Band Joins for Interval Data

Panagiotis Bouros
Johannes Gutenberg University
Mainz, Germany
bouros@uni-mainz.de

Konstantinos Lampropoulos
University of Ioannina, Greece
klampropoulos@cs.uoi.gr

Dimitrios Tsitsigkos
University of Ioannina, Greece
dtsitsigkos@imis.athena-innovation.gr

Nikos Mamoulis
University of Ioannina, Greece
nikos@cs.uoi.gr

Manolis Terrovitis
Athena Research Center, Greece
mter@imis.athena-innovation.gr

ABSTRACT
Interval data are found in a wide range of applications (e.g., validity intervals in temporal databases, ranges of uncertain values in probabilistic databases, etc.) We study the efficient (parallel) evaluation of band joins for interval data. Specifically, given two collections R and S of intervals, the objective is to find all pairs (r, s), such that $r \in R$, $s \in S$, and the difference gap between r and s is at most equal to a given threshold ϵ. We first show how this problem can be solved by directly applying the state-of-the-art domain-based partitioning approach for interval joins, after extending the intervals by ϵ. Then, we propose a novel partitioning strategy for the original intervals, which defines the partitions using the threshold ϵ and achieves much better performance, on most datasets, for reasonably large values of ϵ.

1 INTRODUCTION
The evaluation of joins with non-equality predicates finds many applications, especially in data domains where values are approximate by nature (e.g., temporal data). For example, one application is finding pairs of events whose time difference is not greater than a given threshold ϵ. This bounded-difference join is also called band join [6], since for each value v in one join input, the objective is to find the values in the other input, which are inside an $[\epsilon v, \epsilon v]$ band around v.

Although the evaluation of band joins has already been studied for offline (disk-resident) [6, 10] and streaming data [1, 7], previous work focuses on joins between collections of values (not intervals). In addition, the possibilities of parallel evaluation using modern hardware are not fully explored. In this paper, we study the evaluation of band joins between two collections of intervals. Specifically, given two collections R and S of intervals and a band constraint ϵ, our objective is to find all pairs (r, s) of intervals, such that $r \in R$, $s \in S$, and the difference gap between r and s is at most ϵ. More precisely, for two intervals $r = [r.start, r.end]$ and $s = [s.start, s.end]$ to qualify the join, it should be $s.start \leq r.end + \epsilon$ and $r.start \leq s.end + \epsilon$.

To our knowledge, this problem has not been studied before, although it has important applications. For example, the user of a temporal database [9] may often be interested in finding pairs of intervals that qualify some overlap or distance constraints (e.g., find pairs of flights which do not have a difference gap larger than 2 hours). Band joins can also be useful for coalescing pairs of intervals that overlap or are close to each other [2]. Another application is in probabilistic databases, where uncertain values are often approximated by confidence intervals [5, 11]. Finding pairs of values that differ less than a threshold ϵ can be modeled and solved as a band interval join problem. XML queries can be modeled as joins between intervals that capture the positions and ancestor-descendant relationships scope of nodes in XML trees [4]. Queries over data streams [1] also constrain the time differences between events, which could be instantaneous or with a temporal duration (i.e., intervals); hence, streaming data analytics could benefit from fast band join evaluation algorithms.

In our previous work [3], we studied the parallel evaluation of interval overlap joins, where the objective is to find the pairs of intervals from two collections that overlap (i.e., share at least one value). This is a special case of the problem that we study here for $\epsilon = 0$. We proposed a domain-based partitioning approach, which divides the data from the two collections into partitions and processes the partitions independently and in parallel, while avoiding duplicate results.

In this work, we extend our framework to evaluate interval band joins. An intuitive and straightforward approach in this direction is to expand the intervals in both collections by ϵ (e.g., by adding ϵ to endpoint $x.end$ of each interval x). The interval overlap join between the two collections of expanded intervals is equivalent to the interval band join on the original data inputs and, hence, we can directly apply the original approach of [3]. On the other hand, expanding the intervals increases data replication, which could slow down the evaluation of the join.

This motivated us to design an alternative approach that partitions the original intervals, as in an overlap join, but sets the width of each partition to ϵ. Our new algorithm joins each partition R_i from R with exactly two partitions from S_i and S_{i+1} (and vice versa), corresponding to the same and the next ϵ-wide stripes of the domain. As we show, the $R_i \bowtie S_i$ band join reduces to a cross-product, while the $R_i \bowtie S_{i+1}$ band join can be processed very efficiently, after further dividing the intervals in each partition into classes, based on the way they intersect the corresponding stripe.

We evaluate the proposed algorithm on four real datasets and varying ϵ thresholds and confirm that the ϵ-wide stripes approach is superior to the baseline adaptation of [3] on most datasets, for reasonably large values of ϵ.

2 BACKGROUND
In this section, we review the domain-based partitioning approach of [3] for interval overlap joins, which is necessary for understanding our solutions to the band interval join problem.

In order to process the join efficiently and in parallel, this approach first divides the data domain into disjoint regions (stripes),
the union of which covers the entire domain. For each of the two input collections \(R \) and \(S \), we then define one partition per stripe and assign each interval to all stripes that the interval overlaps. Hence, an interval may span multiple partitions. After this partitioning phase, partition \(R_i \) (respectively, \(S_i \)) includes all intervals from \(R \) (respectively, \(S \)) which overlap the \(i \)-th stripe. During the join phase, each partition \(R_i \) only has to be joined with the corresponding partition \(S_i \). Moreover, each of the \(R_i \approx S_i \) partition-to-join pairs can be evaluated independently from the others and the joins can be processed in parallel. Figure 1(a) illustrates an example domain partitioning to four stripes and two intervals; \(r \in R \) is assigned to partitions \(R_1, R_2, \) and \(R_3 \) and \(s \in S \) is assigned to partitions \(S_1 \) and \(S_2 \).

However, a brute-force implementation of the join phase may produce duplicate results. For example, in Figure 1(a), join pair \((r,s)\) would be reported by both \(R_1 \approx S_1 \) and \(R_2 \approx S_2 \). Duplicates can be avoided by reporting a pair \((r,s)\) in a partition-to-join only if at least one of \(r \) or \(s \) starts inside the \(i \)-th stripe. Otherwise, the pair would also be detected in the join of a previous stripe. Hence, in our example, pair \((r,s)\) is assigned to \(R_1 \approx S_1 \) but the pair is pruned, after being detected by \(R_2 \approx S_2 \).

Instead of eliminating duplicates this way, the approach of [3] goes one step further, by avoiding the generation of such duplicates overall. The idea is to further divide each partition \(R_i \) into three mini-partitions \(R_i^A, R_i^B, \) and \(R_i^C \). \(R_i^A \) takes all intervals in \(R_i \) which start in stripe \(i \), \(R_i^B \) takes all intervals in \(R_i \) which start before stripe \(i \) and end inside stripe \(i \), and \(R_i^C \) takes all intervals that start before stripe \(i \) and end after stripe \(i \). Figure 1(b) shows examples of three intervals from \(R_2 \) that go to different mini-partitions. Now, each \(R_i \approx S_i \) can be computed by performing 5 mini-joins between the mini-partitions, as shown in Figure 2:

- \(R_i^A \approx S_i^A \) is computed as a typical interval overlap join;
- \(R_i^A \approx S_i^B \) and \(R_i^B \approx S_i^A \) are computed as a special case of an interval join, where the start point of every interval in \(S_i^A \) (resp. \(R_i^B \)) precedes all start points of all intervals in \(R_i^A \) (resp. \(S_i^B \)) [3].
- \(R_i^A \approx S_i^C \) and \(R_i^C \approx S_i^A \) are cross products, hence their computation requires no comparisons;
- \(R_i^B \approx S_i^B, R_i^B \approx S_i^C, R_i^C \approx S_i^B, \) and \(R_i^C \approx S_i^C \) do not have to be computed because they would produce duplicate join results (guaranteed to be found in previous stripes).

Mini-joins are evaluated by an optimized version of a forward scan algorithm based on plane-sweep (also proposed in [3]).

3 Evaluating Band Joins

3.1 Evaluation based on interval overlap joins

As discussed in the Introduction, a baseline evaluation algorithm for interval band joins transforms the problem to an interval overlap join. For this purpose, it expands the intervals from both input collections by \(\epsilon \). Without loss of generality, each interval \(r \in R \) and \(s \in R \) becomes \(r' = [r.start, r.end + \epsilon] \) and \(s' = [s.start, s.end + \epsilon] \), respectively. We can easily show that if \(r' \) overlaps \(s' \) then \(s.start \leq r.end + \epsilon \) and \(r.start \leq s.end + \epsilon \) hold, i.e., pair \((r,s)\) satisfies the band join predicate.

This baseline can be straightforwardly implemented using the approach of [3]. The expansion of the input intervals takes place before they are assigned to the partitions, while the mini-joins breakdown operates exactly as discussed in the previous section.

3.2 Evaluation on \(\epsilon \)-wide partitions

Despite its simplicity, the baseline exhibits two shortcomings.

First, due to expanding intervals by \(\epsilon \), data replication increases (compared to the replication in the overlap interval join problem). This increases the cost of the partition-to-join phase. The second drawback is that the domain-based partitioning is agnostic to the input parameter \(\epsilon \). For instance, a pair of intervals located at the two different ends of a stripe may not qualify the band join predicate; nevertheless, they need to be checked.

To address these issues, we next propose our second solution for band joins. The key idea of the method is to split the domain into disjoint ranges (stripes), such that the width of each stripe is \(\epsilon \) (in case the domain cannot be divided exactly by \(\epsilon \), the last stripe is narrower). The input intervals from \(R \) (resp. \(S \)) are not expanded, but directly assigned to every partition \(R_i \) (resp. \(S_i \)) they intersect, as described in Section 2.

Since the width of each stripe \(i \) is at most \(\epsilon \), it is guaranteed that every pair of interval \((r,s)\) with \(r \in R_i, s \in S_i \) forms a result of the band join. In other words, \(r.end + \epsilon < s.start \) or \(s.end + \epsilon < r.start \) cannot hold; otherwise, \(r \) and \(s \) would not have been assigned to the same partition. Hence, we can directly report all pairs \((r,s)\) with \(r \in R_i, s \in S_i \) as results. However, the same pair of intervals could co-exist in other stripes as well (e.g., the \((i-1)\)-th and/or the \((i+1)\)-th). Therefore, as in the interval overlap join case, we should only report a pair if it is not a join result in a previous stripe, i.e., if at least one of \(r \) or \(s \) start inside stripe \(i \). To avoid this test, we can divide each partition \(R_i \) (and \(S_i \)) again into three mini-partitions \(R_i^A, R_i^B, \) and \(R_i^C \) (and \(S_i^A, S_i^B, \) and \(S_i^C \)), as explained in Section 2 and then evaluate all \(R_i^A \approx S_i^A, R_i^B \approx S_i^B, \) and \(R_i^C \approx S_i^C \) mini-joins as cross-products.

However, we are not done yet. There could also be band join results \((r,s)\), such that \(r \) ends in stripe \(i \), \(s \) starts in stripe \(i+1 \) and \(r.end + \epsilon \leq s.start \) (and the symmetric case). The current decomposition has no explicit partition for all intervals that end in stripe \(i \); i.e., the mini-partition \(R_i^B \) does not distinguish between the intervals \(r \in R \) that end in stripe \(i \) from those that end after stripe \(i \). To this end, we define an additional mini-join \(R_i^{A1} \), which contains the intervals \(r \in R_i \) that both \(start \) and \(end \) inside stripe \(i \). Mini-join \(R_i^{A1} \) is a subset of \(R_i^B \) but their contents are sorted differently to enhance the join evaluation, as we discuss in the next paragraph. Figure 3 shows examples of four intervals.
where we have $s_{i+1} \geq \epsilon$ (r intervals). Afterwards, we advance to the next interval r_i which are assigned to R_{A1}^i and set the entire dataset as $R_{A1}^i |/| S_{A1}^i$. Then, we activate hyper-threading, allowing us to run up to 40 threads and used OpenMP for multi-threaded processing. Every interval contains two 64-bit domain point attributes (i.e., start and end) while the workload accumulates the number of result pairs. All data reside in main memory.

Methods. We compare our ϵ-wide partitioning join (denoted by ϵ-WIDE) to the baseline (denoted by BSL). In addition, we include a version of BSL (denoted by ϵ-BSL), which uses ϵ-wide domain partitions, but it conducts an overlap joining using the extended intervals, instead of the method described in Section 3.2. Both variants of the baseline use our optimized forward scan based plane sweep method from [3] and all our optimizations to improve load balancing in domain-based partitioning.

Tests. To assess the performance of the methods, we measure their response time while varying (i) threshold ϵ as a fraction of the domain duration inside $[0.001, 0.005, 0.01, 0.05, 0.1]$ and (ii) the number of available CPU threads inside $[5, 10, 15, 20, 25, 30, 35, 40]$. We also experimented with uniformly sampled subsets of the dataset as R and set the entire dataset as S; for this purpose, we varied the $|R|/|S|$ ratio inside $[0.25, 0.5, 0.75, 1]$.

Results. Figures 6-8 summarize our experimental results. When varying ϵ, we observe the following. First, ϵ-WIDE is consistently faster than ϵ-BSL. This shows that applying the mini-joins the total number of intervals in its two inputs (e.g., $[R_{A1}^i + S_{A1}^i]$), which means that mini-joins are evaluated very efficiently.

Parallel evaluation. As shown in [3], the best approach to parallelize interval joins based on domain-based partitioning is to treat every mini-join as an independent task. Each task is scheduled to one of the available CPU threads. To maximize load balancing, the tasks are greedily assigned to threads in decreasing order of their expected costs (based on the size of the involved partitions).

4 EXPERIMENTAL EVALUATION
described in Section 3.2 on the original intervals is faster than applying the mini-joins of [3] on the ϵ-extended intervals. However, the number of ϵ-wide partitions can become extremely large for small values of ϵ, which renders these approaches slower compared to BSL. Note that BSL chooses the number of partitions, according to the number of threads that can run in parallel as suggested in [3]. On WEBKIT, TAXIS and INFeCTIOUS, ϵ-WIDE is up to a few time faster compared to BSL and ϵ-BSL for a wide range of ϵ/domain ratios. On the other hand, on dataset BOOKS, ϵ-WIDE is faster than the competition for ϵ/domain ratios larger than 2%. When varying the number of threads, we observe that all methods scale well until when the number of threads becomes 20, after which hyper threading comes into effect. The join on INFeCTIOUS is already very cheap and does not benefit from increasing parallelism. Last, as expected all methods are affected by increasing $|R|/|S|$; their execution time rises.

5 CONCLUSION

In this short paper, we studied the evaluation of band joins between two collections of intervals. We extended our framework for interval overlap joins [3] in two directions; a baseline approach that expands all intervals by ϵ and then conducts cheaper joins between partitions. Our experimental findings show that the second approach is more efficient, unless ϵ is very small compared to the domain size.

ACKNOWLEDGEMENTS

Partially funded by the European Union’s Horizon 2020 research innovation programme under grant agreement No 657347 and the European Regional Development Fund – GSRT’s project “Moving from Big Data Management to Data Science” (MIS 9002437/3) and Research–Create–Innovate project “Proximior” (T1EDK-04810).

REFERENCES