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ABSTRACT
There is an increasing demand from domain experts for tools that
assist them to extract information about the scientific progress
and technological innovations from bibliographic archives such as
the Web of Science, arXiv, PubMed, etc. Topic evolution graphs
track the evolution of science by identifying and analyzing sci-
ence evolution patterns like the emergence and decay of research
topics or the split of one research topic into several subtopics, etc.
Building such topic evolution networks for extracting meaningful
evolution patterns is still a difficult task requiring the tuning of
several technical parameters. In our demonstration, we present our
prototype implementation of a generic topic evolution model for
representing and filtering evolution patterns extracted from very
large document archives.

1 INTRODUCTION
Revealing meaningful evolution patterns from document archives
has many applications and can be used to synthetize narratives
from datasets accross multiple domains, including new stories,
research papers, legal cases and works of literature [12]. The
study of science evolution can help philosophers and historians
of science [10] to test their theories with data, researchers to
position their work in its scientific context, policy makers to foster
innovation and get key indicators for decision-making processes,
industry to evaluate the potential for innovation and technological
transfer, librarians to classify scientific documents, etc.

Scientific evolution can broadly be studied by adopting a cog-
nitive view or a social view on evolution dynamics. The cognitive
view emphasizes the shared knowledge and the change of ideas
(Kuhn’s approach [10]), whereas the social view takes account
of authorship and social interaction (e.g., citation graphs) [7, 13].
Bibliographic archives often include both kinds of information and
there also exist methods which also combine both views to study
science evolution [8]. In the interdisciplinary EPIQUE project1

we adopt the cognitive view for modeling science evolution and
assume that the evolution only depends on the content of the doc-
uments. Whereas this choice clearly reduces the expressivity of
our evolution model it also decreases the ”social” bias and detects
more easily possible interactions between scientific ideas and con-
tributions independently of any particular scientific community.

The goal of topic evolution networks is to track complex tem-
poral changes by epoch-wise topic discovery and temporal simi-
larity graphs aligning topics of different epochs. Existing evolu-
tion network based frameworks mainly can be distinguished by
the chosen topic extraction and alignment methods. [4] comes

1This work was funded by French ANR-16-CE38-0002-01 project EPIQUE.
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up with a method to enable a bottom-up reconstruction of the
dynamics of scientific fields. They generate topics by word co-
occurrence graphs and align inter-temporal topics by Jaccard sim-
ilarity [9]. [1] generates topics by a Hierarchical Dirichlet Process
(HDP) [14] and uses Bhattacharyya similarity [2], representing
the gradual speciation and convergence similar to biologic evo-
lution, for identifying topic alignments. The alignment process
also applies (asymmetric) Kullback-Leibler divergence (KLD) for
detecting topic split and merge. [11] introduces a novel approach
to the early detection of research topics by using the Computer Sci-
ence Ontology2 to model research topics in the Rexplore system.
They apply a Clique Percolation Method (ACPM) for analyzing
the dynamics between existent topics. Other examples of science
evolution studies explore how "cognitive science" as a field has
changed over the last three decades [6] or analyze topic evolu-
tion patterns (split, merge and knowledge transfer) in the field of
Information retrieval (IR) [5].

The goal of our work is to develop a general framework which
is easier to use by domain experts who can ignore the details of the
underlying topic analysis methods. The contributions presented
in our demonstration can be summarized as follows:
• We propose a generic topic evolution model enabling the speci-

fication and extraction of meaningful topic evolution patterns
independently of a particular topic extraction method.

• We define high-level measures for estimating the quality of the
topic extraction process and for characterizing the structural
and quantitative evolution of topics during a time period. This
enables the experts to tune the topic extraction process and
explore large topic evolution graphs by defining complex topic
evolution patterns.

• We implemented a scalable prototype on top of Apache Spark
for processing large scientific corpora containing millions of
documents and finding meaningful topic evolution graphs for
both stable topics and highly evolving ones.

2 TOPIC EVOLUTION MODEL
Topic evolution graphs: We consider a corpusC of time-stamped

documents, a set of periods P and a set of terms V (vocabulary).
Let M : 2C → 2R

|V |

be a topic extraction method generating
for a subset of documents C ′ ⊆ C a set of (sparse) weighted
term vectors M(C ′) ⊆ R |V | . We denote by Cp ⊆ C the corpus
of documents with timestamp p ∈ P and by Tp = M(Cp ) the
topic descriptions extracted from the documents Cp of period p
using topic extraction method M. A topic t ∈ Tp is then defined
by a couple t = (d,p) where d ∈ M(Cp ). We will denote by
t .d the topic description and by t .p the topic period. Observe
that topics from different periods may share the same descrip-
tion. For example in Figure 1, P has 3 periods: p1="2000 − 2002",
p2="2002 − 2004" p3="2004 − 2006", Tp1 contains topics 54 to 92,
and topic 92 = (d,p1), where d is a weighted vector containing

2http://cso.kmi.open.ac.uk/
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Figure 1: Pivot topics containing term "database" extracted from arXiv, green = emerging terms, blue = stable terms, red = decaying terms

terms "queri", "optim", "databas"... We define a topic evolution
function sim : T×T → [0, 1] estimating the similarity between top-
ics in T . For example in Figure 1, the similarity measure depends
on the topic description and estimates their semantic proximity
using cosine similarity. The similarity between topic 77 and topic
100 is sim(77, 100) = 0.74.

Based on the topic evolution function, we define a topic evolu-
tion graph as a directed labeled multistage graphGβ = (T ,E, sim, β)
over topics T where the edges E connect all topics from consecu-
tive periods with similarity higher or equal to some threshold β :
E = {(ti , tj ) ∈ T |sim(ti , tj ) ≥ β ∧ tj .p = ti .p + 1}.

Topic labeling: For visualization, we assume that all topics
t of some evolution graph Gβ are labeled by the top-k highest
weighted terms in the topic description t .d. Let t .l be the top-k
highest weighted terms in t .d and t .lp ⊆ t .l and t .lf ⊆ t .l be the
subsets of past and future terms which appear, respectively, in
the ancestor topics and in the descendant topics of t . Then, the
terms in some topic vector t .l are partitioned into the following
four subsets of :

• emerging future terms t .le = t .lf − t .lp which do not exist in
past topics,

• decaying past terms t .ld = t .lp − t .lf which do not exist in
future topics,

• stable terms t .lд = t .lp ∩ t .lf which exist in the past and the
future topics of t , and

• specific terms t .ls = t .l − (t .lp ∪ t .lf ) which neither exist in the
past nor in the future topics of t .

The quadruple [t .le , t .ld , t .lд , t .ls ] is called the term label of t .
Figure 1 shows two snippets of a single topic evolution graph

extracted from the arXiv3 corpus for the category DB (databases).
Although the number of documents of category DB are limited,
the generated graphs still generate meaningful evolution patterns.
Emerging terms are shown in green boxes, decaying term boxes
are colored in red, stable terms which exist both in ancestor topics
and in descendant topics are grouped in blue boxes and specific

3https://arxiv.org/

terms which appear only in current topic are in white boxes. The
thickness of edges reflects the similarity between topics. Sev-
eral topics in both subgraphs contain the term "database" and
we can observe different evolution patterns. The left hand graph
shows that in period 2002-2004, topic 77 ("databases, queries, op-
timization, integration") split into topics 100 and 188 ("databases,
queries and constraints") and topics 104, 191, 152 ("prediction,
probability, random" ). The right subgraph covers the same period
with topics related to "data mining" (83), "data access interfaces"
(90), "information retrieval" (92), "logics, semantics" (80) and
"knowledge, reasoning" (54). The first three topics converge in
2002-2004 into a single topic on "object, xml, store, data min-
ing" (146) which splits in the period of 2004-2006 into "storage
servers" (170), "data mining and management" (158) and "knowl-
edge and ontologies" (150).

Pivot evolution graphs: Threshold β strongly influences the
complexity of the obtained evolution graphs. It is easy to see that
Gβ ′ is a subgraph of Gβ for all β ′ ≥ β and G0 is the complete
graph connecting all topics of two consecutive periods. More ex-
actly, higher β values generate more "linear" graphs with many
isolated topics, whereas lower values generate more complex
graphs containing a variety of potentially interesting structures.
Observe also that, whereas the pivot graph complexity of the
same topic increases with decreasing β , high β thresholds might
still generate complex pivot graphs and vice-versa. Analyzing
science evolution by using topic evolution graphs then becomes a
complex task which consist in computing and visually exploring
multiple graphs for different β values. To solve this problem, we
propose a different approach which allows users to formulate fil-
tering queries for selecting interesting subgraphs with meaningful
measures from a set of evolution graphs defined by a set of β
thresholds. For this, we decompose topic evolution graphs into
the set of all connected subgraphs defined by all paths containing
a given topic t (one graph per topic). More formally, a pivot evolu-
tion graphGβ (t) = (T ′,E ′, sim, β) of topic t inGβ is the subgraph
of Gβ which contains t and all ancestors and descendants of t .
The subgraph of Gβ (t) containing all nodes which are reachable
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from t by a path is called the future of t , denoted by Fβ (t), and
the subgraph of nodes which can reach t through a path is called
the past of t , denoted by Pβ (t). The couple (t , β) is called a pivot
topic with pivot graphGβ (t), future Fβ (t) and past Pβ (t). It is easy
to see that if t1 appears in the future (past) of t2, then the future
(past) of t1 is a subgraph of the future (past) of t2 and t2 appears
in the past (future) of t1. This property can be exploited to filter
topics wrt. future and past topics (see the definition of Connection
Filters below).

The evolution of topics within their evolution graphs can be
characterized by the following metrics:

• The liveliness live(Gβ (t)), of a pivot topic (t , β) is defined by
the diameter (longest path length) of its pivot graph Gβ (t). A
high liveliness value describes a long living topic, whereas
a value equal to 0 corresponds to an isolated topic without
ancestors and descendants. The liveliness live(Pβ (t)) of t in
its past estimates the "age" of t wrt. the first period, whereas
live(Fβ (t)) returns the "life expectation" of t (in its future).

• The relative evolution degree revol(Gβ (t)) of a pivot topic (t , β)
is defined by the average topic dissimilarity (edge) weight in
Gβ (t). A low relative evolution degree states that most topics
are connected to very similar topics, i.e., most topics in Gβ (t)
evolve slowly. On the other hand, a high value signifies that
most topics have an important "semantic gap". By definition,
revol(Gβ (t)) ≥ β .

• The pivot evolution degree pevol(Gβ (t)) of a pivot topic (t , β)
is defined by the average dissimilarity of all topics in Gβ (t)
with respect to the pivot topic t . A low pivot evolution degree
signifies that the pivot topic does not evolve a lot (all other
topics are similar), whereas a high value indicates that the pivot
topic evolves rapidly .

• The split degree split(Gβ (t)) of a pivot topic (t , β) is defined by
the average outdegree of Gβ (t). A low value signifies that the
topics evolve along linear paths and a high value signifies that
the topics split into several future sub-topics.

• The convergence degree conv(Gβ (t)) of a pivot topic (t , β) is
defined by the average indegree of Gβ (t). A low value signifies
that many topics depend on a single parent topic and a high
value signifies that many topics are the result of the fusion of
past topics.

Evolution Pattern Filters: The previous evolution metrics char-
acterize the the evolution of a topic in some evolution graph Gβ .
Combined with other filters on the topic labels and the graph struc-
ture, it is possible to filter pivot topics satisfying rich evolution
patterns within a set of evolution graphs Gβi , 1 ≤ i ≤ n.

Term Filters select pivot graphs with respect to the pivot topic
labels. In particular, they can be applied to filter pivot graphs
wrt. to their emerging, decaying, stable, and specific terms.

Temporal Filters allow experts to filter the pivot topics situated
within a certain time period.

Pattern Filters can filter topics by their pivot graph structure
along their liveliness, split degree and convergence degree.

Evolution Filters are applied to filter topics by their relative and
pivot evolution degrees.

The previous filters are applied to sets of pivot topics and can
be combined with the following other kinds of operators:

Connection Filters are binary operators which select all pivot
topics that are connected to at least one pivot topic in some
other set of topics.

Temporal Projection allows to restrict structural, evolution and
connection filters to the past or the future of the pivot topics.

Set Operators allow to combine two sets of topics by union,
intersection and difference.

Ordering Operators sort pivot topics by their attributes, such as
the topic period, its liveliness, evolution degree etc.

3 WORKFLOW AND IMPLEMENTATION
Figure 2 illustrates the overall workflow which takes as input a
corpus of documents split into several, possibly overlapping time
periods (the same document might appear in two periods).

Figure 2: Topic evolution model of EPIQUE

All documents within a period are processed by LDA [3] to
generate a set of topics which are aligned to produce a single topic
evolution graph Gβ0 for some small alignment threshold β0. This
global evolution graph is then transformed into n families of pivot
evolution graphs defined by a set of alignment thresholds βi > β0,
1 ≤ i ≤ n. Each family contains the pivot graphs Gβi (t) of all
pivot topics (t , βi ). The final database contains n× |T | pivot graphs
where |T | is the number of topics in Gβ0 . These graphs can then
be queried using the filters defined in Section 2.

Figure 3: EPIQUE web application architecture

Figure 3 gives an overview of the architecture of our web
application implemented on top of Apache Spark and Jupyter
Notebook. The entire process to study science evolution over a
corpus is split into two steps for building the pivot evolution graphs
and for interactively exploring these graphs. Each step corresponds
to a separate user interface. The evolution graph generation is
implemented in Scala and exectued through the Spylon4 kernel.
Evolution graph exploration uses a standard Python kernel to take
advantage of advanced Python 3 graphical user interface libraries
for facilitating user interaction.
4https://github.com/Valassis-Digital-Media/spylon-kernel
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4 DEMONSTRATION
Our EPIQUE prototype allows the audience to easily and intu-
itively generate high-quality evolution graphs and explore them.
Among the corpora we have prepared in several domains, our
demonstration focuses on the evolution of computer science based
on the ArXiv corpus. We propose two interactive demonstration
scenarios5.

Figure 4: Screenshot: topic diversity evaluation

Scenario 1 The audience selects or uploads a corpus of docu-
ments with a vocabulary of terms pre-processed by an on-line text-
mining tool Gargantext6 and specifies the time periods through
sliding window over a global time period. Then, the LDA topic
model is generated for each period. LDA requires a vocabulary
and a number of topics to be generated. This number obviously
influences the diversity of the resulting topics. Therefore, the ap-
plication first generates a set of topic models for different topic
numbers per period. The user can then visualize the diversity of
the extracted topic models (topic dissimilairty distribution) and
choose the model with the highest diversity for each period. A
topic diversity distribution for different topic numbers is reported
as shown in Figure 4 and, for example, by observing the 5th
percentile values (blue line), the user can retain one of the two
models (40 or 50 topics per period) that achieves 95% of pairwise
dissimilarities above 0.8.

Then, the topics of consecutive periods are aligned and all pivot
topic evolution graphs are generated along with their main tempo-
ral, structural and evolution indicators: liveliness, split degree, etc.
All topic labels are also generated automatically in this step.

Figure 5: Screenshot: pivot topic evolution graph visualization

In the next step, the user specifies its exploration goal through
an intuitive declarative query-by-example interface (as shown in
the demonstration video5) and visualizes pivot topic evolution

5see http://www-bd.lip6.fr/wiki/site/recherche/projets/epique/demo/start for a video
demonstration
6https://gargantext.org/

graphs as shown in Figure 5. These graphs are pre-computed in
the last step to ensure fast query answer display.

We showcase a search for topic graphs containing a given term
(e.g., database) or set of terms suggested by the audience. Besides
the topic content, the audience can search for topic graphs on their
shape as well. We also prepared 10 predefined query templates
for a typical shapes of high interest such as (i) topics that split in
distinct 5+ years long branches, (ii) topic graphs with low relative
evolution degree and high end-to-end pivot evolution degree. We
also demonstrate more complex queries combining several query
templates to build, for example, concept drift queries looking for
pivot topics that contain emerging terms originating from other,
"older" topics which are not part of their past pivot subgraph.

Scenario 2 In the second scenario, we will provide the audi-
ence with the possibility to prepare their own corpus using the
Gargantext service which is also part of the EPIQUE project. Gar-
gantext includes a number of bibliographic archives like Pubmed,
Web of Science, etc. and allows to create domain specific docu-
ment collections and vocabularies which are then processed by
the same workflow as in Scenario 1.

5 FUTURE WORK
In the next step, we intend to optimize the computation of pivot
topic evolution graphs and exploit the LDA document-topic matrix
for enriching the analysis. Additionally, we plan to integrate other
topic extraction methods than LDA. This prototype will also be
used to validate our evolution model with philosophers of science
to define and extract complex evolution patterns from different
scientific domains.
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