
 

 

Series ISSN: 2367-2005 193 10.5441/002/edbt.2020.18

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2020.18


194



195



196



197



198













(a) {+P̃(l−1); −M̃(l−1) }
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(b) P̃(l )
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(c) M̃(l )

Figure 12: Structures of (a) P̃(l−1)&M̃(l−1)
, (b) P̃(l ), & (c) M̃(l ).
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Figure 12(a) shows T̃(l−1) where P̃(l−1) represents edges within

each group (A and B), and M̃(l−1) represents edges between the
two groups. We depict the block structure of P̃(l ) in Figure 12(b)
where P̃(l )i j indicates (i; j)-th block of P̃(l ). Figure 12(b) has two
copies: (A; B) of 1st copy and (A′; B′) of 2nd copy. Then, P̃(l )11
means edges within A and B of 1st copy because they are from
p11 P̃

(l−1) = P̃
(l )
11 . Also, P̃(l )12 represents directed edges from A to

B′, and from B to A′ by m12M̃
(l−1). Other blocks in P̃(l ) are simi-

larly interpreted; thus, there are two groups (A; B′) and (A′; B)
having positive between-group edges in the graph of P̃(l ). Each
block in M̃(l ) represents edges between the groups as shown in
Figure 12(c). These indicate T̃(l ) is also fully balanced. Hence, T̃(l )
is fully balanced for any l ≥ 1. �

C LEMMA OF ENTRY-WISE RECURSIVE

REPRESENTATION OF BALANSING

Lemma C.1. Let R(l ) be the selected region at level l with proba-

bility p(l )i j +m(l )i j in Generate-Edge. Let (u;v) be decided through

R(L); · · · ; R(0). Equation (7) for (u;v) is equivalent to Equation (8).

Proof. Equation (7) is represented as follows:

T̃(l ) = fα (fb (N
(l )
seed ⊗ T̃(l−1))) ⇔ (10)

{+P̃(l ); −M̃(l ) } = fα (fb ({+P
(l )
seed; −M

(l )
seed } ⊗ {+P̃

(l−1); −M̃(l−1) }))

Let p̃(l )uv and m̃(l )uv indicate the xed location (u;v) in P̃(l ) and
M̃(l ) under R(l ) as shown in Figure 13(a). Let д(·) be a function
that extracts entries participating in the computation related to
(u;v) in a signed tensor of Equation (7). For {+P̃(l ); −M̃(l ) }, д(·)

extracts p̃(l )uv and m̃(l )uv :

{+p̃(l )uv ; −m̃(l )uv } ← д
(
{+P̃(l ); −M̃(l ) }; (u; v)

)
Note that R(l−1) is a selected region with probability p(l )i j +m(l )i j

where p(l )i j ∈ P
(l )
seed and m(l )i j ∈ M

(l )
seed. As shown in Figure 13(b),

suppose p(l )i j and m(l )i j correspond to (1; 2)-th quadrant, respec-
tively, i.e., p(l )i j = p(l )12 and m(l )i j = m(l )12 . Then, other quadrant prob-
abilities except for p(l )12 and m(l )12 do not aect the computation
of {+p̃(l )uv ; −m̃(l )uv } through Kronecker product. Also, since (u;v)
is xed, the only locations corresponding to (u;v) of P̃(l−1) and
M̃(l−1) aect the nal result as shown in Figure 13(b). In other
words, only p̃(l−1)

uv and m̃(l−1)
uv participate in the computation for

{+p̃(l )uv ; −m̃(l )uv }, and {+p̃(l−1)
uv ; −m̃(l−1)

uv } are recursively obtained by
д(·) as follows:

{+p̃(l−1)
uv ; −m̃(l−1)

uv } ← д
(
{+P̃(l−1); −M̃(l−1) }; (u; v)

)

(a) Recursion level l
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Figure 13: The locations corresponding to (u;v) in (a)

{+P̃(l );−M̃(l )} and (b) {+P̃(l−1);−M̃(l−1)}.

Hence, Equation (10) is represented with д(·) as follows:

д
(
{+P̃(l ); −M̃(l ) }; (u; v)

)
= fα

(
fb

(
{+p(l )i j ; −m(l )i j } ⊗ д

(
{+P̃(l−1); −M̃(l−1) }; (u; v)

)))
⇔{+p̃(l )uv ; −m̃(l )uv }= fα (fb ({+p

(l )
i j ; −m(l )i j } ⊗ {+p̃

(l−1)
uv ; −m̃(l−1)

uv })): �

Note that Generate-Edge(·) represents the recursive function
д(·), and p̃(L)uv = P (u; v; +) and m̃(L)uv = P (u; v; −).

D DEFINITIONS

De�nition D.1 (Kronecker Product). Given A ∈ Rm×n and B ∈
Rp×q , the Kronecker product of A and B is dened as follows:

A ⊗ B =


a11B · · · a1nB

:
:
:

: : :
:
:
:

am1B · · · amnB


where ai j is the (i; j)-th entry of A, and A ⊗ B ∈ Rmp×nq . �

De�nition D.2 (Absolute Di�erence for Signed Triangles and

Edge Signs [6]). Let ρreal(·) and ρsyn(·) denote ratios from a real
network and a synthetic network, respectively. Let T be the set
of signed triangles, i.e., T = {4+++;4++−;4+−−;4−−−}. Then,
absolute di�erence for signed triangles is dened as follows:

Abs. Di. (T) =
∑
4∈T
|ρreal(4) − ρsyn(4) | (11)

Let S be the set of signs, i.e., S = {+;−}. Then, absolute di�erence

for edge signs is dened as follows:

Abs. Di. (S) =
∑
s∈S
|ρreal(s) − ρsyn(s) | (12)

E CONNECTION TO SKG AND NOISY SKG

In terms of edge determination process (line 7 in Algorithm 1
and line 8 in Algorithm 2) without signs, SKSG-B and SKSG are
equivalent to Stochastic Kronecker Graph (SKG) [23] and Noisy
SKG [37], respectively. SKG constructs a stochastic adjacency
matrix A using Kronecker product where each entry Auv indi-
cates a probability P(u;v) of forming edge u → v . In our models,
the probability P(u;v) is divided into P(u;v; +) and P(u;v;−),
i.e., P(u;v) = P(u;v; +) + P(u;v;−), implying that A = P +M

where {+P;−M} is a stochastic signed tensor. Thus, the for-
mation of edges without signs in SKSG-B is equivalent to that
of SKG; consequently, networks from SKSG-B naturally inherit
characteristics of those of SKG. Similarly, the edge formation of
SKSG with noises corresponds to that of Noisy SKG.

F PARAMETER SETTING

Table 6 describes the selected α and the target recursion level L
of BalanSiNG for each dataset.

Table 6: Parameters used in BalanSiNG

Parameters BitcoinA BitcoinO Epinions

α 0.84 0.75 0.65
L 12 13 17
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