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ABSTRACT
Histograms are a well studied and simple way to summarize data.

As such, they are used extensively in a variety of applications that

require estimates of data frequency values. Significant previous

work has studied the problem of finding optimal histograms with

respect to an error measure. In this paper we study the classic

problem of finding an optimal histogram for a dataset, with a

new twist: The histogram must contain at least 𝑛 − 𝑘 of the 𝑛

data points. The 𝑘 excluded data points are considered outliers.

We consider two notions of excluding data items, by allowing

arbitrary items to be excluded, or only removing items while

retaining a consistent histogram. Polynomial algorithms are pre-

sented for these problems. Significant experimentation demon-

strates that our algorithms work well in practice to reduce the

histogram error.

1 INTRODUCTION
Covering a set of data points with a histogram is a fundamental

problem that lays at the heart of many database applications.

Problems of this sort appear as optimization problems with var-

ious constraints on the type and size of the histogram, as well

as an error function that must be minimized. Among these prob-

lems, finding an optimal histogram covering all but a few input

points is of interest in view of outlier removal. In such a problem,

given 𝑛 data points, we are asked to find the optimal histogram

covering at least 𝑛 − 𝑘 of the 𝑛 input points. From the viewpoint

of optimization, excluding 𝑘 points reduces the error and in this

sense, the excluded data points can be considered outliers. In

computational geometry, variations of this problem have been

studied in many different settings.

A histogram provides the user with an estimate of frequencies

of data elements within each bucket. For example, consider a

histogram over integer exam grades. The bucket ( [51, 60]; 40)
indicates that there are 40 exam grades between 51 and 60, inclu-

sive, in the dataset. Without additional information, a uniform

distribution of elements within the bucket will be assumed, i.e.,

4 grades each for every number between 51 and 60. In practice,

this may be far from the correct frequencies, e.g., it is possible

that there are 19 occurrences each of grade 59 and 60 and two

occurrences of grade 51.

Using an error metric, such as sum-squared error, it is possible

to measure the distance between the histogram’s estimation and

the actual frequencies. When the error is large, the histogram

poorly captures the data. The simplest way to decrease the error

is to increase the number of buckets. By using more buckets, the

user has a more fine-grained view of the data. This, however,

is not always an appropriate solution, and in particular, is in-

appropriate if the histogram is given to a human to view (and

not simply to a computer program to continue manipulating for
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some purpose). If the user is given a very large number of buckets

she loses the ability, to some degree, of seeing “the big picture”

of the data. It is more difficult to grasp the meaning of the data

when many buckets are displayed. A large number of buckets

also degrades the quality of the user interface, particularly on

mobile devices.

Histograms with a limited number of buckets can have high

error as they must cover all elements within the dataset. However,

there can be elements that are outliers, in the sense that it is their

inclusion that causes the error to increase. In the above example

of a dataset of grades, the occurrences of grade 51 can be seen

as outliers. Indeed, if these elements did not have to be covered

by a bucket, one could use ( [59, 60]; 38), for which the uniform

distribution perfectly estimates the actual grades in the bucket

range.

In this paper our goal is to find optimal histograms, given a

bound 𝛽 on the number of buckets, as well as a bound 𝑘 on the

number of outliers that need not be covered. In other words, the

goal is to optimally choose up to 𝑘 elements and a histogram

with up to 𝛽 buckets, so as to minimize the total error.

The main contributions of the paper are:

• We introduce two intuitive notions for an optimal his-

togram (called a summary) with deletions.

• We present several algorithms for solving this problem,

including algorithms that are provably optimal.

• Extensive experimentation demonstrates the quality of

our solutions.

This paper is organized as follows. We start by discussing

related work in Section 2. In Section 3 we set up the framework

by providing the necessary definitions. In Sections 4 and 5 we

study the optimal summary with deletion problem when there is

only a single bucket, or when multiple buckets are allowed. In

Section 6 we consider datasets with multiple columns. Extensive

experimentation appears in Section 7, and Section 8 concludes.

2 RELATEDWORK
Related work falls into two sub-areas: finding optimal histograms

and identifying outliers in data. We discuss each of these aspects

below.

Histograms. Histograms summarize data by storing the num-

ber of values within a given data range. They are traditionally

used for estimating costs of query plans, as well as for approxi-

mate query answering. Various types of histograms have been

considered in the past. These differ both on their maintenance

efficiency over dynamic data, and their effectiveness for approxi-

mating query answers. Some of the classical types of histograms

considered include equi-width (in which all buckets have the

same range size), equi-depth (in which all buckets have the same

number of data elements), serial (which group elements accord-

ing to frequency) and end-biased (in which all buckets except one

have a single element range). This paper considers the popular

v-optimal histograms [9] which has been proven to be optimal
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in minimizing the variance of element frequencies within the

buckets. A taxonomy of histogram types was presented in [12]

Due to their popularity, there has been much effort to effi-

ciently compute histograms from data. In [11], a polynomial time

algorithm was presented to compute v-optimal histograms. This

work was later expanded in [10] for the case in which there is a

bound on the total number of buckets that can be used to summa-

rize several different columns of data. There has also been work

on approximating histograms, e.g., [7, 8], and using sampling for

constructing histograms [5].

No previous work has considered the setting of computing

histograms when not all of the elements must be covered. Among

previous work, our paper is most related to [11] as we also present

an optimal algorithm for histogram creation, albeit in a new

setting.

Outliers. Intuitively, an outlier is a data element that is distant

from other elements. Many different criteria have been consid-

ered in the past to determine when a data point is an outlier, and

outlier detection algorithms have been presented. In particular,

algorithms differ as to whether they compare data elements with

the entire set, or only with a small local subset. In our work, we

assume that the user provides us with a number 𝑘 of outliers

that can be removed. This differs from most previous work, in

which no such number is provided. In [4, 14] algorithms for top-𝑘

outliers are presented. However, they may return less than 𝑘 ele-

ments if, fewer are deemed to be outliers. (In addition, they differ

in their notion of an outlier, as they do not attempt to minimize

histogram error.)

Histograms have been used to efficiently find outliers [6, 13].

Our algorithms can also be viewed as finding outliers using his-

tograms. However, our approach is significantly different from

previous work. In [6, 13], histograms are built over the entire

data set, and then data elements that significantly differ from

their fellow bucket elements are considered outliers. In our work,

we find the optimal set of data elements that should be removed

in order to generate a histogram with low error.

Several works have considered similar types of problems, i.e.,

covering all but 𝑘 data elements in an optimal manner (in some

sense). In particular, [2] considers optimality in terms of min-

imum diameter, minimum area bounding box or minimal area

convex hull. In [3], the goal is to optimally remove 𝑘 data el-

ements so that the remaining have a minimum-width square

or rectangular annulus. Covering all but 𝑘 data elements with

disjoint boxes is considered in [1]. While these works have a

similar goal, they differ in the type of cover that must be created

and in error function that should be minimized. Hence, previous

techniques cannot carry over to our framework.

3 DEFINITIONS
Datasets and Frequencies. The goal of this paper is to find a

method to effectively summarize a large dataset, such as the

contents of a relation in a database, or the result of a query. In

the following, a dataset 𝑃 is a multiset of elements. To simplify

the presentation, we assume that the domain of 𝑃 is Z. However,
all our results immediately generalize to arbitrary completely

ordered discrete domains.
1

Given a multiset of elements 𝑃 , for all 𝑞 ∈ Z, we use card (𝑞, 𝑃)
to denote the number of copies of 𝑞 that appear in 𝑃 . We use

®𝑓𝑃
1
This work considers only discrete domains. For attributes over continuous domains,

our work can be applied if a discretization function is used, e.g., by rounding to a

given decimal place.

to denote the frequency vector of 𝑃 , i.e., ®𝑓𝑃 [𝑞] = card (𝑞, 𝑃). Note
that

®𝑓𝑃 has finitely many non-zero elements. We differentiate

between the elements of ®𝑓𝑃 denoted 𝑝 , 𝑞, 𝑟 , and the frequency
values (or simply values for short) of ®𝑓𝑃 , denoted 𝑣 ,𝑤 .

Example 3.1. Consider the multiset, used as running example,

𝑃 = {{10, 20, 30, 20, 30, 40, 10, 40, 50, 0, 0, 0, 0}}.
The frequency vector of 𝑃 , when considering only non-zero ele-

ments, is

®𝑓𝑃 [𝑞] = {0:4, 10:2, 20:2, 30:2, 40:2, 50:1} �

Summaries. A bucket is written 𝑏 = ( [𝑝, 𝑞];𝑛), where
• 𝑝 ≤ 𝑞 are integers defining the bucket endpoints and
• 𝑛 is a positive natural number indicating the number of

elements in the bucket.

We say that {𝑝, . . . , 𝑞} is the range of 𝑏.
Now, consider a multiset 𝑃 and a bucket 𝑏 = ( [𝑝, 𝑞];𝑛). We

say that 𝑏 is consistent with 𝑃 if

∑𝑞
𝑟=𝑝
®𝑓𝑃 [𝑟 ] = 𝑛, i.e., 𝑛 is precisely

the sum of frequencies of all elements within the range of 𝑏 in 𝑃 .

We say that a set of buckets 𝐵 is a summary of 𝑃 if

• every two buckets in 𝐵 have disjoint ranges,

• all buckets in 𝐵 are consistent with 𝑃 ,

• for every 𝑟 ∈ 𝑃 , there is some 𝑏 ∈ 𝐵 such that 𝑟 is in the

range of 𝑏.

Thus, intuitively, a summary of 𝑃 is a set of disjoint consistent

buckets that cover all elements appearing in 𝑃 .

Example 3.2. The following are different summaries of dataset

𝑃 from Example 3.1, with one and two buckets, respectively:

𝐵1 = {([0, 50]; 13)} 𝐵2 = {([0, 0]; 4), ( [10, 50]; 9)} �

Remark 1. A summary of a multiset of elements is very similar
to the well-studied notion of a histogram of a multiset of elements.
Much of the previous work on histograms assumed that the buckets
fully covered the domain. This was important, as data was dynam-
ically added to the dataset and had to be incorporated into the
histogram (and therefore, had to have a bucket to which it could
be added). In this work, since our goal is to summarize the cur-
rent contents of a dataset, we only create non-empty buckets, with
endpoints corresponding to actual elements in the dataset. Empty
buckets are not of interest.

We associate a summary 𝐵 with a vector ®𝑒𝐵 used to estimate
frequencies of elements, as follows. Let 𝑟 be an integer. If 𝑟 is

within the range of a bucket ( [𝑝, 𝑞];𝑛) ∈ 𝐵, then ®𝑒𝐵 [𝑟 ] = 𝑛
𝑞−𝑝+1 .

Otherwise, ®𝑒𝐵 [𝑟 ] = 0.

Now, the error of 𝐵 w.r.t. 𝑃 , denoted err (𝐵, 𝑃) is the distance of
®𝑒𝐵 from

®𝑓𝑃 . In general, different distance metrics can be employed.

In this paper, we use the sum-squared-error (SSE) metric as, used

by [11]:

err (𝐵, 𝑃) =
∑
𝑞∈Z
( ®𝑓𝑃 [𝑞] − ®𝑒𝐵 [𝑞])2 .

However, the work generalizes to additional metrics. It has been

shown [11] that this error metric can be equivalently computed

as:

err (𝐵, 𝑃) =
∑

( [𝑝,𝑞 ];𝑛) ∈𝐵

©­«
∑

𝑝≤𝑟 ≤𝑞
( ®𝑓𝑃 [𝑟 ])2 −

𝑛2

𝑞 − 𝑝 + 1
ª®¬ . (1)

Example 3.3. Recall𝐵1 and𝐵2 fromExample 3.2. Then, err (𝐵1, 𝑃) =
29.7 and err (𝐵2, 𝑃) = 15. �
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Optimal Summaries. For any dataset 𝑃 , it is possible to find

a summary 𝐵 with err (𝐵, 𝑃) = 0 by simply creating a single-

ton bucket for each element appearing in 𝑃 . However, such a

summary will be of size similar to that of 𝑃 itself, and will be un-

wieldy for large datasets. Hence, we will be interested in creating

summaries of bounded size.

Let 𝛽 be a positive integer, called the bucket size bound. A
summary 𝐵 is size-bounded by 𝛽 if the number of buckets in 𝐵

is at most 𝛽 . Given a dataset 𝑃 and a bucket size bound 𝛽 , the

optimal summary problem is to find a summary 𝐵 of 𝑃 that is

size-bounded by 𝛽 , and has minimal error. This problem has been

considered in the past, and has been shown to be solvable in

polynomial time using dynamic programming [11].

Optimal Summaries with Deletion. In practice, some of the

elements in the dataset may be outliers that greatly contribute

to the error of the summary, while adding little information

of interest. When we are interested in summarizing the data

to understand the general trends, such outliers may not be of

interest. Indeed, a better understanding of the datamay be derived

when some elements are removed, to derive a smoother dataset,

before creating a summary.

We say that 𝑃 ′ is a 𝑘-deletion of 𝑃 if 𝑃 ′ is derived by removing

at most 𝑘 elements from 𝑃 . We consider two different types of

summaries after deletion. We say that 𝐵 is a 𝑘-deletion summary
of 𝑃 if there is a 𝑘-deletion 𝑃 ′ of 𝑃 such that 𝐵 is a summary of

𝑃 ′. A stronger requirement on the summary can be formulated

as follows: We say that 𝐵 is a consistent 𝑘-deletion summary of

𝑃 if there is a 𝑘-deletion 𝑃 ′ of 𝑃 such that 𝐵 is a summary of 𝑃 ′

and every bucket in 𝐵 is consistent with 𝑃 .

Example 3.4. Consider the dataset

𝑃 = {{1, 1, 2, 2, 2, 3, 3}}.

Suppose that we can only use a single bucket, but we may delete

up to 𝑘 = 2 elements.

The optimal choice is to delete a single occurrence of ele-

ment 2, yielding the dataset 𝑃 ′ = {{1, 1, 2, 2, 3, 3}}, which can be

summarized using one bucket with an error of 0. This summary

𝐵′ = ( [1, 3]; 6), however, is not consistent with 𝑃 .

An optimal consistent 2-deletion summary can be derived by

removing all occurrences of the element 1 (or all occurrences of

the element 3) yielding the consistent summary 𝐵′′ = ( [2, 3]; 5)
with error 0.5.

This example also serves to demonstrate why consistent sum-

maries have an added benefit. The summary 𝐵′′ accurately re-

flects the dataset, namely that it contains five elements in the

range [2, 3]. The summary 𝐵′ can be seen as being somewhat

confusing, as it seems to imply that the dataset has six elements

in the range [1, 3], when in fact there are seven such elements

(and one occurrence of element 2 has been removed to reduce

the error). �

Problems of Interest. In this paper we study the following prob-

lem, called the (consistent) optimization problem: Let 𝑃 be a
dataset, 𝛽 be a bucket size bound and 𝑘 be a natural number. Find
𝑃 ′, 𝐵 such that 𝑃 ′ is a 𝑘-deletion of 𝑃 and 𝐵 is a summary of 𝑃 ′

(and 𝐵 is consistent with 𝑃 ) such that err (𝐵, 𝑃 ′) is minimized.

4 SINGLE BUCKET SUMMARIES
Before studying the general optimization problems, we start by as-

suming that only a single bucket may be used. We note that even

in this case there can be exponentially many different choices of

𝑘 elements to delete. Hence, finding an optimal 𝑘-deletion sum-

mary with one bucket is not a trivial problem. In addition, the

ability to optimize for a single bucket is an important component

in a solution for multiple buckets. Therefore, in this section we

present algorithms that find an optimal 𝑘-deletion summary in

polynomial time, when only a single bucket can be used. We start

by considering arbitrary single bucket summaries with deletions,

and then consider the special case of consistent single bucket

summaries with deletions.

4.1 Arbitrary Single Bucket Summaries
We use minArbErr ( ®𝑓 , 𝛽, 𝑘) to denote the minimal error that can

be achieved for a multiset with frequency vector
®𝑓 , when up to

𝑘 elements can be deleted from the multiset, and up to 𝛽 buckets

can be used. The algorithms that we will present compute this er-

ror value directly. As is standard with dynamic programming, to

find the 𝑘 elements to be deleted from the multiset and the bucket

boundaries that should be used, some additional book-keeping is

necessary. This is quite straight-forward, but clutters the presen-

tation. Hence, we focus on computing minArbErr ( ®𝑓 , 𝛽, 𝑘).
In this section, we study the problem of computing the value

minArbErr ( ®𝑓 , 1, 𝑘) for a given ®𝑓 and 𝑘 , i.e., our optimization prob-

lem for the special case where only one bucket can be used. Intu-

itively, there are two different ways to choose elements to remove,

in order to reduce the error:

(1) we can remove the first or last elements with non-zero

frequency in
®𝑓 , thereby allowing a bucket with smaller

range to cover
®𝑓 ;

(2) we can remove elements that have the greatest frequency,

thereby reducing the variance of the frequencies within

the bucket.

Before presenting our algorithm, we introduce some neces-

sary notion used in the algorithms throughout this paper. Let

®𝑓 be a frequency vector. We use size( ®𝑓 ) to denote the number

of different non-zero elements in
®𝑓 , and first( ®𝑓 ) and last( ®𝑓 ) to

denote the first and last elements with non-zero frequency in

®𝑓 , respectively. Finally, next( ®𝑓 , 𝑝) and prev( ®𝑓 , 𝑝) denote the ele-
ment immediately after and immediately preceding 𝑝 in

®𝑓 with

non-zero frequency, respectively. When
®𝑓 is clear from the con-

text, it will be omitted, and we will simply write size, first, last,
prev(𝑝), next(𝑝).

For elements 𝑝, 𝑞, let ®𝑓[𝑝,𝑞 ] be the frequency vector

®𝑓[𝑝,𝑞 ] [𝑟 ] =
{
®𝑓 [𝑟 ] 𝑝 ≤ 𝑟 ≤ 𝑞

0 otherwise

The algorithm ArbSingleBErr in Figure 1 computes the value

minArbErr ( ®𝑓 , 1, 𝑘). ArbSingleBErr starts by first checking if all

elements in the vector can be removed (Lines 1–2), in which

case an error of zero is returned. Next, the algorithm considers

all options of removing first or last elements, as well as other

elements with high frequency. Intuitively, the values 𝑘left and

𝑘right in the algorithm are used to specify how many elements

can be removed from the beginning and end, respectively, of
®𝑓 .

This leaves 𝑘mid = 𝑘 − 𝑘left − 𝑘right elements of high frequency

to be removed from the remainder of
®𝑓 .

The algorithm ArbSingleBErr therefore iterates over values of
𝑘left ≤ 𝑘 (Line 6), and values of 𝑘right ≤ 𝑘 − 𝑘left (Line 9). We

note that we always choose values for 𝑘left and 𝑘right that are

sufficient to reduce the frequency of elements at the beginning
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Algorithm ArbSingleBErr( ®𝑓 , 𝑘)
1. if

∑last
𝑝=first

®𝑓 [𝑝] ≤ 𝑘

2. then return 0

3. 𝑒∗ ←∞
4. 𝑝 ← first
5. 𝑘left ← 0

6. while 𝑘left ≤ 𝑘

7. do 𝑞 ← last
8. 𝑘right ← 0

9. while 𝑘right ≤ 𝑘 − 𝑘left
10. do 𝑘mid ← 𝑘 − 𝑘left − 𝑘right
11. 𝑒 ← LowerMaxError( ®𝑓[𝑝,𝑞 ] , 𝑘mid )
12. 𝑒∗ ← min{𝑒∗, 𝑒}
13. 𝑘right ← 𝑘right + ®𝑓 [𝑞]
14. 𝑞 ← prev(𝑞)
15. 𝑘left ← 𝑘left + ®𝑓 [𝑝]
16. 𝑝 ← next(𝑝)
17. return 𝑒∗
Algorithm LowerMaxError( ®𝑓 , 𝑘)
1. 𝑝min:𝑣min ← minFreqVal( ®𝑓 )
2. 𝑝max :𝑣max ← maxFreqVal( ®𝑓 )
3. while (𝑘 > 0 and 𝑣max > 𝑣min)

4. do ®𝑓 [𝑝max ] ← ®𝑓 [𝑝max ] − 1
5. 𝑘 ← 𝑘 − 1
6. 𝑝max :𝑣max ← maxFreqVal( ®𝑓 )
7. 𝑛sum ←

∑last
𝑝=first

®𝑓 [𝑝]
8. 𝑛sqsum ←

∑last
𝑝=first ( ®𝑓 [𝑝])

2

9. return 𝑛sqsum − 𝑛sum2/(last − first + 1)

Figure 1: Returns minArbErr ( ®𝑓 , 1, 𝑘).

and end of
®𝑓 to zero. This is achieved by increasing 𝑘left and 𝑘right

by the actual frequency values appearing in
®𝑓 (Lines 15 and 13).

For given values of 𝑘left and 𝑘right we have 𝑝 and 𝑞 that cor-

respond to the first and last elements of
®𝑓 whose frequency has

not been reduced. They determine the range of values in
®𝑓 for

which we will attempt to reduce the highest frequency values (to

reduce variance) using the algorithm LowerMaxError.
LowerMaxError usesminFreqVal (resp.maxFreqVal) to return

the element and corresponding frequency value which is minimal

(resp. maximal) in
®𝑓 . While more elements can be removed (𝑘 > 0)

and there is still non-zero variance within the range (𝑣max >

𝑣min) the frequency of the most frequent element is reduced

by one (Line 4). Finally, Line 9 returns the error for the single

bucket that would be created for the updated
®𝑓 , using Equation 1.

ArbSingleBErr keeps track of the lowest error option (Line 12),

and returns this value (Line 17).

Correctness and runtime of ArbSingleBErr are stated in the

following theorem.

Theorem 4.1. For a given ®𝑓 and 𝑘 , ArbSingleBErr( ®𝑓 , 𝑘) com-
putes minArbErr ( ®𝑓 , 1, 𝑘) in time O(𝑘2 (size log size + 𝑘)).

Proof. ArbSingleBErr iterates over all options of removing all

occurrences of elements (i.e., reducing to a zero frequency) from

the beginning and end of
®𝑓 . For each such option, LowerMaxError

is used to reduce the frequencies of highest frequency elements.

Hence, it is sufficient to show that LowerMaxError returns the

minimal error that can be derived by 𝑘-deletions that do not

remove all occurrences of the first and last elements of
®𝑓 .

In the following, assume that 𝑝 and 𝑞 are the first and last

elements, respectively, with non-zero frequency in
®𝑓 . Thus, the

single bucket over a 𝑘-deletion of
®𝑓 will have the form ( [𝑝, 𝑞];𝑛)

where 𝑛 is the sum of frequencies of the remaining elements of
®𝑓 .

Recall that LowerMaxError does the following simple action:

while there are still elements that can be deleted and not all fre-

quencies in
®𝑓 (between 𝑝 and 𝑞) are equal, find the most frequent

element, and reduce its frequency by one. We will prove that this

strategy achieves minimal error.

Assume, by way of contradiction, that there exist a different

strategy to delete up to 𝑘 elements from
®𝑓 , that achieves the

minimal error 𝑒0. Let ®𝑓 ′ be this 𝑘-deletion. Let

𝑣est = (
∑

𝑝≤𝑟 ≤𝑞
®𝑓 ′[𝑟 ])/(𝑞 − 𝑝 + 1).

Note that 𝑣est is the estimated frequency value for each element

in the bucket. The error of
®𝑓 ′ is

𝑒0 =
∑

𝑝≤𝑟 ≤𝑞
( ®𝑓 ′[𝑟 ] − 𝑣est )2 .

We will show that LowerMaxError also returns 𝑒0.

Let 𝑣− = min𝑝≤𝑟 ≤𝑞{ ®𝑓 ′[𝑟 ] | ®𝑓 ′[𝑟 ] ≠ ®𝑓 [𝑟 ]}, i.e., 𝑣− is the

minimal frequency in
®𝑓 ′ changed by the deletion. Let 𝑣+ =

max𝑝≤𝑟 ≤𝑞{ ®𝑓 ′[𝑟 ]}, i.e., 𝑣+ is the maximal frequency value in
®𝑓 ′.

Now we consider the frequency vector derived by reducing

the frequency 𝑣+ by one and increasing the frequency 𝑣− by one.

The error of this new frequency vector 𝑒 ′
0
differs from 𝑒0 only in

the summation for frequencies 𝑣+ and 𝑣−. Now we will show that

𝑒 ′
0
− 𝑒0 ≤ 0 i.e, this change did not increase the error. Observe

that

𝑒 ′
0
− 𝑒0 = (𝑣+ − 1 − 𝑣est )2 + (𝑣− + 1 − 𝑣est )2 − (2)(

(𝑣+ − 𝑣est )2 + (𝑣− − 𝑣est )2
)

= 2(𝑣− − 𝑣est ) − 2(𝑣+ − 𝑣est ) + 2 (3)

≤ 2(𝑣− − 𝑣est ) − 2(𝑣− + 1 − 𝑣est ) + 2 = 0 (4)

where Equation 4 holds since 𝑣− + 1 ≤ 𝑣+, since otherwise we
could have produced

®𝑓 ′ using LowerMaxError.
Now, by repeating this change up to 𝑘 times, the result of

LowerMaxError will be equal to the minimum error.

To prove the runtime, observe that ArbSingleBErr makes at

most 𝑘2 calls to LowerMaxError. Each call to LowerMaxError
costs size log size + 𝑘 . To achieve this time, we first sort the

vector
®𝑓[𝑝,𝑞 ] sent to the algorithm. This allows us to efficiently

evaluate all calls to minFreqVal and maxFreqVal. Then, we re-
quire another 𝑘 operations to lower the frequencies, giving a

total of O(size log size + 𝑘) for algorithm LowerMaxError, and
O(𝑘2 (size log size + 𝑘)) for ArbSingleBErr, as required. �

4.2 Consistent Single Bucket Summaries
We use minConErr ( ®𝑓 , 𝛽, 𝑘) to denote the minimal error that can

be achieved for a multiset with frequency vector
®𝑓 , when a 𝑘-

deletion is taken and up to 𝛽 buckets can be used, and the sum-

mary created must be consistent with ®𝑓 . In this section we show

how to compute this value for the special case where 𝛽 = 1.

ConSingleBErr (Figure 2) uses a precomputed matrix 𝑆𝑆𝐸 of

dimensions size( ®𝑓 )×size( ®𝑓 ), where 𝑆𝑆𝐸 [𝑝, 𝑞] is the sum-squared

error for a single bucket over the range [𝑝, 𝑞] of ®𝑓 , with no
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Algorithm ConSingleBErr( ®𝑓 , 𝑘)
1. if

∑last
𝑝=first

®𝑓 [𝑝] ≤ 𝑘

2. then return 0

3. 𝑞 ← last
4. 𝑘right ← 0

5. while 𝑘right + ®𝑓 [𝑞] ≤ 𝑘

6. do 𝑘right ← 𝑘right + ®𝑓 [𝑞]
7. 𝑞 ← prev(𝑞)
8. 𝑒 ← 𝑆𝑆𝐸 [first, 𝑞]
9. 𝑝 ← first
10. 𝑘left ← 0

11. while 𝑘left + ®𝑓 [𝑝] ≤ 𝑘

12. do 𝑘left ← 𝑘left + ®𝑓 [𝑝]
13. 𝑝 ← next(𝑝)
14. while 𝑘left + 𝑘right > 𝑘

15. do 𝑞 ← next(𝑞)
16. 𝑘right ← 𝑘right − ®𝑓 [𝑞]
17. 𝑒 ← min{𝑒, 𝑆𝑆𝐸 [𝑝, 𝑞]]}
18. return 𝑒

Figure 2: Returns minConErr ( ®𝑓 , 1, 𝑘).

deletions,
2
i.e., 𝑆𝑆𝐸 [𝑝, 𝑞] = ∑

𝑝≤𝑟 ≤𝑞 ( ®𝑓 [𝑟 ] − 𝑣est )2 where 𝑣est =
(∑𝑝≤𝑟 ≤𝑞 ®𝑓 [𝑟 ])/(𝑞 − 𝑝 + 1).

The algorithm ConSingleBErr first checks if all elements in

®𝑓 can be deleted. In this case, the error is zero (Lines 1–2). Oth-

erwise, it begins by considering the case in which elements on

the right-hand side of
®𝑓 are maximally deleted and computes the

error in this case (Lines 5–8). Then, in Lines 11–17 we slowly

increase the number of elements removed on the left-hand side,

while reducing the number of elements removed on the right-

hand side, so as to remain within the limit of 𝑘 . For each such

option, we compute the error, and keep the minimal value.

We show the following result.

Theorem 4.2. For a given ®𝑓 and 𝑘 ,ConSingleBError( ®𝑓 , 𝑘) com-
putes minConErr ( ®𝑓 , 1, 𝑘) in time O(min{𝑘, size}).

Proof. To prove correctness, it is important to note that only

maximal deletions from the two sides of
®𝑓 need to be considered.

Thus, for example, in Lines 5–7 we maximally remove elements

from the right-hand side of
®𝑓 . This follows from the following

claim: Let
®𝑓 be a frequency vector, and 𝑝 < 𝑞 be elements with

non-zero frequencies in
®𝑓 . Let 𝑛 be the total frequency of all

elements in
®𝑓 and let 𝑛′ be the total frequency of all elements be-

tween 𝑝 and 𝑞 (including) in
®𝑓 . Then, err ({([first, last];𝑛)}, ®𝑓 ) ≥

err ({([𝑝, 𝑞];𝑛′)}, ®𝑓[𝑝,𝑞 ] ). This follows from Lemma 2 in [11].

Finally, to show the runtime, observe that we iterate over
®𝑓

twice: once from right to left (Lines 5–7) and once from left to

right (Lines 11-17). Thus, the time is at most O(size). Since in
both our iterations over

®𝑓 we do at most𝑘 operations (we increase

𝑘right or 𝑘left until 𝑘), the time is at most O(𝑘). Together, this
proves our claim of runtime. �

2
In practice, it is not necessary to store a matrix of size size × size. Instead this

value can be computed in time O(1) given two arrays of size size each, as discussed
in [11].

Algorithm NoDeletionSummary( ®𝑓 , 𝛽)
1. for 𝑝 ← first to last
2. do𝑀 [𝑝, 1] ← 𝑆𝑆𝐸 [first, 𝑝]
3. for 𝛽 ′ ← 2 to 𝛽

4. do for 𝑞 ← next(first) to last
5. do𝑀 [𝑞, 𝛽 ′] ← ∞
6. for 𝑝 ← prev(𝑞) down-to first
7. do 𝑒 ← 𝑀 [𝑝, 𝛽 ′ − 1] +

𝑆𝑆𝐸 [next(𝑝), 𝑞]
8. 𝑀 [𝑞, 𝛽 ′] ← min{𝑀 [𝑞, 𝛽 ′], 𝑒}
9. return𝑀 [last, 𝛽]

Figure 3: Returns minArbErr ( ®𝑓 , 𝛽, 0) (which is also equal to
minConErr ( ®𝑓 , 𝛽, 0)).

5 MULTI-BUCKET SUMMARIES
We now consider the problem of finding summaries that can have

multiple buckets. The problem of finding an optimal summary,

when no deletions are permitted (𝑘 = 0) is well studied. Hence,

as a baseline approach it is natural to try to directly leverage

algorithms that find an optimal summary, in order to solve our

problem.

5.1 Baseline Approaches
Before discussing how to find summaries with deletions, we re-

view the dynamic algorithm proposed in [11] for building optimal

sum-squared-error histograms without deletions.

Optimal Summary without Deletions. Figure 3 presents the

algorithm NoDeletionSummary from [11] which computes the

optimal error for a multiset with frequency vector
®𝑓 when using

𝛽 buckets but no deletions. Note that in this special case, clearly

minArbErr ( ®𝑓 , 𝛽, 0) = minConErr ( ®𝑓 , 𝛽, 0) will always hold. Hence,
the algorithm can be seen as computing either of these values.

Intuitively, the algorithm dynamically iterates over all possible

divisions of the input into 𝛽 buckets and returns the minimal

sum-square error found.

NoDeletionSummary utilizes two matrices:

• the precomputed matrix 𝑆𝑆𝐸 discussed earlier;

• a matrix 𝑀 of dimensions size( ®𝑓 ) × 𝛽 , in which we will

update𝑀 [𝑝, 𝛽 ′] to contain minArbErr ( ®𝑓[first( ®𝑓 ),𝑝 ] , 𝛽
′, 0).

Hence,𝑀 [last( ®𝑓 ), 𝛽] is precisely what we are computing.

The algorithm starts by initializing the matrix 𝑀 with the

error elements for the case of a single bucket (Lines 1–2). Note

that this loop, (as well as all other loops in this paper that iterate

over elements from
®𝑓 , such as Line 4 and 6) should be understood

as implicitly only looping over elements 𝑝 for which
®𝑓 [𝑝] > 0.

Thus, for each element 𝑝 with positive frequency, we update

𝑀 [𝑝, 1].
To compute the remainder of 𝑀 , the algorithm uses three

nested for loops. In the outer loop, it iterates over the number of

𝛽 ′ from 2 to 𝛽 (Line 3). In the first inner loop, it iterates over ele-

ments 𝑞 from next(first) to last (Line 4). In the inner-most loop,

the algorithm iterates over all possible elements 𝑝 for the left side

of the right most bucket (Line 6). Using previously computed val-

ues, it then calculates the error, under the assumption that the last

bucket ranges from just after 𝑝 to 𝑞, (Line 7) and saves the mini-

mal error in𝑀 [𝑞, 𝛽 ′] (Line 8). Finally, the algorithm returns the

minimal error that can be achieved with 𝛽 buckets, i.e.,𝑀 [last, 𝛽]
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Algorithm SumThenDelErr( ®𝑓 , 𝛽, 𝑘)
1. 𝐵 ← NoDeletionSummaryBuckets( ®𝑓 , 𝛽)
2. ( [𝑝1, 𝑞1];𝑛1) ← 𝐵 [1]
3. for 𝑘 ′ ← 0 to 𝑘

4. do𝑀 [1, 𝑘 ′] ← SingleBErr( ®𝑓[𝑝1,𝑞1 ] , 𝑘 ′)
5. for 𝛽 ′ ← 2 to 𝛽

6. do for 𝑘 ′ ← 0 to 𝑘

7. do SDUpdateMatrix( ®𝑓 , 𝛽 ′, 𝑘 ′, 𝑀, 𝐵)
8. return𝑀 [𝛽, 𝑘]
Algorithm SDUpdateMatrix( ®𝑓 , 𝛽, 𝑘, 𝑀, 𝐵)

1. 𝑀 [𝛽, 𝑘] ← ∞
2. ( [𝑝, 𝑞];𝑛) ← 𝐵 [𝛽]
3. for 𝑘 ′ ← 0 to 𝑘

4. 𝑒 ← 𝑀 [𝛽 − 1, 𝑘 − 𝑘 ′]
5. 𝑒 ′ ← SingleBErr( ®𝑓[𝑝,𝑞 ] , 𝑘 ′)
6. 𝑀 [𝛽, 𝑘] ← min{𝑀 [𝛽, 𝑘], 𝑒 + 𝑒 ′}

Figure 4: Returns either minArbSDErr ( ®𝑓 , 𝛽, 𝑘) or
minConSDErr ( ®𝑓 , 𝛽, 𝑘), depending on the version of Sin-
gleBucketError used.

(Line 9). It is not difficult to see that NoDeletionSummary runs
in time O(𝛽 size2).

Example 5.1. As a running example, to compare algorithms

returning multi-bucket summaries, we consider a dataset with

the frequency vector
®𝑓 , defined as

{1:2, 2:1, 3:2, 4:1, 5:2, 6:3, 7:2, 8:1}.
The optimal 2-bucket summary of

®𝑓 , without deletions is
𝐵 = {([1, 7]; 13), ( [8, 8]; 1)}

with error 2.86. �

Summarize, then Delete. One approach to finding a summary

with deletions is to

• first compute an optimal summary 𝐵 without deletions

(using NoDeletionSummary) and
• then choose the best elements to delete from the buckets,

adjusting bucket boundaries accordingly.

We denote the minimal possible error that can be achieved

when following this two-step methodology for a dataset with

frequency vector
®𝑓 , bucket bound 𝛽 and a number 𝑘 of deletions

as minArbSDErr ( ®𝑓 , 𝛽, 𝑘) and minConSDErr ( ®𝑓 , 𝛽, 𝑘) for arbitrary
and consistent summaries, respectively.

While a-priori it may not be clear how to choose elements

to delete, in fact, an optimal choice can be found in polynomial

time using dynamic programming. SumThenDelErr in Figure 4

computes theminimal error by filling in amatrix𝑀 of dimensions

𝛽×𝑘 . The position𝑀 [𝛽 ′, 𝑘 ′] is updated to be the optimal error of

the first 𝛽 ′ buckets while allowing up to 𝑘 ′ deletions. Hence, the
value of interest will be in𝑀 [𝛽, 𝑘] at the end of the algorithm.

Algorithm SumThenDelErr begins by calling an algorithm

named NoDeletionSummaryBuckets, which is a version of the

previously presentedNoDeletionSummary that returns the set of
buckets 𝐵, for which the error, with no deletions, is minimal. Next

the algorithm initializes all entries of𝑀 for 𝛽 = 1 by calling an al-

gorithm that computes the error for a single bucket (Lines 2–3). In

practice, SingleBErr should be replaced with ArbSingleBErr if the
goal is to computeminArbSDErr ( ®𝑓 , 𝛽, 𝑘) andwithConSingleBErr
if the goal is to compute minConSDErr ( ®𝑓 , 𝛽, 𝑘).

Finally, the algorithm considers all choices for 2 ≤ 𝛽 ′ ≤ 𝛽 ,

as well as all values of 𝑘 ′ ≤ 𝑘 , by calling SDUpdateMatrix for
each combination. Algorithm SDUpdateMatrix is used to update
𝑀 [𝛽, 𝑘], by considering all choices 𝑘 ′ of how to split the deletions

between the first 𝛽 − 1 buckets (i.e., 𝑀 [𝛽 − 1, 𝑘 − 𝑘 ′]) and the

final bucket (i.e., SingleBErr( ®𝑓[𝑝,𝑞 ] , 𝑘 ′)).

Example 5.2. Recall the frequency vector
®𝑓 from Example 5.1.

When running SumThenDelErr( ®𝑓 , 2, 2) once with ArbSingleBErr
and once with ConSingleBErr we derive the summaries 𝐵1 and

𝐵2, respectively:

𝐵1 = {([1, 7]; 11), ( [8, 8]; 1)} e𝑟𝑟: 0.18

𝐵2 = {([2, 7]; 11), ( [8, 8]; 1)} e𝑟𝑟: 0.35

where the former is derived by deleting two occurrences of ele-

ment 6, and the latter is derived by removing two occurrences of

element 1. �

If we can show that the algorithm returns a value close to

minArbErr ( ®𝑓 , 𝛽, 𝑘) or minConErr ( ®𝑓 , 𝛽, 𝑘), we can leverage opti-

mizations presented in the past for finding optimal summaries

without deletions to solve the problem at hand. Unfortunately, the

following theorem states that SumThenDelErr can be arbitrarily

bad.

Theorem 5.3. For any 𝛽 , 𝑘 and 𝑒 > 0, there exists a multiset 𝑃
with frequency vector ®𝑓 such that

minArbSDErr ( ®𝑓 , 𝛽, 𝑘) −minArbErr ( ®𝑓 , 𝛽, 𝑘) > 𝑒 ,

minConSDErr ( ®𝑓 , 𝛽, 𝑘) −minConErr ( ®𝑓 , 𝛽, 𝑘) > 𝑒 .

Proof. Due to space limitations, we only show the result

for 𝑘 = 1 and 𝛽 = 2. The more general case, however, can be

shown similarly. Let 𝑒 > 0 be an error gap. Let 𝑛 be a natural

number such that 𝑛 > 𝑚𝑎𝑥{10, 5𝑒}. Let ®𝑓 be the frequency vector
{0:𝑛, 2:1, 4:𝑛, 7:𝑛}.

If we can delete elements before choosing the buckets, the

optimal strategy is to reduce the frequency of the element 2

in
®𝑓 , thus deriving the frequency vector

®𝑓 ′ = {0:𝑛, 4:𝑛, 7:𝑛}.
Then the optimal summary would be {([0, 0];𝑛), ( [4, 7]; 2𝑛)}.
This summary is also consistent. Hence, minArbErr ( ®𝑓 , 2, 1) =
minConErr ( ®𝑓 , 2, 1) = 𝑛2.

There are three possible no-deletion summaries of
®𝑓 with two

buckets. These are specified below with their errors.

𝐵1: {([0, 4]; 2𝑛 + 1), ( [7, 7];𝑛)} err1 :
6

5

𝑛2 + 4

5

𝑛 + 4

5

𝐵2: {([0, 2];𝑛 + 1), ( [4, 7]; 2𝑛)} err2 :
5

3

𝑛2 + 2

3

𝑛 + 2

3

𝐵3: {([0, 0];𝑛), ( [2, 7]; 2𝑛 + 1)} err3 :
4

3

𝑛2 − 2

3

𝑛 + 5

6

It is not difficult to see that for a sufficiently large 𝑛, the optimal

summary without deletions is 𝐵1 = {([0, 4]; 2𝑛 + 1), ( [7, 7];𝑛)}.
Thus, this summary would then be returned by the algorithm

NoDeletionSummaryBuckets.
No deletion can be made from 𝐵1 if the summary must be

consistent. Hence, SumThenDelErr would return precisely 𝑒𝑟𝑟1
if ConSingleBucketError is used. It easily follows that

minConSDErr ( ®𝑓 , 𝛽, 𝑘) −minConErr ( ®𝑓 , 𝛽, 𝑘) > 𝑒.

For arbitrary summaries, that need not be consistent, the

largest decrement in the error of 𝐵1 that can be achieved by delet-

ing one element is derived by reducing the frequency of element 0
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(or equivalently of element 4) by one, which gives us the fre-

quency vector
®𝑓 ′
1
= {0:𝑛 − 1, 2:1, 4:𝑛, 7:𝑛} and the summary 𝐵′

1
=

{([0, 4]; 2𝑛), ( [7, 7];𝑛)}. Thus, we have thatminArbSDErr ( ®𝑓 , 2, 1) =
6

5
𝑛2 − 2𝑛 + 2.
Now, minArbSDErr ( ®𝑓 , 2, 1) −minArbErr ( ®𝑓 , 2, 1) equals

6

5

𝑛2 − 2𝑛 + 2 − 𝑛2 = 1

5

𝑛2 − 2𝑛 + 2

which is greater than 𝑒 when 𝑛 is chosen to be greater than

𝑚𝑎𝑥{10, 5𝑒}, as required. �

The above theorem implies that one cannot create an optimal

summary without deletions, and only afterwards delete elements

from the pre-chosen buckets without paying an arbitrarily large

penalty in error. However, this algorithm was worth discussion

as in practice we will show that it often works quite well. See

Section 7 for experimental results.

Delete, then Summarize. An alternative approach that also uses
previous work on optimal summaries without deletions is to

• first choose 𝑘 outliers in the dataset to delete, thereby

deriving a 𝑘-deletion 𝑃 ′ of the original dataset 𝑃
• then compute an optimal summary without deletions for

𝑃 ′ (using NoDeletionSummary).

This approach may not return consistent summaries, but it can

be used to produce arbitrary summaries. It is difficult to formally

prove the quality of the results that this approach will derive. In

particular, there are many different ways to define the notion of

an outlier. Hence in the first step it is not even clear what we are

attempting to delete. Second, most outlier detection algorithms

return a set of outliers given a dataset, but cannot be tuned to

find a specific number of outliers. This poses a significant techni-

cal challenge. Thus, instead of trying to formally prove that this

approach will not yield optimal outcomes, we defer consideration

of this approach to the experimentation. There we experimen-

tally show that the results returned using this methodology are

significantly inferior to all other approaches considered in this

paper.

5.2 Optimal Multi-Bucket Summaries
We consider the problem of computing minArbErr ( ®𝑓 , 𝛽, 𝑘) for
arbitrary values of 𝛽 . Algorithm ArbMultiBErr in Figure 5 is

inspired by NoDeletionSummary. ArbMultiBErr uses dynamic

programming to fill in a matrix 𝑀 of dimension size × 𝛽 ×
𝑘 . The position 𝑀 [𝑝, 𝛽 ′, 𝑘 ′] is updated to be the minimal er-

ror of a 𝑘 ′-deletion summary of
®𝑓[first,𝑝 ] with 𝛽 ′ buckets, i.e.,

minArbErr ( ®𝑓[first,𝑝 ] , 𝛽 ′, 𝑘 ′). Hence, the value of interest will be
in𝑀 [last, 𝛽, 𝑘] at the end of the algorithm.

ArbMultiBErr begins by initializing all entries of𝑀 for 𝛽 = 1

by calling ArbSingleBErr (Lines 1–3). Next, the algorithm consid-

ers all choices for 2 ≤ 𝛽 ′ ≤ 𝛽 , as well as all elements 𝑝 , other than

the first, and all values of 𝑘 ′ ≤ 𝑘 . Algorithm ArbUpdateMatrix
is used to update𝑀 [𝑝, 𝛽 ′, 𝑘 ′].

Given 𝑝, 𝛽, 𝑘 , ArbUpdateMatrix computes𝑀 [𝑝, 𝛽, 𝑘], by con-

sidering the minimal choice among several options:

• If the frequency value
®𝑓 [𝑝] of 𝑝 is at most 𝑘 , then we can

create 𝛽 buckets for
®𝑓[first,𝑝 ] by removing all occurrences

of 𝑝 , and then finding the optimal buckets for
®𝑓[first,prev(𝑝) ]

with 𝑘 − ®𝑓 [𝑝] deletions, using the precomputed value in

𝑀 . (Lines 1–3)

Algorithm ArbMultiBErr( ®𝑓 , 𝛽, 𝑘)
1. for 𝑝 ← first to last
2. do for 𝑘 ′ ← 0 to 𝑘

3. do𝑀 [𝑝, 1, 𝑘 ′] ← ArbSingleBErr( ®𝑓[first,𝑝 ] , 𝑘 ′)
4. for 𝛽 ′ ← 2 to 𝛽

5. do for 𝑝 ← next(first) to last
6. do for 𝑘 ′ ← 0 to 𝑘

7. do ArbUpdateMatrix( ®𝑓 , 𝛽 ′, 𝑘 ′, 𝑝, 𝑀)
8. return𝑀 [last, 𝛽, 𝑘]
Algorithm ArbUpdateMatrix( ®𝑓 , 𝛽, 𝑘, 𝑝,𝑀)

1. if ®𝑓 [𝑝] ≤ 𝑘

2. then𝑀 [𝑝, 𝛽, 𝑘] ← 𝑀 [prev(𝑝), 𝛽, 𝑘 − ®𝑓 [𝑝]]
3. else 𝑀 [𝑝, 𝛽, 𝑘] ← ∞
4. for 𝑞 ← first to prev(𝑝)
5. do for 𝑘 ′ ← 0 to 𝑘

6. do 𝑒 ← 𝑀 [𝑞, 𝛽 − 1, 𝑘 − 𝑘 ′]
7. 𝑒 ′ ← LowerMaxError( ®𝑓[next(𝑞),𝑝 ] , 𝑘 ′)
8. 𝑀 [𝑝, 𝛽 ′, 𝑘 ′] ← min{𝑀 [𝑝, 𝛽, 𝑘], 𝑒 + 𝑒 ′}

Figure 5: Returns minArbErr ( ®𝑓 , 𝛽, 𝑘).

• In addition, for every element 𝑞 preceding 𝑝 , and for ev-

ery 𝑘 ′ ≤ 𝑘 we consider the case that 𝛽 − 1 buckets are

used to cover
®𝑓[first,𝑞 ] with 𝑘 − 𝑘 ′ deletions and a final

bucket covers the range from next(𝑞) to 𝑝 , using 𝑘 ′ dele-
tions. The error of such a summary is𝑀 [𝑞, 𝛽 − 1, 𝑘 −𝑘 ′] +
LowerMaxError( ®𝑓[next(𝑞),𝑝 ] , 𝑘 ′). (Lines 4–8)

Example 5.4. Recall the frequency vector
®𝑓 from Example 5.1.

With ArbMultiBErr we will get an error of 0.125 corresponding

to the deletion of one occurrence of the element of 6, as well as

the element 8, and the buckets {([1, 4]; 6), ( [5, 7]; 6)}. �

Theorem 5.5. Given ®𝑓 , 𝛽 and 𝑘 , ArbMultiBErr( ®𝑓 , 𝛽, 𝑘) com-
putes minArbErr ( ®𝑓 , 𝛽, 𝑘) in time

O(𝛽𝑘2size2 + size2 (size log size + 𝑘)).

Proof. Correctness is easy, and follows from Theorem 4.1,

and from the fact that the algorithm considers all possible ways to

divide the frequency vector into buckets, and all possible choices

of deletions. Note that the algorithm directly considers removals

of elements only on the right-hand of buckets. (For the first bucket

both sides are considered). However, any removals of elements

at the left-hand side of these buckets can equivalently be thought

of as removals from the right-hand side of the previous bucket.

To achieve the stated runtime, we pre-compute the values

of LowerMaxError( ®𝑓[𝑝,𝑞 ] , 𝑘 ′) for all 𝑝 < 𝑞 (with non-zero fre-

quencies) and for all 𝑘 ′ ≤ 𝑘 . For a choice of 𝑝 and 𝑞, we can

compute LowerMaxError( ®𝑓[𝑝,𝑞 ] , 𝑘 ′) for all values of 𝑘 ′ in time

size log size + 𝑘 , by sorting
®𝑓[𝑝,𝑞 ] by frequency values, and then

computing the results incrementally starting with 𝑘 = 0. This

give a total time of size2 (size log size + 𝑘) for LowerMaxError
computations. These values are then read from a pre-computed

data structure, in O(1) when running ArbUpdateMatrix.
The remainder of the algorithm runs in time O(𝛽𝑘2size2)

due to the nested loops of length 𝛽 (Line 4 of ArbMultiBErr), of
length size (Line 5), of length 𝑘 (Line 6) and the loop of lengths

size (Line 4 of ArbUpdateMatrix) and length 𝑘 (Line 5). �
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Algorithm ConUpdateMatrix( ®𝑓 , 𝛽, 𝑘, 𝑝, 𝑀)

1. if ®𝑓 [𝑝] ≤ 𝑘

2. then𝑀 [𝑝, 𝛽, 𝑘] ← 𝑀 [prev(𝑝), 𝛽, 𝑘 − ®𝑓 [𝑝]]
3. else 𝑀 [𝑝, 𝛽, 𝑘] ← ∞
4. for 𝑞 ← prev(𝑝) to first
5. do 𝑒 ← 𝑀 [𝑞, 𝛽 − 1, 𝑘] + 𝑆𝑆𝐸 [next(𝑞), 𝑝]
6. 𝑀 [𝑝, 𝛽, 𝑘] ← min{𝑀 [𝑝, 𝛽, 𝑘], 𝑒}

Figure 6: Used as a sub-procedure in order to compute
minConErr ( ®𝑓 , 𝛽, 𝑘).

5.3 Optimal Consistent Multi-Bucket
Summaries

We now consider the problem of computing the error for optimal

consistent summaries, i.e.,minConErr ( ®𝑓 , 𝑘, 𝛽). LetConMultiBErr
be an algorithm identical to ArbMultiBErr, except that in Line 3 it
calls ConSingleBErr and in Line 7 it calls ConUpdateMatrix. Re-
call that ConSingleBErr appears in Figure 2. ConUpdateMatrix
appears in Figure 6. It remains to explain how this algorithm

works.

ConUpdateMatrix( ®𝑓 , 𝛽, 𝑘, 𝑏, 𝑀) is called to update the value in
𝑀 [𝑝, 𝛽, 𝑘] for 𝛽 > 1. It first considers the case that the right-most

element (which is now 𝑝) can be completely removed (Lines 1–3),

in which case the previously computed error can be used. It then

(Lines 4–6) considers all splits of
®𝑓 into two, such that 𝛽 − 1

buckets are used to summarize
®𝑓[first,𝑞 ] (with error appearing in

𝑀 [𝑞, 𝛽 − 1, 𝑘]) and one bucket is used to summarize
®𝑓[next(𝑞),𝑝 ]

(with error appearing in 𝑆𝑆𝐸 [next(𝑞), 𝑝]). Note that in this case,

we can assume that no deletions occur in the rightmost bucket,

as:

(1) we already considered the case that occurrences of 𝑝 are

removed and

(2) any removals of elements at the left-hand side of the final

bucket can equivalently be thought of as removals from

the right-hand side of the previous bucket.

Example 5.6. Recall once again ®𝑓 from Example 5.1. With algo-

rithm ConMultiBErr we will get an error of 0.17 corresponding

to the deletion of the element of 4, as well as the element 8, and

the buckets {([1, 3]; 5), ( [5, 7]; 7)}. �

We can show the following result. Observe thatConMultiBError
is only slower than algorithm NoDeletionSummary by a factor

of 𝑘 .

Theorem 5.7. For a given ®𝑓 , 𝛽 and 𝑘 , ConMultiBErr( ®𝑓 , 𝛽, 𝑘)
computes minConErr ( ®𝑓 , 𝛽, 𝑘) in time O(𝛽 𝑘 size2).

Proof. Correctness is easy to show as the different ways to

split
®𝑓 to different buckets, while deleting all occurrences of

elements not in these buckets, is considered. To show the runtime,

observe thatConSingleBErr runs inO(size). Therefore, Lines 1–3
of ConMultiBErr run in time O(𝑘 size2). ConUpdateMatrix runs
in time O(size). Therefore, Lines 4–7 of ConMultiBErr run in

time O(𝛽 𝑘 size2), as required. �

6 SUMMARIES OF DATASETS WITH
MULTIPLE COLUMNS

We now briefly consider the problem of finding an optimal sum-

mary for datasets with multiple columns, in the presence of
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Figure 7: Example multicolumn dataset

outliers. Let R be a relation with 𝑛 columns, (𝛽1, . . . , 𝛽𝑛) be a
𝑛- tuple indicating the number of buckets per column that can

be allocated and let 𝑘 be a number. We consider two types of

outliers:

• value deletions: a specific value in some tuple 𝑡 can be

considered an outlier in a specific column (even though

the other values in 𝑡 are not outliers), and thus, be deleted

from the column;

• tuple deletions: a tuple 𝑡 can be considered an outlier, and

thus, be deleted from the relation.

Our goal is to find a summary with 𝛽𝑖 buckets for column 𝑖 , that

minimizes the sum of error over all columns, when there can be

at most 𝑘 value or tuple deletions.

Example 6.1. Consider the relation R repeated twice in Fig-

ure 7. (Ignore the first column which names the tuples for con-

venience.) Suppose 𝑘 = 6. In the version of R on the left, we

have chosen up to 𝑘 values to be deleted per column, while in the

version on the right we have chosen up to 𝑘 tuples to be deleted.

(Both are indicated by the color blue.)

Now, suppose we can allocate one bucket for the first column

𝐶 and three buckets for the second column 𝑋 . For both types of

deletions we can find a perfect summary (i.e., one with no error).

For the deletions of the left we would choose buckets:

• ([1, 7]; 7) for column 𝐶 and

• ([0, 0]; 4), ( [20, 20]; 2), ( [30, 30]; 2) for column 𝑋 .

For the deletions on the right we would choose buckets:

• ([1, 7]; 7) for column 𝐶 and

• ([0, 0]; 4), ( [20, 20]; 1), ( [40, 40]; 2) for column 𝑋 .

The above example demonstrated summaries with (1, 3) buck-
ets for the columns and six value/tuples deletions that are clearly

optimal (as they have no error at all). The problem arises as to

how hard it is to find such optimal summaries in the general case.

Theorem 6.2. LetR be a relationwith𝑛 columns, let (𝛽1, . . . , 𝛽𝑛)
be the bucket size bounds and let 𝑘 be natural number. Then:
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(1) An optimal summary satisfying the bucket size bounds, with
up to 𝑘 value deletions per column can be found in polyno-
mial time.

(2) The problem of determining whether there exists a perfect
summary of R with up to 𝑘 tuple deletions is NP-complete,
even if
• the dataset has two attributes or
• all attributes can have at most two buckets.

The first claim is easy to show as we can simply apply the

algorithms from the previous section to each column separately.

For the second claim, in the case in which there are only two

attributes we can show hardness by a reduction from the mono-

tone satisfying assignment problem. For the case where there

are at most two buckets per attribute we can show hardness

by a reduction from 1-in-3 SAT. The proofs are omitted due to

space limitations, but the main ideas of the second claim are

demonstrated in the following examples.

Example 6.3. We demonstrate hardness when the relation con-

tains only two columns.

Let𝜓 be a positive 3-SAT formula with𝑚 clauses 𝐶1, . . . , 𝐶𝑚 ,

over the variables 𝑥1, . . . , 𝑥𝑛 . We say that𝜓 is ℎ-monotone satis-

fiable if𝜓 can be satisfied by an assignment in which at most ℎ

variables are assigned true. This is a well-known NP-complete

problem.

Let R be a relation of cardinality 2, containing two types of

tuples:

• For each clause 𝐶𝑖 = 𝑥𝑖1 ∨ 𝑥𝑖2 ∨ 𝑥𝑖3 we add to D three

tuples 𝑡𝑖
1
= (2𝑖, 10𝑖1), 𝑡𝑖

2
= (2𝑖, 10𝑖2), 𝑡𝑖

3
= (2𝑖, 10𝑖3).

• For every 0 ≥ 𝑗 ≥ 𝑚 we add the tuple 𝑡 𝑗 = (2 𝑗 + 1, 0).
Observe that R contains 4𝑚 + 1 tuples. For example, the formula

(𝑥1 ∨ 𝑥2 ∨ 𝑥3) ∧ (𝑥2 ∨ 𝑥3 ∨ 𝑥4) ∧ (𝑥1 ∨ 𝑥4 ∨ 𝑥5)

corresponds to the relation R in Figure 7.

Now, we choose 𝑘 = 2𝑚 and (1, ℎ + 1) as our bucket bound,
i.e., a single bucket for the first column and ℎ + 1 buckets for the
second column. We can show that𝜓 is ℎ-monotone if and only if

there is a 𝑘-tuple deletion for which there is a summary bounded

by (1, ℎ + 1) with zero error.

For example, suppose that ℎ = 2. Consider the 𝑘-tuple deletion

R ′ derived by removing the blue tuples in the relation on the

right. It is easy to see that we can use a single bucket for the first

column, and ℎ + 1 = 3 buckets for the second column, to derive a

summary with error of zero. Observe also that R ′ corresponds to
a satisfying assignment that assigns at most ℎ variables the value

true (in this case 𝑥2 and 𝑥4 as the elements 20 and 40 remain after

the 𝑘-tuple deletion).

One can show (omitting some precise details due to space

limitations) that the opposite holds too, i.e., that any 𝑘-deletion

that has a summary bounded by (1, ℎ + 1) with an error of zero

corresponds to an ℎ-monotone satisfying assignment. �

Example 6.4. We demonstrate why determining whether there

exists a 𝑘-tuple deletion R ′ with a perfect summary 𝑆 is a difficult

problem, even when there are only two buckets per column.

Consider a positive 3-SAT formula with𝑚 clauses𝐶1, . . . , 𝐶𝑚 ,

over the variables 𝑥1, . . . , 𝑥𝑛 . Recall that the 1-in-3 SAT problem

is to determine whether there exists an assignment that satisfies

precisely one variable in each clause.

We create a relation R with 𝑛 + 1 columns, and three types of

tuples:

𝑋1 𝑋2 𝑋3 𝑋4 𝑋5 𝐶

𝑡1
1

2 -2 -2 0 0 1

𝑡1
2
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𝑡1
3

-2 -2 2 0 0 1
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1

0 2 -2 -2 0 2

𝑡2
2

0 -2 -2 -2 0 2

𝑡2
3

0 -2 -2 2 0 2

𝑡3
1

2 0 0 -2 -2 3

𝑡3
2

-2 0 0 2 -2 3

𝑡3
3

-2 0 0 -2 2 3

𝑡
𝑐,1
1

0 0 0 0 0 1

𝑡
𝑐,1
2

0 0 0 0 0 1

𝑡
𝑐,2
1

0 0 0 0 0 2

𝑡
𝑐,2
2

0 0 0 0 0 2

𝑡
𝑐,3
1

0 0 0 0 0 3

𝑡
𝑐,3
2

0 0 0 0 0 3

𝑡0
1

0 0 0 0 0 0

𝑡0
2

0 0 0 0 0 0

𝑡0
3

0 0 0 0 0 0

Figure 8: Example relation in 1-in-3 SAT reduction.

• For each clause 𝐶𝑖 = 𝑥𝑖1 ∨ 𝑥𝑖2 ∨ 𝑥𝑖3 we add three tuples as

follows:

– for all 𝑗 = 1, 2, 3 we have 𝑡𝑖
𝑗
[𝑛 + 1] = 𝑖;

– for all 𝑗 = 1, 2, 3 and 𝑘 ∉ {𝑖1, 𝑖2, 𝑖3} we have 𝑡𝑖𝑗 [𝑘] = 0;

– for all 𝑗 = 1, 2, 3 and 𝑘 = 1, 2, 3 we have 𝑡𝑖
𝑗
[𝑖𝑘 ] = 2 if

𝑘 = 𝑗 and 𝑡𝑖
𝑗
[𝑖𝑘 ] = −2, otherwise.

• For each 𝑖 ≤ 𝑚, we add two tuples 𝑡
𝑐,𝑖
1

= 𝑡
𝑐,𝑖
2

= (0, . . . , 0, 𝑖).
• Finally, we add three tuples 𝑡0

1
= 𝑡0

2
= 𝑡0

3
= (0, . . . , 0).

In total, R has 5𝑚 + 3 tuples. For example, the formula

(𝑥1 ∨ 𝑥2 ∨ 𝑥3) ∧ (𝑥2 ∨ 𝑥3 ∨ 𝑥4) ∧ (𝑥1 ∨ 𝑥4 ∨ 𝑥5)
corresponds to the dataset in Figure 8.

Now, suppose that 𝑘 = 2𝑚 and our bucket bound allows two

buckets per attribute. For the example in Figure 8, we can remove

up to 6 tuples. It is not difficult to see that if we remove the blue

tuples, we are left with a data set R ′ for which we can create

a summary with error of zero. This holds since each column

𝑥1, . . . , 𝑥5 has precisely two different elements (which can be

placed in different buckets) and column 𝐶 has three occurrences

each of every value from 0 to 3. Observe also that the remaining

rows define an assignment that satisfies precisely one variable in

each clause, if we assign each 𝑥𝑖 true if R ′[𝑋𝑖 ] contains element

2, and false otherwise. (In the example given this corresponds to

mapping 𝑥2 and 𝑥5 to true.)

Indeed, with a bit of reasoning it is possible to show the oppo-

site direction too, i.e., a 𝑘-tuple deletion R ′ for which there is a

summary with error of zero corresponds to a solution to the 1-in-

3 SAT problem. Intuitively, this holds since such a tuple-deletion

must retain, for each 𝑥𝑖 , only the elements 0 and 2 or only the

elements 0 and −2 (thus, corresponding to a truth assignment).
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Dataset size𝑃 size ®𝑓

ForestAspect 581,012 361

ForestDistHydro 581,012 136

IncomeCapitalGain 48,842 123

IncomeHoursWeek 48,842 96

Figure 9: Real datasets.

In addition, we must retain precisely one tuple from every triple

𝑡𝑖
1
, 𝑡𝑖
2
, 𝑡𝑖
3
so as to have error of zero on the column 𝐶 , i.e., we will

map precisely one variable in each clause to the value true.
3 �

7 EXPERIMENTAL RESULTS
In the following we discuss our experimental results which con-

sider different datasets, and varying 𝛽 and percentage of elements

that can be deleted, denoted 𝜌 . As default values, we use 𝛽 = 10

and 𝜌 = 2%. In our experiments, we prefer to consider the percent-

age of elements to be deleted (𝜌) instead of an absolute number

(𝑘), as the size of the dataset should determine the number of

elements we are willing to delete. We set a time limit of five

minutes, i.e., tests that exceeded the time limit were excluded

from the results.

All experimentation was run on a standard Win7 desktop with

16GB RAM and an Intel i5-4570 processor. The algorithms were

implemented in Java, and experimentation was run with a limit

of 1GB of main memory.

Algorithms. We implemented five algorithms for the𝑘-deletion

problem. We abbreviate the algorithm names as follows. We

use Arb for ArbMultiBErr and Con for ConMultiBErr. We im-

plemented algorithm SumThenDelErr with ArbSingleBErr, and
ConSingleBErr, henceforth referred to as SDArb and SDCon, re-
spectively. Finally, we implemented the delete then summarize
strategy using a well-known distance-based outlier detection

algorithm [4] to remove outliers and then summarizing the result

using NoDeletionSummary. This algorithm is referred to as DS.

Datasets. We run our algorithms on both synthetic datasets

and real datasets. The synthetic datasets were generated by two

different distributions—randomly permuted zipf distribution with

skew parameter 𝑧 = 0.85 (as in [11]), and normal distribution

with variance proportional to 25% of the value range. For each

experiment over the synthetic datasets, we generated three in-

stances of the dataset with the same parameters, ran the tests

on all three, and computed the average result. Our default syn-

thetic datasets have 50,000 elements and a range of 100, i.e., the

elements were sampled from [1, 100].
We also use several real datasets, taken from the UCI KDD

Archive
4
and the UCI Machine learning repository

5
. When con-

sidering the size of these datasets, there are two factors of im-

portance: the number of elements in the dataset, called size𝑃 and

the number of different elements in the dataset (i.e., the number

of non-zero elements in the frequency vector), called size ®𝑓 . Note

that size ®𝑓 corresponds to the value size discussed in the previous

sections. The dataset sizes are summarized in Figure 9.

3
More details are required to make a precise proof, e.g., an assumption that no

variable appears in all clauses, but these are omitted due to space limitations.

4
http://kdd.ics.uci.edu/

5
http://archive.ics.uci.edu/ml/index.php

The Forest dataset contains data obtained from US Forest Ser-

vice, where the Aspect column is aspect in degrees azimuth, and

DistHydro is the horizontal distance to nearest surface water fea-

tures. For DistHydro we rounded to the nearest 10 meters. The

Income dataset (referred to as Adult in the repository) was origi-

nally extracted from the Census Bureau 1994 database. We use

the columns CapitalGain and HoursWeek, which is the number

of work hours per week.

In all runtime graphs, the y-axis is in log scale and the units

are in seconds. In all error graphs, the data points represent the

ratio of the error in the current setting to the minimum error

of the same settings with no deletions. Intuitively, lower values

indicate a larger percentage of reduction in error due to deletions.

Comparing All algorithms. In our first test, we compare the

error and runtime of all algorithms over the Income dataset and

synthetic dataset, using the default values for 𝛽 and 𝜌 . The results

of this test appear in Figures 10a, 10b, 10c and 10d. Due to space

limitations, we omit the Forest dataset from this experiment, but

similar trends can be seen there.

Algorithm DS, which uses distance based outlier detection, is

mostly unsuccessful in improving the error. In our testing, there

have even been cases in which the error increases using this

algorithm. This is not surprising, both due to the fact that outliers

are removed before determining bucket boundaries and because

the algorithm does not always even produce enough outliers to

delete. This result was consistent in all experiments and therefore,

we do not consider it in remainder of the experimentation.

For the other algorithms, the graphs show a consistent order

of the error reduction—Arb always finds the optimal error, then

SDArb, Con and finally SDCon have increasing errors. The run-

time performance, on the other hand, is in almost the opposite

order, albeit Con and SDCon are very close in runtime. One can

observe that Con achieves error that is fairly close to Arb and

SDArb with runtime that is better in orders of magnitude.

Note that the runtime of Arb is so poor over the permuted zipf

dataset, that it timed out, and therefore its runtime and error are

missing. This occurs often in the experiments both for Arb and
for SDArb, as these algorithms have a runtime that is a function

of 𝑘2, even when a single bucket is used.

Varying percentage of Deletions. We tested the effect of chang-

ing the percentage of elements deleted by varying the value of 𝜌 ,

and running our algorithms with 𝑘 chosen as 𝜌 · size𝑃 . The error
and runtime results of these tests appear in Figures 10e, 10g, 11a

,10f, 10h and 11b. Note that for the synthetic datasets, we present

the error for both permuted zipf and normal distribution, but the

runtime only for the former. Since the runtime is not affected by

the data distribution, the graph omitted is almost identical to the

one appearing.

As expected, in all algorithms and datasets, the error is reduced

as 𝜌 grows. The degree to which the error is reduced differs be-

tween the datasets, due to differences in the data distributions.

For the synthetic data, deletions are more significant in normal

distribution than in permuted zipf distribution. Almost consis-

tently, Con and SDCon have significantly lower runtimes than

SDArb which is much faster than Arb. It is interesting to see that
in most tests, on lower values of 𝜌 , SDCon is faster than Con,
but as 𝜌 increases, SDCon becomes slower. The only exception

in our tests was on the dataset ForestAspect, where the number

of distinct values i.e., size ®𝑓 , is much higher than in the other
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Figure 10: Experiments for default values and varying 𝜌 over real datasets.

0

0.2

0.4

0.6

0.8

1

1% 2% 3% 4% 5%

SDCon Con SDCon Con

SDArb Arb SDArb Arb

PerZipf: Normal:

(a) Varying 𝜌 : Synthetic Error

0.01

0.1

1

10

100

1% 2% 3% 4% 5%

SDCon Con SDArb Arb

(b) Varying 𝜌 : Synthetic Time

0

0.2

0.4

0.6

0.8

1

1 5 10 15 20 25 30

SDCon Con SDCon Con

SDArb Arb SDArb Arb

CapitalGain: HoursWeek:

(c) Varying 𝛽 : Income Error

0

0.2

0.4

0.6

0.8

1

1 5 10 15 20 25 30

SDCon Con SDCon Con
DistHydro: Aspect:

(d) Varying 𝛽 : Forest Error

0

0.2

0.4

0.6

0.8

1

1 5 10 15 20 25 30

SDCon Con SDCon Con

SDArb Arb SDArb Arb

PerZipf: Normal:

(e) Varying 𝛽 : Synthetic Error

0

0.2

0.4

0.6

0.8

1

1K 10K 100K 1M

SDCon Con SDCon Con

SDArb Arb SDArb Arb

PerZipf: Normal:

(f) Varying size𝑃 : Error

0.001

0.01

0.1

1

10

100

1K 10K 100K 1M

SDCon Con SDArb Arb

(g) Varying size𝑃 : Time

0.01

0.1

1

10

100

50 100 150 200 250 300 350 400

SDCon Con SDArb Arb

(h) Varying size ®𝑓 : Time

Figure 11: Experiments for varying 𝜌 , 𝛽 , size𝑃 and size ®𝑓

datasets, and larger size ®𝑓 degrades the runtime of Con. This phe-

nomenon will be discussed later in our experiments, when we

consider varying the value size ®𝑓 .

Varying Number of Buckets. Next, we tested the results of our

algorithms when varying the number of buckets. The runtimes,

which do not appear in graphs due to space limitations, increase

linearly together with 𝛽 . The error reduction is shown in Fig-

ures 11c, 11d, and 11e. In general, as the number of buckets

increase, the error decreases. On IncomeCapitalGain for instance,

the error goes down to zero with 30 buckets, but On ForestDistHy-

dro on the other hand, the improvement in error with 30 bucket

is only a little under 80%. There are also cases where the reduc-

tion in error actually increases when buckets are added. This

counter-intuitive result is because the error ratio is computed

with respect to the same settings (and thus, the same number of

buckets) without deletions. As the number of buckets increases,

the relative gain by removing elements may decrease. This is

particularly noticeable for SDCon.

Varying the Values of size𝑃 and size ®𝑓 . We studied how the total

number of elements size𝑃 affects the results. To this end, we cre-

ated synthetic datasets of increasing size. In Figures 11f and 11g

depict the change in error and in runtime over different sizes of

multisets of elements. The relative error remains approximately

the same even as the dataset size increases. This apparently is the

result of the fact that the proportion of elements deleted relative

to the entire set remains the same. In contrast, the runtime grows

linearly with the size of the dataset. (Note that both axes of Fig-

ure 11g are on log scale.) The linear increase in runtime occurs

as the constant 2% element deletion translates to bigger absolute

numbers of 𝑘-deletions as the dataset size increases. Similarly to

before, for larger datasets (i.e., larger values of 𝑘), SDCon runs

slower than Con.
In the next experiment we considered increasing the number of

distinct elements size ®𝑓 . In this experiment the dataset remained

at the default size of 50,000 elements, but we increased the range

of values so as to increase size ®𝑓 . Due to space limitations, the
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error graph is omitted, as it had the same trends as in Figure 11f.

Figure 11h shows the runtime as size ®𝑓 increases. As expected, all

algorithms have runtime that grow with size ®𝑓 , except for SDCon

whose runtime is independent of size ®𝑓 .

Comparison with Sampling for Summary Construction. Since
histogram construction is costly, in many systems histograms

are computed over a sample of the dataset. Intuitively, it might

appear that such a sampling based approach will yield similar

results to our algorithms that allow for optimal deletions, as

perhaps outliers will not be chosen in the sample. In order to

check how sampling affects the error in practice, for each dataset

𝑃 , we constructed a summary 𝐵 over sampled data using the

NoDeletionSummary algorithm. Some of the elements in the

original dataset 𝑃 did not fall into the range of any of the buckets,

and were considered to have been “deleted” from the dataset,

yielding a new dataset 𝑃 ′. We then computed err (𝐵, 𝑃 ′) and com-

pared this value with the error of the optimal consistent summary

allowing for |𝑃 − 𝑃 ′ | deletions.
The results of this experiment on the synthetic datasets, with

sampling of 10% and 20% are depicted in Figure 12. (The results on

the real datasets were similar.) The size of |𝑃 − 𝑃 ′ |, i.e., the value
that was then used as 𝑘 in the input of ConMultiBErr, appears
on top of the bars. The results show two cases. With the per-

muted Zipf dataset there were no deletions at all as a result of the

sampling, and thus, the error is exactly the same as the original er-

ror of NoDeletionSummary algorithm. With the normal dataset,

there was a larger number of deletions, but the elements deleted

by the sampling actually increased the error significantly. When

ConMultiBErr was run with the same number of deletions, the

error was reduced. We conclude that sampling cannot be used as

an effective technique in order to reduce the error of a summary.

8 CONCLUSION
This paper studied the problem of an optimal summary with

𝛽 buckets, when 𝑘 outliers need not be covered. We presented

the first algorithms for this problem, by taking two different ap-

proaches for deleting elements (arbitrarily and consistently), and

attempting to determine which elements to delete at different

stages (before, during and after finding the optimal summary).

We also considered the problem of multi-column datasets. The ex-

perimentation shows that algorithm Con has the best balance be-

tween low error and low runtime. In addition, on smaller datasets

Arb performs very well, providing significantly lower error.

As future work, we intend to consider domains in which there

is no natural (useful) ordering over the values, and hence, buckets

cannot be described by their endpoints. While our algorithms

work well for moderately large datasets, they degrade when the

dataset becomes huge. We intend to develop approximation algo-

rithms to deal with this case. Finally, another important direction

is finding optimal summaries with outliers over streaming data.
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