
An Integrated Graph Neural Network for Supervised
Non-obvious Relationship Detection in Knowledge Graphs

Phillipp Müller∗, Xiao Qin∗, Balaji Ganesan†, Nasrullah Sheikh∗ and Berthold Reinwald∗

IBM Research – Almaden∗, IBM Research – India†
{phillipp.mueller, xiao.qin, nasrullah.sheikh}@ibm.com∗, bganesa1@in.ibm.com†, reinwald@us.ibm.com∗

ABSTRACT
Non-obvious relationship detection (NORD) in a knowledge
graph is the problem of finding hidden relationships between the
entities by exploiting their attributes and connections to each
other. Existing solutions either only focus on entity attributes
or on certain aspects of the graph structural information but
ultimately do not provide sufficient modeling power for NORD.
In this paper, we propose KGMatcher– an integrated graph neu-
ral network-based system for NORD. KGMatcher characterizes
each entity by extracting features from its attributes, local neigh-
borhood, and global position information essential for NORD. It
supports arbitrary attribute types by providing a flexible interface
to dedicated attribute embedding layers. The neighborhood fea-
tures are extracted by adopting aggregation-based graph layers,
and the position information is obtained from sampling-based
position aware graph layers. KGMatcher is trained end-to-end
in the form of a Siamese network for producing a symmetric
scoring function with the goal of maximizing the effectiveness
of NORD. Our experimental evaluation with a real-world data
set demonstrates KGMatcher’s 6% to 35% improvement in AUC
and 3% to 15% improvement in F1 over the state-of-the-art.

1 INTRODUCTION
Enterprises are equipped with modern computing power, and
excel at storing entities of interest and their relationships gener-
ated from daily transactions or operations. Making sense of such
linked data has gained increasing importance due to its potential
of enabling new services. NORD aims at finding relationships
between entities in a knowledge graph where the relationships
are not explicitly defined in the data.

One of the first NORD systems [2] was designed to detect
credit card fraud and later on gained fame for identifying fake
identities in casino businesses. The problem of deciding if two en-
tities share a non-obvious relationship such as “fake identity pair”
is challenging. First, the attribute information is an important
ingredient to characterize entities. However, the attributes are
usually expressed in heterogeneous data structures. Extracting
useful features and constructing a unified representation from
the attributes through manual feature engineering is tedious and
ineffective. Second, two related entities may not share similar
attribute properties at all. For example, to trick the registration
system, the fake identity is often disguised with totally differ-
ent demographic and contact information. Instead of predicting
solely based on the attribute information, a system should also
take the surrounding context into consideration. The “neighbors”

© 2020 Copyright held by the owner/author(s). Published in Proceedings of the
23rd International Conference on Extending Database Technology (EDBT), March
30-April 2, 2020, ISBN 978-3-89318-083-7 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

A

B

D

C✓

?

Figure 1: A supervised approach to NORD.
of the entities of interest in the graph may provide useful infor-
mation for the detector to tap into the truth of a non-obvious
relationship. However, modeling such complex context is a non-
trivial task. Third, the entities that share non-obvious relationship
usually have a high degree of separation in the graph. It is cru-
cial for a system to be capable of capturing the global position
information of the entities in the context of the entire graph so
that the distanced separation can be identified later on.

Existing solutions rely on handcrafted features to characterize
the entities and domain expert defined rules for the detection.
With the rapid growth of the graph size and the increasing com-
plexity of the non-obvious relationships, it is tedious and almost
impossible to manually maintain such solutions to achieve high
effectiveness. Recently, machine learning approaches designed
for similar tasks such as entity resolution [5, 9] and graph link
prediction [6] are proposed. However, proven by our experimen-
tal results, their approaches are only good at tackling certain
aspects of the NORD problem and demonstrate limitations in
terms of their overall effectiveness. In this work, we propose
KGMatcher– an integrated graph neural network-based system
for NORD to address the challenges and overcome the limitations
of the existing solutions.
KGMatcher Approach. We approach the problem in a super-
vised machine learning setting as depicted in Figure 1. That is,
in addition to the knowledge graph which contains the entities,
their attributes and connections, a set of ground-truth labels in-
dicating the existence of the non-obvious relationships between
entities is also available. Our goal is to design a machine learning
model that can learn from these pairs and discover new pairs.

In its core, KGMatcher is a neural model that automatically
extracts important features from the knowledge graph. The fea-
tures encode the information regarding their entity attributes,
neighborhood and position essential for predicting a non-obvious
relationship between two entities. KGMatcher consists of three
types of neural layers which are connected and can be trained
end-to-end. Attribute features are extracted by the attribute em-
bedding layers which support heterogeneous attribute types. The
dense representations of the entities generated from these lay-
ers as well as the edge information are then fed into two stacks
of graph layers. The first type of graph layers called neighbor-
hood [1] layer focuses on extracting near-by neighborhood infor-
mation by aggregating their attribute embeddings to the entity of
interest. The second type of graph layers named position [8] layer
focuses on obtaining global position information of the entities

Short paper

Series ISSN: 2367-2005 379 10.5441/002/edbt.2020.37

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2020.37

by referring them to a set of sampled anchors. The outputs of the
two graph layers are then put together through concatenation to
form the final feature vectors of the entities. Finally, KGMatcher’s
feature extraction network is used in the form of a Siamese net-
work for predicting the existence of a non-obvious relationship
between two input entities.
Contributions. It is worthwhile to highlight the following con-
tributions of this work:
(1) We propose a supervised graph neural network-based solu-

tion for non-obvious relationship detection called KGMatcher.
(2) We design KGMatcher by adapting and integrating neural

architectures for extracting essential NORD features, namely
entity attributes, neighborhood and position features.

(3) We demonstrate the effectiveness of KGMatcher using a pub-
lic dataset. KGMatcher achieves improvement in AUC from
6% to 35% and in F1 from 3% to 15% over the state-of-the-art.

2 PRELIMINARY
Data Model1. Let G = (V , E) denote a knowledge graph where
V = {v1, · · · ,vn } is a set of nodes with each node representing
an entity and E = {e1, · · · , em } is a set of edges with each edge
ek = (vi ,vj) indicating a connection between two entities vi
and vj . In this work, we assume that the knowledge graph is an
undirected graph, i.e., for every ek = (vi ,vj), (vi ,vj) ≡ (vj ,vi).
Let A = {a1, · · · ,ak } define a set of attributes associated with
each entityvi . An attribute, for example, can be a date, an address,
a comment, etc. which means that attributes can be represented
in various formats such as numerical, categorical, or text data
type. Each entity vi = {x ia1 , · · · , x iak } follows the same schema
with the attribute types defined by A where x iak denotes the kth
attribute value of vi . In other words, we assume that the entities
in the knowledge graph are of the same type, i.e. all the entities
share the same attribute types.
Problem Definition. Given two entities vi and vj in a knowl-
edge graph G defined above, the goal is to design an algorithm
fG for G that can accurately predict whether or not vi and vj
share a non-obvious relationship.

In this study, we approach the problem in a supervised learning
setting. In addition to the knowledge graph G = (V , E), a ground
truth label set LG = {y1, · · · ,yr } is also available. A label yk =
(vi ,vj) where vi ,vj ∈ V indicates whether or not there exists a
non-obvious relationship betweenvi andvj . Our goal is to design
a machine learning model which is able to learn a function fG
fromG and LG that predicts the relationship between two entities
presented in G. Following the common practice, the label set is
partitioned into train, validation, and test set.
Graph Neural Networks. Graph Neural Networks (GNNs) learn
a vector representation of a node from its associated attributes
and the graph structure. Modern GNNs [6] adopt a neighbor-
hood aggregation strategy where the representation of a node is
learned in an iterative manner by aggregating representations of
its neighbors. After k iterations (layers) of aggregation, a node’s
representation encodes the structural information within its k-
hop network neighborhood. Formally, the k-th layer of a GNN
is:

a
(k)
vi = Aддreдate(k)

({
h
(k−1)
u |u ∈ Neiдhbor (vi)

})
, (1)

h
(k)
vi = Combine(k)

(
h
(k−1)
vi ,a

(k)
vi

)
, (2)

1The knowledge graph model we adopted in this work can be also seen as a form
of the attributed or property graph model referred in the literature.

KGMatcher

…

…

k layers

P

N N

P

E

…

…

k layers

P

N N

P

E

shared parameters 0.75

dot product
concatenate

Key

Ground Truth

v u1.0

0.0

1.0

0.0

0.0

…
…

Binary Cross Entropy Loss 1.0

h
(k)
�i =Wc · ⇥h(k�1)

�i ,a
(k)
�i

⇤
, (5)

whereWc is a learnable matrix. The embedding vector of a node
is initialized by its attribute embedding vector obtained from the
Attribute layer(s).

Position Measuring Layer (P). The GNNs KGMatcher adopted
for neighborhood modeling are good at capturing local context.
One of the limitations of such modeling approach is their lack of
emphasize on the position/location of the embedded node within
the broader context of the entire graph. When comparing two
employees in the company, it is possible that their own pro�les
as well as their team members’ pro�les are similar. But their job
functionalities can be very di�erent according to their reporting
relationships to the upper management which indicates their
absolute positions within the entire organization. KGMatcher is
equipped with P-GNN layers as Position layers to capture such
global position information for each entity. The above motivating
example also reveals the intuition behind P-GNN approach which
is that the absolute position of a node can be de�ned by its relative
positions to a set of reference nodes, e.g. upper managements, in
the graph.

Speci�cally, in stead of aggregating information from the im-
mediate neighbors, P-GNN aggregates information for an embed-
ded node from a set of “anchor" nodes. Each P-GNN layer �rst
samples a set of anchor nodes as references from the entire graph
and then computes the shortest distances from every embedded
node to these sampled anchors to encode a distance metric. Each
embedding dimension of a node corresponds to the aggregated
information from a speci�c anchor(s) weighted by the distance
metric where the aggregated information is inversely propor-
tional to the distance. KGMatcher stacks multiple Position layers
to achieve higher expression power. In particular, the embedding
of a node �i from kth layer is computed as:

[· · · ,

l th dimensionz }| {
mean

��
s(�i ,u) ⇥ h

(k�1)
�i · h(k�1)

u |u 2 Anchor (l) �, · · ·],
(6)

where s(�i ,u) computes the weight of an anchor node u to the
embedded node �i , Anchor (l) returns a set of anchors dedicated
for computing the embedding value on the lth dimension of the
embedded nodes and mean represents an element wise mean-
pooling. The weight computed by s(�i ,u) is inversely propor-
tional to the shortest distance between �i and u in the graph.

Interaction between N and P Layer. To form a single represen-
tation that encodes both neighborhood and position information,
a few merging design alternatives can be made . One can com-
bine the output embeddings immediate after each N and P layer
through concatenation or product. The merged node embedding
is then fed separately into the next N and P layer. In our work,
to clearly separate the contribution of neighborhood and posi-
tion signal, we allow the information propagation of the two
kinds progress in parallel and only merge two at the very end
through concatenation (depicted in Figure 1). Therefore, the �nal
embedding of the node �i is given as:

h�i =
⇥
hN
�i
,hP

�i

⇤
. (7)

3.2 Siamese Network for Entity Matching
Suppose a pair of entities u and � are labeled with a label � using
a function d� (u,�) indicating the existence of (u,�) in LG . The
goal of KGMatcher is to predict such label � for unseen entity
pairs. Speci�cally, KGMatcher solves the problem via learning
an embedding function f parameterized by � , where the objec-
tive is to maximize the likelihood of the conditional probability
p(� | f� (u), f� (�)). Formally, we have the learning objective as:

min
�
E(u ,�)⇠LGtr ain

L(dz (f� (u), f� (�)) � d� (u,�)),
(8)

where dz (·, ·) is a function that predicts the label based on two en-
tity embeddings. Since the relationship we de�ned is undirected,
dz should then be a symmetric function. A Siamese neural net-
work uses the same weights while working in tandem on two
di�erent input vectors to compute comparable output vectors
which aligns with the required symmetric property. Therefore,
we train KGMatcher’s entity embedding layers in the form of
Siamese network. In our implementation, dz computes dot prod-
uct of the two input vectors.

4 EXPERIMENTAL EVALUATION
Setup & Evaluation Method. We evaluate our proposed system
with a publicly available dataset by comparing its performance
against other baselines. All methods are implemented in PyTorch
and trained on a CentOS server with Intel(R) Xeon(R) Gold 6138
@ 2.00GHz CPUs and NVIDIA Tesla P100 GPUs.

Since our task is binary classi�cation – predict the existence
of the relationship between two input entities, we measure the
performance of all methods using receiver operating characteristic
(ROC), area under the curve (AUC), precision and recall typical
metrics for the evaluation of a binary classi�cation task.

Dataset. We used the UDBMS Person1 dataset for our evalua-
tion. The original dataset contains 502,529 unique person entities.
Each entity has up to 48 attributes. We used 8 attributes such
as “predecessor” and “spouse” to build the edges and selected
another 25 popular attributes in terms of their presenting rate
as entity attributes. We used “subject” information to annotate
the non-obvious relationships, i.e. two entities sharing the same
“subject” have a non-obvious relationship. We further trimmed
down the dataset by only selecting the entities with reasonable
amount of attributes and reasonable level of connectivity. Finally,
we have 1,294 person entities, 3,480 edges and 316 relationships.
The relationship pairs are splitted into train, validation and test
set as the positive samples. The negative samples are uniformally
sampled. (Release data?)

Baseline. We compare KGMatcher against 5 other baselines:
•DeepMatcher [3] is a supervised deep learning solution de-
signed for entity resolution which aims to identity pair of data
instances that are referring to the same entity.
•Graph Isomorphism Network (GIN) [4]
•Graph Convolutional Network (GCN) [2]
•GraphSAGE [1]
•Position-aware Graph Neural Network (PGNN) [5]
E�ectiveness.

1http://udbms.cs.helsinki.�/?datasets/person_dataset

Knowledge Graph

u

v

Update

§ embed attributes
§ aggregate neighbors
§ combine with aggregated info

§ aggregate anchors
§ combine with distance-weighted aggregated info

Figure 2: The overview of KGMatcher inference and training.
where h(k)vi is the vector representation of the node vi at the k-
th iteration. The node’s attributes are usually used to initialize
h
(0)
vi = Embed({x ia1 , · · · , x iak }) where Embed(·) is an embedding

function that obtains a vector representation of the attributes
from their raw forms. The exact computation of Aддreдate(k)(·)
and Combine(k)(·) in GNNs defines their modeling approach. In
Section 3.1, we will describe the approaches we introduce to our
proposed model and how different models are integrated and
trained end-to-end.

3 KGMatcher APPROACH
Overview. We first give an overview of the KGMatcher approach
depicted in Figure 2. Each design choice will be discussed in the
following sections. The KGMatcher at its core learns a function
fG (·, ·) for a knowledge graph G that takes two entities as in-
puts and produces a score indicating the likelihood of the two
entities sharing a non-obvious relationship. KGMatcher charac-
terizes an entity by considering its attributes, its k-hop neighbors’
attributes and its position in the knowledge graph. These charac-
terizations are extracted by three types of layers in KGMatcher,
namely, Attribute, Neighborhood and Position layer. These
layers are connected and trained end-to-end with the goal of
producing embeddings of entities which maximize the accuracy
of the non-obvious relationship predictions. The function fG
learned by KGMatcher produces a symmetric measure for the in-
put entities which means that fG (u,v) ≡ fG (v,u) whereu,v ∈ V .
The symmetric property is guaranteed by the use of Siamese net-
work[4]. The network consists of two identical graph embedding
networks which share the same parameters (weight matrices).
When measuring two entities, each network takes one of the
two inputs and produces the respective embedding. The final
score is then computed based on a distance measure between
two embeddings.

3.1 Entity Embedding in Knowledge Graph
We introduce the key components in the graph embedding net-
work for entity feature extraction.
Attribute Embedding Layer (E). The attribute information as-
sociated with each entity in the knowledge graph provide the
central ingredients of the entity. It can be a mixture of structured,
semi-structured and/or unstructured data.

By leveraging the existing deep learning based embedding
methods, KGMatcher is able to convert arbitrary attributes into
a vector representation. First, depending upon the specific type
of attribute, one can choose a neural architecture to produce the
embedding in an unsupervised or supervised manner. To pro-
cess “text" type attributes for example, the vector representation
can be generated from a pre-trained language model such as
XLNet[7]. This unsupervised strategy ensures the generality of
the embedding since the pre-trained model is usually obtained
from a large general domain corpus. To be able to generate the

380

embeddings that also maximize the accuracy of the entity match-
ing. KGMatcher allows these neural networks to be easily con-
nected to the rest of the KGMatcher’s layers and be adjusted
through backpropagation from the feedback on the relationship
prediction. The connected embedding networks can be either
initialized by the pre-trained parameters (weights) and fine tuned
onward or randomly initialized and trained from scratch. Second,
KGMatcher finally generates the entity attribute embedding by
concatenating each of the embeddings of the whole attribute set
and feed it to the next layers.

In our experiment, the attributes are of three types, namely
numerical, geo-location (in text string) and categorical type. The
numerical types are processed by a normalization layer. The
geo-location strings are converted into latitude and longitude
numbers. For categorical types, we convert them into one-hot-
encodings and embed them using multilayer perceptron neural
networks.
Neighbors Aggregation Layer (N). An entity in a knowledge
graph is usually not isolated by nature. The connectivity among
the entities often indicates additional information which may
not be explicitly described by their attributes.

To exploit the natural connections among the entities to cap-
ture such “surroundings" signal, we adopt a graph neural ar-
chitecture as part of the KGMatcher embedding network. The
GNNs for this purpose broadly follow a recursive neighborhood
aggregation scheme. Each node aggregates embedding vectors of
its immediate neighbors to compute its new embedding vector.
After k iterations of aggregation, a node is represented by its
transformed embedding vector, which captures the surrounding
information within the node’s k-hop distance. Instead of focusing
on embedding nodes from a single fixed graph which is assumed
by many prior works, we adopt a spectrum of GNNs – inductive
GNNs, where only the aggregate (Equation 5) and combine (Equa-
tion 6) for a node are learned. The complexity of such GNNs is
usually independent to the size of the graph. They are capable of
incorporating unseen nodes and easy to scale.

In particular, we implement GraphSage[1] layers as our Neigh-
borhood layers. The Aggregate function is formulated as:

a
(k)
vi = max

({
ReLU

(
W N
a · h(k−1)

u |u ∈ Neiдhbor (vi)
})
, (3)

whereW N
a is a learnable matrix and max represents an element-

wise max-pooling. The Combine function is formulated as a con-
catenation followed by a linear mapping:

h
(k)
vi =W

N
c · [h(k−1)

vi ,a
(k)
vi

]
, (4)

whereW N
c is a learnable matrix. The embedding vector of a node

is initialized by its attribute embedding vector obtained from the
Attribute layer(s).
Position Measuring Layer (P). The GNNs for neighborhood
modeling are good at capturing local context. One of the limi-
tations of such modeling approach is their lack of emphasis on
the position/location of the embedded node within the broader
context of the entire graph. To be able to model the high degree of
separation between entities, KGMatcher is equipped with P-GNN
layers [8] as Position layers to capture the global position infor-
mation for each entity. The intuition of the P-GNN approach is
that the absolute position of a node can be defined by its relative
positions to a set of reference nodes in the graph.

Specifically, instead of aggregating information from the imme-
diate neighbors, P-GNN aggregates information for an embedded
node from a set of “anchor" nodes. Each P-GNN layer samples

a set of anchor nodes as references from the graph and then
computes the shortest distances from every embedded node to
these sampled anchors to encode a distance metric. Each embed-
ding dimension of a node corresponds to the combined of node
embedding and the aggregated information from a specific an-
chor(s) weighted by the distance metric. The weight is inversely
proportional to the distance. KGMatcher stacks multiple Position
layers to achieve higher expression power. The aggregation for
the lth dimension for vi at time k is formulated as:

a
(k)
v li
= mean

({
ReLU

(
W P
a · (s(vi ,u) × h

(k−1)
u)|u ∈ Anchor l (vi)

})
,

(5)
and the combined embedding of vi at time k is:

h
(k)
vi =W

P
t · [· · · ,

l th dimension︷ ︸︸ ︷
W P
c · [h(k−1)

vi ,a
(k)
v li

]
, · · ·], (6)

where s(vi ,u) computes the weight of an anchor node u to the
embedded nodevi ,Anchor l (vi) returns a set of anchors dedicated
for computing the embedding value on the lth dimension of
the embedded nodes, mean represents an element wise mean-
pooling andW P

a ,W P
t andW P

c are learnable matrices. The weight
computed by s(vi ,u) [8] is inversely proportional to the shortest
distance between vi and u in the graph.
Interaction between N and P Layer. To form a single represen-
tation that encodes both neighborhood and position information,
a few merging design choices are made. One can combine the out-
put embeddings immediately after each N and P layer through
concatenation or other element-wise operations. The merged
node embedding is then fed separately into the next N and P layer.
In our work, to clearly separate the contribution of neighborhood
and position signal, we allow the information propagation of the
two kinds progress in parallel and only merge the two at the very
end through concatenation (depicted in Figure 2).

3.2 KGMatcher Inference and Training
Suppose a pair of entities u and v are labeled with a label y ∈ LG
using a function dy (u,v). The goal of KGMatcher is to predict
such label y for unseen entity pairs. Specifically, KGMatcher
solves the problem via learning an embedding function Φ param-
eterized by θ , where the objective is to maximize the likelihood of
the conditional probability p(y |Φθ (u),Φθ (v)). Formally, we have
the learning objective as:

min
θ
E(u ,v)∼LGtrain
L(dz (Φθ (u),Φθ (v)) − dy (u,v)),

(7)

where dz (·, ·) is a function that predicts the label based on two en-
tity embeddings. Since the relationship we defined is undirected,
dz should then be a symmetric function. A Siamese neural net-
work, depicted in Figure 2 uses the same weights while working
in tandem on two different input vectors to compute compara-
ble output vectors which aligns with the required symmetric
property. Therefore, we train KGMatcher’s entity embedding
layers in the form of Siamese network. In our implementation,
dz computes dot product of the two input vectors.

4 EXPERIMENTAL EVALUATION
Setup & Evaluation Method. We evaluate our proposed system
with a publicly available dataset by comparing its performance
against other baselines. All methods are implemented in PyTorch
and trained on a CentOS server with Intel(R) Xeon(R) Gold 6138
@ 2.00GHz CPUs and NVIDIA Tesla P100 GPUs.

381

Table 1: Test results of different models. ↑ indicates that the higher the score the better the performance. (·) after each score
(average±standard deviation) indicates the ranking of the method (vertical comparison) w.r.t the specific evaluation metric. ⋆ indicates
that the baseline is implemented by ourselves. The cut-off thresholds of these reported methods are 0.210, 0.445, 0.620, 0.580, 0.440, 0.375
and 0.530 which produce the maximum F1 score for each respective method.

Method AUC ↑ F1 ↑ Precision ↑ Recall ↑
DeepMatcher [5] ⋆ 0.6658±0.0351 (6) 0.6755±0.0108 (6) 0.5255±0.0131 (6) 0.9455±0.0000 (2)

GIN [6] 0.7367±0.0329 (3) 0.7400±0.0311 (3) 0.7036±0.0415 (1) 0.7818±0.0000 (6)
GCN [3] 0.7080±0.0333 (5) 0.7210±0.0192 (5) 0.6837±0.0346 (2) 0.7636 ±0.0000 (7)
GraphSAGE [1] 0.7633±0.0320 (2) 0.7442±0.0200 (2) 0.6598±0.0311 (4) 0.8545±0.0000 (5)

PGNN [8] 0.7090±0.0337 (4) 0.7255±0.0199 (4) 0.6108±0.0261 (5) 0.8942±0.0195 (4)
PGNN (w/o attributes) [8] 0.5988±0.0424 (7) 0.6668±0.0023 (7) 0.5003±0.0019 (7) 0.9994±0.0040 (1)

KGMatcher ⋆ 0.8079±0.0343 (1) 0.7660±0.0239 (1) 0.6676±0.0331 (3) 0.8998±0.0222 (3)

Since our task is binary classification – predict the existence
of the relationship between two input entities, we measure the
performance of all methods using receiver operating characteristic
(ROC), area under the curve (AUC),precision, recall and F1 typical
metrics for the evaluation of a binary classification task. We
report the average measurements and the standard deviations of
all methods on the test set of 100 repetitions.
Dataset. We use the UDBMS Person2 dataset for our evalua-
tion. The original dataset contains 502,529 unique person entities.
Each entity has up to 48 attributes. We use 8 attributes – relation,
relative, spouse, child, parent, partner, predecessor, successor, oppo-
nent and rival to build the edges and select another 25 popular
attributes in terms of their presenting rate as entity attributes.
We use subject information to annotate the non-obvious rela-
tionships, i.e. two entities sharing the same subject have a non-
obvious relationship. We further trim down the dataset by only
selecting the entities with reasonable amount of attributes and
reasonable level of connectivity. Finally, we have 1,294 person
entities, 3,480 edges and 316 relationships. The relationship pairs
are split into train, validation and test set as the positive samples.
The negative samples are uniformly sampled by fixing one of the
entities in the positive sample pairs.
Baseline. We compare KGMatcher against 5 other baselines:
•DeepMatcher [5] is a supervised deep learning solution which
aims to identity pair of data instances that are referring to the
same entity based on their attributes.
•Graph Convolutional Network (GCN) [3] is a semi-supervised
spectral-based graph neural network. It models the graph topol-
ogy as well as the node attributes.
•GraphSAGE [1] is a spatial-based graph neural network which
models the graph topology through neighbors aggregation. The
aggregated information is based on the node attributes.
•Graph Isomorphism Network (GIN) [6] is a graph neural
network that generalizesWeisfeiler-Lehman test for maximum
discriminative power. It also models the node attributes.
•Position-aware Graph Neural Network (PGNN) [8] is a gen-
eralized spatial-based graph neural network which aims to iden-
tify the node position in the context of the the entire graph
through sampled anchors.
Effectiveness. Given two entities on the knowledge graph, all
methods produce a score [0-1] which can be interpreted as the
level of confidence of predicting a non-obvious relationship. As a
data analyst, one has to specify a cut-off threshold for the model
to give a firm (binary) answer. To simulate this scenario, we
measure the effectiveness using precision, recall and F1 where
the cut-off thresholds must be provided. Since maximizing ei-
ther precision or recall can easily done by varying the threshold,
we report these measurements by selecting the thresholds that

2http://udbms.cs.helsinki.fi/?datasets/person_dataset

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Receiver Operating Characteristic

DeepMatcher (0.6661)
GCN (0.7081)
GIN (0.7220)
PGNN (0.7098)
PGNN w/o (0.5980)
GraphSAGE (0.7640)
KGMatcher (0.8116)

Figure 3: ROC plot of all baselines. (·) after each method in the
legend box indicates its corresponding AUC value.
maximized each method’s F1 score. As shown on Table 1, KG-
Matcher outperformed all baselines in F1. Although, GIN and
PGNN (w/o attributes) perform well either on precision or re-
call, their measurements on the other side (recall or precision)
are poor. The unbalanced performance may not be acceptable to
many applications. In particular, the model that only considers
attributes (DeepMatcher) or global position information (PGNN
w/o attributes) performs worse than the ones that model both
attributes and some topology of the graph.

To further evaluate the overall performance of all the methods
across different thresholds, we plot the ROC in Figure. 3 and re-
port the AUC value in Table. 1. Our proposed method KGMatcher
is significantly better than all the other baselines.

In summary, our experimental evaluation demonstrates KG-
Matcher’s 6% to 35% improvement in AUC and 3% to 15% im-
provement in F1 over the other baselines.

REFERENCES
[1] William L. Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive Repre-

sentation Learning on Large Graphs. In Proceedings of the NeurIPS 2017, 4-9
December 2017, Long Beach, CA, USA. 1024–1034.

[2] Jeff Jonas. 2006. Identity resolution: 23 years of practical experience and
observations at scale. In Proceedings of the SIGMOD 2006, June 26-29, 2006,
Chicago, Illinois, USA. ACM, 718–718.

[3] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In Proceedings of the ICLR 2017, April 24-26,
2017, Toulon, France.

[4] Evgeny Krivosheev, Mattia Atzeni, Katsiaryna Mirylenka, Paolo Scotton, and
Fabio Casati. 2020. Siamese Graph Neural Networks for Data Integration.
arXiv:cs.DB/2001.06543

[5] Sidharth Mudgal, Han Li, Theodoros Rekatsinas, AnHai Doan, Youngchoon
Park, Ganesh Krishnan, Rohit Deep, Esteban Arcaute, and Vijay Raghavendra.
2018. Deep Learning for Entity Matching: A Design Space Exploration. In
Proceedings of the SIGMOD 2018, June 10-15, 2018, Houston, TX, USA. 19–34.

[6] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Power-
ful are Graph Neural Networks?. In Proceedings of the ICLR 2019, May 6-9, 2019,
New Orleans, LA, USA.

[7] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov,
and Quoc V Le. 2019. XLNet: Generalized Autoregressive Pretraining for
Language Understanding. In Proceedings of the NeurIPS 2019, December 8-14,
2019, Vancouver, Canada. 5754–5764.

[8] Jiaxuan You, Rex Ying, and Jure Leskovec. 2019. Position-aware Graph Neu-
ral Networks. In Proceedings of the ICML 2019, June 9-15, 2019, Long Beach,
California, USA. 7134–7143.

[9] Wen Zhang, Kai Shu, Huan Liu, and Yalin Wang. 2019. Graph Neural Networks
for User Identity Linkage. CoRR abs/1903.02174 (2019).

382

	An Integrated Graph Neural Network for Supervised Non-obvious Relationship Detection in Knowledge GraphsPhillipp Müller, Xiao Qin, Balaji Ganesan, Nasrullah Sheikh, Berthold Reinwald

