O

proceedings

Distributed Similarity Joins over Top-K Rankings”

Evica Milchevski
TU Kaiserslautern (TUK)
Kaiserslautern, Germany
milchevski@cs.uni-kl.de

ABSTRACT

Top-k rankings are a commonly used technique to summarize the
most important entities of a specific domain. In this work, we fo-
cus on efficiently solving the problem of similarity joins for top-k
rankings, for instance, for determining users with similar affinity,
or for grouping related queries in search engines, based on their
results. We put forward a novel algorithmic multi-step solution,
realized via Apache Spark, harnessing mathematical properties
of the distance function and a preceding near-duplicate detection
phase, for search-space pruning. We further show how existing
state-of-the-art algorithms for set similarity joins can be adapted
to handle top-k rankings and how the data partitioning internals
of Spark can be used to enable efficient data processing. The
experimental study over standard benchmark datasets reveals
that the proposed solution outperforms the state-of-the-art com-
petitor by up to a factor of 5, despite involving additional stages
of processing.

1 INTRODUCTION

Similarity joins have been a popular research topic in the data-
base community for more than a decade now. Previous research
in this topic is concerned with solving the problem of similar-
ity joins for sets [7, 11, 25, 28], strings [13] or the more general
problem of finding the similar objects in metric space [12]. Many
distributed solutions, developed for the MapReduce framework,
have also been proposed. Recently, Fier et al. [10] summarized
and compared these distributed solutions. In this paper, we specif-
ically focus on solving the problem of similarity joins for top-k
rankings. Top-k rankings are a very popular and widely used
technique to summarize the most relevant entities from a certain
domain. Fast and efficient solutions for similarity joins of top-k
rankings is of great value in many contexts. For instance, the
case of query suggestion or expansion in search engines based on
finding similar queries by comparing their result lists, in a dating
portal where we can use the preferences and affinities of users,
presented in a form of top-k lists, for matchmaking, or in the
case of recommender systems, where the similarity between the
top sold (liked, favored) items for different clients can help in rec-
ommending products. For instance, consider Table 1 containing
favorite movies of members of some dating portal. By comparing
the lists, we see that Alice and Chris have similar taste so the
system should match them for a date.

Spearman’s Footrule distance is used as a distance measure
for comparing two top-k lists. Fagin et al. [9] show that there
is a Spearman’s Footrule adaptation for top-k rankings that is
a metric. This immediately entails the use of existing metric
space similarity join approaches. On the other hand, rankings

“This work has been supported by the German Research Foundation (DFG) under
grant MI 1794/1-1/2.

© 2020 Copyright held by the owner/author(s). Published in Proceedings of the
23rd International Conference on Extending Database Technology (EDBT), March
30-April 2, 2020, ISBN 978-3-89318-083-7 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Series ISSN: 2367-2005

205

Sebastian Michel
TU Kaiserslautern (TUK)
Kaiserslautern, Germany

michel@cs.uni-kl.de

l ‘ Alice ‘ Bob ‘ Chris ‘
1. | Pulp Fiction | The Schindler List | Indiana Jones
2. E.T. Lord of the Rings | Pulp Fiction
3. | Forrest Gump Avengers Forrest Gump
4. | Indiana Jones Indiana Jones E. T
5. Titanic E.T Titanic

Table 1: Dating portal users’ favorite movies

can be considered as plain sets and accordingly indexed using
inverted indices, that keep for each item a list of rankings where
this item appears. Thus, many of the distributed algorithms that
solve the problem of similarity joins for sets can be applied for
top-k rankings. The best performing one, according to a recent
study [10], is the algorithm proposed by Vernica et al. [24], based
on the principle of prefix filtering. This approach, as shown in
the study [10], also outperforms existing metric space similarity
join approaches. Furthermore, Fier et al. [10] showed that the
existing distributed solutions in MapReduce do not scale well, and
propose that Apache Spark is used as a platform for developing
new alternative solutions. In this paper, we specifically focus on
studying an efficient and scalable top-k rankings similarity joins
using Apache Spark [4].

We propose a novel approach implemented in Apache Spark
that is better tailored to the properties of this platform. In con-
trast to MapReduce, where each stage is composed from only a
map and reduce function, and the data from each stage is written
to disk, Apache Spark is more suitable for iterative processing
of data and performs the computation in memory. Thus, we pro-
pose an iterative approach that computes the similarity join in
several stages, while storing the intermediate results in mem-
ory. As Spearman’s Footrule adaptation for top-k rankings is a
metric, the algorithm uses the triangle inequality to reduce the
number of candidate pairs generated. Very similar rankings are
clustered together, and then, only the cluster representatives are
joined, reducing the size od the data processed, and thus, finding
more efficiently the join results. Through a detailed experimental
study we show that our algorithm outperforms the competitor,
especially for larger values of the similarity threshold 6.

1.1 Problem Statement and Setup

As input we are provided with a dataset 7 of rankings 7; (Ta-
ble 2). Each ranking has a domain D, of items it contains. We
consider fixed-length rankings of size k, i.e., [D,;| = k, but inves-
tigate the impact of different choices of k on the join performance
1. The considered rankings do not contain any duplicate items.
The ranked items in a ranking are represented as arrays or
lists of items, where the left-most position denotes the top ranked
item. In addition, each ranking has an id associated to it. Without

!Working with fixed-length rankings gives better insights into the difference of
performance of the algorithms. For handling variable-length rankings, only the
length boundaries for the Footrule distance, given a distance threshold, need to be
computed .

10.5441/002/edbt .2020.19

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2020.19

ranking id ranking content

) [2,5,4,3,1]
T2 [1.4,5,9,0]
73 [0,8,5,7,3]

Table 2: Sample dataset 7 of top-5 rankings (items are rep-
resented by their ids).

loss of generality, in the remainder of the paper, we assume that
items are also represented by their ids. The rank of an item i in a
ranking 7 is given as 7(i).

A distance function d quantifies the distance between two
rankings—the larger the distance the less similar the rankings
are. Given a dataset of top-k rankings 7 = {r1,...,7Tn} and a
distance threshold 0 we want to find all pairs (t;, 7j), 71,7 € T,
i # j, where the distance d between t; and t; is smaller or equal to
0, ie., d(ti,7j) < 6.

In this work, we focus on the computation of Spearman’s
Footrule distance, but the proposed algorithm can be applied on
any distance measure that satisfies the triangle inequality. Spear-
man’s Footrule distance is computed as a sum over the differ-
ence in position of the items in the two rankings, i.e., F(r,0) =
YieD,uD, |7(i) — o(i)|. An artificial rank [for items not con-
tained in a ranking, i.e., (i) = [if i ¢ D, is considered. Consider
the rankings 7; and 7, in Table 2. For a rank [= 6 for not-
contained items, we obtain F(r1,73) = 4+1+1+5+2+2+1 = 16.
A more detailed introduction to rankings, specifically top-k rank-
ings, distance functions, and how to handle items i that are not
in a ranking 7 is described in Section 3.

1.2 Contributions and Outline
The contributions of our work can be summarized as follows.

e We adapt existing set-based similarity join algorithm to
the problem of top-k rankings. We furthermore implement
and adapt this algorithm to the Apache Spark framework.

e We introduce a new iterative, highly configurable algo-
rithm that combines metric space distance-based filtering
with state-of-the-art set-based similarity join algorithms.

e We propose further optimization to the proposed algo-
rithm by presenting a method for repartitioning large
partitions.

e We implemented our methods and competitors in Apache
Spark and through an extensive experimental study on two
real-world datasets we show that our methods consistently
outperform state-of-the-art approaches for larger values
of the threshold 6.

The rest of the paper is structured as follows. Section 2 dis-
cusses related work and, in Section 3, we present background on
top-k rankings, a state-of-the-art distributed set similarity join
algorithm, and Apache Spark. In Section 4, we describe how exist-
ing set-based similarity join algorithm is adapted to top-k rank-
ings. The clustering algorithm and its components is introduced
in Section 5. Section 6 proposes a Spark-based repartitioning
technique. We experimentally evaluate the presented approaches
in Section 7. Finally, we give the conclusion in Section 8.

2 RELATED WORK

To the best of our knowledge, the problem of similarity join for
top-k rankings has not been addressed so far. As top-k rankings
can also be seen as sets, we mainly focus here on explaining
set-based similarity joins.

206

In-memory similarity join approaches: There is an ample
work on computing the similarity join for sets or strings. Mann
et al. summarize and compare the in-memory based approaches
in [16]. Previous approaches are mainly based on a filter and veri-
fication framework which uses inverted indices as the initial filter
for pairs that do not have any items in common and applying
additional filters that prune dissimilar pairs. In the verification
phase the candidates are verified by computing their true simi-
larity score. The prefix-filtering approach, initially proposed by
Chaudhuri et al. [7] is the most well know algorithm for finding
the similar pairs. It works by first sorting all records in the dataset
in the same canonical order and then indexing only a prefix of
the record with an inverted index. The size of the prefix depends
on the threshold and distance, i.e., the similarity measure used.
The records are usually sorted by the ascending frequency of the
elements in the sets. There are many works [5, 6, 21, 25, 28] that
propose improvements over the initial prefix-filtering algorithm,
by introducing additional position or length-based filters, reduc-
ing the size of the prefix, introducing variable length prefixes,
grouping based on the prefix, etc. Recently Wang et al. [26], moti-
vated by the conclusions presented in [16], proposed an approach
that improves upon existing prefix-filtering approaches by intro-
ducing index level and answer-level skipping. The index level
skipping reduces the unnecessary checks done by position and
length-based filters, by using length-sorted skipping blocks in
the posting lists, augmented with the positions of the elements in
the sets. The answer-level skipping is based on the idea that the
answer sets of similar sets should be also similar, thus the already
computed answer set of one set is used for computing the answer
set of another, similar, set. Bouros et al. [6] propose an approach
for spatio-textual similarity joins. They describe algorithms that
partitions and filters the data based on the spatial (Euclidean)
distance between the points in the dataset, and, in addition, they
extend the prefix-filtering method by introducing grouping based
on the prefix of the textual data. The grouping based on the prefix
of the textual data is orthogonal to our presented approach, i.e.,
it can be applied in our approach in addition to (instead of) the
V] algorithm. Their method for distance based partitioning of the
data space resembles our idea for clustering based on the distance
threshold. However, the solution proposed in [6] works specif-
ically for two dimensional data. Top-k rankings, on the other
hand, can be interpreted as points in multidimensional space,
where the dimension is determined by the size of the rankings,
usually 10 or larger. In addition, our clustering approach is more
general, and works for any data in metric space.

MapReduce-based similarity join approaches: To handle
larger datasets, many distributed solutions for similarity join of
sets have also been proposed. Recently, Fier et al. [10] summarized
and compared the MapReduce-based similarity join solutions.
Vernica et al. [24] present a distributed solution, referred to as
VJ, based on the well known prefix filtering method. Since we
use this algorithm in our implementation, we describe it in more
details in Section 3. The V-SMART algorithm [17] adopts a differ-
ent idea, by computing the ingredients of the similarity measure
in a distributed manner, which are later joined to compute the
final results. It works in two phases, a joining phase and a sim-
ilarity phase. In the first phase, the joining phase, the partial
results for each set is computed and joined to all the elements
in the sets. In the similarity phase, the algorithm takes as input
the output from the first phase, builds an inverted index, and
then, while traversing the posting lists for each element s;, emits
pairs of sets together with information needed to compute the

final similarity. Deng et al. present MassJoin [8]. This approach
is based on PassJoin [15], a main memory method for string
similarity joins. The idea behind their method is to generate sig-
natures for the sets r € R, and then for each signature of r they
generate signatures for s € S. In order for s and r to be simi-
lar, they should share at least one signature. Additional filters
are applied to reduce the number of candidate pairs generated.
Rong et al. present FS-Join [20]. They claim that their algorithm
outperforms the competitors because it addresses some of the
issues that previous approaches had, i.e., it does not generate
duplicate results and achieves better load balancing. The dataset
is vertically partitioned, by dividing each set into segments and
then partitioning the data according to the segments. Interest-
ingly, Fier et al. [10] came to the conclusion that the approach
proposed by Vernica et al. [24] outperforms the other approaches
in most scenarios. Therefore, in this work we compare our ap-
proach to the one presented in [24]. Distributed metric space
approaches have also been proposed [22, 27]. Wang et al. [27] for
a dataset D, partition the input dataset D into N disjoint parti-
tions P;, P; U Pj = 0, Uf\ilPi = D, created by randomly choosing
N centroids p; and assigning each point p € D to the partition
represented by the closest centroid. Further, they define inner and
outer sets of a partition and based on that they decide the data
distribution. The proposed MapReduce algorithm consists of two
main stages, partitioning the data, and, in the second stage, com-
puting the similarity join. Sarma et al. [22] propose a MapReduce
method that works very well for very small distance thresholds.
In fact, they evaluate their approach using only threshold values
up to 0.1. The novelty in their work is that they apply several
filtering techniques, both distance specific and not, which lead
to having tighter partitions, and thus, fewer comparisons.

In prior work [18], we solve the problem of answering simi-
larity range queries over top-k rankings. There, in addition to an
algorithm based to the prefix-filtering framework, we also pre-
sented a so-called coarse index, that combines an inverted index
with a metric index structure to reduce the number of distance
function computations.

3 PRELIMINARIES

Complete rankings are considered to be permutations over a
fixed domain . We follow the notation by Fagin et al. [9] and
references within. A permutation o is a bijection from the domain
D = D, onto the set [n] = {1, ..., n}. For a permutation o, the
value o (i) is interpreted as the rank of element i. An element
i is said to be ahead of an element j in o if o(i) < o(j). We
consider incomplete rankings, called top-k lists in [9]. Formally,
a top-k list 7 is a bijection from D; onto [k]. The key point is
that individual top-k lists, say 7; and 72 do not necessarily share
the same domain, i.e., Dy, # Dy,.

Pairwise similar rankings can be retrieved by means of dis-
tance functions, like Kendall’s Tau or Spearman’s Footrule dis-
tance. In this work we use Spearman’s Footrule adaptation for
top-k lists proposed in [9]. Spearman’s Footrule distance is com-
puted as a sum over the difference in position of the two rank-
ings, i.e., F(7,0) = Y¢ep,up, |T(i) — o(i)|. An artificial rank [
for items not contained in a ranking, i.e., 7(i) = [if i ¢ D7 is
considered.

In this work, we assume that 7 (i) takes values from 0 to k — 1
(instead of 1 to k), and we fix the value of [to k as suggested in
[9]. It is clear that this does not affect our algorithms. We further
consider only rankings of same size k, thus the largest possible

207

value of the Footrule distance is k * (k + 1) and occurs if two
disjoint rankings are compared. The smallest distance is 0, for
the compared rankings are identical. In the rest of the paper, for
ease of presentation, we use normalized values for the Footrule
distance and the threshold values, ranging from 0 to 1.

3.1 Vernica Join (V]) Algorithm

According to a recent experimental study [10], the V] algorithm
outperforms other distributed similarity join algorithms in most
cases. The algorithm is implemented in MapReduce and is based
on the well known prefix filtering method. It works in several
phases, each representing one map reduce job. For each phase,
the authors propose several variations, however, here we describe
the version which, according to their evaluation, showed the best
performance.

In the first phase, all records are read and the tokens in the
universe are sorted according to the increasing frequency of
appearance in the sets. Then, in the next phase, the sorted tokens
are loaded into the memory of the mappers and used for sorting
the sets into a canonical form. Then the mappers emit a composite
key consisting of the token and the size of the set, plus the whole
set as value, but only those elements that belong to the prefix.
For grouping the records in the reducers, only the token is used,
while the size of the set is used for sorting the records by size. The
latter allows utilizing size-based filters. At the reducers, for all
the rankings that share at least one element together, the PPJoin+
algorithm [28] is used, to find the similar rankings. In the final
phase, duplicate pairs must be removed, since the same pair can
be generated at several machines.

3.2 Apache Spark

Apache Spark [4] is a general purpose platform that enables easy
and fast development and execution of distributed applications.
It can be considered successor of MapReduce, as it provides simi-
lar capabilities with generally better performance. Additionally,
several other functionalities are provided and many libraries are
built on top of its core. The parallelization of applications is easier
when using Apache Spark due to the notions of RDD, transfor-
mations and actions used in the platform. RDDs are collections
of elements distributed across the nodes of a cluster [14]. Once
created, they are then partitioned among the available nodes of a
cluster. This way, each node handles a subset of the input. RDDs
are evaluated lazily, meaning that, instead of directly computing
each RDD transformation, the computation is performed only
at the end, when the final RDD data needs to be materialized.
This allows Spark to optimize job execution, by analyzing and
grouping the transformations that are performed over the RDDs.

Another important characteristic of Apache Spark is its ability
to execute iterative processes, using the main memory of the
nodes, in order to reduce disk I/O, thus, reducing the overall exe-
cution time of the application, leading to superior performance
over MapReduce, as shown by Shi et al. [23].

4 A V]J-STYLE ALGORITHM FOR TOP-K
RANKINGS
To find all pairs of similar top-k rankings for a given set of rank-

ings 7 and a threshold 6, we can use the Vernica Join (V]) algo-
rithm. However, in order to be able to apply it on top-k rankings,

Figure 1: Example rankings with k = 5 and p = 2 with
maximum Footrule distance F(z;, 7j) = 8.

we need to derive the prefix size p of top-k rankings, when Spear-
man’s Footrule distance is used to compare them?. There are
two ways for computing the prefix size of top-k rankings, one
considering the overlap of the rankings, and the other, consid-
ering their position. The latter provides slightly tighter prefix
sizes than the first. However, the former allows more freedom
in choosing the items in the prefix. In prior work [18], we found
the minimum overlap between two rankings 7; and rj, such that
F(tj,7j) = 0,as 0 = [0.5% (1 4+ 2% k — V1 + 4 % 0) and the prefix
size as p = k — w+1. We refer to this as prefix based on overlap.
In addition, we define an ordered prefix, p,, as:

LEmMA 4.1. For a given Spearman’s Footrule distance threshold
0 and a ranking length k, the ordered prefix p, of the top-k
rankings is given by the best ranked:

Vo
o=l—=1+1
p L\/EH

items of the rankings.

Proor. The lowest Footrule distance that two top-k rankings
7; and 7; can have, when none of the first p items of each ranking
are overlapping, L(p, k), is when the items are overlapping in the
rankings, i.e., Dr; = Dy;, but they are positioned in the next p
places in the other ranking. This is so, because the partial Footrule
distance of an item we get either by the difference in its positions,
when they are overlapping, or as k — 7; (i) when the item is non
overlapping. For the items i positioned in the first p places in
ranking, where p < %, the partial distance of the items being
overlapping and placed at the next p places is always lower than

if an item is non overlapping. L(p, k) can be computed as (p*TZ)Z
An example of such rankings,where p = 2, are the rankings 7; and
7j, shown in Figure 1. These rankings have the same domain, i.e.,
Dy, = Dy; = i1, 2,13, 14, i5}, however, when looking only the
first p items, written in bold, they have no overlap. The Footrule
distance between them is F(r;, 7j) = 8, the lowest that they can
have when the first p items are not shared.

Solving L(p, k) = 0 gives us the first p = L%J items that can

be non-overlapping in case of 0. Taking one more item guaranties
that we will not miss any candidate pair. 3 O

Given the Footrule distance threshold 6, we now describe the
V] algorithm for top-k rankings. The first step in the V] algorithm
is counting the frequency of the elements in the sets and ordering
them by frequency. This step is not needed for top-k rankings
and can be skipped. However, since most real world datasets
follow a skewed distribution, through experiments we concluded

2To use another distance measure with a prefix-filtering based algorithm, these
bounds will need to be recomputed. However, our approach is flexible and any
other algorithm can be used.

. In the case when 6 >

3Note that this only holds when § < 5 5 computing the
formula for the ordered prefix size is more complicated and we leave it as future

K2 K2

2
work, since using values of 8 < kT is more than enough for our problem setting,

2
k% s around 0.45 when

as it is common practice to use values of 6 < 0.4. 0 = 5

normalized, depending on the value of k.

208

that reordering the rankings by the item’s frequency leads to
major performance gains, and thus, we keep this step for top-
k rankings as well. This entails that the prefix size based on
the overlap between the rankings should be used. To perform
the reordering, we first count the frequency of the items in the
rankings. Then, in order to make this collection available to all
the nodes, in Spark, we use a broadcast variable which is cached
on each machine and then used to sort the items of all rankings
7 € 7 by increasing order of their frequency. Note that, while we
reorder the items in the rankings, we still need to keep track of
their original rank for the computation of the Footrule distance,
thus rankings are transformed to arrays of (i;4, 7(i)) pairs. In the
next step we transform the rankings, into (i;4, 7) pairs, where
as key we have the item id, and as value we have the ranking.
This we only do for the items that belong to the prefix of the
ranking. Then in the next step, in order to bring all rankings
that share an item to the same partition, we aggregate the tuples
(RDD), created in the previous step, by key. In the next step, for
the rankings that share an item, a main memory approach for
finding the similar pairs is applied. For the rankings on each item
list we index their prefixes using an inverted index. In addition,
based on our previous work [19] we apply a position filter in
order to filter out more candidate pairs. In [19], we proved that
two rankings 7; and 7; cannot have distance smaller than 0 if at
least one of the items in the rankings have a difference in their

w. That means, if there is at least one

kx(k+1)%0
2

ranks larger than
item i € 7y, 7}, such that, |r; (i) — 7;(i)| > , we can be
sure that d(r; — 7j) > 0. For the candidate pairs that pass the
filters, we compute the Footrule distance. Note that, since we
work with rankings of same size k, filtering based on the length
of the rankings is not applicable. Finally, before writing the final
result, we remove the duplicate pairs.

4.1 Improved Memory Usage

Previous distributed approaches for similarity joins were de-
signed and implemented in MapReduce. Spark, as a successor of
MapReduce, has different characteristics than MapReduce, and
thus existing approaches can be adapted to the computational
properties of Spark in order to improve their performance.

Datasets in Spark are represented as RDDs, which are im-
mutable, distributed collections of objects, stored in the memory
of the executors. This means that for every transformation of an
RDD, a new RDD is created. In addition to this, Spark runs in
the JVM, which means that garbage collection can easily cause
performance issues for Spark jobs. Thus, keeping objects in the
memory of executors is not recommended, since it can lead to
crashes or performance degradation when dealing with large
datasets. Instead, working with iterators is more native to the
Sparks computational model, since this allows the framework to
spill some data to disk, when needed.

The V] algorithm that shows the best performance, according
to [24] works such that rankings that share the same item are
distributed to different partitions. Next, on each partition, an in
memory join algorithm is executed, to compute the rankings with
distance smaller than 6. This entails, first, storing a dictionary
of the items, second, storing an inverted index for the rankings
for this partition, and storing the partial result sets until the final
computation is done. In addition to this, since Spark works with
immutable objects, sorting the objects for performing the per
partition in memory join, imposes creating new objects for each
ranking. This means that the V] algorithm can lead to having

cluster data into
clusters using small
threshold 6,

global ordering of
the items in the
rankings

I

centroids clusters

3 4

compute similar —
P joined
centroids

clusters using
threshold 6+2*6_

Figure 2: Overall architecture. The algorithm has four

main phases: ordering, clustering, joining and expansion.

Expansion

both issues that we mentioned above, bad performance caused by
the garbage collector overhead, and, memory overhead crashes,
due to keeping data structures and objects in memory.

Instead, we claim that a nested loop modification to the V]
algorithm, is more native to Spark’s processing style. Instead of
indexing the rankings per partition, we propose using iterators
to walk through the rankings in a nested loop fashion. For each
ordered pair of rankings,(7;, 7;), where 7; < 7; that passes the
position filter defined above, we compute the Footrule distance,
and output those pairs where d(7;, 7j) < 6. This approach, as we
will show in our experiments, performs better for large datasets,
since allows Spark to spill the data to disk, when needed.

5 APPROACH

Driven by the idea that similar rankings should have similar re-
sult sets, we propose a novel approach having a pre-processing
step, where very similar rankings are grouped. Then, only one
representative ranking from the clusters, called centroid, is con-
sidered in the next similarity join phase. The idea is that by doing
this, the number of records being joined is reduced and, thus, the
execution time of the main joining phase is reduced too—which
is actually the most expensive part of similarity join algorithms.
Since Spark is suitable for iterative processing, adding an addi-
tional phase should be acceptable. However, this pre-processing
phase should be very efficient, such that we do not end up with
having a higher overhead than real benefit. Another key observa-
tion is that the Footrule distance is a metric and, thus, the triangle
inequality can be used for forming, and expanding the clusters,
after finding the similar centroids, to compute the final result set
more efficiently.

Making use of the above observations, we propose an approach
consisting of four main phases: Ordering, Clustering, Joining,
and Expansion, depicted in Figure 2.

Ordering: The first phase of our approach is ordering the
items in the rankings by their occurrence, i.e., items that occur
less frequently in the rankings, are moved to the top positions of
the rankings. In our proposed algorithm, as later described, the
V] similarity join algorithm is applied twice, once for clustering
the rankings, and once for finding the similar clusters. Instead of
reordering the rankings twice, we choose to do this only once,
using the original dataset 7. As our approach does not depend
on the similarity join algorithm used for clustering or for joining
the clusters, the re-ordering of the items in the rankings can be
skipped if it is of no use to the joining algorithm applied later on.

209

The reordering is done just for determining which items will be
included into the prefix of the rankings, while the rankings still
preserve their original item ordering for the computation of the
distance.

Clustering: The second phase of our approach is forming
clusters, such that similar rankings will belong to the same cluster,
C;. First, a similarity join algorithm is executed, to find the similar
rankings that need to be grouped together. Our experiments
revealed that V] is the most efficient one to be used here, which
supports the findings by Fier et al. [10]. In principle, however,
any similarity algorithm could be employed at this stage. Then,
clusters are formed such that the pairwise distance between each
member of the cluster and its representative is at most 6.. We
will refer to 6. as the clustering threshold. In contrast to other
similarity join algorithms in metric space, where clusters have
different radius, the radius of all clusters formed by our approach
is bounded by the clustering threshold, .. We write 7; < ¢; to
denote that ranking 7; belongs to the cluster, C;, represented by
ranking (centroid) c¢;. Rankings in the dataset 7~ that do not have
any similar rankings with distance smaller than the clustering
threshold, 6., form singleton clusters, i.e., one element clusters.

Joining: In this phase a similarity join algorithm is executed
over the centroids with a threshold 8, = 0+2*6,.. Using threshold
0, instead of 0 is necessary in order to insure the correctness
of the algorithm. Note that any similarity join algorithm can be
applied here, independently from the algorithm used in the clus-
tering phase. Due to the aforementioned reason, we implement
the VJ algorithm.

Expansion: In the last step of the algorithm the final result
set is computed, by joining the results from the joining phase
with the formed clusters in the clustering phase. The members
of the joined clusters from the joining phase are checked against
each other if the distance between them is smaller than 6. Using
the metric properties of the distance measure, we are able to
directly filter out some candidates, and thus compute the final
result list more efficiently.

Before we describe each phase more formally, how each phase
is realized and how the final join results is computed, we first
discuss the correctness of the proposed algorithm.

LEmMA 5.1. For given join threshold 6 and clustering threshold
Oc, in the joining phase, all pairs of centroids c;, c; with distance
d(ci,cj) < 0+ 2% 0; need to be retrieved in order not to miss a
potential join result.

Lemma 5.1 ensures that pairs {(z;, 7j)|ti < ¢i,7j < ¢j A
d(ri,7j) < 0 Ad(ci,cj) > 0} will not be omitted from the re-
sult set.

In other words, Lemma 5.1 avoids missing result rankings with
distance < 6, which are represented by centroids which are with
distance larger than 6 from each other.

This follows from the fact that for all rankings {z;|7; < ¢; A
d(ti, ci) < 0.}. It follows that for any pair of rankings {r;, 7j|z; <
¢i, Tj < cj} the distance of the corresponding centroids d(c;, c;)
must be < 0 + 2 * 0. Thus, using a threshold 6, = 6 + 2 = 6, in
the joining phase is enough to ensure that no true result will be
missed.

5.1 Clustering

When forming the clusters the following points need to be con-
sidered: (i) To ensure correctness, the radius of all the clusters
should be the same, i.e., for any ranking 7; € C;, represented by
a ranking c¢;, d(z;, ¢;) < 0. (ii) The clustering method should be

very efficient, otherwise the cost of the clustering would over-
weight its benefit. (iii) The performance of the expansion phase
depends on the clusters formed. We address each point indi-
vidually while explaining our design choices for the clustering
algorithm.

For forming the clusters, we could turn to existing methods [22,
27], where, first, the centroids of the clusters are randomly chosen,
and then, by computing the distance from the centroids to the
other points in the dataset, the members of the clusters are found.
However, considering that we aim at forming equal range clusters,
where the points are very close to each other, this approach has
two main drawbacks, which make it not suitable for our use case.
First, due to the very small clustering threshold, and the random
choice of the clusters, it could happen that for some, or in the
worst case for all, of the chosen centroids, there are no other
points in the dataset such that their distance to the centroids is
smaller than the clustering threshold, 6.. This leads to having
singleton clusters which do not cause any performance benefit
in the joining phase. Another drawback of this approach is that
the number of clusters needs to be chosen upfront.

First, to find the rankings that are very similar to each other,
instead of selecting the centroids first, and comparing the dis-
tance for each point to the centroids, we execute a similarity join
algorithm with the clustering threshold over the whole dataset,
7. Any similarity join algorithm can be applied, however, since
prefix filtering approaches are especially efficient for very small
thresholds, in our implementation we use the VJ algorithm. Note
that the rankings have already been sorted, so we do not perform
any additional sorting in this phase. The result of the V] algo-
rithm are all pairs of rankings (;, ;) whose distance is smaller
than the clustering threshold, i.e. d(r;, 7j) < 0c. The clusters are
formed such that, from the pairs, we take the first ranking, i.e.,
the one with a smaller id, as the cluster centroid, and the second
one as their member. This does not only keep the clustering phase
efficient, but also simplifies the expansion of the results in the
last phase, since then the expansion can simply be performed
by joining the result set from the joining and clustering phase.
Furthermore, this way we can also efficiently apply filters based
on the distance of the elements to their centroids, explained in
Section 5.3. Clusters formed this way theoretically correspond
to clusters formed by grouping the results by the first ranking,
and taking the first ranking as the centroid. For instance, in Fig-
ure 3, the following clusters would be formed C; = {71, 72, 75},
Cy = {13, 74} With centroids 7; and 73, respectively.

Since Spearman’s Footrule distance is a metric, we know that
for any two rankings 7;,7; € C; it holds that d(z;, 7j) < 2 * 0,
and thus, members of the same clusters can directly be written
to disk as partial results, as long as 0, * 2 < 6.

By creating the clusters in this way, all of the aforementioned
requirements are satisfied. The radius of all the clusters is the
same and both forming the clusters and expanding the result set
is kept simple, and thus, very efficient. One minor drawback of
this approach is that the formed clusters would be overlapping.
However, resolving this overlap would negatively impact the
performance of the clustering and the expansion phase.

As input to the next, joining phase, we union the set of cen-
troids Cp, that contains all centroids representatives of clusters
with at least two members, i.e., |C| > 2 with the set of centroids
Cs that represent the singleton clusters, i.e., |C| = 1. The set Cs
is derived from the original dataset, by finding those rankings
7; € 7 such that there is no other ranking z; € 7, such that,

210

union

Join
phase

compute singletons

Vi join
algorithm

ordered rankings

7,((1,4),(2,0),(4,2),(3,3),(5,1)]
7[(1,4),(2,1),(4,2),(3,3),(5,0)]
73((7,3),(8,1),(0,0),(3,4),(5,2)]
74((7,3),(8,0),(0,1),(3,4),(5,2)]
75((1,4),(2,0),(4,3),(3,2),(5,1)]
7[(9,1),(6,0),(0,3),(8,2),(5,4)]

((z3, 75), 0.06)

({25 72), 0.06) transform

and
repartition

({71,), 0. 06)

(73, (75, 0.06))
(7, (15, 0.06))

output pairs of
members of the|
same cluster

(3, (74, 0.06))

Figure 3: Example of how clusters are formed and cen-
troids (marked with red) are chosen, where 6. = 0.1.

d(zi,7i) < O.. An example of a singleton cluster in Figure 3 is
Cs = {16}

Example 5.2. Figure 3 shows through an example the creation
of the clusters, for §; = 0.1. The items in the rankings 71, ... 76
have already been sorted by increasing order of their frequency.
For instance, in 77 item 1 with position 71(1) = 4 is placed on the
first position, as it appears three times in the rankings (ties are
arbitrarily broken). After running a similarity join algorithm with
distance threshold 6, = 0.1 on these rankings, the pairs (1, 75),
(71, 72) and (73, 74). In the following step clusters C; = {71, 72, 75},
Cy = {13, 74} with centroids 71 and 73, respectively are formed.
Furthermore, the ranking 74 forms a singleton cluster since it
does not belong to any of the formed clusters Cy, Ca.

5.2 Joining
In the joining phase we need to find all centroids pairs (c;, c;)
such that d(c;, ¢j) < 0o. To do this, we execute the VJ algorithm
over all centroids c;, with a threshold 6, = 6+2x0.. However, the
V] algorithm, as almost all similarity join algorithms, is sensitive
to the threshold value—for larger threshold values the algorithm
performs worse. Thus, it could happen that, even though we
are joining a dataset C C 7, due to the larger threshold used,
the joining phase performs worse than simply executing the VJ
algorithm over the whole dataset 7". Again, note that we do not
perform additional reordering of the rankings here, but the VJ
algorithm is executed on the initially ordered rankings.
According to Lemma 5.1, using a threshold 6, is only needed
to avoid missing pairs of rankings {(z;, 7j)|7i < c¢i,7j < ¢j A
d(ti, 7j) < 0 Ad(ci,cj) > 0)}. Furthermore, due to the small clus-
tering threshold, in the dataset C we have many centroids which
are representatives of singleton clusters. For these centroids, we
can avoid unnecessary computation, by using a smaller threshold,
without missing any true result. Lemma 5.3 defines this:

LEmMA 5.3. Given join threshold 6 and clustering threshold 0,
and a set of centroids C = Cp U Cs, where Cs is the set of centroids
that represent the singleton clusters and Cp, = C \ Cs is the set of
centroids representing non-singleton clusters. The following pairs
of centroids need to be retrieved in order not to miss a potential join
result:

{(circj) | d(ci,cj) < O+2%0c if ci,cj € Cm) (1)
{(circj) 1 d(ci,cj) <O+ 0c if ci € Cm Acj € Cs orvv) (2)
{(Ci,L‘j) | d(ci,Cj) <0 if ci,cj € Cs} 3)

method: Centroids Join ‘
input: Dataset C = Cy;, U Cs, double 0, 0,
output: all pairs (c;, ¢j) s.t. d(ci,cj) < 0+ 2% 0,
1 pm = get_prefix(0 + 2 * 0. ,k)
2 ps = get_prefix(0, k)
3 grouped « transform_and_emit(Cp,, Cs, Pm» Ps)
4 R « compute_sim(grouped, k, 0, 6.)
return R

Algorithm 1: Joining of centroids based on the type of the
centroid.

, ((75,0.06), (75,0.15)))

Re

)
, ((75,0.06), (7,,0.09))) filter, verify and output
((r,, 75),0.06) (71, (75,0.06)) ., ((7,,0.06), (75,0.15)))
(3, 7,),0.06) (7, (7,0.06))

o }7 oo
[, 72.0.06) | [(5 (2,0.06)) |

result set
clustering phase

71, ((72,0.06), (75,0.12))
7y, ((75,0.06), (75,0.12)))

(7,
(7
(
(7, ((7,,0.06), (75,0.09)))
(
(

(73, ((72,0.06), (7,,0.12)))
(75, ((75,0.06), (7,,0.12)))

join

R; Rm
e |l ey
1005 - (22, (720.06), (7:,0.12)), (14,0.06))
::?. ?: 02)) (7, 70),0.2) 0.2) (5 (2009). (1,012, 1 006)
(.), 012)] [0 (0120
(s 02) filter, verify
(17, 75), 0.2) R. e very
(0 7, 0.) *l (w7, 02) output and outpu
0.1 —‘-
result set (e 7),0.0)
join phase

Figure 4: Example of computing the final result set us-
ing the result set from the joining phase and the clusters
where 0; = 0.1 and 0 = 0.2. Cluster’s centroids are marked
with red.

Lemma 5.3 allows us to more efficiently join the centroids. It
follows that, only for the centroids ¢, € Cy, we need to use 6,
for joining and, thus, only for these centroids, we need to use
a prefix based on the threshold 8,. For the centroids ¢s € Cs,
we can actually use the prefix based on the original threshold 6.
Then, when computing the distance between the candidate pairs,
we keep track of the type of the centroid, and accordingly, we
output the pair if it satisfies the corresponding threshold. This is
outlined in Algorithm 1.

Since we propose using small values for the clustering thresh-
old 6., we expect that in practice, the cardinality of Cp, will be
significantly smaller than |C|, and thus, by applying a threshold
of 0, only for centroids ¢, € Cp,, the savings should be notable.

5.3 Expansion

In the last phase, the final result set is generated. For this purpose,
the results from the clustering phase, R, and the result from the
joining phase R, need to be joined together, and the generated
pairs need to be verified. Depending on the joined pairs from the
joining phase, the expansion is done differently. The pairs where
both centroids are singletons do not need to be expanded and are
directly written to disc. Pairs where at least one of the rankings is
not a singleton, need to be joined with the set of clusters, so that
similar pairs of rankings between cluster members from different
clusters, or with other singleton centroids, are generated.
Algorithm 2 outlines how the final result set is computed.
First, the result set from the join phase, R}, is divided into two
sets: Rs = {(ci,¢j)lci,cj € Cs Ad(ci,cj) < 0} and Ry = R\
Rs. R is the set of candidate pairs, where both centroids are
singletons. These pairs can be directly written to disc without
further processing and verification. In addition, a subset of R,

211

method: expand

input: Dataset R., Rj, double 0, 0.

output: all pairs (7, 7j) s.t. d(z;, 7j) < 0

Rm,Rs « split(R,)

Rp « get_partial_results(Rp,, 0, 0.)

Rj, Rm < prepare_for_join(Rj, Rpm)
RRJ-MRm « join(Cm, R;j, R;)

Rm,c < get_partial_results(R Rjp<aR s 0, 0.)
RR;<R,, < prepare_for_join(RR;»<r,,)

R(RjMRm)MRj « jOin(RRjMRms C)

Rm, e Rm,m < get_partial_results(R(RJ,MRm)MR]_, 0,0.)
return distinct(Rp U Rs U Rm,c U Rm, m)

O N N U W=

Algorithm 2: Computation of the final result set.

i.e., pairs (cj, ¢j)|0c < d(ci,cj) < 0, can already be included to
the final results set.

Candidate pairs, where at least one centroid is not a singleton,
Rm, need to be further joined with the set of clusters R, in order
to find the result pairs where at least one ranking is a cluster
member. These pairs are missing from R;, since in the joining
phase the join was performed only over the centroids. To do this,
first the set of clusters and the set R; are transformed, so that they
are brought into a format where as key we have the centroids.
Next, R and R are joined into Rg_ .<r,,. Then, Rr o<r,, is
used to generate the following result pairs:

Rm,c = {(7i,¢j) | (ti,cj) < OATi <ci Alci,cj) € Rj}
Rm,m = {(Ti,rj) | (Ti,‘['j) <OATI<ci A Tj <cj A (Ci,Cj) € R}

To generate the first result set Ry, ¢, the candidate tuples
in RR_»<gr,, need to be transformed into the needed pairs and
further verified, if their distance is in fact smaller then 6. For pairs
(i, ¢j), where 7; < cj, we already know d(z;, c;) and d(c;, cj).
Thus, using the triangle inequality, we verify only those candidate
pairs (7;, ¢j) such that |d(c;, ¢j) —d(7i, ¢;)| < 0 and the remaining
ones we can filter out since we can be certain that their distance
is larger than 6.

For generating the set Ry, m, the set Rp_oar,, is first trans-
formed, so that the second centroid is set as key of the tuples, and
then it is joined with the set of clusters. The joined set is then used
to add pairs to the set Ry, ¢. These will be candidate pairs from
the members of the newly joined centroids to the centroids we
already had in Rg_»<R,, - Filtering based on the triangle inequal-
ity is applied here as well. As last step, we generate all candidate
pairs (7;, 7j), such that 7; < ¢;, 7j < ¢j and d(cj,cj) < 0+ 2% 0.
For these, the Footrule distance is computed, and the ones where
d(ri,7j) < 0 are written to disk. Before writing the results to
disc, the duplicates are removed.

Example 5.4. Figure 4 illustrates the expansion through an
example. As results from the clustering phase, we have tuples
(t1, 75), (71, 72), and (73, 74). The centroids of these clusters are
71 and 73—the clusters are the same as in the aforementioned ex-
ample. The join results R; are split into Rs = {(17, 19), (19, 712)},
where none of the rankings in the pairs is a centroid and R, =
{(71, 78), (71, 76), (71, 73) }, where at least one ranking in the pair
is a centroid. Pairs in R are directly written to disk. Tuples in
R. and R}, are transformed such that the centroids, 7; and 73
are placed as keys of the tuples. They are joined and R,,c =

{(zs, 78), (75, T6), (72, 78), (T2, T6), (72, 73), (75, 73) } are verified. Then

we take only those pairs in Ry _»<g,, Where two rankings are cen-
troids, in the example the last two elements of Rg_.<R,,. For
these, we switch the places of the centroids 7; and 73 so that the
members of the second cluster could be joined with members
of the first cluster, (74, 75) and (4, 72). These pairs need to be
verified if their distance is smaller than 6.

6 REPARTITIONING USING JOINS

Naturally, the way data is distributed across partitions/machines
greatly influences the performance of distributed algorithms.
The V] algorithm partitions the rankings based on the items
that they contain—rankings that share an item end up at the
same partition. This means that in the case of a skewed data
distribution, which is often the case for real-world data, items
that appear very frequently cause very large partitions. This
problem is partially solved by the prefix filtering framework,
especially for smaller values of 6, since the most frequent items
would not be included. However, as we increase the value of 0,
the size of the prefix increases, leading to skewed a distribution
of data across the partitions, thus, having few partitions that
dominate the overall execution time of the algorithm.

To tackle this issue, we propose an algorithm where large
partitions are split into smaller sub-partitions. Then, the resulting
pairs are computed for each small partition, and for each pair of
sub-partitions. Algorithm 3 describes this procedure. First, using a
user defined partitioning threshold § we divide the inverted index
into two parts, one where the partitions per item have more that
d rankings, I, 5, and those whose partitions per item are smaller
then the partitioning threshold, §, 7_ 5. In Spark, this can be easily
computed, since the distributed inverted index is kept in one RDD,
which allows easy access to the sizes of each partition. For those
partitions that are smaller than the partitioning threshold, we
compute the similarity join as before. The partitions larger than
the partitioning threshold, 7., 5, are first split into smaller sub-
partitions with at most § rankings. This is done by assigning
to each sub-partition a random number as a secondary key. To
compute the final result set, we first compute the similarity join
over each sub-partition. Then, we self join the sub-partitions by
the item id, and for those join results where the secondary key
of the first join pair is smaller than the secondary key of the
second join pair, we execute a R-S similarity join algorithm for
the joined partitions. To better handle the increased load due
to data replication and to redistribute the working load equally
among nodes, we partition by both the primary and secondary
key, i.e., by both the item id and the randomly assigned number
and increase the number of partitions.

Example 6.1. Figure 5 illustrates through an example the simi-
larity join computation in case of repartitioning. In this example,
the posting list for items iy, i1, . . . i, have size larger than 6 and
thus are split into smaller partitions. For instance, the posting list
for item iy is split into three smaller lists with keys (i1, 1), (i1, 5),
and (i1, 9). In order to keep the correctness of the algorithms, in
addition to generating the pairs for each of these lists, they are
self joined, and an R-S join algorithm over the joined posting
lists (with keys (i1, 1, 5), (i1, 1, 9), and (i1, 5,9)) is performed.

Choosing the Partitioning Threshold §. In our experiments, we
show that the performance of the algorithm does not significantly
vary, when changing the partitioning threshold 6. However, the
partitioning threshold still needs to be chosen carefully, such that

212

((iz,2), {2, 75..3) selfjoin [((21,5), (T, 73} {raow Tuos,)

and filter,

Ls

2 ((72,5), {101, 105, .}) (l1,9), ({73, 73}, (208, Taos,. D)
(i, {73,751
| 1259, (100 T, W00 T2)
thor {8 s W | partition [1) 1z, 77, 1) (105:19) (17 T} (00 05)
- ({isor 5), {T101) Taos, . }) -
('1 T, 73)) (i {72 755,) . (lim, 7,17), ({T102 T1ss, ..}, 172 Tss,
(is, {ra, 73,
filters ((im, 17), {75, T55,.) compute R-S similarity
- join pairs per partition
1(5 (i 7), 7200 Tass,) and output
1'5 o130
15 5 T1s, per partition and output
compute similarity 1
- join pairs per partition
(in, {72, Tss,..}) and output

Figure 5: Example of repartitioning of the large partitions
using a partitioning threshold 5.

method: Repartitioning

input: inverted index over D, 7. partitioning threshold, §
output: all pairs (7, 7j) s.t. d(ci, cj) < 0

I, s, 1.5 = split(Z,6)

R s = compute_sim(J_ 5,0,k)

P « repartition(Z, s, 9)

Rp1 < compute_sim(P,0,k)

Rp2 < compute_sim(join(P,P),0,k)

return Res URp1 URp2

(8 B O I S

Algorithm 3: Computing the all pair similarity join with
repartitioning of large partitions using a partitioning
threshold 6.

it is not set to a very small value, leading to too many partitions
being split into many small sub-partitions. If this happens then
joining the sub-partitions in step 5 of Algorithm 3 becomes too
expensive, and the benefit of the repartitioning is lost. In addition,
due to the use of Spark joins, choosing a very small value of §
can also lead to memory crashes of the executors.

As a general guidance for choosing the value of the parameter
d an estimation for the size of the posting lists can be used. In
our previous work on similarity search for top-k rankings [18],
we devised a formula for estimating this:

Elindex list length] = Z n *f(i;s,v')2

i

©)

where n is the number of rankings indexed, and f(i;s,v’) is
the frequency of the item at rank i, when the items follow a Zipf’s
distribution with skewness parameter s. v’ is the distinct number
of items in the prefix of the rankings.

7 EXPERIMENTS

We deployed all algorithms on a Spark 1.6 (using YARN and
HDFS) cluster running Ubuntu 14.04.5 LTS. The cluster consists
of 8 nodes, each equipped with two Xeon E5-2603@ 1.6GHz/
1.7GHz of 6 cores each, 128GB of RAM, out of which 40GB is
reserved for execution of jobs by YARN, and 4TB hard disks. All
nodes are connected via a 10GBit Ethernet connection.
Datasets: Due to the lack of real top-k ranking datasets, for
the experiments we used datasets that are often used in pre-
vious work on similarity joins for sets and were also used for
performing the experimental study for distributed similarity join
algorithms [10]. Specifically, we use the DBLP [1] and ORKU [2]
datasets. To transform the records of these dataset into top-k

spark.driver.memory 12G
spark.executor.memory | 8GB
spark.executor.instances | 24
spark.executor.cores 5

Table 3: Spark parameters used for the evaluation

rankings, we simply take the first k tokens in the sets, and con-
sider them as items in the rankings. Since we are working with
rankings of same size, we remove records with size smaller than
k. In addition, the datasets are preprocessed as in [10], without
the sorting of the records. Note that, while in the preprocessing
step duplicates are removed from the dataset, since we cut the
records to size k it can happen that we have a small amount of
records with distance 0 to each other. However, this should not
affect the performance of the algorithms, since duplicate records
are not handled differently, i.e., the performance of the algorithms
should be the same as if there are no duplicates. As we will show
later on in our experimental study, what affects the performance
of our algorithm is the number of records with distance smaller
than 6..

After the preprocessing the DBLP dataset has approximately
1.2 million top-10 rankings, and ORKU has approximately 2 mil-
lion top-10 rankings. Each datasets has a size of 67MB and 173MB.
Since these datasets are relatively small for a distributed setting,
we also increase their size using the same method as in [10, 24],
where the domain of the items remains the same, and the join re-
sult increases approximately linearly with the size of the dataset.
We use suffix xn to denote the number of times the dataset has
been increased. For instance, “ORKUx5” represents the ORKU
datasets increased 5 times.

The files in Spark are read as text files, and are directly parti-
tioned into the number of partitions specified at input. Through-
out the experiments we write the number of partitions that the
data is divided into. Additionally, we show experiments that il-
lustrate the behavior of the effect that the number of partitions
has to the performance of the algorithms.

Algorithms under investigation We investigate the perfor-
mance of the following algorithms:

e The adaptation of VJ to top-k rankings in Spark (V])

o The adaptation of V] to top-k rankings using iterators
instead of inverted index (VJ-NL)

o The clustering algorithm using iterators (CL)

o The clustering algorithm with iterators and re-partitioning

of the data (CL-P)

Based on general recommendations for running Spark jobs,
which suggest to not run ‘tiny’ or ‘fat’ executors, we assign 5
cores per executor. Then, based on the total number of cores and
the available memory of the nodes in the cluster, we set the other
execution parameters, reported in Table 3. The memory assigned
to the executers also corresponds to the amount assigned to
the reducers in a previous experimental study [10]. In case we
use different settings, we write these changes for the specific
experiments. We report on the average wall-clock time measured
in seconds over 3 runs. If an algorithm runs more than 10 hours
we stop its execution.

7.1 Results

Performance Based on the Distance Threshold 6. We first evalu-
ate and compare the performance of the above listed algorithms
when we vary the distance threshold 6. Figure 6 reports on the

213

performance of the four algorithms for both datasets DBLP and
ORKU, for values of 6 ranging from 0.1 to 0.4. We see that our
algorithm outperforms the competitor algorithm VJ for larger
values of 6. Most importantly, we see that, with the exception
of the DBLP dataset, each optimization that we propose, brings
additional performance improvement. For all algorithms, the ex-
ecution time increases, as we increase the distance threshold 9,
however, for our proposed algorithms, CL and CL-P, the increase
in performance is smaller, especially for the latter. For instance,
for the DBLPx5 dataset, the execution of the VJ algorithm for
the largest threshold value, 0.4, is 100 times more expensive than
when executing it for the smallest threshold value of 0.1. On the
other hand, the increase in execution time for the CL and CL-P
algorithms is 33 and 13 times, respectively. This can be attributed
to the design of the CL algorithm. Since in the joining phase
less rankings are being processed, the algorithm is not too much
affected by the skewness of the dataset. With the partitioning
of the large partitions into smaller ones, and their redistribution
among the nodes in the cluster, the CL-P algorithm shows even
larger performance improvement, for larger threshold values.

Furthermore, we see that for the datasets DBLPx5 (Figure 6(b))
and ORKU (Figure 6(d)) the gains in performance are the largest.
Here, we can clearly see that using iterators over an inverted
index is more efficient when it comes to a Spark implementation.
Additionally, we see that the largest performance benefit from
our clustering algorithm are for values of 6 of 0.3 and 0.4. When
0 is set to 0.4, clustering combined with partitioning based on
joins (CL-P) performs 5 and 3 times better than the VJ and VJ-
NL algorithms, respectively, for the ORKU dataset (Figure 6(d)).
For the DBLPx5 dataset, the CL-P algorithm outperforms the
VJ and VJ-NL algorithms by almost 4 and 3 times, respectively
(Figure 6(b)). For lower values of the partitioning threshold, i.e.,
when 0 = 0.1 or 8 = 0.2, the CL and CL-P algorithms either
perform slightly worse than the V] or VJ-NL, or the gain in
performance is not that large. This is especially true for 6 = 0.1.
This is due to the fact that the VJ algorithm is very efficient for
a very small thresholds, since the prefix size is then small. In
these cases, the overhead from the additional clustering phase in
the CL approach, or partitioning for the CL-P, is larger than the
benefit that we could get from it.

Note that in all cases, the clustering threshold for the CL and
CL-P algorithms is set to 0.03. The reason for this is explained
bellow, where we study the effect that this threshold has on the
performance of the algorithms. The value of the partitioning
threshold § differs depending on the dataset, and the threshold
value, 0. For larger thresholds 6, we choose larger partitioning
threshold &, since we expect an increase in the size of the posting
lists. Later we discuss how choosing the partitioning threshold
§ affects the performance. For the smallest dataset, DBLP (Fig-
ure 6(a)), where the original V] algorithm is already very efficient,
the proposed optimizations lead to worse performance. The CL-P
algorithm in this case always performs worse than VJ, since it
brings additional overhead of repartitioning and joining already
small posting lists. The CL algorithm outperforms VJ only for
large values of . On the other hand, for the ORKUx5 dataset
(Figure 6(e)), for 6 = 0.4, only the CL-P algorithm finished under
10 hours. Similarly, for the DBLPx10 dataset (Figure 6(c)), the V]
algorithm did not finish under 10 hours.

Scalability. To test the scalability of the proposed algorithm,
we varied the number of nodes in our cluster. We executed the
CL-P algorithm on a cluster with 4 nodes and with 8 nodes. For

12000

30000

V) —e— V) —e—
» » 10000 V"'g'l: N » 25000 V"'g'l: N
£ £ CL-P —— £ CL-P ——
° » 8000 © 20000
E E E
c s 6000 = 15000
S S S
3 3 4000 3 10000
Q Q Q
x x x
@ @ 2000 ® 5000
0 0
01 015 02 025 03 035 04 01 015 02 025 03 035 04 01 015 02 025 03 035 04
threshold © threshold © threshold ©
(a) DBLP (b) DBLPx5 (c) DBLPx10
40000 Vi
35000 | VJ-NL —=—
» [CL
£ £ 30000 - cL-P ——
g g 25000
c ‘s 20000
S S
e 5 15000
[[
% £ 10000
]]
5000
0 0
01 015 02 025 03 035 04 01 015 02 025 03 035 04
threshold © threshold ©
(d) ORKU (e) ORKUx5

Figure 6: Comparison of different algorithms when varying 6

6000

1800
1600
1400
1200
1000
800
600
400
200

4 nodes —=—
8 nodes

4 nodes ——

5000 | 8nodes

4000
3000
2000

execution time in s
execution time in s

1000

0 0
01 015 02 025 03 035 04 0.1

threshold @

(a) DBLPx5

015 02 025 03 035 04
threshold ©

(b) ORKU

Figure 7: Performance of CL-PL algorithm when varying
the number of nodes in the cluster (DBLPx5 and ORKU).

25000

20000

[oJoJolo}
W

0000
robo

H

15000

10000

execution time in s

5000

0

0 5
dataset increase

10

Figure 8: Performance of CL-P algorithm when varying
the dataset size for the DBLP dataset.

this experiment, we reduced the number of cores per executor to
3, and we did not fix the number of executors to be used, i.e., this
was left to be decided by YARN, based on the cluster size. The
memory restriction per executor and for the driver were kept as
specified in Table 3. Figure 7 shows the performance of the CL-P
algorithms for different values of the theshold 6, for the DBLPx5
and ORKU datasets. The values for the clustering threshold 0,
and the partitioning threshold § were kept the same as for the
previous experiment. We see that for both datasets, the CL-P
algorithm exhibits better performance, when the number of nodes
isincreased. For the DBLPx5 dataset, when increasing the number
of nodes from 4 to 8, the time cost decreases from 22% to 46%,
and for the ORKU dataset the time savings are similar, ranging
from 26% to 44%. Again, the largest performance improvement is
observed for 6 = 0.4.

214

Furthermore, in Figure 8 we plotted the performance of the
CL-P algorithm as we increase the size of the DBLP dataset. Note
that the result size increases approximately linearly with the
increase in the number of records. The rise of the execution time
is the largest, i.e., for 6 = 0.4, when we increase the dataset size
from x5 to x10. In this case the CL-P algorithm executes 7 times
slower. However, the reason for this we see in the value of the
partitioning threshold §. We believe that with a more carefully
chosen value for § this increase in the execution time can be
avoided. For all other cases of 6 the decrease in performance is
lower than 5 times.

Effect of the Clustering Threshold .. Another threshold that
can have impact on the performance of the proposed clustering
algorithm is the clustering threshold 6.. Depending on the value
of this threshold, the size and number of the formed clusters
varies, and thus the performance of the whole algorithm. Figure 9
shows the performance of the CL algorithm for different values
of 6. for both datasets. We see that, in almost all cases, setting
Oc = 0.03 brings the best performance for the CL algorithm.
This can be explained by two reasons. First, as we increase the
clustering threshold 6, the running time of the clustering phase
increases, since here we use the V] algorithm to find the similar
pairs. Second, the benefit by the additionally formed clusters does
not seem to compensate for this increase in the running time.
Thus, setting the clustering threshold 0, to a very small value is
the recommend choice, and in all further experiments we set 6,
to 0.03 for both CL and CL-P.

Effect of the Partitioning Threshold §. The partitioning thresh-
old § is a parameter which decides which and how many posting
lists need to be partitioned, and as such, it influences the perfor-
mance of the CL-P algorithm. In Figure 10 we see the performance
of the CL-P algorithm as the partitioning threshold changes, for
both datasets DBLP and ORKU and for different values of the
threshold 6. For the DBLP dataset we show only the DBLPx5
increased dataset, since, as we showed in Figure 6(a), the DBLP
dataset is small and does not benefit from the partitioning of
the posting lists. For each dataset, we chose different varying

600
500

7000
6000
200 5000
4000
300
3000

200 i 2000
100 1 1000 i E E
0 — - 0

0,

N
N

N
i
N
0

oo
g
o990
Ron

7

f

4

4
oo
figign
o990
Roe

execution time in s
execution time in s

% ‘% % % % %
clustering threshold 0 clustering threshold 6,
(a) DBLP (b) DBLPx5

3500
3000
2500
2000
1500
1000
500
0

execution time in s

o, o, o,
%% %% %
clustering threshold 0,

(c) ORKU

Figure 9: Performance of CL algorithm when varying the
clustering threshold 6.

ranges for the partitioning threshold, since its value is directly
dependent from the size of the dataset. For ORKU (Figure 10(a))
we vary d from 500 to 5000, for ORKUx5 (Figure 10(b)) we vary
§ from 10000 to 50000 and for DBLPx5 (Figure 10(c)) we vary §
from 1000 to 50000. Furthermore, for ORKU and DBLPx5 we plot
the performance for 6 = 0.3 and 6 = 0.4 (Figures 10(c) and 10(a),
respectively), while for ORKUXx5, for practical reasons, due to the
large execution times when having large values of 8, we plot the
performance for 6 = 0.1 and 6 = 0.2 (Figure 10(b)). In Figure 6(a)
we see that the performance of CL-P is not widely influenced
by the partitioning threshold §. Starting with small values of
d, the performance is slightly worse, due to the larger number
of posting lists that need to be joined, and thus the overhead
imposed by the Spark join is larger. Then, as we increase &, the
performance at first drops and reaches its minimum, and then
starts to slightly increase. This is important to note, since it gives
us more freedom of choosing the value for §. Note, however, that
choosing very small values can lead to either bad performance
or crashes of the executors due to memory overhead caused by
the joins. During our experiments execution, we experienced
crashes due to memory overhead, whenever the § value was set
to an inappropriately small value, when considering the number
of records being processed. On the other hand, setting § to a
very large value will not bring any performance benefit, since no
postings lists will be partitioned.

Increasing the size of the rankings. Top-k rankings usually
contain only very few items. In fact in our study [3] we showed
that most of the rankings are of size 10 or 20. Therefore, in the
previous experiments we focused on rankings of size 10. To see
how the performance of the algorithms changes, when we have
rankings of larger size, we also run experiments where k = 25.
For this purpose we used the ORKU dataset, which contains also
longer records. From the original dataset, we extracted around
1.5 million top-25 rankings, as described above. This dataset
has a size of 289MB. The DBLP dataset contained only shorter
records, and thus for this experiment we rely only on the ORKU
dataset. Figure 11 shows the performance of the four algorithms
when varying the distance threshold . While our algorithms
still outperform the VJ algorithm, there are two important things
to note here. First, the difference in the performance between VJ-
NL and V] is not so significant, and second CL performs almost

215

1600
1400
1200
1000
800
600
400
200

5000

oo
g

o0
(X3

4000

3000

2000

execution time in s
execution time in s

1000

PEER L

% o W, % %, %, *’a%yo 2
v B % % % % % % %
partitioning threshold 5 partitioning threshold 5
(a) ORKU (b) ORKUx5

4000
3500
3000
2500
2000
1500
1000

500
P
%, %, %, 0, 2, %
% %0, %, %, %, %,
° % % % % %
partitioning threshold 5

(c) DBLPx5

N
i
£E
22
A
?
f

execution time in s

Figure 10: Performance of CL-P algorithm when varying
the partitioning threshold §

7000
6000
5000
4000
3000
2000
1000

execution time in s

o
01 015 02 025 03 035 04

threshold ©
Figure 11: Performance of different algorithms for
rankings of size 25 when varying the distance threshold 6
(ORKU)

the same as VJ-NL. This might be explained with the size of the
dataset, since our clustering algorithms, CL and CL-P, perform
better on larger datasets. The CL-P algorithm shows the best
performance, except for = 0.1, and is, as with rankings of
size 10, least susceptible to the increase of the threshold 6. For
0 = 0.1, the VJ-NL algorithm performs slightly better than the
other algorithms. The CL-P algorithm outperforms the VJ-NL
algorithm for 1.5 and 1.9 times for § = 0.2, and § = 0.3 and 0.4,
respectively. Note that for this experiment, for both CL and CL-P,
we set 0, = 0.03 and the partitioning threshold, §, for CL-P, we
set to 5000, for all values of 6.

Varying the number of Spark partitions. The general recom-
mendation when executing Spark jobs is to set the number of
partitions to be at least four times as the number of executors run-
ning. In our setting, this means that the general recommendation
is to have at least 100 partitions. Figure 12 shows the performance
of different algorithms (V], VJ-NL and CL) for different number
of partitions. For this experiments the partitioning threshold 6
is fixed to 0.3. We see that for both DBLP and DBLPx5, the per-
formance does not change much as we increase the number of
partitions. In fact, we see that whether the performance increases
or decreases—as we increase the number of partitions—depends
on the size of the dataset. For the smaller dataset, DBLP, the best
performance is observed when the number of partitions is set to
86, and then the performance slightly decreases. For DBLPx5, on
the other hand, we have the best performance of both CL and
VJ-NL for 186 partitions. Figure 13 shows the performance of
the CL-P algorithm when changing the number of partitions. For
CL-P we used a larger span of the number of partitions, from

250

200

150

100

execution time in s
execution time in s

50

AN

P? & %
% % s e % %
number of Spark partitions number of Spark partitions
(a) DBLP (b) DBLPx5

Figure 12: Performance of V], VJ-NL and CL when
varying the number of Spark partitions, 0 = 0.3 (DBLP
and DBLPx5).

1400
1200
1000
800
600
400
200

CL-P

execution timeins

2
%
number of Spark partitions

K

Figure 13: Performance of CL-P when varying the
number of Spark partitions, § = 10000, 6 = 0.3 (DBLPx5).

286 to 686. Since here we additionally repartition the large parti-
tioning into smaller ones, we believe that using a larger number
of partitions is more appropriate for this approach However, as
we can see from Figure 13, the performance is again not greatly
influenced by the change of the number of the partitions. In fact,
there is also a slight drop in the performance in the initial in-
crease in the number of partitions, from 286 to 486. In all of the
experiments presented before, the number of partitions was set
to 286.

Lessons Learned. The proposed clustering algorithms, CL and
CL-P, outperform the adaptation of the state-of-the-art algorithm
for similarity joins over sets, VJ, for higher values of the dis-
tance threshold 6. For small values of 0 the V] algorithm is very
efficient on its own, and thus, the benefits introduced by the
additional stages of the CL approach, do not seem to pay off. This
is also the case for small datasets. However, more importantly,
for larger datasets, the CL and CL-P approaches seem to bring
larger performance improvements over the VJ algorithm. Addi-
tionally, they both seem to be less susceptible to the increase of
the distance threshold. This seems to be especially true for the
CL-P algorithm, in particular, when the partitioning threshold is
chosen right. Furthermore, our approach is more appropriate for
handling datasets with skewed distribution, as first, the dataset is
reduced for the joining phase, and second, large posting lists are
split into smaller ones and processed in parallel. For choosing the
partitioning threshold J, statistics like the number of records in
the dataset, and the size of the vocabulary, or item domain, can
be used, as discussed in Section 3. For choosing the clustering
threshold, as a rule of thumb, we suggest choosing a very small
value, namely to set 0. to be smaller than 0.05. A drawback of
our solution is that, since we rely on Spark joins, it can run out
of memory, especially where the result set is large.

8 CONCLUSION AND OUTLOOK

In this paper, we addressed distributed similarity join process-
ing techniques for a datasets of top-k rankings. As a distance

216

for comparing the rankings, we specifically considered Spear-
man’s Footrule adaptation to top-k rankings. The presented
approach synthesizes existing state-of-the-art, set-based, dis-
tributed similarity join algorithm with the advantages of metric-
space, distance-based, filtering. It works in several stages, where
each can be independently configured from each other. Further-
more, our algorithms are designed and implemented in Apache
Spark, as suggested by a recent experimental study. By a compre-
hensive performance evaluation using two real-world datasets,
we showed that the presented approach exhibits better perfor-
mance than the competitor, Vernica Join. In the future, we plan
to extend our approach to sets where the Jaccard distance is used
as a distance measure.

REFERENCES

[1] DBLP Dataset. http://dbgroup.cs.tsinghua.edu.cn/wangjn/projects/adapt/.
Accessed: 26.03.2018.

[2] ORKU Dataset. http://ssjoin.dbresearch.uni-salzburg.at/datasets.html. Ac-
cessed: 01.12.2018.

[3] F. Alvanaki, E. Ilieva, S. Michel, and A. Stupar. Interesting event detection
through hall of fame rankings. In DBSocial, pages 7-12, 2013.

[4] Apache Spark [n.d.]. https://spark.apache.org. Accessed: 26.03.2019.

[5] R.J.Bayardo, Y. Ma, and R. Srikant. Scaling up all pairs similarity search. In
WWW 2007, Banff, Alberta, Canada, pages 131-140..

[6] Panagiotis Bouros, Shen Ge, and Nikos Mamoulis. Spatio-textual similarity

joins. PVLDB 6, 1 (2012), 1-12.

S. Chaudhuri, V. Ganti, and R. Kaushik. A Primitive Operator for Similarity

Joins in Data Cleaning. In ICDE 2006, Atlanta, GA, USA, page 5, 2006.

D. Deng, G. Li, S. Hao, J. Wang, and J. Feng. MassJoin: A mapreduce-based

method for scalable string similarity joins. In ICDE 2014, IL, USA, pages

340-351, 2014.

R. Fagin, R. Kumar, and D. Sivakumar. Comparing Top k Lists. SIAM J. Discrete

Math., 17(1):134-160, 2003.

F. Fier, N. Augsten, P. Bouros, U. Leser, and J. Freytag. Set Similarity Joins on

MapReduce: An Experimental Survey. PVLDB, 11(10):1110-1122, 2018.

L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas, S. Muthukrishnan, and

D. Srivastava. Approximate String Joins in a Database (Almost) for Free. In

VLDB 2001, Roma, Italy, pages 491-500.

E. H. Jacox and H. Samet. Metric space similarity joins. ACM Trans. Database

Syst., 33(2), 2008.

Y. Jiang, G. Li, J. Feng, and W. Li. String Similarity Joins: An Experimental

Evaluation. PVLDB, 7(8):625-636, 2014.

H. Karau, A. Konwinski, P. Wendell, and M. Zaharia. Learning Spark: Lightning-

Fast Big Data Analytics. 1st edition, 2015.

G. Li, D. Deng, J. Wang, and J. Feng. PASS-JOIN: A Partition-based Method

for Similarity Joins. PVLDB, 5(3):253-264, 2011.

W. Mann, N. Augsten, and P. Bouros. An Empirical Evaluation of Set Similarity

Join Techniques. PVLDB, 9(9):636-647, 2016.

A. Metwally and C. Faloutsos. V-SMART-Join: A Scalable MapReduce Frame-

work for All-Pair Similarity Joins of Multisets and Vectors. PVLDB, 5(8):704-

715, 2012.

E. Milchevski, A. Anand, and S. Michel. The Sweet Spot between Inverted

Indices and Metric-Space Indexing for Top-K-List Similarity Search. In EDBT

2015, Brussels, Belgium., pages 253-264.

K. Panev, E. Milchevski, and S. Michel. Computing similar entity rankings

via reverse engineering of top-k database queries. In ICDE Workshops 2016,

Helsinki, Finland, May 16-20, 2016, pages 181-188.

C. Rong, C. Lin, Y. N. Silva, J. Wang, W. Lu, and X. Du. Fast and Scalable

Distributed Set Similarity Joins for Big Data Analytics. In ICDE 2017, San

Diego, CA, USA, pages 1059-1070.

C. Rong, W. Lu, X. Wang, X. Du, Y. Chen, and A. K. H. Tung. Efficient and

Scalable Processing of String Similarity Join. IEEE Trans. Knowl. Data Eng.,

25(10):2217-2230, 2013.

A.D. Sarma, Y. He, and S. Chaudhuri. ClusterJoin: A Similarity Joins Frame-

work using Map-Reduce. PVLDB, 7(12):1059-1070, 2014.

[23] J. Shi, Y. Qiu, U. F. Minhas, L. Jiao, C. Wang, B. Reinwald, and F. Ozcan. Clash

of the Titans: MapReduce vs. Spark for Large Scale Data Analytics. PVLDB,

8(13):2110-2121, 2015.

R. Vernica, M. J. Carey, and C. Li. Efficient parallel set-similarity joins using

MapReduce. In SIGMOD 2010, Indianapolis, IN, USA, pages 495-506.

[25] J. Wang, G. Li, and J. Feng. Can we beat the prefix filtering?: an adaptive
framework for similarity join and search. In SIGMOD 2012, Scottsdale, AZ, USA,
pages 85-96.

[26] X. Wang, L. Qin, X. Lin, Y. Zhang, and L. Chang. Leveraging Set Relations in
Exact Set Similarity Join. PVLDB, 10(9):925-936, 2017.

[27] Y. Wang, A. Metwally, and S. Parthasarathy. Scalable all-pairs similarity search
in metric spaces. KDD 2013, Chicago, IL, USA, pages 829-837.

[28] C. Xiao, W. Wang, X. Lin, and J. X. Yu. Efficient similarity joins for near
duplicate detection. In WWW 2008, Beijing, China, pages 131-140.

(71
(8]

(]
[10]

(1]

[12]
[13]
[14]
[15]
[16]

(17]

(18]

[19]

[20]

[21]

[22]

[24]

	Distributed Similarity Joins over Top-K RankingsEvica Milchevski, Sebastian Michel

