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ABSTRACT
Very large time series are increasingly available from an ever

wider range of IoT-enabled sensors deployed in different envi-

ronments. Significant insights and values can be obtained from

these time series through performing cross-domain analyses, one

of which is analyzing time delay temporal correlations across

different datasets. Most existing works in this area are either lim-

ited in the type of detected relations, e.g., linear relations alone,

only working with a fixed temporal scale, or not considering

time delay between time series. This paper presents our Time

delaY COrrelation Search (TYCOS) approach which provides a

powerful and robust solution with the following features: (1)

TYCOS is based on the concept of mutual information (MI) from

information theory, giving it a strong theoretical foundation to

detect all types of relations including non-linear ones, (2) TYCOS

is able to discover time delay correlations at multiple temporal

scales, (3) TYCOS works in an efficient, bottom-up fashion, prun-

ing non-interesting time intervals from the search by employing

a novel MI-based noise theory, and (4) TYCOS is designed to effi-

ciently minimize computational redundancy. A comprehensive

experimental evaluation using synthetic and real-world datasets

from the energy and smart city domains shows that TYCOS is

able to find significant time delay correlations across different

time intervals among big time series. The performance evalua-

tion shows that TYCOS can scale to large datasets, and achieve

an average speedup of 2 to 3 orders of magnitude compared to

the baselines by using the proposed optimizations.

1 INTRODUCTION
Rapid advancements in IoT technology have enabled the collec-

tion of enormous amounts of time series data at unprecedented

scale and speed. For example, a modern wind turbine has hun-

dreds of sensors sampled at a high frequency, a smart building

contains thousands of sensors sensing the surrounding environ-

ment, and an autonomic vehicle carries numerous vision sensors.

All of them are collecting terabytes of data everyday. Analyzing

these massive, heterogeneous and rich datasets can help uncover

hidden patterns and extract new insights to support evidence-

based decision making.

While time series analysis has been studied extensively in the

past, its importance and value only continue to grow. One of

the first steps to harness the enormous potential from modern

big time series is to discover correlations among heterogeneous

and cross-domain datasets. Consider for example the NYC Open

Data [2] with more than 1,500 published datasets containing

quantitative data from different domains, including weather and

transportation, energy and environment etc. Cross-domain anal-

ysis among these datasets can reveal new insights about the city

and its citizens, and thus aid policy makers in decision making.
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For instance, finding correlations between weather and trans-

portation data can lead to the identification of individual weather

events, such as the occurrence of a storm or a hurricane, which

then helps explain an abnormal increase in the number of ac-

cidents. Data correlation is also useful in behavioral prediction

and future planning. For example, illustrating that weather data

(e.g., wind speed) is well-correlated with energy production can

provide accurate prediction of the city’s energy capacity at a spe-

cific time, thus allowing better resource planning. In the financial

domain, data correlation can help forecast the price movement of

related stocks, or predict the purchasing behavior of consumers,

and thus assist investors in making real-time investment deci-

sions. Not only is it useful in reasoning and predicting, data

correlation can also be considered as one of the three building

blocks to establish a causal relation [3], and thus can serve as a

basis for constructing inference and learning models.

Despite its potential use, finding correlations in big time series

is challenging. Not only does the very large volume of data raises

significant challenges in terms of performance and scalability,

their complex and noisy nature also presents difficulties in find-

ing different types of correlation relations, or in the ability to

deal with adaptive temporal scales. For example, stock prices

or weather data exhibit non-linear relations, which cannot be

captured by traditional correlation metrics such as Pearson Cor-

relation Coefficient [23]. Besides, there is often a misconception

that finding correlations and finding similarities in time series are

the same task, where in fact, they are two different problems. Find-

ing correlations is to look for statistical relationships in the data,

whereas finding similarities means to find the optimal match-

ing and/or alignment between time series sequences. Unlike the

correlation-based approach, similarity metrics (which have posi-

tive values only) cannot distinguish between un-correlated and

negatively correlated time series, both of which may have val-

ues close to 0. For example, consider a pair of time series (X ,Y )
generated by a sine function y = sin(x). Here, X ∈ (−∞,∞)

represents a linearly increasing time series, while Y follows a

sine function of X . In this example, X and Y do not exhibit any

similarities among their values, but they do have an underlying

relation. Such non-linear relations are common in areas such

as signal processing, but cannot be detected using similarity

measures. Thus, methods such as those used in Dynamic Time

Warping [28] or MatrixProfile [31] have significant limitations

in analyzing modern time series.

To make the problem even more challenging, cross-domain

correlations might appear at different temporal scales. For exam-

ple, correlations involving weather data might span over multiple

temporal durations ranging from hours (e.g., during rain show-

ers), to days, or even weeks (e.g., during a storm) depending on

the weather events. Likewise, interactions between events might

not always occur simultaneously. In practice, it is common to

see events of one phenomenon influence other phenomena only

after some delay of time. For instance, an increase of incidents

caused by heavy rain can only be observed minutes or hours

after the rain starts; or the impact of one rising stock on other
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stocks is visible only a few hours later. Given a heterogeneous

set of time series data, there is a need to identify not only which

datasets are correlated, but also when the correlations occur, and

at what time delay.

Although correlation analysis has been researched extensively,

current techniques are limited either in the type of detected

relations, i.e., only linear ones, or the temporal scale and time

delay in which they deal with. Most of the correlation works do

not consider adaptive temporal scales as they assume correlations

only exist for a fixed time period, e.g., [29], or ignore the time

delay between variables of interest. There is no existing work that

offers a holistic solution for searching window-based correlations,

considering both multiple temporal scales and time delay, in

modern big time series data.

This paper aims to address those challenges and limitations

by introducing the Time delaY COrrelation Search (TYCOS) ap-

proach, making the following novel contributions: (1) We pro-

pose the first, to our knowledge, comprehensive solution for

the multi-scale time delay correlation search problem that ex-

tracts significant correlations from big time series. (2) TYCOS is

based on the concept of mutual information from information

theory, giving it a strong theoretical foundation and the ability to

discover various types of correlation relations, including linear

and non-linear, monotonic and non-monotonic, functional and

non-functional. (3) By combining the well-known Late Accep-

tance Hill Climbing (LAHC) search method with a window-based

approach, TYCOS can automatically discover time delay correla-

tions at multiple temporal scales, without requiring user inputs

to specify the window sizes or the delay. (4) Based on mutual in-

formation properties, we propose a novel theory to identify noise

in the data, enabling efficient pruning of non-interesting time

intervals from the search, thus significantly reducing the search

space and improving the search speed. (5) TYCOS is designed

with efficient data structures to reuse the MI computation across

a large number of windows, thus minimizing the computation

redundancy. Moreover, TYCOS is scalable since it is designed

in an efficient bottom-up fashion, making the method memory

efficient and suitable for big datasets. And finally (6), we per-

form a comprehensive experimental evaluation using synthetic

and real-world datasets from the energy and smart city domains,

which shows that TYCOS is able to find interesting and important

correlations among time series with high accuracy, can scale to

large datasets, and achieves an average speedup of 2 to 3 orders

of magnitude compared to the baselines.

2 RELATEDWORK
Finding correlations among datasets is a fundamental step in data

exploration. In the past, correlation analyses relied on traditional

statistical metrics such as covariance or correlation coefficients to

measure correlations [13, 15, 18, 19, 32]. However, these metrics

are usually best for linear and/or monotonic dependencies. Re-

cent studies had attempted to approach the problem from a high

level. Sarma et al. [10] use the concept of relatedness, Pocham-

pally et al. [24] use joint precision and joint recall, Alawini et al.
[4] rely on the history and schema of datasets, Roy et al. [26] use

the concept of intervention, to identify relations between datasets

or data tables. Middelfart et al. [21] propose a bitmap-based ap-

proach to measure change relationships in a data cube. Chirigati

et al. [7] propose a topology-based framework to identify spatio-

temporal relationships in heterogeneous data corpuses. These

studies, however, only focus on overall correlations. None of

them consider correlations in time windows.

Surprisingly, very little effort has been made to design efficient

solutions for time delaywindow-based correlations. Among them,

Rakthanmanon et al. [25] design a Dynamic TimeWarping-based

technique (MASS) to quickly find the most similar subsequences

in time series. Although considered to be the state of the art for

subsequences matching, the technique does not have a mecha-

nism to automatically search for correlated windows, but rather

relies on a provided query. To improve MASS, Yeh et al. [31]

designed the MatrixProfile framework to perform similarity joins

between time series. However, as will be shown in Section 8.3,

MASS and MatrixProfile cannot detect complex relations such

as non-linear and non-functional ones. Other works, e.g., [8, 29]

propose sliding window-based procedures to detect hidden cor-

relations. However, they only focus on fixed size windows, not

considering time delay, or using correlation coefficients as cor-

relation measures, and thus, cannot find multi-scale time delay

correlations and are limited in the types of relations they can

detect. Our work in this paper overcomes those limitations. Since

TYCOS uses MI as a correlation metric, it can discover all types

of relationships. Furthermore, TYCOS works in a bottom-up fash-

ion, and can thus automatically discover time delay correlations

at multiple temporal scales.

Prior to this work, we investigated the use of MI in correlation

discovery, and proposed AMIC [16, 17], a top-down approach to

search for multi-scale correlations in big data. However, AMIC

does not consider time delay correlations. Recently, we examine

the power of LAHC in correlation search in a short paper [14].

The present paper significantly extends [14] by considering time

delay correlations, and proposes a novel noise theory and MI

computation technique to achieve better performance.

3 BACKGROUND
3.1 Mutual Information
MI is a statistical measure to quantify the shared information be-

tween two probability distributions. Given two discrete random

variables X , Y with the corresponding probability mass func-

tions (p.m.fs) p(x), p(y), and the joint distribution p(x ,y), the MI

between X and Y is defined as

I (X ;Y ) =
∑
y∈Y

∑
x∈X

p(x, y) log
p(x, y)
p(x )p(y) (1)

Intuitively, I (X ;Y ) represents the reduction of uncertainty of

one variable (e.g., X ) given the knowledge of another variable

(e.g.,Y ) [9]. The larger I (X ;Y ), the more information is shared be-

tween X and Y , and thus, the less uncertainty about one variable

when knowing the other. The property that MI is equal to zero if

and only if the considered variables are statistically independent,

otherwise always positive if there exists any kind of dependency

(e.g., linear and non-linear) [11], makes MI a versatile measure

to capture correlations in noisy datasets which often exhibit a

high degree of bias and abnormality, causing their relationships

to often be arbitrary and non-linear.

Estimating mutual information: Eq. (1) is the theoretical defini-
tion of MI but is usually not used for computing MI, as it requires

having the distributions of the underlying data which are often

unknown in practice. To estimate MI from collected samples, we

choose an estimation method proposed by Kraskov et al. [20]

(hereafter called the KSG method) for several reasons: (1) The

KSG method outperforms other estimators (e.g., histogram, ker-

nel density estimation) in terms of computational efficiency and
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accuracy [22]; (2) The method uses k−nearest neighbor approxi-
mation and thus is data efficient, adaptive and has minimal bias

[20]. These reasons make the KSG method particularly suitable

for discovering temporal correlations in big and heterogeneous

time series where the dependencies between different time series

can be complex and might occur at multiple time scales.

The main idea of the KSG estimator is, instead of directly

computing the joint and marginal probability distributions of

the considered variables, it approximates the distributions by

computing the densities of data points in nearby neighborhoods

[20]. Specifically, KSG computes the probability distribution for

the distance between each data point and its kth nearest neighbor.
For each data point, it searches for k nearest neighbor clusters

(k is a pre-defined parameter) and computes the distance dk to

the kth-neighbor. Then, the population density is estimated by

counting the number of data points that fall within dk . This leads
to the computation of MI between two variables X and Y as [20]:

I (X ;Y ) = ψ (k ) − 1/k −
〈
ψ (nx ) +ψ (ny )

〉
+ψ (n) (2)

where ψ is the digamma function, k is the number of nearest

neighbors, (nx ,ny ) are the number of marginal data points in

each dimension falling within the distance dk , n is the total num-

ber of data points and ⟨·⟩ is the average function. The digamma

function ψ is a monotonically increasing function. Thus, the

larger nx and ny (i.e., more data points fall within the distance

dk ), the lower I (X ;Y ), and vice versa.

3.2 Late Acceptance Hill Climbing
Our correlation search algorithm is built based on LAHC [6]

which we briefly introduce next. LAHC is an optimization tech-

nique attempting to find local optimal solutions for a given prob-

lem through iterative improvement. Given a target function f
and a current solution S of f , LAHC tries to improve S by explor-

ing potential candidates in the nearby neighborhood. If a better

solution for f is found (according to some criteria), the current

solution S is replaced by this new solution Snew , and the process

is repeated until no further improvement can be made. LAHC is

an extension of the classic Hill Climbing (HC) [27], but it differs

from HC in its acceptance rule: a solution Snew is accepted if

Snew is better than either the current solution S or a solution Sold
found in the history. To do that, LAHC uses a fixed length array

Lh to maintain a history of the most recently accepted solutions,

and use Lh to justify the goodness of a candidate solution.

4 PROBLEM FORMULATION
Definition 4.1 (Time series) A time series XT = {x1,x2, ...,xn }
is a sequence of data values that measures the same phenomenon

during an (observation) time periodT , and is sorted in time order.

Note that the time period T = [t1, tn ] contains n time steps

where each time step ti has a recorded value xi ∈ XT , and t1 and
tn denote the first, and the last time step of T . We say XT has

length n if XT contains n data samples.

Definition 4.2 (Time window) A time window w = [ts , te ] is a
temporal sub-interval of T that records the events of XT from

time step ts to time step te , and forms a (sub) time series Xw =
{xts , ...,xte } ⊆ XT .

We sayw has sizem, denoted as |w | =m, ifw containsm time

steps, and is equivalent to Xw containingm data samples.

Definition 4.3 (Pair of time series) A pair of two time series

(XT ,YT ) = ({x1,x2, ...,xn }, {y1,y2, ...,yn }) contains data col-

lected from XT and YT that measure two separate phenomena

during the same observation periodT . A tuple (xi ,yi ) ∈ (XT ,YT )
records the data values on XT and YT at the same time step ti .
Definition 4.4 (Pair of time windows) LetwX = [txs , txe ],wY =

[tys , tye ] be time windows of XT and YT , respectively. Assume

wX and wY have the same length, i.e., |wX | = |wY |. The pair

of time windows (wX ,wY ) = ([txs , txe ], [tys , tye ]) records the
events ofXT from [txs , txe ], and ofYT from [tys , tye ], and forms a

pair of (sub) time series (Xw ,Yw ) = ({xtxs , ...,xtxe }, {ytys , ...,ytye })
⊆ (XT ,YT ).
Definition 4.5 (Time delay window of a time series pair) Let
(wX ,wY ) = ([txs , txe ], [tys , tye ]) be a pair of time windows like

in Definition 4.4, and τ be an integer. The pair (wX ,wY ) is called

a time delay window of (XT ,YT ) with the delay τ if tys − txs = τ ,
and is denoted as wX ,Y+τ = ([ts , te ],τ ), where ts = txs and

te = txe are the start time and the end time of wX ,Y+τ on XT ,
and τ is the time delay ofwY w.r.t.wX .

The window wX ,Y+τ = ([ts , te ],τ ) in Definition 4.5 defines

a one-to-one mapping f : wX 7→τ wY that maps each event

in wX to the corresponding event in wY . The mapping is time

correspondence, i.e., the event at the ith time step of XT inwX is

mapped to the event at the (i + τ )th time step of YT inwY . Each

windowwX ,Y+τ is characterized by three parameters: the start

time ts , the end time te , and the time delay τ . The size ofwX ,Y+τ
equals to the size ofwX andwY , i.e.,

��wX ,Y
�� = |wX | = |wY |.

A time delay window represents a shift (also called a “delay”

or “lag”) in time between two time series XT and YT , and the

value of τ indicates the shifted time units. Since τ can be equal to

0, or positive, or negative, the window wX ,Y+τ = ([ts , te ],τ ) is
generalized for all time shifting scenarios. Semantically, if τ = 0,

thenwX ,Y+τ does not have a time delay (or events of XT inwX
and events of YT inwY occur at the same time). Whereas if τ > 0,

thenwY is delayed τ time units fromwX (or events inwY occur

τ time units after events inwX ). Similarly, if τ < 0,wX is delayed

τ time units from wY . For brevity, in this paper, the two terms

time delay window and window are used interchangeably.

Example 1. Consider a pair of time series (Rain Precipitation
(RP), Injured Pedestrian (IP)), and a time window wRP, I P+30 =

([9.00 am, 10.00 am], 30mins]). The windowwRP, I P+30 contains

events of RP during [9.00 am, 10.00 am], and maps them to events

of IP occurring 30 minutes later, i.e., during the interval [9.30

am, 10.30 am].

Fig. 1 illustrates 3 different scenarios of time window on

(XT ,YT ). Here, w1 = ([ts1 , te1 ],τ1 = 0]) has no time delay, thus

starts and ends at the same time on XT and YT . Instead, the win-
doww2 = ([ts2 , te2 ],τ2 > 0]) has a time delay τ2 > 0, thus YT is

shifted from XT . The windoww3 = ([ts3 , te3 ],τ3 < 0]) has τ3 < 0,

thus XT is shifted from YT , similarly forw4.

Definition 4.6 (Mutual information of a window) Let (XT ,YT )
be a pair of time series, andwX ,Y+τ be a time delay window of

(XT ,YT ). TheMI betweenXT andYT withinwX ,Y+τ is estimated

using the KSG estimator as:

IwX ,Y+τ = I (Xw ;Yw ) = ψ (k) −
1

k
−

1

m

∑
xi ∈Xw
yj ∈Yw

[ψ (nxi ) +ψ (nyj )]

+ψ (m) (3)

wherem is the size ofwX ,Y+τ , and nxi and nyj are the number

of data points falling within the kth -nearest distances in each

dimension dx and dy of point (xi ,yj ) ∈ (Xw ,Yw ).

Fig. 2 illustrates how to compute theMI of a window usingKSG
estimation. Consider a window wX ,Y+τ contains 7 data points
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{p1=(x1,y1), ...,p7=(x7,y7)}, with their positions projected into

a two dimensional grid as in Fig. 2. Without loss of generality,

we assume τ = 0 (events in Xw and Yw occur at the same time

step), the nearest neighbor parameter k = 2, and the distance

metric between neighbors is the maximum norm1
. Under this

setting, the 2 nearest neighbors of p1 are p2 and p3 (in green),

and the nearest distances from p1 to its nearest neighbors in

each dimension are dx and dy. The nearest distances allow the

KSG estimator to form the marginal regions (in gray shade), from

which the marginal counts are computed. In this case for point p1,
the marginal counts are nx1=3 (including p2,p3,p5), and ny1=3
(includingp2,p3,p4). Similar steps are applied to other data points

from p2 to p7. Finally, the marginal counts nxi , nyi are inserted
into Eq. 3 to compute the MI ofwX ,Y+τ .

Definition 4.7 (Correlated time delay window) LetwX ,Y+τ be a

time delay window of (XT ,YT ), and IwX ,Y+τ be the MI ofwX ,Y+τ .

The two time series XT and YT are said to be correlated within

wX ,Y+τ iff IwX ,Y+τ ≥ σ where σ > 0 is a pre-defined correlation

threshold.

Problem Statement: Time delaY COrrelation Search (TYCOS).
Let (XT ,YT ) be a pair of time series measured during the time
interval T , andwX ,Y+τ be a time delay window of (XT ,YT ). Then
TYCOS aims to find a set S ofwX ,Y+τ such that smin ≤

��wX ,Y+τ
�� ≤

smax ∧ τ ≤ tdmax ∧ IwX ,Y+τ ≥ σ ∧ ∀wi ,w j ∈ S : wi ⊈ w j ∧

w j ⊈ wi , where
��wX ,Y+τ

�� denotes the size of wX ,Y+τ , smin and
smax are the minimum and maximum sizes that a window can
have, tdmax is the maximum time delay, and σ is the pre-defined
correlation threshold.

The goal of TYCOS is to find a set S of non-overlapping time

delay windows that respect size and time delay constraints, and

have their MI satisfying the pre-defined correlation threshold.

As the size of each window is restricted in the range [smin, smax],

this implies that if correlations exist in the pair (XT ,YT ), they
will last at least for length smin, and at most for length smax.

This assumption is meaningful especially when working with

real datasets. For example, when searching for weather-related

correlations, one could assume that correlations can only last for

at most several weeks which correspond to the longest duration

of a weather event. Furthermore, the time delay of a window

is also assumed to be bounded by a maximum value tdmax that

represents the longest shifting duration between two time series.

The value of tdmax can be used to prevent spurious correlations.

For example, a heavy rain cannot have an impact on the number

of injured pedestrians one year later. Setting tdmax value, for now,

will rely on the expert’s domain knowledge.

1L∞: d (pi , pj ) =∥ (dx , dy ) ∥max= max( ∥ xi − x j ∥, ∥ yi − yj ∥)

5 TYCOS: TIME DELAY CORRELATION
SEARCH

5.1 Search Space and Time Complexity
The search space of TYCOS is represented by the number of

feasible windows (feasible windows are those that respect the
size and time delay constraints), illustrated in Fig. 3. Here, the

x−axis represents the start time ts , the y−axis represents the end
time te , and the z−axis represents the time delay τ of a window.

Each point in this 3−dimensional grid represents a windowwi
identified by its start time index tsi , end time index tei , time delay

τi , and its MI Iwi . Since the start time index tsi always has to be

smaller than the end time index tei , the feasible windows will
reside only in half of the grid (Fig. 3).

Lemma 1. Let (XT ,YT ) be a pair of two time series of length n,
and smin, smax be the minimum and maximum sizes of a window,
tdmax be the maximum time delay between XT and YT . Then the
size of TYCOS search space is O(n3).

Proof. To find all feasible windows, initially, a Brute Force
search can start with a window w0 = ([ts0 , te0 ],τ0) at the mini-

mum size smin and the initial time delay τ0 = 0. For each start

index tsi , it extends the end index tei , creating a new and larger

window w
′

i until it reaches the maximum size smax. With one

start index tsi , the number of windows created by extending the

end index is: smax − smin + 1.

Furthermore, each windowwi has the possibility to shift (2 ∗

tdmax) times (corresponding to negative and positive values of τ ),
creating (2 ∗ tdmax) possible time delay windows. Finally, there

are (n−smin +1) possible start indices tsi . Thus, the total number

of feasible windows of TYCOS is:

(n − smin + 1) ∗ (smax − smin + 1) ∗ 2 ∗ tdmax ∼ n3 (4)

if smax → n ∧ tdmax → n ∧ smin ≪ n. □

Lemma 2. Let n be the length of (XT ,YT ), andm be the average
size of a window, then the worst-case time complexity of a Brute
Force search for TYCOS on (XT ,YT ) is O(n3m2).

Proof. The complexity of TYCOS depends on the number of

windows it needs to evaluate, and the time required to compute

the MI of each window. The number of windows to be evaluated

for TYCOS is O(n3), according to Lemma 1.

On the other hand, the MI is computed using the KSG esti-

mator, in which the most expensive operator is the k-nearest
neighbor (kNN ) search. Therefore, the complexity of MI com-

putation depends on the complexity of kNN search. Consider a

windowwi of sizem. A basic kNN algorithm applied towi will re-

quireO(kdm) to find k nearest neighbors for one sample (d is the

data dimensionality), and thus O(kdm2) ∼ O(m2) (if k and d are

significantly smaller thanm) for all samples inwi [12]. Hence, the

worst-case time complexity of a Brute Force search for TYCOS
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is O(n3m2). However, if a more efficient data structure is used,

such as k-d tree [5] or grid-based structure (for low dimensional

data) [30], the expected-case kNN complexity is O(kdm logm) ∼

O(m logm), and thus, the expected-case Brute Force complexity

is O(n3m logm). □

5.2 TYCOSLAHC: A LAHC Based Approach
The time complexity of a Brute Force approach for TYCOS is

computationally prohibitive in practice. For example, a pair of

time series with n=9,000 data points, smax = 400, smin = 20, and

tdmax = 20 will create 136,870,440 windows. Our Brute Force

search implemented in C++ and run on a standard PC will take

more than 12 hours to process all generated windows. In the next

section, we propose a heuristic search method using LAHC to

speed up the TYCOS process.

To improve the TYCOS process, we look at two angles for

improvements: (1) reducing the search space, and (2) optimizing

the MI computation. To reduce the search space, we adopt LAHC,

and propose a novel MI-based theory to prune unpromising win-

dows. To optimize the MI computation, we design efficient data

structures so that we can reuse the computation across windows.

The following sections discuss the intuition behind our approach

and detail how LAHC can be applied to TYCOS. The MI-based

theory and its applicability to TYCOS are introduced in Section

6. The efficient MI computation is described in Section 7.

5.2.1 The choice of LAHC. To explain the intuition behind

the LAHC-based method, consider Fig. 4 that illustrates the MI

value fluctuation across windows. Here, they−axis represents the
MI values of corresponding time windows on the x−axis. Given
the correlation threshold σ (red line), the three windows which

correspond to the three locally maximal points (in red) indicate

highly correlated areas, and can be found by identifying the three

peak (red) points in the search space. Since LAHC guarantees to

achieve local optimal solutions, it becomes an ideal foundation

for solving the TYCOS problem.

5.2.2 Apply LAHC to TYCOS. Indeed, finding correlations in

time series means to find windows that maximize the MI. Thus,

we consider the problem of searching for time delay correla-

tions using LAHC, namely TYCOSLAHC (or TYCOSL in short),

as a maximization problem. Specifically, the target function of

TYCOSL is a maximize function, and our goal is to find windows

where their MIs are locally maximal values that satisfy σ .
a) Search space navigation. We first illustrate how LAHC navi-

gates through the search space of TYCOS in Fig. 5, with the three

axes being the start time (x−axis), the end time (y−axis) and the

time delay (z−axis) of a window. Assume wi = ([tsi , tei ],τi ) is
the window where the search is currently at. Starting fromwi , if

TYCOSL follows a rightwards trajectory on the y−axis, it moves

the end time tei ofwi forward in time, thus enlarging the window

size. If it follows a leftwards trajectory on the y−axis, it moves

the end time tei backward in time, thus reducing the window

size. Similarly, moving along the x−axis, TYCOSL can reduce or

increase the start time tsi , therefore, extending or narrowing the

size ofwi accordingly. On the z−axis, following the tx direction,

TYCOSL increases the shifting time of XT w.r.t. YT . Following
the ty direction, TYCOSL will shift YT further from XT . In both

cases, it increases the time delay but keeps the same window size.

While exploring the search space inmultiple directions, TYCOSL
creates different windows by adjusting the indices of the current

window. The generated windows are grouped into the same

neighborhood if they share similar indices. The neighborhood
concept is defined below.

Definition 5.1 (δ -neighbor) Let w = ([ts , te ],τ ) be a window

of (XT ,YT ), and assume (XT ,YT ) has length n. A windoww
′

=

([t
′

s , t
′

e ],τ
′

) is a δ -neighbor of w if t
′

s = ts ± δ ∨ t
′

e = te ± δ

∨ τ
′

= τ ± δ , where δ is a pre-defined moving step such that

1 ≤ δ ≤ n ∧ smin ≤

���w ′
��� ≤ smax ∧ τ

′

≤ tdmax.

A δ -neighbor window w
′

has at least one of its indices (i.e.,

ts ′ , or te ′ , or τ
′

) differing a δ step from the indices ofw .

Definition 5.2 (δ -neighborhood) Let w = ([ts , te ],τ ) be a win-
dow of (XT ,YT ). A δ -neighborhood ofw , denoted asNδ , is formed

by all δ -neighbors w
′

= ([t
′

s , t
′

e ],τ
′

) ofw .

The neighborhood concept is illustrated in Fig. 5. Consider

the window wi (in blue). The nearest δ−neighborhood of wi ,

called the 1−neighborhood N1, is the area formed by the 26

windows in blue color w1

i where i = 1, ..., 26. Each window in

this neighborhood differs fromwi by one δ step, either by its start

index, or its end index, or its time delay, or the combinations of

them, or all. Going further, another neighborhood ofwi , called the

2−neighborhood N2, is the 50 windows in green color area. Each

δ−neighborhood forms an area where TYCOSL will iteratively

look for potential candidates to improvewi .

b) TYCOSL algorithm. We provide the outline of TYCOSL in

Algorithm 1, and explain it in the following.

Consider a time series pair (XT ,YT ), and let Iw be the target

function to be maximized. To improve Iw , TYCOSL will start with

an initial feasible solution, and explores its neighborhood to look

for better solutions. Letw = w0 where |w0 | = smin ∧ τ0 = 0 be an

initial solution (Alg. 1, line 2). The goodness ofw0 is evaluated

by computing I (w0) (line 3). Starting fromw0, TYCOSL will first

explore its nearest neighborhood N1, and search for a better so-

lution thanw0 in this area. To do that, it creates all δ1−neighbors

ofw0 to form N1. Then for eachw
′

∈ N1, it computes I (w
′

) and

selects the best neighbor bestnb which has the highest MI (lines

5 − 8). Next, it determines whether bestnb is a better solution

than the current onew using the following policies:

• (Policy 1) If: Ibestnb > Iw or Ibestnb > Iwh where wh ∈ Lh ,
then: bestnb is a better solution than w and thus, w is

replaced by bestnb (lines 10 − 12).

• (Policy 2) If: Ibestnb ≤ Iw and Ibestnb ≤ Iwh , then there is

no better solution in the considered neighborhood, thus,

no improvement can be made (lines 14 − 15).

In Policy 1, a better solution is found, the search moves to

this new solution w = bestnb, and repeats the neighborhood

exploration process on the new w . Note that since LAHC also

uses a historical valuewh to justify a potential candidate solution,

the newly selected solution bestnb might be better thanwh , but

not necessarily better than the current solutionw . This type of

approximation creates some “randomness” in the search, which

is helpful, for example, when the search needs to escape from

plateau situations, i.e., when the search space is flat. In Policy
2, no better solution is found, then the stopping conditions are
checked. If the stopping conditions are not yet satisfied, the search
continues exploring larger neighborhoods. Otherwise, it stops

and the value Iw at the stopping point is the locally maximal

value. Finally,w is accepted and inserted into the result set S if

Iw ≥ σ (lines 19 − 20).

When the stopping conditions are satisfied and TYCOSL stops,

the time series pair might not be scanned entirely. In that case,

TYCOSL restarts again on the remaining part of the data, looking
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Figure 4: MI fluctuation Figure 5: Explore neighborhood
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for new local optimal solutions, until the entire time series are

searched (line 21).

Stopping conditions: Ideally, TYCOSL will stop immediately

when no better solution can be found in the considered neigh-

borhood. However, to avoid situations where the occurrence of a

temporary setback stops the search too early, an idle period is

used to measure the number of non-improvements observed. The

search will stop when the pre-defined max idle period TmaxIdle is

reached (line 4).

Initial solution: The initial windoww0 can be at the beginning,

or at an arbitrary position in the time series. A good initial solu-

tion can help reach satisfying solutions faster, and vice versa. In

Section 6, we rely on an MI-based theory to select a good initial

solution, leading to a more promising exploration for the search.

The history list Lh : TYCOSL maintains a history Lh of the most

recently accepted solutions and uses it to justify the goodness of

a potential candidate. In our implementation, TYCOSL follows

the random policy when selecting and updating an item in the

history (line 9 and 16 − 18).

Algorithm 1 TYCOSL: LAHC for TYCOS

Input: (XT , YT ): pair of time series

Params: σ , ε , smin, smax, tdmax

Output: S: a set of non-overlapping windows whose MI ≥ σ
1: while (XT , YT ) is not scanned entirely do
2: Initial solution w := w0 with |w0 | = smin ∧ τ0 = 0

3: Compute I (w0) ▷ Evaluate the goodness of w0

4: while tidle < TmaxIdle do
5: N := Neighbors(w ) ▷ Identify the neighbors of w
6: for w

′
∈ N do

7: Compute I (w
′
) ▷ Evaluate the goodness of w

′

8: bestnb := BestNeighbor(N ) ▷ Select best neighbor in N
9: wh := random.get(Lh ) ▷ Randomly select from Lh
10: if Ibestnb > Iwh or Ibestnb > Iw then
11: w := bestnb ▷ Accept the candidate

12: tidle := 0 ▷ Reset the idle time

13: else
14: w := w ▷ Reject the candidate

15: tidle := tidle + 1 ▷ Increase the idle time

16: if Iw > Iwh then ▷ Update the history list

17: wh := w
18: Iwh := Iw
19: if Iw ≥ σ then
20: Insert w to S
21: TYCOSL(X

′

T , Y
′

T ) ▷ Restart TYCOSL

22: return S

6 NOVEL NOISE THEORY TO IMPROVE
TYCOS

6.1 Noise Identification
When TYCOSL performs the neighborhood exploration, con-

ceptually, it is performing a depth-first search. Each neighbor

window is considered as an expansion to a deeper level of the

search tree, and the expansion only stops when the stopping

conditions are met. During the expansion, some part of the data

might be revisited multiple times, which can lead to redundant

computation. To reduce potential redundancy, we explore several

MI properties to establish principles that can help narrow the

search space. Specifically, we seek the answer for the following re-

search question: "When should a certain part of data be completely
removed from the search?".

This research question concerns the removal of a data parti-

tion from the search without affecting its final outcomes. This

is due to the fact that by repeatedly expanding the neighbor-

hood, TYCOSL revisits a data partition multiple times, and in

some cases, a particular data partition might be irrelevant to the

search’s objectives, i.e., including this particular data partition in

the search process does not lead to promising results. If that data

partition can be identified, it should not be included in future

explorations of the search. The following example demonstrates

this situation.

Consider the window wi (blue point), and its neighborhood

N1 and N2 in Fig. 5. In N1 and N2, neighbors that belong to the

same exploration direction might contain overlapping data. For

instance,w1

4
∈ N1 is expanded fromwi by extending its end index

by a δ1 step, while w
2

7
∈ N2 is an extension of w1

4
by enlarging

wi ’s end index a δ2 step (δ2 > δ1). The process of extending one

window to another window results in overlapping data that will

be revisited multiple times in different exploration iterations.

On the other hand, consider Fig. 6 that plots the MI values of

a time series pair with different start indices: the blue line starts

at index 0, the red line starts at index 5, i.e., the data from 0 to

5 are not considered in the red line. From Fig. 6, it can be seen

that by excluding the data range [0 − 5] from the search, the MI

values of subsequent windows increase and are larger than when

including the considered range. This implies that the data range

[0 − 5] provides no information about the dependency between

the times series pair, and thus can be considered as “noise” and

eliminated from future exploration.

The above research question thus can be answered by estab-

lishing a “noise” identification principle. To do that, we rely on

the following theorem to understand when a data partition can

be considered as “noise” and should be eliminated.

Definition 6.1 (Mixture distribution) Let X and U be discrete

random variables with the corresponding p.m.fs pX (x), pU (u).
Let Z be a new random variable which is drawn from the same

distribution as X with probability θ and from the same distribu-

tion as U with probability 1 − θ for a given θ ∈ [0, 1]. Then Z
is said to have a mixture distribution between pX (x) and pU (u)
with probability θ and is written as Z = X ⊙θ U .

Theorem 6.1. Let X , Y ,U , V be discrete random variables and
pX (x), pY (y), pU (u), and pV (v) be their corresponding p.m.fs. Let
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Z = X ⊙θ U andW = Y ⊙η V where ⊙ denotes the mixture of
two variables. Assume that, except for X and Y , other variables are
pair-wise independent, i.e., (U ⊥ V ) ∧ (X ⊥ U ) ∧ (X ⊥ V ) ∧ (Y ⊥

U ) ∧ (Y ⊥ V ). Then I (X ;Y ) ≥ I (Z ;W ).
Proof. Z andW are the two mixed variables: Z = X ⊙θ U

andW = Y ⊙η V . Then, for a value of x drawn according to

pX (x) and a value of u drawn according to pU (u), we can write

the probabilities for Z as follows:

pZ (x) = P(Z = X )pX (x) = θpX (x) (5)

pZ (u) = P(Z = U )pU (u) = (1 − θ )pU (u) (6)

Similarly, for y ∼ pY (y) and v ∼ pV (v), we have:

pW (y) = P(W = Y )pY (y) = ηpY (y) (7)

pW (v) = P(W = V )pV (v) = (1 − η)pV (v) (8)

Then, we can write the following joint probabilities:

pZ ,W (x ,y) = θηpX ,Y (x ,y) (9)

pZ ,W (x ,v) = θ (1 − η)pX ,V (x ,v) (10)

pZ ,W (u,y) = (1 − θ )ηpU ,Y (u,y) (11)

pZ ,W (u,v) = (1 − θ )(1 − η)pU ,V (u,v) (12)

We have the MI between X and Y as

I (X ;Y ) =
∑
y

∑
x

pX ,Y (x ,y) log
pX ,Y (x ,y)

pX (x)pY (y)
(13)

And the MI between Z andW as

I (Z ;W ) =
∑
w

∑
z

pZ ,W (z,w) log
pZ ,W (z,w)

pZ (z)pW (w)
(14)

Since Z can take the values in RX if z is drawn from X , and in

RU if z is drawn fromU (similarly forW ), then from Eq. (14), it

follows that:

I (Z ;W ) =
∑

w ∈RY

∑
z∈RX

pZ ,W (x ,y) log
pZ ,W (x ,y)

pZ (x)pW (y)

+
∑

w ∈RY

∑
z∈RU

pZ ,W (u,y) log
pZ ,W (u,y)

pZ (u)pW (y)

+
∑

w ∈RV

∑
z∈RX

pZ ,W (x ,v) log
pZ ,W (x ,v)

pZ (x)pW (v)

+
∑

w ∈RV

∑
z∈RU

pZ ,W (u,v) log
pZ ,W (u,v)

pZ (u)pW (v)

=
∑
y∈RY

∑
x ∈RX

θηpX ,Y (x ,y) log
θηpX ,Y (x ,y)

θpX (x)ηpY (y)

+
∑
y∈RY

∑
u ∈RU

(1 − θ )ηpU ,Y (u,y) log
(1 − θ )ηpU ,Y (u,y)

(1 − θ )pU (u)ηpY (y)

+
∑
v ∈RV

∑
x ∈RX

θ (1 − η)pX ,V (x ,v) log
θ (1 − η)pX ,V (x ,v)

θpX (x)(1 − η)pV (v)

+
∑
v ∈RV

∑
u ∈RU

(1 − θ )(1 − η)pU ,V (u,v) log
(1 − θ )(1 − η)pU ,V (u,v)

(1 − θ )pU (u)(1 − η)pV (v)

(15)

Eq. (15) can be rewritten as

I (Z ;W ) = θηI (X ;Y ) + (1 − θ )ηI (U ;Y )

+ θ (1 − η)I (X ;V ) + (1 − θ )(1 − η)I (U ;V )
(16)

Since we assume

(U ⊥ V ) ∧ (X ⊥ U ) ∧ (X ⊥ V ) ∧ (Y ⊥ U ) ∧ (Y ⊥ V )

This leads to

I (U ;Y ) = 0 ∧ I (X ;V ) = 0 ∧ I (U ;V ) = 0

Thus, Eq. (16) becomes

I (Z ;W ) = θηI (X ;Y ) (17)

where θ ≤ 1 and η ≤ 1, which leads to

I (X ;Y ) ≥ I (Z ;W )

□
Theorem 6.1 says that, ifU and V are independent from each

other and from X and Y , then adding them to X and Y will bring

more uncertainty to (X ,Y ), in other words, they reduce the shared
information I (X ;Y ).
Definition 6.2 (Consecutive windows) LetwX ,Y+τ = ([ts , te ],τ )

andw
′

X ,Y+τ ′
= ([ts ′ , te ′ ],τ

′

) be the two time delay windows of

(XT ,YT ). Then wX ,Y+τ and w
′

X ,Y+τ ′
are consecutive iff ts ′ =

te + 1 ∧ τ = τ
′

.

From Definition 6.2, wX ,Y+τ and w
′

X ,Y+τ ′
are consecutive if

they are next to each other and have the same shifting time,

i.e., w
′

X ,Y+τ ′
starts right after the end time of wX ,Y+τ . Since

w
′

X ,Y+τ ′
followswX ,Y+τ , terminologically, we callwX ,Y+τ the

followed window, andw
′

X ,Y+τ ′
the following window. Examples

of consecutive windows arew3 andw4 in Fig. 1.

Definition 6.3 (Concatenation operation ⊙ of consecutive win-
dows) Let wX ,Y+τ = ([ts , te ],τ ) and w

′

X ,Y+τ ′
= ([ts ′ , te ′ ],τ

′

)

be two consecutive windows of (XT ,YT ). The concatenation be-

tweenwX ,Y+τ andw
′

X ,Y+τ ′
is defined as:w

′′

X ,Y+τ = wX ,Y+τ ⊙

w
′

X ,Y+τ ′
= ([ts , t

′

e ],τ ). The concatenation operation joins two

consecutive windowswX ,Y+τ andw
′

X ,Y+τ ′
into one bigger win-

doww
′′

X ,Y+τ which has its start time being the start time of the

followed window, and its end time being the end time of the

following window.

Based on the result of Theorem 6.1 and Definitions 6.2, 6.3, we

define noise as follows.
Definition 6.4 (Noise) LetwX ,Y+τ ,w

′

X ,Y+τ ′
be two consecutive

windows of (XT ,YT ),w
′′

X ,Y+τ = wX ,Y+τ ⊙w
′

X ,Y+τ ′
be their con-

catenating window, and ε (0 ≤ ε < σ ) be a real number represent-

ing the noise threshold. Assume that IwX ,Y+τ > 0. Thenw
′

X ,Y+τ ′

is called noisew.r.t.wX ,Y+τ iff Iw ′

X ,Y+τ ′
< ε ∧ Iw ′′

X ,Y+τ
< IwX ,Y+τ .

The noise principle says that if the MI of the following window
w

′

X ,Y+τ ′
is less than the noise threshold, and the MI of the fol-

lowed windowwX ,Y+τ decreases after the concatenation, then

the following window is noise w.r.t. the followed window.

6.2 Applying Noise Theory to Prune the
Search Space

Based on the noise identification principle, we propose two im-

provements to be made in TYCOSL. We name TYCOSL with noise

theory applied as TYCOSLN.

6.2.1 Initial noise pruning. Previously, we said that TYCOSL
can start out at the beginning of, or at an arbitrary location in the

time series. This, however, can lead the search to an unpromising

exploration area. For example, if the search starts out at the

valleys in Fig. 4, it might take longer time to reach the top of

the hill than if it starts somewhere on the edges. To avoid the
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Figure 7: Initial window Figure 8: Efficient MI com-
putation

“valley-trapped” situations, we use the noise theory to find a good

starting point. The search is at a good starting point if the initial

solutionw0 has Iw0
≥ ε (the noise threshold). To find such a point,

we first divide the time series into non-overlapping windows

of the minimal size smin with no time delay (τ = 0), and then

hierarchically combine them to form larger, and hopefully better

windows. The combination stops when it finds a windoww that

has Iw ≥ ε . Fig. 7 demonstrates this procedure.

In Step 1, initially the search starts with two minimal con-

secutive and non-overlapping windows w1, w2, and evaluates

their goodness by computing Iw1
, Iw2

. In Step 2, it combines the

two windows into a bigger onew12, and computes Iw12
. Next, it

compares the goodness of the 3 windows, and select the one that

has the highest MI. Assuming that {Iw1
, Iw2

} ≤ Iw12
< ε , then

w12 is the one selected among the three. Since Iw12
is still less

than ε , it moves to Step 3.1, where a next minimal windoww3 is

evaluated both separately (by computing Iw3
), and together with

w12 (by computing Iw123
).

Assume that Iw3
< ε , and that by combiningw3 tow12, it re-

duces theMI Iw12
, i.e., Iw123

< Iw12
< ε . According to Theorem 6.1,

we can conclude thatw3 is noise w.r.t.w12. Thus, the combination

w123 does not lead to a promising result. The next window to

be considered isw4. However,w12 cannot be combined withw4

without the presence ofw3, which we know is noise ofw12. Thus,

the combinationw1234 should not be formed, andw12 should also

be eliminated from future consideration (Step 3.3). Next, in Step 4,
w3 is evaluated again in combination withw4, and the procedure

is repeated until it can find a window that has MI > ε . Once the
starting point is determined, TYCOSLN begins its neighborhood

exploration as described in Section 5.2.

6.2.2 Subsequent noise detection. The noise identification

principle is also beneficial during the neighborhood exploration.

We explain its applicability in Fig. 5. Assume wi is the current

window and w1

4
, w2

7
are its neighbors when moving along the

y−axis. In the first exploration, the neighbor w1

4
is considered.

Sincew1

4
is created by extending the end index ofwi by a δ1−step,

we have: w1

4
= wi ⊙ wδ1 where wδ1 is the extension to be con-

catenated withwi . Assume that by applying our noise theory to

wi ,wδ1 , andw
1

4
, we conclude thatwδ1 is noise w.r.t.wi . In this

case, it is not promising to further explore the neighborhoods

ofwi along the y−axis in that direction. In the next exploration,

TYCOSLN will omitw2

7
, as well as the entire forward direction

along the y−axis.
Ensuring the completeness of TYCOSLN: When TYCOSLN stops

at a locally optimal solution, it has followed the best path and

explored to the deepest level of the current tree. This, however,

does not guarantee that is the only path. In fact, we want to find

the set of all windows that are above the correlation threshold.

Thus, to ensure the completeness of the search, TYCOSLN is

designed recursively so that once it stops at the locally optimal

solution, it goes back to the previously found starting point and

continues exploring other paths to find all feasible solutions.

Algorithm 2 reflects on how the noise theory is applied in

TYCOS. In line 2, the noise theory is applied to find a good

starting point. During the neighborhood exploration, the theory

is applied again to prune the search space (line 5).

Algorithm 2 TYCOSLN: Apply noise theory to TYCOSL

Input: (XT , YT ): pair of time series

Params: σ , ε , smin, smax, tdmax

Output: S: a set of non-overlapping windows whose MI ≥ σ
1: while (XT , YT ) is not scanned entirely do
2: Initial solution w := InitialNoisePruning((XT , YT ), ε )
3: Compute I (w ) ▷ Evaluate the goodness of the initial solution

4: while tidle < TmaxIdle do
5: N := SubsequentNoiseDetection(w, τ ) ▷ Apply Theorem 6.1

to identify promising neighbors of w
6: w := EvaluateCandidateSolution(w, N ) ▷ Follow the steps

8-18 in Algorithm 1 to improve w
7: if Iw ≥ σ then
8: Insert w to S
9: TYCOSLN(X

′

T , Y
′

T ) ▷ Restart TYCOSLN

10: return S

6.3 Setting the Correlation Threshold
6.3.1 Using normalized MI. Since MI is a measure of total

dependence between variables, its magnitude represents the

strength of the correlation. As theMI value is always non-negative,

its lower bound is 0. However, the MI’s upper bound varies and

thus, it is difficult to set an appropriate correlation threshold

using MI magnitude when data characteristics and their rela-

tionships are unknown. To overcome this challenge, we propose

a robust method to set the correlation threshold based on the

normalized MI :
0 ≤ Ĩw =

Iw
Hw

≤ 1 (18)

where Iw is the MI and Hw is the entropy of the windoww .

In Eq. (18), the window entropy Hw represents the amount

of uncertainty contained in the windoww . Thus, Ĩw represents

the fraction of the window’s uncertainty reduced by the shared

information Iw . The larger Ĩw , the more information is shared

between the window’s variables, and thus the stronger correla-

tion. The normalized MI Ĩw is always scaled between [0, 1], and

thus provides an easier way for users to set the threshold σ .

6.3.2 Using top-K filtering. Top-K maintains a list of K (K is

a predefined parameter) windows that have the highest MI up

to the current point. The top-K list represents the top correlated

time-series windows, and can be used to set the value of σ . In
this top-K filtering approach, σ starts with the MI value of the

initial windoww0. As the search proceeds, the top-K list is filled,

and σ gets updated by the minimum MI value in the list. Once

the top-K list is full, it will get updated if there is a new window

that has MI greater than the current value of σ . The element with

the least MI value in the top-K list will be replaced by this new

window, and σ is updated accordingly.

7 EFFICIENT MI COMPUTATION
In this section, we discuss the efficient MI computation (based

on Eq. (2)) in TYCOS. Due to space limitations, the discussion

will be brief and touch only important points.

Recall that while exploring its neighborhood, TYCOS might

visit the same data partition multiple times. For example, while
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evaluatingw1

4
andw2

7
in Fig. 5, TYCOS will repeatedly revisitwi

because w1

4
and w2

7
are extended from wi . To minimize the re-

dundancy, we design an efficient MI computation method so that

computation of overlapping data can be reused across windows.

We observe that neighboring windows in each neighborhood

Ni can differ from the current windowwi by only a small data

partitionwδi , wherewδi is either removed from or added towi .

For instance, in Fig. 5,w1

8
differs fromwi by removing awδ1 data

partition from wi , whereas w
1

4
differs from wi by adding a wδ1

data partition towi . The removal of old data and the addition of

new data can introduce different types of changes to the previous

computation of wi . These changes can be either changing the

k-nearest neighbors or changing the marginal counts nx , ny
of existing points. To track those changes, we introduce the

influenced region and influenced marginal region concepts for

each data point.

Definition 7.1 (Influenced region (IR))An IR of pointpi = (xi ,yi )
is a square bounding box Ri = (li , ri ,bi , ti ), where li , ri ,bi , ti are
its left-, right-, bottom-, and top-most indices, respectively, and

are computed as li = xi − d , ri = xi + d , bi = yi − d , ti = yi + d
where d = max(dx ,dy ).
Definition 7.2 (Influenced marginal region (IMR)) The IMRs of
point pi are the marginal regions located within the nearest

distance di in each dimension.

Fig. 8 illustrates these concepts. The influenced region of p0 is
the square colored in green, and the influenced marginal regions
are those with gray shade in either dimension.

Lemma 3. Given a windowwi and a data point p ∈ wi , a new
point o inserted intowi will become the new kth -neighbor of p iff
o is within IR of p.

Lemma 4. Given a window wi and a data point p ∈ wi , an
existing point o deleted fromwi will change the k nearest points of
p iff o is within IR of p.

Lemma 5. Given a windowwi and a data point p ∈ wi , a new
point o inserted intowi will increase the marginal count nx (or ny )
of p iff o is within IMRx (or IMRy ) of p.

Lemma 6. Given a window wi and a data point p ∈ wi , an
existing point o deleted fromwi will reduce the marginal count nx
(or ny ) of p iff o is within IMRx (or IMRy ) of p.

Proof. Proofs of Lemmas 3, 4, 5, 6 are straightforward, thus

omitted. □

Lemmas 3, 4, 5, 6 display unique properties of IRs and IMRs.
An IR maintains an area where any point pj either falling into or

being removed from this region will change the k nearest points

ofpi . In this case, a newk-nearest neighbors search is required for
pi . Instead, an IMR maintains an area where any point pj either
falling into or being removed from it will change the marginal

counts of pi . In this case, the marginalized neighbors of pi have
to be recounted.

Fig. 8 illustrates how changes are introduced and managed.

For simplicity, we only discuss cases when new points are added

into the previous computation. Changes introduced by removing

points can be handled in a similar way. Assume that at time t1, a
new point p8 is added to the current window and falls into the IR
of p1. The addition of p8 changes the k

th
-nearest neighbor of p1,

thus, triggers a new nearest neighbor search for p1. At time t2,
a new point p9 arrives and falls into the y-marginal influenced

region of p1, for which it will alter the marginal count ny (but no

new k-nearest neighbor search is required in this case). Similarly,

a new point p10 will increase the marginal count nx . In these

cases, only a recount of nx or ny is performed.

As the result of our efficient MI computation, for each window,

only a minimum search region (containing new points) and a

minimum update region (containing points affected by added

and removed points) require additional computation. The rest is

reused, and thus minimizing the computational cost.

8 EXPERIMENTAL EVALUATION
We evaluate the effectiveness and efficiency of TYCOS using

both synthetic and real-world datasets. Effectiveness measures

the method qualitatively by assessing the quality of extracted

windows, while efficiency measures the method quantitatively

in terms of its performance and accuracy.

8.1 Baseline methods
Effectiveness evaluation: TYCOS is compared against four base-

line methods. The first baseline is a traditional correlation metric:

Pearson Correlation Coefficient (PCC) [23]. The second is the

Fast Subsequence Search (MASS) algorithm [25], often used for

subsequences matching in time series. The third is MatrixProfile

[31], considered to be the state of the art method for similarity

join between time series. The final baseline is the Adaptive Mu-

tual Information-based Correlation (AMIC) [17] framework that

follows a top-down approach to search for multi-scale temporal

correlations in big time series.

Efficiency evaluation: TYCOS runtime is compared against

the Brute Force and MatrixProfile (which uses different win-

dow lengths) methods. In addition, different variants of TYCOS,

including LAHC-based TYCOS (TYCOSL), TYCOSL with noise

theory applied (TYCOSLN), TYCOSL with the proposed efficient

MI computation (TYCOSLM), and TYCOSL with both noise the-

ory and efficient MI computation (TYCOSLMN), are compared

against each other to illustrate the effectiveness of the proposed

noise theory and MI computation technique. We do not compare

AMIC against TYCOS quantitatively, however, as AMIC does not

consider time delay correlations, and thus, has a different search

space. PCC and MASS are also not considered for efficiency eval-

uation because they lack mechanisms to automatically search for

correlated windows.

8.2 Parameter setting for TYCOS
TYCOS requires setting 5 parameters: correlation threshold σ ,
noise threshold ε , minimumwindow size smin, maximumwindow

size smax, and maximum time delay tdmax. Among these, σ , smin,

smax, and tdmax are user parameters, while ε is a hyper parameter.

The value of σ determines the strength of extracted corre-

lations. The larger the σ , the stronger the correlations. In our

experiments, we set the value of σ using the normalized MI

(scaled between [0, 1]) introduced in Section 6.3. On the other

hand, the values of smin, smax and tdmax are context dependent

and is set based on domain knowledge. That is, given an appli-

cation domain, it is usually intuitive how small/large a window

could be and how long a time shift is possible. For example, when

a user analyzes weather related data, he/she might decide that

the longest duration of a weather event is two weeks, and thus set
the size of smax to two weeks. Similarly, a user can set tdmax to 24
hours by assuming that weather events have impacts on other

events only within a day duration. Table 2 lists the values of σ ,
smin, smax and tdmax we use in each dataset.

For the hyper parameter ε , we set ε = 1

4
σ in all experiments.

This means that a window whose MI is less than 25% of the

correlation threshold is considered unpromising to explore. The

ratio ε/σ = 0.25 is chosen based on empirical studies we conduct
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Table 1: Identifying different types of correlation relations (N (µ, σ ): normal distribution, u ∼ U (0, 1): uniform distribution)

td = 0 (No time delay) td = 150 (With time delay)

Relation y = f (x ) PCC MASS MatrixProfile AMIC TYCOS PCC MASS MatrixProfile AMIC TYCOS

Independent y ∼ N (0, 1), x ∼ N (3, 5) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Linear y = 2x + u , x ∈ [0, 10] ✓ ✓ ✓ ✓ ✓ ✓ ✓

Exp. y = 0.01x+u , x ∈ [−10, 10] ✓ ✓ ✓ ✓ ✓

Quad. y = x 2 + u , x ∈ [−4, 4] ✓ ✓ ✓ ✓

Circle y = ±
√
3
2 − x 2 + u , x ∈ [−3, 3] ✓ ✓ ✓

Sine y = 2 ∗ sin(x ) + u , x ∈ [0, 10] ✓ ✓ ✓

Cross y1 = x + u , y2 = −x + u , x ∈ [−5, 5] ✓ ✓ ✓

Quartic y = x 4 − 4x 3 + 4x 2 + x +u , x ∈ [−1, 3] ✓ ✓ ✓ ✓

Square root y =
√
x , x ∈ [0, 25] ✓ ✓ ✓ ✓

Table 2: Parameters setting
Parameter Energy datasets Smart city datasets

Correlation threshold σ 0.3 0.2

Minimum window size smin 3 samples ≃ 3 mins 3 samples ≃ 15 mins

Maximum window size smax 10080 samples ≃ 7 days 4032 samples ≃ 14 days

Maximum time delay tdmax 2880 samples ≃ 2 days 288 samples ≃ 1 day

on different datasets, which consistently show that ε/σ ≃ 0.25

yields the best trade-off between accuracy and runtime gain.

Section 8.5 shows this trade-off analysis, togetherwith an analysis

of the effects of σ , smax and tdmax on the performance of TYCOS.

8.3 Effectiveness evaluation
A) Evaluation on synthetic datasets: We generate synthetic

datasets containing different types of relations, including both

linear and non-linear, monotonic and non-monotonic, functional

and non-functional functions. Then, we combine the generated

relations into the same time series pair (the first time series is

the values of x , the second time series is the values of y = f (x)).
The individual relations are separated by independent data, and

the time delays, td={0, 50, 100, 150} (samples), are added between

x and y. Next, we apply TYCOS, and the baselines PCC, MASS,

MatrixProfile and AMIC to the time series to verify whether the

methods can detect the generated relations. A method detects a

relation in a given pair of time series if it can locate a windoww
where (Xw ,Yw ) corresponds to that relation. Table 1 shows the
relations (y = f (x) andu is added noise) recognized by the tested

methods (the ✓ sign denotes an identified relation, and the

sign denotes an unidentified relation). The plots of the generated

relations can be found in [17].

We see that when there is no time delay (td = 0), TYCOS

and AMIC can detect all types of relations, while PCC, MASS,

and MatrixProfile cannot detect non-linear and non-functional

relations, e.g., a circle relation. When there is time delay (td
, 0), PCC, MASS and AMIC cannot detect any relations, while

MatrixProfile can detect only linear relations, unlike TYCOS

which can detect all the tested relations.

B) Evaluation on real-world datasets: We evaluate TYCOS

on two real-world data collections: smart energy [1] and smart

city [2]. Using real-world applications, our goal is to make sense

of extracted windows and learn insights from them. We describe

the datasets, and the findings in the following.

The energy datasets [1]: measure energy usage from electri-

cal devices in residential households in Maryland, USA during

07/2013-07/2014, and 02/2015-02/2016. There are 72 electrical

plugs in total, and their consumptions are reported in minute

and hour interval. We create pairwise time series from 72 plugs,

and apply TYCOS and AMIC on each time series pair.

The smart city datasets: The NYC Open Data [2] contains more

than 1,500 spatio-temporal datasets, providing rich information

about NYC. For evaluation purposes, we consider two collections

of data related to weather and transportation. Within transporta-
tion, we focus on the Collision dataset reporting the number of

accidents in the city. TheWeather dataset has 30 variables, record-
ing weather condition in 5-minute and hour resolutions. The

Collision dataset has 29 variables, recording incidents happened

in minute resolution.

Summary of the results: On the energy datasets, TYCOS can

extract correlations from more than 50 different time series pairs,

while AMIC extracts fewer windows than TYCOS, and omits any

correlations that have time delay. On smart city datasets, TYCOS

is able to find correlations that could not be confirmed in [17] by

AMIC. Due to space limitations, we cannot discuss all of them,

but instead just show a few extracted correlations in Table 3 to

illustrate our observations. In each column, the first number is

the number of extracted windows, the second number is the time

delay range, and the sign denotes no windows can be extracted.

Table 3: Extracted correlations (h: hour, m: minute)

Correlations TYCOS AMIC

(C1) Kitchen vs. Dish Washer 80, [0-4h] 25, 0h

(C2) Kitchen vs. Microwave 21, [0-1h] 5, 0h

(C3) Clothes Washer vs. Dryer 39, [10-30m]

(C4) Bathroom Light vs. Kitchen Light 14, [1-5m]

(C5) Kitchen Light vs. Microwave 11, [0-2m] 4, 0m

(C6) Children Room Light vs. Living Room Light 8, [15-40m]

(C7) Precipitation vs. Collisions 28, [0.5-2h]

(C8) Wind Speed vs. Collisions 23, [0.25-1h]

(C9) Precipitation vs. Pedestrian Injured 16, [0.5-2h]

(C10) Wind Speed vs. Motorist Killed 12, [0.25-1h]

Interpretation of extracted windows: We interpret some of the

correlations in Table 3 by comparing with the findings of [7,

17], and/or by plotting the data of extracted windows. Here, C1

presents a correlation between the energy usage of the kitchen
and of the dish washer, with the time shift ranging from 0 to

4 hours. The extracted windows indicate frequent activities of

kitchen from 16.00 to 19.00, and of dish washer from 21.00 to

23.00. C4 presents a correlation between the light upstairs in

the bathroom, and the light downstairs in the kitchen, with an

average time shift from 1 to 5 minutes. The correlation occurs

frequently from 6.00 to 7.00. This pattern might hint that, either

more than one person are living together so that when one is

in the bathroom, the other goes to the kitchen; or that the same

person wakes up in the early morning, goes to the bathroom and

then comes to the kitchen. Interestingly, C5 can help provide extra

information for C4. A correlation between the kitchen light and

the microwave is identified, with a time shift between two devices

is from 0 to 2 minutes, indicating the person might come to the

kitchen to prepare breakfast. On smart city datasets, C7 and C8

present correlations between the increase of precipitation/ wind

speed, and the number of collisions, with a time shift from 0.25

to 2 hours. In [17], AMIC could not confirm C7 and C8, because

it does not consider the time delay between time series, and thus

fail to capture correlations that are shifted in time. Furthermore,

we found that precipitation has stronger impact on pedestrians
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(c) Synthetic 3
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Figure 9: Runtime evaluation of TYCOS
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Figure 10: Brute Force, Matrix Profile, and TYCOSLMN

than on motorists or cyclists, while contrarily, wind has more

impact on motorists and cyclists than pedestrians (C9, C10).

8.4 Efficiency evaluation
TYCOS performance is evaluated in terms of its runtime and

accuracy. TYCOS is implemented in C++, and the experiments

are run on a standard PC that has 2.7 GHz processor, 16 GB of

RAM, and 512 GB of SSD.

A) Runtime evaluation: TYCOS runtime is evaluated by com-

paring its 4 different versions: TYCOSL, TYCOSLN, TYCOSLM,

TYCOSLMN, and the Brute Force and MatrixProfile baselines.

First, different TYCOS versions are compared against each other.

The results on both synthetic and real-world data are shown in

Fig. 9. The synthetic datasets, Synthetic 1, Synthetic 2, and Syn-
thetic 3, are created by combining multiple relations from Table

1 into one time series pair. From Fig. 9 where the y-axis is in
log scale, it can be seen that TYCOSLMN achieves the best per-

formance among all versions. Its speedup w.r.t. TYCOSL ranges

from 10 to 150 depending on data sizes. The average speedup is

20 on synthetic data, and 60 on real-world data. Furthermore, the

noise theory and the efficient MI computation technique result

in different speedups depending on data (there are situations

where the noise theory is more efficient, and vice versa). The

average speedup is 39 for the noise theory, and 32 for the efficient

MI computation. However, applying both always yields better

speedups than applying either of them.

Next, TYCOS with the best performance, TYCOSLMN, is com-

pared against Brute Force and MatrixProfile. The results are

shown in Fig. 10 (note log scale in the y-axis). We can see that

TYCOSLMN can achieve an average speedup of more than 3 or-

ders of magnitude over Brute Force, and of more than 2 orders of

magnitude over MatrixProfile, both of which are, however, exact.

B) Accuracy evaluation: To evaluate the accuracy of TYCOS,
we compare the similarity of windows extracted from 3 versions:

Brute Force, TYCOSL and TYCOSLN. Note that the efficient MI

computation technique does not change the accuracy of TYCOSL,
thus, TYCOSLM and TYCOSLMN are not considered in this eval-

uation. Moreover, two windows are considered to be similar if

they cover a similar range of indices. The comparison between

Table 4: Accuracy evaluation

TYCOSL vs. Brute Force TYCOSLN vs. TYCOSL

Data Size Synthetic Data Real Data Synthetic Data Real Data

1K 96.2 95 100 100

10K 97.52 95.1 97.91 95.05

20K 94.08 91.7 98.19 97.78

30K 92.4 89.5 96.4 95.19

40K 97.85 95.1 98.17 97.01

50K 93.69 94.7 96.12 93.91

60K 95.49 94.8 97.1 97.78

70K 90.6 94.3 94.5 95.15

80K 88.75 91.02 96.21 95.8

90K 92.8 89.3 93.01 94.7

100K 93.1 94.7 95.8 94.94

Brute Force and TYCOSL evaluates how accurate the LAHC ap-

proach on the TYCOS problem is, while the comparison between

TYCOSL and TYCOSLN validates the accuracy of the noise theory.

Since Brute Force generates overlapped windows, the generated

windows are aggregated and the overlapped windows are com-

bined together. The same synthetic and real-world datasets as

when evaluating the runtime are used in this experiments.

Table 4 shows the average accuracy of TYCOSL w.r.t. Brute

Force, and of TYCOSLN w.r.t. TYCOSL. Depending on the data

sizes, TYCOSL extracts from 88% to 98% similar windows com-

pared to Brute Force, while TYCOSLN extracts windows that are

from 90% to 100% similar to TYCOSL.
The quantitative evaluation proves that our proposed theory

and technique are very effective in improving the search perfor-

mance. They help achieve an average speedup of more than 3

orders of magnitude compared to the Brute Force method, while

maintaining highly accurate results.

8.5 Effects of Parameters
We examine how the major parameters: ε , σ , smax, and tdmax,

affect the performance of TYCOS. We do not consider smin in this

experiment because smin has minimal impact on TYCOS results.

A) Noise threshold ε: First, we examine how different values

of ε affect the accuracy and runtime, using both synthetic and

real-world data in Fig. 11. We can see, as the ratio ε/σ increases,

the runtime gain increases (Fig. 11b), but the error rate also

increases (Fig. 11a, error rate is measured by the number of

missing windows). This result is intuitive because as the ratio

ε/σ increases, more of the TYCOS search space is pruned, leading

to higher speedup and larger errors. Next, we perform a trade-

off analysis between accuracy and runtime gain as a means for

choosing a proper value of the noise threshold ε . In Fig. 12, the

accuracy and the runtime gain of each tested dataset are plotted

together, with the ratio ε/σ on the x-axis. On the two tested

datasets, i.e., energy and smart city datasets, we found that, when

ε/σ ∈ [0.05, 0.3], TYCOSLN maintains an error rate less than 5%,

while reducing the runtime up to 50%, compared to TYCOSL.
Thus, our experimental setting ε = 1

4
σ proved to be effective

and robust. This threshold can be adjusted according to user’s

preference for accuracy.
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Figure 11: Effect of noise threshold ε
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B) Correlation threshold σ : We vary the values of σ to ex-

amine its effect, shown in Fig. 13a. We observe that, the correla-

tions are stronger as σ increases, and thus, fewer windows are

extracted. However, the runtime also increases because larger

neighborhoods need to be explored to find strong correlations.

For example, only 80 windows are extracted compared to 681

windows when σ increases from 0.2 to 0.6, while the runtime

increases from 115 to 573 seconds.

C) Window size smax and time delay tdmax: We examine

how smax and tdmax affect TYCOS. We found that, although smax

and tdmax are context dependent, the algorithm will converge

after the two parameters reach certain values. When the conver-

gence occurs, TYCOS extracts the same set of windows, while

maintaining a similar runtime for tdmax, but an increasing run-

time for smax. Fig. 13b and Fig. 13c illustrate this evaluation.

Here, using the (Snow, Collision) datasets, TYCOS converges at
smax = 250 and tdmax = 60, with 276windows extractedwhen the

convergence occurs. After the convergence, the runtime contin-

ues increasing as smax goes beyond the value 250, while keeping

similar values as tdmax goes more than 60.

9 CONCLUSION AND FUTUREWORK
To our knowledge, TYCOS is the first comprehensive solution for

the multi-scale time delay correlations search problem. TYCOS

has the ability to extract all types of correlation relations, includ-

ing both linear and non-linear, monotonic and non-monotonic,

functional and non-functional ones. Our major contributions are:

(1) integration of TYCOS and LAHC for multi-scale time delay

correlations search, (2) the novel MI-based theory for noise iden-

tification, (3) the efficient MI computation technique to reduce

computational redundancy. We perform an extensive evaluation

on the effectiveness and efficiency of TYCOS, using both syn-

thetic and real-world datasets. The evaluation shows that TYCOS

can detect various types of relations in synthetic data, and find

significant and interesting correlations in real-world data. The

proposed noise theory and MI computation technique are also

proved to be effective and improve the search performance by

2 to 3 orders of magnitude compared to the baselines. In future

work, TYCOS can be extended to capture correlations across

spatial dimensions. The result of this work can also provide a

foundation for deeper data analysis, such as perform mining or

infer causal effects from the extracted correlations.
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