
Zooming Out on an Evolving Graph
Amir Aghasadeghi
New York University
amirpouya@nyu.edu

Vera Z. Mo�tt
Drexel University

zaychik@drexel.edu

Sebastian Schelter
New York University
ss12727@nyu.edu

Julia Stoyanovich∗
New York University
stoyanovich@nyu.edu

ABSTRACT
An evolving graph maintains the history of changes of graph
topology and attribute values over time. Such a graph has a
speci�c temporal and structural resolution. It is often useful to
modify this resolution during analysis, for example, to consider
communities rather than individual nodes, or to quantify changes
at the level of days rather than hours.

We propose attribute-based zoom and temporal window-based
zoom — two operators that support exploratory analysis of an
evolving graph at di�erent levels of resolution. We develop sev-
eral alternative physical representations of an evolving property
graph — a temporal generalization of a property graph — and
detail how to implement the proposed zoom operators using
data�ow operations. These di�erent physical representations
allow us to explore the trade-o�s in temporal and structural lo-
cality with respect to the performance of the zoom operators.
We implement the operators in Apache Spark, evaluate them
on real evolving graph datasets, and demonstrate scalability to
billion-edge graphs.

1 INTRODUCTION
Many social structures and systems can be represented as net-
works or graphs. The phenomena that are represented by these
graphs can change over time, and therefore, many interesting
questions about these graphs are related to their evolution rather
than to their static state. Researchers study graph evolution rate
and mechanisms [1, 9], the impact of speci�c events on further
evolution [8, 39] and spatio-temporal patterns [27, 28], with most
progress taking place in the last decade [24, 35, 37, 38, 40].

Our focus in this paper is on a temporal generalization of a
property graph, called TGraph, whichwe recently introduced [37].
Figure 1 shows an example — an interaction network in which
nodes represent people, and, for the students among them, in-
clude information about a school at which they are enrolled,
while edges represent co-authorship. As in conventional prop-
erty graphs [3], nodes and edges of a TGraph are associated with
a set of key-value pairs that represent an assignment of values to
attributes. In addition, TGraph associates a time interval (repre-
senting a set of discrete consecutive time points) with each state
of a node or edge. For example, a person node Ann exists, and is
enrolled at MIT, during the interval T = [1, 7).

TGraph maintains the history of changes of graph topology
and attribute values over time. It has a speci�c temporal and struc-
tural resolution, which users often want to modify for exploratory
analysis, for example, to look at communities rather than indi-
vidual nodes, or to quantify changes at the level of days rather
than hours. In this paper we focus on two operators, aZoomT and
wZoomT , that allow us to change the structural and temporal

∗This work was supported in part by NSF Grant No. 1916505.

© 2020 Copyright held by the owner/author(s). Published in Proceedings of the
23rd International Conference on Extending Database Technology (EDBT), March
30-April 2, 2020, ISBN 978-3-89318-083-7 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

resolution of a TGraph, respectively. These operators are part
of a compositional evolving graph algebra called TGA, which
we presented in [37], that operates under point semantics [5].1 A
consequence of these semantics is that the TGraph must remain
temporally coalesced — vertices and edges in the output of an
operator must be associated with time periods of maximal length
during which no change occurred.
Attribute-based zoom (aZoomT). We may be interested in an-
alyzing evolving graphs at di�erent levels of structural resolution,
to study properties and behavior of individual nodes, of commu-
nities, and of the graph as a whole. An operation that achieves
this, known as node creation, is present in several conventional
(non-temporal) graph query languages [14, 21, 32, 42]. Our fo-
cus is on a temporal generalization of this operation for graphs,
called temporal attribute-based zoom, or aZoomT for short.

Consider TGraph G1 in Figure 1, where school names are
represented as values of the school property of person nodes.
aZoomT computes the TGraph in Figure 2, where schools become
nodes (actors) rather than values.

aZoomT is evaluated over a TGraph under point semantics and,
speci�cally, under the principle of snapshot reducibility [5]: we
evaluate the non-temporal variant of the operator over each state
of the graph (also known as a “snapshot”), and then apply tempo-
ral coalescing [4] to represent each vertex or edge in the result
with a single fact, corresponding to the longest interval during
which no change occurred. aZoomT is described in Section 2.2.
Temporal window-based zoom (wZoomT). This operator
changes the temporal resolution of a TGraph. This operation is
important because it may not be known a priori, at the time when
graph evolution is being recorded, at what time scale interesting
trends can be observed. For example, changes in node centrality
in a social network may be observable on the scale of weeks
but not months. Understanding at what temporal resolution to
consider network evolution is an integral part of exploratory
analysis. Let us return to our running example in Figure 1, and
assume that time points represent months of 2019. We may zoom
out on G1 temporally, to 3-month windows, retaining nodes and
edges in the result for a particular time window that were present
in the input during all time points of the window. The result is
presented in Figure 3, and described in more detail in Section 2.3.

Next, we explore di�erent physical representations to answer
the following questions: (i)How should we represent a TGraph to
compute the result of aZoomT and wZoomT e�ciently? Should
we use a snapshot-based representation, storing graph evolution
as a sequence of conventional graphs, that is easy to parallelize
but lacks compactness, or should we leverage a more compact
representation, as suggested by Figure 1? (ii)What representation
should we use to e�ciently execute a sequence of these operators?
We address these questions, making the following contributions:
• We propose di�erent physical representations of a TGraph
and detail how to de�ne aZoomT and wZoomT using data�ow
operations for these representations (Section 3).

1The focus of [37] is on de�ning the TGraph model and algebra, while this paper
focuses on system and implementation aspects.

10.5441/002/edbt.2020.04

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2020.04

Figure 1: Evolving property graph (TGraph) G1.

• Wedescribe how to e�ciently implement aZoomT andwZoomT

in Apache Spark (Section 4).
• Weconduct an extensive experimental evaluation of aZoomT and
wZoomT and demonstrate scalability to billion-edge graphs.
We �nd that a physical representation that balances temporal
and structural locality outperforms other representations in
most cases (Section 5).

2 TGRAPH MODEL AND ZOOM OPERATORS
Weprovide the background on the evolving property graphmodel
called TGraph, and de�ne the operators aZoomT andwZoomT that
take a valid TGraph as input, and output a TGraph.

2.1 Evolving property graphs
In [37] we proposed a logical model of an evolving graph called
TGraph that represents a single graph (such as theWeb, or a large
collaboration network), and models the evolution of its topology,
and vertex and edge properties. A TGraph is a directed multi-
graph: its nodes and edges have identity, and multiple edges may
connect a given pair of nodes. Each entity (node and edge) has
a required type label, and is associated with a (possibly empty)
set of key-value pairs that represent its properties, each in the
form of a property label (key) and a corresponding value. The set
of properties for an entity is not �xed: it can be di�erent among
entities of the same type, and for the same entity over time.

We now recall the de�nition of TGraph from [37], simplifying
it slightly. This de�nition extends the static property graph de�-
nition of Angles et al. [3] by associating periods of validity with
graph nodes, edges, and their properties. Time is drawn from a
linearly ordered discrete domain ΩT .

De�nition 2.1. A TGraph G = (V , E, L, ρ, ξT , λT) is a six-tuple:
• V is a �nite set of nodes (or vertices), E is a �nite set of edges,
V ∩ E = ∅, and L is a �nite set of property labels;
• ρ : E → (V × V) is a total function that maps an edge to its
source and destination nodes;
• ξT : (V ∪ E) × ΩT → B is a total function that maps a node or
an edge and time point to a Boolean, indicating existence of
the node or edge at that time point; and
• λT : (V ∪ E) × L × ΩT → val is a partial function that maps a
node or an edge, a property label, and a time point to a value
of the property at that time point.

A valid TGraph conceptually corresponds to a sequence of
valid conventional (non-temporal) graphs. This imposes the fol-
lowing conditions: (i) a condition on ξT that an edge can only
exist at a time when both of the nodes it connects exist; and (ii)
a condition on λT that a property can only take on a value at a
time when the corresponding node or edge exists. Finally, we
require that the property set of an entity not be empty at any
time point when it exists. Practically, we require that each node
and edge assign a value to a property called type.

De�nition 2.1 associates graph nodes, edges and attribute val-
ues with time points. In the remainder of this paper, we will rep-
resent temporally adjacent time points by intervals, for syntactic
compactness, as illustrated in Figure 1. Following the SQL:2011

Figure 2: Result of aZoomT over G1 (Figure 1). Semanti-
cally, this operation is executed over every snapshot of
G1 to: (i) create school nodes for each value of the school
property of person nodes in G1; (ii) count the number of
persons enrolled at a school, set the value of the student
property of the school node to that count; (iii) create edges
of type collaborate between school nodes for which co-
author edges were present in G1; and (iv) temporally coa-
lesce the result across snapshots, due to point semantics.

standard, we use closed-open intervals, representing a discrete
contiguous set of time points from ΩT . This representation does
not add expressiveness to a point-based representation, and is
purely a syntactic device [10].

We now describe aZoomT and wZoomT in detail using our
running example, and refer to [37] for a formal treatment.

2.2 Attribute-Based Zoom
Temporal attribute-based zoom, denoted aZoomT , is a temporal
generalization of the graph node creation operation [42]. Node
creation over non-temporal graphs takes a graph pattern as input,
and computes a new node for each occurrence of a match of
the pattern in the input. To assign identity to new nodes, it is
customary to extend this operation with a Skolem function fs .
aZoomTwill similarly create nodes in the output TGraph from
disjoint groups of nodes in the input, such that nodes within a
group agree on the values of all grouping attributes.

Conceptually, aZoomT is executed over every snapshot of the
input TGraph, and new nodes are assigned identity by a Skolem
function fs , which generates consistent assignments across time.
In addition to creating new nodes, aZoomTwill also optionally
compute values of node attributes using the aggregation function
faдд , including count, sum, min, max, average, and user-speci�ed
functions that are required to be commutative and associative.
Next, aZoomT computes edges as follows. Suppose that input
nodes n and n′ corresponds to output nodesд andд′, respectively,
and that edge e connects n to n′. Then, the output will contain
the edge e , with д as its source and д′ as its target. Essentially,
the input edge is re-created in the output, and re-pointed.

Node creation, computation of node attribute values, and re-
pointing of the edges, is executed over each snapshot of the input
TGraph, under point semantics. As the �nal step, the result is
then coalesced, associating a time interval of maximal length
during which no change occurred with every newly-computed
node and edge. We now illustrate aZoomTwith an example.

Example 2.2. Node Ann in Figure 1 is associated with a closed-
open interval T = [1, 7), signifying that the node existed in the
graph for six consecutive time points with no change. Bob exists
in the graph during T = [2, 9), but with a change to its attributes
at time 5, when school=CMU was added. School names are
represented as values of the school property of person nodes.

We invoke aZoomT to compute from G1 a TGraph where
schools become nodes rather than values, as shown in Figure 2

Bitset (b): T={[1,2),[2,7),[7,9)}
Vertices (V) Edges (E)
v b e v1 v2 b

Ann [1, 1, 0] e1 Ann Bob [0, 1, 0]
Bob [0, 1, 1] e2 Bob Cat [0, 0, 1]
Cat [1, 1, 1]

Figure 7: One Graph Column (OGC): nested relational rep-
resentation of the TGraph G1 of Figure 1. Vertices (V) and
Edges (E) are temporally coalesced. Bitsets represent va-
lidity during periods of T={[1,2),[2,7),[7,9)}.

takes the vertex id and all attributes as an input and produces a
long identi�er as output. We additionally apply the commutative
and associative aggregation function faдд to resolve cases where
we have a series of vertices with identical identi�ers but multiple
values for the same attribute in the same snapshot. This is an
important step that ensures that each snapshot in the result
corresponds to a valid graph (see [36] for details).
RG. Recall thatRG maintains a collection of snapshots. We apply
the same set of operations in an embarrassingly parallel manner
to each snapshot, as there are no dependencies between them in
this case (Algorithm 1). We iterate over each snapshot (lines 3-10)
and return an RG (line 11) containing the aZoomT result. We
apply fs to each vertex using amap (line 5) in order to compute a
new identi�er for each vertex. The copyWithVid function updates
each vertex identi�er while keeping other attributes unchanged.
We then group vertices by id (line 7) and apply the aggregation
function faдд (line 8).

To redirect edges to the newly created vertices, we apply the
function fs to the vertices v1 and v2 of each edge in a map (line 9).
The copyWithVids function updates the id of the vertices to the
new identi�ers. The edges contain a copy of their source and
target vertices in RG, which obliviates the need for a join here.

Algorithm 1 aZoomT over RG
Require: Skolem function fs : V ⇒ N; Aggregation function faдд :

V ×V ⇒ V
1: newSnapshots ← �
2: .Aggregate each snapshot
3: for (V ,E) in graph.snapshots do
4: V ′ ← V .Update of vertex identi�ers
5: .map{v ⇒ v .copyWithVid(fs (v))}
6: .Vertex aggregation for identity-equivalence
7: .groupBy{v ⇒ v .vid }
8: .reduce{(va , vb) ⇒ faдд (va , vb)}

.Edge redirection to new vertices
9: E′ ← E .map{e ⇒ e .copyWithVids(fs (e .v1), fs (e .v2))}
10: Add (V ′, E′) to newSnaphots
11: return new TGraph G(newSnapshots)

VE. VE consists of two temporal relational tables for vertices
and edges, which contain tuples for each vertex or edge history.
Algorithm 2 details our implementation of aZoomT for VE. We
�rst calculate non-overlapping intervals (lines 2-5) based on the
temporal splitter concept introduced in [11]. We join intervals
and vertices (lines 7- 9), assign new identi�ers (line 10), and
enforce identity-equivalence in each interval with the aggrega-
tion function (line 12). Since VE edges only contain a foreign
key to the corresponding vertices, we need to join the edges

with their corresponding vertices for the edge redirection pro-
cess (lines 14 and 15), before we can apply the fs function to each
corresponding vertex to redirect the edge (line 18).

Algorithm 2 aZoomT over VE
Require: Skolem function fs : V ⇒ N; Aggregation function faдд :

V ×V ⇒ V
1: I ← V .Non-overlapping intervals for each new vertex identi�er
2: .map{v ⇒ (fs (v), v .interval)}
3: .groupBy{(vid , _) ⇒ vid }
4: .foldLeft(EmptyInterval)
5: {(i , v) ⇒ mergeNonOverlapping(i , v .interval)}
6: V ′ ← V .Vertex aggregation for non-overlapping intervals
7: .join(I).on{(v , id) ⇒ v .id == i .vid }
8: .�atMap{(v , i) ⇒ verticesForIntervals(v , i)}
9: .map{(v , i) ⇒
10: v .copyWithIdAndInterval(fs (v), i) }
11: .groupBy{v ⇒ v .id }
12: .reduce{(va , vb) ⇒ faдд (va , vb)}

13: E′ ← E .Edge redirection to new vertices
14: .join(V).on{(e , v) ⇒ e .vid1 == v .id }
15: .join(V).on{((e , _), v) ⇒ e .vid2 == v .id }
16: .map{(e , v1, v2) ⇒
17: i ← recomputeInterval(e , v1, v2)
18: e .copyWithVidsAndInterval(fs (v1), fs (v2), i) }

return new TGraph G(V ′, E′)

OG. We implement aZoomT for One Graph (OG) analogously to
RG, with the di�erence that we compute over the entire TGraph
rather than over each individual snapshot (Algorithm 3). We split
each vertex in OG based on its history, and apply the fs func-
tion to each element of the history array individually. We use a
flatMap function on vertices combined with a map on the his-
tory elements of each vertex for this (lines 1-3). We again enforce
identity-equivalencewith our aggregation function (lines 4 and 5).
The vertext computation portion of Algorithm 3 is illustrated in
Figure �g:az-og. For edge redirection inOG, we split the edges by
expanding the history of each corresponding vertex in that edge,
as OG stores each edge only once. Next, we apply the Skolem
function fs to each element of the history (line 6-9).

Algorithm 3 aZoomT over OG
Require: Skolem function fs : V ⇒ N; Aggregation function faдд :

V ×V ⇒ V
1: V ′ ← V .�atMap{v ⇒
2: v .history .map{(_, attr) ⇒
3: v .copyWithIdAndAttributes(fs (v .vid), attr) }}
4: .groupBy{v ⇒ v .vid }
5: .reduce{(va , vb) => faдд (va , vb)}

6: E′ ← E .map{e ⇒
7: h ← recompute_history(e)
8: e .copyWithVidsAndHistory(fs (e .v1.vid),
9: fs (e .v2.vid), h)}

return new TGraph G(V ′, E′)

OGC does not represent attributes and so does not support
aZoomT .

3.2 Temporal Window-Based Zoom
As we did for aZoomT , we express wZoomT di�erently for each
representation, with some common aspects. The �rst step is to

Figure 8: Illustration of the vertex computation portion of Algorithm 3, aZoomT , over TGraph in Figure 6, with count as
faдд . The �rst two steps correspond to the call to flatMap on lines 1-3: splitting nodes based on their history array, and
then calling the Skolem function fs to generate ids for new nodes. In this example, fs outputs the value of the school
property. The next step groups vertices by id (line 4). The �nal step (line 5) applies the aggregation function count, storing
the computed value as a vertex property.

compute the temporal window relation based on the window
speci�cation. We split the total graph lifetime temporally by
applying the function computeNewIntervals to the graph. This
function takes an interval as an input and returns a tuple con-
taining the old and the recomputed interval.

A major di�erence to aZoomT is that the TGraph must be coa-
lesced before wZoomT can be applied, in order to guarantee the
correctness of the zoom operation. This is because aZoomT exe-
cutes over each snapshot (under snapshot reducibility), while the
computation of wZoomT is across snapshots. Consequently, if
the input to wZoomT is not coalesced, we cannot properly apply
existence quanti�ers and compute results of aggregation.

We additionally need to handle potential dangling edges for all
representations in wZoomT to ensure that every snapshot of the
resulting TGraph is a valid graph, as speci�ed in the condition
over ξT in De�nition 2.1. Recall that wZoomT supports the quan-
ti�ers all, most, at least n, and exists, which can be translated
to a threshold on the percentage of the time during which an
entity (a vertex or an edge) existed, relative to the duration of
the window: t = 1 for all, t > 0.5 for most, t > 0 for exists and
t > n for at least n. If an entity’s existence meets the threshold,
it will be retained in the result of the operation. A dangling edge
check is only required if rv is more restrictive than re , because
a particular edges may pass the check, but one or more of the
vertices it connects may not.

RG implements wZoomT as shown in Algorithm 4. We again
use the computeNewInteval function to compute the new inter-
vals based on the window speci�cation (line 2). Next, we apply
join, groupBy, and flatMap to map each vertex to one or more
snapshots from the speci�cation (lines 4-9). Then, vertices are
grouped by their id within each new interval (line 10). Next, we �l-
ter vertices and edges based on the existence quanti�er (line 11).
We apply the math_threshold function to vertices with their
respective thresholds (r) to �lter vertices that do not meet the
criteria of our quanti�er. Finally, we apply the resolve function
fv to compute the new attribute values (line 12). We treat edges
analogously (lines 14-18). At the end, we merge snapshots into a
TGraph and remove dangling edges.

VE implements wZoomT using Algorithm 5. Figure 9 illus-
trates this algorithm for vertex Bob from Figure 5. We �rst need
to calculate the new intervals using computeNewInterval (lines 2-
3). Then we join V with the intervals to align each vertex with
each temporal window (lines 4-6) to split the vertices. Next, we
group by interval and vertex (line 7), and �lter vertices that do
not pass the quanti�er threshold (line 8). Finally, we resolve the
vertices’ �nal attributes (line 12). We apply the same operations

Algorithm 4 wZoomT over RG
Require: resolve functions fv , fe ; quanti�ers rv , re
1: .Computation of new intervals
2: I ′ ← I .map{i ⇒ (i , computeNewInterval(i))}
3: .Grouping of snapshots by new interval
4: S ← G .snapshots .join(I ′)
5: .on{(s , interval) ⇒ s .i == interval .i }
6: .groupBy{(s , interval) ⇒ interval .newInterval }
7: .Aggregation of vertices for new snapshots
8: V ′ ← S .�atMap{(i , snapshot) ⇒
9: (i , snapshots .map{s ⇒ s .ver tices })}
10: .groupBy{(i , v) ⇒ (i , v .id)}
11: .�lter{(i , ver tices) ⇒ match_threshold(ver tices , rv)}

12: .reduceByKey{((va), (vb)) ⇒ fv (va , vb)}

13: .Aggregate edges for new snapshots
14: E′ ← S .�atMap{(i , snapshot) ⇒
15: (i , snapshots .map {s ⇒ s .edдes })}
16: .groupBy{(i , e) ⇒ (i , e .id)}
17: .�lter{(i , edдes) ⇒ match_threshold(edдes , re)}

18: .reduceByKey{((ea), (eb)) ⇒ fe (ea , eb)}
.Recreate RG representation

19: G′ ← merge(I ′,V ′, E′)

to edges (lines 11-18). We remove dangling edges (given that
rv > re) with two semijoins (lines 17-19).

OG implements wZoomT using Algorithm 6. Recall that in
OG each vertex stores its interval information in a history array.
We process each element of this array separately and rebuild
the array afterwards (lines 1-4) for this process. We �rst invoke
recomputeIntervals (line 2) to recompute the history array with
updated intervals. Next, we leverage the aggregateAndFilterAt-
tributes function (line 3) to group, �lter and resolve vertices
analogous to previous algorithms, and apply the same transfor-
mations to the edges as well (lines 5-8).

We again remove dangling edges with semijoins (lines 9-15).
The only di�erence here is that joining edges with vertices is not
enough, as we also need to update the history arrays. We achieve
this with a map function which updates every edge history with
the intersection of the edge history and the corresponding vertex
history (lines 12 and 15) using the copyWithHistory function.

OGC implements wZoomT similarly to OGC, but working
with a bitset instead of a history array. Removing dangling edges
in OGC is as simple as computing the logical and between the
edge bitset and the corresponding vertex bitsets.

Figure 9: Illustration of Algorithm 5, wZoomT , for vertex Bob in Figure 5, with window size 3 and last as fv . The �rst step
aligns each vertex with each temporal window (lines 4-6 of the algorithm). Next we create a single nested representation
of each vertex per window and compute rv , the fraction of the window during which the vertex was observed (line 7).
Finally, we �lter vertices by rv and resolve their attribute values with fv =last (lines 8, 9).

Algorithm 5 wZoomT over VE
Require: resolve functions fv , fe ; quanti�ers rv , re
1: .Computation of new intervals
2: I ′ ← I .map{ i ⇒ (i , computeNewInterval(i)) }
3: .Vertex aggregation for new intervals
4: V ′ ← V .join(I ′).on{ (v , (i , n)) ⇒ v .n == i }
5: .map { (v , (i , newInterval)) ⇒
6: v .copyWithNewInterval(newInterval)}
7: .groupBy{ v ⇒ (v .id , v .interval) }
8: .�lter{(i , ver tices) ⇒ match_threshold(ver tices , rv)}

9: .reduceByKey{((va), (vb)) ⇒ fv (va , vb)}

10: .Edge aggregation for new intervals
11: E′ ← E .join(I ′).on{ (e , (i , n)) ⇒ e .interval == n }
12: .map { (e , (i , newInterval)) ⇒
13: e .copyWithNewInterval(newInterval)}
14: .groupBy{ e ⇒ (e .id , e .interval) }
15: .�lter{(i , edдes) ⇒ match_threshold(edдes , re)}

16: .reduceByKey{((ea), (eb)) ⇒ fe (ea , eb)}

17: if rv > re then .Dangling edge removal
18: E′′ ← E′.semijoin(V ′)

.on{ (e , v) ⇒ e .vid1 == v .id and in_interval(e, v)}
19: E′′′ ← E′′.semijoin(V ′)

.on{ (e , v) ⇒ e .vid2 == v .id and in_interval(e, v)}
20: return new TGraph (V ′, E′′′)

Algorithm 6 wZoomT over OG
Require: resolve functions fv , fe ; quanti�ers rv , re
1: V ′ ← V .map{v ⇒
2: h ← recomputeIntervals(v .history)
3: h ← aggregateAndFilterAttributes(h, fv , rv)

4: v .copyWithHistory(h) }
5: E′ ← E .map{e ⇒
6: h ← recomputeIntervals(e .history)
7: h ← aggregateAndFilterAttributes(h, fe , re)

8: e .copyWithHistory(h) }
9: if rv > re then .Dangling edge removal
10: E′′ ← E′.semijoin(V ′)

.on{ (e , v) ⇒ e .vid1 == v .id and in_interval(e, v)}
11: .map{(e , v) ⇒
12: e .copyWithHistory(intersect(e .history, v .history)) }
13: E′′′ ← E′′.semijoin(V ′)

.on{ (e , v) ⇒ e .vid2 == v .id and in_interval(e, v)}
14: .map{(e , v) ⇒
15: e .copyWithHistory(intersect(e .history, v .history)) }
16: return new TGraph G(V ′, E′′)

4 IMPLEMENTATION
Wede�ned our zoomoperators in Section 3 using general data�ow
operations and UDFs that are implemented by a variety of popu-
lar systems. Apache Spark with GraphX [17] and Apache Flink
with Gelly [7] are natural candidates for such workloads, as is
Di�erential Data�ow [33]. We choose Apache Spark for our im-
plementation due to its maturity and popularity.

Our implementation includes a TGraph API, several graph rep-
resentations as discussed in Section 3, and several optimizations
such as lazy coalescing. Our API supports chaining multiple op-
erations together and switching between graph representations
during query execution.

The VE representation is implemented directly over Spark’s
Resilient Distributed Datasets (RDDs) [43] while RG, OG and
OGC leverage the GraphX library for static graphs [17]. We
use the long datatype to represent node and edge identi�ers to
maintain interoperability with GraphX.
GraphX-speci�c implementation details. GraphX implements
vertex-cut-based partitioning that reduces communication over-
head [17] for certain aggregations on graphs. GraphX also pro-
vides an optimized implementation of a distributed triplet view,
a concept originating from Resource Description Frameworks
(RDF) [31]. The triplet view provides fast access to each edge
and its corresponding source and destination vertex properties.
The triplet view requires a materialized three-way join, which
GraphX optimizes by implementing vertex-mirroring and a mul-
ticast join [17]. We leverage the implementation of the triplet
view to e�ciently access edges’ vertex attributes in RG, OG and
OGC. We implement RG as sequence of GraphX graphs, while
OG and OGC are modeled as a single GraphX graph. GraphX
mechanisms such as vertex-cut partitioning and the triplet view
enabled us to implement graph operations more e�ciently.
Data loading. The data is read from the Hadoop Distributed File
System (HDFS). Our on-disk data layout uses Apache Parquet, a
columnar data format for HDFS based on the Dremel project [34].
Apache Parquet does not have a mechanism for indexing, but it
supports �lter pushdown on any column by which the data is
sorted on disk. We store and load vertices and edges as separate
vertex and edge Parquet �les. The default schema to store a graph
on disk is similar to the VE schema described in Section 3. We
load two of our representations (VE and RG) from this format.
To apply a �lter pushdown, the data on disk need to be sorted.
For VE, we use the vertex/edge identi�er as the �rst sort key, and
the interval start time as the second key. Storing data in this way
preserves temporal locality, and places the history of changes
in a vertex or an edge together. Parquet does not support �lter
pushdown for datetime formats, hence we store time as UNIX
timestamps (long).

(a) WikiTalk

R NM NR OM
µ§¬¢­µ=±§¸£

M

O

Q

S

ld
ldJsb

sb
sbJld

(b) SNB:300

5 10 15 20
window size

0

5

10

15

OG
OG-VE

VE
VE-OG

(c) NGrams:M

Figure 16: aZoomT - wZoomT combination and switching
between memory representations. Fixed data size, group-
by cardinality and number of intervals, varying the size of
windows, node quanti�er ‘all’, edge quanti�er ‘all’.

5.3 Operation Chaining
In this section we chain together aZoomT to a wZoomT and in-
vestigate whether switching between representations improves
performance. Since OGC does not support attribute-based oper-
ation and due to the high memory usage and scalability issues of
RG, we only run our experiments on VE and OG.

In the �rst experiment we run aZoomT then wZoomTwith
di�erent windows sizes on WikiTalk, SNB:300 and NGrams:M.
For aZoomT onWikiTalk, we use edit count as the zoom attribute,
for SNB we use �rst name, and for NGrams we use the word
attribute. Figure 16 shows the results of this experiment. The
x-axis lists window sizes for wZoomT (in months for WikiTalk
and SNB, and in years for NGrams), while the y-axis denotes the
running time in minutes. Each line shows which representation
is used. On WikiTalk, OG is the winner while OG-VE, VE-OG
and VE are slightly slower. On SNB:300, VE-OG, and OG are
fastest, and OG-VE is slowest, followed by VE.

In the previous section we saw that VE performs slightly better
for aZoomT on SNB, and OG performs signi�cantly better for
wZoomT , so it makes sense for VE-OG and OG to show the
best performance and for VE and OG-VE to show the worst. For
NGrams, OG is the clear winner followed by OG-VE. The worst-
performing combination here is VE-OG, followed by VE. On
NGrams, OG performs signi�cantly better for both aZoomT and
wZoomT , and this can explain the results we are observing here.

In the next experiment we change the order of aZoomT and
wZoomT . While this reordering does not always produce the
same result, we can safely reorder the operations for WikiTalk
and SNB, since no attributes change in these datasets, and so
applying wZoomT or aZoomT �rst produces the same result with
the “exist“ quanti�er for both vertices and edges.

Figure 17 shows the e�ect of group-by cardinality onwZoomT -
aZoomT and aZoomT - wZoomT . In this experiments, we load
the full graph for each dataset, project each node attribute to a
random value based on group-by cardinality, and then perform
the operations, with window size set to 6 months for WikiTalk
and SNB, and 10 years for NGrams. We vary group-by cardinality
from 10 to 1 million. We observe an increase in the execution
time as the group-by cardinality increases, which we attribute
to the fact that aZoomT produces a larger intermediate graph
for cases where we perform aZoomT �rst. In contrast, we see
no signi�cant change in the execution time when wZoomT is
executed �rst. Interestingly, performingwZoomT �rst in NGrams
yields faster running time. Unlike in WikiTalk and SNB, vertices
in NGrams are not growth-only, and they also span over a longer

101 103 105

of groups

0.0

0.5

1.0

tim
e

(m
in

)

VE(wz-az)
OG(wz-az)

VE(az-wz)
OG(az-wz)

(a) WikiTalk (b) SNB:300 (c) NGrams:M

Figure 17: aZoomT andwZoomT performance for di�erent
group-by cardinalities with di�erent zoom orders. Fixed
data size and number of intervals. OG-based implementa-
tions perform best in most cases.

period of time.wZoomTwill reduce the number of snapshots and
vertex tuples, which explains why wZoomT - aZoomT is faster
than aZoomT - wZoomT .
Summary. We studied combining aZoomT and wZoomT for dif-
ferent combinations of parameters. Our experiments show that,
while OG alone performs best in most cases, switching between
representations does not signi�cantly a�ect the running time.
We also found that running aZoomT before wZoomT is fastest
for growth-only datasets.

5.4 Summary
In this section, we �rst studied the e�ects of data size, the number
of snapshots, the frequency of attribute change, and the group-by
cardinality on the running time of aZoomT . We observed that
OG is the best performing representation for aZoomT , followed
by VE. We showed that representing the TGraph as a sequence
of independent snapshots in RG results in the by far worst per-
formance. The second part of this section focused on wZoomT .
We varied graph size and window size, and observed that OGC
is the best-performing representation, followed by OG and VE.
RG again exhibited the worst performance forwZoomT . The last
part of this section focused on combining aZoomT and wZoomT .

Overall, we found thatOG, which balances temporal and struc-
tural locality, outperforms other representations in most cases.

6 RELATEDWORK
Temporal models and languages in the relational literature
are very mature (see, e.g., [10, 16, 23]). However, the same cannot
be said for evolving graphs, where models di�er in what time
representation they adopt (point or interval), what top-level enti-
ties they model (graphs or sets of nodes and edges), whether they
represent topology only or attributes or weights as well, and what
types of evolution they support. Harary and Gupta [20] were,
to the best of our knowledge, the �rst to informally propose to
model graph evolution as a sequence of static graphs. This model
has been predominant in the literature [15, 24–26, 38, 40], with
various restrictions on the kinds of changes that can take place
during graph evolution. In contrast to existing work, TGraph
assigns periods of validity to nodes, edges and their properties,
capturing evolution of graph topology and of node and edge
attributes, and supports point-based semantics [37].

The attribute-based zoom operator is a temporal general-
ization of the node creation operator that is present in several
conventional (non-temporal) graph query languages [42]. For
example, StruQL outputs new nodes in a create clause, corre-
sponding to the node creation operation with a Skolem function

	Zooming Out on an Evolving GraphAmir Aghasadeghi, Vera Moffitt, Sebastian Schelter, Julia Stoyanovich

