DISGD: A Distributed Shared-nothing Matrix Factorization for Large Scale Online Recommender Systems

* Nile University, Egypt
**University of Tartu, Estonia
h.hazem@nu.edu.eg, ahmed.awad@ut.ee, ahassan@nu.edu.eg, sherif.sakr@ut.ee

ABSTRACT
With the web-scale data volumes and high velocity of generation rates, it has become crucial that the training process for recommender systems be a continuous process which is performed on live data, i.e., on data streams. In practice, such systems have to address three main requirements including the ability to adapt their trained model with each incoming data element, the ability to handle concept drifts and the ability to scale with the volume of the data. In principle, matrix factorization is one of the popular approaches to train a recommender model. Stochastic Gradient Descent (SGD) has been a successful optimization approach for matrix factorization. Several approaches have been proposed that handle the first and second requirements. For the third requirement, in the realm of data streams, distributed approaches depend on a shared memory architecture. This requires obtaining locks before performing updates.

In general, the success of main-stream big data processing systems is supported by their shared-nothing architecture. In this paper, we propose DISGD, a distributed shared-nothing variant of an incremental SGD. The proposal is motivated by an observation that with large volumes of data, the overwrite of updates, lock-free updates, does not affect the result with sparse user-item matrices. Compared to the baseline incremental approach, our evaluation on several datasets shows not only improvement in processing time but also improved recall by 55%.

1 INTRODUCTION
We are living in the era of data abundance whereby good decisions are backed by data-driven approaches. In addition to business-related decisions, we can use data for our personal daily lives. For example, what products to buy, where to have lunch, and best places to spend our vacations are all decisions that we need to make.

Recommender systems [11] have emerged to predict and suggest objects that could be of interest to the user. In general, recommender systems receive input in the form of user-item rating. These ratings are used to update a rating matrix R where the rows represent the users and columns represent items, where usually R is sparse. Collaborative filtering (CF) [5] is a successful technique to guess user preferences based on R. Matrix factorization-based (MF) CF algorithms have shown to be successful. For example, it was able to win the Netflix prize [2]. MF works by decomposing R into two low-dimension vectors of latent factors. Stochastic Gradient Descent (SGD) is used to optimize the weights of these latent factors. In general, SGD is an iterative algorithm that works on a static data set. As data velocity have accelerated, there has become a crucial need to get recommendations with low latency. Therefore, the need to analyze these data and generate new suggestions moved from an offline task on a finite set of data into an online task on a possibly infinite stream of data. Thus, a scalable online recommender system has to address three main requirements [3]: 1) The model must be able to produce a result and be updated after each record has been received without passing over all the past data (latency). 2) Concept drifts [10] ought to be taken care of by adjusting the model with each instance. 3) Online learning from big data must be processed in a distributed streaming environment (scalability).

Vinagre et al. [12] have proposed ISGD as an incremental SGD that needs to process each data element once in a streaming fashion. ISGD addresses the first and second requirements above. Yet, it remains a centralized (one worker) solution. Several approaches have introduced parallel (distributed) variants of (I)SGD [1, 4, 6, 7, 13]. However, the common limitation in these approaches is the need to access a shared memory to update the weights among parallel workers. In an online-setting, the overhead to obtain a lock leads to higher latency. An interesting observation by Recht et al. [9] is that with large data, having a lock-free update mechanism, i.e. lost updates, does not affect the overall performance and SGD finally converges. The authors also prove it. Based on this observation, in this paper, we present DISGD as a distributed shared-nothing variant of ISGD. By utilizing the shared-nothing architecture, we allow the best scalability as each worker is independent. In particular, the main contributions of this paper can be summarized as follows:
- DISGD: A distributed shared-nothing incremental stochastic gradient descent for a distributed online recommender system (Section 2).
- A comparative evaluation with the baseline ISGD on several data sets showing the superiority of our approach not just in the processing speed but also in the improved recall (Section 3).

2 DISGD
ISGD [12] is an incremental matrix factorization algorithm that is based on SGD. ISGD works centrally where training data are streamed element-by-element. For every received element, ISGD updates the model. So this algorithm overcomes the first two challenges we mentioned in Section 1. In this section, we describe our approach towards addressing the third challenge, scalability.

2.1 Background
In order to reach a scalable ISGD, we depend on the observation that usually the ratio of items to users is petite. For instance, Netflix data set has millions of users and only thousands of items. We start from the observation that the rating matrix $R^{n \times m}$ is sparse. So, we decompose the rating matrix into two matrices,
the users’ matrix $U_{n \times k}$ and the items’ matrix $I_{m \times k}$ with low-
dimension k, where $k \ll n$ and $k \ll m$, latent features that
dermine the items’ rating by users. So, we can predict the rating of
user u to item i in $R_{n \times m}$, by calculating the dot product between
their vectors as in Formula 1.

$$r_{ui} = U_u^T I_i = \sum_{k=1}^{k} u_{nk} \cdot i_{mk}$$ (1)

The two matrices U and I are initialized with Gaussian random
values. Then, iteratively, SGD calculates how different their product is
from the rating matrix R and then makes an effort to minimize this
difference. ISGD is dealing with positive feedback whereby this key is used for distributing. This node processes the
update of the nodes and i is the purpose of the nodes and i with the purpose
of finding a local minimum of the difference following the loss
function formulated in 2 where λ is the regularization parameter.

$$\min_{U, I} \sum_{(u, i) \in D} (R_{ui} - U_u^T I_i)^2 + \lambda(||U_u||^2 + ||I_i||^2)$$ (2)

To parallelize ISGD by distributing the workload among n_c pro-
cessors, the rating matrix R has to be divided into several blocks
and the blocks get assigned to different processors. The issue
here is that two processors working on different blocks may need
to update the same column of U and/or I. The blocks must be dis-
tributed in a way that avoids conflicting updates. Our proposal to
solve this problem, and thus addressing the scalability challenge,
is by utilizing a splitting and replication mechanism of users and
items vectors.

2.2 Splitting and Replication Mechanism

Receiving the rating interactions from users formulated as $<u, i, r>$,
Algorithm 1 will distribute the received streamed data of tuples
by hashing each record where the user vector and item vector reside
over the nodes. For each received tuple $<u, i, r>$, ISGD updates the
user vector and the item vector according to the two equations below,
where η is the gradient step size.

$$U_u = U_u + \eta (err_{ui} I_i - \lambda U_u)$$ (3)
$$I_i = I_i + \eta (err_{ui} U_u - \lambda I_i)$$ (4)

The aim behind our splitting and replication mechanism is to
guarantee that the vectors of users and items are divided
over the nodes as it would grow larger than the capacity of one
ode (central solution). It is assumed that the items are known
beforehand. Hence, starting by the item matrix, it is divided into
n_i splits (partitions) and each split is replicated over n_c/n_i of the
nodes -where n_c is number of nodes in the cluster- while each
user vector should exist in n_i of the nodes to always guarantee
guarantee that a tuple $<u, i, r>$ hits one node where its user and item vectors
reside. As a requirement, the number of nodes in the cluster n_c
should be equal to $n_i^2 + w.n_i$ where $w \in N$. The distribution
technique in Algorithm 1 offloads the storage of vectors to around
n_i/n_c of the nodes. For example, when $n_i = 2$, the item matrix
I is divided into two halves, each half is stored on half of the
nodes. The user matrix U is divided over $n_c/2$ of the nodes and
each user vector should exist in two nodes, given $n_i = 2$, over the
cluster. Hence, any received tuple is always distributed, in such
a way that its user and item vectors are always represented in
only one node. Thus, the entire rating matrix will not be needed
at any point of time for any single processing task.

Algorithm 1 describes how we scale ISGD by means of splitting
and replication of the users and items vector. A new top N recom-
endations list is generated every time a tuple is received. Based
on the distributing mechanism shown in Figure 1. This function
accords a key to the tuple for maintaining that the pair of user
and item vector exists in one node while the single item vector
should be in n_c/n_i nodes and the single-user vector should reside
in n_i of nodes. This key is produced by hashing the user and item
then mapping the hashing output to a predefined list of n_i nodes
and n_c/n_i nodes and get the common node number to be the key
whereby this key is used for distributing. This node processes the
received data and outputs top N recommendations. This particu-
lar node only processes $1/n_i$ of the items matrix I that is received
in the hashing process described earlier. This does not mean that
this particular user will always get his recommendation from
this node based on the same items.

It is a random process, based on which $1/n_i$ of the items stored
in which node that tuple hits. Moreover, the repetition of the
user vector helps offload the storage, making it possible for the
algorithm to recommend items for user from different n_i pools
of candidates which boosts our recommendation algorithm by
giving a wide view for all the items. Algorithm 1 does not need to
synchronize between the n_i same user’s vectors or n_c/n_i same
item’s vectors repeatedly stored in the nodes, as Figure 1 shows.
It has been proved by Recht et al. [9] that SGD algorithm run-
ning over parallel processors with shared memory can converge
when the threads overwrite each other and calculate gradient
using the outdated current solution which leads to asynchronous
machine learning algorithms. Keeping the vectors asynchronously
accomplishes two important things, first, it makes DISGD faster
and avoids any synchronization or need for lock management.
Algorithm 2: Prequential online evaluator using recall

1. Recommend top-N recommendation list for the user’s coming interaction if the user is known otherwise move to step 3.
2. Score top-N recommendation list based on the coming item i using recall.

\[
Recall@N = \begin{cases}
1, & i \in topN\text{ recommendation list} \\
0, & i \notin topN\text{ recommendation list}
\end{cases}
\]

3. Update the vectors with the coming instance

3 EVALUATION

We evaluate DISGD against ISGD as a baseline. The evaluation experiments are done without handling cold start problem as it is not our concern in this paper. We follow prequential evaluation\cite{8} which is suitable and mostly used for streaming algorithms. Prequential evaluation works as follows: for every received instance; it is used first for testing then feed the model with it for training. Specifically, we are following prequential evaluation for streaming recommender systems proposed by Vinagre et al. \cite{12} using the recall evaluation metric which gives indication of how many true positive hits from the user side to the recommendation list by measuring the ratio of relevant items recommended to the total. We compute recall as per Algorithm 2.

The hyperparameter values of equations 3 and 4 used in our experiments are \(\lambda = 0.01, \mu = 0.05\). We compute the recall with \(N = 10\) and set the number of latent features to \(k = 10\). DISGD has been implemented on top of Apache Flink version 1.8.1 deployed in a standalone cluster mode with 64 workers. Each worker is a single core running at 2.3 GHz with 30 GB of main memory. To run the baseline ISGD, we implemented it also as a Flink application and force it to run on a single worker. All the code of our experiments are available for reproducibility \footnote{https://github.com/DataSystemsGroupUT/DISGD}.

Figure 1: Overview of DISGD collaborative filtering

Figure 2: Development of recall@10 testing different \(n_c\). The plotted lines relate to a moving average of the recall@10 got for every recommendation with window size \(w=5000\) with replication factor \(n_i = 2\).

\textbf{Data Sets}. For our experimental evaluation, we have used three popular datasets: Movielens 1M\footnote{https://grouplens.org/datasets/movielens/1m/}, Netflix\footnote{https://www.kaggle.com/netflix-inc/netflix-prize-data} and last.FM\footnote{https://www.last.fm/}.
Netflix

The same observation for enhanced recall applies to Netflix.

larger cluster

\[N \]

evaluated using SMA recall at \(N \) is tested with Movielens using different replication factor \(n \). We can clearly observe that DISGD average recall SMA with window size \(w=5000 \) with different replication factor \(i \). The results of Figure 3 show that processing time reduces significantly from ISGD to DISGD and the time decrease dramatically when \(n_c \) rises. It is observed that DISGD is between 6 – 15 times faster than ISGD with respect to the data sets and the parallelism factor \(n_c \) while keeping a significantly higher recall.

4 CONCLUSION AND FUTURE WORK

In this paper, we presented DISGD, a distributed shared-nothing variant for stochastic gradient descent for streaming data. Our solution allows much lower latency in serving for recommender systems. However, as with other streaming applications, the data distribution change might lead to skewness in the load on workers. Load rebalancing techniques already exist in literature, however, the effect of moving/merging state on the performance of the algorithm is unknown and is an interesting subject for our future work.

REFERENCES