operators that produce a relation from one or
more other relations, and Relation-to-Stream (R2S) operators that
produce a stream from a relation. Combining these operators is
it possible to define stream-to-stream transformations.

During this section, we survey existing declarative languages
for stream processing. Influenced by CQL, BigSPEs’ languages
try to be as syntactically-close as possible to SQL focusing on us-
ability at the cost of solid design principles like Codd’s ones [10].
Following Cugola and Margara’s classification [11], we will ex-
plain and compare them in terms of expressiveness and simplicity,
as shown in Figure 2.

Flink SQL is based on Apache Calcite [7], i.e., a system that
provides query parsing, planning, optimization, and execution
of SQL queries on top of any data management system. Calcite
leaves data storage and management to specialized engines. Flink
relies on Calcite to offer a streaming-compliant SQL interface
and an advanced query optimization layer. Any language con-
struct used in Flink is also compliant to the SQL standard syntax.
Listing 1 shows an example of Flink SQL query that counts the
number of views per nation every hour and reporting every
minute.

1 SELECT nat ion , COUNT( ∗ )
2 FROM pageviews
3 GROUP BY HOP( rowtime , INTERVAL 1H, INTERVAL 1M) , n a t i on

Listing 1: Counting Page Views using Flink SQL.

Spark SQL [4] a Spark module for structured data process-
ing. It provides a Dataframe API that can perform relational
operations. Moreover, it relies on Catalyst, i.e., an extensible opti-
mizer that allows custom optimization rules. The Dataframe API
provides to Catalyst source metadata that allows it to perform

optimizations. Structured Streaming [3] ports to Spark some of
the Google DataFlow ideas, e.g., the separation between event-
time and processing-time. Structured Streaming reuses the Spark
SQL execution engine, Catalyst, and the code generator. To sup-
port streaming, Structured Streaming add the features to Spark
SQL:(1) Triggers to control result reporting; (2) Time extractors
to mark a column for event time;(3) Stateful operators to imple-
ment complex aggregations. Listing 2 shows the same query of
Listing 1, but using Spark SQL.

1 v a l d f = pagev iews . groupBy (
2 window ( $ " t imestamp " , " 1 hour " , " 1 minute " ) , $ " n a t i on "
3 ) . count ( )

Listing 2: Counting Page Views using Spark SQL.

KSQL [14] is a streaming SQL engine implemented on top of
the Kafka Streams API. KSQL is directly based on the Stream Du-
ality model [17]. Thus, it relies on two first-class constructs, i.e.,
Streams and Tables. To move between these abstractions, KSQL
provides powerful stream processing capabilities such as joins,
aggregations, event-time windowing, and many more. Listing ??
shows our example pageviews query using KSQL syntax.

1 CREATE TABLE a n a l y s i s AS SELECT nat ion , COUNT( ∗ )
2 FROM pageviews
3 WINDOW HOPPING ( SIZE 1 HOUR, ADVANCE BY 1 MINUTE )
4 GROUP BY na t i on ;

Listing 3: Counting Page Views using KSQL label

The presenters go in-depth regarding the languages above,
focusing in particular on the following constructs [18]: (i) Filters
and stateless operations; (ii) table-stream and stream-to-stream
joins; (iii) windowing, aggregates, and stateful computations.

Finally, presenters will comment on the design of the lan-
guages above w.r.t. the Codd’s principles:

• Minimality, i.e., a language should provide only a small set
of needed language constructs so that different language
constructs cannot express the same meaning;

• Symmetry, i.e., a language should ensure that the same
language construct always expresses the same semantics
regardless of the context it is used in; and

• Orthogonality, i.e., a language should guarantee that every
meaningful combination its constructs is applicable.

2.4 Conclusion and Research Directions
This section closes the tutorial indicating ongoing research and in-
dustrial works. Moreover, we will ask the audience about the fact
that SQL was not intended to be used with unbounded streams of
data nor with the continuous semantics required to process them.
Nevertheless, existing BigSPE are adopting it and a question
naturally raises: Can we consider BigSPE as databases?

3 LEARNING OUTCOMES
The tutorial targets researchers, knowledge workers, and practi-
tioners who want to understand the current state-of-the-art as
well as the future directions of stream processing.

This tutorial includes relevant technologies and topics for
people from IoT, as well as social media, pervasive health, ans oil
industry, who have to analyze in massive amounts of streaming
data. After attending this tutorial, the audience will have:

• Good understanding of the fundamental and main con-
cepts of stream processing its models;
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• An overview and detailed insight into declarative stream
processing languages and the ongoing developments by
big data streaming system in this domain;

• An overview of research directions in which the state-of-
the-art can be improved.

The material of the tutorial will cover some of the work of the
presenters on the topics of the tutorial, including [13, 16, 18]

4 PREVIOUS EDITIONS
The first version of this tutorial was presented at the DEBS 2019
conference6. It was a full-day tutorial, and it focused on the pro-
cessing models behind declarative stream processing languages.
With the tutorial, the presenters were invited to publish a com-
panion short paper [18] and a website7.

5 PRESENTERS & ORGANIZERS
Riccardo Tommasini is a research fellow at the University of
Tartu, Estonia. Riccardo did his PhD at the Department of Elec-
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Sherif Sakr is the Head of Data Systems Group at the Institute of
Computer Science, University of Tartu, Estonia. He received his
PhD degree in Computer and Information Science from Konstanz
University, Germany in 2007. He is currently the Editor-in-Chief
of the Springer Encyclopedia of Big Data Technologies. His re-
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Sakr has published more than 150 research papers in interna-
tional journals and conferences. He delivered several tutorials
in various conferences including WWW’12, IC2E’14, CAiSE’14,
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Italia, IBM, Siemens, Oracle, Indra, and Statoil. Emanuele pre-
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2011, ESWC 2011, ISWC 2013, ESWC 2014, ISWC 2014, ISWC
2015, ISWC 2016, DEBS 2016, ISWC 2017 and KR 2018.

Hojjat Jafarpour is a Software Engineer and the creator of KSQL
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