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ABSTRACT

With the mind-blowing development of REST (REpresentational
State Transfer) APIs (Application Programming Interfaces), many
applications have been designed to harness their potential. As
such, bots have recently become interesting interfaces to connect
humans to APIs. Supervised approaches for building bots rely
upon a large set of user utterances paired with API methods. Col-
lecting such pairs is typically done by obtaining initial utterances
for a given API method and paraphrasing them to obtain new
variations. However, existing approaches for generating initial
utterances (e.g., creating sentence templates) do not scale and
are domain-speci!c, making bots expensive to maintain. The
automatic generation of initial utterances can be considered as
a supervised translation task in which an API method is trans-
lated into an utterance. However, the key challenge is the lack
of training data for training domain-independent models. In this
paper, we propose API2CAN, a dataset containing 14,370 pairs of
API methods and utterances. The dataset is built by processing
a large number of public APIs. However, deep-learning-based
approaches such as sequence-to-sequence models require larger
sets of training samples (ideally millions of samples). To miti-
gate the absence of such large datasets, we formalize and de!ne
resources in REST APIs, and we propose a delexicalization tech-
nique (by converting an API method and initial utterances to
tagged sequences of resources) to let deep-learning-based ap-
proaches learn from such datasets.

1 INTRODUCTION

Much of the information we receive about the world is API-
regulated. Essentially, APIs are used for connecting devices, man-
aging data, and invoking services [1–3]. In particular, because
of its simplicity, REST is the most dominant approach for de-
signing Web APIs [4–6]. Meanwhile, thanks to the advances in
machine learning and availability of web services, building natu-
ral language interfaces has gained attention by both researchers
and organizations (e.g., Apple’s Siri, Google’s Virtual Assistant,
IBM’s Watson, Microsoft’s Cortana). Natural language interfaces
and virtual assistants serve a wide range of tasks by mapping
user utterances (also called user expressions) into appropriate
operations. Examples include reporting weather, booking "ights,
controlling home devices, and querying databases [1, 7–9]. In-
creasingly, organizations have started or plan to use capabilities
arising from advances in cognitive computing to increase pro-
ductivity, automate business processes, and extend the breadth
of their business o#ering.
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Figure 1: Classical Training Data Generation Pipeline

To serve users’ requests, virtual assistants often employ su-
pervised models which require a large set of natural language
utterances (e.g., “get a customer with id being 1” ) paired with their
corresponding executable forms (e.g., SQL queries, API calls, log-
ical forms). The training pairs are used to learn the mappings
between user utterances and executable forms. Given the popu-
larity of REST APIs (based on the well-known HTTP protocol),
we focus on one of the most common types of executable forms
called operations. In REST APIs, an operation (also called API
method) consists of an HTTP verb (e.g., GET, POST), an end-
point (e.g., /customers), and a set of parameters1 (e.g., query
parameters). Figure 2 shows di#erent parts of a REST request in
HTTP.

An annotated utterance is a corresponding natural language
expression to an operation in which API parameters are labeled:

/customers/Operation

1Annotated Utterance Get a customer with id being 

{customer_id}

HTTP Verb Endpoint (URI/Path)

GET

Parameter

As shown in Figure 1, collecting such pairs is typically done in
two steps: (i) obtaining initial utterances for each operation; and
(ii) paraphrasing the initial utterances either automatically or
manually (e.g., crowdsourcing) to new variations in order to live
up to the richness in human languages [1, 7, 8]. Paraphrasing ap-
proaches (e.g., crowdsourcing, automatic paraphrasing systems)
have made the second step less costly [7, 8, 10], but existing ap-
proaches for generating the initial sentences are still limited, and
they are not scalable [8].

Existing solutions for generating initial utterances (also called
canonical utterances) often involve employing domain experts
to generate hand-crafted domain-speci!c grammars or templates
[1, 8, 11]. Almond virtual assistant, as an example, relies on hand-
crafted rules to generate initial utterances [8]. Such approaches

1In this paper, to show parameters of an operation, we use curly brackets
with two parts separated by semicolon (e.g., {customer_id:1}): the !rst part gives
the name of the parameter and the second part indicates a sample value for the
parameter
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POST /customers/1/accounts?brief=true HTTP/1.1 
Host: bank.api 
Accept: application/json
Content-Type: application/json 
...
Authorization: Bearer mt0dgHmLJMV_PxH23Y 

{
   "account-type": "saving",
   "opening-date": "01/01/2020",
}

Figure 2: Example of an HTTP POST Request

are domain-speci!c and costly since rules are generated by ex-
perts [1, 8, 11]. In other words, adding new APIs to a particular
virtual assistant requires manual e#orts for revising hand-crafted
grammars to generate training samples for new domains. With
the growing number of APIs and modi!cations of existing APIs,
automated bot development has become paramount, especially
for virtual assistants which aim at servicing a wide range of tasks
[1, 8].

Supervised approaches such as sequence-to-sequence models
can be used for translating operations to canonical utterances.
However, the key challenge is the lack of training data (pairs
of operations and canonical utterances) for training domain-
independentmodels. In this paper, we proposeAPI2CAN, a dataset
containing 14,370 pairs of operations and canonical utterances.
The dataset is generated automatically by processing a large set
of OpenAPI speci!cations2 (based on the description/summary
of each operation). However, deep-learning-based approaches
such as sequence-to-sequence models require much larger sets of
samples to train from (ideally millions of training samples). That
is to say, sequence-to-sequence models are easy to over!t small
training datasets, and issues such as out of vocabulary words
(OOV) can negatively impact their performance. To overcome
such issues, we propose a delexicalization technique to convert
an operation to a sequence of prede!ned tags (e.g., singleton, col-
lection) based on RESTful principles and design guidelines (e.g.,
use of plural names for a collection of resources, using HTTP
verbs). In summary, our contribution is three-folded:

• ADataset.We propose a dataset calledAPI2CAN, contain-
ing annotated canonical templates (a canonical utterance
in which parameter values have been replaced with place-
holders e.g., “get a customer with id being «id»” ) for 14,370
operations of 985 REST APIs. We automatically built the
dataset by processing a large set of OpenAPI speci!ca-
tions, and we converted operation descriptions to canoni-
cal templates based on a set of heuristics (e.g., extracting
a candidate sentence, injecting parameter placeholders in
the method descriptions, removing unnecessary words).
We then split the dataset into three parts (test, train, and
validation sets).

• ADelexicalizationTechnique.Deep-learning algorithms
such as sequence-to-sequence models require millions of
training pairs to learn from. To assist such models to learn
from smaller datasets, we propose a delexicalization tech-
nique to convert input (operation) and output (canonical
template) of such models to a sequence of prede!ned tags
called resource identi!ers. The proposed approach is based
on the concept of resource in RESTful design. Particularly,

2previously known as Swagger speci!cation

we formalize various kinds of resources (e.g., collection,
singleton) in REST APIs. Next, using the identi!ed re-
source types, we propose a delexicalization technique to re-
placementions of each resource (e.g., customers) with a cor-
responding resource identi!er (e.g., Collection_1). As such,
for a given operation (e.g., GET /customers/{customer_id}),
the model learns to translate the delexicalized operation
(e.g., GET Collection_1 Singleton_1) to a delexicalized
canonical templates (e.g., “get a Collection_1 with Single-
ton_1 being «Singleton_1»”). A resource identi!er consists
of two parts: (1) the type of resource and (2) a number n
which indicates n-th occurrence of a resource type in a
given operation. Resource identi!ers are then used in time
of translation to lexicalize the output of the sequence-
to-sequence model (e.g., “get a Collection_1 with Single-
ton_1 being «Singleton_1»”) to generate a canonical tem-
plate (e.g., “get a customer with customer id being «cus-
tomer_id»”). Delexicalization is done to reduce the impact
of OOV and force the model to learn the pattern of trans-
lating resources in an operation to a canonical template
(rather than translating a sequence of words).

• Analysis of Public REST APIs. We analyze and give
insight into a large set of public REST APIs. It includes
how REST APIs are designed in practice and drifts from
the RESTful principles (design guidelines such as using
plural names, appropriate use of HTTP verbs). We also pro-
vide inside into distribution of parameters (e.g., parameter
types and location) and how values can be sampled vari-
ous types of parameters to generate canonical utterances
out of canonical templates using API speci!cations (e.g.,
example values, similar parameters with sample values).
Automatic sampling values for parameters is essential for
automatic generation of canonical utterances because cur-
rent bot development platforms (e.g., IBMWatson) require
annotated utterances (not canonical templates with place-
holders).

2 RELATEDWORK

REST APIs. REST is an architectural style and a guideline of
how to use the HTTP protocol3 for designing Web services [12].
RESTful web services leverage HTTP using speci!c architectural
principles (i,e., addressability, uniform interface) [13]. Since REST
is just a guideline without standardization, it is not surprising that
API developers only partially follow the guidelines or interpret
REST in their own ways [5]. In particular, this paper is built
upon one of the most important principles in REST, namely the
uniform interface principle. According to this principle, resources
must be accessed and manipulated using proper HTTP methods
(e.g., DELETE, GET) and status codes (e.g. using “201” to show a
resource is created, and “404” to show resource does not exist).
The uniform interface requires API to be developed uniformly
to ensure that API users can understand the functionality of
each operation without reading tedious and long descriptions. To
ensure uniform interface, API developers are required to follow
design patterns (e.g., using plural names to name collection of
resources, using lowercase letters in paths). Existing works have
listed not only those patterns but also anti-patterns in designing
interfaces of REST APIs [5, 14, 15]. Examples of anti-patterns

3REST isn’t protocol-speci!c, but it is designed over HTTP nowadays
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also include using underline in paths and adding !le extensions
in paths [4, 6].

In this paper, we build upon existing works on designing inter-
faces for REST APIs. In particular, we formalize resource types
based on patterns and anti-patterns recognized in prior works
and built a resource tagger to annotate the segments of a given
operation with resource types.

Conversational Agents and Web APIs. Research on conver-
sational agents (e.i., bots, chatbots, dialog systems, virtual as-
sistants) dates back to decades ago [16]. However, there have
been only a few targeting web APIs, particularly because of the
lack of training samples [1–3]. In absence of training data, op-
erations descriptions (e.g., having long descriptions containing
unnecessary information) have been used for detecting the user’s
intent [3]. However, operations often lack proper descriptions,
and operations descriptions may share the same vocabularies
in a single API, making it di$cult for the bot to di#erentiate
between operations [3]. Moreover, these descriptions are rarely
similar to the natural language utterances which are used by bot
users to interact with bots. That is to say, these descriptions are
originally written to document operations (not intended to be
used for training bots) [2, 3].

Other approaches rely on domain experts for generating initial
utterances [1, 7, 8]. These approaches include (i) natural language
templates (a canonical utterance with placeholders) which are
written by experts [17], and (ii) domain-speci!c grammars such
as rules written for semantic parsers [1, 8]. Thus in either ap-
proach, manual e#ort is required to modify the templates of
grammar if API speci!cations are changed. In the template-based
approach, for each operation, a few templates are created in
which entities are replaced with placeholders (e.g., “search for a

"ight from ORIGIN to DESTINATION”). Next, by feeding values (e.g.,
ORIGIN=[Sydney] and DESTINATION=[Houston]) to the placeholders
canonical utterances are generated (e.g., “search for a "ight from

Sydney to Houston“ ). Likewise, generative grammars have been
used by semantic parsers for generating canonical utterances
[1, 17, 18]. In this approach, logical forms are automatically gen-
erated based on the expert-written grammar rules. The grammar
is used to automatically produce canonical utterances for the
randomly generated logical forms [1]. Both generative grammar
and template-based approaches require human e#orts, making
them hard and costly to scale.

In our work, by adopting ideas from the principles of RESTful
design and machine translation techniques, we tackle the main
issue which is creating the canonical utterances for RESTful APIs.
As opposed to current techniques such as generative-grammar-
based or template-based approaches, the proposed approach is
domain-independent and can automatically generate initial ut-
terances without human e#orts. We thus pave the way for au-
tomating the process of building virtual assistants, which serve
a large number of tasks, by automating the process of training
datasets for new/updated APIs.

User Utterance Acquisition Methods. Current approaches
for obtaining training utterances usually involves three main
paradigms: launching a prototype to get utterances from end-
users, employing crowd workers, and using automatic paraphras-
ing techniques to paraphrase existing utterances [19].

In the prototype-based approach, a bot is built without any
(rule-based methods) or with a small number of annotated utter-
ances. Such prototypes are able to obtain utterances from users to
further improve the bots based on supervised machine learning

paths:   
   /customers/{customer_id}:     
     get:       
        description: gets a customer by its id, 
        summary: returns a customer by its id,      
        parameters:       
        - {  
            name: customer_id, 
            in: path, 
            description: customer identifier, 
            required: true, 
            type: string 
          }       

Figure 3: Excerpt of an OpenAPI Speci!cation

techniques [20]. However, in case of using supervised machine
learning methods in building the prototype, collecting initial an-
notated user utterances is still needed. Collecting an initial set
of training samples is essential since the prototype bot must be
accurate enough to serve existing user’s requests without turning
them away from the bot.

Crowdsourcing has been also used extensively to obtain nat-
ural language corpora for conversational agents [1, 8, 17, 18].
In this approach, a canonical utterance is provided as a starting
point, and workers are asked to paraphrase the expression to new
variations. Automatic paraphrasing techniques have also been
employed to automatically generate training data [21–24]. This
is done by paraphrasing canonical utterances to obtain new ut-
terances automatically. However, while automatic paraphrasing
is scalable and potentially cheaper, even the state-of-art models
fall short in producing su$ciently diverse paraphrasing [25],
and fail in producing multiple semantically-correct paraphrases
for a single expression [26–28]. Nevertheless, these automatic
approaches are still bene!cial for bootstrapping a bot.

In this paper, we propose a dataset and an automated, scalable,
and domain-independent approach for generating canonical ut-
terances. Generated canonical utterances can be next fed to either
automatic paraphrasing systems or crowdsourcing techniques to
generate training samples for task-oriented bots.

3 THE API2CAN DATASET

In this section, we explain the process of building the API2CAN
dataset, and we provide its statistics (e.g., size).

3.1 API2CAN Generation Process

To generate the training dataset (pairs of operations and canon-
ical utterances), we obtained OpenAPI speci!cations indexed
in OpenAPI Directory4. OpenAPI Directory is a Wikipedia for
REST APIs5, and OpenAPI speci!cation is a standard documen-
tation format for REST APIs. As shown in Figure 3, the OpenAPI
speci!cation includes description, and information about the
parameters (e.g., data types, examples) of each operation. We ob-
tained the latest version of each API index in OpenAPI Directory,
and totally collected 983 APIs, containing 18,277 operations in
total (18.59 operation per an API on average). Finally, we gener-
ated canonical utterances for each of the extracted operations as
described in the rest of this section and illustrated in Figure 4.

Candidate Sentence Extraction. We extract a candidate sen-
tence from either the summary or description of the operation
speci!cation. For a given operation, the description (and sum-
mary) of the operation (e.g., “gets a [customer] (#/de!nitions/-

Customer) by id. The response contains ...” ) is pre-processed by

4https://github.com/APIs-guru/openapi-directory/tree/master/APIs
5https://apis.guru/browse-apis/
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Convert the candidate sentence 
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Figure 4: Process of Canonical Utterance Extraction

removing HTML tags, lowercasing, and removing hyperlinks
(e.g., “gets a customer by id. the response contains ...” ) and then
it is split into its sentences (e.g., “gets a customer by id.”, “the
response contains ...”). Next, the !rst sentence starting with a verb
(e.g., “gets a customer by id” ) is chosen as a potential canonical
utterance, and its verb is converted to its imperative form (e.g.,
“get a customer by id” ).

Parameter Injection While the extracted sentence is usually a
proper English sentence, it cannot be considered as a user utter-
ance. That is because the sentence often points to the parameters
of the operation without specifying their values. For example,
given an operation like “GET /customers/{customer_id}” the ex-
tracted sentence is often similar to sentences like “get a customer

by id” or “return a customer”. However, we are interested in anno-
tated canonical utterances such as “get the customer with id being

«id»”, and “get the customer when its id is «id»” ; where “«id»” is a
sampled valued for customer_id. To consider parameter values in
the extracted sentence, we created a context-free grammar (CFG)
as brie"y shown in Table 1. This grammar has been created based
on our observations of how operation descriptions are written
(how parameters are mentioned in the extracted candidate sen-
tences) by API developers. With this grammar, a list of possible
mentions of parameters in the operation description is generated
(e.g., “by customer id”, “based on id”, “with the speci!ed id” ). Then
the lengthiest mention found in the sentence is replaced with
“with NPN being «PN»”, where NPN and PN are human-readable
version of the parameter name (e.g., customer_id −→ customer
id) and its actual name respectively (e.g., “get a customer with

customer id being «customer_id»” ).
We also observed that path parameters are not usually men-

tioned in operation descriptions in API speci!cations. For ex-
ample, in an operation description like “returns an account for a

given customer” the path parameter accountId and customerId are
absent, but the lemmatized name of collections “customer” and
“account” are present. By using the information obtained from
detecting such resources (see Section 4.2), it is possible to convert
the description into “return an account with id being «customer_id»

for a given customer with id being «account_id»”.
In the process of generating the API2CAN dataset, a few types

of parameters were automatically ignored. As such, we did not

Table 1: Parameter Replacement Context Free Grammar

Rule

N −→ {PN }|{NPN }|{LPN }|{RN }|{NRN }|{LRN }

CPX −→ ‘by’ | ‘based on’ | ‘by given’ | ‘based on given’ | ...

R −→ N | CPX N | N CPX N

{PN} Parameter Name (e.g., “customer_id”, “CustomerID”, “CustomersID”)

{NPN} Normalized PN by splitting concatenated words and lowercasing (e.g.,
“customer id”, “customers id”)

{LPN} Lemmatized NPN (e.g., “customer id”)

{RN} Resource Name (e.g., “Customers”)

{NRN} Normalized RN (e.g., “customers”)

{RN} Lemmatized NRN (e.g., “customer”)

include header parameters6 since they are mostly used for authen-
tication, caching, or exchanging information such asContent-Type
and User-Agent. Thus such parameters do not specify entities of
users’ intentions. Likewise, using a list of prede!ned parameter
names (e.g., auth, v1.1), we automatically ignored authentication

and versioning parameters because bot users are not expected to
directly specify such parameters while talking to a bot. Moreover,
since the payload of an operation can contain inner objects, we
assume that all attributes in the expected payload of an opera-
tion are "attened. This is done by concatenating the ancestors’
attributes with the inner objects’ attributes. For instance, the
parameters in the following payload are "attened to “customer
name” and “customer surname”:

{

  "customer": {

    "name": "string",

    "surname": "string"

  }

}

1

2

3

4

5

6

7
As such, we convert complex objects to a list of parameters that
can be asked from a user during a conversation.

3.2 Dataset Statistics

By processing all API speci!cations, we were able to automati-
cally generate a dataset called API2CAN 7 which includes 14,370
pairs of operations and their corresponding canonical utterances.
We next divided the dataset into three parts as summarized in Ta-
ble 2, and manually checked and corrected extracted utterances
in the test dataset to ensure a fair assessment of models learned
on the dataset8.

Table 2: API2CAN Statistics

Dataset APIs Size

Train Dataset 858 13029

Validation Dataset 50 433

Test Dataset 50 908

Figure 5 shows the number of operations in API2CAN based
on the HTTP verbs (e.g., GET, POST). As shown in Figure 5, the

6Header !elds are components of the header section of request in the Hypertext
Transfer Protocol (HTTP).

7https://github.com/mysilver/API2CAN
8Train and validation datasets will be also manually revised in near future
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Figure 5: API2CAN Breakdown by HTTP Verb
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Figure 6: API2CAN Breakdown by Length

majority of operations are of GET methods which are usually
used for retrieving information (e.g., “get the list of customers” ),
followed by POST methods which are usually used for creating
resources (e.g., “creating a new customer” ). The DELETE, PUT,
and PATCH methods are also used for removing (e.g., “delete a
customer by id being «id»” ), replacing (e.g., “replace a customer by

id being «id»” ), and partially updating (e.g., “update a customer

by id being «id»” ) a resource.
Figure 6 also represents the distribution of number of seg-

ments in the operations9 as well as the number of words in the
generated canonical templates. As shown in Figure 6, many of
the operations consist of less than 14 segments by 4 being the
most common. Given the typical number of segments in the oper-
ations, Neural Machine Translation (NMT)-based approaches can
be used for the generation of canonical sentences [29, 30]. On the
other hand, the canonical sentences in the API2CAN dataset are
longer. The reason behind having such lengthier utterances is the
existence of parameters, and operations with more parameters
tend to be lengthier. However, given the maximum length of
canonical sentences, NMT-based approaches can still perform
well [30].

4 NEURAL CANONICAL SENTENCE
GENERATION

Neural Machine Translation (NMT) systems are usually based on
encoder-decoder architecture to directly translate a sentence in
one language to a sentence in a di#erent language. As shown in
Figure 7, generating a canonical template for a given operation
can be also considered as a translation task. As such, the opera-
tion is encoded into a vector, and the vector is next decoded into
an annotated canonical template. However, the main challenge
in building such a translation model is the lack of a large train-
ing dataset. Since deep-learning models are data thirty, training
requires a very large and diverse set of training samples (ideally
millions of pairs of operations and their associating user utter-
ances). As mentioned in the previous section, we automatically
generated a dataset called API2CAN. However, such a dataset is
still not large enough for training sequence-to-sequence models.

Having a large set of training samples requires a very large
diverse set of operations as well. However, such a large set of APIs
and operations is not available. One of the serious repercussions
of the lack of such a set of operations is that training samples lack
a very large number of possible words that can possibly appear

9For example, “GET /customers/{customer_id}” has two segments:
“customers” and “{customer_id}”

in the operations (but did not appear in the training dataset). As a
result, the models trained on such datasets will face many out-of-
vocabulary words at runtime. To address this issue, we propose a
delexicalization technique called resource-based delexicalization.
As such, we reduce the impact of the out-of-vocabulary problem
and force the model to learn the pattern of translating resources
in an operation to a canonical template (instead of translating a
sequence of words).

4.1 Resources in REST

In RESTful design, primary data representation is called resource.
A resource is an object with a type, associated data, relationships
to other resources, and a set of HTTP verbs (e.g., GET, POST)
that operate on it. Designing RESTful APIs often involves fol-
lowing conventions in structuring URIs (endpoints) and naming
resources. Examples include using plural nouns for naming re-
sources, using the “GET” method for retrieving a resource and
using the “POST” method for creating a new resource.

In RESTful design, resources can be of various types. Most com-
monly, a resource can be a document or a collection. A document,
which is also called singleton resource, represents a single in-
stance of the resource. For example, “/customers/{customer_id}”
represents a customer that is identi!ed by a path parameter
(“customer_id”). On the other hand, a collection resource repre-
sents all instances of a resource type such as “/customers”. Re-
sources can be also nested. As such, a resource may also contain
a sub-collection (“/customers/{customer_id} /accounts”), or a
singleton resource (e.g., “/customers/{customer_id} /accounts/

{account_id}”). In RESTful design, CRUD actions (create, retrieve,
update and delete) over resources are shown by HTTP verbs
(e.g., GET, POST). For example, “GET /customers” represents the
action of getting the list of customers, and “POST /customers”
indicates the action of creating a new customer. However, some
actions might not !t into the world of conventional CRUD op-
erations. In such cases, controller resources are used. Controller
resources are like executable functions, with inputs and return-
values. REST APIs rely on action controllers to perform appli-
cation speci!c actions that cannot be logically mapped to one
of the standard HTTP verbs. For example, an operation such
as “GET /customers/{customer_id}/activate” can be used to acti-
vate a customer. Moreover, while it is unconventional, adjectives
also are occasionally used for !ltering resources. For example,
“GET /customers/activated” means getting the list of all activated
customers. In this paper, such adjectives are called attribute con-

trollers.
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While above-mentioned principles are followed by many API
developers, there are still many APIs violate these principles. By
manually exploring APIs and prior works [5, 14, 15], we identi!ed
some unconventional resource types used in designing operations
as summarized in Table 3. A common drift from RESTful princi-
ples is the use of programming conventions in naming resources
(e.g., “createActor”, “get_customers”). Aggregation functions (e.g.,
sum, count) and expected output format of an operation (e.g.,
“json”, “tsb”, “txt”) are also used in designing endpoints. Words
similar to “search” (e.g. “query”, “item-search”) are used to indi-
cate that the operation looks for resources based on given criteria.
Moreover, collections are occasionally !ltered/sorted by using
keywords such as “!ltered-by”, “sort-by”, or appending a resource
name to “By” (e.g., “ByName”, “ByID”). Segments in the endpoints
may also indicate API versions (e.g., v1.12), or authentication end-
points (e.g., auth, login). Even though the aforementioned types
of resources are against the conventional design guidelines of
RESTful design, they are important to detect since still they are
used by API developers in practice.

Table 3: Resource Types

Resource Type Example

Collection /customers

Singleton /customers/{customer_id}

Action Controller /customers/{customer_id}/activate

Attribute Controller /customers/activated

API Specs /api/swagger.yaml

Versioning /api/v1.2/search

Function /AddNewCustomer

Filtering /customers/ByGroup/{group-name}

Search /customers/search

Aggregation /customers/count

File Extension /customers/json

Authentication /api/auth

4.2 Resource-based Delexicalization

In resource-based delexicalization, the input (API call) and output
(canonical template) of the sequence-to-sequence model are con-
verted to a sequence of resource identi!ers as shown in Figure 7.
This is done by replacing mentions of resources (e.g., customers,
customer) with a corresponding resource identi!er (e.g., Collec-
tion_1). A resource identi!er consists of two parts: (i) the type of
resource and (ii) a number n which indicates n-th occurrence of
a resource type in a given operation. This number later is used
in the lexicalization of the output of the sequence-to-sequence
model to generate a canonical template.

To detect resource types, we used the Resource Tagger shown
in Algorithm 1. We convert the raw sequence of words in a
given operation (e.g., “GET /customers/{customer_id}/accounts”)
to a sequence of resource identi!ers (e.g., “get Collection_1

Singleton_1 Collection_2”). Likewise, mentions of resources in
the canonical templates are replaced with their corresponding re-
source identi!ers (e.g., “get all Collection_1 for the Collection_2
with Singleton_1 being Singleton_1”). The intuition behind the
conversions is to help the model to focus on translating a se-
quence of resources instead of words.

Algorithm 1: Resource Tagger

Input : segments of the operation
Result: List of resources

1 resources←− [];

2 i ←− size(segments);

3 for i ← lenдth(seдments) down to 1 do

4 current←− segments[i];

5 resource←− new Resource();

6 resource.name←− current;

7 previous←− ϕ;

8 if i > 1 then

9 previous←− segments[i − 1];

10 end

11 resource.type←− “Unknown” ;

12 if current is a path parameter then

13 if previous is a plural noun and an identi!er then

14 resource.type←− “Singleton” ;

15 resource.collection←− previous;

16 else

17 resource.type←− “Unknown Param” ;

18 end

19 else

20 if current starts with “by” then

21 resource.type←− “Filtering” ;

22 else if current in [“count”, “min”, ...] then

23 resource.type←− “Aggregation” ;

24 else if current in [“auth”, “token”, ...] then

25 resource.type←− “Authentication” ;

26 else if current in [“pdf”, “json”, ...] then

27 resource.type←− “File Extension” ;

28 else if current in [“version”, “v1”, ...] then

29 resource.type←− “Versioning” ;

30 else if current in [“swagger.yaml”, ...] then

31 resource.type←− “API Specs” ;

32 else if any of [“search”, “query”, ...] in current then

33 resource.type←− “Search” ;

34 else if current is a phrase and starts with a verb then

35 resource.type←− “Function” ;

36 else if current is a plural noun then

37 resource.type←− “Collection”

38 else if current is a verb then

39 resource.type←− “Action Controller” ;

40 else if current is an adjective then

41 resource.type←− “Attribute Controller” ;

42 end

43 resources.append(resource);

44 end

45 return reversed(resources)

In the time of using the model for generating canonical tem-
plates, the tagged resource identi!ers are replaced with their
corresponding resource names (e.g., Collection_2 −→ customers).
Meanwhile, in the process of replacing resource tags, occasion-
ally grammatical errors might happen such as having plural
nouns instead of singular forms. To make the !nal generated
canonical template more robust, we used LanguageTool 10 (an

10https://languagetool.org
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GET /customers/{id}/accounts

get all Collection_1 for the Collection_2 
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Figure 7: Canonical Template Generation via Resource-

based Delexicalization

open-source tool for automatically detecting and correcting lin-
guistically errors) to correct linguistic errors in the generated
canonical templates.

5 PARAMETER VALUE SAMPLING

To obtain canonical utterances, values must be sampled for the
parameters (placeholders) inside a given canonical template. The
sampled values help to generate canonical utterances which are
understandable sentences without any placeholders. Canonical
utterances can be paraphrased later either automatically or man-
ually by crowd-workers to diversify the training samples. In this
section, we investigate how values can be sampled for parameters
of REST APIs. More speci!cally, we identi!ed !ve main sources
as follows.

(1) Common Parameters. Parameters such as identi!ers
(e.g., customer_id), emails, and dates are ubiquitous in
REST APIs. We built a set of such parameters paired with
values. As such, a short random string or numeric value is
generated for identi!ers based on the parameter data type.
Likewise, mock email addresses and dates are generated
automatically.

(2) API Invocation. By invocation of API methods that re-
turn a list of resources (e.g., “GET /customers”), we can
obtain a large number of values for various attributes (e.g.,
customer names, customer ids) of the resource. Such val-
ues are reliable since they correspond to real values of
entities in the retrieved resources. Thus they can be used
reliably to generate canonical utterances out of canonical
templates.

(3) OpenAPI Speci!cation. An OpenAPI speci!cation may
include an example or default values11 for parameters
of each operation. Since these values are generated by

11An example illustrates what the value is supposed to be for a given parameter.
But a default value is what the server uses if the client does not provide the value.

API owners, they are reliable. Moreover, API speci!cation
speci!es the data-types of parameters. This can also be
used to automatically generate values for parameters in
the absence of example and default values. For example,
in the case of enumeration types (e.g., gender −→ [MALE,
FEMALE]), one of the elements is randomly selected as a
parameter value. In the case of numeric parameters (e.g.
size), a random number is generated within the speci-
!ed range (e.g., between 1 to 10) in the API speci!cation.
Likewise, for the parameters whose values follow regu-
lar expressions (e.g., “[0-9]%” indicates a string that has a
single-digit before a percent sign), random sequences are
generated to ful!ll the given pattern in the API speci!ca-
tion (e.g., “8%”).

(4) Similar Parameters. Having a large set of API speci!ca-
tions, example values can be found from similar parame-
ters (sharing the same name and datatype). This can be
possible by processing parameters of API repositories such
as OpenAPI directory.

(5) Named Entities. Knowledge graphs provide informa-
tion about various entities (e.g., cities, people, restaurants,
books, authors). Examples of such knowledge graphs in-
clude for Freebase [31], DBpedia [32], Wikidata[33], and
YAGO [34]. For a given entity type such as “restaurant” in
the restaurant domain, these knowledge graphs might con-
tain numerous entities (e.g., KFC, Domino’s). Such knowl-
edge bases can be used to sample values for a given param-
eter if the name of the parameter matches an entity type.
In this paper, we use Wikidata to sample values for entity
types. Wikidata is a knowledge graph which is populated
by processing Wikimedia projects such as Wikipedia.

6 EXPERIMENTS & RESULTS

Before delving into the experiments, we brie"y explain the train-
ing process in the case of using neural translation methods. We
trained the neural models using the Adam optimizer [35] with
an initial learning rate of 0.998, a dropout of 0.4 between recur-
rent layers (e.g., LSTM, BiLSTM), and a batch size of 512. It is
worth noting that the hyper-parameters are initial con!gurations
set based on the size of the dataset and values suggested in the
literature, and !nding optimized values requires further stud-
ies. Furthermore, in case of not using delexicalization, we also
populate word embeddings of the model with GloVe [36].

In the time of translation, we used beam search with a beam
size of 10 to obtain multiple translations for a given operation,
and then the !rst translation with the same number of placehold-
ers as the number of the parameters in the given operation is
considered as its canonical template. Moreover, we replaced the
generated unknown tokens with the source token that had the
highest attention weight to avoid the out-of-vocabulary problem.

6.1 Translation Methods

We trained translationmodels using di#erent sequence-to-sequence
architectures and we also built a rule-based translator as de-
scribed next. Given the size of the API2CAN dataset, we con!g-
ured the models using two layers for both encoding and decoding
parts at the most.

GRU. This model consists of two layers (each having 256 units)
of Gated Recurrent Units (GRUs) [37] for both encoding and
decoding layers using the attention mechanism [38].
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Table 4: Excerpt of Transformation Rules

# Resources Sequence Transformation Rule

1 Rule GET /{c}/ get list of {c.name}
Example GET /customers get list of customers

2 Rule DELETE /{c}/ delete all {c.name}
Example DELETE /customers delete all customers

3 Rule GET /{c}/{s}/ get the {sinдular (c .name)} with {s.name} being {s.name}
Example GET /customers/{id} get the customer with id being <id>

4 Rule DELETE /{c}/{s}/ delete the {sinдular (c .name)} with {s.name} being <{s.name}>
Example DELETE /customers/{id} delete the customer with id being <id>

6 Rule PUT /{c}/{s}/ replace the {sinдular (c .name)} with {s.name} being <{s.name}>
Example PUT /customers/{id} replace the customer with id being <id>

7 Rule GET /{c}/{a}/ get {a.name} {sinдular (c .name)}
Example GET /customers/first get !rst customer

8 Rule GET /{c1}/{s}/{c2}/ get the list of {c2.name} of the {sinдular (c1.name)} with {s.name} being {s.name}
Example GET /customers/{id}/accounts get the list of accounts of the customer with id being <id>

LSTM. This model consists of two layers (each having 256 units)
of two layers of LSTM for both encoding and decoding using the
attention mechanism [38].

CNN. We also built a sequence-to-sequence model based on
Convolutional Neural Network (CNN) as proposed in [39]. In
particular, we used 3x3 convolutions (one layer of 256 units) with
the attention mechanism [38].

BiLSTM-LSTM. This model consists of two layers (each having
256 units) of Bidirectional Long-Short Term Memory (BiLSTM)
[40] for encoding, and two layers (each having 256 units) of
Long-Short Term Memory (LSTM) [41] for the decoder using the
attention mechanism [38].

Transformer. The Transformer architecture [42] has been shown
to perform very strong in machine translation tasks [43, 44]. We
used the Transformer model implemented by OpenNMT [45]
using the same hyper-parameters as the original paper [42]. For
an in-depth explanation of the model, we refer the interested
reader to the original paper [42].

Rule-based (RB) Translator. Based on the concept of resource
in REST APIs, we also built a rule-based translation system to
translate operations to canonical templates (shown in Algorithm
2). First, the algorithm extracts the resources of a given operation
based on the resource types extracted by the Resource Tagger

algorithm (see Algorithm 1). Next, the algorithm iterates over
an ordered set of transformation rules to transform the oper-
ation to a canonical template. A transformation rule is a hand-
crafted Python function which is able to translate a speci!c HTTP
method (e.g., GET) and sequence of resource types (e.g., a col-
lection resource followed by a singleton resource) to a canonical
template. We created 33 transformation rules by the time of writ-
ing this paper, some of which are listed in Table 4. In this table,
{c}, {s}, and {a} stands for collection, singleton, and attribute
controller respectively. And the sinдular (.) function returns the

singular form of a given name. For instance, in case of an oper-
ation like “GET /customers”, given that the bot user requests a
collection of customers, the provided transformer (rule number
1 in Table 4) is able to generate a canonical template as “get the
list of customers”. Following Python function also presents the
transformation rule implementation which is able to translate
such operations (a single collection resource when the HTTP
method is “GET”):

def (resources, verb):
   if verb != "GET" or len(resources) != 1:

  return
   if resources[0].type != "Collection":

  return
collection = resources[0]

   return "get the list of {}".format(collection.name)

A transformer is written based on the assumption that a se-
quence of resource types has special meaning. For example,
considering “GET /customers/{id}/accounts” and “GET /users

/{user_id}/aliases”, both operations share the sameHTTP verbs
and sequence of resource types (a singleton followed by a col-
lection). In such cases, possible canonical templates are “get ac-
counts of a customer when its id is «id»” and “get aliases of a user
when its user id is «user_id»”. Thus such a sequence of resource
types can be converted to a rule like: “get {collection} of a {single-
ton.collection} when its {singleton.name} is «{singleton.name}»” ; in
which “{}” represents placeholders and singleton.collection repre-
sents the name of the collection for the given singleton resource
(e.g., customers, users). Thus adding a new transformation rule
would mean generalizing a speci!c sequence of resources types
that is not considered in the existing translators. However, as
discussed earlier, since many APIs do not conform to the RESTful
principles, creating a comprehensive set of transformation rules
is very challenging.

6.2 Canonical Utterance Generation

Quantitative Analysis. For each of the aforementioned NMT
architectures, we trained models with and without using the
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Algorithm 2: Rule-Based Translator

Input :operation, transformation_rules written by experts
Result: A canonical template

1 resources←− ResourceTagger(operation);

2 foreach t ∈ trans f ormation_rules do

3 canonical←− t.transform(resources, operation.verb);

4 if canonical , ϕ then

5 param_clause←− to_clause(operation.parameters) ;

6 canonical←− canonical + " " + param_clause ;

7 return canonical;

8 end

9 end

10 return ϕ

proposed resource-based delexicalization approach as described
in Section 4.2. In these experiments, we did not tune any hyper
parameters and trained the models on the training dataset. For
each baseline, we saved the model after 10000 steps and used
the model with the minimum perplexity based on the validation
set to compare with other con!gurations. Table 5 presents the
performance of each model in terms of machine translation met-
rics: bilingual evaluation understudy (BLEU) [46], Google’s BLEU
Score (GLEU) [47], and Character n-gram F-score (CHNF) [48].

In the case of using the RB-Translator, hand-crafted transfor-
mation rules are able to generate canonical templates for 26%
of the operations. Creating such transformation rules is very
challenging for lengthy operations as well as those not follow-
ing RESTful principles. We did not include RB-Translators’ per-
formance in Table 5 because the results are not comparable to
the rest. Our experiments indicate that RB-Translator performs
reasonably well (BLEU=0.744, GLEU=0.746, and CHRF=0.850).
However, the BiLSTM-LSTMmodel built on the proposed dataset
using the resource-based delexicalization technique outperforms
the RB-Translator (BLEU=0.876, GLEU=0.909, and CHRF=0.971),
ignoring the operations which RB-Translator could not trans-
late. As experiments indicate, Delexicalized BiLSTM-LSTM out-
performs the rest of the translation systems, and resource-based
delexicalization improves the performance of NMT systems by
large.

Table 5: Translation Performance

Translation-Method BLEU GLEU CHRF

Delexicalized BiLSTM-LSTM 0.582 0.532 0.686

Delexicalized Transformer 0.511 0.462 0.619

Delexicalized LSTM 0.503 0.470 0.652

Delexicalized CNN 0.507 0.458 0.601

Delexicalized GRU 0.481 0.450 0.623

BiLSTM-LSTM 0.318 0.266 0.421

Transformer 0.295 0.248 0.397

LSTM 0.278 0.226 0.381

CNN 0.271 0.220 0.379

GRU 0.251 0.198 0.347

Qualitative Analysis. Table 6 gives a few examples of canonical
templates generated by the proposed translator (Delexicalized
BiLSTM-LSTM). While the machine-translation metrics do not
show very strong translation performance in Table 5, our man-
ual inspections revealed that these metrics do not re"ect the
actual performance of the proposed translators. Therefore, we
conducted another experiment to manually evaluated the trans-
lated operations. For this reason, we asked two experts to rate
the generated canonical templates manually using a Likert scale
(in a range of 1 to 5 with 5 showing the most appropriate canon-
ical sentence). In the experiment, the experts were given pairs
of generated canonical utterances and operations (including the
description of the operation in the API speci!cation). Next, they
were asked to rate the generated canonical templates in a range
of 1 to 5.

Figure 8 shows the Likert assessment for the best performing
models in Table 5. Based on this experiment, canonical templates
generated by RB-Translator are rated 4.47 out 5, and those of the
delexicalized BiLSTM-LSTM are rated 4.06 out of 5 (by averag-
ing the scores given by the annotators). The overall Kappa test
showed a high agreement coe$cient between the raters by Kappa
being 0.86 [49]. Based on manual inspections, as also shown in
Table 6, we observed that when APIs are designed based on the
RESTful principles the delexicalized Delexicalized performs as
good as RB-Translator.

Figure 8 also shows how the automatically generated dataset
(API2CAN ) represents their corresponding operations. Based on
the rates given by the annotators, the dataset (training part) is
also of decent quality while being noisy, indicating that the pro-
posed set of heuristics for generating the dataset are well-de!ned.
Given the promising quality of generated canonical templates, we
concluded that the noises in the dataset can be ignored. However,
yet it is desirable to manually clean the dataset.

Table 6: Examples of Generated Canonical Templates

Sample

Operation GET /v2/taxonomies/

Canonical fetch all taxonomies

Operation PUT /api/v2/shop_accounts/{id}

Canonical update a shop account with id being <id>

Operation DELETE /api/v1/user/devices/{serial}

Canonical delete a device with serial being <serial>

Operation GET /user/ratings/query

Canonical get a list of ratings that match the query

Operation GET /v1/getLocations

Canonical get a list of locations

Operation POST /series/{id}/images/query

Canonical query the images of the series with id being
<id>

Operation PUT /api /hotel /v0 /hotels /{hotelId}

/rateplans/batch/$rates

Canonical set rates for rate plans of a hotel with hotel id
being <hotelId>
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Figure 8: Assessment of Generated Canonical Templates

Error Analysis. Even though the proposed method outperforms
the baselines, it still occasionally fails in generating high-quality
canonical templates. Based on our investigations, there are three
main sources of error in generating the canonical templates:
(i) detecting resource types, (ii) translating APIs which do not
conform to RESTful principles, and (iii) lengthy operations with
many segments.

Detecting resource types requires natural language processing
tools to detect parts of speech (POS) of a word (e.g., verb, noun,
adjective), and to detect if a given noun is plural or singular
(particularly for unknown words or phrases and uncountable
nouns). However, these tools occasionally fail. Speci!cally, POS
taggers are built for detecting parts of speech for words inside a
sentence. Thus it is not surprising if they fail in detecting if a word
like “rate” is a verb or noun in a given operation. For example, an
operation like GET /participation/rate can indicate both “get
the rate of participations” and “rate the participants”. Another
source of such issues is tokenization. It is common in APIs to
concatenate words (e.g., whoami, addons, registrierkasseuuid,
AddToIMDB). While it seems trivial for an individual to split
these words, existing tools frequently fail. Such issues a#ect
the process of detecting resources and consequently impact the
generation of canonical templates negatively.

Unconventional API design (not conforming to RESTful princi-
ples) also extensively impacts the quality of generated canonical
templates. Common drifts from RESTful principles includes using
wrong HTTP verb (e.g., “POST” for retrieving information), using
singular nouns for showing collections (e.g. /customer), adding
non-resource parts to the path of the operation (e.g., adding re-
sponse format like “json” in /customers/json. Since those API
developers (who do not conform to design guidelines) follow
their own thoughts instead of accepted rules, the automatic gen-
eration of canonical templates is challenging.

Lengthy operations (those with roughly more than 10 seg-
ments) naturally are rare in REST APIs. Such lengthy operations
convey more complex intents than those with a lesser number
of segments. As shown in Figure 6, unfortunately, such opera-
tions are also rare in the proposed dataset (API2CAN ), impacting
translation of lengthy operations.

6.3 Parameter Value Sampling

This section provides an analysis of parameters in the RESTful
APIs and evaluates the proposed parameter sampling approach
which is used for generating canonical utterances out of canonical
templates. To this end, we processed API speci!cations which
are indexed in OpenAPI Directory. Based on our analysis, the
dataset contains 145971 parameters in total, which indicates that
an operation has 8.5 parameters on average.

Figure 9 presents statistics of parameters in the whole list of
API speci!cations in the OpenAPI Directory. As shown in the
right-hand pie chart, most of the parameters are located in the
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Figure 9: Parameter Type and Location Statistics

payload (body) of APIs, followed by query and path parameters.
Figure 9 also shows the percentages of parameter data types in
the collection with strings being the most common type of pa-
rameters. About 1.5% of string parameters are de!ned by regular
expressions, and 4.8% of them can be associated with an entity
type12. String parameters are followed by integers, booleans,
numbers, and enumerations. Moreover, some parameters are left
without any type, or they are given general parameter types such
as “object” without any schemes. These parameters are combined
together in the left-hand pie chart in Figure 9 with a single label–
“others”. Moreover, 28% of parameters are required parameters
(not optional), 10.6% of parameters have not assigned any value
in the API speci!cations, and 26% of all parameters are identi!ers
(e.g., id, UUID). Thus, sampling values is required only for less
than 10.6% of parameters (those without any values). In particu-
lar, value sampling for string parameters requires more attention.
That is because string parameters are widely used, and they are
more di$cult to automatically be assigned values in comparison
to other types of parameters (e.g., integers, enumerations).

To evaluate how well the proposed method generates sam-
ple values for parameters, we conducted an experiment. Since
generating sample values for data types such as numbers and
enumerations is straightforward, we only considered string pa-
rameters in this experiment. To this end, we randomly selected
200 parameters and asked an expert to annotate if a sampled
value is appropriate for the given value or not. The results indi-
cate that 68 percent of sampled values are appropriate for given
parameters. The main reason for inappropriate sampled values
is noises in the API speci!cations. For instance, developers oc-
casionally describe the parameters in the example part instead
of the description part of the documentation. For instance, for
a string parameter like “customer_id”, the example part may be
!lled by “a valid customer id”. Moreover, sometimes the same pa-
rameter name is used in di#erent contexts for di#erent purposes.
For example, the parameter name like “name” which can be used
for representing the name of a person, school, or any object.

7 CONCLUSION & FUTUREWORK

This paper aimed at addressing an important shortcoming in
current approaches for acquiring canonical utterances. In this
paper, we demonstrated that the generation of canonical utter-
ances can be considered as a machine translation task. As such,
our work also aimed at addressing an important challenge in
training supervised neural machine translators, namely the lack

12We looked up the parameter name in Wikidata to !nd if there is associating
entity type
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of training data for translating operations to canonical templates.
By processing a large set of API speci!cations and based on a set
of heuristics, we build a dataset called API2CAN. However, deep-
learning-based approaches require larger sets of training samples
to train domain-independent models. Thus, by formalizing and
de!ning resources in REST APIs, we proposed a delexicalization
technique to convert an operation to a tagged sequence of re-
sources to help sequence-to-sequence models to learn from such
a dataset. In addition, we showed how parameter values can be
sampled to feed placeholders in a canonical template and gen-
erate canonical utterances. We also gave a systematic analysis
of web APIs and their parameters, indicating the importance
of string parameters in automating the generation of canonical
utterances.

In our future work, we will be working on improving the
dataset (API2CAN ). Moreover, given that ful!lling complex in-
tents usually requires a combination of operations [8, 50], we will
be working on compositions between operations. To achieve this,
it is required to detect the relations between operations and gen-
erate canonical templates for complex tasks (e.g., tasks requiring
conditional operations or compositions of multiple operations).
In future work, we will target these problems, together with
many other exciting opportunities as extensions to this work.
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