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ABSTRACT
Big data analytics systems such as Apache Spark natively sup-
port nested data formats since they offer operators to manipulate
nested lists and complex types. Compared to flat data, nested
data introduces further complexity and sources of error, e.g.,
when developing data processing pipelines, performing auditing
tasks, or performance tuning. To ease such tasks, we propose a
provenance-based solution tailored to nested data processing in
big data analytics systems. Unlike previous solutions, it combines
(i) tracing provenance of nested datawith (ii) efficient and scalable
provenance processing, leveraging a newly proposed structural
provenance that traces structural manipulations through data
processing pipelines in addition to data. We provide a formal def-
inition of structural provenance, as well as methods to efficiently
capture and succinctly backtrace it. We implement them in our
Pebble system in Apache Spark and validate its performance and
usefulness on up to 500GB of real-world data.

1 MOTIVATION
Big data analytics systems such as Apache Spark or Flink are
frequently the means of choice to build data processing pipelines
that process large quantities of nested data. These pipelines trans-
form nested lists and complex types stored in nested data formats
like JSON, protocol buffer, or parquet. Provenance solutions that
capture meta-data about the data processing [14] have proven to
be useful for analyzing the internals of data processing pipelines,
e.g., for debugging purposes. These solutions typically have two
phases, a provenance capture phase to collect the meta-data and
a provenance query phase to analyze the meta-data. For big data
analytics systems, we distinguish two categories of provenance
solutions: (i) Efficient and scalable solutions that track individual,
flat data items (i.e., tuples) from the input to the output over each
execution step [15–17, 22]. They capture so-called lineage or why-
provenance [7]. (ii) System prototypes that compute provenance
polynomials of nested data [2, 28]. They capture how-provenance,
which provides both the input items contributing to the result
and the data combination process an item undergoes.

Solutions of the first category fail to track nested items accu-
rately. Solutions of the second category do not efficiently scale
to big data processing pipelines. To capture the how-provenance,
these solutions propagate the growing provenance polynomial
through the entire pipeline or require annotation of each nested
element, which imposes a very high and practically unacceptable
overhead [16, 17]. Further, these solutions have to offload the
provenance to external tools to query the captured provenance.
Thereby, they miss potential performance and usability benefits
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compared to solutions that are fully integrated into the big data
analytics or data-intensive, scalable computing (DISC) system.

We, therefore, present a DISC system integrated provenance
solution for nested data that is as efficient and scalable as solutions
of the first category while, at the same time, at least as accurate
as solutions of the second category [9]. Our solution leverages
our newly defined structural provenance to provide both features.

Structural provenance records identifiers for top-level data
items only. For attributes and nested data items, it captures paths
on a schema level. To provide accurate provenance when queried,
it employs these identifiers and paths to trace back individual
nested items at attribute level. Capturing paths instead of identi-
fier annotations for nested data further allows us to distinguish
between paths that are used for access (e.g., during filtering) or
manipulation (e.g., during flattening). We can thereby differenti-
ate contributing attributes, i.e., attributes needed to reproduce a
result item, and influencing attributes that are accessed during
data processing but not required to reproduce a result. This dis-
tinction, which is unique compared to existing data provenance
models, qualifies structural provenance for use-cases beyond de-
bugging such as auditing or determining data-usage patterns for
partitioning, data compression, and workload optimization.
Auditing. Auditing aims at identifying and analyzing data
breaches. These breaches commonly stem from attacks of com-
pany insiders who extract sensitive data by querying data and
leaking the query result. Auditing solutions are designed to
identify both these insiders and the customers whose data are
leaked [19]. To address the latter challenge, the solutions typi-
cally leverage some sort of data provenance. It serves to identify
those input tuples that are exposed in a leaked query result. How-
ever, after the European Union has introduced the European
general data protection regulation GDPR [26], European com-
panies are not only required to identify the customers (tuples)
whose data are leaked, but also which of their data are leaked (i.e.,
attributes such as name, address, or payment details). Structural
provenance precisely provides the attributes and items in nested
collections that contribute to a query result. Unlike existing data
provenance solutions, it further reveals which attributes are not
exposed in the result but have influenced it to create awareness
for reconstruction attacks.
Data-usage patterns. Data-usage patterns reveal frequently
used subsets of the input data over a query workload. These pat-
terns serve to optimize data layout and compression or to improve
query performance [25]. State-of-the-art scalable provenance so-
lutions for DISC systems can identify subsets of the input data
that are frequently used. This knowledge allows for horizontal (or
row-based) data partitioning and distribution. Structural prove-
nance further provides all the information needed for vertical (or
column-based) partitioning since it reveals which attributes and
nested items are accessed or manipulated. It even provides in-
sights on attribute combinations that are frequently used together
for data layout optimizations.
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Capturing provenance imposes runtime and space overhead
during pipeline execution. The mentioned use-cases are per-
formed infrequently. Thus, keeping the overhead low during
pipeline execution is essential to ensure efficiency and scalability.
During the provenance capture phase, a system can typically opt
for computing and storing the provenance of all processed data
(eager approach) or decide to capture it on demand when users
query the provenance (lazy approach). Consequently, during
the provenance query phase, retrieving the desired provenance
is more or less time-consuming. We consider the provenance
capture and provenance query phases holistically. To this end,
we devise a meet-in-the-middle approach that eagerly collects
the necessary “pebbles” (i.e., identifiers and paths on schema
level) during pipeline execution to later reconstruct or backtrace
attribute-level provenance of nested data at query time. Our eval-
uation shows that capturing structural provenance introduces
comparable overhead to state-of-the-art lineage solutions in DISC
systems [17], while providing attribute-level precision.

This paper also presents the first provenance solution for
nested data that seamlessly integrates into a big data analytics
system (Apache Spark in our implementation). Existing solu-
tions [2, 28] require offloading captured provenance for querying
to separate, non-distributed applications. This has three draw-
backs: (i) It prevents adopting a holistic provenance capture and
querying approach to keep capture and query overhead reason-
able; (ii) it forces users to leave their familiar environment; and
(iii) it prevents scalable provenance querying.
Contributions and structure. To summarize, this paper
presents research on processing structural provenance in big
data analytics systems to accurately trace nested data in an effi-
cient, scalable, and integrated way. This approach enables novel
use-cases that arise in the context of big data processing. After
discussing a running example in Sec. 2 and related work (Sec. 3)
this paper covers the following contributions:
• Structural provenance (Sec. 4). We present a novel prove-
nance model for nested data that tracks structural manipu-
lations in addition to data dependencies, and distinguishes
between data access and manipulation to support use-cases
beyond debugging.
• Lightweight structural provenance capture (Sec. 5). We
discuss how to capture structural provenance in big data an-
alytics programs composed of filter, select, map, join, union,
flatten, grouping, nesting, and aggregation operations. The
capture is devised to incur a minimal overhead compared to
the capture of flat provenance in DISC systems.
• Backtracing for provenance query processing (Sec. 6).
We formalize the backtracing algorithm used at provenance
query time. As input, users provide a tree-pattern that, upon its
scalable execution, identifies data items for which provenance
is requested. The backtracing algorithm computes provenance
for these items based on the previously captured information.
• Implementation and evaluation (Sec. 7). We implement
our contributions in Pebble [9], our system for integrated
provenance capturing and querying within Apache Spark. We
conduct a quantitative evaluation of runtime and space over-
head incurred by our solution on two large real-world data sets,
validating the scalability of our solution. In comparison to the
state-of-the-art lineage solution Titian [17], Pebble has compa-
rable runtime and space overhead. However, as our workload
shows, Pebble provides sufficient insight to support the above
use-cases, unlike other solutions.

2 RUNNING EXAMPLE
To distinguish our research from related work and for illustration,
we use a running example based on Twitter data. Among its
roughly 1000 attributes, we focus on the tweeted text, the user
tweeting, the user_mentions in the tweet, and the retweet_cnt.
The input data is nested as shown in Tab. 1 (ignore colors and
number annotations for now). This sample data is processed in
the big data processing pipeline shown in Fig. 1. It results in a
list of distinct users associated with tweets that they authored
or were mentioned in, as shown in Tab. 2. The upper branch
of the pipeline describes how authoring users become part of
the result. Their tweets require a retweet_cnt of 0 before the
pipeline reduces them to the text, id_str, and name. The lower
branch processes tweets mentioning users. First, it flattens the
user_mentions attribute to select the tweeted text, id_str, and name
of each mentioned user. Then the pipeline unifies the results of
both branches and groups by the user to aggregate the tweeted
texts into a nested list.

In the result, a duplicate Hello World text occurs in the nested
tweets of user Lisa Paul, short lp. To find out how this potential
data quality issue occurred, we debug the pipeline by tracing back
the duplicate texts in the context of user lp, which are highlighted
in dark-green in Tab. 2. The solution presented in this paper
returns the dark- and medium-green items in Tab. 1. The dark-
green items are contributing data. They suffice to reproduce the
dark-green items in the result. The medium-green items reveal
which attributes potentially influence the result of the pipeline.

If trivially extended to nested data, scalable lineage solu-
tions [15–17, 22] provide all input tweets that contain the user lp.
They are highlighted in light-grey in the input. In reality, a user
typically authors more than a handful of tweets and is potentially
mentioned in more than a million tweets. These tweets would
all be in the provenance returned by the lineage solutions. They
mask the actual two tweets causing the duplicate text.

PROVision [28] supports the unnesting of data but does not
explicitly support the nesting of data. Extending it with nest-
ing requires a list collection UDF cl , which yields the following
provenance polynomial for the entire result item 102 in Tab. 2:

(p1+p12+p17+(p29 ·Pf lat ten (p29 ·[0])))·

Pcl ((p1+p12+p17+(p29 ·Pf lat ten (p29 ·[0]))),(⟨p1⟩+⟨p12⟩+⟨p17⟩+⟨(p29 ·Pf lat ten (p29 ·[0]))⟩))

text user user_mentions retweet_cnt

1 Hello @ls @jm @ls2
id_str name
lp3 Lisa Paul4

id_str name
ls5 Lauren Smith6
jm7 John Miller8
ls9 Lauren Smith10

011

12 Hello World13
id_str name
lp14 Lisa Paul15 016

17 Hello World18
id_str name
lp19 Lisa Paul20 021

22 This is me @jm23 id_str name
jm24 John Miller25

id_str name
jm26 John Miller27 028

29 Hello @lp30
id_str name
jm31 John Miller32

id_str name
lp33 Lisa Paul34 135

Table 1: Example input data

read
tweets.json

read
tweets.json

select
text, 

user.id_str,
user.name

flatten
user_mentions
à m_user

select
text, 

m_user.id_str,
m_user.name

union
select

text à tweet,
<id_str, name>

à user

aggregate
groupBy(user),

collectList(tweet)
à tweets

1 3

4 5 6

7 8 9

filter
retweet_cnt == 0

2

Figure 1: Example processing pipeline
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user tweets

101 id_str name
ls Lauren Smith

text
Hello @ls @jm @ls
Hello @ls @jm @ls

102 id_str name
lp Lisa Paul

text
Hello @ls @jm @ls

Hello World
Hello World
Hello @lp

103 id_str name
jm John Miller

text
Hello @ls @jm @ls
This is me @jm
This is me @jm

Table 2: Example result data

Essentially, the first line tells us that the result item is based
on the source tuples annotated with 1, 12, and 17, denoted as p1,
as well as p12, p17 (all these are processed by the upper branch of
the pipeline in Fig. 1), and p29, with some of its data flattened out
during processing (corresponds to the lower part of the pipeline).
The second line makes use of our extension and describes how
data is combined by the remainder of the pipeline where the tu-
ples mentioned above are grouped and aggregated. The example
shows that the provenance is very verbose while not precisely
tracing the dark-green data items of the user question. This is the
case since it collects tuple-based provenance polynomials only.

Lipstick [2] traces provenance polynomials for each nested
item. This allows pinpointing the dark-green nested values Hello
World and lp correctly. However, Lipstick requires annotating all
values, not just the tuples, e.g., 35 rather than 5 annotations, as
indicated by the superscript italic numbers in Tab. 1. This entails
a significant runtime and space overhead, rendering the solution
impractical when needing to scale to large volumes of data.

We also differentiate structural provenance from where-
provenance [4], which determines where a (nested) result value
is copied from. In our example, the where-provenance (extended
to the processing pipelines we consider) would include, for the
value lp the “cells” with superscript annotation 14, 19, and 33 of
Tab. 1. This is combined with the where-provenance of the Hello
World result values via product. The result is not sufficiently
accurate because it cannot capture that the dark-green values of
the output need to be traced within their common context.

No existing solution allows recognizing (i) that the user at-
tribute is unnested and nested again, (ii) that the id_str, lp, and
the text attribute Hello World are subject to different, indepen-
dent, structural manipulations, and (iii) that the medium-green
retweet_cnt and name values in Tab. 1 are accessed for filtering
and grouping, respectively. Even though these values are not
needed to reproduce the queried result, they are influencing the
result, which is valuable information in certain use-cases. Struc-
tural provenance captures all this information since it captures
not only data dependencies but also path dependencies.

To get an understanding of querying structural provenance,
consider the right tree in Fig. 2. The string labels of tree nodes
denote attribute names whereas numbers refer to provenance
ids (e.g., 102) or positions in nested collections (e.g., 2 and 3).
The displayed tree represents the structure associated with our
sample user query. It encodes the path to user lp and the duplicate
Hello World items in the context of top-level data item 102. Note
that name is absent from this tree since it is not pertinent to the
user query. Backtracing this tree yields the two trees on the left
of Fig. 2. These distinguish between data items that contribute to
the result (dark-green) and data items that influence it (medium-
green). The nodes match the green items in Tab. 1. A closer
look at the medium-green name node reveals that this node
influences the queried result since it is accessed for grouping

12

usertext

id_str

102

user tweets

id_str 2 3

text text

name

retweet
_cnt

Back-
tracing

provenance tree on the outputprovenance trees on the input

contributing attributes

influencing attributes

2       provenance IDs/ positions

user attribute names

17

usertext

id_str name

retweet
_cnt 9 access by operator

manipulation by operator8

name
83 9

Figure 2: Example provenance trees. Tracing the tree on
the right back to the input yields the trees on the left

(light-blue 9). Similarly, the retweet_cnt influences the result since
it is accessed for filtering. Further, the name node undergoes
structural manipulations at operator 3 and 8 (dark-blue).

3 RELATEDWORK
This section generalizes the discussion of existing approaches
that we provided along with the running example. We divide our
discussion into research on data provenance in DISC systems
and provenance models for nested data, summarized in Tab. 3.

3.1 Data provenance in DISC systems
Data provenance has been studied for various applications [14].
While the majority of approaches has focused on relational data
processed by relational queries, first solutions have emerged for
tracing provenance in DISC systems such as Titian [12, 16, 17] for
Spark, Lipstick for PigLatin (Hadoop) [2], as well as RAMP [15],
Newt [22], and PROVision [28] for multiple DISC systems.

Titian, RAMP, and Newt trace lineage of data items, i.e., they
determine which top-level data items contribute to which output
item. These solutions scale well but do not trivially extend to
nested data. PROVision extends the provenance model for top-
level data (or flat) items to also capture provenance of data items
in nested collections. It lacks information on attribute level access.
Lipstick is the only solution that supports provenance capture for
nested data at attribute level. However, it requires annotations
for each data value, not only the top-level data items. Structural
provenance provides provenance on attribute level but requires
annotation on top-level items only since it records access to
attributes and nested data using paths. These paths are recorded
on a schema level, saving space and runtime overhead.

All the above solutions except for Titian require offloading
the provenance to an external tool. Titian integrates provenance
querying directly into the DISC system. Thus, provenance queries
can be integrated into a big data processing pipeline just like any
other query. Our system extends Titian’s integrated querying
means with tree-patterns [13, 23] to address combinations of
nested data items. Further, we present the first solution that
tracks access and manipulation of attributes.

3.2 Provenance models for nested data
Focusing on nested data, at least three major directions to for-
malize provenance models have been researched: (i) models for
why-, how-, and where-provenance, (ii) graph-based provenance
models, and (iii) program slicing models.

For unions of conjunctive queries, Buneman et al. [4] define a
why- and where-provenance model for nested data. This model
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Feature Titian Ramp Newt Lipstick PROVision HowProvNested Why/Where Prov Kwasnikowa Acar Program Slicing Structural Prov
Data provenance for nested data ❌ ❌ ❌ � � � � � � � �

Provenance of acces and manipulation ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ � �

Provenance of data item structure ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ � �

Eager/lazy provenance computation � / ❌ � / ❌ � / ❌ � / ❌ ❌  / � n.a. n.a. n.a. ❌  / � � / � � / �
Implementation-independent 
provenance query formalism

❌ ❌ ❌ � ❌ n.a. n.a. na. ❌ ❌ �

DISC system compatibility/integration � / � � / ❌ � / ❌ � / ❌ � / ❌ ❌  / ❌ ❌  / ❌ ❌  / ❌ ❌  / ❌ ❌  / ❌ � / �

Reported implementation
Spark 
RDDs 

Hadoop
Hadoop/
Hyracks

PigLatin Java no no no Haskell Haskell Spark Datasets

Evaluated for scalability � � � ❌ ❌ ❌ ❌ ❌ ❌ ❌ � �
Su

pp
or

te
d
❌

 N
ot

 S
up

po
rt

ed

Table 3: Feature overview of related work

does not extend to the programs defining data analytics pipelines
in DISC systems, like the one shown in Fig. 1, since they may
include map or reduce functions or any other higher-order func-
tions in general. To model the how-provenance of nested data, a
semiring-model for a subset of XQuery has been proposed [10, 18].
However, this model does not include complex operations over
nested data, such as aggregations. The only how-provenance
model supporting aggregations that we are aware of applies to
relational data only [3].

Lipstick [2], makes use of a graph model to describe the how-
provenance. This model only applies semiring annotations where
possible. It provides no formal model definition for aggregations,
nesting, and flattening of nested data. Kwasnikowska and Acar et
al. [1, 20] also employ a graph-based provenance model to track
nested data items. These solutions are essentially limited to the
operations defined in the Nested Relational Calculus (NRC) [5],
which do not include aggregations or joins. Also, the reported
implementation and evaluation (if any) indicate that they neither
integrate nor scale sufficiently to apply on DISC systems.

All provenance solutions mentioned so far do not distinguish
between access and manipulation as they focus on tracing data
values. In that respect, the work closest to our structural prove-
nance model is the program slicing model [6], which tracks prove-
nance traces for NRC operators over nested data. To provide
formal guarantees, the model is limited to a small set of seman-
tically fully specified NRC operators. In practice, it is infeasible
to provide semantics for all higher-order functions such as map
operations, which allow for user-defined functions. Via trace
slicing it is possible to query provenance for individual nested
items. However, like the other described models, this model is de-
signed to trace data values and manipulations of them rather than
structural manipulations. It is not expressive enough to faithfully
capture and query structural manipulations. Its implementation
is not designed or evaluated for efficiency or scalability.

The final column of Tab. 3 summarizes the capabilities of our
system, which we have highlighted previously. These capabilities
are based on processing structural provenance, discussed next.

4 STRUCTURAL PROVENANCE
This section formalizes structural provenance. We first present
the data model and the execution model to define the correspond-
ing structural provenance model afterwards.

4.1 Data model
DISC systems process collections of typed nested data items,
which we refer to as (nested) datasets. These datasets support
positional access, and, thus, the handling of ordered datasets.

Definition 4.1. (Nested dataset) A nested dataset D comprises
constants, data items, bags, and sets, denoted and typed as shown
in Tab. 4. D is a list of data items d1, . . . ,dn with or without
duplicates (ordered bag vs. set), i.e., D = B |S . Each data item d is

Name Notation Type τ (·)
Constant c Int |Double |Str inд |...
Data item d = ⟨a1 : v1, ..., an : vn ⟩ ⟨a1 : τ (v1), ..., an : τ (vn ))⟩

Bag B = {{d1, ..., dn }} {{τ (d )}} , ∀d , d′ ∈ B, τ (d ) = τ (d′)
Set S = {d1, ..., dn } |d1 , ... , dn {τ (d )} , ∀d , d′ ∈ S , τ (d ) = τ (d′)

Table 4: Notation and types for nested collections

a list of ai : vi pairs. Attribute names a1, ...,an are unique labels
within each data item. Values v1, ...,vn may be bags, sets, data
items, or constants, i.e., v = B |S |c |d .

The type of D is defined recursively based on the type of its
building blocks as described in Tab. 4, where τ (·) returns the
type of its parameter. Bags and sets are restricted to containing
elements of the same type.

Example 4.2. All data shown in our running example conform
to the above definition. The result data of Tab. 2 has type:
{{ ⟨user :⟨id_str :Str inд,name :Str inд ⟩,tweets :{{ ⟨text :Str inд ⟩ }}⟩ }}

To access the different components defined by the data model,
we define access paths, inspired by XPath expressions [24] to
navigate XML data. Provided a context data item d , an access
path navigates to “deeper” data in the nested model. Given that
the data model ensures the order of data items in lists, we also
model positional accesses in paths.

Definition 4.3. (Access path w.r.t. d) In the context of a data
item d , we define an access path p by p = d .p′, p′ = x | x .p′,
x = a | a[i]. Here, p′ is the path accessing x either directly
or recursively. The accessed x is either an attribute a in the
schema of the context data item, evaluating to its value, or the
i-th component of a, denoted a[i], evaluating to the item at the
i-th position of a’s value. For the recursive definition of p′, the
context data item is updated to the item referred to by x .

For simplification, we denote a path p with context data item d

by pd when the context is not clear. We refer to the enumeration
of all paths that exist in a context d as path set PSd .

Example 4.4. Considering the data item d102 in Fig. 2, the
path d102.tweets evaluates to a list of four data items. Path
d102.tweets[2].text points to the first Hello World in that list.

4.2 Execution model
The execution model defines the processing semantics of data
analytics programs like the one in Fig. 1. These programs process
data complying with our data model. We model a program as
a directed acyclic graph (DAG) of individual operators, such
as filter, flatten, join, etc. Each operator has its own execution
semantics.

Definition 4.5. (Operator) An operatorO takes a set of datasets
I = {I1, . . . , Ik } as input and returns a single result dataset R.
Inference rules describe the execution semantics of an operator
O . O has a unique identifier, a type, and its arguments.

Definition 4.6. (Program executionmodel) LetG(V , E) be a DAG.
V = {O1, . . . ,On } is the set of algebraic operators and E the set
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read flatten select
4 5 6

text … user_mentions …

Hello @ls @jm @ls … …

...

id_str name

ls Lauren Smith

jm John Miller

…

text … user_mentions … m_user

Hello @ls @jm @ls … …
…

Hello @ls @jm @ls … … …

...

id_str name

ls Lauren Smith

id_str name

jm John Miller

I5I4

1

42

43

1
2
3

ri ℐ ℳ

…

42
i ℐ# $

I41
%&

User_mentions[1]

%& %'
User_mentions[1] m_user

i ℐ# $

I41
%&

User_mentions[2]

%& %'
User_mentions[2] m_user

() = 5, -./0012, ℐ),ℳ), 3)
ℐ) = 4, 5617_9120:;26 <;6

ℳ) = 5617_9120:;26 <;6 ,9_5617
3) = &=& pos &=>

1 1 42

1 2 43

…

Provenance Capture Model Lightweight Provenance Capture Model

43

Figure 3: Provenance model and lightweight provenance
capture applied on the flatten operator from the example

of directed edges that model the data flow. If and only if the result
set Ri ofOi is in the set Ij of input datasets of operatorO j an edge
(Oi ,O j ) ∈ E directed from Oi to O j exists. While G may contain
multiple source nodes (in-degree of 0), G has only one sink node
(out-degree of 0), which outputs the final result dataset.

Example 4.7. The graph in Fig. 1 represents the execution
model of our running example. The type and parameters of each
operator are displayed inside the operator nodes. Further, each
node is labeled with its identifier in the top right corner.

We abstract from a particular language to define the semantics
of individual operators by extending the inference rules from [11]
to describe the filter, select, map, join, union, flatten, grouping
and aggregation operator with their semantics.

Example 4.8. We illustrate how inference rules work on our
inference rule for a join operator:

φ(i, j) ⇒ true
I1.join[φ(i ∈ I1, j ∈ I2)](I2) ⇒ {{⟨i, j⟩ | i ∈ I1, j ∈ I2}}

The rule joins two input datasets I1 and I2 into a single result
dataset. More precisely, the operator associates elements i ∈ I1
with elements j ∈ I2 based on a join condition (φ(i, j) → boolean).
With the precondition that φ evaluates to true, i.e., φ(i, j) ⇒ true,
the data item ⟨i, j⟩ becomes part of the result.

4.3 Provenance model
Our provenance model extends the program execution model
described above by adding annotations to each node inG. More
precisely, for each operator O represented by a node in G, it
generates the result provenance R that contains the provenance
of each result data item ri in the result R of operator O .

Definition 4.9. (Result provenance w.r.t. result R of operator O)
Let R = {ρ1, . . . , ρn } be the result provenance associated with
R = {r1, . . . , rn }. For each data item ri ∈ R, we record the result
data item provenance ρi = ⟨ri ,I,M⟩, whereI is the provenance
of input data items that contribute to ri (see definition below)
andM is a set of path pairs mapping access paths of input data
items to paths of ri to describe restructuring performed by O .

Definition 4.10. (Input provenanceI w.r.t. result data item prove-
nance ρ in result R ofO) The input provenanceI is a bag of triples〈
i, Ij ,A

〉
, where i is a data item from one of the input datasets of

O , i,e., i ∈ Ij , Ij ∈ I , and A a set of paths recording the elements
of i that are accessed byO to produce the result data item r ∈ ρ.

The above provenance model does not only contain informa-
tion on the relationship between input and result data items of

an operator (which is the previously mentioned lineage), it also
records accesses and manipulations inM and A while trans-
forming input items to result data items.

Example 4.11. To illustrate our model for structural prove-
nance, we focus on the f latten operator labeled 5 in Fig. 1. It
unnests the nested items of attribute user_mentions. An excerpt
from its input and output data is given at the top of Fig. 3. Black
headers encode bag data types, light gray headers identify com-
plex data items as nested data type. At the bottom left, Fig. 3
shows the provenance for the result items 42 and 43. The flat-
ten operator derives item 42 from input item 1. It accesses path
user_mentions[1] as recorded in A. Further, it copies the first
user of theuser_mentions list (and implicitly, all paths in the path
set PSuser_mentions[1]) to the new itemm_user as recorded in
the mappingM. Ignore the bottom right for now.

5 PROVENANCE CAPTURE
Based on the provenance model, we introduce inference rules
describing the provenance capture of our supported operators.
When the rules in Tab. 5 are annotated with a ∗, we extend an
existing inference rule from [11]. Otherwise, we formalize the
inference rule with and without provenance extension. Due to
space constraints, we only show the complete set of inference
rules with provenance. After explaining the map, flatten and
aggregation rule, we show how we capture the structural prove-
nance obtained from these rules efficiently.

5.0.1 Map. For themap operator, we assume that the function
λ(i) over input data item i returns a result of type data item,
denoted as τ (λ(i)) → ⟨. . .⟩. Given this precondition, without
provenance capture,map returns the result of applying λ(i), for
each i in the input dataset I1. The inference rule for the map
operator in Tab. 5 additionally produces the provenance for each
data item i . More formally,map, parameterized by a function λ,
produces the result provenance R, which is a bag of data items.
Each data item extends the “normal” result ofmap, i.e., λ(i) with
two additional attributes: the input provenance I and mapping
M. For I, the only input data item participating in producing an
output data item λ(i) is i , which originates from the single input
dataset I1. Because we generally do not know the internals of an
arbitrary function λ, the set A is set to undefined, denoted by ⊥.
Thus, I = {{⟨i, I1,⊥⟩}}. The structural mapping M = ⊥ is also
undefined because we have no knowledge of how elements from
the input are restructured in the result.

Based on the rule for themap operator, we derive more general
observations concerning our inference rules. The rules only cap-
ture structural provenance when the operator semantics clearly
pinpoint paths to populate A and M. Thus, the rule for the
map operator captures the “undefined” semantics inM = ⊥ and
A = ⊥. This semantics distinguishes fromM = ∅ andA = ∅ se-
mantics in the f ilter and union rules. Both rules featureM = ∅
since they do not restructure the data items. Each item’s input
structure is maintained in its entirety in the result. Further, the
rule for the union operator holds A = ∅ since it only performs
an item-independent schema comparison of the input datasets.

5.0.2 Flatten. We introduced the flatten operator in Ex. 4.11
to illustrate our provenancemodel. Here, we explain the inference
rule in Tab. 5 that captures the provenance for the f latten.

As preconditions, the rule requires the type of acol to be either
a list with duplicates (bag) or without duplicates (set). The result
of the f latten consists of items r = ⟨i,anew : j⟩, where i refers

257



Filter*
φ(i) ⇒ true

I1. f ilter [φ(i ∈ I1)] ⇒
{{〈

i,
{{〈

i, I1,∪p
i ∈ φ(i)

〉}}
, ∅
〉
| i ∈ I1

}}
Select*

a1, ...,an ∈ schema(I1)

I1.select(a1, ...,an ) ⇒

{{〈
r ,

{{〈
i, I1,

n⋃
k=1
(ak )

i

〉}}
,

n⋃
k=1

〈
(ak )

i , (ak )
r 〉〉 | r = ⟨i .a1, ..., i .an⟩ , i ∈ I1}}

Map*
τ (λ(i)) ⇒ ⟨...⟩

I1.map[λ(i ∈ I1)] ⇒ {{⟨λ(i), {{⟨i, I1,⊥⟩}} ,⊥⟩ | i ∈ I1}}

Join
φ(i, j) ⇒ true

I1.join[φ(i ∈ I1, j ∈ I2)](I2) ⇒



〈
r ,



〈
i, I1,

⋃
pi ∈φ(i , j)

pi

〉
,

〈
j, I2,

⋃
q j ∈φ(i , j)

qj

〉
 ,

{〈
pi ,pr

〉
| pi ∈ schema(I1)

}
∪
{〈
qj ,qr

〉
| qj ∈ schema(I2)

}〉
| r = ⟨i, j⟩ , i ∈ I1, j ∈ I2




Union*
τ (I1) = τ (I2)

I1.union(I2) ⇒ {{⟨i, {{⟨i, I1, ∅⟩}} , ∅⟩ | i ∈ I1}} ⊎ {{⟨j, {{⟨j, I2, ∅⟩}} , ∅⟩ | j ∈ I2}}

Flatten
τ (acol ) ⇒ {{}} ∨ τ (acol ) ⇒ {}

I1. f latten (anew , explode (acol )) ⇒
{{〈

r ,
{{〈

i, I1,
{〈
(acol [x])

i 〉}〉}} , {〈(acol [x])i ,arnew 〉}〉
| r = ⟨i,anew : j⟩ , i ∈ I1, j ∈ i .acol at position x

}}
Grouping*

G = {{д1, ...,дn }} πG (i) = ⟨д1 : i .д1, ...,дn : i .дn⟩
I1.дroupBy(д1, ...,дn ) ⇒ {{{{⟨i, {{⟨i, I1, {д1, . . . ,дn }⟩}} , ∅⟩ | i ∈ I1, πG (i) == j}} | j ∈ set({{πG (i) | i ∈ I1}})}}

Aggregation

τ (I ) == {{τ (I1), ..., τ (In )}} τ (I1) == ... == τ (In ) == {{...}}

Ac ==
{
αc1 (a1), ...,αcm (am )

}
with τ (αck (ak )) ⇒ c AB ==

{
αB1 (b1), ...,αBp (bp )

}
with τ (αBk (bk )) ⇒ {{...}}

∀Ik ∈ I ,∀i, j ∈ Ik , πG (i) == πG (j) with G == schema(Ik ) \ {a1, . . . ,am,b1, . . . ,bp }

I .aдд(Ac ,AB ) ⇒




〈 r =

〈
d,aαc1 : αc1

(
πa1 (Ik )

)
, . . . ,aαcm : αcm

(
πam (Ik )

)
,aαB1 : αB1

(
πb1 (Ik )

)
, . . . ,aαBp : αBp

(
πbp (Ik )

)〉
,d ∈ set({{πG (i) | i ∈ Ik }}), Ik ∈ I ,


〈
i, Ik ,

⋃
д∈G

дi ∪
⋃
a∈Ac

ai ∪
⋃

b ∈AB

bi

〉
| i ∈ Ik , Ik ∈ I


 ,{〈

дi ,дr
〉
| д ∈ G, i ∈ Ik

}
∪

{〈
aik ,

(
aαck

)r 〉
| k = 1, ...,m, i ∈ Ik

}
∪

{〈
aik ,

(
aαBk

)r 〉
| k = 1, ...,p, i ∈ Ik

}
〉


Table 5: Provenance capture semantics partially based on operator semantics from [11]. Access A and manipulationM
provenance is highlighted.

to the input item and anew to the newly created attribute. This
attribute holds item j that is unnested from i’s attribute acol ,
i.e., i ∈ I1, j ∈ i .acol . In our structural provenance, we need to
refer to the position of j within its bag (or set) in the context of i .
Therefore, we denote the position of j in i .acol by pos . For each
result item r , the structural provenance is ρ = ⟨r ,I,M⟩ with
I =

{{〈
i, I1,

{
(acol [pos])

i }〉}} andM = {〈
(acol [pos])

i ,arnew
〉}
.

Here, (acol [pos])i denotes the access path on the pos-th element
of attribute acol in the context of the input item i . arnew is the
path to the new attribute in the context of the result item r .

5.0.3 Aggregation. The aддreдation in Tab. 5 requires a bag
of equally structured input collections (we only show bags for
conciseness) as input, i.e., τ (I ) = {{τ (I1), . . . , τ (In )}} such that
τ (I1) == . . . == τ (In ) == {{. . .}}. These nested bags are con-
structed by the дroupinд. Further, the aддreдation supports mul-
tiple aggregation functions. Among those supported by data
analytics systems, we distinguish between aggregation functions
that, given a bag as input, return an atomic constant value c (e.g.,
count , sum, max) and aggregation functions returning nested
collections (e.g., collect_list and collect_set ). We denote these by
Ac and AB , respectively. The rule also requires that all attributes
G that are not aggregated by either a function in Ac or AB , but
that are present in the schema of a collection Ik ∈ I are equal.

Given these preconditions, aддreдation reduces each of the
nested bags Ik ∈ I to a single data item. It returns the unique
value present in Ik for non-aggregated attributes in G and the
results of the specified aggregate functions that are applied on
the input attributes. The result of this process is the item r in the
first line at the bottom of the aддreдation rule. The second line
shows I. A result item r is based on input items that all originate

from the same input collection Ik ∈ I . Thus, for each i ∈ Ik , the
rule creates a data item ⟨i, I ,A⟩ ∈ I. The set of attribute accesses
performed during aggregation includes the paths to all attributes
inG , the paths to all attributes aggregated by functions inAc , and
the paths to all attributes aggregated by functions in AB . That is,
A =

⋃
д∈G дi ∪

⋃
a∈Ac a

i ∪
⋃
b ∈AB b

i . ForM in line 3, the rule
maps aggregated attributes to the newly created attributes of r ,
which hold the aggregated items.

5.1 Lightweight provenance capture
The provenance capture rules have the potential for optimiza-
tion, since they hold redundant information. First, recording a
unique identifier suffices to identify each top-level item. Second,
recording the paths accessed and manipulated on a schema level
once per operator suffices since the paths are the same for all
processed data items. They only differ in the identifier of the top-
level item and the positions of items in nested collections. The
lightweight operator provenance P exploits these observations
to keep overhead at capture time low.

Definition 5.1. (Operator provenance P) The operator prove-
nance P is the following 5-tuple:

P = ⟨oid, type,I : {{⟨p,A⟩}} ,M, P⟩

P has an operator identifier oid and a type . The bag I holds
one tuple for each of the operator’s inputs. This tuple holds a
reference to the preceding operator p and the paths accessed A
on the input at a schema level. They are data item independent.
Similarly, P has a bag of manipulated pathsM on a schema level.
Positions of items in nested bags are replaced with placeholders.
The bag P in P holds the unique identifiers of the top-level input
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Operator Provenance structure
map, select , f ilter P =

{{〈
idi , ido

〉}}
join, union P =

{{〈
idi1, id

i
2, id

o 〉}}
f latten P =

{{〈
idi ,pos, ido

〉}}
дroupby and aддreдation P =

{{〈
idsi :

{{
idi

}}
, ido

〉}}
Table 6: Operator-dependent provenance structure

and output items, as well as positions of accessed or manipulated
items in nested collections, if needed.

The content of P depends on the operator type as summarized
in Tab. 6. In this table, the attributes idi and ido hold the unique
identifiers of top-level items in the input and the output, respec-
tively. If the operators have multiple inputs, attributes idi1 and
idi2 are indexed in the order of appearance in I. The structure
P of the flatten operator has a reference to the position of the
nested item being flattened. The aggregation holds a collection of
input idsi for each group. The position of the input idi is equal
to the position of any nested item that the aggregation produces.

Example 5.2. Fig. 3 shows the reduced operator provenance
P5 for the flatten operator at the bottom right.

In the following section, we describe how the backtracing
algorithm computes the structural provenance of nested data
from the lightweight provenance structures P.

6 BACKTRACING
Querying the provenance of items or structures in the result
involves two major phases. In the first phase, the backtracing
algorithm identifies those data items, for which a user queries
provenance (Sec. 6.1). In the second phase, it traces these items
back to the input data (Sec. 6.3).

6.1 Structural query processing
DISC systems have rudimentary means to address individual
nested items, at most. They lack sophisticated means to address
arbitrary combinations of them, which is essential for querying
structural provenance. Thus, we devise an extension to a DISC
system (i.e., Apache Spark) to support tree-pattern queries. Tree-
patterns allow for addressing combinations of nested items that
are related by their structure [13]. Intuitively, they express struc-
tural queries in the form of a tree, in which each node represents
an attribute and edges define parent-child or ancestor-descendant
relationships (depending on edge type) that should exist between
two connected nodes. Further constraints may be imposed on
attribute nodes, e.g., equality of an attribute’s value to a constant.
Therefore, we define a novel distributed tree-pattern matching
algorithm to return the query result in an efficient and scalable
way. Due to space constraints, we omit details on processing
tree-pattern queries but show an example.

Example 6.1. Fig. 4 shows a tree-pattern for the provenance
question introduced in Sec. 2. Its root has an ancestor-descendant
edge to the id_str node. All other edges indicate parent-child
relationships. The id_str and text nodes hold equality conditions,
which require values of those attributes to be equal to lp and
Hello World, respectively. Further, as indicated by the black box,
the value Hello World has to occur twice in the nested collection.

Our algorithm matches the tree-pattern against a dataset D (in
our example, the final result of the processing pipeline) to then
return the matching data in the form of a backtracing structure,
which we introduce next.

root

id_str
=

“lp”

tweets

text
=

“Hello World”

[2,2]

Figure 4: Example tree-pattern in a provenance question

6.2 Backtracing structure
The backtracing structure describes the items that are queried in
the provenance question and traced back to the input. The back-
tracing algorithm updates its content while stepping backward.

Definition 6.2. (Backtracing structure) The backtracing struc-
ture B = {{⟨id,T⟩}} is a bag of provenance identifiers id of
top-level data items associated with a backtracing tree T (see
next definition), referencing attributes in the schema of id .

The nodes in the backtracing trees also hold information about
the access and manipulation of the attribute and whether the
attribute is contributing or just influencing the items queried.

Definition 6.3. (Backtracing tree) The backtracing tree
T = ⟨root,N ⟩ holds complex nodes n ∈ N . Each node
n = ⟨name,parent,C,A,M, c⟩ has a name equal to the attribute
name it references. Further, it references its parent node p, and its
children C . A node also holds the set of operators A that access
the referenced attribute and a set of operatorsM that manipulate
the attribute. A boolean value c indicates whether the attribute
contributes to the items in the provenance question (c = true) or
whether it influences the items (c = f alse).

Example 6.4. Examples of backtracing trees are provided in
Fig. 2. The right tree corresponds to the backtracing tree obtained
from matching the tree-pattern in Ex. 6.1 on the data in Tab. 2.
The left trees correspond to backtracing trees resulting from
recursively updating the backtracing structure while stepping
back through the processing pipeline to the input data.

The following two methods manipulate the trees, and the
backtracing algorithm calls them repeatedly during backtracing.
Their execution context is an instance of an operator provenance
P and a backtracing structure B.

ThemanipulatePath method performs two tasks. First, it ma-
nipulates the nodes in T . For each input and output path in
m ∈ P .M it transforms the output path back to the specified
input path inm, if the output path exists in T . After the trans-
formations, the nodes in the tree T conform to the schema of
the input. Second, it adds the current operator identifier P .oid
to each node’s manipulation collectionM .

The accessPath method records access to attributes in the
nodes of T . During that process, one of two cases applies. In
the first case, all nodes of the path a ∈ A,A ∈ P .I already
exist in T . Then the method adds the P .oid to each node’s access
collection A. In the second case, nodes in path a do not exist in
T , because these attributes are neither needed to reproduce the
result nor have been accessed by other operators so far. Then,
the accessPath method adds the according nodes to T but sets
the contribution value to c = f alse since these nodes are not
required to reproduce the queried data items.

6.3 Backtracing algorithm
Alg. 1 shows the backtracing algorithm that traces the queried
items recursively back from the result to the input. It takes the
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Algorithm 1: backtrace(P,B)
Input: P , B
Output: B

1 switch P .type do
2 case “f il ter ” do
3 ⟨P′, B′ ⟩ ← backtraceFilter(P , B)

4 case “f latten” do
5 ⟨P′, B′ ⟩ ← backtraceFlatten(P , B)

6 · · ·

7 if P′ is defined then
8 backtrace(⟨P′, B′ ⟩)

9 return B′

Algorithm 2: backtraceFlatten(P,B)
Input: P , B
Output: ⟨P′, B′ ⟩

1 ⟨P′, B′ ⟩ ← backtraceOperatorGener ic(P, B)
2 B′ ← αmerдeT rees (T,pos )(γid (B

′))

3 return ⟨P′, B′ ⟩

Algorithm 3: backtraceOperatorGeneric(P,B)
Input: P , B
Output: ⟨P′, B′ ⟩

1 B′ ← πidi→id ,pos ,T (P .P ▷◁ido=id B)

2 for t ∈ B′ .T do
3 form ∈ P .M do
4 manipulatePath(t ,m, P .oid )

5 for a ∈ P .I1 .A do
6 accessPath(t , a, P .oid )

7 return ⟨P′ ← P .I1 .p, B′ ⟩

operator provenance of the last operatorP in the pipeline and the
backtracing structure B as input to call the operator-dependent
backtracing method, which returns its predecessor’s operator
provenance P ′ and an updated backtracing structure B′. The
algorithm recursively calls the backtrace method until the input
is reached. Then P ′ is not defined so that the recursion ends.
Flatten, Select, Filter, Map.As shown in Alg. 2, backtracing the
flatten operator has two steps. In the first step (l. 1), the algorithm
calls backtraceOperatorGeneric (Alg. 3) to undo the flatten on
each item in B individually. At this step, the algorithm does
not consider positions in the flattened collection. As a result, it
obtains P ′ and B′. In the second step (l. 2), the algorithm groups
the trees and positions in B′ by the top-level item id and merges
all trees of the same id , considering the position pos .

The generic backtracing algorithm, shown in Alg. 3, also has
two major steps. In the first step (l. 1), it joins B with the prove-
nance associations P of P to obtain the input identifiers of the
top-level items along with the trees in B (l. 1). These identifiers
become the new ids in B′ so that they match the ido of the pro-
jection’s predecessor P .I1.p,B′. This join is essentially the same
one that existing lineage solutions [15, 17, 22] apply for backtrac-
ing. In the second step (ll. 2-6), the algorithm iterates over all the
trees in B′ to undo all recorded structural manipulations in the
manipulatePath method and record the access to attributes in
the accessPath method.

Example 6.5. The example input of Alg. 2 is P5 in Fig. 3 (bot-
tom right) and a backtracing structure B with the two items
of id = 42 and id = 43. They reference the items with the
same identifier in Fig. 3. For simplicity, the example subtree
T is reduced to the pathm_user .id_str . The backtraceFlatten
algorithm calls the backtraceOperatorGeneric algorithm (Alg. 2,
l. 1), which joins P5 with B (Alg. 3, l.1). Afterwards, both items
are assigned id = 1. Then the algorithm modifies the trees to
user_mentions .[pos].idstr so that they comply with the input
schema of the flatten operator (Alg. 3, l.4). However, instead of

Algorithm 4: backtraceAggregation(P,B)
Input: P , B
Output: ⟨P′, B′ ⟩

1 P ∗ ← pos_f latten(P .P .ids i , id i , pP )
2 B′ ← P ∗ ▷◁ido=id B
3 B′ ← withCol (B′, inProv , f alse)
4 for b ∈ B′ do
5 form ∈ P .M do
6 if contains(m .out , [pos]) then
7 out ← r eplace(m .out , b .pP )

8 else
9 out ←m .out

10 if out ∈ b .T then
11 b .inProv = true
12 manipulatePath(b .T, ⟨m .in, out ⟩ , P .oid )

13 r emoveNodes(b .T,m .out )

14 for t ∈ B′ .T do
15 for a ∈ I .A do
16 accessPath(t , a, P .oid )

17 B′ ← πidi→id ,T (σinProv=true (B
′))

18 return ⟨P′ ← I .p, B′ ⟩

holding the position of the nested items, they hold [pos] placehold-
ers. ThemerдeTrees method in Alg. 2 (l. 2) replaces them with
pos = 1 and pos = 2 for the items with the former id = 42 and
id = 43, respectively. Further, it merges their trees because both
items have id = 1 and, thus, are grouped together. Finally, the
algorithm returns a B′ with the item of id = 1 and the tree refer-
ring to positions 1 and 2 in the nested collection user_mentions .

The algorithms to backtrace a select, filter, or map operator are
basically the same as Alg. 3, except that they do not project on
the pos attribute (l. 1). Some optimizations are applicable to the
filter. Since the filter does not manipulate any data, its backtrac-
ing algorithm does not loop over the manipulations P .M. The
backtracing algorithm for the map operator has no information
on the paths manipulated or accessed. Thus, it marks all nodes
in the input schema as manipulated by default.
Aggregation and Nesting. As described in Sec. 5, aggregation
and nesting are preceded by a grouping. Further, our model al-
lows multiple aggregations and nestings over different attributes.
Alg. 4 describes the procedure to trace aggregation and nesting
back to the input of the preceding grouping.

Unlike the provenance structures of other operators, P .P of an
aggregation holds a nested collection of input idsi (cf. Tab. 5.1).
Thus, Alg. 4 first flattens the idsi and their positions into the
columns idi and pP , respectively (l. 1). After joining P∗ with
B to B′ (l.2), the algorithm adds a column inProv to B′ (l. 3).
This column is initialized with f alse and used later to indicate,
whether items in B′ remain in the backtraced provenance. Then,
the algorithm iterates over each item in B′ and each manipulated
path inP .M (ll. 4-13). For eachmanipulated pathm.out , it checks
for a position placeholder [pos] (l.6), which only occurs when the
operator performs bag nesting. In this case, the input item with
idi contributes exactly to the item in the nested bag that also
has position pP . Thus, the algorithm replaces the placeholder in
m.out and stores the result in out (l. 7). Otherwise, out is assigned
m.out (l. 9). If the exact path out is in the provenance tree, item b
is marked as relevant and the path is adjusted accordingly (ll.10-
12). In case of a bag nesting, the provenance tree may also hold
information of items at other positions. The algorithm removes
these nodes calling the removeNodes method (l. 13). It marks
the accessed paths, to which the grouping attributes also belong
(ll.14-16). In a final step, the algorithm removes all items and
attributes from B′ that are irrelevant for further backtracing.
Their value in inProv was not set to true.
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Example 6.6. Let us apply Alg. 4 on the nesting operator in our
running example, which collects all tweeted texts in a nested bag.
The backtracing structure B contains just the item with id = 102
and the right tree T of Fig. 2, which refers to the duplicate text
Hello World. The operator Provenance P contains a provenance
structure P that Alg. 4 flattens out to the following P∗:

id i pP ido

81 1 102
82 2 102
93 3 102
95 4 102

After joining B with P∗, each entry with ido = 102 holds
a copy of the same tree T . For a single loop iteration over B′
and M ′ (ll. 4-13), we choose b ∈ B′ with idi = 82, pP = 2,
ido = 102 and pathm.out = tweets .[pos]. The algorithm replaces
placeholder [pos] with 2, so that out = tweets .2 (l. 7). Since out
is part of T , it sets b .inProv = true (l. 11) and transforms the
subtree tweets .2.text to the subtree text (l. 12). Then, it removes
the node tweets and all its children from its copy of T (l. 13),
which includes the nodes in path tweets .3.text . Now, the nodes
in T describe a subset of the schema of the aggregation’s input
data. The algorithm marks the accessed attributes and removes
all items that are not part of the provenance. Here, it marks the
user and its children as accessed (ll. 14-16), since these attributes
are used for grouping. Further, it removes items from B′ whose
provenance is not queried (l. 17), e.g., b ′ with idi = 95 and pP = 4.

Join and Union. Unlike the other operators, the join and the
union operator have two predecessors. Thus, the backtracing
algorithms require an additional parameter to specify which of
the two inputs is traced back to. Based on that parameter, the
algorithms pick the appropriate input tuple from the operator
provenance P .I and the appropriate input identifiers idi1 or id

i
2

from the provenance structure P .P (cf. Tab. 4). Then they call
the generic backtracing algorithm from Alg. 3. Afterwards, the
algorithm for the join operator removes all nodes in the prove-
nance trees B′.T that are not part of the chosen input schema,
since they reference elements in the schema of the other input.
The algorithm for the union operator filters out all items in B′
whose value is undefined in the chosen field idi1 or id

i
2 . These

items originate from the other input of the union operator.

7 IMPLEMENTATION & EVALUATION
We integrate the contributions described in this paper into a
system prototype named Pebble. Sec. 7.1 provides some details
of the system implementation, demonstrated in [9]. Sec. 7.2 then
describes our evaluation setup and workload, which we use for
our experimental evaluation (Sec. 7.3).

7.1 Implementation
While our contributions are generally applicable to DISC systems,
we implement Pebble as a library extension for Apache Spark.
This allows us to better compare it to Titian, which is the only
other fully integrated provenance solution for DISC systems that
has been implemented over Spark [16].

Fig. 5 shows Pebble’s architecture (blue) on top of the Spark-
SQL API (grey), which is independent of the Spark Core module
and further modules (grey) such as the MLlib. To provide a trans-
parent user experience, Pebble has an API wrapper PebbleAPI.
It directs user requests to the SparkSQL module or the Pebble
Core module, which contains the Capture and Query submodules.

Spark Core

SparkSQL

Pebble Core

PebbleAPI

Further
Spark 

Modules

Capture

Query

TPM Backtracing

Figure 5: Pebble’s architecture

S Description (detailed descriptions available in [8])
T1 filters tweets containing the text good, flattens and groups by the mentioned users to

collect a bag of complex tweet objects
T2 flattens the nested lists hashtags, media, user mentions
T3 running example
T4 associates all occurring hashtags with the authoring and mentioned users
T5 finds all users that tweet about BTS, and are mentioned in a BTS tweet
D1 associates inproceedings from 2015 with the their according proceeding(s)
D2 unites and restructures conference proceedings and articles
D3 computes nested list for aliase, co-authors, and works per author
D4 computes nested list of all associated inproceedings for each proceeding
D5 is D4 extended with a UDF in map that returns the number of authors per proceeding

Table 7: Short informal scenario descriptions

The former submodule extends Spark’s dataframes and operators
to capture the structural provenance as described in Sec. 5. The
latter submodule implements the backtracing algorithm from
Sec. 6. It utilizes maps to represent the provenance trees T and
modifies the tree in place with user-defined functions. Each of
the Algs. 2-4 iterate over all items in the backtracing structure B
and perform changes impacting only one item at a time. Thus, the
for-loops with iterator variables t or b in Algs. 2-4 are parallelized
across the DISC system. However, the backtracing needs to be
called for each input dataframe independently, because Spark
operators always generate just one result dataframe.

7.2 Test setup & workload
For our experimental validation, we run Pebble on a cluster with
three worker nodes, each having 8 cores, 256GB main memory,
and SSD storage. All nodes run Scala 2.11, Hadoop 3.1.0 and
Spark 2.3.1. We average five test runs framed in an additional
warm-up and cool-down run. The error bars displayed in our
graphs show the standard deviation. We write the result to disk
to ensure that Spark computes the full result. Otherwise, Spark
“optimizes” attributes away. The experiments run on 100GB input
data, if not mentioned otherwise.

We base our evaluation on a nested Twitter and a DBLP dataset.
We scale the datasets from 100GB to 500GB in steps of 100GB. For
each of the datasets, we define five scenarios containing a Spark
program to be executedwith andwithout provenance capture and
a corresponding structural query. Each supported operator occurs
at least once in the scenarios. The Twitter dataset contains up to
130 million tweets (500GB). Each tweet has up to 1000 attributes
and eight layers of nesting [27]. We define five test scenarios
T1 - T5 (Tab. 7). The DBLP dataset contains up to 1.5 billion
records (500GB) that are extracted from the dblp.xml. Records
have one of ten types such as article or proceeding [21]. They are
split by type and upscaled, such that important characteristics
such as the average number of inproceedings per proceeding are
preserved. We define five test scenarios D1 - D5 (Tab. 7).

7.3 Experimental evaluation
We conduct experiments to study the runtime and space over-
head when capturing lightweight structural provenance. We also
evaluate the performance of querying the structural provenance.
Further, we perform a comparative evaluation with Titian [17],
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Figure 6: Runtime overhead on Twitter dataset

kindly provided to us by the authors, and fully lazy provenance
capture as described by PROVision [28]. We conclude our evalua-
tion with a use-case analysis for auditing and data-usage patterns.

7.3.1 Capture runtime overhead. The first series of measure-
ments shows the runtime overhead imposed by the lightweight
provenance capture for increasing data sizes. Our goal is to show
(i) how Pebble scales over the input data size and (ii) how data
size affects the runtime overhead.

We measure the execution time for each of the Twitter scenar-
ios T1 to T5, once without provenance capture, i.e., with Spark’s
regular operator semantics, and once with Pebble’s provenance
capture as defined in Sec. 5.1. Fig. 6 shows the results on datasets
from 100GB to 500GB. The solid dark grey part of each part shows
the runtime that Spark requires without provenance collection.
The textured light grey part on top of each bar shows the over-
head when running provenance capture. The percentage on top
of the textured bars indicate the relative overhead between the
former and the latter types of experiments. Analogously, Fig. 7
reports runtimes for scenarios D1 to D5.

As expected, across all experiments, the runtime increases
when provenance is collected since Pebble performs extra work.
Runtime with and without provenance grows linearly with the
data size. As the overhead percentages indicate, the relative over-
head imposed by provenance capture remains constant with
increasing data sizes for most scenarios. Thus, we conclude that
Pebble scales with the input data size. However, the relative over-
head varies significantly between the scenarios. It ranges from
75% (T3) down to 8% (D3, shown on the right of Fig. 7). A detailed
analysis of D3 reveals that spilling large final and intermediate
results to disk – or more generally speaking disk I/O – dominates
the runtime. The time to compute the extra provenance is small.
In contrast, scenario T3 reads the input tweets twice to perform
a union operation. As a consequence, Pebble annotates the in-
put data twice during provenance capture, hindering Spark to
optimize reading the input.

We further investigate overhead incurred by Pebble for each
individual operator (no graphs shown due to space constraints).
Overall, the overhead highly depends on the size ratio between
the collected provenance and the processed input data. In gen-
eral, for operators with constant provenance annotation overhead
(filter, select, union, join, and flatten), the relative overhead de-
creases with an increasing number of attributes in the input data.
In the case of the DBLP dataset, which has less than 50 attributes,
the overhead ranges between 5% and 25% for the mentioned
operators. The overhead is particularly high for aggregations
that reduce many input items to a single value. Then, Pebble
stores a collection with all item identifiers contributing to the
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Figure 7: Runtime overhead on DBLP dataset (right: D3)

aggregated item. This collection typically is orders of magnitude
larger than the result item itself. Consequently, the observed
runtime overhead exceeds 100% of the actual execution time for
the aggregation. However, even this overhead is negligible when
disk I/O operations dominate the execution time.

7.3.2 Capture space overhead. The second series of measure-
ments shows the space required to store captured provenance.
We show (i) that the provenance size depends on dataset and
scenario characteristics, (ii) that large provenance sizes do not
necessarily correlate with high runtime overhead, and (iii) that
the captured structural provenance typically adds an overhead of
less than 200MB compared to lineage. Thus, it typically does not
significantly affect scalability. Results are reported in Fig. 8(a) and
Fig. 8(b). The dark grey part of each bar shows the size of lineage
for top-level items and the stacked and textured bars show the
additional space required by structural provenance.

The y-axis of the Twitter graph has a Megabyte scale, whereas
the y-axis of the DBLP graph has a Gigabyte scale. The reason is
that the items in the Twitter dataset have about 1000 attributes,
whereas the items in the DBLP dataset have less than 50 attributes.
Therefore, 100GB of DBLP data contain more than 100 times as
many data items as 100GB of Twitter data. Given that Pebble
associates identifiers to top-level data items only, it stores more
than 100 times the annotations for DBLP scenarios compared
to the Twitter scenarios. Hence, the DBLP provenance is orders
of magnitude larger than the Twitter provenance and lets us
conclude that the size of the provenance significantly depends
on the number of tracked top-level data items in the input.

Further, the sizes significantly differ among the scenarios of
the same dataset. For instance, the provenance of scenario T3
amounts to 750MB, 5.5 times the size of T1’s provenance. There
are three reasons for the different size: (i) As mentioned above,
in T3, our solution annotates the input data twice; (ii) The pro-
cessing pipeline of T3 consists of 7 processing steps that trigger
provenance collection, whereas the pipeline of T1 only consists
of 5 steps; (iii) The filter in T1 reduces the total amount of tracked
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Figure 8: Size of collected structural provenance
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Figure 9: Runtime of Pebble’s backtracing

data items early in the pipeline. Clearly, space overhead also de-
pends on the number of operators in a program and the number
of top-level items in intermediate results.

The scenarios T3 and T1 have comparable runtime overhead
(see Fig. 6(a)) of around 70 - 75% and, thus, highest across all
scenarios. While scenario T3 is also the scenario with the largest
provenance size, T1 has a comparable runtime overhead but a
much smaller provenance size. Similarly, the relationship of the
runtime and space overhead is actually the inverse for scenario
D3 and D1 in Fig. 8(b). D3 has the largest and D1 the smallest
provenance size. However, D1 has a runtime overhead of 27%,
whereas D3 only has 7%. Therefore, it is not generally true that a
high runtime overhead correlates with a high space overhead.

Looking at the space overhead of lineage and structural prove-
nance, we see that in most scenarios, structural provenance takes
less than 200MB additional space, even in scenarios where lin-
eage itself takes Gigabytes. The only exception is D3, where a
flatten occurring early in the pipeline followed by a very selective
join causes the comparatively high size difference.

Concerning the above experiments, which are all related to
provenance capture, we make the following general observations.
The provenance size highly depends on the number of top-level
items in the input and intermediate results. As explained, the
provenance size may not correlate with the runtime overhead.
Other factors, such as processing optimizations, data width, or
significant disk I/O potentially have a higher impact on the rela-
tive runtime overhead than the provenance size. While the size
difference between lineage and structural provenance is small in
many practical scenarios, the overhead can increase when flatten
operators store positions that lineage solutions do not capture.

7.3.3 Querying structural provenance. Our third series of
experiments focuses on processing structural queries over
provenance-annotated result datasets. The runtimes reported
in Fig. 9 include both the tree-pattern matching on the program’s
result items and the time needed to backtrace these result items
to the input with the help of structural provenance. We report
results on query processing time in our holistic approach (i.e.,
where structural provenance has been eagerly captured and is
traced back). We also implement a fully lazy query approach that
can be considered an extension of PROVision [28] to our pro-
cessing pipelines. The query runtime for these two approaches,
labeled eager and lazy respectively, are shown for both the Twit-
ter scenarios (Fig. 9(a)) and the DBLP scenarios (Fig. 9(b)).

The graphs in Fig. 9 do not explicitly show the time for tree-
pattern matching since the matching is integrated into Spark’s
processing pipeline. It becomes part of Spark’s execution plan
and undergoes optimizations such as filter push down. Therefore,
time cannot be measured independently in a reliable way.

The dark bars in Fig. 9 show that querying structural prove-
nance (eagerly) takes more time than the actual program execu-
tion (cf. Fig. 6 and 7). We identify two reasons for this behavior:
(i) the backtracing presented in Sec. 6 performs a join operation
for each operator in the actual program, even for computationally
less expensive operators such as filters and selects. (ii) Backtrac-
ing has to manipulate the provenance trees for each operator.

When comparing the performance of our holistic capture and
query approach with a completely lazy query approach such as
PROVision [28], we see that our holistic provenance querying
approach (eager) is always faster than the lazy approach. In the
scenarios T3, T5, and D3 the difference amounts to a factor four
to seven for two reasons. First, lazy processing needs to trace
back result items for each input dataset independently and these
scenarios have multiple input datasets. Hence, the extra time
to query provenance lazily add up for each input. Second, the
processing pipelines in these scenarios are deep, yielding high
provenance query times for each input dataset.

Based on the above experiments, we draw the following con-
clusions for provenance querying. Lazily querying structural
provenance is less attractive the more operators a program has
and the more input datasets it processes. It is less time consuming
to rerun a programwith provenance capture and query the prove-
nance eagerly than using lazy provenance querying approaches
such as [28].

7.3.4 Comparison with Titian. We compare Pebble to
Titian [17] since it is the only other provenance system inte-
grated into a DISC system. The purpose of the evaluation is to
compare the runtime overheads for capturing provenance of flat
data items. A detailed comparison is not possible since Titian
neither supports nested data, nor structural provenance, nor the
programs in our scenarios. We run the test on a local machine
with two worker nodes, using the unscaled articles and inpro-
ceedings records of the DBLP dataset. The test program reads
each record as a long string value and filters lines containing
2015. Then, the program computes the union over the filtered
articles and inproceedings. Titian’s program is implemented in
the RDD API. Pebble’s program is implemented in the SparkSQL
API. Without provenance computation, the programs have an
average runtime of 7.13 seconds and 7.36 seconds, respectively.
The overall execution time is lower for the RDD program since
the SparkSQL API imposes overhead on top of the underlying
RDD API. Titian’s overhead is 5.89%, Pebble’s overhead is 6.98%.

The result indicates that for workloads on flat data supported
by both systems, Pebble only adds marginal runtime overhead
compared to Titian, even though it is capturing structural prove-
nance. However, Pebble outperforms Titian in the sense that it
additionally supports nested data and the collection and querying
of structural provenance at attribute level.

7.3.5 Use-case analysis. To validate that structural prove-
nance supports the use-cases described in our motivation, we
revisit these use-cases with a prototypical implementation to
analyze how they benefit from structural provenance.
Data-usage patterns. Pebble reveals data-access patterns, as
well as hot items that frequently contribute to a query result
and cold data items that do not influence any result. In Fig. 10,
we show a heatmap of 25 randomly selected data items from
the DBLP inproceedings dataset after running test scenarios D1
through D5. For that purpose, we merge the provenance of the
individual scenarios. Themore often a data item is used the redder
(hot) it is. Items that do not influence any result are colored
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Figure 10: HeatMap for 25 data items in the DBLP inpro-
ceedings dataset after running scenarios D1-D5

blue (cold). The leftmost column indicates how often the top-
level item (tuple) contributed to a result. The other columns
refer to attributes of the top-level data items. The heatmap only
shows top-level attributes due to space constraints. All but three
top-level items have influenced at least one result. A horizontal
(tuple-based) partitioning of hot and cold items, therefore, may
not significantly improve system performance. However, only a
fraction of all attributes contributes to the results. Thus, in this
example, a vertical (column-based) partitioning of hot and cold
attributes is likely to improve system performance significantly.
Further, the analysis of accessed and manipulated nodes in the
structural provenance reveals that the attributes author and title
are frequently processed together. Thus, system performance
benefits from storing these items next to each other.

In comparison, lineage solutions and PROVision [28] only pro-
vide the tuple based counter. Lipstick [2] also identifies attributes.
However, Lipstick does not reveal information on access and
manipulation and, thus, misses influencing attributes.
Auditing. Pebble identifies sensitive data that has been leaked
directly or indirectly over the DBLP scenarios D1 through D5. All
data in Fig. 10 are leaked whose count is bigger than zero. Data
with count zero (blue) is not leaked. Since Pebble distinguishes
access and manipulation of items, it further reveals the usage of
the year item whose count equals one. It is marked as influenc-
ing since it does not contribute to any result item in D1 to D5.
However, knowing that the year item is accessed is important to
assess the risk of reconstruction attacks.

In comparison, lineage solutions and PROVision [28] only
provide full tuples. Thus, they mark too much data as leaked.
This is costly for a company, e.g., if a non-leaked (blue) attribute
holds credit card numbers. Then, the company has to issue new
credit cards to all marked customers, even though the information
is not leaked. Lipstick [2] potentially misses leaked information,
since it misses influencing attributes like the year. Thus, neither
of the mentioned solutions allows for proper risk assessment.

8 CONCLUSION AND OUTLOOK
This paper introduced structural provenance, for which we pro-
vided a formal data model and execution semantics for operators
frequently used in DISC systems. Further, we showed how to
capture the structural provenance in an efficient and scalable way.
Based on the captured provenance, we formalized an algorithm to
backtrace structural provenance at attribute level for nested data
at provenance query time. Our experimental evaluation using
the Pebble system showed that our contributions result in the
first DISC system integrated provenance solution for nested data

that is efficient, scalable, and accurate enough to support novel
provenance use-cases, such as auditing and data-usage patterns.

Future work includes extending Pebble with a user-friendly
front-end to interact with structural provenance. We also intend
to optimize provenance querying.
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