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ABSTRACT
Transformer architectures have proven to be very effective and
provide state-of-the-art results in many natural language tasks.
The attention-based architecture in combinationwith pre-training
on large amounts of text lead to the recent breakthrough and a
variety of slightly different implementations.

In this paper we analyze how well four of the most recent
attention-based transformer architectures (BERT[6], XLNet[33],
RoBERTa[17] and DistilBERT [23]) perform on the task of entity
matching - a crucial part of data integration. Entity matching
(EM) is the task of finding data instances that refer to the same
real-world entity. It is a challenging task if the data instances
consist of long textual data or if the data instances are "dirty" due
to misplaced values.

To evaluate the capability of transformer architectures and
transfer-learning on the task of EM, we empirically compare
the four approaches on inherently difficult data sets. We show
that transformer architectures outperform classical deep learning
methods in EM[7, 20] by an average margin of 27.5%.

1 INTRODUCTION
Entity Matching (EM) is the task of determining if two data
instances refer to the same real-world object. As a simple example
consider the entries in Table 1 and Table 2. We need to match
two entities based on attributes like names, addresses or product
information while dealing with various formats and differing,
missing or wrong values. Given this uncertainty, the challenge
of entity matching is to identify which existing entity pairs have
the highest probability of being a match.

The task of entity matching is crucial especially for the process
of data integration and data cleaning [4]. Due to the large amount
of data produced every day, the challenge of data integration and
therefore entity matching becomes more urgent than ever for
corporations and large institutions with data stemming from
multiple sources [27].

While early solutions often relied on rule-based approaches
and hand-crafted heuristics, entity matching by now is mainly
based on machine learning (ML) approaches. Large projects
like Magellan[14] provide tools and libraries for the whole EM-
pipeline with good results on structured and semi-structured
data.

However, what if the data consists of large textual instances,
such as product descriptions, posts on Reddit, Quora, Stackover-
flow, or company descriptions?What if the data has structure, but
attributes are dirty, e.g. the attribute "name" consists of a given
name and a last name, while "given name" is empty? In those
cases, traditional EM approaches provide only mediocre results
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or require large efforts in hand-crafted features [2, 13]. There-
fore and due to the recent advances of deep learning in natural
language processing (NLP), several papers suggest end-to-end
deep learning architectures [7, 20, 34] for EM.

Table 1: DatabaseA - structured product information,with
description being a text-blob.

Title Brand Description Price

iPhone XS Apple
The brand new iPhone

899.99now available in white,
red and silver.

ZenFone 4 Pro Asus

Thin and light, yet incredibly

530.00
strong, the ZenFone 4
Pro (ZS551KL) features
an expansive 5.5-inch,
Full HD AMOLED display

Table 2: Database B - textual product information.

Product description

Apple’s new iPhone XS - a masterpiece of design. Available
now with 64 or 128GB storage and in
three colors: white, silver and red
A smart device for a decent price - Nokia’s Pure View 9,
powered by a pure android, is the gift you need for Christmas.
With it’s incredible robust design and a battery duration
of two days under heavy load, you will love it from day one.

The above-mentioned deep learning architectures for EM
apply different modern NLP techniques: [7] is based on a bi-
directional LSTM and word embeddings, [20] uses an attention
mechanism on top of an LSTM and [34] introduces the power of
pre-trained models.

While these deep learning approaches already lead to massive
performance improvements on difficult data sets [20], none of
them use modern transformer architectures for EM. Transformer
architectures, largely based on the influential "Attention is All
You Need" [30] paper, have proven to be effective on a large va-
riety of NLP tasks. Especially in combination with pre-training
on large text corpora, they almost always beat earlier deep learn-
ing approaches based on recurrent neural networks (RNNs) on
popular NLP benchmarks [6].

The contributions of our paper are as follows:
• To the best of our knowledge, we are the first to compare
four of the most recent transformer architectures, namely
BERT[6], XLNet[33], DistilBERT[23] and RoBERTa[17] on
the task of entity matching. We run experiments with all
of them on five different EM data sets. Since the authors
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of [20] have shown that most of the traditional, structured
EM data sets are not challenging for advanced deep learn-
ing architectures anymore, we focus on "dirty" data sets
and data sets with large textual data instances.

• We compare the results of modern transformer architec-
tures with more traditional deep learning architectures
[7, 20, 34]. Our experiments demonstrate that all trans-
former architectures clearly outperform classical deep
learning methods in EM. On challenging datasets, the best
transformer outperforms DeepMatcher[20] by an average
margin of 27.5%.

• Finally, we analyze how much training is required to
achieve good results on the EM tasks with heavily pre-
trained transformers. To elaborate on this, we compare
the results before fine tuning on the data set (zero-shot
learning) and after each epoch. The results indicate that
transformers reach already good results after only one
epoch of training, while after 2-3 epochs they converge
towards their optimum solution.

The paper is organized as follows. Section 2 reviews the re-
lated work on entity matching and gives a brief overview on
transformer technologies that appear to be a valid technology for
entity matching. Section 3 provides the background knowledge
on attention-learning and the transformer architecture. Section 4
describes the four architectures and their pre-training algorithms
in detail and explains the intuition behind each approach. In Sec-
tion 5 we compare the four architectures based on their results
on five selected EM data sets. Finally, we present our conclusion
and future work in Section 6.

2 RELATEDWORK
We can divide the work related to this paper roughly in two
categories, namely entity matching and transformer architectures.
We will discuss each of them in more detail.

2.1 Entity Matching
The entity matching process as a whole has been tackled over
the years by many works [4, 7, 13, 14, 20], with [4] providing an
excellent overview over the major challenges of entity matching.
Recent projects likeMagellan[14] focus not only on research, but
provide a set of practical tools to solve entity matching in data
integration processes. For a long time the field of entity matching
focused on rather structured data records [8], with each attribute
of the data records containing only relatively short amounts of
text.

To calculate the similarity of such textual attributes, a variety
of similarity functions has been developed [4]. Many of them
focus on specific data structures as e.g. the Jaro-Winkler distance
[11], known to work well on person names. The similarity val-
ues of such functions where then used as features in a binary
classification problem (match/no match)[4].

With the emergence of deep learning in NLP, several papers
[7, 20] started to apply new techniques such as word embeddings
and attention to the task of entity matching. The advantages of
such deep learning models is that they remove the need for hand-
crafted features. While recent work [34] introduced the power
of pre-training for entity matching, we are to our knowledge the
first paper approaching entity matching with modern transformer
architectures.

2.2 Transformer Architectures
Based on the well-known paper "Attention is all you need"[30],
transformers - a special type of neural networks - started by mid
2017 to become one of the most interesting techniques for NLP.
BERT [6], combining the transformer architecture with massive
unsupervised pre-training was the first paper to achieve state-
of-the-art results in a large number of NLP tasks. Succeeding
works by [16, 17, 33] achieved even higher results on said NLP
benchmarks.

While transformers undeniably are one of the largest achieve-
ments in the 2018/2019 NLP landscape, they also started a con-
troversy about the more data/larger models/more computational
power mentality. Therefore, in addition to increasing model sizes
like the authors of [26] did, research started also to develop more
lean transformer models, which can be used on mobile devices
or non-GPU servers at inference time [23].

Transformers have traditionally been used for NLP-tasks. How-
ever, we will apply this technology for entity matching - an im-
portant aspect of data integration.

3 ATTENTION AND TRANSFORMERS
In this section we provide detailed background information on a
special type of neural networks called transformers. We will use
this technology later on for entity matching.

The field of NLP has been dominated for a long time by archi-
tectures using recurrent neural networks (RNNs) at its core. The
most popular approaches for machine translations were so-called
seq2seq[29] or encoder/decoder[3] architectures, which basically
consist of two RNNs, one for the encoder, and one for the de-
coder. Incrementally improved versions of these architectures
are used in most translation software packages. For instance,
Google Translate started using such models in late 2016. Even
though the RNN architecture seems to be well-suited for build-
ing representations of sequential text data, several issues were
discovered:

• The so-called bottleneck problem[1] makes it hard to trans-
fer knowledge about the source sentence to the target
sentence. The bottleneck is the context vector, which is
basically all the decoder network gets as an input. By con-
ditioning only on this single vector, the decoder then has
to produce an output sequence of length N . It is intuitive
to understand that the longer the sequence, the harder it
is to get all necessary information of the source sentence
in one single vector.

• An RNN is, due to its sequential nature, harder to paral-
lelize and therefore takes longer to train than a simple
feed forward network.

• Long range dependencies are hard to learn with RNNs,
even though LSTMs and GRU (gate recurrent unit) archi-
tectures theoretically allow it. The authors of [30] describe
this effect by the path length between two tokens (e.g. two
words in a sentence), which is the number of steps the
signal has to flow through the network. The longer the
path, the harder to learn a dependency.

3.1 Attention
To overcome the bottleneck problem, [1] and [18] came up with
a new technique called attention. Let us first elaborate on the
idea of self-attention, to describe the intuition: A word can be
represented as a weighted combination of its neighborhood. As
an example, take the word "it" in Figure 1. For the human reader it
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is intuitive that the word it in this sentence can be represented by
the words The and animal. By applying an attention mechanism,
we can train a language model to pay attention to relevant words
in its neighborhood in a similar way.

The

animal

did

not

cross

the

street

because

it

was

too

tired

The

animal

did

not

cross

the

street

because

it

was

too

tired

..

Figure 1: Self-Attention: The token "it" (see right side) can
refer to the tokens "The", "animal", "street" etc. (see left
side).

A sightly different version of attention was used by the first
seq2seq model with attention mechanism[1]. This approach ap-
plied attention between the target sentence and the source sen-
tence. So instead of only transferring knowledge between encoder
and decoder via one context vector at the end of the encoding,
the decoder has access to all the hidden states of the encoder.

Assume that wewant to translate the English sentence "The cat
is sleeping" to the German counterpart "Die Katze schläft", as in
Figure 2. It is helpful for the decoder to only consider information
of the encoder’s hidden state for is and sleeping, when the decoder
is trying to produce the word schläft. By applying attention, the
decoder will learn to focus on the important hidden states of the
encoder at each given time step.

3.2 The Transformer
In 2018, Vaswani et al. published a paper with a more radical ap-
proach [30]: an architecture that completely relinquishes RNNs
with the idea to build a model with attention only. The core of this
paper, the so-called transformer, can be found in Figure 3. While
the transformer still retains the classical encoder/decoder struc-
ture, it replaced the RNN by a so-called Multi-Head-Attention
sub-layer. There are three of those attention sub-layers in each
of the N stacked layers. The first two Multi-Head Attention sub-
layers implement the self-attention mechanism. During the train-
ing, they will independently learn dependencies in the source and
target sentence respectively, as previously shown in Figure 1. It
is important to understand that in the decoder, the self-attention
mechanism will only have access to all the words produced by
the decoder so far, while all the words that still need to be pro-
cessed are masked. Masking words with high negative values
will basically "hide" them from the learning algorithm.

While the encoder contains only one Multi-Head Attention
sub-layer per layer, the decoder contains a second one. This sub-
layer performs attention over the output of the encoder stack.

The cat is sleeping <Start> Die Katze

schläft

Attention Distribution

Figure 2: Sequence-to-sequencemodel with attention. The
decoder (green) has access to all hidden states of the en-
coder (red) and learns how much attention to pay to each
hidden state. To predict the word schläft, the decoder pays
most attention to the hidden state of is and sleeping.

From a conceptual point of view, this sub-layer performs a similar
task to the attention mechanism of classical seq2seq architectures
(see previously discussed Figure 2). As a consequence, the Multi-
Head Attention sub-layer allows the decoder to pay attention
only to the relevant words of the source sentence.

Since a transformermodel does not contain any recurrence, the
authors had to introduce the idea of ordered, sequential inputs
in a different way. They do this by using so-called positional
encoding for each input word. This allows the model to make use
of both the position of a word and the relative distance between
twowords. The authors of [30] use a combination of the functions
sine and cosinewith different frequencies to implement positional
encodings.

A last detail to mention is the residual connection [9] around
each sub-layer. The residual connection will, on the one hand,
improve training performance, but even more importantly, it
allows the positional encoding to flow untouched up to the higher
layers.

4 BERT AND FRIENDS
The transformer architecture appearing first in 2017 triggered a
wave of new papers based on this idea. With BERT [6] being the
most popular one and setting a new state-of-the-art for many
NLP tasks in 2018, other papers followed quickly and further
improved performance on many tasks. In this section we will
have a look at the four approaches used in our experiments: BERT,
XLNet, RoBERTa and DistilBERT. The order of the subsections
corresponds to the publication date of the papers.

4.1 BERT
BERT is a universal languagemodel, pre-trained on large amounts
of text data with the intention of fine-tuning it on downstream
tasks (e.g. entitymatching) in a supervisedmanner with relatively
little data.

The abbreviation BERT stands for Bidirectional Encoder Repre-
sentations from Transformers, with the emphasis on bidirectional.
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Figure 3: The original transformer architecture by
Vaswani et al. as shown in the paper[30].

It is in its core a transformer language model as designed by [30],
but contrary to other language models (e.g. OpenAI’s GPT[21])
it is jointly conditioning on both the left- and right context of
the query token during pre-training. This is somehow counter
intuitive, as the most common training task of language models
is to simply predict the next token (word).

Let us consider the following fraction of a sentence "[..] prob-
lems turning into banking crisis as [..]" (see Figure 4). Let us
further assume that we want to predict the query token "into"
by its left context, which is all the input to the left of the query
token. With this training task one can by definition only use the
left or the right context. By using both contexts together, the task
would become trivial since you already know the next token.

.... problems turning into banking crisis as

Figure 4: Left-to-right: Using the left context to predict the
query token into.

.... problems turning [MASK] banking crisis as

Figure 5: Bidirectional: Using both the left- and right con-
text to predict a masked token.

To be able to condition on both the left and right context,
BERT had to change the training task. Instead of predicting the
next word, it tries to predict masked tokens as seen in Figure 5
by using both the left and right context. By predicting masked
tokens, the BERT model is classified as an auto encoder. It learns
to reconstruct the original data by restoring corrupted input, i.e.
the masked tokens.

In a second training task, BERT performs Next Sentence Predic-
tion (NSP). Here, the model receives two sentences as input, and
has to predict if the first sentence is followed by the second one.
This pre-training is necessary for all tasks which are based on
the relationship between sentences. Typical examples of these
tasks are Question Answering, Natural Language Inference or En-
tity Matching. It is important to understand that both training
tasks are unsupervised tasks and do not require labels, but only
large amounts of text data. Labeled data are only required for
task-specific fine-tuning.

The ablation studies of the BERT paper demonstrate that using
both the left and right context is the most important contribution
of the paper. As a second contribution the BERT-team shows,
that massive unsupervised pre-training on large data (BooksCor-
pus and Wikipedia) improves performance on a large number
of tasks without the need for task-specific architectures. The
BERT architecture further demonstrates to be very flexible as it
allows simple fine-tuning on a range of downstream tasks such as
Question/Answering, Named Entity Recognition or Classification.

4.2 XLNet and Transformer-XL
As seen in Section 4.1, BERT’s most important contribution is
its bidirectional representation. To achieve it, an auto encoder
approach is necessary, with the training task to predict [MASK]
tokens instead of predicting the next word. The XLNet [33] paper
demonstrates the downsides of this approach and proposes a new
architecture to solve it. According to XLNet there are two major
downsides of the BERT approach:

• Predicting [MASK] tokens is what BERT learns during its
pre-training phase. But those artificial symbols never oc-
cur in downstream tasks, which creates a pretrain-finetune
discrepancy.

• BERT reconstructs all [MASK] tokens in parallel and in-
dependent of each other. This independence assumption is
not justified as a simple example in Figure 6 demonstrates.

To overcome these flaws, XLNet returns to the more classi-
cal architecture of an autoregressive (AR) language model. In
contrast to BERT’s autoencoder approach, an AR model does
not suffer from the downsides described above, as it does not
introduce any artificial symbols and simply learns to predict the
next token.

However, as we discussed in Section 4.1, an AR pre-training
cannot use forward and backward contexts at the same time. To
be able to capture a bidirectional context (as in BERT) and still
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I went to [MASK] [MASK] and saw the [MASK] [MASK] [MASK].

I went to New York and saw the Empire State building.

I went to San Francisco and saw the Golden Gate bridge.

I went to San Francisco and saw the Empire State building.

Figure 6: The independence assumption between the
masked tokens is not justified.

have the advantages of an AR model, XLNet proposes a new
generalized autoregressive pre-training method.

The core of this method is a new pre-train objective, which
is called permutation language modeling. Instead of approaching
a sequence of tokens only in a forward or backward manner,
permutation language modeling takes into account all possible
factorization orders of a sequence.

Assume that we have the following sentence "New York is a
city". Further assume that we have already received the tokens
"New" and "York". Next, we want to predict the token "is". Figure
7 shows how the model tries to predict the third token "is" with
different factorization orders.

Let us discuss the three permutations in more detail:

• Permutation 1 is the classical autoregressive left-to-right
order. The model has access to the left side context (x1, x2)
and tries to predict the query token x3.

• In Permutation 2 one can grasp the advantage of the per-
mutation method: due to its order, the model now has
access to the context x4, x2, x1 to predict x3. Be aware
that in this sequence order, token x5 is not accessible, as
it appears to the right of token x3.

• In Permutation 3 the model has access to the tokens x4 and
x5, as those appear to the left of token x3 in the factoriza-
tion order. By looking at this example it becomes intuitive
that the token x3 (that has to be predicted) has seen every
other tokens in the sequence and will therefore, similar to
an autoencoder model, capture the bidirectional context.

In addition to its core contribution, the permutation language
modeling, XLNet includes two major improvements originally
proposed in the Transformer-XL paper [5]. The Transformer-
XL architecture is based on the original transformer [30], but
with several improvements. The most important one, which is
also implemented in XLNet, is the ability to learn dependencies
beyond a fixed length without disrupting temporal coherence.
This is possible due to a segment-level recurrence mechanism
and a novel positional encoding scheme.

XLNet outperforms BERT on 20 tasks and achieves state-of-
the-art results on 18 tasks including question answering, natural
language inference, sentiment analysis, and document ranking
[33].

4.3 RoBERTa
RoBERTa [17], a paper released at the end of July 2019, differs
from other all the other papers as it does not come up with
a new transformer approach, but new insights on BERT. The
authors claim that BERT, without any major changes, can match
or exceed every published model after it by just using the right
hyperparameters and enough training data.

x1 x2 x3

“New” “York” “is”

x4

“a”

x5

“city”

h1 h2 h3 h4 h5

x3

Factorization order: 1 → 2 → 3 → 4 → 5

Permutation 1

x1 x2 x3

“New” “York” “is”

x4

“a”

x5

“city”

h1 h2 h3 h4 h5

x3

Factorization order: 4 →2 → 1 → 3 → 5

Permutation 2

x1 x2 x3

“New” “York” “is”

x4

“a”

x5

“city”

h1 h2 h3 h4 h5

x3

Factorization order: 5 →4 → 3 → 1 → 2

Permutation 3

Figure 7: Permutation language modeling: predicting x3
given the same input sequence but with different factor-
ization orders.

The authors find that BERTwas significantly undertrained and
propose the following modifications for maximal performance:

• More training data. The original BERT was trained on
the BookCorpus and English Wikipedia, covering around
16 GB of text. Many of the subsequent papers used much
larger data sets, some of them publicly available, others
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not. RoBERTa uses five English-language corpora with a
total size of over 160 GB of text.

• Longer training. RoBERTa evaluates three training du-
rations with 100K, 300K and 500K steps. They show that
maximal training duration, together with the additional
data, results in best performance.

• Larger batch size.While the original mini-batch size of
BERT is 256, RoBERTa further evaluates batch sizes of
2,000 and 8,000 samples per mini-batch. The experiments
on several downstream tasks indicate that a batch size of
2,000 is the best choice, given the learning rate is increased
appropriately.

• Get rid of the next sentence prediction (NSP) objec-
tive. In contrast to [6], the authors of RoBERTa show that
by removing the NSP loss, they achieve slightly better
downstream task performance. They also show though
that it is crucial to use the full attention span (the model
input size, max. 512 tokens) during pre-training in order
for BERT to learn long-range dependencies.

• Change themasking pattern of training data dynam-
ically. While BERT uses a relatively static masking pro-
cedure applied during preprocessing, RoBERTa suggests
dynamically masking of each sample during training be-
fore feeding it to the model.

With all thesemodifications, RoBERTa’s performance is evaluated
on the GLUE, SQuAD and RACE benchmarks. RoBERTa achieves
state-of-the-art results on all three challenges, with slightly better
results than XLNet (its closest competitor) on most challenges
and clearly better than the original BERT [17].

4.4 DistilBERT - Smaller, Faster, Cheaper
While all three models discussed so far focused on improving the
state-of-the-art, the authors of DistilBERT [23] pursue another
objective. Instead of better results, DistilBERT aims for a smaller
and faster models which can be used in real-world projects. In-
deed, the size of recent transformer models is impressive:

• A BERT-Large model uses 340M parameters.
• RoBERTa works with 355M parameters while using 160
GB data for pre-training.

• NVIDIA trained a transformer languagemodel calledMega-
tronLM[26], using 8300M parameters.

The authors of DistilBERT see the challenge of modern trans-
former models mainly at inference time, when a model should
be small and fast, so it can work on mobile devices or non-GPU
servers.

There are several approaches to reduce model size while ap-
proximating performance, namely quantization, weights pruning
and distillation. The authors of DistilBERT focus on knowledge
distillation.

4.4.1 Knowledge Distillation. The core idea of knowledge dis-
tillation is to train a smaller model (the student) which learns
from the original model (the teacher). Themethod has been gener-
alized by [10] and is sometimes also referred to as teacher-student
learning.

The challenge of knowledge distillation is to learn the so-
called dark knowledge of a model. Let us assume the example
in Figure 8, where a language model predicts the last token in
a sentence. While one or two predictions usually have a high
probability, there will almost always be a long tail of tokens with
low probability. This knowledge, even though the probabilities

‘I’, ‘think’, ‘this’, ‘is’, ‘the’, ‘beginning’, ‘of’, ‘a’, ‘beautiful’, [MASK]
Input:

Predicted token (top 16):

#1 token: ‘day’ p: 0.213
#2 token: ‘life’ p: 0.183
#3 token: ‘future’ p: 0.062
#4 token: ‘story’ p: 0.058
#5 token: ‘world’ p: 0.049
#6 token: ‘era’ p: 0.045
#7 token: ‘time’ p: 0.032
#8 token: ‘year’ p: 0.017

#9  token: ‘summer’    p: 0.016
#10 token: ‘adventure’ p: 0.013
#11 token: ‘dream’     p: 0.012
#12 token: ‘moment’    p: 0.012
#13 token: ‘night’     p: 0.011
#14 token: ‘beginning’ p: 0.010
#15 token: ‘season’    p: 0.009
#16 token: ‘journey’ p: 0.006

Figure 8: Predicting a masked token with BERT: The first
two tokens show a high probability, followed by a long tail
of near-zero possibilities.

might be low, is crucial for a model to generalize. The challenge
of knowledge distillation is therefore not only to learn the one
prediction with high probability, but also the near-zero probabil-
ities on other classes. In terms of distillation loss function, this
near-zero probabilities are called soft targets.

4.4.2 Loss Objective. To motivate a model to learn both high
and near-zero probabilities, DistillBERT suggests a composite
loss function as follows:

• Distillation Loss The student learns the probabilities of
the teacher (soft targets) with L =

∑
i ti ∗ log(si ) where ti

is a probability estimated by the teacher and si the proba-
bility estimated by the student. To control the smoothness
of the output distribution, a further technique from [10]
called softmax-temperature is used.

• Masked Language Modeling (MLM) Loss [6] As the
teacher model used in DistilBERT is the original BERT
model, the second loss function is the original MLM, with
the goal to predict the masked tokens.

• Cosine Embedding Loss A rather technical loss to align
the directions of the student and teacher hidden states
vectors.

4.4.3 Student Model Architecture. While using the original
BERT architecture as teacher model, the student model archi-
tecture is a purged version of the BERT model. Token-type em-
beddings and the pooler have been removed and the number of
layers have been reduced by factor 2. This reduces the overall
size of the model by 40% [23].

Note that the distillation process happens on the general-
purpose model, before applying fine-tuning on downstream tasks.
This in contrast to task-specific distillation, which distills the
model after already being fine-tuned on a specific task.

4.4.4 Performance. To compare DistilBERTs performance, it
has been fine-tuned on two of the usual benchmarks (GLUE,
SQuAD). DistilBERT retains 97% of the original BERT model
while reducing the model size by 40% and being 60% faster [23].
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5 EVALUATION
In this section, we present and discuss the results of the experi-
ments conducted with the transformer architectures described
in Section 4. In particular, we will address the following research
questions with respect to entity matching:

• How well do transformer architectures perform compared
to traditional, non-deep-learning ML approaches?

• How well do transformer architectures perform compared
to recent deep learning approaches?

• Which transformer architecture performs best on the task
of entity matching?

• Transformer architectures are complex deep neural net-
works. How much training is necessary to fine-tune them
on the entity matching task? Is the amount of training
data in a traditional EM dataset sufficient to fine-tune a
transformer?

5.1 Datasets
The authors of DeepMatching[20] demonstrated that modern
deep learning methods do not perform better in entity matching
tasks on structured data than traditional approaches. Traditional
ML approaches such as e.g. Magellan[14] perform even slightly
better and training time is magnitudes shorter than for deep learn-
ing methods. In addition, the scores of Magellan on structured
data are high - it performs on those 11 datasets with an average
F1-score of 86% - without the rather textual dataset Amazon-
Google the F1-score is even 90%. The authors of DeepER[7], a
second approach using deep learning for entity matching, con-
firm these results with F1-scores between 88% and 100% on these
structured datasets.

We therefore focus our experiments on challenging datasets
where other approaches showed relatively low performance. To
evaluate our transformer approaches we use both textual and so-
called dirty datasets provided by the Magellan team [20]. We use
all publicly available datasets except the textual dataset Company,
as this contains text blobs with lengths between 2000-3000 tokens,
which exceeds the maximal attention spans of 512 tokens for
transformer architectures. There have been recent approaches to
extend this attention span to 8000+ tokens by [28]. However, we
leave these challenges for future work.

For our entity matching experiments, we use the following five
datasets to evaluate the transformer architectures (see Table 3):
(1) Abt-Buy: Product data from Abt.com and Buy.com. The core
attribute is description, which is a long text blob describing the
product. We use no informative attribute (e.g. the title), but only
the noisy description attribute, similar to [20]. (2) iTunes-Amazon
(Dirty): music data from iTunes and Amazon. The data has been
modified to simulate dirty data as done by [20]. They suggest for
each attribute other than "title" to randomly move each value to
the attribute "title" in the same tuple with a probability of p = 0.5.
(3) DBLP-ACM (Dirty): Bibliographic data from DBLP and ACM.
The data has been modified to simulate dirty data. (4) DBLP-
Scholar (Dirty): Bibliographic data fromDBLP and Google Scholar.
The data has been modified to simulate dirty data. (5) Walmart-
Amazon (Dirty): Product data from Walmart and Amazon. The
data has been modified to simulate dirty data.

To evaluate our transformer architectures, we split all five
datasets into into three parts with a ratio of 3:1:1. We use the 60%
split of the data for training, and the two 20% splits for validation
and test. All reported numbers in this paper show results on the
test split.

Table 3: Datasets used in our experiments.

Dataset Domain Size # Matches # Attr.

Abt-Buy Products 9,575 1,028 3
iTunes-Amazon Music 539 132 8
Walmart-Amazon Products 10,242 962 5

DBLP-ACM Citation 12,363 2,220 4
DBLP-Scholar Citation 28,707 5,347 4

5.2 Setup & Methods
In this section we will describe the hardware we used for our
experiments as well as the implementation of the transformers
along with the hyperparameters and pre-trained models.

5.2.1 Hardware. All experiments were executed on a single
Nvidia TITAN Xp GPU (12GB Memory) with Intel(R) Xeon(R)
CPU E5-2650 v4 (4 cores) and 8GB memory. The experiments are
implemented using PyTorch and the transformer implementa-
tions are based on [32].

5.2.2 Methods. Figure 9 shows how an entity pair consisting
of Entity A and Entity B is fed into a transformer architecture.
This approach is used at both training and inference time. The
data feeding approach looks similar in all four transformer archi-
tectures, while having minor differences in the use of separator
tokens, position embeddings and the classification representation
(CLS) in the last layer. The detailed description of the following
section refers to BERT/RoBERTa and DistilBERT, while being
very similar in XLNet.

We will now describe how we use the transformer for entity
matching in detail. Entity A and Entity B contain a single
text blob each. In case of textual data (Abt-Buy), the text blob
consists of the single attribute description. For "dirty" datasets, all
attributes of a data instance are concatenated, for instance [name
+ brand + description + price]. Next, the single text blob
is tokenized. For each token, the corresponding embedding is
looked up (for details on tokenizing and embedding see Section
5.2.3).

Each token embedding is then summed up with a positional
embedding and a segment embedding. The segment embedding
is used to distinguish between tokens of Entity A and Entity B.
The sum of all three embeddings is then fed into the transformer.
The maximum length of the input (A1 −AN plus B1 − BM plus
the two artificial tokens classification and separator) has been
empirically defined based on the longest data rows in the training
data. It lies between 128 and 265 tokens, depending on the data
set.

In one pass, a pair of two entities (all tokens of Entity A and
Entity B) is processed by the transformer model. This leads to
major performance improvements compared to classical deep
learning models based on RNNs[20], where each token is depend-
ing on the tokens appearing earlier in the sequence. The output
of a pass is then represented in the hidden state at position 0, the
purple CLS symbol in Figure 9. This hidden state (a vector of size
768) is then passed into a single classification layer (Classifier in
Figure 9).

Keep in mind that transformer models are universal language
models, capable of performing different downstream tasks (e.g.
classification, seq2seq, question/answering, NER, etc.). Hence,
to feed the classification output of the transformer model via a
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[SEP]
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Figure 9: Transformer feeding approach. Entity A and
Entity B are tokenized (e.g. Tok A1,red). The embed-
ding of each token (EA1,yellow) is fed into the trans-
former together with positional- and segment embed-
dings (E0,gray/EA,blue). Special symbols are used to feed
the output into the classification layer ([CLS]) and to sep-
arate the two entities ([SEP])

designated representation symbol (CLS) into a specific classifica-
tion layer, is an architectural decision of [6] to keep the model
flexible. When using the model for other tasks, e.g. for NER, the
ouput layer looks differently.

The classification layer is - in contrast to the rest of the model -
not pre-trained and contains a fully connected layer with 768 neu-
rons plus two output neurons. These two output neurons finally
represent the two classes of an entity matching problem:"Entity
A and B match" or "Entity A and B do not match".

We use Adam [12] for optimization in combination with a
linear learning rate. The choice of optimizer, learning rate and
other hyperparameters are based on best practices for similar
classification tasks, e.g. the GLUE-QQP benchmark [6, 17, 23, 31,
33].

With the implementation described above, we evaluate all four
transformer architectures described in Section 4: BERT, XLNet,
RoBERTa and DistilBERT. To reproduce the experiments, we
provide source code and hyperparameters on GitHub1.

5.2.3 Tokenization and Embeddings. Before feeding a pair of
Entity A and Entity B into the transformer, tokenizing the
input and a lookup of embeddings is necessary. Transformers
like almost all modern language models work with embeddings
as input values. Using embeddings increases performance over
simple one-hot encoded vectors massively, as demonstrated by
the influential word2vec paper [19].

We use the following tokenization/embedding techniques:

1https://github.com/brunnurs/entity-matching-transformer.

Table 4: Pre-trained models used in our experiments.

Transformer Details

BERT
12-layer, 768-hidden, 12-heads, 110M
parameters. BERT-base model.
Trained on lower-cased English text.

XLNet 12-layer, 768-hidden, 12-heads, 110M
parameters. XLNet English model

RoBERTa
12-layer, 768-hidden, 12-heads, 125M
parameters. RoBERTa is using the
BERT-base architecture.

DistilBERT
6-layer, 768-hidden, 12-heads, 66M
parameters. The DistilBERT model is
distilled from the BERT-base model.

• BERT/DistilBERT:Wefirst split thewhole input textblob
into single tokens by simple white space- and punctua-
tion splitting rules. In a second step, we create Wordpiece
embeddings by applying the original algorithm from[24].

• RoBERTa: We split the whole input into tokens by us-
ing white spaces, punctuation and special abbreviations
(’s|’t|’re|’ve|’m|’ll|’d). We then apply Byte-level
Byte-Pair-Encoding [25].

• XLNet: In contrast to the other approaches, we do not
pre-tokenize the input into word sequences, but directly
input the raw text blob into a SentecePiece[15] subword
tokenizer.

5.2.4 Pre-Trained Models. Due to their model sizes, all four
transformer architectures require very resource-intensive pre-
training on large amounts of data. As an example, the BERTLARGE
model was trained on 64 TPU chips for 4 days while RoBERTa
uses 1024 V100 GPUs for approximately one day [6, 17]. The
transformers performance is therefore heavily dependent on the
pre-trained model. In Table 4 we list all pre-trained models used
in the experiments. We use the pre-trained models provided by
the original papers [32] and gathered by Hugging Face2. Note
that due to hardware constrains, we always used the smallest
available pre-trained model. We expect larger pre-trained models
to perform as good or even better.

5.3 Comparison with Classical Models

Table 5: F1-scores of the best performing Transformer
model in comparison with Magellan (MG) and Deep-
Matcher (DeepM).

Dataset MG DeepM TBEST ∆F1

Abt-Buy 33.0 55.0 90.9 35.9
iTunes-AmazonDir ty 46.8 79.4 94.2 14.8
Walmart-AmazonDir ty 37.4 53.8 85.5 31.7

DBLP-ACMDir ty 91.9 98.1 98.9 0.8
DBLP-ScholarDir ty 82.5 93.8 95.6 1.8

Table 5 shows the performance of transformer models in com-
parison with Magellan and DeepMatcher. The results are mea-
sured, similar to other papers in the field [7, 20], by an F1 score
where recall is the ratio of true matches predicted vs. all true
2https://github.com/huggingface/transformers
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Figure 10: Performance of transformers on the Abt-Buy
dataset, averaged over five runs. We only visualize F1
scores in range 60 - 100% to emphasize the difference.

matches. For each dataset we report the best performing of the
four DeepMatcher DL models, the result of Magellan and the best
performing transformer. The transformer result is an average
over five runs. We see that transformer architectures out-
performs both DeepMatcher and Magellan by a large mar-
gin on the challenging datasets Abt-Buy (35.9%), iTunes-
Amazon (14.8%) andWalmart-Amazon (31.7%).

We are also interested in how transformer architectures per-
form on datasets where DeepMatcher and Magellan perform very
well, like on DBLP-ACM (DeepMatcher: 98.1%, Magellan: 91.9%)
and DBLP-Scholar (DeepMatcher: 93.8%, Magellan: 82.5%). As
expected, the transformers perform better than existing methods
also on these datasets with a ∆F1 of 0.8% and 1.8%, respectively.
In comparison to the challenging datasets though, the improve-
ments are relatively small. Since the results of DeepMatcher on
these datasets are already very high (F1-score: 98.1% and 93.8%)
we assume that better language models only slightly improve the
performance on those tasks.

5.4 Transformers Architectures
Head-to-Head

The performance of transformer architectures has been compared
many times in recent papers [6, 17, 33], usually on large NLP
benchmarks (e.g. GLUE, SQuAD [22, 31]). However, we are not
aware of any related work where transformers were used for
entity matching.

Figures 10 - 14 show the performance of the different trans-
former architectures on the datasets defined in Section 5.1. The
results have been averaged over five runs. The main findings of
our systematic, experimental evaluation are as follows:

• All transformer architectures perform remarkably
well on the task of entity matching. Even the least
performing transformer, DistilBERT, performs clearly bet-
ter than classical approaches (see Section 5.3).

• After only one epoch of training, most experiments
rangewithin a 5% interval of their peak performance. After
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Figure 11: Performance of transformers on the iTunes-
AmazonDir ty dataset, averaged over five runs. The effect
of little training data is visible at epoch 1.
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Figure 12: Performance of transformers on the Walmart-
AmazonDir ty dataset, averaged over five runs. We only vi-
sualize F1 scores in range 50 - 100% to emphasize the dif-
ference.

3-5 epochs, almost all experiments converge to their peak
performance. The effort to fine-tune a transformer on an
entity matching task is therefore manageable, especially
considering the training time per epoch in Section 5.5.

• Overall, RoBERTa performs best, also reaching high re-
sults already after only a few epochs. We conclude that
the massive pre-training effort on a huge amount of data
(compared to the other three approaches) gives RoBERTa
a slight advantage in the task of entity matching.
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Figure 13: Performance of transformers on the DBLP-
ACMDir ty dataset, averaged over five runs.We only visual-
ize F1 scores in range 96 - 100% to emphasize the difference.
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Figure 14: Performance of transformers on the DBLP-
ScholarDir ty dataset, averaged over five runs. We only vi-
sualize F1 scores in range 93 - 96% to emphasize the differ-
ence.

• DistilBERT performs worst, averaged on all tasks. This is
explainable due to the comparably small model of Distil-
BERT. Still though the results of DistilBERT are close to its
"big brothers" and higher than classical approaches (see
Section 5.3).

• XLNET requires, on average, longer training times to reach
peak results. We conclude the permutation language mod-
eling eventually results in high performance (XLNet per-
forms often almost equally well as RoBERTa), but due to
the large amount of permutations, it requires more train-
ing time.

Table 6: Training time per epoch on each data set.

Dataset BERT XLNet RoB.a D.BERT

Abt-Buy 2m 42s 6m 15s 2m 43s 1m 22s
iTunes-AmazonDir ty 7s 12s 7s 3.5s
Walmart-AmazonDir ty 1m 41s 2m 29s 1m 41s 52s

DBLP-ACMDir ty 2m 24s 4m 9s 2m 24s 1m 13s
DBLP-ScholarDir ty 4m 5s 5m 57s 4m 13s 2m 6s

• The iTunes-AmazonDir ty dataset is extremely small con-
taining only 132 matching records . As we see in Figure
11, this is influencing the training process. After epoch 1
almost all experiments have an F1-score of 0%, in compar-
ison to the other datasets where after epoch 1 the results
are already close to peak performance. We see, though,
that even with this small amount of training data, the
fine-tuning converges after 4-6 epochs of training.

5.5 Training Time
Transformer models are known to be resource-intensive architec-
tureswithmillions of parameters. For instance, DistilBERTSMALL
consists of 66 million parameters and RoBERTaLARGE has even
355 million parameters. As we have seen in Section 4, training a
transformer is split in two tasks: (1) unsupervised pre-training on
large amounts of unspecific data and (2) supervised fine-tuning
on downstream tasks (e.g. entity matching) with task-specific
data. While pre-training is doing a major part of finding these
parameters (see Section 5.2.4), it is still a large model to fine-tune
on a specific downstream task like entity matching.

Table 6 shows the training time for fine-tuning each trans-
former on the given datasets. The times reported are per epoch
on the training set (which is roughly 60% of the total dataset).

As fine-tuning usually converges to maximum performance
after 1-3 epochs (see Section 5.4), total training takes between
10s (DistilBERT on iTunes-AmazonDir ty , 3 epochs) and 11m
55s (XLNet on DBLP-ScholarDir ty , 2 epochs). It is important
to note that the experiments ran on low budget hardware (see
Section 5.2.1) without any parallelization. With state-of-the-art-
hardware, these times can be reduced by an order of magnitude.

If we compare these training times to the reported results of
DeepMatcher [20], we can draw two important conclusions:

(1) Compared to conventional, non-deep learning EM models
as e.g.Magellan, fine-tuning a transformer is still relatively
slow.

(2) Compared to training a deep learning model as proposed
in DeepMatcher, fine-tuning a transformer is fast. Deep-
Matcher reports training times from 10min to 11h, de-
pending on the dataset and solution. This is 1-2 magni-
tudes slower than fine-tuning a transformer as we propose,
especially as DeepMatcher uses faster hardware than we
do.

The reason fine-tuning a transformer is faster than training a
comparably light-weighted deep learning model[20] is clearly the
resource-intensive pre-training, which improves convergence on
the downstream task (entity matching) enormously.
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6 CONCLUSIONS
In this work, we show for the first time the strong impact of
transformer architectures and pre-training for entity matching
on datasets with large textual- or "dirty" data. We show that
all transformers described can be used for EM out of the box,
without the need for a task-specific architecture. Our experiments
on five datasets show a significant improvement of F1-scores of
up to 35.9% of transformers on challenging datasets compared
to state-of-the-art approaches. In addition, we demonstrate that
on relatively small and clean datasets, transformers still perform
slightly better than earlier deep learning approaches.

We demonstrate that fine tuning a transformer on an EM task
takes relatively little time and requires no particularly capable
hardware, which might be contrary to expectations due to the
large size of transformer models. Regarding the question on
which of the four transformer models performs best on the EM
task, experiments show that all of them deliver relatively similar
results. In comparison with average results, RoBERTa shows
slightly better and DistilBERT slightly worse performance, which
is in line with the theoretical background of these approaches.

We consider transformer approaches as a valuable technology
for entity matching. Using standard transformer architectures in-
stead of designing EM-specific architecture does not only benefit
from simplicity, but profits also directly from further advances
in the NLP field of pre-training and transformers.
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