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ABSTRACT

The containment rate of query Q1 in query Q2 over database
D is the percentage of Q1’s result tuples over D that are also
in Q2’s result over D. We directly estimate containment rates
between pairs of queries over a specific database. For this, we use
a specialized deep learning scheme, Containment Rate Network
(CRN), which is tailored to representing pairs of SQL queries
(inspired by the MSCN model [22]). Result-cardinality estimation
is a core component of query optimization. We describe a novel
approach for estimating queries’ result-cardinalities using esti-
mated containment rates among queries. This containment rate
estimation may rely on CRN or embed, unchanged, known cardi-
nality estimation methods. Experimentally, our novel approach
for estimating cardinalities, using containment rates between
queries, on a challenging real-world database, realizes significant
improvements to state of the art cardinality estimation methods.

1 INTRODUCTION

Query Q1 is contained in (resp. equivalent to), query Q2, analyti-
cally, if for all database states D, Q1’s result over D is contained
in (resp., equals) Q2’s result over D. Query containment is a well-
known concept that has applications in query optimization. It
has been extensively researched in database theory, and many
algorithms were proposed for determining containment under
different assumptions [8, 9, 16, 40]. However, determining query
containment analytically is not practically sufficient. Two queries
may be analytically unrelated by containment, although, the exe-
cution result on a specific database of one query may actually be
contained in the other. For example, consider the queries:

Q1: select * from movies where title = "Titanic’

Q2: select * from movies where release = 1997 and director = "James
Cameron’

Both queries execution results are identical since there is only
one movie called Titanic that was released in 1997 and directed
by James Cameron (he has not directed any other movie in 1997).
Yet, using the analytic criterion, the queries are unrelated at all
by containment.

To our knowledge, while query containment and equivalence
have been well researched in past decades, determining the con-
tainment rate between two queries on a specific database, has not
been considered by past research.

By definition, the containment rate of query Q1 in query Q2
on database D is the percentage of rows (tuples) in Q1’s execu-
tion result over D that are also in Q2’s execution result over D.
Determining containment rates allows us to solve other prob-
lems, such as determining equivalence between two queries, or
whether one query is fully contained in another, on the same
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specific database. In addition, containment rates can be used in
many practical applications, for instance, query clustering, query
recommendation [11, 15], and in cardinality estimation as will
be described subsequently.

Our approach for estimating containment rates is based on
a specialized deep learning model, CRN, which enables us to
express query features using sets and vectors. An input query
is converted into three sets, T, J and P representing the query’s
tables, joins and column predicates, respectively. Each element
of these sets is represented by a vector. Using these vectors,
CRN generates a single vector that represents the whole input
query. Finally, CRN estimates the containment rate of two input
queries by using their representative vectors as input to another
specialized neural network. Thus, the CRN model relies on the
ability of the neural network to learn the vector representation
of queries relative to the specific database. As a result, we obtain
a small and accurate model for estimating containment rates.

In addition to the CRN model, we introduce a novel tech-
nique for estimating queries’ cardinalities using estimated query
containment rates. We show that using the proposed technique
we improve current cardinality estimation techniques signifi-
cantly. This is especially the case when there are multiple joins,
where the known cardinality estimation techniques suffer from
under-estimated results and errors that grow exponentially as
the number of joins increases [14]. Our technique estimates the
cardinalities more robustly (x150/x175 with 4 joins queries, and
x1650/x120 with 5 joins queries, compared with PostgreSQL and
MSCN, respectively).

As shown in [26], to obtain an efficient query plan, the query
optimizer chooses the cheapest alternative from semantically
equivalent plan alternatives. Since the cost model uses the car-
dinality estimates as a principal input, the more accurate the
cardinality estimates are, the more accurate the predicted plans
costs are. Thus, by using the more accurate cardinality estimates
obtained from our technique, the query optimizer can generate
better query plans, resulting in faster query execution time.

We compare our technique with PostgreSQL [1], and the pi-
oneering multi-set convolutional network (MSCN) model [22],
by examining, on the real-world IMDDb database [26], join cross-
ing correlations queries which are known to present a tough
challenge to cardinality estimation methods [26, 28, 35].

We show that by employing known existing cardinality esti-
mation methods for containment estimation, we can improve on
their cardinality estimates as well, without changing the methods
themselves. Thus, our novel approach is highly promising for
solving the cardinality estimation problem, the "Achilles heel"
of query optimization [30], a cause of many performance issues
[26].

The rest of this paper is organized as follows. In Section 2
we define the containment rate problem and in Sections 3-4 we
describe and evaluate the CRN model for solving this problem.
In Sections 5-6 we describe and evaluate our new approach for
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estimating cardinalities using containment rates. In Section 7
we show how one can adapt the new ideas to improve existing
cardinality estimation models, and in Section 8 we compare the
prediction time among the different approaches. Finally, Sections
9-10 present related work, conclusions and future work.

2 CONTAINMENT RATE DEFINITION

We define the containment rate between two queries Q1, and
Q2 on a specific database D. Query Q1 is x%-contained in query
Q2 on database D if precisely x% of Q1’s execution result rows on
database D are also in Q2’s execution result on database D. The
containment rate is formally a function from QxQxD to R, where
Q, D and R are the set of all queries, all databases, and the Real
numbers, respectively. This function can be directly calculated as
follows. Let Q1(D) = (A, m1) and Q2(D) = (B, mz) be multisets!
representing queries Q1 and Q2 execution results on database D,
respectively, then:

Zxe(anB) M1(x)
X% = —
ZxEA ml(x)

Where operator N is the regular set intersection operator (in case
Q7’s execution result is empty, then Q1 is 0%-contained in Q2).
Note that the containment rate is defined only on pairs of queries
whose SELECT and FROM clauses are identical.

Since we aim to estimate cardinalities using containment rates,
we consider only queries with SELECT * clauses, then, given a
query Q whose SELECT clause includes specific columns, Q’s
cardinality is identical to the cardinality of the query with a
SELECT * clause instead (as long as the DISTINCT keyword is
not used). Therefore, in practice, the requirement that the clauses
need to be identical applies only to the FROM clauses.

% 100

2.1 Containment Rate Operator

We denote the containment rate operator between queries Q1
and Q2 on database D as:

Q1cf Q2
Operator Cg returns the containment rate between the given
input queries on database D. That is, Q1 C,!,o) Q2 returns x%, if Q1
is x%-contained in query Q2 on database D. For simplicity, we

do not mention the specific database, as it is usually clear from
context. Hence, we write the containment rate operator as Cg,.

3 LEARNED CONTAINMENT RATES

From a high-level perspective, applying machine learning to the
containment rate estimation problem is straightforward. Follow-
ing the training of the CRN model with pairs of queries (Q1, Q2)
and the actual containment rates Q1 Cg Q2, the model is used
as an estimator for other, unseen pairs of queries. (Later on, as
described in Section 5, we will make use of this model to estimate
cardinalities of single queries). There are, however, several ques-
tions whose answers determine whether the machine learning
model (CRN) will be successful. (1) Which supervised learning
algorithm/model should be used. (2) How to represent queries
as input and the containment rates as output to the model ("fea-
turization"). (3) How to obtain the initial training dataset ("cold
start problem"). Next, we describe how we address each one of
these questions.

1From Wikipedia: A multiset may be formally defined as a 2-tuple (S, m) where
S is the underlying set of the multiset, formed from its distinct elements, and
m : S — N is a function from S to the set of the positive integers, giving the
multiplicity. The number of occurrences of element x in the multiset is m(x).
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3.1 Cold Start Problem

3.1.1 Defining the Database. We generated a training-set, and
later on evaluated our model on it, using the IMDb database.
IMDb contains many correlations and has been shown to be
very challenging for cardinality estimators [26]. This database
contains a plethora of information about movies and related facts
about actors, directors, and production companies, with more
than 2.5M movie titles produced over 130 years (starting from
1880) by 235,000 different companies with over 4M actors.

3.1.2  Generating the Development Dataset. Our approach for
solving the "cold start problem" is to obtain an initial training
corpus using a specialized queries generator that randomly gen-
erates queries based on the IMDB schema and the actual columns
values. Our queries generator generates the dataset in three main
steps. In the first step (similarly to MSCN’s queries generator), it
repeatedly generates multiple SQL queries as follows. It randomly
chooses a set of tables t (t = {bt1, bta, ..., bt|t|}). Then, it adds
[t] — 1 join edges to the query, bt;.colg = btiyi.colp, 1 < i < |t].
Each of these joins is on a column containing the ID of movies
(each table in IMDB has such a column). Note that when [t| = 1,
there are no joins in the query.

For each base table bt in ¢, it uniformly draws the number
of query predicates pp; (0 < pp; < number of columns in table
bt). Subsequently, for each predicate it uniformly draws a col-
umn from the relevant table bt, a predicate type (<, =, or >),
and a value from the corresponding column values range in the
database. To avoid a combinatorial explosion, and to simplify
the problem that the model needs to learn, we force the queries
generator to create queries with up to two joins and let the model
generalize to a larger number of joins (that is, the maximum car-
dinality of set ¢ is 3). Note that all the generated queries include
a SELECT * clause. They are denoted as initial-queries.

To create pairs of queries that are contained in each other
with different containment rates, we generate, in the second step,
queries that are "similar” to the initial-queries, but still, different
from them, as follows. For each query Q in initial-queries, the
generator repeatedly creates multiple queries by randomly chang-
ing query Q’s predicates’ types, or the predicates’ values, and
by randomly adding additional predicates to the original query
Q. This way, we create a "hard" dataset, which includes pairs of
queries that look "similar", but having mutual containment rates
that vary significantly. Finally, in the third and last step, using the
queries obtained from both previous steps, the queries generator
generates pairs of queries whose FROM clauses are identical.

After generating the dataset, we execute the dataset queries
on the IMDD database, to obtain their true containment rates and
skip query pairs that include a query with an empty result set.
Using this process, we obtain an initial training set of 100,000
pairs of queries with zero to two joins. We split the training
samples into 80% training samples and 20% validation samples.

3.2 Model

Featurizing all the queries’ literals and predicates as one "big
hot vector”, over all the possible words that may appear in the
queries, is impractical. Also, serializing the queries’ SELECT,
FROM, and WHERE clauses elements into an ordered sequence
of elements, is not practical, since the order in these clauses
is arbitrary. Thus, standard deep neural network architectures
such as simple multi-layer perceptrons [6], convolutional neural
networks [6], or recurrent neural networks [6], are not directly
applicable to our problem.



Our Containment Rate Network (CRN) model uses a special-
ized vector representation for representing the input queries and
the output containment rates. As depicted in Figure 1, the CRN
model runs in three main stages. Consider an input queries pair
(Q1, Q2). In the first stage, we convert Q1 (resp., Q2) into a set of
vectors V1 (resp., V2). Thus (Q1, Q2) is represented by (V1,V2).
In the second stage, we convert set V1 (resp., V2) into a unique
single representative vector Quecl (resp., Quec2), using a special-
ized neural network, MLP;, for each set separately. In the third
stage, we estimate the containment rate Q1 Cy Q2, using the
representative vectors Quecl and Quec2, and another specialized
neural network, MLPyy;.

MLPy Q@)

Figure 1: CRN Model Archeticture.

3.2.1 First Stage, from (Q1, Q2) to (V1,V2). In the same way
as MSCN model [22], we represent each query Q as a collection of
three sets (T, J, P). T is the set of all the tables in Q’s FROM clause.
J is the set of all the joins (i.e., join clauses) in Q’s WHERE clause.
P is the set of all the (column) predicates in Q’s WHERE clause.
Using sets T, J, and P, we obtain a set of vectors V representing
the query, as described later. Unlike MSCN, in our model all
the vectors of set V have the same dimension and the same
segmentation as depicted in Table 1, where #T is the number of all
the tables in the database, #C is the number of all the columns in
all the database tables, and #O is the number of possible predicates
operators. In total, the vector dimension is #T + 3 % #C + #0 + 1,
denoted as L.

The queries tables, joins and column predicates (sets T, J and
P) are inseparable, hence, treating each set individually using
different neural networks may disorientate the model. Therefore,
we choose to featurize these sets using the same vector format
in order to ease learning.

Type Table Join Column Predicate
Segment T-seg | J1-seg | ]J2-seg | C-seg | O-seg | V-seg
Segment size #T #C #C #C #0 1
Featurization | one hot | one hot | one hot | one hot | one hot | norm

Table 1: Vector Segmentation.

Element of sets T, J, and P, are represented by vectors as fol-
lows (see a simple example in Figure 2). All the vectors have the
same dimension L. Each table t € T is represented by a unique
one-hot vector (a binary vector of length #T with a single non-
zero entry, uniquely identifying a specific table) placed in the
T-seg segment. Each join clause of the form (col1, =, col2) € J is
represented as follows. col1 and col2 are represented by a unique
one-hot vectors placed in J1-seg and J2-seg segments, respec-
tively. Each predicate of the form (col, op, val) € P is represented
as follows. col and op are represented by a unique one-hot vec-
tors placed in the C-seg and V-seg segments, respectively. val is
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represented as a normalized value € [0, 1], normalized using the
minimum and maximum values of the respective column, placed
in the V-seg segment. For each vector, all the other unmentioned
segments are zeroed. Given input queries pair, (Q1, Q2), we con-
vert query Q1 (resp., Q2) into sets T, J and P, and each element of
these sets is represented by a vector as described above, together
generating set V1 (resp., V2).

3.2.2  Second Stage, from (V1,V2) to (Quecl, Quec2). Given
set of vectors V;, we present each vector of the set into a fully-
connected one-layer neural network, denoted as MLP;, convert-
ing each vector into a vector of dimension H. The final represen-
tation Quec; for this set is then given by the average over the
individual transformed representations of its elements, i.e.,

! Z MLP;(v)

Quec; = —
veV;

Vil
MLP;(v) = Relu(vU; + b;)

Where U; € RLxH b; € RH are the learned weights and bias, and

v € RL is the input row vector. We choose an average (instead of,

e.g., sum) to ease generalization to different numbers of elements

in the sets, as otherwise the overall magnitude of Quec would

vary depending on the number of elements in the set V;.

3.2.3 Third Stage, from (Quecl, Quec2) to Q1 Cy, Q2. Given
the representative vectors of the input queries,(Quecl, Quec2),
we aim to predict the containment rate Q1 Cy Q2 as accurately as
possible. Since we do not know what a "natural” containment rate
measure is in the representative queries vector space, encoded by
the neural networks of the second step, we use a fully-connected
two-layer neural network, denoted as MLPy,,;, to compute the
estimated containment rate of the input queries, leaving it up
to this neural network to learn the correct containment rate
measure.

MLPy,,; takes as input a vector of size 4H which is constructed
using function ExpandFunction that creates a row of concate-
nated vectors of size 4H using vectors Quecl and Quec2. We use
this function in order to provide the final network, MLPyy;, with
additional information that may enhance its learning and thus
obtain more accurate containment rates estimations.

The first layer in MLPy,; converts the input vector into a
vector of size 2H. The second layer converts the obtained vector
of size 2H, into a single value representing the containment rate.

9 = MLPyy s (Expand(Quecl, Quec2))

MLPoyt(v) = Sigmoid(ReLU (vUpyt1 + bout1)Uout2 + bourz)
Expand(vi,vg) = [v1, v2, abs(v; —vg), v1 O vy]
Here, § is the estimated containment rate (a number in [0, 1]),
Uour1 € R¥IX2H po1y € R?H and Uourz € RPFXY boysy €
R! are the learned weights and bias, abs is the absolute value
function, and O is the dot-product function.

We use the ReLU? activation function for hidden layers in all
the neural networks, as they show strong empirical performance
advantages and are fast to evaluate.

In the final step, we apply the Sigmoid® activation function
in the second layer to output a float value in the range [0,1], as
the containment rate values are within this interval. Therefore,
we do not apply any featurization on the containment rates (the
output of the model) and the model is trained with the actual
containment rate values without any featurization steps.

2ReLU(x) = max(0,x); see [36].
3Sigmoid(x) = 1/(1 + e~¥); see [36].



SELECT * FROM title t, movie_companies mc WHERE t.id = mc.movie_id AND t.productio

_year > 20

13 AND mc.company_id =8

Set T: { [010000 ...0] , [000100...0] } Set J: { [0... 01000...0 00010...0 ...0]} Set P: { [0... 00100...0 100 0.94], [0... 00001...0 010 0.31] }

T-seg  Rest T-seg Rest Rest J1-seg

J2-seg

Rest Rest  C-seg O-seg V-seg Rest  C-seg O-seg V-seg

Figure 2: Query featurization as sets of feature vectors obtained from sets T, ] and P (Rest denotes zeroed segments).

3.2.4  Loss Function. Since we are interested in minimizing
the ratio between the predicted and the actual containment rates,
we use the g-error metric in our evaluation. We train our model
to minimize the mean g-error [33], which is the ratio between an
estimated and the actual containment rate (or vice versa). Let y
be the true containment rate, and g the estimated rate, then the
g-error is defined as follows.

g-error(y.g) = §>y2 2 : 2

vy 9y
The q-error is not defined when y (or y’) equals zero. Therefore,
in creating the training and testing datasets we skip query pairs
that include a query with an empty results set (see Section 3.1.2).

In addition to optimizing the mean g-error, we also exam-
ined the mean squared error (MSE) and the mean absolute error
(MAE) as optimization goals. MSE and MAE would optimize the
squared/absolute differences between the predicted and the ac-
tual containment rates. Optimizing with theses metrics makes
the model put less emphasis on heavy outliers (that lead to large
errors). Therefore, we decided to optimize our model using the
q-error metric which yielded better results.

3.3 Training and Testing Interface

Building CRN involves two main steps. (1) Generating a random
training set using the schema and data information as described
in Section 3.1. (2) Repeatedly using this training data, we train
the CRN model as described in Section 3.2 until the mean g-error
of the validation test starts to converges to its best absolute value.
That is, we use the early stopping technique [39] and stop the
training before convergence to avoid over-fitting. Both steps are
performed on an immutable snapshot of the database.

After the training phase, to predict the containment rate of
an input query pair, the queries first need to be transformed
into their feature representation, and then they are presented as
input to the model, and the model outputs the estimated contain-
ment rate (Section 3.2). We train and test our model using the
Tensor-Flow framework [34], and make use of the efficient Adam
optimizer [21] for training the model.

3.4 Hyperparameter Search

To optimize our model’s performance, we conducted a search over
its hyperparameter space. In particular, we focused on tuning the
neural networks hidden layer size (H) as we found out that this
hyperparameter has the most impact on the results.

Note that the same H value is shared in all the neural networks
of the CRN model, as described in section 3.2. During the tuning
of the size hyperparameter of the neural network hidden layer,
we found that increasing the size of our hidden layer generally
led to an increase in the model accuracy, till it reached the best
mean g-error on the validation test. Afterwards, the results began
to decline in quality because of over-fitting (see Figure 3). Hence,
we choose a hidden layer of size 512, as a good balance between
accuracy and training time.
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Overall, we found that our model performs uniformly well
across a wide range of settings when considering different batch
sizes and learning rates. We use a learning rate of 0.001, and
batch size of 128, as these settings lead to the best results on the
validation test.

17.5
15.0

5 12.5

5

3 1001

7.54

5.0+

64 128 256 512 1024

Hidden Layer Size (H)

16 32

Figure 3: The mean g-error on the validation set with dif-
ferent hidden layer sizes.

3.5 Model Computational Costs

We analyze the training, prediction, and space costs of the CRN
model with the default hyperparameters (H=512, batch size=128,
learning rate=0.001).

3.5.1 Training Time. Figure 4 shows how the mean g-error of
the validation set decreases with additional epochs, until conver-
gence to a mean g-error of around 4.5. The CRN model requires
almost 120 passes on the training set to converge. On average,
measured across six runs, a training run with 120 epochs takes
almost 200 minutes.

3.5.2  Prediction Time. The prediction process is dominated by
converting the input queries into the corresponding vectors, and
presenting these vectors as input to the CRN model. On average,
the prediction time is 0.5ms per single pair of queries, including
the overhead introduced by the Tensor-Flow framework.

3.5.3 Model Size. The CRN model includes all the learned
parameters mentioned in Section 3.2 (Uy, Uz, Upyt1, Uour2, b1, b,
bout1, bours). In total, there are 2% L+ H + 8% H? + 6% H +1 learned
parameters. In practice, the size of the model, when serialized to
disk, is roughly 1.5MB.

mean g-error
g

10 SOV ot o Aa
v s

37 46 55 64 73 82 91 100 109 118

Number of epochs

Figure 4: Convergence of the mean q-error on the valida-
tion set.



4 CONTAINMENT EVALUATION

Since the focus of this paper is on cardinality estimation using
containment rates, in this section we only briefly present the
containment evaluation results of the CRN model when compared
to other (baseline) methods. In the following sections, we present
in detail the experiments of the cardinality estimation technique.
Since to the best of our knowledge, the problem of determin-
ing containment rate has not been addressed till now, we use a
transformation as described in Section 4.1 below.

4.1 From Cardinality to Containment

To our knowledge, this is the first work to address the problem of
containment rate estimation. In order to compare our results with
different baseline methods, we used existing cardinality estima-
tion methods to predict the containment rates, using the Crd2Cnt
transformation, as depicted in the middle part diagram in Fig-
ure 5. (This transformation will be used also in our technique to
improve existing cardinality estimation models in Section 7).

4.1.1 The Crd2Cnt Transformation. Given a cardinality esti-
mation model M, we can convert it to a containment rate estima-
tion model using the Crd2Cnt transformation which returns a
model M’ for estimating containment rates. The obtained model
M’ functions as follows. Given input queries Q1 and Q2, whose
containment rate Q1 Cy Q2 needs to be estimated:

o Calculate the cardinality of query Q1NQ2 using M.
o Calculate the cardinality of query Q1 using M.
e Then, the containment rate estimate is:

|Q1nQ2|

Q1 cg Q2 01|

Here, Q1NQ2 is the intersection query of Q1 and Q2 whose
SELECT and FROM clauses are identical to Q1’s (or Q2’s) clauses,
and whose WHERE clause is Q1’s AND Q2’s WHERE clauses.
Note that, by definition, if |Q1| = 0 then Q1 Cy Q2 = 0.

Given model M, we denote the obtained model M’, via the
Crd2Cnt transformation, as Crd2Cnt(M).

4.2 Experimental Results

We compared the CRN model predictions to those based on the
other examined cardinality estimation models, using the Crd2Cnt
transformation. We evaluated the models with several workloads,
that included over 2000 queries with zero to five joins, on the
challenging real-world IMDB database [26]. In terms of mean
q-error [33], the CRN model reduced the mean q-errors by a
factor of roughly 8 compared with the estimates obtained from
Crd2Cnt(PostgreSQL) and Crd2Cnt(MSCN).

To provide a fuller picture, in Table 2 we show the percentiles,
maximum, and mean g-errors, on one of the examined evaluation
workloads. Additional details may be found in arXiv [18].

50th 75th 90th 95th 99th max  mean
Crd2Cnt(PostgreSQL) 4.5 46.22 322 1330 39051 316122 1345
Crd2Cnt(MSCN) 4.1 17.85 157 754 14197 768051 1238
CRN 3.64 13.19 96.6 255 2779 56965 161

Table 2: Estimation errors on 1200 examined queries with
zero to five joins, equally distributed in the number of
joins. In all the similar tables presented in this paper, we
provide the percentiles, maximum, and the mean q-errors
of the tests. The p’th percentile, is the q-error value below
which p% of the test q-errors are found. For example, 50%
of the CRN test g-errors are smaller than 3.64.

161

5 CARDINALITY ESTIMATION USING
CONTAINMENT RATES

In this section we consider one application of the proposed con-
tainment rate estimation model: cardinality estimation. We intro-
duce a novel approach for estimating cardinalities using query
containment rates, and we show that using the proposed ap-
proach, we improve cardinality estimations significantly, espe-
cially in the case when there are multiple joins.

A traditional query optimizer is crucially dependent on cardi-
nality estimation, which enables choosing among different plan
alternatives by using the cardinality estimation of intermediate
results within query execution plans. Therefore, the query opti-
mizer must use reasonably good estimates. However, estimates
produced by all widely-used database cardinality estimation mod-
els are routinely significantly wrong (under/over-estimated), re-
sulting in not choosing the best plans, leading to slow executions
[26].

Three principal approaches for estimating cardinalities have
emerged. (1) Using database profiling [1]. (2) Using histograms
[3, 7]. (3) Using sampling techniques [5, 27, 37]. Recently, deep
learning neural networks were also used for solving this prob-
lem [22, 45]. However, all these approaches, with all the many
attempts to improve them, have conceptually addressed the prob-
lem directly in the same way, as a black box, where the input is a
query, and the output is its cardinality estimation, as described in
the leftmost diagram in Figure 5. In our proposed approach, we
address the problem differently, and we obtain better estimates
as described in Section 6.

In prior works, the answers to previous queries were used for
speeding up new queries, by incrementally updating histograms,
and in the context of query re-optimization [3, 7, 13, 20]. Similarly,
using the CRN model for predicting containment rates, we are
making use of these previous answers to reveal the underlying
relations between the new queries and the previous ones.

Our new technique for estimating cardinalities mainly relies
on two key ideas. The first one is the new framework in which
we solve the problem. The second is the use of a queries pool that
maintains multiple previously executed queries along with their
actual cardinalities, as part of the database meta information. The
queries pool provides new information that enables our technique
to achieve better estimates. Using a containment rate estimation
model, we make use of previously executed queries along with
their actual cardinalities to estimate the result-cardinality of a
new query. This is done with the help of a simple transformation
from the problem of containment rate estimation to the problem
of cardinality estimation (see Section 5.1).

5.1 From Containment to Cardinality

Using a containment rate estimation models, we can obtain car-
dinality estimates using the Cnt2Crd transformation, as depicted
in the rightmost diagram in Figure 5.

5.1.1 The Cnt2Crd Transformation. Given a containment rate
estimation model* M, we convert it to a cardinality estimation
model using the Cnt2Crd transformation which returns a model
M’ for estimating cardinalities. The obtained model M’ functions
as follows. We are given a "new" query, denoted as Qpe.y, as input
to cardinality estimation. Assume that there is an "old" query,
denoted as Q,;4, whose FROM clause is the same as Qnew’s

4The term "model" may refer to an ML model or simply to a method.
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Figure 5: A novel approach, from cardinality estimation to containment rate estimation, and back to cardinality estimation

by using a queries pool.

FROM clause, that has already been executed over the database,
and therefore |Q,;4| is known, then M’ functions as follows:

o Calculate x_rate = Qy14 C% Qnew using M.
e Calculate y_rate = Qpew C% Qpq using M.
e Then, the cardinality estimate equals to:

x_rate

|Qnew| =

* |Qordl

y_rate

provided that y_rate = Qnew C% Qo1qg # 0. This is true, since:

_ |Qnewonld| _ |Qnewonld|
x_rate = ————, y_ rate= ————
|Qold| |Qnew|
And therefore,
x_rate |OnewNQo1dl " |Onewl _ |Onewl

1Qo1al |OnewNQoral  1Qo1al

where the query intersection operator, N, is as defined in Section
4.1.1. Given model M, we denote the obtained model M’, via the
Cnt2Crd transformation, as Cnt2Crd(M).

y_rate -

5.2 Queries Pool

Our technique for estimating cardinality relies mainly on a queries
pool that includes records of multiple queries.

The queries pool is envisioned to be an additional component
of the DBMS, along with all the other customary components.
It includes multiple queries with their actual cardinalities®, but
without the queries execution results. Therefore, holding such a
pool in the DBMS as part of its meta information does not require
significant storage space or other computing resources. Maintain-
ing a queries pool in the DBMS is thus a reasonable expectation.
The DBMS continuously executes queries, and therefore, we can
easily configure the DBMS to store these queries along with their
actual cardinalities in the queries pool.

In addition, we may construct in advance a queries pool using
a queries generator that randomly creates multiple queries with
many of the possible joins, and with different column predicates.
We then execute these queries on the database to obtain and save
their actual cardinalities in the queries pool.

Notice that we can combine both approaches (actual comput-
ing and a generator) to create the queries pool. The advantage of
the first approach is that in a real-world situation, queries that
are posed in sequence by the same user, may be similar and there-
fore we can get more accurate cardinality estimates. The second
approach helps in cases where the queries posed by users are
diverse (e.g., different FROM clauses). Therefore, in such cases,
we need to make sure, in advance, that the queries pool contains
sufficiently many queries that cover all the possible cases.

>Due to limited space, we do not detail the efficient hash-based data structures used
to implement the queries pool.
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Given a query Q whose cardinality is to be estimated , it is
possible that we fail to find any appropriate query, in the queries
pool, to match with query Q. This happens when all the queries in
the queries pool have a different FROM clause than that of query
Q, or that they are not contained at all in query Q. In such cases
we can always use the known basic cardinality estimation models.
In addition, we can make sure that the queries pool includes
queries with the most frequently used FROM clauses, with empty
column predicates. That is, queries of the following form:

SELECT * FROM - set of tables— WHERE TRUE

In this case, for most of the queries posed in the database, there is
at least one query that matches in the queries pool with the given
query, and hence, we can estimate the cardinality (perhaps less
accurately) without resorting to the basic cardinality estimation
models.

5.3 A Cardinality Estimation Technique

Consider a new query Qpew, and assume that the DBMS includes
a queries pool as previously described. To estimate the cardinality
of Qnew accurately, we use multiple "old" queries instead of one
query, using the same Cnt2Crd transformation of Section 5.1.1,
as described in Figure 6.

EstimateCardinality(Query Qpeq, Queries Pool QP):
results = empty list

For every pair (Qo14. |Qo14l) in QP:
if Qy74’s FROM clause # Qpew’s FROM clause:

continue
Calculate x_rate = Q14 C% Onew
Calculate y_rate = Qpew C% Qold
ify rate <= epsilon: /* y essentially zero */
continue
results.append(x_rate/y_rate = |Qu14!)

return F(results)

Figure 6: Cardinality Estimation Technique.

Algorithm EstimateCardinality considers all the matching
queries whose FROM clauses are identical to Qpeqr’s FROM
clause. For each matching query, we estimate Qpe.y’'s cardinality
using the Cnt2Crd transformation and save the estimated result
in the results list. The final cardinality is obtained by applying the
final function, F, that converts all the estimated results recorded
in the results list, into a single final estimation value. Note that
the technique can be easily parallelized since each iteration in the
For loop is independent, and thus can be calculated in parallel.



5.3.1 Comparing Different Final Functions. We examined var-
ious final functions (F), including:

e Median, returning the median value of the results list.

e Mean, returning the mean value of the results list.

o Trimmed mean, returning the trimmed mean of the results
list without the 25% outliers (trimmed removes a desig-
nated percentage of the largest and smallest values before
calculating the mean).

Experimentally, the cardinality estimates using the various
functions were very similar in terms of q-error. But the Median
function yielded the best estimates as it is more stable to outliers
(we do not detail these experiments due to limited space).

5.3.2  Early Stopping. The described cardinality estimation
technique considers all the matching queries to the given in-
put query on the queries pool. However, we can configure the
technique for early stopping. That is, taking into account all the
matching queries in the pool is not always necessary. We can
set a limit on the number of matching queries that are used to
estimate the input query cardinality, and thus obtain predictions
faster by considering only a subset of the matching queries.

In the reported experiments we consider all the queries in the
pool since the pool size is limited as described in Section 6.2.

6 CARDINALITY EVALUATION

We evaluate our proposed technique for estimating cardinality,
with different test sets, while using the CRN model as defined in
Section 3.2 for estimating containment rates.

We compare our cardinality estimates with those of the Post-
greSQL version 11 cardinality estimation component [1], a simple
and commonly used method for cardinality estimation. In ad-
dition, we compare our cardinality estimates with those of the
MSCN model [22]. MSCN was shown to be superior to the best
methods for estimating cardinalities such as Random Sampling
(RS) [5, 37] and the state-of-the-art Index-Based Join Sampling
(IBJS) [27].

In order to make a fair comparison between the CRN model
and the MSCN model, we train the MSCN model with the same
data that was used to train the CRN model. The CRN model takes
two queries as input, whereas the MSCN model takes one query
as input. Therefore, to even the playing field, we created the
training dataset for the MSCN model as follows. For each pair of
queries (Q1, Q2) used in training the CRN model, we added the
following two input queries to the MSCN training set:

e Q1NQ2, along with its actual cardinality.
e (1, along with its actual cardinality.

Finally, we ensure that the training set includes only unique
queries without repetition. This way, both models, MSCN and
CRN, are trained with the same information. Note that comparing
with the profiling and histograms-based PostgreSQL does not
require generating training set.

We create the test workloads using the same queries generator
used for creating the training set of the CRN and the MSCN
models (described in Section 3.1.2), while skipping its last step.
That is, we only run the first two steps of the generator. The third
step creates query pairs which are irrelevant for the cardinality
estimation task.
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6.1 Evaluation Workloads

We evaluate our approach on the (challenging) IMDb dataset,
using three different query workloads:

e crd_testl, a synthetic workload generated by the same
queries generator that was used for creating the training
data of the CRN model, as described in Section 3.1 (using
a different random seed) with 450 unique queries, with
zero to two joins.

crd_test2, a synthetic workload generated by the same
queries generator as the training data of the CRN model,
as described in Section 3.1 (using a different random seed)
with 450 unique queries, with zero to five joins. This
dataset is designed to examine how the technique gen-
eralizes to additional joins.

scale, another synthetic workload, with 500 unique queries,
derived from the MSCN test set as introduced in [22].
This dataset is designed to examine how the technique
generalizes to queries that were not created with the same
queries generator used for training.

number of joins 0 1 2 3 4 5 overall
crd_testl 150 150 150 O 0 0 450
crd_test2 75 75 75 75 75 75 450
scale 115 115 107 88 75 0 500

Table 3: Distribution of joins.

6.2 Queries Pool

Our technique relies on a queries pool, we thus created a synthetic
queries pool, QP, generated by the same queries generator as
the training data of the containment rate estimation model, as
described in Section 3.1 (using a different random seed) with 300
queries, equally distributed among all the possible FROM clauses
over the database. In particular, QP, covers all the possible FROM
clauses that are used in the test workloads. Note that, there are
no shared queries between the QP queries and the test workloads
queries.

Consider a query Q whose cardinality needs to be estimated.
On the one hand, the generated QP contains "similar" queries to
query Q. These can help the machine in predicting the cardinality.
On the other hand, it also includes queries that are not similar at
all to query Q. These may cause erroneous cardinality estimates.
Therefore, the generated queries pool QP, faithfully represents a
real-world situation.

6.3 Experimental Environment

In all the following cardinality estimation experiments, for pre-
dicting the cardinality of a given query Q in a workload W, we
use the whole queries pool QP as described in Section 6.2 with all
its 300 queries. That is, the "old" queries used for predicting cardi-
nalities, are the queries of QP. In addition, in all the experiments
we use the Median function as the final F function.



6.4 The Quality of Estimates

Figure 7 depicts the g-error of the Cnt2Crd(CRN) model as com-
pared to MSCN and PostgreSQL on the crd_test1 workload. While
PostgreSQL’s errors are more skewed towards the positive do-
main, MSCN is competitive with Cnt2Crd(CRN) in all the de-
scribed values. As can be seen in Table 4, while MSCN provides
the best results in the margins, the Cnt2Crd(CRN) model is more
accurate in 75% of the tests (as it is less accurate, in the margins,
than MSCN with queries that have up to two joins). In addition,
we show in the next section (Section 6.5) that the Cnt2Crd(CRN)
model is more robust when considering queries with more joins
than in the training dataset.

PostgreSQL MSCN Cnt2Crd(CRN)
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Figure 7: Estimation errors on the crd_test1 workload. In
all the similar plots presented in this paper, the box bound-
aries are at the 25th/75th percentiles and the horizontal
lines mark the 5th/95th percentiles. Hence, 50% of the
tests results are located within the box boundaries, and
90% are located between the horizontal lines. The orange
horizontal line mark the 50th percentile.

50th 75th 90th  95th  99th max  mean
PostgreSQL 1.74 3.72 22.46 149 1372 499266 1623
MSCN 211 4.13  7.79 12.24 51.04 184 4.66
Cnt2Crd(CRN) 1.83 3.71 10.01 18.16 76.54 1106 9.63

Table 4: Estimation errors on the crd_test1 workload.

6.5 Generalizing to Additional Joins

We examine how our technique generalizes to queries with addi-
tional joins, without having seen such queries during training.
To do so, we use the crd_test2 workload which includes queries
with zero to five joins. Recall that we trained both the CRN model
and the MSCN model only with query pairs that have between
zero and two joins.

From Tables 5 and 6, and Figure 8, it is clear that Cnt2Crd(CRN)
model is significantly more robust in generalizing to queries with
additional joins. This is clearly illustrated in the Cnt2Crd(CRN)
box plot. The boxes are almost within the same g-error inter-
val, close to q-error 1, which is the best g-error (obtained when
an estimate is 100% accurate). In terms of mean g-error, the
Cnt2Crd(CRN) model reduces the mean by a factor x100 and
%1000 compared with MSCN and PostgreSQL, respectively.

50th 75th 90th  95th 99th max mean
PostgreSQL 9.22 289 5189 21202 576147 4573136 35169
MSCN 449 119 3018 6880 61479 388328 3402
Cnt2Crd(CRN) 2.66 6.50 18.72 72.74 528 6004 34.42

Table 5: Estimation errors on the crd_test2 workload.
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Figure 8: Estimation errors on the crd_test2 workload.

50th 75th  90th 95th 99th max mean
PostgreSQL 229 3326 22249 166118 2069214 4573136 70569
MSCN 121 1810 6900 25884 83809 388328 6801

Cnt2Crd(CRN) 4.28 10.84 43.71 93.11 1103 6004 61.26

Table 6: Estimation errors on the crd_test2 workload con-
sidering only queries with three to five joins.

To highlight these improvements, we describe, in Table 7 and
Figure 9, the mean and median g-error for each possible number
of joins separately (note the logarithmic y-axis scale in Figure 9).

The known cardinality estimation models suffer from produc-
ing under-estimated results and errors that grow exponentially
as the number of joins increases [14]. This also happens in the
cases we examined. The Cnt2Crd(CRN) model was better at han-
dling additional joins (even though CRN was trained only with
queries with up to two joins, as was MSCN). The reason why
the Cnt2Crd(CRN) model successfully generalizes to additional
joins lies in its use of the queries pool. The queries pool contains
queries with a similar number of joins as the input queries, along
with their true cardinalities. The underlying CRN model esti-
mates the containment rates accurately even when considering a
high number of joins. As a result, the Cnt2Crd(CRN) cardinality
estimates are accurate as well.
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Figure 9: Q-error medians for each number of joins.

number of joins 0 1 2 3 4 5
PostgreSQL 10.41 216  25.38 355 4430 210657
MSCN 3.44 356 3.31 81.95 5427 14895
Cnt2Crd(CRN) 12.43 354 6.77 23.24 30.51 129

Table 7: Q-error means for each number of joins.



6.6 Generalizing to Different Kinds of
Queries

In this experiment, we explore how the Cnt2Crd(CRN) model
generalizes to a workload that was not generated by the same
queries generator that was used for creating the CRN model train-
ing set. To do so, we examine the scale workload that is generated
using another queries generator in [22]. As shown in Table 8,
Cnt2Crd(CRN) is clearly more robust than MSCN and PostgreSQL
in all the described percentiles. Examining Figure 10, it is clear
that the Cnt2Crd(CRN) model is significantly more robust with
queries with 3 and 4 joins. Recall that the QP queries pool in
this experiment was not changed, while the scale workload is
derived from another queries generator. In summary, this experi-
ment shows that Cnt2Crd(CRN) generalizes well to workloads
that were created with a different generator than the one used to
create the training data.
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Figure 10: Estimation errors on the scale workload.

50th 75th  90th 95th 99th max mean
PostgreSQL 2.62 15.42 183 551 2069 233863 586
MSCN 3.76  16.84 100 448 3467 47847 204
Cnt2Crd(CRN) 2.53 5.88 24.02 95.26 598 19632  69.85

Table 8: Estimation errors on the scale workload.

To further examine how Cnt2Crd(CRN) generalizes, we con-
ducted the following experiment. We compared the Cnt2Crd(CRN)
model with an improved version of the MSCN model that com-
bines the deep learning approach and sampling techniques by
using samples of 1000 materialized base tables, as described in
[22]. We denote this model as MSCN1000.

We make the test "easier” for MSCN1000 model by training
the MSCN1000 model with a training set that was created with
the same queries generator that was used for generating the scale
workload. As depicted in Figure 10, the MSCN1000 model is more
robust in queries with zero to two joins, still, the Cnt2Crd(CRN)
model is superior on queries with additional joins. Recall that the
CRN model training set was not changed, while the MSCN1000
model was trained with queries obtained from the same queries
generator that was used for creating the test (i.e., scale) work-
load. In addition, note that the MSCN1000 model uses sampling
techniques whereas Cnt2Crd(CRN) does not. Thus, this experi-
ment further demonstrates the superiority of Cnt2Crd(CRN) in
generalizing to additional joins.

We obtain these improvements for the same reason described
in Section 6.5. The CRN model is more robust in generalizing
for additional unseen (during training) joins. As a result, the
Cnt2Crd(CRN) model generalizes well for cardinality estimation.
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7 IMPROVING EXISTING CARDINALITY
ESTIMATION MODELS

In this section we describe how existing cardinality estimation
models can be improved using the idea underlining our proposed
technique. The proposed technique for improving existing car-
dinality estimation models relies on the same technique for pre-
dicting cardinalities using a containment rate estimation model,
as described in Section 5.3.

In the previous section we used the CRN model in predicting
containment rates. CRN can be replaced with any other method
for predicting containment rates. In particular, it can be replaced
with any existing cardinality estimation model after "converting"
it to estimating containment rates using the Crd2Cnt transfor-
mation, as described in Section 4.1.

At first glance, our proposed technique seems to be a more
complicated method for solving the problem of estimating cardi-
nalities. However, we show that by applying it to known existing
models, we improve their estimates, without changing the models
themselves. These results indicate that the traditional approach,
which directly addressed this problem, straightforwardly, using
models to predict cardinalities, can be improved upon.

In the remainder of this section, we described the proposed
approach, and show how existing cardinality estimation methods
are significantly improved upon, by using this technique.

7.1 Approach Demonstration

Given an existing cardinality estimation model M, we first con-
vert M to a model M’ for estimating containment rates, using the
Crd2Cnt transformation, as described in Section 4.1. Afterwards,
given the obtained containment rate estimation model M’, we
convert it to a model M”” for estimating cardinalities, using the
Cnt2Crd transformation, as described in Section 5.3, which uses
a queries pool.

To summarize, our technique converts an existing cardinality
estimation model M to an intermediate model M’ for estimating
containment rates, and then, using M’ we create a model M”’
for estimating cardinalities with the help of the queries pool, as
depicted in Figure 5 from left to right.

For clarity, given cardinality estimation model M, we denote
the model M"” described above, i.e., model Cnt2Crd(Crd2Cnt(M)),
as Improved M model.

7.2 Existing Models vs. Improved Models

We examine how our proposed technique improves the Post-
greSQL and the MSCN models, by using the crd_test2 workload
as defined in Section 6.1, as it includes the most number of joins.
Table 9 depicts the estimates when using directly the PostgreSQL
or MSCN models, compared with the estimates when adopting
our technique with each one of these models (i.e., the Improved
PostgreSQL model and the Improved MSCN model). Examining
the results, it is clear that the proposed technique significantly
improves the estimates (by a factor x7 for PostgreSQL and x122
for MSCN in terms of mean g-error) without changing the models
themselves (embedded within the Improved version).

The reason why the existing cardinality estimation models
obtain better estimates (when adopting our technique) stems
from the fact that these models are generalizing better when they
are converted to estimate containment rates. Thus, along with
the use of the queries pool, when these models are converted
back to estimate cardinalities, they obtain better estimates.
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Figure 11: Estimation errors on the crd_test2 workload, compared with all models.

These results highlight the power of our proposed approach.
The approach provides an effective and simple technique for im-
proving existing cardinality estimation models. By adopting our
approach and crating a queries pool in the database, cardinality
estimates can be improved significantly.

50th 75th 90th  95th 99th max mean
PostgreSQL 9.22 289 5189 21202 576147 4573136 35169
Improved PostgreSQL  2.61 19.3 155 538 17697 1892732 5081
MSCN 4.49 119 3018 6880 61479 388328 3402
Improved MSCN 2.89 7.43 25.26 55.73 196 3184 27.78

Table 9: Estimation errors on the crd_test2 workload.

7.3 Improved Models vs. Cnt2Crd(CRN)

Using the crd_test2 workloade, we examine how our technique
improves PostgreSQL and MSCN, compared with Cnt2Crd(CRN).
Examining Table 10, it is clear that in 90% of the tests, the best
estimates are those obtained when directly using the CRN model
to estimate the containment rates, instead of converting existing
cardinality estimation models to obtain containment rates (Im-
proved MSCN and Improved PostgreSQL). It seems that the CRN
model is more accurate in estimating containment rates since it
is directly designed for performing this task, whereas existing
cardinality estimation models need to first be converted in order
to estimate containment rates using the Crd2Cnt transformation.

50th 75th 90th  95th  99th max mean
Improved PostgreSQL  2.61  19.3 155 538 17697 1892732 5081
Improved MSCN 2.89 743 2526 55.73 196 3184 27.78
Cnt2Crd(CRN) 2.66 650 18.72 72.74 528 6004 34.42

Table 10: Estimation errors on the crd_test2 workload.

8 CARDINALITY PREDICTION TIME

Using the idea of using containment rates estimations to pre-
dict cardinalities, the cardinality prediction process is dominated
by calculating the containment rates of the given input query
with the relevant queries in the queries pool, and calculating
the final function F on these results to obtain the predicted car-
dinality, as described in Section 5.3. Therefore, the larger the
queries pool is, the more accurate the predictions are, and the
longer the prediction time is. Table 11, shows the medians and
the means estimation errors on the crd_test2 workload, along
with the average prediction time for a single query, when using
the Cnt2Crd(CRN) model for estimating cardinalities, with differ-
ent sizes of QP (equally distributed over all the possible FROM
clauses in the database) while using the same final function F
(the Median function).
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QP Size 50 100 150 200 250 300
Median 3.68 2.55 2.63 2.55 2.61 2.66
Mean 1894 90 41 40 35 34
Prediction Time 3.2ms 7.lms 9.8ms 11.3ms 14.5ms 16.1ms

Table 11: Median and mean estimation errors on the
crd_test2 workload, and the average prediction time, con-
sidering different queries pool (QP) sizes.

In table 12, we compare the average prediction time for es-
timating the cardinality of a single query using all the exam-
ined models (when using the whole QP queries pool of size 300).
The default MSCN model is the fastest model, since it directly
estimates the cardinalities without using a queries pool. The
Cnt2Crd(CRN) model is the fastest among all the models that use
a queries pool. That is, the Cnt2Crd(CRN) model is faster than
the Improved MSCN model and the Improved PostgreSQL model.
This is the case, since in the Improved MSCN model or the Im-
proved PostgreSQL model, to obtain the containment rates, both
models need to estimate cardinalities of two different queries as
described in Section 4.1, whereas the CRN model directly obtains
a containment rate in one pass within 0.5ms (see Section 3.5).

Although the prediction time of the models that use queries
pools is higher than the most common cardinality estimation
model (PostgreSQL), the prediction time is still in the order of a
few tens milliseconds. In particular, it is similar to the average
prediction time of models that use sampling techniques, such as
the MSCN version with 1000 base tables samples.

For the results in Table 12, we used a queries pool (QP) of size
300. We could have used a smaller pool (or adapt the early stop-
ping technique as mentioned in Section 5.3.2), resulting in faster
prediction time, and still obtaining better results, as depicted in
Table 11. Furthermore, all the the models that use queries pools
may be easily parallelized as discussed in Section 5.3, and thus,
reducing the prediction time (we ran these models serially in the
reported tests).

Model Prediction Time
PostgreSQL 1.75ms
MSCN 0.5ms
MSCN with 1000 samples 33ms
Improved PostgreSQL 70ms
Improved MSCN 35ms
Cnt2Crd(CRN) 16ms

Table 12: Average prediction time of a single query.



9 RELATED WORK

Over the past five decades, conjunctive queries have been stud-
ied in the contexts of database theory and database systems.
Conjunctive queries constitute a broad class of frequently used
queries. Their expressive power is roughly equivalent to that
of the Select-Join-Project queries of relational algebra. Numer-
ous problems and associated algorithms have been researched
in depth in this context. Chandra and Merlin [10] showed that
determining (analytic) containment of conjunctive queries is an
NP-complete problem. Finding the minimal number of conditions
that need to be added to a query in order to ensure containment
in another query is also an NP-complete problem [44]. This also
holds in additional settings involving inclusion and functional
dependencies [2, 19, 44].

Although determining whether query Q1 is contained in query
Q2 (analytically) in the case of conjunctive queries is an in-
tractable problem in its full generality, there are many tractable
cases. For instance, in [41, 42] it was shown that query contain-
ment of conjunctive queries could be solved in linear time, if
every database (edb) predicate occurs at most twice in the body
of Q1. In [12] it was proved that for every k > 1, conjunctive
query containment could be solved in polynomial time, if Q2
has querywidth smaller than k + 1. In addition to the mentioned
cases, there are many other tractable cases [8, 9, 16, 40]. Such
cases result from imposing syntactic or structural restrictions on
the input queries Q1 and Q2.

Whereas analytic containment was well researched in the past,
to our knowledge, the problem of determining the containment
rate on a specific database has not been investigated. In this paper,
we address this problem using ML techniques.

Lately, we have witnessed extensive adoption of machine learn-
ing, and deep neural networks in particular, in many different
areas and systems, and in particular in databases. Recent research
investigates machine learning for classical database problems
such as join ordering [31], index structures [23], query optimiza-
tion [24, 38], concurrency control [4], and recently in cardinality
estimation [22, 45]. MSCN, a recently conceived sophisticated NN
model, estimates cardinalities [22]. MSCN has been shown to be
superior in estimating cardinalities for queries that have the same
number of joins as that in the queries training dataset. However,
MSCN proved less effective when considering queries with more
joins. In this paper, we propose a deep learning-based approach,
inspired by the MSCN model, for predicting containment rates
on a specific database. Additionally, we show how containment
rates can be used to predict cardinalities more accurately.

There were many attempts to tackle the problem of cardinality
estimation; for example, Random Sampling techniques [5, 37],
Index based Sampling [27], and recently deep learning [22, 45].
However, all these attempts have addressed, conceptually, the
problem directly in the same way, as a black box, where the
input is a query, and the output is the cardinality estimate. In this
paper, we address this problem differently by using information
(the actual cardinalities) about queries that have already been
executed in the database.

A similar idea of using the information contained in the exe-
cution results of queries was used to refine and update columns
of histograms. In this approach, histograms are incrementally
refined every time they are used, by comparing the histogram esti-
mated selectivity to the actual selectivity. This leads to more accu-
rate histograms, and to better cardinality estimates [3, 7, 13, 20].
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10 CONCLUSIONS AND FUTURE WORK

We introduced a new problem, that of estimating containment
rates between queries over a specific database, and introduced the
CRN model, a new deep learning model for solving it (inspired by
MSCN [22]). We trained CRN with generated queries, uniformly
distributed within a constrained space, and showed that CRN
usually obtains the best results in estimating containment rates
as compared with other examined models.

We introduced a novel approach for cardinality estimation,
based on the CRN-based containment rate estimation model, and
with the help of a queries pool. We showed the superiority of
our new approach in estimating cardinalities more accurately
than state-of-the-art approaches. Further, we showed that our ap-
proach addresses the weak spot of existing cardinality estimation
models, which is handling multiple joins.

In addition, we proposed a technique for improving any exist-
ing cardinality estimation model (M) without the need to change
the model itself, by embedding it within a three step method
(Cnt2Crd(Crd2Cnt(M))). Observe that it is possible to further
improve the estimation by using the obtained improved model
Cnt2Crd(Crd2Cnt(M)), and generating models (repeatedly), e.g.,
Cnt2Crd(Crd2Cnt(Cnt2Crd(Crd2Cnt(M))))°. Given that the es-
timates of state-of-the-art models are quite fragile, and that our
technique for estimating cardinalities is simple, has low overhead,
and is quite effective, we believe that it is highly promising and
practical for solving the cardinality estimation problem.

We considered cardinality estimation for SQL queries not us-
ing the DISTINCT keyword. For various intermediate results,
a query planner requires the set-theoretic cardinality (without
duplicates). For example, employing counting techniques for
handling duplicates, considering sorting, creating an index or a
hash table, and more. This requirement may therefore limit our
techniques’ usability. One may use our (inaccurate for this case)
predictions as proxies. However, a better technique is needed
and we are currently evaluating a promising extension of our ma-
chine learning approach for predicting set-theoretic cardinalities
(i.e., queries with the DISTINCT keyword).

To make our containment based approach suitable for more
general queries, the CRN model for estimating containment rates
can be extended to support other types of queries, such as queries
that include complex predicates. In addition, the CRN model can
be configured to support databases that are updated from time
to time. Next, we discuss some of these extensions, and sketch
possible future research directions.

Strings. A simple addition to our current implementation may
support equality predicates on strings. To do so, we could hash
all the possible string literals in the database into the integer
domain (similarly to MSCN). This way, an equality predicate on
strings can be converted to an equality predicate on integers,
which the CRN model can handle.

Complex predicates. Complex predicates, such as LIKE, are not
supported since they are not represented in the CRN model. To
support such predicates we need to change the model architecture
to handle such predicates. Note that predicates such as BETWEEN
and IN, may be converted to ordinary predicates.

EXCEPT Operator. Given a query Q of the form Q1 EXCEPT Q2,
we can estimate its cardinality using our technique as follows:

|01 EXCEPT Q2| = |01] - |01nQ2

OThis observation is due to one of the referee.



UNION Operator. Given a query Q of the from Q1 UNION Q2,
we can estimate its cardinality using our technique as follows:

|01 UNION Q2| = |Q1] + Q2]

Observe that for handling both the EXCEPT and the UNION
operators, the cardinality of queries Q1, Q2 and Q1NQ2 can be
estimated using our technique, as they are conjunctive queries.

The OR operator. Given queries that include the OR operator
in their WHERE clause, the CRN model does not handle such
queries straightforwardly. But, we can handle such queries using
a promising recursive algorithm that we are currently evaluating.

Database updates. Thus far, we assumed that the database is
static (read-only database). However, in many real world databases,
updates occur frequently. In addition, the database schema it-
self may be changed. To handle updates we can use one of the
following approaches:

(1) We can always completely re-train the CRN model with a
new updated training set. This comes with a considerable com-
pute cost for re-executing queries pairs to obtain up-to-date con-
tainment rates and the cost for re-training the model itself. In this
approach, we can easily handle changes in the database schema,
since we can change the model encodings prior to re-training it.

(2) We can incrementally train the model starting from its
current state, by applying new updated training samples, instead
of re-training the model from scratch. While this approach is
more practical, a key challenge here is to accommodate changes
in the database schema. To handle this issue, we could hold, in
advance, additional place holders in our model to be used for
future added columns or tables. In addition, the values ranges of
each column may change when updating the database, and thus,
the normalized values may be modified as well. Ways to handle
this problem are the subject of current research.
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