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ABSTRACT
Graphs are everywhere. Personalized Page Rank (PPR) is a partic-

ularly important task to support search and exploration within

such datasets. PPR computes the proximity between query nodes

and other nodes in the graph. This is used, among others, for

entity exploration, query expansion, and product recommenda-

tion. Graph databases are used for storing knowledge graphs.

Unfortunately, the exact computation of PPR is computation-

ally expensive. While different solutions have been proposed to

compute PPR values with high precision, these are extremely

complex to implement, and in some cases require heavy pre-

processing. In this work, we sustain that a better approach exists:

particle filtering. Particle filtering methods produce ranks with

sufficient precision while exploiting what graph databases archi-

tectures are already optimized for: navigating local connections.

We present the implementation of such an approach in a popular

commercial database and show how this outperforms the already

implemented functionality. With this, we aim to motivate future

research to optimize and improve upon this research direction.

1 INTRODUCTION
Graphs are everywhere [20], in particular, Knowledge Graphs

(KG) [17] gained increasing attention thanks to their ability to rep-

resent entities and their relationships in many domains. Knowl-

edge graphs model entities as nodes and the relationships among

them as labelled edges. They are used to store the relationships

about products, customers, events, locations, and more.

Personalized Page Rank [4, 5, 9, 12] (PPR) is a particularly

important task to support search and exploration within graphs.

At a high level, PPR extends the well known Page Rank [18] by

computing a local popularity (or proximity) instead of a global

importance score for nodes. In practice, given a small set of

query entities, PPR returns a ranked list of other relevant entities

based on a computed random-walk proximity to the query nodes.

Famous examples of the application of PPR are the Twitter Who
To Follow [8] that suggest to users other users to follow and

the Pinterest related pins suggestions [14]. In other contexts, it

can suggest related scientific articles, related entities, or suggest

products to buy.

When it comes to PPR applications to KGs, a number of aspects

become important, namely: the possibility to use a small set

of nodes as query (e.g., for product recommendation or query

expansion), the ability to include edgeweights in the computation

(given that in a KG different edges have different semantics), and

fast response times for top-k queries (since in practical cases

only a small set of high ranked nodes are required in contrast to

computing such values for all nodes in the graph).
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Currently, graph data management systems (GDBMS) [13] are

the de-facto solution for managing knowledge graphs in transac-

tional settings, thus, they need to support PPR queries. Unfortu-

nately, the exact calculation of PPR is computationally expensive.

In the literature many solutions have been proposed to provide

fast computation of PPR values [2, 6, 7, 10, 11, 15, 19, 22–25]. Yet,

they have been designed with the needs of social networks in

mind, i.e., they focus on single source queries, unlabeled edges,

and high-precision PPR value computations (required for commu-

nity detection [26]). In many cases, they require pre-computation

of indexes and other data-structures. In short, most existing meth-

ods are not designed to focus on the real needs for KG search,

neither they take into account the requirements for being imple-

mented in real-world Graph DBMS.

In this work, we study PPR computation solutions designed

around the needs of Knowledge Graph search and the strengths

of graph databases. We proposed a much simpler approach for

computing Personalized Page Rank queries with multiple sources

and heterogeneous edge weights. To achieve a significant per-

formance in computing the top-k PPR, we extend the damping
function template [4] with the particle filtering procedure [12],
extended to correctly take into account the teleportation probabil-
ity and account for the non-uniform edge importance typical of

KGs. Currently, the only implementation of a similar approach

has been proposed for an in-memory research prototype [16]. In

our work, instead, we show how real word commercial graph

databases can support this functionality.

Our experiments, on real large graphs, demonstrate the su-

periority of this approach (which we have made available as

open-source
1
) against the currently implemented version in a

major commercial GDBMS (Neo4j
2
). Furthermore, this direction

is open to interesting challenges and can foster the development

of new techniques to improve real-world graph databases.

2 RELATEDWORKS
Personalized Page Rank [9] has been initially proposed as an

alternative to global Page Rank since it computes local proximity

to query nodes based on random-walks. Since that seminal work,

many different approaches and implementations have followed.

In general, they follow three alternative strategies, namely (1)

matrix computation, (2) Monte-Carlo simulations, or (3) local

search. For matrix computation, the graph is represented as its

adjacency matrix, as in the original formulation, and different

matrix multiplications are performed to compute the final val-

ues. These approaches [7, 10, 11, 22] are typically computation-

ally expensive, hence they tend to be optimized through heavy

pre-computations and large scale indexing. Matrix computation

approaches are impractical for real-world graph databases, since

GDBMS do not usually represent a graph as an adjacency matrix,

and would require to maintain the pre-computed results.

1
https://github.com/DenisGallo/Neo4j-ParticleFiltering

2
https://neo4j.com/docs/graph-algorithms/
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Monte-Carlo approaches, on the other hand, simulate a num-

ber of random traversals of the graph in order to compute the

final PPR values. Employing this strategy offers few guarantees

on the final output and on the actual response time. In general,

a large number of random traversals are required to obtain re-

liable results. Hence, also in this case, precomputed values and

indexes are employed [23, 24], suffering though from the same

shortcomings discussed earlier.

Local search approaches, start, instead, from the query nodes

and spread a rank value following the local neighborhoods until

some stopping condition verifies. Usually, once this condition is

encountered, they employ some additional Monte-Carlo traver-

sals to refine the obtained approximate results and ensure higher

precision [2, 5, 6, 15, 19, 24, 25]. Yet, most of these approaches

have focused on either source-target queries, i.e., compute the

PPR value of a target node given a source node, or single source

queries with focus on computing high precision PPR values for

very large portions of nodes in the graph. Both these directions,

while useful in cases like social networks, impose an unneces-

sary burden on the system (since they focus on the actual PPR

value instead of just computing a ranking of nodes) and neither

address other important required features, like the necessity to

differentiate edge types, the possibility to have multiple source

nodes in the query, or the requirement of returning a ranked list

of nodes of usually small size (i.e., top-k queries).

Contrary tomost recent literature, following promising prelim-

inary results from knowledge graph exploration [16], we study

a method to enable multi-source, edge-weighted, top-k Person-

alized Page Rank queries within a Graph DBMS. We explicitly

focus on the now prevalent need of Knowledge Graph search and

on fully exploiting the ability of graph databases to efficiently

query the local neighborhood of nodes [13]. Our method extends

the damping function template [4], yet it implements an approach

similar to particle filtering procedure [12] with two main differ-

ences: it has been extended to correctly take into account the

teleportation probability that was not accounted for there, and it

provides the ability to include edge relevance in the calculation,

a feature that has been largely neglected in the literature. This

solution has the advantage that it does not require any internal

ad-hoc data-structure (our solution is a stored procedure of about

two hundreds lines of code) and obtains both fast response time

and high-quality results in practice.

3 APPROXIMATE PERSONALIZED PAGE
RANK COMPUTATION

Given a graph G : ⟨V , E⟩ with V nodes and E edges, the result of

a Personalized Page Rank (PPR) [9] given a set of query nodes

Q⊂V computes a proximity value of every node inV to the nodes

in Q . Formally, the result of the computation is represented as a

vector v, with size |V | representing the stationary distribution of

the Markov chain [9] with state transition given by the equation

(1 − c)Av + cp (1)

Given the column normalized transition probability matrix

A, the teleportation probability c , and the preference vector p.
The matrix A (of size |V | × |V |) contains values between 0 and 1

according to the probability that an edge is traversed (hence the

column normalization), where a value of 0 corresponds to non-

existing edges. In general, a KG is a graph with edges of different

types (an edge-labelled graph) and in many cases, different edge

types are assigned different relevance scores (i.e., a weight in

[0,1]). Furthermore, p is an |V | × 1 column vector, which serves

Algorithm 1 PPR by Particle Filtering

Require: Graph G; Query nodes Q
Require: Restart probability c ∈ [0, 1]; Threshold τ ∈ [0, 1]
Require: Query value k
Ensure: Ranked Top-K nodes

1: p← {}
2: for each qi ∈ Q do
3: p[qi ] ← 1/τ ▷ Initialize Particles

4: while ∃ ni ∈ p | p[ni ] , 0 do
5: temp← {}
6: for each ni ∈ p | p[ni ] , 0 do
7: particles ← p[ni ] × (1 − c)
8: for each e : (ni → nj ) ∈ G do ▷ Sorted by Weight

9: if particles ≤ τ then
10: break
11: passinд←MAX(particles × e .weight(),τ )
12: temp[nj ] ← temp[nj ] + passinд
13: particles ← particles − passinд

14: p← temp
15: for each ni ∈ p do
16: v[ni ] ← v[ni ] + p[ni ] × c ▷ Update score

17: return top-k(v)

as the normalized preference vector, for which p[n],0 and in par-

ticular 0<p[n]≤1 iff n∈Q . Finally, the teleportation probability

c ∈ (0, 1) is typically ≈ 0.15 in the literature [18].

In practice, the goal of the PPR value is to rank nodes, hence

the exact value of the PPR is not necessary as far as the ranking
is preserved. We propose an approximation of this process [4]

and apply an approach similar to the weighted particle filtering
procedure [12] to consider the non-uniform edge weights.

The approach simulates a set of 1/τ floating particles (lines 2-3,
Algorithm 1) starting from each node in the query setQ . At each

iteration (lines 5-16), the particles distribute among the neighbors

of the current node (minus the number of particles that restart,
line 7). An important optimization is to prevent particles to split

to arbitrarily small sizes, limiting them to a minimum of τ (lines 9-
11). When distributing the particles among the neighbors, the

algorithm gives preference to the edges with higher weights

(line 8). Since the weight is normalized on the edges of each node,

this operation matches the damping function framework [4].

The restart probability c will dissipate part of the particles at

every iteration (line 8), and the algorithm will stop when no

more particles can be distributed. During the process, a vector

v accumulates the total amount of particles visiting each node

(lines 15-16). Hence, the final list of top-k nodes is based on v.

Here, we argue that for the case of Knowledge Graphs, the Particle
Filtering approach for PPR computation is the best-suited approach
to extend GDBMS functionalities for retrieving Top-K nodes.

The benefits of this approach are that (1) it does not require any

complex preprocessing nor any additional persistent data struc-

ture, (2) it is directly implementable within any graph databases

by direct use of core operations that are already optimized (namely

local node neighbor traversal [13]), (3) it returns a ranking that

strictly correlates with the actual ranking, (4) it can account for

heterogeneous edge types and importance, (5) it does not require

to traverse the entire graph and its exploration rate (and hence

running time) can be fine-tuned through the τ and c parameters.
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4 EXPERIMENTS
We investigated the performance and the quality of the ranking of

Particle Filtering (PF) compared to the current exact implementa-

tion of Personalized Page Rank (PPR) in a commercial database. In

particular, we implemented particle filtering (PF – Algorithm 1)

as a Java stored procedure in Neo4j
3
v3.5.5, and compared it

against the current implemented exact solution (PPR - Graph

Algorithms v3.5.2)
4
. Experiments have been executed on a server

with 12 cores and 128GB RAM.

Datasets: We compared the two alternatives on 4 different

KGs from different domains and different sizes, widely used in

the literature (Table 1). These KGs have been obtained from

a dataset of movies, including also information about actors,

directors, and genres
5
(Movies); from an established benchmark

for triplestores [1] representing an heterogenous product catalog

(WatDiv); an open domain knowledge graph (DBpedia [3]); and
finally a knowledge base about drugs, their composition, and

their interactions (DrugBank [21]). Of these, Movies, DBpedia,

and DrugBank are real-world datasets, while WatDiv is synthetic.

Queries, Parameters, and Evaluation Metrics: For each
dataset, we extracted 5 sets of 20 queries. Each set contains 20

queries of the same size (i.e., number of source nodes). We gener-

ated through sampling queries of size 1, 5, 10, 20, and 100 nodes,

for a total of 100 queries. For each query, we recorded the ex-

ecution time (average of 3 runs), and for the queries executed

with PF, we recorded NDCG score at top-5, 50, 100, and 500. We

executed queries both with the weighted (i.e., assigning weights

based on label informativeness [16]) and unweighted (i.e., uni-

form weights) version of the algorithm. We tested the PF with

three values of τ : 0.1, 0.05, and 0.01.

Results: Due to space constraints, we report here only results
for the two largest graphs, namely WatDiv and DBpedia, for the

labelled case. The full set of experimental results can be found

in the extended version of this document
6
. Nonetheless, we also

comment on some of the findings of the excluded experiments.

Quality of Ranking: Over all the datasets, the NDCG score

for PF with τ = 0.01 has the best quality, and often close to the

perfect ranking (i.e., between 0.8 and 1.0) with queries containing

up to 10 nodes. In most cases, also PF with τ = 0.05 obtains a good

quality ranking (NDCG>0.65). With more than 10 query nodes,

the quality of ranking is subject to high variability, especially

depending on the dataset. On DBpedia and WatDiv, still, we

obtain NDCG scores above 0.65 for both τ=0.05 and 0.01 with 20

nodes in input at top-500, while for 100 nodes, we need τ=0.01 on
DBpedia. This confirms the suitability for KG exploration cases.

Running Time: Compared to the running time of exact PPR,

the PF algorithm provides a speedup between 1 and 4 orders

of magnitudes, i.e., returning on average in 1-30 seconds while

the exact solution requires 3-6 minutes (on DBpedia). In general,

the speedup is proportional to the value of τ , i.e., τ=0.01 is be-
tween 10 and 100 times slower than τ=0.1. Yet, for 100 query

nodes on DBpedia, we report that τ=0.01 rarely achieves sensible
improvements due to the high number of particles generated.

Effect of Weights: when considering weights particle tran-

sitions are skewed towards more relevant nodes (through more

informative edges). This has a noticeable effect on the running

time because for high degree edges only the most informative

edges are traversed (given the fact that they are prioritized), and

3
https://neo4j.com/download-center/#community

4
https://github.com/neo4j-contrib/neo4j-graph-algorithms

5
https://neo4j.com/developer/example-data/

6
http://people.cs.aau.dk/~matteo/pdf/EDBT2020-pf-long.pdf

Movies WatDiv DBpedia DrugBank

#Nodes 63K 5.2M 11.6M 391K

#Edges 106K 95.8M 216.7M 1M

#Edge types 4 31 13k 68

Density 3.93E-05 3.48E-06 1.61E-06 6.82E-06

#Con. Components 433 1 2 1

Min size CC 3 5.2M 59.3k 391K

Max size CC 58.2k 5.2M 11.5M 391K

Avg size CC 142 5.2M 579K 391K

Median size CC 6 5.2M 579K 391K

Max Out-degree 71 345 7.2k 423

Avg Out-degree 2.13 18.4 22.6 3.3

Median Out-degree 1 1 9 2

Max In-degree 92 585K 3.3M 316K

Avg In-degree 9.18 20.3 20.1 2.8

Median In-degree 8 1 2 1

Table 1: Size and characteristics of the datasets
many less relevant edges are skipped. For a similar reason, we

notice that the NDCG score when weighted edges are considered

is higher because for nodes with very high degrees, there are not

enough particles to visit all the neighbors, hence in the weighted

case the PF prioritization is consistent with the importance of the

node, while in the unweighted case all of them should be visited.

Open Challenges: In our experiments, we noticed that when

starting nodes are hubs (i.e., nodes with high degree) or are near

hubs, the weighted traversal is the bottleneck. The reason is that

current GDBMS can very quickly retrieve all the neighbors of

a node, but then we require to sort them by weight. Hence, we

identify the opportunity in GDBMS for implementing sorted edge
iterators for weighted edges to speed up this step and other similar

cases. Moreover, automatic tuning of the τ threshold depending

on the query is an open research challenge.

5 CONCLUSIONS
In this paper, we argue that, when computing the Personalized

Page Rank value in a knowledge graph, the approximate com-

putation framework offered by the Particle Filtering approach,

provides substantial advantages in terms of running time and

ease of implementation, while ensuring good ranking quality.

Our implementation can provide an efficient solution for extend-

ing existing graph databases since it exploits the strengths of

these systems. While this approach is simple and effective for

queries with few input nodes and limited to the first few hun-

dreds nodes (typical of on-line exploration settings), we believe

that the algorithm can be further expanded to assure high-quality

ranking also for nodes in the long tail and larger queries.
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