
Diverse User Selection for Opinion Procurement
Yael Amsterdamer
Bar-Ilan University
first.last@biu.ac.il

Oded Goldreich
Bar-Ilan University

first.last@live.biu.ac.il

ABSTRACT
Many applications maintain a repository of user profiles with
semantically rich information on each user. Such repositories
have a potential of allowing active opinion procurement: reaching
out to users to ask for their opinions on different topics. An
important desideratum of the procurement process is that it
targets a diverse set of users.

To realize this potential, we present Podium: a first framework,
to our knowledge, that supports the selection of diverse represen-
tatives in presence of high-dimensional, semantically rich user
profiles. We demonstrate that data dimensionality is a challenge
for both defining and achieving diversification. We address these
challenges by proposing a lightweight, flexible notion of diversity
that in turn allows explanations and customization of diversifica-
tion results. We show that the problem of finding an optimally
diverse user subset is intractable, and provide a greedy algorithm
that computes an approximate solution. We have implemented
our solution in a system prototype and tested it on real-world
crowdsourcing platform data. Our experimental results show that
Podium is effective in selecting users with diverse properties, and
in turn that the opinions of these users are diverse according to
multiple metrics.

1 INTRODUCTION
Multiple applications involve active procurement of opinions
from users. Consider, for example, a traveler planning a trip and
looking for specific “tips” on some destination; an owner of a new
restaurant wishing to perform a preliminary customer survey;
or a website manager seeking usability feedback. A recurring
desideratum in such applications is that procured opinions are di-
verse: the restaurant owner may seek users with diverse culinary
preferences who live in a certain region, whereas the website
manager may seek feedback from users with diverse activity his-
tory. Notably, diversity considerations may greatly differ between
scenarios, even if users are selected from the same set.

Platforms such as Yelp1 that have a large user base and high-
dimensional, rich data on each user, provide an opportunity for
procuring opinions from a diverse set of users. Yet, to our knowl-
edge, there is no generic solution for selecting diverse represen-
tative users accounting for high-dimensional user profiles. In
particular, users chosen for opinion procurement should ideally
reflect the full range of user properties as observed in the source
population – e.g., the full range of opinions on different topics,
from positive to negative; the full range of user skills or activity
levels, from low to high; etc. Hence, existing diversification solu-
tions that target the overall accuracy of user answers/relevance
of items and therefore operate by optimizing properties across
multiple axes (e.g., selecting users’ highest skills or activity levels)
are inapplicable in this context, as explained in Section 2.
1Yelp website: https://www.yelp.com
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To this end, we introduce Podium: a novel tool for the procurement
of diverse opinions, utilizing multidimensional user profiles. We
next overview our main contributions.

Model. Our model captures user profiles including both per-
sonal details provided by the users and their past interactions
with the platform. These properties may be associated with a
numeric score (reflecting, e.g., rating) and form high-dimensional
data. We then provide a formal definition of the diverse user selec-
tion problem that is coverage-based [1–4]: i.e., the goal is selecting
a user subset that in some sense represents or “covers” many of
the different, possibly overlapping groups within a source pop-
ulation. This class of diversity notions fits typical scenarios of
opinion procurement (e.g., surveys, market research), in contrast
with distance-based diversity, which focuses on maximizing the
differences between the members of the selected group [4–7]. As
observable from Table 1, our diversity notion fulfills a unique
combination of desiderata that arise at an opinion procurement
scenario. We overview the desiderata and the compared solutions
in Sections 2 and 9. We further propose an operative method for
computing user groups from a repository of profiles, along with
weight functions to prioritize the coverage of these groups, where
the coverage of every group is impossible.

Analysis of the Basic Problem. Based on our model, we develop
a solution to the diverse user selection problem. First, we show
by a reduction from Set Cover that the decision problem corre-
sponding to user selection in our context is NP-complete, and that
finding a user subset of size approximately minimal that covers
all the possible groups is also computationally hard. Moreover, in
a high-dimensional setting, full coverage would typically require
an unrealistically large number of procured opinions. Thus, in-
stead of targeting full coverage and optimizing the subset size, we
bound the size according to some budget and aim to select a user
subset of that size that maximizes the total coverage score, to be
defined in Section 3. Fortunately, a user subset whose coverage
score is within a constant factor of the optimal can be found in
PTIME. We show a simple greedy algorithm that achieves this
bound, explain its data structures and optimizations, analyze its
time complexity and demonstrate its operation on a sample user
repository.

Customization and explanations. The required notion of diver-
sity may vary based on the concrete application and depending
on the multiple dimensions of user data, as exemplified above
with respect to the different needs of a traveler versus restau-
rant owner versus website manager. We thus adopt a lightweight
solution that facilitates interpretation of the results and in turn
allows the clients to interact with the system to customize and
fine-tune user selection. This is achieved through a formal def-
inition of explanations for how the selected subset covers the
population groups and the contribution of each selected user.
We then formally define the semantics of a user feedback that
allows an informed control over the user groups/data dimensions
whose coverage is targeted. We extend our problem definition
and analysis accordingly.
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System Type Range High-Dimension Explanations Customizable

Podium Coverage-based Intrinsic X X X X

Cohen & Yashinski [2] Coverage-based Intrinsic X∗ X

Stratified sampling (e.g., [8]) Coverage-based Intrinsic X X

T-Model [4] Coverage-based Predicted X∗

APM [3], IA-Select [1] Coverage-based Predicted

Yu et Al. [7] Distance-based Intrinsic X ∗∗

S-Model [4], DiRec [5] Distance-based Intrinsic X∗∗∗ X∗∗∗

DivRSci [6] Distance-based Predicted X∗∗∗ X∗∗∗

Table 1: Comparison of selected diversification solutions, according to the aspects discussed in Section 2. A diversity notion
fulfills Range if it can diversify along a range of values (low to high) rather than just among categories, and High-Dimension if every candidate may
be associated with a high number of properties. See Section 9 for more details on these solutions. Remarks: ∗ Can support range coverage on a single
dimension/property. ∗∗ Explanation for item relevance rather than subset diversity. ∗∗∗ Depends on the choice of distance function.

Implementation and experiments. We have implemented our
solution in Podium, a prototype system including back-end imple-
mentation of our diverse user selection algorithm and a front-end
that provides visualizations for our notions of explanations and
user-friendly means of providing customization feedback (see
Figure 1 for its architecture). We use this prototype to examine
our approach over data from large-scale real-life user reposito-
ries. We first study the performance of our approximation algo-
rithm, showing that it is effective in achieving diversity in terms
of the selected user profiles according to the target function it
approximates as well as multiple other diversity metrics. Next,
we simulate opinion procurement using our algorithms (using
ground truth user opinions), and test the diversity of procured
opinions according to different metrics. Finally, scalability tests
support the practicality of our algorithm for real-world data.

Paper Outline. In Section 2we describe andmotivate the desider-
ata from a diversification system in our context. Section 3 presents
our model and basic problem definition, without customization,
and in Section 4 we develop and analyze our solution for this
basic problem. Next, we extend the basic solution to support the
explanation and customization of the selection results in Sec-
tions 5 and 6 respectively. We describe our implementation of
Podium in Section 7 and the experimental study conducted over
it in Section 8. Section 9 discusses related work and we conclude
in Section 10.

2 DESIDERATA
Diversification has been extensively studied in multiple contexts;
we claim that diversification in the concrete context of opinion
procurement has a unique combination of traits, which are not
accounted for by previous work. We compare several representa-
tive previous solutions under the prism of these traits in Table 1.
Next, we explain these features as well as the desiderata of diver-
sification that follow; further detailed comparison with related
work is given in Section 9.

Coverage vs. distance-based. A prominent approach for diver-
sification is to quantify the (dis)similarity between items, and to
then aim at finding items that optimize some aggregate function
over the similarity scores, for instance, maximizing the mini-
mal pairwise distance (e.g., [4–7]). Such an approach is valid in
our setting, yet its sensitivity to skews in group sizes may yield

less meaningful results for real-life datasets, as observed in our
experimental results for the Yelp dataset in Section 8.

When it comes to gathering user opinions, a natural desidera-
tum is that opinions are collected from users that in some sense
faithfully represent the characteristics of the full population.
Such representativeness is targeted by coverage-based approaches
in different selection contexts – e.g., retrieving documents that
cover the topics in a repository, or users that represent prede-
fined groups within a source population (e.g., [1–4]). In contrast
with distance-based approaches, coverage-based approaches can
in particular be agnostic of the similarities within the selected
subset.

We next define the proportionate-allocation user subset.

Definition 2.1. Let G ⊆ P(U) be a set of user groups. A user
subsetU ⊆ U is a proportionate allocation of G if for every д ∈ G,
it holds that

|д ∩U |

|U |
=
|д |

|U|

A user subset for which this definition holds faithfully repre-
sents the source population in the sense that it has a number of
selected representatives from each group that is proportionate to
their number in the population. This trait is used by surveyors in
stratified sampling to guarantee that certain inferences from the
survey are statistically sound (e.g., [8, 9]). For that, surveyors and
domain experts carefully define a small set of non-overlapping
population groups to be represented (in particular, |U | ≥ |G|).
See further discussion on surveys in Section 9.

However, in this work we consider user repositories that of-
ten form a huge number of highly overlapping user groups,
making proportionate allocation infeasible. A user subset of size
|U | << |G| with every group even roughly proportionally rep-
resented is unlikely to exist. We therefore develop, in the fol-
lowing sections, solutions for a relaxed problem formulation, in
particular, aiming to avoid under-representation of groups but
allowing over-representation and prioritizing the coverage of
certain groups over others.

Intrinsic vs. predicted. Intrinsic diversity is computed based
only on known properties (e.g., [2, 4, 5, 7]), whereas predicted
diversity utilizes a function predicting unknown values for each
selected item (e.g., a probabilistic distribution of the answer to
some question) [1, 3, 4, 6]. Thus, predicted diversity notions



typically optimize an expected target function (e.g., the expected
number of different answers to be obtained).

In opinion procurement scenarios, the intrinsic approach, i.e.,
relying on user profiles rather than prediction of their opinions,
is often preferable. First, the representation of different groups in
the population may be the main client need, regardless of what
their opinions are (e.g., having representatives for as many gen-
ders, age groups, nationalities, etc. as possible). Second, obtaining
a reliable prediction of user opinions may be impractical – at
least as hard as the original opinion procurement task. When this
is the case, users with diverse profiles may provide a good alter-
native, since they are likely to provide relatively diverse opinions
(as demonstrated in our experimental results in Section 7 and
in [4]).

Diversification along a range of opinions. Diversification for
opinion procurement is characterized by the need to diversify
along ranges of property values – for example, one has to represent
the full range of user opinions, from negative to positive; the
full range of user activity or expertise levels, from low to high;
users of all ages; etc. In contrast, diversification solutions that
target the maximization of user skill or item relevance in diverse
categories (as in, e.g., [1, 3]) are not applicable for capturing the
full range of (skill/relevance) values in each category.

Support of high data dimensionality. In large-scale user repos-
itories, each profile may consist of hundreds to thousands of
properties (e.g., up to 2189 properties per user in the TripAdvi-
sor dataset used in Section 8). Using such properties along with
ranges of values associated with them (e.g., frequencies of some
activity from lowest to highest), allows defining a huge number
of meaningful population groups, larger by orders of magnitude
from the number of selected representatives. A practical diver-
sification solution should address this dimensionality problem
either by significantly reducing the number of considered groups
and/or by adopting a diversity notion and implementation that
scale with the problem dimension.

Explanations and customization. Last, we have already noted
(in the Introduction) that there is no one-size-fits-all solution
for diversification and that different clients may have different
diversification needs. To be able to fine-tune the diversification
results, the clients must first be able to understand them - via
some notion of explanations – and then have user-friendly cus-
tomization mechanisms of modifying them according to their
needs. The use of intricate optimization problems and/or interde-
pendencies between selected items, which often makes sense the
context of diversification, as well as the high scale and dimension
make this desideratum nontrivial to achieve. Here, we address
this challenge by adopting a simple diversification notion based
on profile properties, which in turn are human-understandable,
and then explanations and customization pertain to (modifying)
how these properties are represented by the selected subset. (See
Sections 5-6.)

In the following sections we describe our model and algorith-
mic solutions, achieving these desiderata.

3 MODEL
We next describe how user profiles are modeled in our framework.
We then formally define the problem of diverse user selection
with respect to this model.

Property Alice Bob Carol David Eve

livesIn Tokyo(2) NYC(1) Bali(1) Tokyo Paris(1)

ageGroup 50-64(2) – 50-64 – –
avgRating Mexican 0.95(3) 0.3(1) – 0.75 0.8
visitFreq Mexican 0.8(1) 0.25(1) – 0.6(2) 0.45
avgRating CheapEats 0.1(1) 0.9(1) 0.45(2) – 0.6
visitFreq CheapEats 0.6(1) 0.85(1) 0.2(2) – 0.3

Table 2: Example user profiles

3.1 User Profiles
LetU be a population of users and P be some domain of prop-
erty labels. Following [10], we define the profile of a user u ∈
U as a tuple Du = ⟨Pu , Su ⟩ where Pu ⊆ P includes all the
properties known for u and Su : Pu → [0, 1] maps each prop-
erty to a score (normalized to [0, 1]). We use the notation |p | =
|{u ∈ U | p ∈ Pu }|, where U is assumed to be clear from the
context. Property scores may have different interpretations de-
pending on the type of property, e.g., true/false, user rating, and
so on, and may be provided directly byu or automatically derived
from u’s activity in the website.

Example 3.1. Table 2 shows a few profiles from a travel web-
site (for now, ignore the numbers in superscript). In the first
two rows, livesIn <city> and ageGroup <X-Y> are true/false
properties for relevant cities and age ranges. E.g., livesIn Tokyo
is a property with score 1 (i.e., true) in Alice’s profile. The third
and fifth rows show scores that reflect the user average ratings
for different types of restaurants, normalized to [0, 1]. Not every
property is recorded for every user, e.g., Carol has never rated
Mexican food. The fourth and sixth rows show scores reflecting
the relative frequency that each of the users visits different types
of restaurants.

In practice, user profiles may contain many properties – e.g.,
we have constructed from TripAdvisor2 a user repository with
up to 665 properties per user (Section 7). This is due to various
activities of a user in the system (e.g., providing opinions about
many destinations, each with many different features), due to
various types of analysis performed over the data (e.g., one can
compute the average rating, maximum rating. . . ) and so on.

Using taxonomies to enrich profiles. To allow for an informed
selection of users based on their profiles, these profiles should be
as complete as possible. To this end, we perform a preprocessing
step and apply inference rules on Boolean properties or on the raw
data from which properties are derived. Such inference rules can
be pre-specified as in RDF languages [11, 12] or derived via rule
mining techniques [13]. A particularly useful type of inference
rules is generalization rules, as exemplified next.

Example 3.2. The property avgRating Mexican in Table 2 is
derived by averaging over the ratings given by each user to restau-
rants labelled as “Mexican Cuisine”. On this raw data, we can
apply a generalization rule if we know, e.g., by a cuisine taxon-
omy, that Mexican cuisine is a particular type of Latin cuisine.
This will enable us to derive properties such as avgRating Latin
for existing user profiles.

As another example, if livesIn is known to be a function,
i.e., each person can only have one residence location in our
repository, we can infer the falsehood of residence locations other

2TripAdvisor website: https://www.tripadvisor.com



than the one specified. Thus, by SAlice(livesIn Tokyo) = 1 we
can infer that SAlice(livesIn X) = 0 for every X,Tokyo.

Having inferred all possible properties, we consider all other
properties by the open world assumption: missing properties may
be either false or true. For instance, if no frequency of visiting
Mexican restaurants is known for Carol, this does not mean she
has not been to such restaurants.

3.2 Weight-based Diversification
We next define a generic, weight-based approach to coverage-
based diversification. We exemplify different choices of weights
and show their usefulness for capturing user selection strategies.

Definition 3.3. A diversification instance is a tuple (G,wei, cov)
where G ⊆ 2U is a set of (possibly overlapping) user groups of
interest, wei : G→R+ captures the weight of each group, and
cov : G →N captures the number of users required so that a
group is said to be covered.

Given a diversification instance and a selected user set U ⊆
U, we define the score of U as scoreG(U ) =

∑
G ∈G wei(G) ·

min{|U ∩G | , cov(G)}.
Finally, given a diversification instance and a budget B ∈ N,

we define BASE-DIVERSITY as the problem of finding a subset
U ⊆ U such that |U | ≤ B and scoreG(U ) is maximized.

Note that if groups in G are overlapping, each user may con-
tribute multiple group weights to the total score. This definition
accounts for diverse subset selection in the sense that the score
increases as more groups in G have (more) representatives in U .
Excessive representation (|U ∩G | > cov(G)) is not rewarded but
also not penalized.

The problem is defined in a generic way with the diversifica-
tion instance given as input. We next discuss and exemplify the
three parts of this instance.

Groups. Our diversification solution can support any set of
groups input by the client, including manually crafted groups as
typically defined by surveyors [8, 9].

To support large-scale, high-dimensional user repositories
we develop here a concrete group definition that is efficiently
computable for such repositories on the one hand, and effective
in identifying meaningful groups for diversification on the other
hand. Recall that user profiles comprise of properties from P
with scores in [0, 1].

Definition 3.4. Let p ∈ P be a property and b ⊆ [0, 1] be a
(continuous) range of scores. A simple user group is the subset of
users whose score for p falls in b, formally,

Gp,b B {u ∈ U | Du = ⟨Pu , Su ⟩ ∧ p ∈ Pu ∧ Su (p) ∈ b}

For the ranges of scores, we split the range of scores of each
property p ∈ P into a set of non-overlapping buckets β(p). The
rationale is, e.g., to group Mexican food lovers and dislikers sep-
arately. The computation of β(p) is done by partitioning the 1-d
data into intervals (clusters). There are several methods for 1-d
interval splitting that are more effective than general clustering
since the data is ordered (e.g., Jenks optimization [14], K-means,
Expectation Maximization and by kernel density).

Simple user groups can be used to define more complex ones
as the intersection or union of a few simple groups.

We note that the simplicity of our group definition is key for
allowing explanations (see Section 5). There are more complex
alternatives to splitting ranges into groups, such as multidimen-
sional clustering (in our case, over multiple properties); however,

these generally do not facilitate explainability. For instance, mul-
tidimensional clusters have no intuitive “label" or meaning.

Example 3.5. Reconsider Table 2. Letp be the property livesIn
Tokyo and b = [1, 1]; then Gp,b = {Alice, David} (group of
“Tokyo residents”). Let p′ be the property avgRating Mexican
and b ′ = (0.65, 1]; then Gp′,b′ = {Alice, David, Eve} (group of
“Mexican food lovers”). One can also define, e.g.,Gp,b ∩Gp′,b′ =

{Alice,David} (“Tokyo Residents who are also Mexican food
lovers”).

Our default definition of G consists only of simple groups,
and we examine its effectiveness in Section 8. In particular, we
empirically show that this approach also implicitly accounts for
more complex groups in the population (such as ‘Tokyo Residents
who are also Mexican food lovers” from the example above).

Group functions. Similarly to group definition, the groupweights
(wei) and cover sizes (cov) functions can in principle be manu-
ally tailored for a specific domain and diversification context.
As a more practical alternative, we next propose a few general-
purpose choices, which can be fine-tuned by clients via our cus-
tomization mechanism (see Section 6).

Definition 3.6. Weights are used to prioritize groups. The fol-
lowing are three examples of wei(G):
• Identical Group Importance (Iden): wei(G) B 1 (constant func-

tion).
• Group Importance Linearly By Size (LBS): wei(G) B |G |.
• Group Importance Enforced By Size (EBS): define ord(·) as an
ordering of the groups from smallest to largest, 3 then define
wei(G) B (|U | + 1)ord(G)

Iden is the most “diverse” choice in the sense that it does not
distinguish between groups, which by our problem definition
will maximize the number of groups that are covered. However,
in cases where only a small fraction of the groups can be rep-
resented/covered, one may choose to prioritize certain groups –
e.g., large groups. Using LBS, the group importance is linear with
its size, thus, e.g., the total weight of two groups of size X equals
the weight of one group of size 2X . This roughly corresponds to
maximizing the number of groups represented per user. In EBS
group importance by size is enforced, meaning that representing
larger groups is always preferred over smaller ones. The latter
requirement may apply to some diversification contexts, e.g., po-
litical surveys may aim to have at least one representative for
each of the largest population groups.

Definition 3.7. The coverage function cov(G) is used to guide
how many users will be selected from each group. Examples
include
• Single Representative (Single): cov(G) B 1 (constant function).
• Proportional Representation (Prop): cov(G) B max{⌊ |U | · |G |/|U|⌋, 1}
where |U | is the size of the subset to be selected.

Here, Single is the most “diverse” definition in the sense that
it requires only one representative from a group to consider
it covered. In contrast, Prop rewards a representation that is
proportional to the group size in the population.

We next exemplify the effect of using different functions on
the resulting user choices.

Example 3.8. Reconsider the user profiles in Table 2 and as-
sume that we define, for each property, three groups of users:
3Ties, i.e., groups of equal size, are broken arbitrarily.



those with scores in [0.65, 1] (“high”), in [0.4, 0.65) (”medium”)
and in [0, 0.4) (“low”). The numbers in superscript at the table
show the weights according to LBS – i.e., number of users – on
the first user of each group. E.g., the only group with 3 users is
avgRating Mexican high. The diverse user subset of size 2 that
would be selected is {Alice, Eve} with total score 17. Single and
Prop behave similarly here, and EBS would yield the same result
with different scores. If instead we use Iden, then {Alice, Bob} will
be selected with total score 11 (number of represented groups).
This exemplifies the tendency of Iden to select more eccentric
users, in this case Bob who is the only member of his groups,
where LBS and EBS prioritize representatives of larger groups,
in this case leading to a larger overlap (Alice and Eve are both
Mexican food lovers).

Having defined our model, we next address the computational
problem of BASE-DIVERSITY.

4 SOLVING BASE-DIVERSITY
We next consider the computation of a diverse subset of users
according to Def. 3.3 of the BASE-DIVERSITY problem. We start
by analyzing the complexity of the problem.

Unsurprisingly, we show that achieving an optimal solution
is intractable in the subset size B unless P = NP, even for simple
weight functions and even without customization. The decision
problem DEC-DIVERSITY corresponding to BASE-DIVERSITY is
that of the existence of a subsetU with |U | ≤ B such that the sum
of (customized) weights of covered groups exceeds a thresholdT .
We can then show:

Proposition 4.1. DEC-DIVERSITY is NP-complete in B.

Proof. Membership is immediate, since computing the total
weight of a given user subset is in PTIME.

Hardness is proved by a reduction from Set Cover: Given a
universe {1 . . .N }, a set of subsets {S1, . . . , Sm } and an integer k ,
we define B = k , G = {G1, . . . ,GN } andU = {u1, . . . ,um }, such
that iff i ∈ Sj , then uj ∈ Gi . Finally, we set T =

∑
G ∈G wei(G) ·

min{cov(G) ,B}, where wei(G) can be any legal function and we
set cov(G) as the constant function 1 (Single, as we need only one
set to cover each element). Since T is the maximum total score
achievable, by covering every group in G, it will be achieved by
and only by a user subset that corresponds to a Set Cover. �

Approximate solution. The reduction from Set Cover implies
not only the intractability of an exact solution but also of a
constant-factor approximation in terms of the size of the covering
group. To formalize this, given an instance of BASE-DIVERSITY
and a threshold scoreT , let opt(T ) be the minimal size of a subset
U ⊆ U whose score exceeds T . We then have, based on [15]
inapproximability result for set cover:

Proposition 4.2. Assuming P , NP , there is no PTIME algo-
rithm for BASE-DIVERSITY that given a threshold score T , finds a
user subsetU of size (1−O(1))·ln(|G|)·opt(T )with scoreG(U ) ≥ T .

Fortunately, this does not exclude the possibility of approxi-
mation in the second axis, namely achieving a near-optimal score
while conforming to the given budget. Indeed, a simple greedy
algorithm achieves a constant approximation ratio in this sense.

Algorithm 1 outlines this greedy selection. Its input is a repos-
itory of users, a bound B on the number of users and a diversifi-
cation instance (groups, weight function and coverage function).
The algorithm starts by initializing an emptyU (line 1) and com-
puting, for each user the value margu ,U , which stands for the

Algorithm 1: Greedy User Selection
Input: U, B , G, wei , cov
Output: U (a set of ≤ B users)

1 U ← ∅;
2 foreach u ∈ U do margu ,U ←

∑
G∈G|u∈G wei(G) ;

3 for i ∈ 1..B do
4 if U is empty then break;
5 maxUser← argmaxu∈U margu ,U ;
6 U ← U ∪ {maxUser}, U ← U − {maxUser};
7 foreach Group G such that maxUser ∈ G and cov(G) > 0

do
8 cov(G) ← cov(G) − 1;
9 if cov(G) = 0 then
10 foreach u ∈ G do margu ,U ← margu ,U −wei(G);

11 return U

potential marginal contribution of u to the total score if added
toU (line 2). The algorithm then iteratively selects B users. Unless
U is empty (line 4), the usermaxUser with the greatest marginal
contribution is selected (line 5) and moved fromU toU (line 6).
For each group G covered by maxUser, its required coverage
cov(G) decreases by 1 (line 8), and if no more representatives are
required to cover G (cov(G) = 0) then G should have no effect
on the selection of the following users. We thus, subtract wei(G)
from the marginal contribution of its other members (line 10).
After B iterations (or earlier, if |U| < B) the algorithm returnsU .

Data Structures. For efficiency, we represent both the groups
and the users as lists, each group G ∈ G with its current wei(G)
and cov(G) values, and each user u ∈ U with margu ,U . We fur-
ther keep links in both directions between the lists, from groups
to their members and vice versa. Whenever we (re)compute
margu ,U we can remove the links from the user to groups with
weight 0 or coverage size 0, which are not (or no longer) relevant
for the user selection, to improve the performance of subsequent
computations.

Example 4.3. We next exemplify the execution of Algorithm 1
for the user selection scenario in Example 3.8, using LBS and
Single. After executing line 2 the marginal contributions of Alice,
Bob, Carol, David and Eve, namely, the sum of weights of their
properties, are 10, 5, 7, 6 and 10 respectively. Assume that at the
first iteration of the external loop Alice is chosen and removed
fromU toU (ties are arbitrarily broken; in this example, select-
ing Eve happens to lead to the same output). Then the coverage
of each of Alice’s groups is set to 0. For each such update, the
marginal contribution of other members of the groups is reduced:
first, the contribution of David is reduced by 2 due to the livesIn
Tokyo group; next, the contributions of David and Eve are re-
duced by 3 due to the avgRating Mexican high group; and so
on. At the end of the first iteration, the contributions of Carol,
David and Eve are updated to 5, 2 and 7 respectively. Thus, Eve is
chosen at the next iteration, and {Alice, Eve} would be the output,
which in this case is also the optimal solution.

Proposition 4.4. Algorithm 1 computes a (1−1/e)-approximation
of BASE-DIVERSITY, i.e. achieves a score that within a multiplica-
tive factor of at least ≥ (1−1/e) of the optimal for the given budget,
in time O(B ·maxG ∈G |G | ·maxu ∈U |{G ′ ∈ G | u ∈ G ′}|).

Proof. The complexity of Algorithm 1 is O(B · |U| · |G|) due
to the updates of the marginal user contributions (line 10). This



line is nested within three loops. The loop line 3 repeats O(B)
times, the loop at line 7 repeats O(maxu ∈U |{G ′ ∈ G | u ∈ G ′}|)
times, namely, bounded by the maximal number of groups per
user, and the innermost loop (line 10) repeats atmostO(maxG ∈G |G |)
times, namely, bounded by the size of the largest group. We as-
sume constant complexity for arithmetic computations and for
getting the next group of a given user/next user of a given group
(as links in both directions are maintained).

As for the approximation ratio, observe that the score function
satisfy the following properties regardless of the choice of wei ,
cov :
• Submodularity. For any U ⊆ U ′ ⊆ U and u ∈ U we have

scoreG(U ∪ {u})−scoreG(U ) ≥ scoreG(U ′ ∪ {u})−scoreG(U ′).
• Non-negativity. scoreG(·) > 0 since wei(G) and cov(G) are

positive.
• Monotonicity. IfU ⊆ U ′ then scoreG(U ) ≤ scoreG(U ′).
• Bounded input. The size of a selected subset is bounded by B.

For such functions, a greedy algorithm that iteratively adds one
useru to the selected subsetU so as tomaximize scoreG(U ∪ {u})
is known to guarantee the stated approximation ratio [16]. �

Clearly,maxG ∈G |G | = O(|U|) andmaxu ∈U |{G ′ ∈ G | u ∈ G ′}| =
O(|G|). If we use only simple groups, the complexity bound of
Prop. 4.4may be simplywritten asO(B ·maxG ∈G |G | ·maxu ∈U |Pu |).

5 EXPLANATIONS
We have proposed a simple generic framework for diverse user
selection. We next consider notions of explanations of the diversi-
fication results, allowing clients to understand why certain users
were selected and how certain groups were covered. This, in turn
will enable the clients to use customization (see the next section)
to refine these results.

Recall first that we have defined user profiles based on support
values with respect to properties. We will use the set of property
names in P to define labels; in practice, this entails that we will
keep them in a human-readable form, and their combination will
be used in presented explanations.

We further introduce labeling to simple groups, as follows.
Each bucket is given a label, e.g. “low scores”, “medium scores”
and “high scores”. Then, the label Gp,b of each group can be con-
structed from the property name p and the label corresponding
to the bucket b, e.g., “high scores for Mexican cuisine (average
rating)”.

We then define the notion of explanation to be presented to the
client alongside the computed user subsets. Such explanations
may be practically shown to users by visual means (see Section 7).

Definition 5.1. We introduce three types of explanations.
• Group explanations. LetG ∈ G be a group labeled lG , we define
its explanation as expl(д) = ⟨lG ,wei(G) , cov(G)⟩, namely the
property and bucket that defines it, along with its weight and
required coverage.
• User explanation.The explanation of a selected useru ∈ U ⊆ U
is defined as expl(u) = {G ∈ G | u ∈ G}, namely, the groups
which u represents.
• Subset-group explanation. LetU ⊆ U and G ∈ G be a selected
user subset and a group. The explanation of howU covers G
is the pair ⟨cov(G) , |U ∩G |⟩, which represents the required
versus actual coverage.

These explanations are complementary in the sense that they
provide intuition about different aspects of the diverse selection:

respectively, of the group meaning and importance; of why a
given user was selected; and on how the selected user subset, as
a whole, covers a certain group.

Example 5.2. Reconsider the selection of {Alice, Eve} in Ex-
ample 3.8 in our running example. Assume that each property
is given a human readable label, and we are further given la-
bels for the buckets of Boolean properties and properties with a
score. Group explanations may then be ⟨“high average rating for
Mexican Cuisine”, 3, 1⟩, since the weight of this group reflects its
size, 3, and we use Single – one user to cover each group. “High”
is the label of the bucket in range (0, 65, 1]. Similarly, we may
have ⟨“lives in Tokyo”, 2, 1⟩, where the label of the bucket [1, 1] is
empty for Boolean properties, and “lives in Tokyo” is the property
label. Next, an explanation for Alice would be the groups she
represents, “high average rating for Mexican Cuisine”, “lives in
Tokyo” and so on. The explanation for {Alice, Eve} with respect
to the former group would be ⟨1, 2⟩, meaning both selected users
belong to this group, exceeding the required coverage.

6 CUSTOMIZATION
Given the user selection results and their explanations, clients
may fine-tune the algorithms if the results do not fit their needs.
Specifically, we introduce customization at the level of individual
groups (which, in a sense, correspond to the granularity of expla-
nations that are shown). This customization is applied “on top”
of the high-level decisions of how weights are assigned, which
would typically not be made at the group level.

Definition 6.1. A customization feedback of the user is com-
posed of four subsets of G.
• G+ : “must have” groups, each selected user must belong to

all of them.
• G– : “must not” groups, each selected user must belong to

none of them.
• Gd : “priority coverage” groups, whose coverage is prioritized

over others.
• Gd? : “standard coverage” groups, whose coverage is of a lower

priority with respect to the priority coverage groups.

Intuitively, the first two types of feedback serve to filter the
repository of users. To avoid contradictions, if G+ contains more
than one bucket of some property p, users need only belong to
one of them. By default, G+ = G– = ∅. The priority and standard
coverage group definitions allow to prioritize the coverage of
certain groups, or completely ignore them in terms of coverage
(groups in G − (Gd ∪ Gd?)). By default, Gd = ∅ and Gd? = G.

Example 6.2. Assume that for a particular application, the
client prefers users from diverse locations and who are famil-
iar with Mexican food. This may be captured by the following
customization feedback:
• The “must have” groups consists of the three buckets of
AvgRating Mexican, thereby requiring that the selected
users have provided some rating for some Mexican restau-
rant.
• The “priority coverage” groups Gd consists of the multiple
livesIn <city> properties.
• Finally, G– = ∅ and Gd? = G − Gd .

We will demonstrate below how these choices guide user se-
lection.

The effect of a customization feedback on the chosen groups
is formalized as follows.
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Definition 6.3. Given a customization feedback G+,G–,Gd
and Gd?, define the refined set of users as

U ′ ={u ∈ U | ∀Gp,b ∈ G+, ∃b
′ ∈ β(p) : u ∈ Gp,b′ ∧Gp,b′ ∈ G+}

∩ {u ∈ U | ∀Gp,b ∈ G– : u < Gp,b }

The customized diversity problem CUSTOM-DIVERSITY is then
to select new subset U ⊆ U ′, of size ≤ B, that maximizes
scoreGd (U ), namely, the sum of weights over covered groups
from Gd , breaking ties by scoreGd? (U ).

Example 6.4. Reconsider the problem of selecting a user subset
of size 2 from Example 3.8.We now incorporate the customization
feedback of Example 6.2. The refined user set will exclude Carol
who did not rate Mexican food. The best user subsets using Single
and LBS functions is still {Alice, Eve}: first, it maximizes the
sum of weights over livesIn <city> properties (to 3). Among
other subsets that achieve this maximum (e.g., {Alice, Bob}), the
selected subset further maximizes the sum of weights over other
properties (to 14). Note that a different customization feedback
would yield a different result; e.g., if we set Gd? = ∅ then any
subset maximizing the sum of weights over livesIn <city>
properties may be selected.

Results revisited. CUSTOM-DIVERSITY is NP-complete, as an
easy consequence of the NP-completeness of BASE-DIVERSITY.
Further, the counterpart of Proposition 4.4 holds:

Proposition 6.5. CUSTOM-DIVERSITY may be approximated
within a multiplicative factor of at least (1 − 1/e) in time
O(B ·maxG ∈G |G | ·maxu ∈U′ |{G ′ ∈ G | u ∈ G ′}|)

Proof. The approximation algorithm is an adaptation of Al-
gorithm 1 to account for customization feedback, as follows.

We first change the weights of the total score function to
simulate a primary order by “priority coverage” groups and sec-
ondary order by “standard coverage” groups. The �score(U ) =
scoreGd (U ) ·MAX-SCORE+ scoreGd?(U )whereMAX-SCORE is
a value greater than the maximum value of scoreGd?(U ).

It now holds that:

Lemma 6.6. The �score(U ) function is submodular, non-negative
and monotone.

We further refine the user repository to beU ′ of Definition
6.3, by filtering out user profiles that do not satisfy the conditions.

Last, we change Algorithm 1 so that instead of greedily se-
lecting fromU based on scoreG(U ), it selects fromU ′ based on�score(U ). Following Lemma 6.6, the refined algorithm satisfies
the approximation guarantees.

�

Figure 2: Screenshot of Podium UI: selection explanation

Explanations. The explanations defined in Section 5 can also
be used for explaining customized results. The set of users and
weights of groupsmay be different; in particular priority coverage
groups will have a higher weight indicating a higher priority.
Clients may not be able to interpret the values of weights, but they
will be able to compare weights between groups to understand
their relative importance.

7 IMPLEMENTATION
We developed Podium as a prototype system, implemented in
Python using Flask4. Its architecture is depicted in Figure 1. The
input to Podium is a set of user profiles, as explained in Section 3.1,
in JSON format. Given a set of user profiles, the Grouping Module
computes the bucketing of properties and the weights of groups
in an offline process. Podium also allows an administrator to feed
in an initial set of diversification configurations with associated
textual descriptions.

The Graphical User Interface of Podium was created using
AngularJS 1.6.45. Given a user selection request, the Selection
Module executes the user selection algorithm and returns the
selected subset and its explanations to the client via the Visu-
alization module. Figure 2 shows the explanation page for the
initial configuration titled “Summer Pavilion”, which only consid-
ers properties related to a restaurant in that name. The labels of
the groups in this page are taken from the group explanations of
Def. 5.1. The left pane displays the names of selected users, along
with the top-weight groups that were covered by each (corre-
sponding to user explanations of Def. 5.1). The middle pane uses
the subset-group explanations of Def. 5.1 to show the percentage
of top-weight relevant groups covered by the selected subset (in
this case, 97%). The list of groups, ordered by decreasing weight,
is displayed below with covered groups in green and the oth-
ers in red.6 When clicking any group, the right pane displays a
graph comparing the score distribution for the relevant property
between the entire population and the selected subset (in Fig-
ure 2 the distributions are almost identical). Users can browse
the different groups and refine the selection by adding groups to
G+ and G- (“Selected users must / not have this property”); and
to Gd and Gd? (“Do not / diversify on this property”).

8 EXPERIMENTAL STUDY
We have examined the performance of our system, first, by eval-
uating the intrinsic diversity of the selected subset, i.e., how well
it represents the source population (as explained in Section 2,
proportional allocation is generally impossible in our setting).
While an intrinsically diverse subset is sufficient in some user
selection scenarios, in others one cares also for the eventual di-
versity of procured opinions. In order to examine this aspect, we

4Flask. http://flask.pocoo.org
5AngularJS. https://angularjs.org
6For space constraints, some group names in Figure 2 are truncated.



have selected datasets with known ground truth, i.e., where user
opinions are already recorded. We have used these to simulate
opinion procurement from the selected user subset and evaluate
the diversity of collected opinions.

8.1 Datasets
The datasets used in our experimental study are real-world user
repositories, focusing on the domain of restaurant reviews. The
raw data is pre-processed to obtain aggregated scores for different
categories based on user activity, as explained below.

The first dataset that we use consists of a sample of TripAd-
visor [17] restaurant reviews data. This dataset contains data
from 4475 users reviewing a total of 50K restaurants, and 11749
different groups. The raw data contains both user submitted data
(e.g. age, residence) and user activity data (e.g. visited destina-
tions), pre-processed and enriched as explained in Section 3.1, to
generalize, e.g., Mexican cuisine to Latin cuisine.

The second dataset is the Yelp Open Dataset [18], which con-
tains businesses, reviews, and user data for use in academic pur-
poses. In our experiments we have used a subset of the data:
for compatibility with the TripAdvisor dataset we used only
restaurant-related data and took the 60K users with most reviews
– reviewing a total of 52K restaurants and forming 8491 differ-
ent groups. This limit was used in our qualitative experiments
(see Section 8.4) due to memory limitations of some of the other
baselines – recall that each user belongs to many groups. In com-
parison with the TripAdvisor dataset, the Yelp dataset has more
users, but less groups due to its simpler semantics.

The datasets include two types of properties: ones that ap-
peared explicitly in the original data, such as age and address;
and ones that we have derived based on aggregation of user
activities, as follows.
• Average Rating. The average rating given by a user to
restaurants of a certain category (e.g. French cuisine), nor-
malized by the overall average rating of that user.
• Visit Frequency. The fraction, among all the restaurants
visited by a user, of restaurants from a certain category.
• Enthusiasm Level. A combination of rating and visit fre-
quency, computed as the fraction of rating points given
by the user to restaurants of a certain category.

8.2 Metrics
We next introduce metrics for algorithm performance, in three
categories. Intrinsic diversitymetrics are computed from the known
properties of the selected user subset.Opinion diversitymetrics are
computed from opinions of the user subset, which are unknown
to the user selection algorithms as explained in the beginning of
this section. Finally, we evaluate the scalability of the algorithms.

Intrinsic diversity metrics. We consider a few complementary
metrics, including our definition of total score – since our algo-
rithm only approximates its optimal value – but also metrics of
coverage that are not targeted directly by Podium.
• Selection total Score. According to Def. 3.3. We focus on
the LBS weights and Single coverage functions, which our
algorithm aims to approximate. This score can give us
an intuition about alternative algorithms, since it reflects
the number of groups and users within them that are
represented by the subset.
• Top-k groups coverage. There are thousands of groups
within the source population, which cannot be covered

even by one representative in a small selected subset. We
consider whether the top-k largest groups have selected
representatives. In our experiments we have set k = 200.
• Intersected-Property Coverage. This metric is similar to the
previous one, but now we consider intersections of simple
groups that are at least as large as the k-th largest simple
group.
• Distribution Similarity. This metric examines the similarity
of user distribution between the source population and
the selected subset, according to Def. 8.1 below.

The last metric aims at testing whether the number of repre-
sentatives selected for groups is proportional to their number
in the population, even if the coverage size is Single. Intuitively,
our algorithm is likely to choose more representatives for larger
groups without targeting it explicitly. However, standard distribu-
tion similarity metrics (such as Kolmogorov-Smirnov goodness
of fit test) are not adequate for this purpose: to enhance cover-
age, small groups must be over-represented. We therefore define
a distribution similarity metric that only taxes the selected user
subset for under-representation of groups.

Definition 8.1. Let B = b1, . . . ,bk be a discrete set of values.
Let fsubset, fall : B→[0, 1] be two functions over B, intuitively ap-
plied to the entire population and the selected subset respectively.
We define the coverage-oriented distribution similarity (CD-sim,
for short), as cd-sim(fsubset, fall) =

1 −
1
k

∑
fsubset(bi )<fall(bi )

(fall(bi ) − fsubset(bi ))

fall(bi )

Note that this definition sums only over values of the do-
main for which the subset (fsubset) returns a lower result than
the full population (fall), corresponding to under-representation.
Normalizing by the size of the full population guarantees that
under-representations of larger groups are preferred, since the
relative tax each missing user incurs is smaller.

For the group bucket distribution similarity, for a given prop-
erty p ∈ P, we set B = β(p) (i.e., the set of buckets computed for

p) and for b ∈ β(p), we define fall(b) 7→
wei(Gp ,b )∑

b′∈β (p) wei
(
Gp ,b′

) (the

fraction of theweight that falls in theb bucket, which corresponds
to the fraction of the users that belongs to this group). Similarly,

we define fsubset(b) 7→
wei(Gp ,b∩U )∑

b′∈β (p) wei
(
Gp ,b′∩U

) for a selected subset
U ⊆ U. For the overall distribution score, we average CD-sim
for the top-20 largest groups.

Example 8.2. An example user distribution for the property
“Mexican Food Average Rating” could be [0.23,0.4,0.37], meaning
23% of the population rate Mexican food poorly, etc. A selection
distribution of [0.4,0.5,0.1] would receive a CD-sim score of 0.76,
reflecting a penalty solely for the under-representation of the
third sub-group, and not for the over-representation of the others.

Diverse opinion metrics. Thus far, the diversity metrics we
considered were defined over user profiles. We next introduce
metrics that consider the diversity of procured opinions. For
that, we split the data into profiles used for selection, and data
that simulates the procured opinions. For instance, we can select
users from TripAdvisor based on their profiles excluding the
data related to some destination, then evaluate diversity of the
selected subset reviews on the excluded destination.

Tomeasure diversity of opinions we have used complementary
metrics that relate to the rating provided by the selected subset



and their reviews’ contents. Importantly, user opinions range
not only over sentiment (positive or negative), but also over the
facets that interest them with respect to the object in review.
• Topic+Sentiment Coverage. We measure content coverage
using a list of prevalent topics extracted by TripAdvisor
from each destination’s reviews. We measure the fraction
of topics that appear in the selected subset reviews.We also
consider the review sentiment, such that 100% coverage
means every topic appears in both a positive and a negative
review.
• Usefulness. Available only for Yelp dataset, based on user
feedback to reviews. A review is more useful when it is
well-written, but also when a larger group of users agree or
can relate to its contents. In this sense, the review is more
likely to represent the opinions of large population groups,
which is what we target in coverage-based diversity. We
compute this metric by summing over individual reviews
usefulness levels.
• Rating Distribution Similarity. Reusing our distribution
similarity metric CD-sim, we measure the similarity in rat-
ing distribution between the selected subset and the entire
population. For a given destination we set B = {1, . . . ,k}
(i.e., the set of possible rating values) and for i ∈ {1, . . . ,k},
let Ri ⊆ U be the set of users that gave this destination
a rating of i . We define fall(i) 7→

|Ri |∑k
j=1 |Rj |

. Similarly, for a

selected subsetU ⊆ U we define fsubset(i) 7→
|Ri∩U |∑k

j=1 |Rj∩U |
• Rating variance. Variance of the rating given by the se-
lected subset to a given destination.

All of the above metrics are defined per destination, to obtain
an overall score we average over all destinations.

Scalability. We have tested the system execution times and
scalability with respect to the number of users and profile size.

8.3 Baselines
We consider the following alternatives algorithms for diverse
user selection.
• Podium. Our implementation as described above. By de-
fault, we use no customization feedback, LBS weights
(Def. 3.6), the Single coverage function (Def. 3.7) and a
budget B = 8, which also applies to the other baselines.
• Random Selection. An algorithm that selects a subset of
the users uniformly at random. This method is a common
practice in user selection for opinion procurement in the
context of e.g. surveys, and under certain conditions there
are reasons to assume the selected set of users is likely
to be diverse. However, it has already been observed that
explicitly managing diversity is often helpful in improving
the results [4], which we will demonstrate in our setting.
• Clustering. Splitting the entire user repository into clus-
ters, and choosing one representative from each – assum-
ing each cluster represents a community. This approach
has an inherent drawback as the clusters may have no
intuitive explanation or customization; yet here we com-
pare its performance to ours on other metrics. There are
many options for clustering algorithms and representa-
tive choice. We have tested several options and show here
one generally practical choice: computing B clusters us-
ing k-means (Scikit-Learn implementation7), then taking

7Scikit-Learn. http://scikit-learn.org

the near-mean user as the representative per cluster. k-
means is particularly suitable to our settings: large, high-
dimensional normally-distributed data, easy parametriza-
tion and is known to achieve comparatively high quality
and low execution times (see, e.g., a comparison of clus-
tering solutions in [19]).
• Distance-based diversity.While the distance-based approach
for diversification has a different goal than coverage-based
diversity (as explained in Section 2), it is still interesting
to compare its performance to ours. As a representative
distance-based baseline we use the S-Model of [4] via a
greedy algorithm that maximizes the pairwise Jaccard dis-
tances between the properties of the selected subset.
• Optimal Selection. Naïve iteration over all user subsets of
size B to obtain the optimal total score. This baseline is
naturally applicable only for small values of B, and used to
examine how good is the approximation achieved by our
algorithm in practice, compared to the theoretical bound.

8.4 Qualitative Results
We next describe our experimental results regarding the achieved
diversity. All experiments have been conducted on a Windows
10 machine powered by an Intel Core i7 7500U processor with a
16 GB of DDR4 memory.

Intrinsic diversity results. We depict the intrinsic diversity com-
parison between baselines for the TripAdvisor and Yelp datasets
in Figures 3a and 3c, respectively. For showing different metrics
on a similar scale, all scores are normalized relative to the leading
algorithm’s score; the value of the leading score is denoted on the
relevant bar. Our main findings are summarized as follows.

• Podium outperforms its alternatives in every tested diver-
sity metric.
• Yelp is a more difficult dataset than TripAdvisor, since the
former has less properties and less “room for maneuver”;
for this dataset our results are better than the baselines by
a significantly larger gap.
• Results for top-200 coverage and intersected property cov-
erage indicate that our algorithm implicitly accounts for
representing a high percentage of the largest groups, in-
cluding complex ones – suggesting that selection based
on simple groups may be sufficient for coverage purposes.
• The distance-based baseline performs poorly in covering
complex groups, since it explicitly avoids intersections
with overlapping properties between users.
• Surprisingly, our algorithm achieves a high similarity to
the group distribution in the source population, although
we do not optimize this directly.
• Our algorithm achieves the best total selection score by a
large gap - this is expected, since our algorithm approxi-
mates the optimal value for this function.
• We were only able to test the optimal selection algorithm
on a restricted source population and very small subset
sizes due to the exponential runtime, hence it is omitted
from the graphs. Generally, the total score achieved by
Podium greatly exceeded the approximation bound and
was near-optimal in all of our experiments. E.g., for select-
ing 5 out of 40 users Podium provided a .998 approximation
ratio of the optimal.
• Since each user belongs to many groups, we can achieve
high coverage even with a small B. As B increases, all the
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Figure 3: Quality experimental results

quality metric improve and the gaps between the baselines
slightly decrease, but the general trends are preserved.

These results indicate that it is able to select good represen-
tatives of the sources population in different respects, covering
most large groups and leaving few under-represented groups.
Regarding the competitors, we observe that clustering is infe-
rior in almost every metric; this indicates that the splitting of
population into cluster is probably unable to identify meaningful
groups, and is outperformed even by random sampling.

The results also indicate that distance-based selection is less
able to represent groups not explicitly defined in the dataset.
Generally, the main difference between the distance-based ap-
proach and ours is the pairwise intersection in user properties
– e.g., 2 versus tens on average that we get for the Yelp dataset.
Consequently, when there are a few prevalent categories that are
shared by many users, the distance-based approach tends to seek
the few users that do not have these categories, which comes at
the expense of coverage and distribution similarity.

Opinion diversity results. We now consider whether indeed
the selected user subset, by Podium and its alternatives, provides
diverse opinions, according to the metrics defined in Section 8.2.
Naturally, the considered groups in G may affect the opinion di-
versity for algorithms that rely on groups. In these experiments,
we have chosen to consider groups that are defined from proper-
ties related to cuisine and location, as a client seeking opinions
about a restaurant might have chosen.

For the TripAdvisor dataset (Figure 3b) we have examined 50
destinations with an average of 90 reviews per destination.

For the Yelp experiment (Figure 3d) we have considered 130
destinations with an average of 1730 reviews per destination.

Concluding both experiments, our main findings are:

• Podium achieves the best results in any tested metric for
each dataset, with the exception of rating variance.
• Distance-based is the strongest competitor of Podium in
this set of experiments; however, in the Yelp dataset we

still see a significant gap w.r.t. Podium in topic coverage
and usefulness.
• Podium achieves a good balance in the tradeoff between
attaining dissimilar ratings/sentiments (as reflected in rat-
ing variance and distribution similarity) – which tends to
the selection of “eccentric” users – and attaining represen-
tative opinions that cover prominent topics (as reflected in
topic coverage, usefulness) – which tends to the selection
of “mainstream” users.
• Random achieves a comparatively better performance in
“dissimilarity” metrics (rating variance and distribution
similarity), although still inferior to Podium and distance-
based, and inferior results in “representativeness” metrics
(topic-sentiment, usefulness), as expected.
• Clustering shows the opposite trends to those of Random,
probably due to selection of near-mean users as represen-
tatives, which reduces the randomness of their selection
but increases their representativeness.

These results reconfirm the assumption, proposed in previous
work, that diverse users provide diverse opinions [4]. We have
been able, by selecting a small user subset, to capture prominent
topics and the ratings of the source population – even though
Podium is not explicitly calibrated to predict opinions.

The effect of customization. We next consider the effect of
customization on the selected user subset, with respect to the
intrinsic quality metrics of the selected subset. We focus on the
effect of “priority coverage” feedback from Def. 6.1. For that, we
have selected from the Yelp dataset with 30K users, uniformly
at random, four subsets G20 ⊆ G40 ⊆ G60 ⊆ G80 ⊆ G such that
|Gi | = i . Each subset was, in turn, fed into Podium as the set
of priority coverage groups Gd . Then, we have selected a user
subset of size 8 in the customized setting. We have repeated this
process 20 times and recorded the average for each metric.

The results are detailed in Figure 4, along with the intrinsic
diversity metrics for the setting without customization, for com-
parison. Notably, all the quality metrics slightly decrease with
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Figure 4: Yelp intrinsic diversity with customization

every increase of the subset size, indicating that covering the pri-
ority groups restricts Podium’s ability to cover standard priority
groups – surprisingly, not by a significant gap. The newly-added
Feedback Group Coveragemetric measures the percentage of prior-
ity groups that were covered. Note that the groups are randomly
selected with equal probability and are thus likely to be small
and non-overlapping. Hence, there may not be 8 users who cover
all of them. As expected, we can observe that the more priority
groups are defined their coverage significantly decreases.

8.5 Scalability Results
We have examined the scalability of our algorithm w.r.t. the
number of users and size of user profiles, which affect the number
of groups. Here we only compare results with the clustering and
distance-based baselines (random is immediate).

Scalability in number of users. In these experiments we have
used user profiles with up to 200 properties. Following the com-
plexity analysis in Section 4 we expect to witness a linear growth
in the running time of the algorithm with accordance to the
change in population size.

Scalability in profile size. The number of users has been set
at 8K, and we varied the properties assembling the user profiles
thus affecting their size. Again, we expect the running time to be
linear to the average profile size.

Figures 5 and 6 depict the running times achieved by the
algorithms. Our main findings are:
• Podium and distance-basedare ∼9 times faster than the
clustering alternative.
• Execution time for Podium scales linearly in the size of
the population as well as the number of properties.
• The Optimal baseline, due to its exponential complexity,
demonstrated poor scalability. E.g., for |U| = 40 and B=5
its execution time was 443 seconds, and for |U| = 100 we
have terminated its execution after an hour. It is therefore
omitted from the graphs.

9 RELATEDWORK
A comparison between diversification approaches is given in
Table 1. We now elaborate more on these solutions and others.

Diversity in crowdsourcing. A few studies (e.g., [2–4]) have
considered the selection of diverse users in the context of crowd-
sourcing, namely performing tasks with the collaborative help of
Web users/workers. The work of [4] is the most relevant to ours
since it also studies diverse opinion procurement. They present
two approaches for diversification: S-Model is distance-based,
where pairwise distance is assumed to be known; and T-Model
is coverage-based on predicted data, i.e., targets the selection of
a user subset with a certain opinion distribution, but only in a
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Figure 6: The effect of profile size on execution time.

single category. Other studies consider the selection of diverse
crowd workers in order to improve the overall accuracy. In [3]
the authors study the selection of diverse users by modeling the
dependence of error rates within access paths (corresponding to
non-overlapping user groups), and optimizing the information
gain by the selected subset. This, however, does not apply to opin-
ion procurement where there are no errors and every opinion
should be accounted for. The recent [2] resembles ours in con-
sidering coverage-based diversity and supporting customization.
However, they consider only a single group per worker.

Diverse search results. Search results diversification has been
extensively studied in the field of information retrieval (e.g., [1,
6, 20, 21]). Apart from solving query ambiguity, diversification
is used to avoid over-personalization of search results [22]. The
classification of diversity definitions as coverage-based versus
distance-based is also considered in this context [23, 24]. In con-
trast with our approach, IR solutions generally target relevance
and therefore are inadequate for diversifying along different axes
and accounting for positive and negative opinions.

Diversity in recommender systems. Diversification has also
been studied in the context of recommender systems. Diver-
sity can be computed based on item properties [6] or collabo-
rative filtering, namely, the ratings of similar users to similar
items [5, 7]. Specifically, in [7] a notion of explanation-based
diversity is presented, but is different than ours – certain item
properties are identified as recommendation-relevant and these
are used for diversification. In contrast, we do not assume that
relevant properties are predefined but rather derive explanations
from the actual diversification results. Moreover, to our knowl-
edge, coverage-based approaches have not been considered in
the context of recommender systems.

User sampling in survey research. The selection of people rep-
resenting some population has been vastly studied in the context
of surveys. While also concerned with opinion procurement, the
focus of this research field is different. Specifically, as explained



in Section 2, the dimensionality of user profiles in surveys is typ-
ically, by design, much lower than ours. This is because the goal
of surveys is to ensure the statistical soundness of specific infer-
ences from the participants’ answers to larger populations [8, 9].
Statistical soundness may require the selected participants to be
proportionally allocated (Def. 2.1), which, as explained in Section 2,
is impossible in our high-dimensional setting due to the presence
of many overlapping groups. Our approach involves a different
problem formulation suitable for the high-dimensional setting.
Also in contrast to surveys, which require a careful design and
thereby a heavy load of manual curation, our solution applies to
a given user repository as-is and may be easily executed multiple
times, e.g., to incorporate data updates.

User selection. Various studies have considered the selection
or filtering of users who undertake a task in crowdsourcing plat-
forms or social networks. This includes assessment of crowd
worker skill and filtering of low-skill workers [25]; filtering of
low trust or spammer users [26]; filtering of slow or inefficient
users [27]; expert finding [28–30]; and general-purpose declar-
ative crowd selection [10, 31–33]. In general, these works are
orthogonal to ours, since we can view the scores they derive as
additional user properties that can be used for diversification.

A particular line of work considers team formation (or group
formation), namely the selection of a set of workers that in some
sense function as a team, by having e.g. complementary skills,
similar properties, and/or better collaboration means [2, 34–37].
Among these, [2] is the most relevant to ours in targeting worker
diversification, as discussed above. [37] uses coverage and diver-
sity notions that our quite different than ours and thus render
the problem and solution techniques quite different: diversity is
considered between formed groups and is distance-based; and
coverage is considered with respect to items rather than groups
and does not support dimensionality.

10 CONCLUSION AND FUTURE WORK
In this work, we presented a framework for the selection of di-
verse user subsets for opinion procurement. We define a generic
diversity notion that, while simple, satisfies a unique combina-
tion of desiderata that arise in presence of high-dimensional
user profiles. In particular, as we showed, this notion admits ef-
ficient near-optimal computation and allows explanations and
customization by the client. Our experimental study, on real user
data, examines different metrics for diverse selection and shows
that our algorithm outperforms a variety of baselines.

In future work, we plan to investigate further enhancement
of the usability of our system, by methods of proposing rele-
vant refinements for the user and by additional visualizations
of the selection results. Another direction involves foundational
study of the statistical properties of our algorithm: we have em-
pirically shown that it performs well with respect to various
measures other than our total score, e.g., distribution similarity
and coverage of complex groups; the next step is formulating
the guarantees for the algorithm performance in these metrics.
The framework we have proposed is deterministic in choosing
the (near-)optimal user subset by our definition, and is shown
to outperform a fully random algorithm. Our implementation
adds some randomness in randomly breaking ties, and we plan to
further incorporation of randomness in our solution, e.g., adding
noise to group weights, and its effect on the output diversity.
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