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ABSTRACT

In big data ecosystems, it is becoming inevitable to query data
that span multiple heterogeneous data sources (remote systems)
to build meaningful querying and analytical workflows. Existing
work that aims at unifying heterogeneous systems into a single ar-
chitecture lacks the fundamental aspect of efficient cost estimation
of SQL-based operators over remote systems. The problem is fun-
damental because all modern optimizers are cost-based, and with-
out accurate cost estimation for each query operator, the generated
plans can be way off the optimal plan. Nevertheless, the problem is
mostly overlooked by existing systems because the focus is either
on homogeneous distributed RDBMSs in which cost estimation
is already extensively studied, or on fully heterogeneous engines
in which SQL querying and SQL query optimization are not ap-
plicable (or at least are not the core problem). In this paper, we
propose a comprehensive remote-system cost estimation module
for SQL operators, which is a core module within the Teradata In-
telliSphere architecture. The proposed module encompasses three
costing approaches, namely logical-operator, sub-operator, and
hybrid approaches, which are suitable for black box, open box,
and a mix of black and open box systems, respectively. The cost
estimation module leverages analytical and deep learning models
with novel techniques for efficient extrapolation when needed. The
techniques presented in this paper are modular and can be adopted
by other systems. Extensive experimental evaluation shows the
practicality and efficiency of the proposed system.

1 INTRODUCTION

There has been an increasing necessity, especially in big data
applications, for managing and querying data that span multiple
heterogeneous data sources (remote systems) [12, 13, 31]. The
number of the remote system types is increasing dramatically,
each system has unique inherent characteristics and processing
capabilities, some systems are openbox with well-known internal
details while others are blackbox with very little knowledge about
their internals—and many levels in between, and each system
offers different levels of sophistication w.r.t. query planning and
optimization. Although such interconnectivity and interoperability
create unprecedented opportunities for advanced analytics and
data sciences, the unification of such diverse systems in a single
architecture and the orchestration of the overall processing among
them represent a classical challenging problem of many facets.
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Several architectures have been proposed to address different
aspects of the problem including federated systems [8, 11, 24],
polystore systems [13], and data integration and warehousing
systems [10, 12, 28, 31]. A big bulk of federated systems’ re-
search has focused on distributed relational database systems
where distributed transaction processing, concurrency control, re-
covery control, and replica management have been extensively
studied [9, 14, 20, 24]. Other research focuses on heterogeneous
federated systems, where schema mapping, query translation, con-
flict management, and mediation design are the core addressed
issues [10, 12, 28, 31]. More recent polystore systems, e.g., the
BigDAWG system [13], target transparent unification and access
across multiple backend systems of different data models, e.g.,
array, graph, streaming, and relational models. Although query
optimization is a core component of BigDAWG, building an ad-
vanced cost estimation module is not the current focus as reported
in [13]. Finally, the data integration and warehousing systems
focus on offline data integration issues in contrast to online ad-hoc
querying and query optimization.

“Teradata IntelliSphere” [4] is a project that shares a com-
mon theme with the aforementioned systems, i.e., accessing data
across multiple heterogeneous data sources. In the IntelliSphere
architecture (See Figure 1), Teradata is the master engine and the
communication point with the end-users. The other underlying
sources (called remote systems) are heterogeneous, but they are all
assumed to have SQL-like interface (even if the internal execution
is not SQL). This covers a wide spectrum of systems such as
Hive [25, 26], SparkSQL [7], Presto [27], Impala [22], and other
RDBMS:s [1, 2, 23]. Therefore, IntelliSphere’s query language is
SQL, and Teradata is responsible for building a SQL query plan
and deciding where each SQL operator, e.g., join or aggregation,
will execute on one of the IntelliSphere’s systems (either Teradata
or a remote system).

In this paper, we focus on one fundamental aspect of Intelli-
Sphere, which is the cost estimation of a given SQL operator over
remote systems. The “cost” in our context is basically the elapsed
execution time of a SQL operator on the remote system. The
problem is fundamental because all modern optimizers (including
Teradata’s optimizer) are cost-based, and without accurate cost
estimation for each query operator, the generated plans can be
way off the optimal plan. Evidently, in the popular pay-as-you-go
cloud model, bad execution plans can have unacceptable time and
monetary overheads. Despite the importance of the problem, it is
briefly touched by existing systems because as highlighted above,
and will be elaborated on further in Section 6, each of the existing
systems focuses on other aspects of the big problem.

Accurately estimating a remote operator cost is a challenging
problem because: 1) Some remote systems are openbox where ex-
perts can inject a lot of details about them into IntelliSphere while
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other systems are blackbox with very little knowledge on how
they execute. 2) Two remote systems, e.g., Hive and Impala, may
offer entirely different set of algorithms to physically implement a
given operator, e.g., joining two tables, and thus whatever learned
from one system does not necessarily apply to another system.
3) Within a single remote system, it is not trivial for IntelliSphere
to predict which physical algorithm, possibly from several can-
didates, will be used for a given operation. And 4) Putting the
simplistic assumption that all remote systems are blackboxes and
the only way to learn their behavior is by submitting many queries
as in [13] is not a practical scalable solution. This is because,
as we will show in the paper, such approach of learning is very
expensive and should be used as a last resort instead of the default
and only solution.

In this paper, we propose a comprehensive remote-system cost
estimation module for SQL operators that addresses the challenges
highlighted above. To be specific, the costing metric that we try
to measure in this project is the elapsed execution time within the
remote system. This time encapsulates and reflects other detailed
costs, e.g., query compilation, scheduling, I/O and CPU costs
within the remote system. We assume that the network costs,
e.g., establishing a connection and data transfer back and forth,
are learned through some other mechanisms, which are outside
the scope of this paper. Ultimately, the Teradata optimizer will
combine multiple costs together to come up with a final cost for
the SQL operator, and based on that it decides where to execute
the operator. The techniques presented in this paper focus only on
estimating the elapsed execution time, which is a major factor in
the cost equation.

We propose three costing approaches, namely logical-operator,
sub-operator, and hybrid approaches, which are suitable for black-
box, openbox, and a mix of black and open box systems, respec-
tively. The cost estimation module leverages analytical models as
well as deep learning models within the different approaches. We
show that although the deep learning models are good in capturing
non-linear cost estimation, they fall short in providing accurate
estimations for un-seen (un-trained) ranges. To overcome this
limitation, we propose online remedy and offline tuning phases to
enhance the estimation quality.

The key contributions of the paper are summarized as follows:

e Proposing a comprehensive remote-system cost estimation
module for SQL operators, that encompasses three approaches,
namely logical-operator (logical-op), sub-operator (sub-op), and
hybrid approaches. Each of the logical-op and sub-op approaches
has pros, cons, and applicability cases. The hybrid approach com-
bines their advantages.

e Leveraging both analytical cost models and deep learning
models within the different costing approaches. The deep learning
models are empowered with online remedy and offline tuning
phases to ensure high quality estimations even for un-trained
ranges.

o The proposed cost estimation module is modular, and due to
its applicability to openbox and blackbox systems, it can be easily
adopted by and integrated within other systems such as polystore
systems.

o Evaluating the proposed cost estimation module empirically
in the context of Teradata and Hive as a proof of concept. Ex-
tensions to other systems such as SparkSQL, Presto, and Impala
follow the same methodology. The results show the effectiveness
of the proposed module compared to the state-of-art approaches.
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Figure 1: Teradata IntelliSphere Architecture.

The rest of the paper is organized as follows. In Section 2, we
present the architecture of the IntelliSphere system and introduce
the problem definition. In Sections 3, 4, and 5, we describe the
details of the three costing approaches: logical-op, sub-op, and
hybrid, respectively. In Section 6, we overview the related work,
and in Section 7, we present the experimental evaluation of the
system. Finally, Section 8 contains the conclusion remarks.

2 TERADATA INTELLISPHERE

In this section, we overview a simplified architecture of the Tera-
data IntelliSphere system [4] and the basic workflow components
related to this paper!. Teradata IntelliSphere is designed to be
a cost-effective and scalable analytical ecosystem that offers nu-
merous software solutions to ingest, access, and manage big data
across multiple heterogeneous data sources. For the purpose of
this paper, we focus on the following basic components of the
architecture (See Figure 1):

Teradata: The master engine in the entire architecture is the
Teradata Database [2]. It also represents the communication point
with the end-users. It receives a user’s query in the form of a SQL
query, generates a cost-based efficient query plan where each SQL
operator is scheduled for execution on one of the IntelliSphere’s
systems, combines the results, and passes the final answer back to
the user.

Remote Systems: The underlying heterogeneous data sources
are referred to as remote systems. They are all assumed to have
SQL-like interface where they can receive a SQL operation such
as a join, aggregation, filter, and projection, perform the computa-
tions of that operation and return the results back to Teradata. It is
possible that the internal execution of a remote system is different
from the relational DBMS model, e.g, Hive’s internal execution is
map-reduce. And it is also possible that a remote system may not
support some of the SQL operations, e.g., a remote system may
not have the capability to perform a join operation.

Remote System Profile: Each remote system registers in the
IntelliSphere architecture through a profile. This profile describes
the remote system setup, e.g., a cluster configuration, and the
capabilities of the remote system, e.g., what operations it can or
cannot support. The profile is constructed during the registration
step, and can be modified afterwards as needed. We will use the
profile extensively to store all metadata information related to
the cost estimation module as will be described in the following
sections.

QueryGrid: It is the communication layer that facilitates the
transfer of data across the involved systems [3]. Several QueryGrid

YTeradata IntelliSphere is a more comprehensive architecture with features and
functionalities beyond what is presented in this paper. We only highlight the aspects
related to our paper.



connectors are built to enable queries to access tables stored in
remote systems. The differentiating factor between Teradata’s
QueryGrid technology and other connectors is that it works in
conjunction with the query processing engines to optimize the
overall execution. For example, simple predicates—in a well-
defined language—can be passed to QueryGrid for execution
on-the-fly while the data is being transferred from one system to
another. This capability can save unnecessary scanning of a local
data, writing back to the file system after evaluating the predicate,
and then passing the results to the QueryGrid for transfer.

Data Storage, Statistics, and Transfer: A given dataset con-
sists of a set of tables {Ti, Tz, ..., T }, where each table is stored
on one of the IntelliSphere’s systems (Teradata or a remote sys-
tem). Any remote table is registered inside Teradata as a foreign
table—and thus Teradata knows its schema and location. As a re-
sult, a single SQL query can seamlessly reference multiple foreign
tables across several remote systems. We assume that Teradata can
collect basic statistics on remote tables, e.g., the number of rows,
average row size, the number of distinct values in each column,
etc. Such information is either already available on the remote
system or Teradata can estimate them by submitting some queries
over the data. Regarding the transfer of data, the data cannot be
transferred directly between two remote systems, instead it can be
only transferred between a remote system and Teradata.

Query Plans: As in standard RDBMSs, Teradata generates
many equivalent SQL query plans during the optimization phase,
and part of that is deciding on where each operator will execute—
which clearly implies different costs depending on the host system.
To limit the search space, IntelliSphere considers scheduling an
operator only on a remote system that owns the input data (or
part of it) or the Teradata system. For example, assume joining
two relations R and S, where R is stored in Hive and S is stored
in Presto. Then, there are three possibilities for placing the join
operator, either on Hive (and S will be passed to Teradata and
then to Hive), on Presto (and R will be passed to Teradata and
then to Presto), or on Teradata (and both R and S will be passed to
Teradata). The results computed on a remote system do not have to
be immediately transferred to Teradata, instead they may remain
on that remote system for further computations, and then at some
point in the query, the results will be transferred to Teradata.

Problem at Hand and Design Assumptions: Given the setup
described above, IntelliSphere leverages the full-fledged capa-
bilities of Teradata’s mature optimizer in generating efficient
cost-based query plans. The only missing piece is estimating
an operator’s cost were it to be executed on a remote system. As
highlighted in Section 1, this cost involves several factors, we only
focus on estimating the wall-clock elapsed execution time within
the remote system. Therefore, while estimating the execution cost,
we assume that the needed data is already on the remote system—
and thus the network communication and data transfer costs are
out of the picture 2,

Supervised ecosystem: The learning and model building step for
a given remote system is performed only once when the remote
system is added to the IntelliSphere ecosystem. Therefore, the
learned models are for specific cluster configuration, access meth-
ods, physical data layout, etc. The IntelliSphere ecosystem is su-
pervised in the sense that changes to a remote system, e.g., adding
or removing nodes, creating or dropping indexes, re-partitioning

2Teradata can estimate the amount of data that need to be sent to the remote system
as well as the output size that will be sent back to Teradata. Based on these estimates,
other costs such as the the network cost and data transfer are estimated.
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Figure 2: Logical-Operator Costing for Join Operator.

the data, etc., are known to Teradata. Such changes, would require
re-doing the learning phase from scratch.

Stable workload: Another underlying assumption is to have a
roughly consistent workload on the remote system. That is, the
workload during the training and model construction phase should
roughly remain the same while executing users’ queries later. In
our experiments, we assume the remote system is dedicated to
the submitted queries and no other workloads are running. Super-
vised ecosystem and stable workloads are the same assumptions
used in almost all other related work [15, 21, 30], otherwise it is
impossible to predict the remote system behavior.

Integration in bigger query plans: In Teradata, the cost of a
SQL query operator includes several low-level factors such as the
I/O costs, e.g., index scans, disk page accesses for data, and CPU
costs, e.g., hash table creation, hash table lookup, records merge
or sort, etc. Ultimately, these costs are translated to an estimated
execution time cost per operator. As such, the estimated execution
time for the remote operators fit directly in bigger plans.

3 LOGICAL-OPERATOR COSTING

One approach for estimating a remote operator cost is the Logical-
Operator Costing (logical-op costing for short). In this approach,
the training and learning phase is performed at the logical operator
level, e.g., join and aggregation operators. This is the approach
used in other systems, e.g., BIgDAWG [13]. The main idea of
the logical-op costing is to build a relatively large set of training
queries, execute them on the remote system, and build a model
for the target operator. The key advantage is that it requires no
knowledge about the internal execution of the remote system, e.g.,
it does not need to know which physical join algorithm is used
to perform the join. In other words, the remote system is treated
as a blackbox. However, the main drawback is that to build a
reasonably accurate model for a given operator, it would require a
large number of queries to cover a wide range of possible configu-
rations. This would certainly require a prolonged training phase
and potentially consume valuable resources. In the following, we
describe in detail the phases involved in this costing approach.

Building a training dataset: In general, the more complex
the logical operator and the more variations in physically im-
plementing it, the more training queries are needed to build its
corresponding model. We created logical-op training models for



the join and aggregation operators. For the join operator, the train-
ing model has seven dimensions, which include the row size and
the number of rows in each of the two tables, the sum of the pro-
Jected attribute sizes from the each table, and the number of output
rows (See Figure 2). For the aggregation operator, the model has
four dimensions, which include the number of input rows, input
row size, number of output rows, and output row size.

Coming up with appropriate training dimensions is crucial and
requires some level of expertise. On one hand, we need to min-
imize the number of dimensions because the number of queries
grows exponentially when adding more dimensions. On the other
hand, we need to capture enough parameters in order to model the
targeted operator accurately. Based on our team’s experience with
the Teradata query optimizer, we selected the highlighted dimen-
sions as the representative dimensions for the join and aggregation
operators.

The next step is to assign for each dimension a domain re-
flecting the possible training values that this dimension may take.
In some applications, there can be samples of existing data or
workloads to help selecting the appropriate domain for each di-
mension. Otherwise, we start with reasonable assignments, and
then a continuous learning phase will help to gradually expand
the domains as the system observes and executes more queries (as
will be explained later).

Assume dimension i has a domain d; of size |d;|, then the total

number of configurations in the training set for one operator is
k

computed as l_[ |di|, where k is the number of dimensions. For

example, as illlulstrated in Figure 2, each row represents one con-
figuration, which maps to a single query over the remote system.
After executing the queries, each configuration will be labeled with
the observed execution cost. This step of executing the queries
over the remote system can be very expensive, e.g., it may take
days if the number of queries is large.

Building a costing model: The next step in the logical-op cost-
ing is to build a model from the observed costs. For that purpose,
regression or neural network models can be used. We experi-
mented with both, and we found out that linear regression models
introduce more errors as will be demonstrated in the experiment
section (around three times larger w.r.t the root-mean-square error
RMSE). This is primarily because the number of data points can
be large, e.g., in thousands, the number of input dimensions can
be also large, and the relationship between the inputs and outputs
might not be linear—especially for complex operators like join
and aggregation. Simple light-weight neural networks tend to be
more accurate under such complex modeling. For that reason, we
opt for the neural network model in the rest of the paper.

There is no rule of thumb for deciding on the optimal neural
network structure. Typically, two or three hidden layers are enough
for not highly-complex problems [18]. Therefore, we fix the num-
ber of layers to two for both the join and aggregation operators.
And then we use a cross-validation technique to determine the
number of nodes (neurons) in each layer [16]. More specifically,
we vary the number of nodes in the 157 layer between the number
of inputs (7 for join, and 4 for aggregation) and the double of that
number, and vary the number of nodes in the 2"? layer between
three and half the number of the 1%¢ layer’s nodes. Then, for each
topology, we use a cross validation test involving 70% of data as
training and 30% as a test to measure the accuracy of the network.
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Finally, we select the topology that introduces the least root-mean-
square error (RMSE). Figure 2 shows the neural network model
over the seven-dimension inputs for the join operator.

Usage and model expansion: In the typical scenarios, the
constructed model is directly used at query time to estimate the
cost of a remote operator. Given an operator that is candidate for
execution on a remote system, e.g., a join operator where one of
the input relations is on that remote system, the system calculates
and/or estimates the input parameters for the operator’s model. For
example, the seven input parameters illustrated in Figure 2 need
to be estimated for the join operator. These parameters are then
fed to the neural network model to predict the output value, which
represents the estimated cost (See the flowchart in Figure 3).

The estimation process is straightforward as long as all the
input parameters fall within (or in the proximity of) the ranges
on which the neural network is trained. However, in the cases
where one or more parameters are way off the trained ranges,
the model may not provide accurate estimation. This is because
neural networks are good in capturing complex relationships but
not good in extrapolating out-of-range values.

In real deployment systems like Teradata IntelliSphere these
cases need to be adequately handled. Therefore, we propose a two-
phase solution that consists of an online query-time remedy phase
and an offline batch tuning phase. The online remedy phase pro-
vides an immediate best-guess estimation to the operator at hand
to continue the query optimization and execution. Whereas, the
offline batch tuning phase provides a mechanism for readjusting
and tuning the neural network from the actual logged executions.
Both phases are described in detail below.

Online Remedy Phase: The main idea of the online remedy
phase is presented in Figures 3 and 4. Initially, the system main-
tains metadata information for each input dimension in the train-
ing set of a given operator. This metadata includes the covered
range using min and max boundaries and a stepSize. For exam-
ple, Figure 2 shows the metadata of the Row size dimension,
which indicates the training covers the range from 100 to 1, 000
bytes and the step size is 100. Now, if the current query at hand
involves a join where the estimated row size is 10,000 bytes,
the system will detect that this parameter is way off the trained
range, and will not get the estimate by relying only on the neural
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network model, but instead it will trigger the execution of the
QueryTime—-Remedy () procedure (See the top diamond box
in Figure 3). More specifically, if the value of a given dimension
is outside the [min, max] range by more than § * stepSize, where
B > 1is a configuration parameter, then that dimension is consid-
ered way off the trained range. The procedure on the fly builds a
regression model and combine it with the neural network model
to come up with the final estimate as illustrated in Figure 4.

Lets illustrate the construction of the regression model using
a simple scenario. Assume a join query Q that involves only
one dimension, say Row size of R, where its estimated value
is way off the trained range in the neural network. We refer to
that dimension as the Pivot dimension. All other dimensions
(refer to them as DjpRrange) are within the trained range. The
QueryTime-Remedy () procedure extracts a set of training
records of size k, where k is a system parameter, having the fol-
lowing properties: (1) their values in the DjyRrange dimensions
are matching (or very close) to the corresponding values in Q,
and (2) their values in the Pivot dimension are the immediate
successors and/or predecessors of the corresponding value in Q.
This set should represent the closest possible training points to
the query point. The pivot values in this set are then extracted and
used to build a regression model. The algorithm can be extended
to handle more than one pivot dimension as illustrated in Figure 4.

The QueryTime-Remedy () procedure uses the constructed
regression model to extrapolate on the pivot dimension(s) and
predict the cost. This cost is then combined with the estimated
cost from the neural network model to come up with the final cost
(See Figure 4). The reason we combine the two costs is that they
capture different and complementary factors. The neural network
captures the complex relationship between the input parameters
and the output but cannot extrapolate. In contrast, the regression
model can extrapolate but oblivious to the other dimensions. The
costs are combined using a weighted factor & (0 < a < 1) as
illustrated in Figure 4. Initially, « is set to 0.5, and as the system
executes more queries, a gets automatically adjusted to narrow
the gap between the estimated and actual execution times.
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Offline Tuning Phase: Whenever IntelliSphere executes a re-
mote operator on an external system (depending on the optimizer’s
decision), it captures the actual execution cost and pushes this
information to a log (See the bottom diamond box in Figure 3).
Periodically, this log is fed to the neural network model to tune its
structure with the new observed data.

One interesting detail to highlight here is the mechanism for
updating the metadata information of the training dataset at the
end of the tuning phase. Recall that a metadata information is
maintained for each dimension in a training set including the
min, max, stepSize values. When a log gets executed to update
the neural network model, the metadata gets also updated. More
specifically, the [min, max] range gets expanded if the log has
entries with out-of-range values. However, this expansion takes
place only if a continuity in the training points is maintained. For
example, referring to the metadata in Figure 2, if the log has some
entries with out-of-range values or the 1°¢ dimension like 8, 000
and 10, 000 bytes, then the current range will remain intact because
there are many missing points between that range and the new
values, i.e., continuity will be broken. Instead, more information
is added to the metadata to indicate that training dataset of 8, 000
and 10, 000 bytes

The implication of this expansion strategy is that when a new
join query comes and it includes an out-of-range value for the
1% dimension, say 6, 000 bytes, the system will still trigger the
online remedy phase highlighted in Figure 4 to come up with
the final estimated cost instead of relying only on the neural
network model. The positive thing is that the prediction from both
the neural network and the regression models are getting better
because they take into account the previous log records even if the
[min, max] range has not been modified.

4 SUB-OPERATOR COSTING

Another approach for remote operator costing is what we refer
to as sub-operator costing (or sub-op costing for short). In this
approach, the learning and training is performed at the granularity
of small building block operators, e.g., scan, shuffle, sort, read,
and write operations. And then, the higher-level query operators,
e.g., join and aggregation, are expressed as formulas on top of the
sub-ops. The main advantage is that learning the cost of each sub-
op is relatively straightforward and fast because: (1) The number
of dimensions in a training set for each sub-op is typically very
small (only two or three), (2) As a result of the low-dimensionality,
the number of needed training queries is very small—which saves
training time and cost, and (3) The logic and behavior of each
sub op is relatively simple and thus linear regression is typically
enough to model most of these sub ops.

On the other hand, the main disadvantage of the sub-op ap-
proach is that it requires a great deal of knowledge about the
remote system, which may not be available in some cases. For
example, it requires identifying a set of the building block opera-
tors (the sub ops) that is sufficient to accurately model the query
operators. It also requires understanding the different algorithms
of the physical implementations for the different operators, e.g., a
join operator can have four or five different physical algorithms
such as broadcast join, re-distribution hash join, etc., and defining
a formula to express each algorithm in terms of the sub ops. Evi-
dently, if such level of knowledge is not already available, then it
takes a long time to collect with these details.

Identifying sub operators and costing formulas: The first
step in this approach is to identify the key sub operators of the
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Figure 5: List of Common Sub Operators in Remote Systems.
Additional sub ops can be defined specifically for certain re-
mote systems.

remote system, which may differ from one system to another.
However, in the majority of the modern distributed systems, which
have shared-nothing architecture in common, these sub operators
typically include: reading from disk, writing to disk, shuffling
across machines, in-memory sorting, and scanning a memory
block. Other more specific sub operators include insertion into a
hash table, probing a hash table, and merging two records.

In Figure 5, we highlight a list of the key and common sub
operators and categorize them into two categories, namely Basic
and Specific. The sub operators under the Basic category are kind
of mandatory to learn, otherwise it would not make sense for the
corresponding remote system to be costed using this approach.
The other sub operators are good to have, but missing them is
not a hinder to this approach because either they are specific to
few query operators, they are not dominating factors in the cost
formulas in which they participate, or IntelliSphere can provide
rough default values for them. We will provide more details and
examples in this section for these sub operators.

It is worth to highlight that Teradata costing mechanism is
based on the sub-op costing approach. It is highly reliable, effi-
cient to use for estimation, and easy to calibrate and extrapolate
whenever needed. Given that all engine details are known, Tera-
data optimizer maintains a long and detailed list of sub operators.
In contrast, for remote systems, it is more practical to assume
limited knowledge about them. That is why we try to capture a
minimal, but sufficient, set of sub ops as highlighted in Figure 5.

After defining the sub operators, each query operator for which
a costing model need to be built, e.g., join and aggregation, need to
be expressed as a composition of the sub operators. Since each of
these query operators can have multiple physical implementations
carrying significantly different costs, it is important for a technical
expert to know the list of physical algorithms that are supported
by the remote system for a given query operator. For example,
Hive supports five types of join algorithms, which are: Shuffle
Join, Broadcast Join, Bucket Map Join, Sort Merge Bucket Join,
and Skew Join [19]. Similarly, Spark supports five join algorithms,
which are: Broadcast Hash Join, Shuffle Hash Join, SortMerge
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Join, Broadcast NestedLoop Join, and Cartesian Product Join.
Each of these algorithms need to be expressed in terms of the
defined sub operators.

In Figure 6, we provide a detailed example using the Broadcast
Join algorithm between two relations R and S, where S is assumed
to be the small relation. The top part of the figure shows the algo-
rithm workflow while the bottom part shows the corresponding
cost formula. The algorithm starts by reading the small relation S
from the distributed file system, e.g., HDFS, and broadcasting it to
all workers, and it gets stored locally on each machine. Then each
task—in Hadoop terminology, it is called a map rask—executes
the loop illustrated in Figure 6. Basically, each task reads rela-
tion S and builds a main memory hash table, and then reads one
block from the big relation R and for each record in that block, it
probes S’s hash table for possible joins. The read block from R is
assumed to be on the local disk because most distributed systems
try to achieve data locality by putting the computational task on
the machine storing the data. Previous studies have shown that
although data locality is a best effort mechanism, it is achieved
more than 90% of times. The last step in the workflow is for the
task to write its output back to the distributed file system?.

The costing formula in Figure 6 has almost one-to-one map-
ping to the steps in the workflow. We use the notation | | to in-
dicate the cardinality (number of records) of an input. The term
NumTaskWaves represents the number of cascaded tasks ex-
ecuted on a single machine. It is computed as total number of
tasks in the join job divided by the total number of parallelism
in the system, i.e., the total number of cores. Notice that the
values for factors such as NumTaskWaves, |Block (R) |, and

| TaskOutput | are calculated and/or estimated by another mod-
ule in the IntelliSphere system different from the costing module
and that module is outside the scope of this paper.

Building a training dataset: The upfront effort put in specify-
ing the sub ops and the cost formulas will pay of by simplifying
the subsequent phases of the sub-op costing approach. For the
training dataset, what is needed is to build a set of queries for
each of the sub ops to learn its cost in the remote system. Since
each sub op is primitive, the number of dimensions in its training
dataset is very small. In fact, we found it enough for almost all sub
operators under the Basic category (Refer to Figure 5) to have only
two dimensions in the training dataset, which are the number of
records and record size. The only exception is the Broadcast sub
operator, which requires a third dimension, which is the number
of machines.

Since the number of dimensions is small, and additionally
the number of values assigned to each dimension is also small
(because the sub op models are easy to extrapolate as we will
discuss later), the number of records in the training set becomes
very small. In fact, it is between one to two orders of magnitudes
smaller than that of the logical-operator approach, which intro-
duces a significant reduction in the training time and cost over a
remote system.

For measuring the cost (execution time) for each sub-op, we
avoided instrumenting and injecting special code inside the re-
mote system since such instrumentation may not be feasible for
some remote systems. Instead, we submitted primitive queries that
execute specific type of operations, and from that we extracted the
values of the individual sub-ops. In Figure 5, we show examples

3Cost formulas for other join algorithms can be derived in the same manner. We
omitted them from the paper due to space limitations.
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Figure 7: Sub-Op Costing Model for ReadDFS Operator.

of these queries and how they can be used to measure specific
sub-ops.

Building a costing model: In this step, a cost model is built for
each sub operator. For simplicity, we will focus our discussion on
the majority of the sub ops, which involve two dimensions in the
training set, i.e., number of records and record size. It is possible
to consider these two dimensions as separate (orthogonal) dimen-
sions while building the model. However, we experimentally ob-
served that the model can be further simplified because for a given
record size, say s, the measurements across the other dimension
(the records’ number) are very similar to each other. Therefore,
it is practical to group the measurements by the record size, and
compute the average across the varying number of records. In
Figure 7(a), we illustrate this observation. The experiment is mea-
suring the ReadDFS (Reading from distributed file system) cost
for a record size of 1,000 bytes under varying number of records.
The dotted line shows the average value. Similar findings are
observed for other record sizes and other sub operators.

Based on this observation, a simple linear regression costing
model can be built as depicted in Figure 7(b) for the ReadDFS
operator. As can be noticed a big advantage of the sub-op costing
approach is that most sub-ops have simple and tight linear regres-
sion models that can be easily learned from small training dataset
(more results will be presented in Section 7). Moreover, these
models are easy to extrapolate for un-seen values, which is not
the case for the more complex neural network models presented
in Section 3.

Usage: At query time, lets say a join query between R and S,
the first thing to be done by the IntelliSphere cardinality estimation
module is to provide the required cardinalities and statistics, e.g.,
the cardinality of each relation, the number of distinct values in
the join keys, the average number of records per key, etc. Then,
if the operator at hand has only one physical implementation
in the remote system, then IntelliSphere uses the corresponding
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cost formula to estimate the cost. Otherwise, if there are multiple
possibilities, which is the case for the join operator (Refer to
Figures 6), then IntelliSphere needs to predict which algorithm
the remote system will use.

Predicting the remote system choice is tricky, especially for
complex systems such as other relational databases, e.g., DB2,
SQL Server, or Oracle. Yet, it is more straightforward for sys-
tems like Hive and Spark. Lets take the join operator, which has
the most algorithmic variations, as an example. Although it has
five algorithms in Hive and Spark, most of the choices can be
easily eliminated based on some observations. For example, if
the relation in Teradata side, say S, which will be sent to the
remote system is not partitioned by the join key—which Intelli-
Sphere should know—then the choices of Bucket Map Join and
Sort Merge Bucket Join in the case of Hive can be eliminated.
Even if S is partitioned on the join key, but there is no way to tell
the remote system such property after the data transfer, then still
the two choices above can be safely eliminated. If the join is not
Cartesian product, then the choices of Broadcast NestedLoop Join
and Cartesian Product Join in the case of Spark can be eliminated.
If both join relations are quite large, then the choices of Broadcast
Join either in Hive or Spark can be eliminated.

These observations, or what we refer to them as “Applicabil-
ity Rules”, are defined by the technical experts while defining
the cost formula for each possible algorithm. IntelliSphere uses
them at query time to eliminate inapplicable choices based on
the cardinalities and statistics at hand. Finally, if there are still
multiple possible choices, then the system can either take the high-
est cost (assuming the worst case scenario), the average cost, or
the “in-house comparable” cost. The in-house comparable cost is
applicable when the remote system is another relational database
system. In this case, IntelliSphere assumes that the remote system
will pick the algorithm that Teradata would have picked were the
data in-house.

5 HYBRID-OPERATOR COSTING

As highlighted in Sections 3 and 4, each of the sub-op and logical-
op approaches has pros and cons. Such tradeoff between the two
approaches and the diverse remote systems available nowadays
in the Big Data ecosystem call for a hybrid approach that can
combine the advantages of both worlds.

In Figure 8, we provide a summary comparison between the
two approaches. In general, the sub-op costing model can be
significantly superior w.r.t the training cost, training time, and
the ease of extrapolation given that a detailed knowledge on the
remote systems is already available. Otherwise, the logical-op
model would be the favorite.



Sub-Op Costing

Logical-Op Costing

Modeled Operators

Low-level building block operators such as read, write, scan,
and re-distribute

Logical query operators such as join and aggregation

Parameter Space
(# dimensions in the training
dataset per operator)

The parameter space is small. Most sub-ops need only two
dimensions in their training dataset

Example: “read”, “write”, and “re-distribute” each has two
dimensions, i.e., (1) number of records, and (2) record size

The parameter space tend to be large and the number of
dimensions is high.

Example: “join” has at least seven dimensions including: (1)
record size in R, (2) Number of records in R, (3) record size in S,
(4) Number of records in S, (5) projected output record size from
R, (6) projected output record size from S, and (7) number of
output records

Size of training dataset (# of
training queries per operator)

Small, because the parameter space is small

Can be very large because the parameter space is usually large

Training Time Shorter Longer
Ability to Extrapolate Easier Harder
Remote System Assumption Open box Black box

Remote System
Prerequisites (Knowledge)

- Knowledge on how logical operators, e.g., join or
aggregation, get physically implemented

- Knowledge o what types of sub-ops operators to model

- Knowledge on how to express logical operators in terms
of the sub operators

None. No internal knowledge of the remote system is needed

Model Continuous Tuning
(especially for un-seen values)

Less critical because extrapolation is straightforward

More critical because for complex models, extrapolation is not
straightforward

Maintenance under change or
addition of algorithms in remote
system (E.g., adding a new join
algorithm)

- Need to change or add a cost formula for the modified or
added algorithm

- Add the applicability rules indicating the cases under
which the new algorithm is applicable

- Need to partially re-run queries from the training set that
(hopefully) trigger the modified or new algorithm to learn its
execution pattern

Figure 8: Comparison between Sub-Op and Logical-Op Costing Approaches.

Client

Query

Teradata IntelliSphere

e,
0,,6
fro' sub-op costing [0...t1],
" __logical-op costing [t1..]

Remote
System A

B’s connector

sub-op costing

- logical-op
costing

Remote
System B

Costing Profile (CP) that contains all details for costing a remote operator in the corresponding system

Figure 9: Overview on the Hybrid Costing Model.

The main idea of the hybrid approach is depicted in Figure 9.
Basically, the Teradata IntelliSphere architecture will connect and
communicate with different remote systems using one of the two
costing approaches. The choice depends on several factors includ-
ing whether or not there is enough knowledge about the remote
system, and whether or not the resources allow for a prolonged
training phases—which can be days in the case of logical-ops .

For example, referring to Figure 9, remote system A can be
a well-known openbox system, e.g., Hive or Spark, and in this
case the sub-op costing can be the model of choice. In contrast,
remote system B is a blackbox and its workload and resources
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allow for a prolonged training phase, in this case the logical-
op costing model is a good choice. On the other hand, remote
system C has little knowledge known about it and its workload
and resources do not allow for a dedicated several-days training
phase (for logical-op training). In this case, an approximate sub-op
costing can be applied to C—even if not highly accurate—until the
more extensive training for the logical-op costing is performed,
which may span weeks, and then C switches from the sub-op
costing to the logical-op costing. The IntelliSphere architecture
provides such flexibility.

As highlighted in Figure 9, each remote system has a costing
profile (CP) containing all needed details based on its costing
model. For example, for the sub-op costing, it includes a list of the
sub-ops, a list of the physical algorithms for each logical operator,
the costing formula of each algorithm, and the applicability rules
for each algorithm. For the logical-op costing, it includes the neu-
ral network model for each operator, the metadata information of
the training dataset, plus other information. Updating the costing
profile information instantaneously reflects on the remote table
costing. Although not currently supported in IntelliSphere, the
hybrid approach is also applicable within a single system. That
is, some operators, e.g., selection and aggregation, can be trained
using the logical-op approach, while other higher-dimensional
operators such as joins can be trained using the sub-op approach.
The CP profile is flexible enough to store different costing models
for different operators. We plan to explore this extension in the
near future.



6 RELATED WORK

Accessing and querying datasets that span multiple heterogeneous
data sources is a complex problem, and several systems and ar-
chitectures have been proposed to address certain aspects of the
problem. In this section, we overview these related systems and
emphasize the differences to the IntelliSphere system.

Federated Systems: Federated systems provide a virtual layer
of a unified access and management over a collection of data
sources [8, 11, 24]. The federation can be over a collection of
homogeneous relational databases, e.g., distributed DBMSs (Cat-
egory 1), and most of the research in this category focuses on
distributed transaction processing, replica management, recovery
control, and concurrency control [14, 20, 24].

Systems such as [30] belong to Category I, and they address
the cost model issue across multi relational databases by dividing
the workload into multiple query classes, then sample a subset of
queries from each class and submit them to the remote database(s).
The objective is to learn the corresponding unknown coefficients
of the cost equation using statistical regression models. This ap-
proach is similar to our proposed logical-op learning, however in
their work they did not consider the sub-op costing, which some
times has clear advantage of the logical-op costing especially
when dealing with heterogeneous systems.

The federation can also be over a collection of heterogeneous
data sources (Category II), and the focus of this category is on
building unified data and representation models, query translation,
mediation design, data extraction, schema matching and coalesc-
ing, and conflict and resolution management [10, 12, 28, 31].
IntelliSphere is fundamentally different from these systems be-
cause IntelliSphere’s focus is on efficient query plan generation
and remote operator cost estimation.

Some work under Category II such as that proposed in [21]
addresses the costing in such heterogeneous data sources. How-
ever, their assumed sources are not limited to SQL-like operators,
e.g., the sources can be web search engines, image processing
systems, CAD systems, etc. In this setting, the authors proposed
wrappers around each source that acts as a mini-optimizer and
feeds a global optimizer with the estimated costs for a given oper-
ation. The developers of the remote systems need to code these
wrappers and augment in them optimizer-like logic to derive the
cost of the different possible operations on these remote systems.
IntelliSphere is fundamentally different from that work because
our focus is only on the costing of SQL operators, e.g., selection,
projection, join, aggregation, etc. For that, there are no strong
justifications for the complexity of adding a wrapper’s layer and
the non-trivial task of coding a mini-optimizer for each remote
system.

Polystore Systems: The key characteristic of the polystore
systems, e.g., the BigDAWG system [13], is that they provide
transparent access across multiple engines of different data models,
e.g., relational, graph, NoSQL, array, and steaming engines. In
BigDAWG, the underlying sources are grouped into islands by
their data model type, and then each source has a “shim” which
acts as the source’s communication wrapper. BigDAWG addresses
issues including location transparency, casting among the different
data models, unified query language, and query planning and
optimization across the islands.

The IntelliSphere system is distinct from the polystore sys-
tems in the following: (1) IntelliSphere is not a polystore system
because it assumes a common relational-like data model for all
underlying data sources with a SQL-like interface. Therefore,
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Table naming convention: T, , (in total 120 tables)
- X (number of records): {k x 10%, k x 10%, kx 10° kx 107}, where k €{1, 2,4, 6,8}
Total configurations: 20

-y (record size): {40, 70, 100, 250, 500, 1000}
Total configurations: 6

Table Schema: (a, , a,, a5, a4, Ay, a5, 2y, 2, dummy)

- Each column a; is of type Integer

- Duplication rate of column a; is i (e.g., each value in a; is duplicated 5 times)

- Column z is of type Integer, where all values are zeros

- Column dummy is of type Character, and is used to reach a specific record size
Aggregation Queries:

- The aggregation factor (shrinking factor in the number of records) is achieved by

aggregating over a specific column a; to get a factor of i
- The number of aggregate functions computed varies from 1 to 5. All are of type SUM()

Join Queries:
- The join condition between R and S is fixed to R.a, = S.a, (which are unique-value columns)
- The output cardinality of the join is thus the cardinality of the smaller table.
(The values in the smaller table are subset of the values in the larger table)

- To provide more flexibility on the output cardinality, an extra condition is added in the form
of (R.a, +S.z <threshold). Since S.z is always zero, we can precisely control the selectivity
of this predicate before producing the output. Combined with the join condition, the output
selectivity is controlled to be 100%, 50%, 25%, or 1% of the smaller table cardinality.

Figure 10: Experimental Setup and Synthetic Dataset Description.

IntelliSphere does not focus on issues such as casting among
the different data models and building a unified query language.
(2) Although cost estimation is a fundamental issue in BigDAWG,
it is briefly touched and the system is currently using primitive
approaches as a first step [13]. In contrast, IntelliSphere introduces
a comprehensive cost estimation module for efficient query plan
generation across the underlying systems. The innovations pre-
sented in this project can be certainly leveraged by other systems
such as the BigDAWG system.

Advanced Learning in Query Optimization: Learning-
based models have been studied for both static and dynamic query
workloads at coarse-grained plan-level models to fine-grained
operator-level models [6]. Machine learning techniques have been
also used in the context of query optimizers [17, 29]. The LEO
project [17] uses model-based techniques to create self-tuning
query optimizer by producing better cost estimates. The work
in [29] uses regression techniques to create cost models for XML
operators. And the work in [5] proposes building analytical models
for query mix interaction to determine good execution schedules.
The IntelliSphere system combines both the analytical models and
machine learning techniques into its cost estimation module.

7 EXPERIMENTAL EVALUATION

In this section, we experimentally evaluate the various techniques
of the IntelliSphere’s cost estimation module. As a proof of
concept, we study the learning of one remote system, which is
Hive/Hadoop. We focus on evaluating the aggregation and join op-
erators since they are the most expensive operators in the relational
model.

Cluster and Dataset Description: The Hive VM cluster has
a total of four nodes, one master node and three data nodes. The
total HDFS size is 445GBs divided equally across the data nodes.
Each node has 8GBs of memory and two CPU cores model In-
tel(R) E5-2697@2.7GHz. We used synthetic datasets in which we
generated 120 tables. The details of the generated tables are sum-
marized in Figure 10. As presented in the figure, we created 20
different configurations for the number of records, and 6 different
configurations for the record size. All tables have the same schema
as indicated in the figure. The schema is designed such that the
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Figure 11: Aggregation Logical-Operator: Training Costing & Accuracy over the remote system.

different columns will have different duplication factor, which
facilitates the design of the aggregation and join queries to pro-
duce specific output cardinalities. Overall, the generated dataset
occupies around 45% of the total HDFS capacity (including the
default three-fold replication).

Logical-Op Evaluation: In Figures 11 and 12, we present
the logical-op evaluation for the aggregation and join operators,
respectively. Recall that the aggregation operator has four param-
eters (four dimensions) training dataset, which are the number
of input rows, input row size, number of output rows, and output
row size. We created a total of approximately 3,700 aggregation
queries by varying the target table (from the 120 available ones),
and the shrinking factor and the number of computed aggregates
as highlighted in Figure 10. Figure 11(a) shows the cumulative
training time needed to execute the queries over the remote system
(~ 4.3 Hours).

The collected cost values are then fed to train a neural network
model. As discussed in Section 3, the topology of the network
has two layers, and the number of nodes in each layer is decided
using a cross-validation technique. We omit such details from this
section since it is not part of our core contributions. The neural
network is trained using 70% of the data points, and then the
accuracy is measured using the remaining 30% of the data points.
Figure 11(b) illustrates the convergence of the model. It reaches
a steady state after 7,000 to 9,000 iterations. The figures shows
a total of 20,000 iterations (x-axis), and the y-axis represents the
error percentage, which is measured as (e X 100/v), where e is the
root mean square error (REMS), and v is the average execution
time over all queries. The entire network training takes negligible
time (~ 70 Seconds).

After building the model, the test dataset (30%) is used to test
the neural network model accuracy, which is presented in Fig-
ure 11(c). The figure shows very high agreement between the
actual (x-axis) and estimated (y-axis) execution times. This in-
dicates that the four-parameter model is a good model for the
aggregation operator, and that the neural network model can cap-
ture the relationship between the inputs and outputs with high
precision. In Figure 11(d), we illustrate the model accuracy under
a linear regression model instead of the neural network model.
For the aggregation operation, the linear regression model shows
a reasonable accuracy, although it is still lower than the neural
network model.

Figure 12 illustrates the training cost and accuracy of the join
logical operator. The operator has seven dimensions training set
(refer to Figure 2). We created a training set of 4,000 queries
by varying the possibilities in each dimension according to the
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procedure highlighted in Figure 10. Figure 12(a) shows that the
training time is really high (~ 26 Hours). It is worth highlighting
that our testing cluster is small, and with bigger clusters, more
training configurations need to be covered. Hence, the training
time shown in Figures 11(a) and 12(a) can easily grow by an order
of magnitude.

In Figure 12(b), we show the convergence and error percentage
of the trained neural network model over the training dataset. And
Figure 12(c) shows how well the model can learn the execution
pattern. We tested the accuracy using the test dataset (30% of
the entire data), and the model shows good linear correlation.
In Figure 12(d), we illustrate the model accuracy under a linear
regression model instead of the neural network model. Unlike the
aggregation query type in which the linear regression performed
relatively well, in the case of the join queries, the regression model
performed poorly and could not capture the execution pattern.
Therefore, we believe that for logical operators, it is more accurate
and stable to use the neural network model.

Sub-Op Evaluation: For the sub-operator costing approach,
the training of each sub-op needs only few number of queries,
e.g., in the range of few 10s of queries. As mentioned in Sec-
tion 4, we did not instrument the remote system to measure the
execution time of the sub-op, but instead used primitive queries
as presented in Figure 5. Figure 13(a) shows the training time
for a number of queries ranging from 6 to 32, which is few min-
utes. The results from those queries are then used to construct
a linear regression model for each sub-op. Figures 13(c), 13(d),
and 13(e) illustrate the model of the WriteDF'S, Shuffle, and Rec
Merge sub-ops, respectively.

As we discussed in Section 4 while presenting the ReadDFS
sub-op (Figure 7), we do not construct a separate sub-op model
under different dataset sizes (number of rows). Instead, for each
record size, say k bytes, we perform four experiments with varying
number of rows (1, 2, 4, and 8 millions), and then use the average
value to construct a single linear regression model for each sub-op.
This average value is shown to be a good-enough representation
across datasets as confirmed by the results in Figure 13(b) (for the
WriteDFS sub-op as an example), and earlier in Figure 7(a) for
the ReadDF'S sub-op.

For the Hash Build sub-op an interesting behavior is observed,
which is that the results actually resemble two distinct models (See
Figure 13(f)). This is because the sub-op is sensitive to whether the
hash table fits in memory or not. We experimented with both cases
and constructed a model for each case. Recall that the Hash Build
sub-op is primarily used in the hash join algorithm, where the
smaller of the two joined relations is broadcasted to all machines,
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Figure 13: Sub-Op Model: Training Costing & Accuracy over the remote system.

and each machine will build a hash table for this smaller relation.
Therefore, given a specific cluster configuration, if the broadcasted
relation fits in memory, i.e., falls in the L.H.S area of the vertical
dotted line in Figure 13(f), then the corresponding model is used.
Otherwise, the system can predict that the broadcasted relation
will not fit in memory, and hence the other model is used.
Finally, Figure 13(g) shows the results from combining mul-
tiple sub-ops in an analytical formula to estimate the merge join
algorithm. Recall that such formula is provided by the domain
expert and stored in the remote system profile (Refer to Figures 6).
As the results show, the sub-op costing approach provides very
good estimation. We found that the sub-op approach slightly tends
to overestimate the cost (and similar trend is observed for other
algorithms as well), which is a typical trend even within RDBMSs.

Estimation for Out-of-Range Inputs:

In Figure 14, we study the accuracy of the different costing
approaches when estimating out-of-range values. This is a typi-
cal scenario because an initial training dataset—even if large in
size—cannot cover every possible scenario. In this experiment,
we studied the merge join algorithm. Both the sub-op and logical-
op approaches are trained using datasets of up-to 8x10° records
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Figure 14: Evaluation of Out-of-Range Prediction Models:
Merge Join Algorithm (Fixed o = 0.5).

with different record sizes. Then, the models are constructed from
this training dataset. The figure shows the estimation accuracy
for a set of new queries, where the number of input records is
20x10°, while the record sizes are within the trained ranges. We
generated 45 queries with different configurations, e.g., in some
configurations only one of the join table is out-of-range and in



Table 1: Online Remedy Technique: Automatically Adjusting
the Cost-Combining Factor «.

Batch 1 | Batch2 | Batch3 | Batch4 | Batch 5
a 0.5 0.62 0.66 0.57 0.71
RMES% | 16.32% | 12.6% 12.2% 10.87% | 9.1%

other configurations both tables are out-of-range. We compared
the estimation accuracy of the sub-op approach with that of the
logical-op approach (the neural network “NN” model).

The results show that the sub-op approach is relatively con-
sistent and can easily extrapolate its trained range to cover out-
of-range values. However, due to the non-linearity in the neural
network model (the “NN” line), its accuracy degrades and cannot
extrapolate well. Interestingly, with the Online Remedy technique
(Introduced in Figure 4), the accuracy of the estimation improves
significantly as depicted in the figure. In this experiment, we fix o
(the cost-combining factor) to 0.5.

We also measured the accuracy of the offline tuning phase as
follows. We randomly divided the new out-of-range queries (45
in total) into two batches of sizes 70% and 30% roughly. The
observed execution times from the 70% batch are added to the
neural network model before executing the remaining 30%. And
then, the accuracy of remaining 30% is measured. As Figure 14
shows the model adjusts its weights and nicely learns to provide
accurate estimations for the new ranges.

Finally, to measure how well the system can adjust the cost-
combining factor « in the Online Remedy technique (Refer to
Figure 4), and its effect on the performance, we performed the
following experiment. We initially set @ = 0.5, and then we ran-
domly divide the 45 out-of-range queries into 5 batches each of
size 9. After the execution of each batch, the system adjusts «
to minimize the root-mean-square error percentage (RMSE%) of
the previously executed batches. The RMSE% is computed as
(e X 100/v), where e is the root-mean-square error (REMS) of a
given batch, and v is the average execution time over all queries
within that batch. The new value of « is then used for the cost
estimation of the subsequent batch. In Table 1, we present the
changes of the a values across batches along with the RMSE%
for each batch. The results show a trend towards putting a higher
weight on the cost factor produced from the neural network, but
still the cost produced from the linear regression extrapolation
contributes to the final cost by a 30% to 40%.

In summary, as Figure 14 shows, combining the two costs
seems effective during the online estimation until the systems
collects enough points and applies the offline tuning phase over
the neural network model.

8 CONCLUSION

We presented a comprehensive cost estimation module, which is
part of the Teradata IntelliSphere project. This work addresses a
fundamental problem in the modern big data ecosystems, which
is the need to efficiently access and query data across multiple het-
erogenous sources (remote systems). In order to generate efficient
execution plans, accurate cost estimation on the remote systems
is an essential building block step. We proposed three costing
approaches, namely logical-op, sub-op, and hybrid approaches.
They cover the spectrum of blackbox, openbox, and a mix of such
systems. We demonstrated that none of the logical-op or sub-op
approaches is superior (or practical) in all cases, and thus a hybrid
approach should be deployed. We also presented the pros, cons,
and applicability cases of each approach. Given the complexity
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of the problem, we integrated deep learning and analytical mod-
els within the proposed cost estimation module. Moreover, we
proposed techniques for enhancing the estimation quality for the
out-of-range (un-seen) values. As part of future work, we plan
to study more types of remote systems such as SparkSQL and
Impala.

REFERENCES
(1
2]
3]
4]

[5]

MySQL. http://www.mysql.com.

Teradata. http://www.teradata.com.

Teradata Query Grid. Teradata User Group, September 2014.

A unified software portfolio for a unified analytical ecosystem. Teradata
intellisphere. http://www.teradata.com/products-and-services/IntelliSphere.
M. Ahmad, A. Aboulnaga, S. Babu, and K. Munagala. Qshuffler: Getting
the query mix right. In Data Engineering, 2008. ICDE 2008. IEEE 24th
International Conference on, pages 1415-1417. IEEE, 2008.

M. Akdere, U. Cetintemel, M. Riondato, E. Upfal, and S. B. Zdonik. Learning-
based query performance modeling and prediction. In Data Engineering
(ICDE), 2012 IEEE 28th International Conference on, pages 390-401. IEEE,
2012.

M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley, X. Meng,
T. Kaftan, M. J. Franklin, A. Ghodsi, and M. Zaharia. Spark sql: Relational data
processing in spark. In Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, pages 1383—1394, 2015.

C. Batini, M. Lenzerini, and S. B. Navathe. A comparative analysis of method-
ologies for database schema integration. ACM computing surveys (CSUR),
18(4):323-364, 1986.

P. A. Bernstein and N. Goodman. Concurrency control in distributed database
systems. ACM Comput. Surv., 13(2):185-221, June 1981.

P. A. Bernstein, J. Madhavan, and E. Rahm. Generic schema matching, ten
years later. PVLDB, 4(11):695-701, 2011.

S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakonstantinou,
J. Ullman, and J. Widom. The tsimmis project: Integration of heterogenous
information sources. 1994.

H.-H. Do, S. Melnik, and E. Rahm. Comparison of Schema Matching Evalua-
tions, pages 221-237. 2003.

J. Duggan, A.J. Elmore, M. Stonebraker, M. Balazinska, B. Howe, J. Kepner,
S. Madden, D. Maier, T. Mattson, and S. Zdonik. The bigdawg polystore
system. SIGMOD Rec., 44(2):11-16, Aug. 2015.

J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols, M. Satyanarayanan,
R. N. Sidebotham, and M. J. West. Scale and performance in a distributed file
system. ACM Trans. Comput. Syst., 6(1):51-81, 1988.

D. Kossmann. The state of the art in distributed query processing. ACM
Comput. Surv., 32(4):422-469, Dec. 2000.

A. Krogh and J. Vedelsby. Neural network ensembles, cross validation and
active learning. In Proceedings of the 7th International Conference on Neural
Information Processing Systems, NIPS 94, pages 231-238, 1994.

V. Markl, G. M. Lohman, and V. Raman. Leo: An autonomic query optimizer
for db2. IBM Systems Journal, 42(1):98-106, 2003.

R. Miikkulainen. Topology of a Neural Network, pages 988-989. Springer US,
Boston, MA, 2010.

M. Mofidpoor, N. Shiri, and T. Radhakrishnan. Index-based join operations in
hive. In 2013 IEEE International Conference on Big Data, pages 26-33, 2013.
S. Mullender, editor. Distributed systems (2nd Ed.). ACM Press/Addison-
Wesley Publishing Co., New York, NY, USA, 1993.

M. Roth, F. Ozcan, and L. M. Haas. Cost models do matter: Providing cost
information for diverse data sources in a federated system. In VLDB, 1999.

J. Russell. Couldera-Impala. O’Reilly Media, 2013.

M. Stonebraker. The design of the postgres storage system. In VLDB, pages
289-300, 1987.

M. Stonebraker, P. M. Aoki, W. Litwin, A. Pfeffer, A. Sah, J. Sidell, C. Staelin,
and A. Yu. Mariposa: a wide-area distributed database system. The VLDB
JournalaATThe International Journal on Very Large Data Bases, 5(1):048-063,
1996.

A. Thusoo, R. Murthy, J. S. Sarma, Z. Shao, N. Jain, P. Chakka, S. Anthony,
H. Liu, and N. Zhang. Hive - a petabyte scale data warehousing using hadoop.
In ICDE, 2010.

A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu,
P. Wyckoff, and R. Murthy. Hive - a warehousing solution over a map-reduce
framework. PVLDB, 2(2):1626-1629, 2009.

M. Traverso. Presto: Interacting with petabytes of data at Facebook. 2013.

G. Wiederhold. Mediators in the architecture of future information systems.
Computer, 25(3):38-49, 1992.

N. Zhang, P. J. Haas, V. Josifovski, G. M. Lohman, and C. Zhang. Statistical
learning techniques for costing xml queries. In Proceedings of the 31st interna-
tional conference on Very large data bases, pages 289-300. VLDB Endowment,
2005.

Q. Zhu and P. . Larson. Building regression cost models for multidatabase
systems. In Fourth International Conference on Parallel and Distributed
Information Systems, pages 220-231, 1996.

P. Ziegler and K. R. Dittrich. Data Integration — Problems, Approaches, and
Perspectives, pages 39-58. Springer Berlin Heidelberg, 2007.

[6

(7]

[8

[9

[10]

[11]

[12]

[13

[14]

[15]

[16]

[17]
[18]
[19]
[20]
[21]

[22]
[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31



	Cost Estimation Across Heterogeneous SQL-Based Big Data Infrastructures in Teradata IntelliSphereKassem Awada, Mohamed Eltabakh, Conrad Tang, Mohammed Al-Kateb, Sanjay Nair, Grace Au

