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ABSTRACT
Modernmixed (HTAP)workloads execute fast update-transactions

and long-running analytical queries on the same dataset and sys-

tem. In multi-version (MVCC) systems, such workloads result in

many short-lived versions and long version-chains as well as in

increased and frequent maintenance overhead.

Consequently, the index pressure increases significantly. Firstly,
the frequent modifications cause frequent creation of new ver-

sions, yielding a surge in index maintenance overhead. Secondly

and more importantly, index-scans incur extra I/O overhead to

determine, which of the resulting tuple-versions are visible to

the executing transaction (visibility-check) as current designs

only store version/timestamp information in the base table – not

in the index. Such index-only visibility-check is critical for HTAP

workloads on large datasets.

In this paper we propose the Multi-Version Partitioned B-Tree
(MV-PBT) as a version-aware index structure, supporting index-
only visibility checks and flash-friendly I/O patterns. The ex-

perimental evaluation indicates a 2x improvement for analytical

queries and 15% higher transactional throughput under HTAP

workloads. MV-PBT offers 40% higher tx. throughput compared

to WiredTiger’s LSM-Tree implementation under YCSB.

1 INTRODUCTION
The spread of large-scale, data-intensive, real-time analytical

applications is increasing. Such applications result in Hybrid

Transactional and Analytical Processing workloads (HTAP) com-

bining long running analytical queries (OLAP) as well as frequent

and low-latency update transactions (OLTP) on the same dataset

and even on the same system [19].

Multi-versioning is at the core of many approaches and sys-

tem designs suitable for HTAP. Under Multi-Version Concurrency
Control (MVCC) reading transactions, executing long-running

queries, do not block the frequent low-latency modifying transac-

tions. Under such approaches multiple versions of each data item

(i.e. tuple) may physically co-exist, whereas every transaction op-

erates against a snapshot of the database comprising all versions

it is allowed to see for consistent execution. Read operations

simply operate on the latest committed version, visible to them

and are therefore never blocked, yielding good read performance

and concurrency. An update operation produces a new version

of the updated data item and invalidates the predecessor version.
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Figure 1: HTAP and Version-Chain Lengths:TXU 1 . . .TXU 3

create new versions of tuple t, which are indexed. The in-
dex scan ofTXR returns only the index entries (t .v0) visible
to TXR filtering the invisible ones (t .v1 . . .t .v3), matching
the search predicate.

All versions of a tuple form a version-chain. Timestamps placed

on every physical version-record are used to determine, which

of the exisiting tuple-versions is visible to a transaction.

Under OLTPworkloads, version-chains tend to be short, due to

the predominantly short-lived transactions. For instance, under

TPC-C the average version-chain length is approx. 1.2 [9]. Under
HTAP the DBMS needs to handle much longer version-chains due
to the mix of long-running and short-lived transactions (Figure 1).
Whenever a transactionTXR reads a tuple t the DBMS returns the

latest version of that tuple t .v0, committed before the start ofTXR .

Even though, in the meantime multiple low-latency updating

transactions TXU 1 . . .TXU 3 might have committed, producing

successor-versions (t .v1 . . .t .v3), t .v0 cannot be garbage collected
as long as, it is visible to an active transaction, i.e. TXR . Thus,

the amount of such transient versions can be as high as several
hundred millions in real systems [14].

HTAP workloads in combination with long version-chains exer-
cise signi�cant pressure on indices. In a single-versioned system

there is one index entry per tuple. However, in a multi-versioned

system, the DBMS needs to index at least all committed tuple-

versions (Figure 1), even the transient ones. Thus, long version-

chains put extra pressure on the index. Although most of today’s
systems are multi-versioned, the majority of index approaches still
handle tuple-versions of the same tuple as if they were separate
tuples, ignoring the version semantics. If naïvely integrated, these

slow down index lookups and may cause significant maintenance

overhead to persistent indices, as index updates are very frequent

and since index entries corresponding to obsolete tuple-versions

need to be frequently garbage collected. Given the read/write
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asymmetry of modern persistent storage technologies these op-

erations result in prohibitively expensive in-place updates. In

this context append-based index structures trading sequential

writes for complex reads are a good candidate.

All in all, the following observations can be made:

1) Version-obliviousness: Although, all tuple-versions need to be

indexed, current indexing approaches lack version information.

2) Lack of index-only visibility-checks: It is currently impossible

to determine, which of the index-entries resulting from an index

lookup/scan correspond to versions, visible to the calling trans-

action solely based on the index.

3) I/O overhead: Version-oblivious indices or naïve support for
multi-versioning yield significant I/O overhead.

In the present paperwe propose theMulti-Version Partitioned B-
Tree (MV-PBT) as a version-aware index structure for MV-DBMS,

in an attempt to address the above issues. MV-PBT is based on a

variant of B
+
-Trees called Partitioned B-Trees [13]. The contribu-

tions of this paper are:

• MV-PBT is a version-aware index structure. It contains version

information and supports index-only visibility-checks.

• MV-PBT supports append-based write-behavior and exhibits

much lower write-amplification compared to LSM-Trees.

• MV-PBT has been implemented in PostgreSQL. The perfor-

mance evaluation under HTAP workloads (CH-Benchmark

[2]) indicates 2x analytical throughput improvement due to

index-only visibility-checks, while improving the transactional

throughput by 15% compared to PostgreSQL’s highly-optimized

B
+
-Tree. Under TPC-C MV-PBT performs 15% better.

• MV-PBT has also been implemented in WiredTiger (Mon-

goDB). The performance evaluation indicates approx. 40%

higher throughput under YSCB compared to WiredTiger’s

highly-optimized LSM-Trees.

The rest of the paper is organized as follows. We motivate the

missing version-awareness and the need for index-only visibility-
checks in Section 2, while Section 3 provides some background

on various multi-versioning aspects. The design and implemen-

tation of MV-PBT is described in detail in Section 4, while the

experimental evaluation is presented in Section 5. We. discuss

related approaches in Section 6 and conclude in Section 7.

2 MOTIVATION
In this section we give a more comprehensive perspective on

the above issues of: 1) Version-obliviousness in indices; 2) missing
index-only visibility-check; and 3) I/O overhead. Consider the ex-
ample in Figure 2, which is a more detailed version of Figure 1

with a conventional B
+
-Tree. An initial transaction TXU 0 (not

depicted) inserts tuple t prior to TXR , creating its initial version

t .v0. While TXR is running, multiple concurrent transactions

TXU 1 . . .TXU 3 update tuple t and each of them produces new

versions of it (t .v1. . .t .v3). Only TXU 3 inserts tuple y in its ini-

tial version y.v0 in addition to creating t .v3. Each tuple-version

is a separate physical version record (Figure 2.A). It contains

version-information: the recordID of the predecessor version and

two timestamps, tcreation - the timestamp of the transaction that

created that tuple-version; and tinvladiation the timestamp of

the transaction that invalidated it by creating a successor version.

The invalidation-timestamp is null if there is no successor. If a

tuple gets deleted a special tombstone version-record is inserted

to mark the logical end of the chain. The version-information is
only available on the version-record.

Since version-records are independent physical entities they

can be stored on any DB-page with enough free space. Figure

2.B depicts an example of the physical version-storage. For con-
sistency, an index on a table must contain index-entries for each
committed version of every tuple. Therefore, a B+-Tree index idx
on attribute a of table R (Figure 2.C) should reflect all versions of

each tuple of R. Since the index is version-oblivious it contains no
version-information, and treats each tuple-version as if it were a
separate tuple. Consequently, ifTXR uses the index to count all tu-

ples satisfying “a ≤10” (Figure 2.D), the index scan will return the

matching index entries (referencing versions t .v0 . . .t .v3). Now,
each one of them must be checked for visibility, i.e. is it latest

committed tuple-version prior to the start of TXR . However, the

necessary timestamps are available only on the version-records.

Therefore, all of them are retrieved, at the cost of random I/Os.

Return all tuple 
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Figure 2: Index-Only Visibility-Check in Multi-Version
DBMS: (a) logical tuples (t and y) of a table R and their ver-
sions; (b) the physical storage of these versions into data-
base pages; (c) an index created over table Rmust index all
versions; (d) an index-scan retrieves all versions matching
the predicate, out of which (e) the visibility-check returns
only the ones visible to calling transaction TXR .

In our example (Figure 2.D, C and E), the index-scan for the

condition “a ≤10” will return versions t .v3, t .v0, t .v1 and t .v2.
Subsequently, they are read to extract the version-information
(tcreation and tinvalidation – Figure 2.A) yielding four random

I/Os. The visibility-check then determines the latest version com-

mitted prior to the start ofTXR , returning the recordID of t .v0 and
ignoring the rest. Since the index is version-oblivious and thus does
not support index-only visibility-checks, the I/O costs amount to:
COST(Index-Scan) + 1 random I/O for each matching tuple-version.
Especially for HTAP workloads this yields signi�cant performance
degradation depending on the length of the version-chains.

To quantify the combined effect, we designed a simple experi-

ment with YCSB [7] and PostgreSQL. We run YCSB workloads A

(update) and E (scan) combined, performing frequent scans and

updates. In parallel, we perform a point-query on a tuple every 30

seconds (simulating an HTAP workload). Additionally, we con-

tinuously increase the version-chain, by updating the tuple, until

50 versions are reached. In realistic HTAP settings, the amount of

active versions can be as high as several hundred millions, while
analyses can take as long as 1000s [14]. The experimental results
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are shown in Figure 3. The highly-optimized B
+
-Tree implemen-

tation in PostgreSQL performs better than MV-PBT on a single

tuple-version. However, as the version-chain length increases

(6-8 versions) the performance drops rapidly to approx. 50 trans-
actions/sec, due to version-obliviousness and random I/O. Basic

Partitioned B-Trees (PBT), are likewise version-oblivious, but ex-
hibit append-based write behaviour, avoiding in-place updates

and perform therefore slightly better (approx. 150 tx/sec). Due to
its version-awareness and support for index-only visibility-check
MV-PBT exhibits much higher and robust performance (approx.
1200 tx/sec) with growing chain lengths. MV-PBT shows a per-

formance increase with chain-lengths of two or more due to the

partition buffer since: (a) the initial YCSB data load, producing the

first version fills partition P0 and evicts it; while (b) the second

version is created by the benchmark workload and is in PN .

3 BACKGROUND
Multi-Version Concurrency Control (MVCC) is one of the most

popular transaction management schemes and is used in most

modern DBMS: Oracle, Microsoft SQL Server, HyPer, SAP HANA,

MongoDB WiredTiger, NuoDB, PostgreSQL or MySQL-InnoDB,

just to name a few. These DBMS make different design decisions

regarding various MVCC aspects described below.

3.1 Version Storage
Under MVCC a logical tuple corresponds to one or more tuple-

versions (Figure 2.A). They form a singly linked list, which rep-

resents a version chain. There are two possible physical repre-

sentations of a tuple-version (Figure 4): physically materialized
or delta-record based. The former implies that each tuple-version

record is stored physically materialized in its entirety and is in

the focus of this paper. The latter implies that each modification

of a logical tuple results in a delta-record, indicating the differ-

ence to another version (à la BW-Tree [15, 22]). The delta-records

are connected and retrieved on demand by the DBMS storage

manager to restore a tuple-version. Delta-record based system

designs typically store a single version (oldest or newest) in the

main store and use a separate store for the delta-records, which

may be the undo log (à la InnoDB) or a temporary version store (à

la MS SQL Server). Both organizations can perform modifications

in-place or out-of-place. Out-of-place updates with physically
materialized version-maintenance insert a new version-record

in the base table. Based on the version ordering, additional mod-

ifications may be necessary to maintain logical timestamps or

references.

Tuple t 
version t.v3

t.v3 7 TXu3 -V3

Tuple t 
version t.v2

t.v2 7 TXu2 TXu3V2

y.vn

...

Physically Materialized Storage Delta-Record Storage
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Delta storage

t.v2 TXu2V2

UNDO log

LogLSN TXU2
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t.v2 ... TXu2 TXu3

t.v0

...

...

Figure 4: Version Storage Alternatives

Considering the characteristics of modern storage technolo-

gies, physically materialized version storage and out-of-place

updates are preferable, due to lower write-amplification and the

higher parallelism. Delta records tend to consume less space than

materialized tuple-versions, but require additional processing

and all predecessors or successors for tuple reconstruction.

3.2 Version Ordering
The set of tuple-versions of a database tuple is organized as

a singly linked list. There are two different ordering methods

(Figure 5): old-to-new and new-to-old.
Old-to-New ordering: The entry-point is the oldest tuple-version

in version chain and each version contains a reference (recordID)

to its successor. A visibility-check must therefore process all suc-

cessors, beginning from the oldest tuple-version. This behavior is

beneficial for lookups of long-running analytical (OLAP) queries

under HTAP workloads, where older tuple-versions are likely to

be the visible ones. Alternatively, OLTPworkloads mostly require

the newest version and would need to process the whole version

chain. New-to-Old ordering implies that the entry-point is the

newest tuple-version, which refers to its predecessor. Queries in

the typically short OLTP transactions find the visible version very

fast, but long-running OLAP queries may need to process several

successors in version chain (Figure 3). In-place and out-of-place
update strategies are are possible for both methods.

Considering the characteristics of modern storage technolo-

gies new-to-old ordering for physical version storage results in

lower write-amplification and matches append-only storage. All

other approaches require in-place updates.

Newer 
version t.v3 ... TXu3 -

Older 
Version t.v2 ... TXu2 TXu3

New-to-Old Ordering Old-to-New Ordering

New-to-old Reference

Newer 
versiont.v3 ... TXu3 -

Older 
Versiont.v2 ... TXu2 TXu3

Old-to-New Reference

Figure 5: Version Ordering Alternatives

3.3 Version Invalidation Model
Under MVCC a version is said to be invalidated whenever a suc-

cessor version exists. There are two possible invalidation models

[9] (Figure 6). First, two-point invalidation is the state-of-the-art

model, where the creation timestamp of the successor version is

also placed as invalidation timestamp on the predecessor. Two-
point invalidationworks well with old-to-new ordering. However,

with new-to-old ordering, the invalidation timestamp must be

set on the predecessor version, yielding an in-place update and

possibly a random write. Second, with one-point invalidation [11],
the existence of a successor implicitly invalidates the predeces-

sor and all version-records contain only the creation timestamp.

One-point invalidationmatches well new-to-old ordering, the use









of version-record in the base-table, which can be directly ac-

cessed.

Algorithm 1MV-PBT Search

1: function search(Search conditions |attrval,cond |, ...)
2: Output: IndexRecord
3: while hasNext( ) do
4: Let idx_record ← next( ) ▷ fetch next index record

5: if VisCheck(idx_record) equals V ISIBLE then
6: return set_return_format(idx_record)

▷ hide partitionnumber and timestamp

7: while part ← previousPartition(part) do
8: if |attrval,cond | ∈ part . f ilter then
9: Let |skeyspar t | ←

form_rec(part , |attrval,cond |)
10: traverse(|skeyspar t |)
11: return search( )

12: return ∅

Algorithm 2MV-PBT Scan

1: function scan(Scan conditions |attrval,cond |, ...)
2: Output: ResultSet of |IndexRecords |
3: part ← ∅ ▷ previousPartition returns PN for ∅

4: while part ← previousPartition(part) do
5: if |attrval,cond | ∈ part . f ilter then
6: Let |skeyspar t | ←

form_rec(part , |attrval,cond |)
7: traverse(|skeyspar t |)

8: while hasNext( ) do
9: Let idx_record ← next( ) ▷ neighbor in BTree

10: if VisCheck(idx_record) equals V ISIBLE then
11: |IndexRecords |.add(

set_return_format(idx_record))

12: return |IndexRecords |

4.3 MV-PBT Index-Record(Version) Ordering
The version/partition-placement in MV-PBT is governed by mod-

ification, search and scan algorithms. Index-records of predecessor
versions are likely to be located in lower-numbered partitions, suc-
cessors in higher-numbered ones (Figure 10). This however neces-
sitates multiple memory partitions for an MV-PBT.

To address such issues the currentMV-PBT design uses a single

main-memory partition PN for each MV-PBT. However, for index-
records with the same index-key it is mandatory that records for
newer/successor versions are always placed before index-records for
older/predecessor versions in PN . In other words the primary sort-
order of the index-records in a PN is on the search-key (mostly

descending), however all records with the same search-key are

sorted in inverse secondary sort-order (mostly ascending) on the

transactional timestamp.

Search and scan operations traverse partitions backwards:
starting from buffered partition PN (i.e. PN → PN−1 · · · → P0).
Yet, given the above ordering, index-records of newer tuple-

versions, matching the search predicates, are processed �rst in
forward direction (i.e. in descending timestamp-order). Only then

the next lower-numbered partition is traversed and processed.

This is how MV-PBT ensures that in a search and scan operation,

newer versions can always be found before older ones in the same
partition, and across partitions.

Consider for example Figure 11, where we have only two

partitions and index-records reflecting updates to the same tuple

go to P1, and contrast to Figure 10, where all index-records with

higher-timestamps are placed in higher-numbered partitions.

Observe that the index-records in P1 (Figure 11) appear in their

primary-order (on the search key), i.e. records with search-key

1 precede those with 7. Observe also that the tombstone record
with key 1 precedes the regular record as a result of the secondary
sort-order since timestamp(TXU 3) > timestamp(TXU 2).

Figure 11: MV-PBT Index-Record Ordering.

4.4 MV-PBT Index-Only Visibility-Check
MV-PBT is version-aware and supports index-only visibility-check,
i.e. it returns a set of index records matching the search condition

and visible to the calling transaction. In doing so, MV-PBT avoids

the expensive retrieval of base-table version-records to extract

their version-information.
The index-only visibility-check (Algorithm 3) is inherently sup-

ported by the data structure. MV-PBT index records (Section

4.1) contain version-information and define modifications and

recordIDs of tuple-versions. The respective index-record ordering
is essential to scans (Section 4.3), whereby records indicating the

invalidation of a tuple-version are guaranteed to be placed before

the “validating”-records for a given transactional timestamp.

Index records of any type, matching the search-conditions

are processed by the visibility check. They are invisible to a

transaction, if:

(a) the index record is �agged for garbage collection;
(b) the transaction timestamp of the index-record is greater than

the timestamp of the calling transaction; or

the transaction corresponding to the index-record timestamp

is concurrent to the calling transaction;

(c) visible record with anti-matter for the recordID (anti-matter,

replacement- and tombstone-records) was already encoun-

tered (in this case also checked for GC); or





record with anti-matter (anti-matter, replacement and tombstone

records) to the recordID of the oldest victim-version of that chain

on the page. Next, GC victims are removed on that page, the space

is reclaimed and only then the update operation proceeds. This

behavior saves memory, speeds up scans and visibility checks as

well as reduces index maintenance operations (split).

Phase (3): To handle version-chains spanning several pages, and

for final cleanup before partition eviction the whole partition

is scanned and the version chains (based on timestamps and

records) are built in memory. This scan is also piggybacked for

filter creation and dense-packing (Section 4.7). Before switching

to sibling page, obsolete versions are removed after updating

invalidation reference and in-memory version chain is updated.

4.7 MV-PBT Filters and Optimizations
Various optimizations can be performed, based on the fact that

once written to storage MV-PBT partitions are immutable.
Bloom Filters. Each MV-PBT partition has a bloom filter (BF )

on the search key. Using bloom filters accelerates key lookups

(point-queries) in a partition, by avoiding unnecessary scans.

Whenever a key lookup is performed, a BF-query executed first,

to verify whether the key does not exist in the partition. If it does

not exist MV-PBT proceeds with the next partition. Alternatively,

if the BF returns true (i.e. the key may exist), MV-PBT scans the

whole partition.

Our experimental evaluation (Figure 13) indicates that the av-

erage BF size is small – in the order of few hundred KB. Therefore

frequently used filters are usually cached in the MV-PBT buffer.

Furthermore, their precision is 98% on average, thus false posi-

tives and therefore superfluous scans are rare. BF is is computed

efficiently on eviction, piggybacking existing maintenance scan

and is persisted as part of the partition metadata.

Range Filters. Partition bloomfilters accelerate point lookups,

but cannot handle range predicates. Currently, we employ pre�x
Bloom Filters (pBF), if appropriate, to speedup range scans.

Dense-packed, Read-Optimized immutable storage. Since
a partition is immutable once persisted, various space and read-

optimization techniques can be applied. Dense-packing is used

to perform coalescing and free-space optimzation. When in-

memory leaf nodes are on average 67% full to accumulate modifi-

cations and avoid splitting, however when persisted the the space

utilization can be maximized. MV-PBT performs dense-packing
as part of the final garbage collection and space reclamation.

Especially for non-unique indices MV-PBT performs recon-
celiation upon eviction to convert all regular records with the

same search key to a single regular record with a set of {recor-

dID, timestamp}, instead of holding separate record for each key

instance. The same is true for replacement records, where for

the same search key sets of {recordIDNEW , TimestampNEW ,

recordIDOLD } are created. Last but not least, compression tech-

niques such as pre�x-truncation or delta-compression are per-

formed on the search key. Along the same lines, various read and

cache-aware optimizations can be performed.

5 EXPERIMENTAL EVALUATION
We present the analysis of Partitioned B-Trees (PBT) and MV-

PBT together with traditional B
+
-Trees (which serve as baseline)

in PostgreSQL 9.04. Standard, PostgreSQL uses an old-to-new
version ordering, physically materialized version storage and two-
point invalidation. Index records have a physical reference to

base tables – denoted as B-Tree (PG/HOT). PostgreSQL base

table storage was also modified to Snapshot Isolation Append

Storage (SIAS) [9, 11] with a beneficial append-only write pat-

tern, one-point invalidation and new-to-old version ordering.

We implemented and evaluated B
+
-Trees and PBT with physical

references and with logical tuple references on top of SIAS [9, 11].

Experimental Setup.We deployed PostgreSQL 9.04 and Post-

greSQL with SIAS [11] on an Ubuntu 16.04.4 LTS server with

an eight core Intel(R) Xeon(R) E5-1620 CPU, 2GB RAM and an

Intel DC P3600 400GB SSD drive. We used the well-known DBT-

2[1] TPC-C-like OLTP benchmark and mixed workload CH-

Benchmark [6] in OLTP-Bench [2, 8] for experimental evaluation.

The OS page cache is cleaned every second to ensure repeatable

and reliable results (even though conservative).

Mixed Workloads: CH-Benchmark. MV-PBT is designed

for large datasets and mixed workloads. We evaluate the through-

put of B
+
-Trees, PBT and MV-PBT under the CH-Benchmark [6]

in OLTP-Bench [2, 8]. MV-PBT doubles the analytical throughput
compared to B

+
-Trees (Figure 12a), improving it from 0.29 to 0.61

queries/transactions per minute. In the same time, MV-PBT yield

15% higher transactional throughput than B
+
-Trees (Figure 12a).

The performance improvements are mainly due to index-only
visibility-check and partition garbage collection. To illustrate the

combined effect we turn off both and repeat the experiment.

Consider now the lower MV-PBT performance bars in Figure

12a. Without partition garbage collection and index-only visibility-
check the OLAP performance drops by 75% from 0.61 to 0.16

queries per minute, whereas the OLTP throughput plummets

from 4232 from to 3093 tx/min.

MixedWorkloads: Index-OnlyVisibility-Check andGarbage
Collection. In a further experiment we investigate MV-PBT GC

and visibility-check in more detail varying the version-chain

length. We run the OLTP part of the CH-Benchmark and execute

a query on the same dataset (Figure 12b), however we pause it (us-

ing pg_sleep) for 30/60/90/120 seconds to simulate a long-running

query and vary the amount of transient versions and the chain

length. Clearly, as the version-chain length increases, index-only

visibility-checks gain importance, because unnecessary read I/O

on base table can be reduced.

We compare PBT and standard visibility-check in base table
(VC) to MV-PBT and index-only visibility-check (idxVC) (Figure
12b). As the query processing time and version-chain length

increase, index scans and VC of slow down PBT by an order of

magnitude. Even if the version-chain length has no linear growth,

pages in base table get evicted and need to be fetched more

frequently. MV-PBT performs idxVC however without garbage

collection (Figure 12b MV-PBT w/o GC), every index record of

successor tuple-versions has to be processed, likewise the scan

time increases proportionally with the length of the version-

chain. With garbage collection (Figure 12b MV-PBT w/ GC), the
number of scanned index records and the scan time remain almost

constant. However, GC requires additional processing and latches

index nodes in PN . Reading transactions have to wait for latches

and scan time increases - consider Figure 12b at 30 seconds sleep

time. As more index record get garbage collected, GC improves

the index scan time - compare MV-PBT with and without GC at

30 and 120 second (Figure 12b).

Sequential write-pattern/Append-based storage. Based
on the tradeoffs derived in Section 3.7. MV-PBT needs to sup-

port write sequentialization and append based storage. In this

experiment we evaluate the write pattern of MV-PBT (Figure 12c).

Using blktrace and blkparse we record an I/O trace during the

partition eviction from MV-PBT buffer. The X-axis represents the
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(c) Sequential Write Pattern of Eviction of a Single MV-PBT Partition
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(d) Requests / Cache Hit Rate for PostgreSQL Heap-Only
Tuples (HOT), Logical(LR) and Physical(PR) references

Figure 12: Index Performance under Mixed Workloads (CH-Benchmark)

eviction time; the average write I/O time is about 1ms. The Y-axis

represents the logical block addresses (LBA), i.e. the file system

addresses where the blocks of the index file are written. Each

red cross indicates the write of a single index node. A horizontal

line, therefore indicates a sequential write, i.e multiple blocks

are written onto neighbouring addresses over time. Hence the
sequential write pattern of MV-PBT. The horizontal lines in Figure

12c represent database extents and result from the database space
allocation strategy. Each evicted partition comprises leaf nodes

allocated in new extents of the index file, allocated at (mostly) ad-

jacent addresses by the file system. The overall sequential pattern
confirms the sequential append behaviour of MV-PBT.

MV-PBT Buffer Efficiency. Figure 12d shows the fetch re-

quests on index nodes (blue) and base table nodes (red) for an

OLTP benchmark. Furthermore, the cache hit-rate is depicted.

Requests yielding a cache-hit are displayed in brighter colours

than fetches (cache-misses) from secondary storage. The scale

of requests is logarithmic. The results are calculated for equal

throughput over the test duration and all tables and indices.

PBT and MV-PBT require more requests on index nodes due

to partitioning of index records and greater record sizes. Most

requests are on buffered nodes, because many queries can be

answered in the main memory partition. Index records of new

tuple-versions are common to be located there. MV-PBT reduces

the requests on base table by up to 40%, because the base table is

not required for visibility-check. The version chains are short for

this benchmark, for mixed workloads this effect is more weighty.

This can be seen at the reduced cache hit rate on base table nodes

in comparison to PBT. Most saved requests on base tables are on

new tuple-versions, which are located in main memory.

Partition Filters. Partition-based indices like MV-PBT, PBT

or LSM-Trees incur higher lookup and scan overhead than B-

Trees, sincematching records may exist in older partitions. Hence,

the effort of lookups and especially of scans increases with num-

ber of index-partitions, since in the worst case every partition has

to be traversed. Point lookups can stop partition traversal after

finding the first matching record, which is visible to a transaction,

since older partitions are guaranteed to contain older records.

Figure 13: Effectiveness and Size of Partition Filters

Using Bloom �lters (BF) (Section 4.7) point lookups can skip

partitions and increase throughput up to 10% under TPC-C (Fig-

ure 14c). Furthermore, pre�x Bloom �lters (pBF)may under certain

conditions speedup scans by skipping partitions not matching

the range predicate. pBF including a fixed set of scan attributes,





PBT and MV-PBT under TPC-C (Figure 14b). PBT and MV-PBT

exhibit robust performance, which improves with larger datasets

compared to B-Tree. PBT with indirection layer exhibits high

and robust performance (Figure 14b). PBT with physical reference
to close the performance gap for larger datasets as the update

density decreases decreases with larger datasets. MV-PBT are
slower than PBT under OLTP workloads for several reasons. First,
less MV-PBT index records fit on the same sized PN , since their

sizes are larger because of the version-information (transaction

timestamps). Consequently, the number of partitions increases,

yielding more I/O. Second, the average version-chain length un-

der TPC-C is short: 1.15/2.18 versions for customer/stock respec-

tively [9]. Therefore, index-only visibility-checks cannot improve

performance significantly. Thus, MV-PBT exhibit 6% lower per-

formance than PBT under TPC-C (Figure 14b). We implemented

MV-PBT with an indirection layer as well as with physical refer-
ences (Section 3.5). Figure 14b depicts on the performance with

physical references for brevity, both curves are almost identical.

Therefore, MV-PBT are general enough to be implemented matching
the rest of the system design.

OLTP Garbage Collection. In this experiment (Figure 14d)

we quantify the performance effect of MV-PBT partition garbage

collection (Section 4.6). It improves performance between 5%

and 17% since old invisible versions are purged and need not be

processed by scans aswell as space is reclaimed lettingmore index

records fit in PN . The opportunity of improvement under OLTP is

however limited by the short average version-chain length: 1.15

versions for customer and 2.18 versions for stock under TPC-C

[9]. With HTAP workloads the amount of ’transient’ (short-lived

versions visible only throughout the duration of an analytical

query) versions increases rapidly as does the effect of garbage

collection. Garbage collecting larger amounts transient versions

has a major role on the performace improvment of MV-PBT over

PBT and B-Tree under mixed workloads (Figure 12a).

6 RELATEDWORK
Most popular indexing approaches in database management sys-

tems are based on B
+
-Trees. Their alphanumeric sorted structure

can result in high write amplification for high update rates and

visibility-checks require information, that is only located at tuple-

versions in base table. PostgreSQL uses Heap-Only Tuples (HOT)

to reduce index management operations. Index records refer-

ence items in base table, which point to tuple-versions in the

heap node. Corresponding tuple-versions are held on the same

node and can be located by processing the version chain. If a

tuple-version become garbage collected, the item is modified

to reference the next version. This indirection layer reduces in-

dex modifications, but cannot avoid write amplification of index

nodes and requires the base table for visibility-checking. Fur-

thermore the write amplification of base table nodes is increased

for large datasets. MV-IDX[10] maintains a virtual identifier for

each tuple and data nodes for each version as an indirection layer.

With Snapshot Isolation Append Storage (SIAS)[11] write amplifi-

cation on base tables is reduced in comparison to HOT, but index

management operations can cause a high write amplification

and base table nodes are still required for visibility-checking[21].

LSM-Trees[18] reduce write amplification due to collecting mod-

ifications in main memory components, but there is no concept

for managing tuple-versions and perform an index-only visibility-

check[21]. Time-Split B-Trees [16] and Multiversion B-Trees [5]

are able to separate index records of old tuple-versions from cur-

rent dataset and to perform an index-only visibility-check, but

maintenance operations are complex and can cause a high write

amplification of index nodes[21].

7 CONCLUSION
In the present paper we introduce MV-PBT as an approach to

multi-version indexing. An MV-PBT is an extension of a B-Tree,

where an artificial leading column is prepended to the search key

of each index record and index records are placed in a buffered in-

dex partition, which if full gets evicted and appended to persistent

storage. MV-PBT is version-aware, since index records contain

version-information and allow for index-only visibility check.

This is particularly beneficial for HTAP workloads since long

chains of transient versions exist due to the mix of short-lived

updating transactions and long-running queries. Furthermore,

MV-PBT exhibit a sequential write pattern due to the concept of

partition, which leads to less write-amplification and better uti-

lization of modern storage technologies. Under mixed workloads

(CH-Benchmark) MV-PBT doubles the analytical throughput 2x,

while improving the transactional throughput by 15%.
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