
Human-in-the-Loop Schema Inference for Massive JSON
Datasets

Mohamed-Amine Baazizi
Sorbonne Université, LIP6 UMR 7606

baazizi@ia.lip6.fr

Clément Berti
Sorbonne Université

clement.berti.upmc@gmail.com

Dario Colazzo
Université Paris-Dauphine, PSL

Research University
dario.colazzo@dauphine.fr

Giorgio Ghelli
Dipartimento di Informatica,

Università di Pisa
ghelli@di.unipi.it

Carlo Sartiani
DIMIE, Università della Basilicata

carlo.sartiani@unibas.it

ABSTRACT
JSON established itself as a popular data format for representing
data whose structure is irregular or unknown a priori. JSON col-
lections are usually massive and schema-less. Inferring a schema
describing the structure of these collections is crucial for for-
mulating meaningful queries and for adopting schema-based
optimizations.

In a recent work, we proposed aMap/Reduce schema inference
approach that either infers a compact representation of the input
collection or a precise description of every possible shape in the
data. Since no level of precision is ideal, it is more appealing to
give the analyst the freedom of choosing between different levels
of precisions in an interactive fashion. In this paper we describe
a schema inference system offering this important functionality.

1 INTRODUCTION
Borrowing flexibility from semistructured data models and sim-
plicity from nested relational ones, JSON affirmed as a convenient
and widely adopted data format for exchanging data between ap-
plications as well as for exporting data through Web API and/or
public repositories. JSON datasets are usually retrieved from
remote, uncontrolled sources, with partial, incomplete, or no
schema information about the data. In these contexts, however,
having a precise description of the structure of the data is of
paramount importance, in order to design effective and efficient
data processing pipelines. Schema inference, therefore, becomes a
crucial operation enabling the formulation of meaningful queries
and the adoption of well-known schema-based optimization tech-
niques.

Several approaches and tools exist for inferring structural
information from JSON data collections [13–15]. As pointed out
in [10, 11], the common aspect of all these approaches is the
extraction of some structural description with a precision that
is fixed a priori, by the approach itself. While this methodology
has the advantage of simplicity, it is in practice not satisfactory,
since a JSON dataset can be rather (oftentimes highly) irregular
in structure, and for this reason it can be typically described
at different precision levels by a schema, while there exists no
“best” precision level that can be fixed a priori. In general, one is
interested in a description that is compact, easy to read even if it
hides lots of details, typically in the first exploration steps, while
in subsequent steps he/she is likely to be interested in a more

© 2020 Copyright held by the owner/author(s). Published in Proceedings of the
23rd International Conference on Extending Database Technology (EDBT), March
30-April 2, 2020, ISBN 978-3-89318-083-7 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

precise, and therefore less succinct, schema description, where
more details about the alternative shapes that can be found in
the data are provided.

We believe that leaving the user the ability of tuning the level
of precision of the inferred schema, by trying different possi-
bilities and changing the level of details at different times, is
an important feature, that existing techniques do not provide.
With such a motivation in mind, in two recent works [9, 12], we
devised, respectively, i) a Map/Reduce-based schema inference
technique for massive JSON data that enables the user to choose,
a priori, the level of precision of the inferred schema, and ii) a
formal system which provides the user with mechanisms to inter-
actively refine/expand the inferred schema, even locally, without
the need of re-processing the data multiple times.

The goal of this demonstration is to showcase results and
mechanisms provided by these two works, by means of an imple-
mentation of the parametric schema inference system [9] which
is based on Spark and which interacts with a Web interface that
the user can exploit to choose or submit a dataset of interest, and
to play with the interactive schema inference process [12].

The user interacts with the system by choosing an existing,
already analyzed, dataset, or by submitting a new one. The sys-
tem initially returns to the user a succinct, but not very precise,
schema, and the user then can explore it in order to decide where
to get more precision, at several nesting levels: indeed, the user
can choose to get a more detailed schema description at a given
nesting level, while leaving the inner levels described in a more
succinct fashion, hence at a lower degree of precision.

In the remainder of this article, Sections 2 and 3 introduce
the parametric [9] and the interactive schema [12] inference
techniques, while Section 4 details the architecture supporting
our system and the demonstration scenario.

2 PARAMETRIC SCHEMA INFERENCE
The schema inference technique proposed in [9] is based on a
Map/Reduce algorithm to ensure scalability. During the map
phase, an input collection of JSON objects is processed by infer-
ring a schema for each object in the collection. The reduce phase
produces the final schema by invoking a commutative and asso-
ciative function whose role is to merge the object schemas that
are equivalent. Deciding whether two schemas are equivalent is
a crucial aspect of our approach, as this allows one to choose
between different precision levels. We rely on two main equiva-
lence relations (kind equivalence and label equivalence), which
we identified to be useful in practice, but our system, which is
parametric, allows for using other equivalences defined by the
user (see [9] for details).

Demonstration

Series ISSN: 2367-2005 635 10.5441/002/edbt.2020.82

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2020.82

When using the kind equivalence (K), every record type is
equivalent to any other record type, and every array type is
equivalent to any array type. Hence, this equivalence leads to
merging all record types into a single one while indicating for
each field whether it is optional or mandatory.

To illustrate, consider the following heterogeneous collection
containing three JSON records and one array.

o1 {a : 1,b : 2,d : {e : 3, f : 4}}
o2 {a : 1, c : 2,d : {д : 3,h : 4}}
o3 {a : 1, c : 2,d : {e : 3, f : 4}}
o4 [123, ”abc”, {a : 10,b : 20}]

The map phase yields for each value a corresponding schema.
Essentially, atomic values are mapped to their corresponding
atomic types (numbers to Num, etc), while complex constructs are
processed recursively. The potentially heterogeneous content of
arrays is concisely represented using the union (+) operator.

o1 → s1 = {a : Num,b : Num,d : {e : Num, f : Num}}
o2 → s2 = {a : Num, c : Num,d : {д : Num,h : Num}}
o3 → s3 = {a : Num, c : Num,d : {e : Num, f : Num}}
o4 → s4 = [Num + Str + {a : Num,b : Num}]

During the reduce phase, equivalent types are merged based
on the chosen equivalence relation. The K equivalence merges
all record types and yields a union of a record and array type, as
follows:

S3 = { a : Num,b : Num?, c : Num?,
d : {e : Num?, f : Num?,д : Num?,h : Num?}

}

+ [Num + Str + {a : Num,b : Num}]
The record type reports all fields appearing in the merged

record types from the map phase, while indicating whether they
are mandatory or optional (this latter fact being indicated by
decorating the fields with ?). For instance, a is a mandatory field
of type Num, while b, c , and d are optional fields of type Num;
furthermore, d values are objects whose fields are all optional.
Notation 2.1 In the following, when a union schema s1+ . . . +sn
is inferred by means of an equivalence E, we will use the prefix no-
tation +E (s1, . . . , sn), so that the inferred schema indicates which
equivalence has been used in order to decide what schemas to merge
in the inference process. For readability, we omit the +E prefix for
atomic types when they appear as a singleton.

So for instance, we note S3 as

S3 = +K ({ a : Num,b : Num?, c : Num?,
d : +K ({e : Num?, f : Num?,д : Num?,h : Num?})

},

[+K (Num, Str, {a : Num,b : Num})]
)

Concerning precision, it is worth observing that the above
schema hides important correlation information like the fact that
b and c never co-occur or the fact that fields e and f always occur
together.

To derive a more precise schema, where records having differ-
ent labels are kept separated, we use the label equivalence (L),
according to which record types are equivalent only if they share
the same top-level field labels. So, by means of the L equivalence
only s2 and s3 are merged, thus obtaining:

S4 = +L({ a : Num, b : Num, d : {e : Num, f : Num}},
{ a : Num, c : Num,
d : +L({e : Num, f : Num}, {д : Num,h : Num}) },

[+L(Num, Str, {a : Num,b : Num})]
)

The resulting inferred schema S4 gives now a very detailed
description of the records in the data by sacrificing conciseness.

However, in general, schemas are much larger than those
in the above example, and this could be a complication for an
analyst who wants a precise description of a specific part of the
dataset/schema (for instance one specific record type) without
being overwhelmed by a too large schema describing all the
rest. In order to overcome this limitation, we show in the next
section how inferred schemas can be interactively manipulated
by the analyst, by preserving soundness (schemas obtained in
the interaction all describe the dataset at hand).

3 INTERACTIVE SCHEMA INFERENCE
The interactive schema inference is very useful when it allows
for describing the same data with different levels of precision-
succinctness, so that parts of greater interest to the user are
described with the finest precision, while parts with lower in-
terest are described in a succinct way. The interactive schema
inference proposed in [12] goes into this direction, and to show
its effectiveness we illustrate below a possible interaction that the
user can perform on the schema inferred from a real-life dataset,
crawled from the official NYTimes API [5] and consisting in meta-
data about articles of the newspaper. This dataset is interesting
for our problem since it features many irregularities at several
levels, and discovering these irregularities, using a traditional
type inference mechanism, may simply become unpractical.

A simplified version of the K type inferred from this dataset
is depicted in Figure 1. This schema focuses on the byline part
which describes the authors of the articles. By examining this
schema, the user realizes that almost all the fields are optional
and hence, she/he may want to dig deeper to investigate for a
potential correlation between the different fields.

+K ({ docs :
+K ({ byline :

+K ({ contributor : Str?
orдanization : Str?
oriдinal : Str?
person : [+K ({ f n : Str?,

ln : Str?,
mn : Str?,
orд : Str?})]

})

})

})

Figure 1: The NYTimes K type.

The type resulting from refining the content of byline is de-
picted in Figure 2 and shows four possible situations which corre-
spond to different combinations of the contributor, organization,
and original fields, but, more interestingly, it reveals that the oc-
currence of organization implies that person has an empty array,
while its absence coincides with the case where person contains
an array with a record type. This observation can be explained by
the fact that, when an article is written by an organization, the
person field is not relevant and hence it contains an empty array
and, conversely, when it is written by persons, the organization
field is irrelevant and, hence, it just does not appear in the byline
field.

Now that the user has gained some knowledge about the struc-
ture of the byline field, she/he may want to explore the person

636

+K ({ docs :
+K ({ byline :

+L({ contributor : Str
orдanization : Str
oriдinal : Str
person : []
},

{ contributor : Str
oriдinal : Str?
person : [+K ({ f n : Str?, ...

...,orд : Str? })]

},

{ orдanization : Str
oriдinal : Str
person : []
},

{ oriдinal : Str
person : [+K ({ f n : Str?, ...

...,orд : Str? })]

})

})

})

Figure 2: The L refinement of the content of byline.

field which also contains records with optional fields. The user
can recover the original type depicted in Figure 1, then expand
the record inside the array resulting in the type that is partially
depicted in Figure 3. This type shows different situations whose
relevance is left to the discretion of the user.

[+L(

{ f n : Str, ln : Str,mn : Str,orд : Str},
{ f n : Str, ln : Str,orд : Str},
{ f n : Str,orд : Str}

)]

Figure 3: The L refinement of the content of person.

4 DEMONSTRATION OVERVIEW
The objective of this demonstration is to help the attendees under-
stand the features and the goals of our schema inference system.
To this aim, attendees will be able to:

(i) infer schemas for real-life JSON datasets according to K
and L;

(ii) explore the inferred schemas and interactively fine-tune
their precision;

(iii) get a concrete representation of the inferred schemas in
JSON Schema.

We first describe the architecture of our system as well as
the setup of the demo, and then illustrate the demonstration
scenarios we propose.

4.1 System Architecture and Setup Details
Our system is based on a web application implemented following
the client-server architecture depicted in Figure 4. The web client
is used for loading the JSON collection and for performing the
interactive schema inference, while the web server is dedicated
to storing the collection and to inferring the initial schema. The
storage is supported by HDFS while the computation is ensured

by Spark, as presented in [9]. The web client and the remote in-
ference engine communicate through a REST API implemented
in Python 3 using the Flask [2] library. The API requests from the
client are processed by an orchestrator that coordinates between
the storage and the inference modules in the server side. This
coordination is ensured by API calls using two open source li-
braries: webHDFS [8] for communicating with the HDFS storage
system, and livy [4] for submitting jobs to the Spark engine.

Upon receiving the input collection in JSONLines format [3],
through the client, the server will store the collection on the
HDFS then infers the L schema, using the Spark engine. The
L schema is then sent to the client and used for inferring the
K schema. The schema visualizer displays the K schema and
translates the user actions into corresponding schema operations
that are processed by the schema manager. These two modules
coordinate during all the interaction session to fulfill the user
requests.

The web client is implemented in Typescript [7] using the
Angular 6 platform [1], which offers many advantages like mod-
ularity and the clean separation between the content of a web
page and the program modifying its content; the schema infer-
ence module of the server is implemented in Scala and is fully
described in [9].

A lightweight system showcasing the core features of the full-
system is available online at [6]. Differently from the full-system
that will be demonstrated at the conference, the lightweight
system performs schema inference on the client side and hence,
it is limited to processing small size documents.

Figure 4: System architecture.

4.2 Demonstration Scenario
Our demonstration enables attendees to infer schemas for pre-
loaded JSON datasets, to provide their own datasets, to explore
the extracted schemas, and to fine-tune their precision, as well
as to convert them in more popular schema languages like JSON
Schema. The datasets we plan to use in our demo are described
below.

The GitHub dataset corresponds to metadata generated upon
pull requests issued by users willing to commit a new version
of code. It takes 14GB of storage and contains 1 million JSON
objects sharing the same top-level schema and only varying
in their lower-level schema. All objects of this dataset consist
exclusively of records nested up to four levels of nesting. Arrays
are not used at all.

The Twitter dataset corresponds to metadata that are attached
to the tweets shared by Twitter users. It takes 23 GB of storage and

637

contains nearly 10 million records corresponding, in most cases,
to tweet entities. A tiny fraction of these records corresponds to
a specific API call meant to delete tweets using their ids.

Finally, the NYTimes dataset, which was partly described in
Section 3, contains approximately 1.2 million records and reaches
the size of 22GB. Its records feature both nested records and
arrays, and are nested up to 7 levels. Most of the fields in records
are associated to text data which explains the large size of this
dataset compared to the previous ones.

Schema Inference. The attendee will start the demo by con-
necting the web interface to the remote engine, and by select-
ing a pre-loaded dataset for schema inference; alternatively, the
attendee will request the system to load an external dataset by
providing a URI. Once selected a dataset, the attendee will choose
an inference algorithm to be used by the remote engine. While
the focus of this demonstration is on the interactive refinement
of K-based schemas, the attendee will also have the opportunity
to directly infer a schema according to the L-based approach as
well as to get basic statistics about the data (average object size,
AST height, etc). Once the inference system has completed the
schema extraction process, it will upload the inferred schema to
the web interface.

Schema Exploration. After the inference of the K schema, the
attendee will likely start to explore this schema through the web
interface which allows the user to change the precision level
of the schema without any further intervention of the remote
inference engine.

Schema Translation. After having explored the inferred schema
and (possibly) fine-tuned its precision level, the attendee will be
able to translate the schema in a JSON Schema representation;
by relying on this feature, the attendee will be able to exploit the
schema in any system or application supporting this language,
without the need to manually rephrase the schema.

5 RELATEDWORK
The problem of inferring structural information from JSON re-
ceived some attention as reviewed in our recent paper [9], where

we outlined the improvements of our approach over state-of-the-
art approaches for JSON schema inference, while the topic of
interactive JSON schema inference was only recently addressed
[12].

In the context of XML, the only work about interactive infer-
ence we are aware of relies on user intervention for recognizing
regular expressions that are similar enough to be merged and for
deriving sophisticated XML schemas expressing complex con-
structs like inheritance and derivation [16].

REFERENCES
[1] Angular. Available at https://angular.io.
[2] Flask. https://www.flaskapi.org.
[3] JSONLines. http://jsonlines.org.
[4] livy REST API. Available at https://livy.incubator.apache.org.
[5] NYTimes API. https://developer.nytimes.com/.
[6] Online demo. http://132.227.204.195:4200/host.
[7] Typescript. Available at https://www.typescriptlang.org.
[8] webHDFS REST API. Available at https://hadoop.apache.org/.
[9] Mohamed Amine Baazizi, Dario Colazzo, Giorgio Ghelli, and Carlo Sartiani.

2019. Parametric schema inference for massive JSON datasets. VLDB J. 28, 4
(2019), 497–521. https://doi.org/10.1007/s00778-018-0532-7

[10] Mohamed Amine Baazizi, Dario Colazzo, Giorgio Ghelli, and Carlo Sartiani.
2019. Schemas And Types For JSON Data. In Advances in Database Technology
- 22nd International Conference on Extending Database Technology, EDBT 2019,
Lisbon, Portugal, March 26-29, 2019. 437–439. https://doi.org/10.5441/002/edbt.
2019.39

[11] Mohamed Amine Baazizi, Dario Colazzo, Giorgio Ghelli, and Carlo Sartiani.
2019. Schemas and Types for JSON Data: From Theory to Practice. In Pro-
ceedings of the 2019 International Conference on Management of Data, SIGMOD
Conference 2019, Amsterdam, The Netherlands, June 30 - July 5, 2019. 2060–2063.
https://doi.org/10.1145/3299869.3314032

[12] Mohamed Amine Baazizi, Dario Colazzo, Giorgio Ghelli, and Carlo Sartiani.
2019. A Type System for Interactive JSON Schema Inference (Extended
Abstract). In 46th International Colloquium on Automata, Languages, and
Programming, ICALP 2019, July 9-12, 2019, Patras, Greece (LIPIcs), Christel
Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi (Eds.),
Vol. 132. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 101:1–101:13.
https://doi.org/10.4230/LIPIcs.ICALP.2019.101

[13] Stefanie Scherzinger, Eduardo Cunha de Almeida, Thomas Cerqueus, Lean-
dro Batista de Almeida, and Pedro Holanda. 2016. Finding and Fixing Type
Mismatches in the Evolution of Object-NoSQL Mappings. In Proceedings of the
Workshops of the EDBT/ICDT 2016. http://ceur-ws.org/Vol-1558/paper10.pdf

[14] Peter Schmidt. 2017. mongodb-schema. Available at
https://github.com/mongodb-js/mongodb-schema.

[15] scrapinghub. 2015. Skinfer. Available at
https://github.com/scrapinghub/skinfer.

[16] Julie Vyhnanovska and Irena Mlynkova. 2010. Interactive Inference of XML
Schemas. In Proceedings of the Fourth IEEE International Conference on Research
Challenges in Information Science, RCIS 2010, Nice, France, May 19-21, 2010.
191–202.

638

	Human-in-the-Loop Schema Inference for Massive JSON DatasetsMohamed-Amine Baazizi, Clément Berti, Dario Colazzo, Giorgio Ghelli, Carlo Sartiani

