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Name Food Type Cost Score

McDonald Fast Food 8 7

KFC Fast Food 8 7

Burger King Fast Food 8 7

Arby’s Fast Food 8 7

Oinomageireio H Epirus Greek 8 9

......

Scala Vinoteca Greek 20 9

Ta Karamanlidika tou Fani Greek 20 10

A Little Taste of Home Greek 20 9

Liondi Traditional Greek Greek 20 9

Dio Dekares i Oka Greek 20 9

Table 1: Top-5 and bottom-5 tuples with respect to the cost.

Name Food Type Cost Score

McDonald Fast Food 8 7

Beer Garden Ritterburg German 8 9

Nolan Japanese 9 8

Oinomageireio H Epirus Greek 10 10

Dosirak Korean 12 6

Table 2: Top-5 tuples based on cost that are diversi�ed re-
spect to attributes “Food Type" and “Score".

Example 1.2. With the above diversity parameter, the previous

sample query in Example 1.1 could be expanded accordingly:

SELECT * FROM RESTAURANT

WHERE Score ≥ 6 AND (Cost ≤ 20)
ORDER BY Cost DESC
DIVERSE BY div = 0.2 ON ‘Food Type’ (Hamming)

AND div = 0.3 ON ‘Score’ (Euclidean) LIMIT 5;

where Food Type and Score are the attributes on which the di-

versity is calculated, and Hamming and Euclidean are the cor-

responding distance measures. The idea here is to generate a

set of results that follow the diversity constraints DIV specified

within the query
1
. The result of the above query is illustrated in

Table 2. Although the above example produces some compelling

results with its information representative subset, it could be

difficult to see how the coverage is contributing differently to the

results than the dissimilarity. To illustrate the importance of the

coverage, let us consider a simple example:

Example 1.3. Consider the nodes in Figures 1 and 2. In these

two figures, each node represents an item in the dataset, and an

edge exists between a pair of nodes iff the similarity between

these two nodes are close enough according to some pre-defined

threshold. On the one hand, in Figure 2, a set of dissimilar items

{v5,v4} is selected. However, only {v1,v5,v4} are considered to

be covered by {v5,v4}, as {v2,v3} are not connected with either

v5 or v4. On the other hand, in Figure 1, a single vertex v1 is

connected to all four vertices, hence achieving 100% coverage. In

this case, one can see that vertex v1 better represents the entire
graph when compared with {v5,v4}, thus indicating coverage

is another valuable aspect to the quality of the representative

results.

The above two examples (i.e., Example 1.2 and 1.3) illustrate the

key advantages and desired features of an effective approach that

provides a meaningful and representative subset of the original

query results. First, the representative subset is relevant to the

intention of the query and contains items that would be ranked

1
Note that our PrefDiv algorithms take the set of diversity constraints DIV as one

of their inputs, and it is up to the design of the actual system that integrates the

PrefDiv to determine how DIV will be integrated with its user query.

Figure 1: Single vertex v1
with 100% coverage.

Figure 2: A set of vertices
{v4,v5} with 60% coverage.

highly in the original results. Second, the chosen representative

items are diverse, each contributing additional novelty to the

answer. Third, the representative items are selected in a way that

most items in the original answers are reachable with a small

distance (i.e., change) from one of the representative answers.

Clearly, simply applying ranking, diversification, or clustering

on the original result sets could not achieve the above properties.

Thus, techniques that clearly consider multiple aspects of the

representative results are needed to address this challenge.

Unfortunately, as we will discuss in more detail in Section 2.2.3,

finding the optimal solution that maximizes both the “relevance”

and “diversity” is an NP-Hard problem by itself, let alone with

the addition of the other aspect “coverage” that should also be

considered when producing the representative results.

Our Approach To overcome these challenges, we propose an

extremely efficient online algorithm, called Preferential Diver-
sity (PrefDiv) [13] , for producing representative result sets with

sufficient relevance, diversity, and coverage of the original an-

swers. PrefDiv is a top-k bounded general diversification ap-

proach that can be applied to any existing relevance ranking

model and datasets to retrieve a diversity-aware top-k represen-

tative subset of results. PrefDiv starts to construct the represen-

tative result set with the k most relevant results (according to the

ranking method), then gradually refine this representative set

by eliminating pairs of items that do not satisfy the constraints

specified by the set of diversity thresholds DIV . This is achieved

by identifying pairs of items in the representative result set that

violate one or more diversity thresholds, and then, among the

two items contained in the pair, one with lower relevance will

be replaced with an item from the database that improves diver-

sity and coverage. In the end, PrefDiv produces k representative

results balanced between relevance, diversity, and coverage.

To the best of our knowledge, PrefDiv is the first general

approach to deliver representative results that explicitly consider

relevance, diversity, and coverage with an interactive speed that

is independent of the underlying database and data set.

However, in order to optimize multiple conflicting objectives

such as relevance and diversity, a common approach taken by

most diversification algorithms, including our PrefDiv, is to utilize

a number of tunable parameters. This could be a major drawback

for an algorithm, because with the increase of the number of

required parameters, the complexity of the algorithm increases

as well, making it more difficult to use in real-world scenarios.

In this paper, we extend and present a family of PrefDiv algo-

rithms based on the vanilla PrefDiv. These includes two novel

algorithms that automatically determine: 1) the corresponding

diversity thresholds DIV = {div1,div2, ...,divn } given the set of

diversity constraints Ψ, and 2) the tunable parameters A that

balance the trade-off between the relevance and diversity, respec-

tively.

Contributions To achieve the solution as described above, this

paper makes the following contributions.

• We formulate the Diversified Top-k (DT-k) problem, provide a

theoretical analysis of its complexity, and show NP-hardness

results. (Section 2)

• We provide a detailed description of the design of PrefDiv,

which is an efficient online result diversification algorithm.





to a certain number k . When k is fixed, a set of more relaxed

diversity constraints (i.e., with higher diversity threshold) will

help the representative set include more original answers into its

coverage, and a set of stricter diversity constraints will certainly

decrease the coverage of the representative set. In particular,

given the definition of similarity, if item x j satisfies simΨ (xi ,x j ),
x j is said to be covered by the item xi . Consequently, we can
define the coverage of a set of items as follows:

Definition 5. Coverage – Given a set of original answers RQ
and a representative result set R, where R ⊆ RQ , the coverage

of R corresponds to the percentage of items in RQ that satisfies

simΨ (xi ,x j ), such that xi ∈ R and x j ∈ RQ .

2.2 Diversi�ed Top-k (DT-k) Problem
Based on the above discussions and definitions, we name our

problem the Diversified Top-k (DT-k) problem.

2.2.1 Problem Formulation. Consider a database DB that con-

sists of N data items distributed over a multi-dimensional space

with mixed numeric and categorical dimensions. Given a query

Q and its corresponding initial results set RQ over DB, the de-
sired result cardinality of k , a utility functionU (x ), and a set of

diversity constraints Ψ, the solution of DT-k produces a k-sized

representative subset R from the original results RQ , whose rele-
vance, according toU (x ) is maximum, while satisfying the set of

diversity constraints Ψ.
We name the above k-sized subset of representative results as

Diversified Top-k (DT-k) set.

2.2.2 Problem Complexity. Finding the optimal DT-k Set for

the Diversified Top-k problem is computationally hard, which

can be shown by mapping it to the well-known Maximum-weight
Independent Set problem [1]. We can achieve the mapping by

forming a graph ofG that corresponds to the original results RQ .

Each data item xi in RQ maps to a vertex vi in G. An edge e is
added between two vertices vi and vj if the distance between
these two vertices is close enough such that not all diversity

constraints are satisfied, and the intensity value Ixi of an item xi
represents the weights of the corresponding vertex in G. Some

tractable solutions have been proposed in the literature [18, 21],

but these solutions require either a very specific type of graph

(e.g., Outerstring graphs) or have strict restrictions (e.g., sparsity,

outcome degree of each vertex). Thus, they are not practical in

our environment.

2.2.3 Secondary Objective. As discussed above, coverage is

another important aspect of result diversification, which is de-

pendent completely on the diversity threshold specified inside

each diversity constraint. Given that diversity constraints are

typically defined by the user, this may lead to sub-optimal results

if the user fails to define reasonable constraints. Consequently,

our secondary objective is to address this challenge by automati-

cally adapting the diversity constraints based on the type of the

query being performed and the initial result set. Later, in Section

3.4, we will present a general optimization that helps determine

the most suitable diversity constraints for different user queries.

3 PREFDIV ALGORITHMS
In this section, we introduce our solution to the Diversified Top-k

problem. First, we start with the discussion of a naive approach

to the problem and then propose our solution to this problem,

namely, Preferential Diversity (PrefDiv) algorithm. Finally, we

discuss some optimizations that improve the effectiveness of our

proposed PrefDiv algorithm and reduce its number of tunable

parameters.

3.1 Naive Solution
Before we discuss our solutions, one naive solution to the Diver-

sified Top-k problem work as follows: given a new user query

ALGORITHM 1: PrefDiv
Require:
1: Initial result set RQ , result cardinality k , relevance

parameter A, a set of diversity constraints Ψ
Ensure:
2: One subset R of RQ
3: T ← ∅

4: while exists unexamined items in RQ and |R | < k do
5: T ← Pick k items with highest intensity from RQ
6: for all xi ∈ T do
7: if DissimΨ (xi ,x j ) : ∀x j ∈ R then
8: R ← R ∪ xi
9: else
10: Mark xi as “redundant"

11: while number of promoted items in R from T < A ∗ k do
12: R ← R ∪ xmax , s.t., xmax is marked &

∀x j ∈ T , Ixmax ≥ Ix j
13: T ← T − xmax

14: A ← A/2
15: RQ = RQ −T

16: Return R

Q , a k , a set of initial results RQ = {x1, ...,xt }, a utility function

U (x ) and a set of diversity constraints Ψ, for each item in RQ of

q, we first compute and sort each item in RQ according to the

intensity value computed by theU (x ). We pick the item xi ∈ RQ
with the highest intensity value; for each remaining items x j in
RQ , we mark them as “Eliminated” if they are similar to the xi
(i.e., simΨ (xi ,x j )). We then add xi into the final result set R and

remove xi from RQ . Afterwards, a new unmarked item with the

highest intensity value will be picked from RQ , and the previous

steps will be repeated until either |R | = k or all remaining items

in |RQ | are marked as “Eliminated”.

This naive solution is a greedy approach that will eventually

produce a set of items that satisfy all diversity constraints with

relatively high-intensity values. Clearly, the naive solution is

computationally expensive, especially when the size of RQ is

large. Furthermore, it does not guarantee the resulting set to

contain at least k items. However, we use this naive solution as a

foundation and propose an efficient online solution that achieves

better performance with much less computational cost.

3.2 Preferential Diversity
Our Preferential Diversity algorithm is an online solution for

the DT-k problem. As discussed in the previous section, finding

the optimal solution to the DT-k problem is computationally

expensive. Thus we chose a greedy approach in the PrefDiv

design. To maximize the efficiency of PrefDiv, we need to develop

it as an online algorithm that accesses database tuples (i.e., items)

incrementally. The main idea underlying PrefDiv is minimizing

as much as possible the number of data items being examined.

PrefDiv builds the DT-k set R by starting with a set of k highest

ranked data item (with respect to the relevance score/intensity

value), and then gradually replacing items that fail the diversity

constraints with slightly less relevant but diverse items outside

of R that satisfy the diversity constraints. This process continues

until all items in R satisfy the specified diversity constraints.

One potential issue is that relevant items in the DT-k set tend

to be similar to each other. Thus strictly enforcing diversity con-

straints may eliminate too many items that are highly beneficial

to the user. To address this issue, we propose a relevance parame-
ter A that allows PrefDiv to produce representative results with

partial diversity. When A = 1, R would simply be the top k items

from the initial set, i.e., the items with the k highest intensity













Figure 17: Relevance VS. Diversity (NYC).

Figure 18: Relevance VS. Diversity (SF).

Figure 19: Relevance VS. Diversity (Cameras).

5.1 Relevance Ranking Techniques
Many ranking techniques using preference have been proposed.

These are comprehensively surveyed in Stefanidis et al. [33]. As

mentioned above, these techniques can be distinguished based

on the type of preferences they support for filtering and order-

ing data. These techniques primarily handle only one type of

preference, either quantitative or qualitative. However, each pref-

erence type has its own advantages and disadvantages. Hybrid

schemes that support both qualitative and quantitative prefer-

ences have been proposed in an attempt to exploit the advantages

of both types of preferences while eliminating their disadvan-

tages [17, 22]. In this work, our proposed algorithms can work

with any existing relevance ranking model that returns a set of

sorted tuples/objects along with their scores/intensity values.

More recently, in [6], the author studied the problem of produc-

ing rankings while preserving a given set of fairness constraints.

In particular, the proposed algorithm takes as input, a utility func-

tion, a collection of sensitive attributes (e.g., gender, race), and a

collection of fairness constraints that restrict the number of items

with each sensitive attribute that are allowed to appear in the

final results. It outputs a ranking that maximizes the relevance

with respect to the given utility function while respecting the fair-

ness constraints. As mentioned previously, our proposed PrefDiv

algorithms can leverage any existing relevance ranking model.

Therefore, in the case where the required sensitive attributes and

fairness constraints can be provided by the user, PrefDiv can be

used in conjunction with the ranking produced in [6].

5.2 Diversity Techniques
Result diversification has been studied in many different contexts

and with various definitions [10], such as similarity, semantic

coverage [2], and novelty [8]. In our work, we focus on the simi-

larity definition and use MaxMin and MaxSum, which are two

widely used diversification models, as baselines.

The goal of these two diversification models is to select a

subset S from the object space R, so that the minimum or the

total pairwise distances of objects in S is maximized. Recently, a

number of variations of the MaxMin and MaxSum diversification

models have also been proposed (e.g., [9, 25]) to address the

problem of diversifying continuous data. Formally, MaxMin and

MaxSum are defined as follows:

Definition 8. MaxMin generates a subset ofR withmaximum

f = minpi ,pj ∈Sdt (pi ,pj ) where dt is some distance function

pi , pj for all subsets with the same size.

Definition 9. MaxSum generates a subset of R with maxi-

mum f = Σoi ,oj ∈Sdt (oi ,oj ) where dt is some distance function

oi , oj for all subsets with the same size.

DisC Diversity [10] is the most recently proposed diversity

framework and solves the diversification problem from a different

perspective. In DisC Diversity, the number of retrieved diverse

results is not an input parameter. Instead, users define the desired

degree of diversification in terms of a tuning parameter r (radius).
DisC Diversity considers two objects oi and oj in the query result

R to be similar objects if the distance between oi and oj is less
than or equal to a tuning parameter r (radius). It selects the

representative subset S ∈ R according to the following conditions:

(1) For any objects in R, there should be at least one similar

object in S ; and (2) All objects in S should be dissimilar to each

other. These two conditions ensure both the coverage and the

dissimilarity property of a diverse result set.

In addition, DisC Diversity also introduces two problems, Cov-
ering and CoveredBy [11]. These can be used to model the issue

of generating a representative result set that is both diverse and

relevant to a user’s individual preference (without using prefer-

ences). The Covering problem is used to model the case where

users want highly relevant items to cover a large area around

them. In order to achieve this goal, a relatively larger radius is

assigned to items with larger weights. The CoveredBy problem is

used to model a case where a user wants to see more relevant ob-

jects. In that case, a smaller radius is assigned to items with larger

weights. These two problems together illustrate the possibility

of using DisC to handle relevance together with diversity.



The key differences between PrefDiv algorithms and DisC

Diversity are: (1) PrefDiv algorithms follow the Top-k paradigm,

which provides users with the option to specify the size of the

final result set by assigning a value to parameter k , whereas
DisC Diversity adjusts the size of the result set by changing its

radius parameter r . (2) The PrefDiv algorithms focus on both the

relevance of the result set with respect to the users’ preference

and the diversity of the result set. DisC Diversity focuses mainly

on the most diverse representative subset with two scenarios that

only illustrate the possibility of using DisC Diversity to handle

such relevance-aware diversity requests; however, they do not

mention any specific strategies on how one can dynamically

change r with respect to Covering or CoveredBy. In addition, our

implementation of PrefDiv-PR eliminates the need for identifying

r (i.e., diversity threshold) manually by automatically finding the

most suitable diversity threshold under any given situation.

Another way to generate a diverse, representative set of results

is through clustering. One example of this would be k-Medoids,
which is a well-known clustering algorithm that attempts to

minimize the distance between points in a cluster and the center

point (medoid element) of that cluster. The k-Medoids algorithm

can be classified into two stages: In its first stage, it generates

a set of k clusters C = {c1, c2, ..., ck} based on some distance

function dt . In the second stage, one element from each cluster

is selected to be part of the result set R. Several strategies for
selecting an element from each cluster could be employed. For

instance, one strategy is to choose the center point of each cluster

that is expected to deliver high diversity, and another strategy

would be to choose the point that has the highest intensity value

for each cluster. However, since there is no parameter that can be

tuned, either manually or automatically, to balance the trade-off

between relevance and diversity, k-Medoids is unable to balance

such a trade-off in fine granularity.

5.3 Multi-Criteria Objective Optimization
In the past, diversification and retrieval of relevant results have

often been studied together as a multi-objective optimization

problem with two objectives, where the first objective is rele-

vance, and the second objective is dissimilarity [38]. The follow-

ing are some representative techniques that are related to our

work.

In [27], the authors considered the optimization of the diversi-

fied Top-K problem as finding the optimal solution for the maxi-

mum weight independent set problem, which has been proven

to be an NP-hard problem. The authors proposed an approach,

called div-astar, which uses a diversity graph that consists of N

nodes, where each node corresponds to one item in the original

data. This diversity graph is sorted according to the relevance

score, and an a∗
algorithm is used to find the optimal solution

for diversifying Top-K Results. In addition to the div-astar solu-

tion, two enhancements have also been proposed, called div-dp
and div-cut: div-dp takes advantage of dynamic programming to

divide the initial graph into disconnected components, and div-

cut is a cutpoint-based approach that further decomposes each

disconnected component based on loosely connected sub-graphs.

PrefDiv algorithms are different from div-astar [27] (Section 5.3),

in that the main objective of div-astar is to find the exact solution

for the maximum weight independent set; hence, even with all

the enhancements and decompositions, each sub-problem is still

NP-hard. On the other hand, although PrefDiv algorithms also

consider the maximumweight independent set problem as part of

the algorithm, they take advantage of greedy approximation with

a relaxed constraint, which allows similar items to be included in

the result set if the relevance distribution of the original data can

be better reflected in the resulting set. Furthermore, such relaxed

constraints allow PrefDiv to be more practical for border usage,

especially for tasks that require a short response time.

One widely used approach that was targeted directly at opti-

mizing the trade-off between diversity and relevance was intro-

duced by [5]. In this work, the authors proposed the famous twin-

objective function called Maximal Marginal Relevance (MMR),

which combines both relevance and diversity aspects in a single,

comprehensive objective function. Formally, MMR defines its

objective function as:

argmax

Di ∈R\S
[λ(Sim1 (Di ,Q ) − (1 − λ) max

D j ∈S
Sim2 (Di ,D j ))] (3)

Where λ is a scaling factor that specifies the preference between

relevance and diversity. When λ = 1, the MMR function equals a

standard relevance ranking function. When λ = 0, it computes

a maximal diversity ranking. Comparing PrefDiv to MMR [5]

approach, one can clearly see the difference: there are no compre-

hensive objective functions being used in the PrefDiv algorithms.

Our approach addresses the combined problem of relevance and

diversity through a combination of multiple steps, rather than

solving it in one single function.

Recently, a new bi-criteria objective optimization approach

based on MMR has been proposed [19]. This approach integrates

regret minimization with traditional MMR to generate a new rele-

vance score that takes into consideration the case of minimizing

the disappointment of users when they see k representative tu-

ples rather than the whole database. In this work, the authors

proposed two approximation algorithms called ReDi-Greedy and

ReDi-SWAP, which find the set of items consisting of k items

having the highest score with respect to their MMR function.

In [32], the author has conducted a study on personalized,

keyword-based search over relational databases, which includes

the notion of diversity and coverage. Specifically, the author

provided good discussions on modeling the relevance, user pref-

erences, diversity, and coverage for keyword-based searches over

relational databases by means of Join Tree of Tuples. Join Tree

are trees of tuples connected through primary to foreign key

dependencies. However, PrefDiv algorithms assume that a utility

function F is given in advance to reflect the relevance and user

preference, and thus does not focus on modeling the relevance

and user preferences. Furthermore, PrefDiv algorithms are gen-

eral, post-processing techniques for result diversification, and

hence, do not restrict themselves to the keyword-based search

over relational database settings. As long as proper utility func-

tions and distance measures are given, PrefDiv algorithms can

be applied to any data types (e.g., structured, unstructured, semi-

structured). Consequently, the definition of coverage in [32] is

also different than the definition of coverage in this work.Wheres

[32] focuses on covering more user intents based on user pro-

files, PrefDiv algorithms focus on the proximity between the

representative results and original results.

Swap is another recent Top-K diversification technique that is

related to ours [37]; Swap starts with K items with the highest

relevance scores. Among these K items, Swap picks an item with

the lowest contribution to the diversity of the entire set, then

swaps this item with the item that has the next highest relevance

score. A candidate is successfully swapped with one of the items

in the Top-K set if and only if it can contribute more in terms

of the overall diversity of the result set. In order to preserve

the relevance aspect, Swap introduces an optional pre-defined

threshold called UB that specifies how much decrease in rele-

vance can be tolerated.UB can serve as a terminal condition that

stops the algorithm when the item with the highest relevance

among the remaining set is no longer high enough for the algo-

rithm to perform a swap operation. Our PrefDiv is different from

the Swap, as Swap seeks diversity through pairwise distances of

items among the result set, filters out items that contribute less

to diversity, and ensures relevance by throwing out items that

cause the relevance to drop below the pre-defined threshold. In

contrast, PrefDiv algorithms seek diversity by eliminating simi-

lar items and ensuring relevance by using a relevance-focused



greedy algorithm along with proportionality, which can reflect

the relevance distribution of the original domain.

5.4 Data Summarization
Some recent works [24, 36] have studied the problem of provid-

ing interactive exploration and summarization support for tuples

in a given table. The goal of this type of approach is to produce

an informative hierarchy that organizes the underlying tuples

essentially in k clusters. In order to display tuples as clusters,

each cluster is folded into a single, representative tuple, with

only the common attribute values among all members of the

cluster being displayed. The rest of the attributes are shown as

“?”, which indicates that there are objects with different values

with respect to these attributes inside the cluster. To explore each

cluster, the user can gradually expand each “?” symbol contained

in the current representative tuple of a cluster. Each time the user

expands a “?" symbol, more tuples that contain a different value

with respect to the corresponding attributes will be displayed.

Clearly, these works are different than ours. We focus on produc-

ing a representative subset that is most informative to the user

with adjustable size, rather than summaries of subsets of a table.

5.5 Impacts of PrefDiv
The efficiency of PrefDiv and its ability to balance the trade-

offs between relevance, diversity, and coverage have already

benefited the design of some real-world systems that need to

produce highly informative representative subsets, or require

interactive efficiency in producing the representative results (e.g.,

[14–16, 28, 29]) .

One example is a novel mobile recommendation service that

provides a set of diverse points-of-interest (POI’s) recommenda-

tions [14–16], where the interactive efficiency has been weighted

equally important as the quality of the produced recommenda-

tions.

Another example is in the scientific domain and dimensionality

reduction, which PrefDiv has been employ as a novel way to se-

lect subsets of highly informative dimensions for high-dimensional

gene expression datasets [28, 29]. Those selected dimensions will

then be used to enable effective downstream analysis in a variety

of medical and bioinformatics researche.

6 CONCLUSIONS
Scalability from a human point of view is a very challenging

problem as it consists of finding the perfect balance between

the conflicting objectives of relevance and diversity. Traditional

top-k result diversification approaches focus on producing a

subset of results that balance the trade-off between selecting

highly relevant items and items that are dissimilar with respect

to each other. In order to achieve the above-mentioned objectives,

most algorithms rely on a number of tunable control parameters,

making them harder to configure (and be adopted). Coverage

is another important factor of diversity, which has been mostly

ignored in previous top-k result diversification algorithms.

In this work, we addressed these problems and proposed an

efficient online solution called Preferential Diversity (PrefDiv).

PrefDiv produces a set of high-quality representative items from a

large set of initial answers, where each representative item is cho-

sen to optimize both the relevance and diversity (i.e., dissimilarity,

and coverage). We also proposed a number of optimizations that

further improve PrefDiv’s usability, efficiency, and effectiveness.

We theoretically analyzed and experimentally compared our al-

gorithms to the state-of-the-art, top-k diversification algorithms.

Our evaluation showed that our algorithms achieve similar per-

formance in terms of normalized relevance, but outperforms the

state-of-the-art algorithms in terms of coverage by a noticeable

margin, while achieving a speedup of the runtime up to two

orders of magnitude.
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