
MILP approaches to practical real-time train scheduling: the
Iron Ore Line case

Lukas Bach
SINTEF

Oslo, Norway
lukas.bach@sintef.no

Carlo Mannino
SINTEF

Oslo, Norway
carlo.mannino@sintef.no

Giorgio Sartor
SINTEF

Oslo, Norway
giorgio.sartor@sintef.no

ABSTRACT
Real-time train scheduling is a complex network optimization
problem, which is receiving increased attention from scientists
and practitioners. Despite a vast literature on optimization al-
gorithms for train dispatching, there are very few examples of
real-life implementations of such algorithms. Indeed, the tran-
sition from theory to practice poses several critical issues, and
many simplifying assumptions must be dropped. MILP models
become more involved and hard to solve in the short time avail-
able. Here we describe how we successfully tackled these issues
for dispatching trains on a railway in the north of Norway and
Sweden.

1 INTRODUCTION
Railway infrastructure is increasingly congested: passenger traf-
fic is expected to grow by 3.2% yearly for the next 8 years, while
freight traffic by 1.4% ([13]). Increasing pressure results in poorer
punctuality. In principle, one could augment capacity by build-
ing more infrastructure, but this requires large investments and
the benefits will only be available after some years. A quicker
and cheaper way to increase capacity is to improve traffic man-
agement by network optimization. Several recent studies have
shown improvements in the punctuality ranging from 10% to
100% [3, 6, 9, 10, 12]. In these and all other papers presented in a
large literature (for recent reviews, see [4, 8]), the train schedul-
ing problem is represented by means of event graphs. The seminal
example is probably Balas’ disjunctive graph introduced in [1]
(where each node represents the starting of an operation), later
extended to cope with blocking, no-wait job-shop scheduling
problems by Mascis and Pacciarelli [11].

Despite this huge body of academic studies and successful
stories, there have been only a few implementations of real-time
train scheduling algorithms in real life [2, 9, 10]. Things are
rapidly changing now, thanks to an increased interest by infras-
tructure managers worldwide in automatic train traffic control
systems capable of maximizing punctuality or average velocity1.
In this paper, we describe one such implementation, focusing
on the modelling and algorithmic challenges we had to tackle
when moving from theory to practice. First, standard simplifying
assumptions must be discarded in order to produce solutions
which are practically viable. Next, new solution approaches must
be developed and implemented in order keep the computation
time of the optimal solution in the range of few seconds. Indeed,
Fischetti and Monaci [5] showed that state-of-the-art solvers are

1In [2], a large North-American railway company claims that a 1% increase in
average velocity of their freight trains brings to the company $200 million savings.

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the
International Network Optimization Conference (INOC), June 12-14, 2019:
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

already unable to tackle rather small instances of the MILP mod-
els derived from the event graphs of these type of scheduling
problems.

The implementation we discuss in this paper is applied to a
critical part of the railway network that runs from Sweden to the
coast of Norway, also known as the "Iron Ore Line". This single
track line, well within the arctic circle, was originally built to
transport iron ore from northern Sweden to the ice free waters
of Narvik in northern Norway. The line is also used by a few
passenger trains per day. In recent years, the increased number
of iron ore trains as well as other types of freight trains has
challenged the capacity of the line. An optimized dispatching
could help ensuring that the physical capacity is used to its full
extent.

One peculiar challenge of this piece of railway comes from its
incline. This affects the speed of the heavy trains and may also
affect their ability to stop in some of the stations. For example,
fully loaded freight trains travelling from the iron ore mines in
Sweden to Norway have constraints regarding where they are
allowed to stop, while lighter freight trains travelling towards
Sweden are allowed higher speed and flexibility. Moreover, some
freight trains are also too long for some of the side tracks in
certain small stations. Passenger trains may have limitations too.
In fact, most of the stations do not have passenger platforms in all
their internal tracks, constraining the number of passenger trains
that are able to meet in the station. Instead, for all type of trains,
another important aspect is the variability of their travel times.
Indeed, moving from a stopped condition requires some time to
accelerate; similarly, stopping a train requires a deceleration and
thus extended running times.

All these practical constraints are usually ignored in theoreti-
cal works but they are crucial in real-world applications, requir-
ing more refined models. In this work, we mainly focus on two
aspects: a) being able to define a more diverse set of constraints
within each station; b) model travel times of each train based on
its stopping pattern.

Our starting point is the recent Benders’ like decomposition
approach to train rescheduling presented in [7, 9], extended to
cope with all new physical and logical constraints. In this paper,
we discuss the new features and the decomposition approach for
this MILP problem. Furthermore we describe the actual imple-
mentation which has been tested by dispatchers on the iron-ore
line.

2 A MILP FORMULATION
We start our description by considering a slightly simplified
version of our problem, where the travel times of trains are fixed
and do not depend on whether they stop.

The Iron Ore Line consists of a sequence of small stations and
single-tracks. We follow here the micro-macro decomposition ap-
proach proposed in [7]. The macro problem is associated with the
railway line, considered as a sequence of capacitated resources,

ISBN 978-3-89318-079-0 on OpenProceedings, ISSN 2510-7437 78 DOI: 10.5441/002/inoc.2019.15

https://OpenProceedings.org/
https://OpenProceedings.org
http://dx.doi.org/10.5441/002/inoc.2019.15

Figure 1: Iron Ore Line

Figure 2: Line decomposition

Station Track Station Track

TrackStation Station Track

alternating stations and tracks (see Figure 2). Observe that at this
macro level, we avoid the detailed description of the movements
(i.e. routing and scheduling) of each train in every station which
is instead represented by the expected total time spent in the
station. The micro problem is associated with the routing and
scheduling of trains within each station and track, according to
the arrival and departure times established by the macro problem.
The decomposition allows us to treat the constraints generated in
the micro level (e.g., track assignment, capacity) independently of
each other. In Section 4 we will see how this decomposition can
be exploited to solve the MILP model in a master-slave fashion.
Instead, in this section we focus on describing how to formu-
late the constraints arising both at the macro and micro level,
describing train movements.

For the line (or macro) problem, each train a ∈ A is assigned
a route, i.e., an ordered sequence nr1

a ,n
r2
a , . . . ,n

rq
a of route nodes,

where ri ∈ R, i = 1, . . . ,q is a line resource, either a track or a
station2, and r1, rq are the origin and destination station, respec-
tively. In this aggregation scheme, between each pair of nodes
that represent two adjacent stations, there is always a track node.

LetN be the set of all route nodes for all trains inA,NO ⊂ N be
the set of all nodes associated with origin stations, and ND ⊂ N

2Other decomposition schemes are possible, for instance by collapsing entire railway
region in a single node of our master line problem.

the set of all nodes associated with destinations. We associate
a scheduling variable tra ∈ IR with each route node nra ∈ N ,
representing the time train a enters the resource r . There is also
a fictitious variable to ∈ IR, which serves as a reference time for
all trains (typically, but not necessarily, we have to = 0). Thus,
we have

tra − to ≥ Γa , nra ∈ NO , (1)

where Γa is the earliest time train a can enter the network. Now
let nra ,nr+1

a ∈ N be two consecutive route nodes in a particular
train route. Note that the time a train exits a resource is precisely
the time the train enters the subsequent resource in its route.
Therefore, the following constraints hold:

tr+1
a − tra ≥ Λra , nra ∈ N \ ND , (2)

whereΛra is theminimum time it takes traina to traverse resource
r . Moreover, for the destination nodes we have:

touta − tra ≥ Λra , nra ∈ ND , (3)

where the fictitious touta ,a ∈ A, represents the time traina “leaves”
the railway network, i.e., it concludes its journey at the arrival
station. Constraints (1), (2), and (3) are usually called precedence
constraints, and they model the free running of a train, i.e., the
minimum time required by a train to travel along its routewithout
obstacles from other trains. Incidentally, even if we will not make
explicit use of the underlying event graph, it is worth mentioning
here that this is built by associating a node with every time
variable and a directed edge with every constraint (1), (2), and
(3).

In general, one has to consider the interactions between trains
travelling in the same network. Observe that, for a pair of distinct
trains a,b traversing a resource r , exactly one of the following
three conditions must occur:

(1) train a and b meet in resource r
(2) train a traverses resource r before train b
(3) train b traverses resource r before train a

Consider now a set of distinct trains A(r) ⊆ A traversing a re-
source r . For each ordered pair of distinct trains (a,b) ∈ A(r) ×
A(r), we defineyrab to be equal to 1 if a exits r before b enters, and
0 otherwise. Furthermore, for each pair of trains {a,b} ⊆ A(r),
we introduce the binary variable xrab , which is 1 if and only if a
and b are simultaneously (i.e., they meet) in resource r . Then, we
have that

yrba + y
r
ab + x

r
ab = 1, {a,b} ⊆ A(r), r ∈ R. (4)

Accordingly, for every {a,b} ⊆ A(r), r ∈ R, the schedule t will
satisfy a family of (indicator) disjunctive constraints as follows3:

(i) yrab = 1 =⇒ trb − tr+1
a ≥ 0,

(ii) yrba = 1 =⇒ tra − tr+1
b ≥ 0,

(iii) xrab = 1 =⇒

{
tr+1
b − tra ≥ 0

tr+1
a − trb ≥ 0

,

yrab ,y
r
ba ,x

r
ab ∈ {0, 1}.

(5)

Indeed, yrab = 1 implies that a exits r before b enters r and,
similarly, yrba = 1 implies that b exits r before a enters. On the
other hand, when xrab = 1, then both a and b exit the sector r
after the other train enters it (i.e., they meet in r). Exploiting the

3Constraints (5) are associated with special entities of the event graph called dis-
junctive (alternative) edges, see for instance [11].

79

big-M trick, the family of disjunctive constraints in (5) can be
easily linearized as follows:

(i) trb − tr+1
a ≥ −M(1 − yrab),

(ii) tra − tr+1
b ≥ −M(1 − yrba),

(iii) tr+1
b − tra ≥ −M(1 − xrab),

(iv) tr+1
a − trb ≥ −M(1 − xrab),

yrab ,y
r
ba ,x

r
ab ∈ {0, 1},

(6)

A final set of constraints in the macro program will be used to
represent the infeasibility of the micro problems, which in turn is
associated to the resources in which the railway is decomposed.

Now, let t∗ be a schedule that satisfies constraints (1), (2), (3),
and (6), and suppose t∗ minimizes a given objective function c(t).

If the timetable t∗ is feasible for every micro problem (i.e.,
for every station and every track section between successive
stations), then it is feasible and optimal also for the overall prob-
lem. Otherwise, at least for one station or one track section, the
time schedule decided by the macro problem cannot be attained.
There may be several reasons for such infeasibility. Here we will
describe the case where feasibility depends only on the set of
trains simultaneously in the resource. For example, two passen-
ger trains are not able to meet in a station where there are two
internal tracks but only one passenger platform, but two freight
trains may meet. On a single track no two trains can meet. Two
short trains may pass each other in a siding, but not two long
trains. Etc.

So, let r ∈ R be a set of trainsQ ⊆ Aminimally infeasible for r ,
if the trains in Q cannot meet simultaneously in r , but all proper
subsets of trains in Q can meet. We define the set of A(r) ⊂ 2A
as the family of minimally infeasible set of trains for r . Clearly,
for anyQ ∈ A(r), at least two trains4 inQ cannot meet in r . Note
that if, according to a solution (t∗,x∗,y∗), all trains in Q meet
in r , then we have

∑
{a,b }⊆Q x∗rab =

(|Q |
2
)
(namely the number

of pairwise meetings in r of trains in Q is precisely
(|Q |

2
)
). To

prevent this to happen when the set Q is minimally infeasible,
we can thus write the constraint:

∑
{a,b }⊆Q

xrab ≤

(
|Q |

2

)
− 1, Q ∈ A(r), r ∈ R. (7)

In conclusion, a completeMILP formulation can be obtained by
considering as objective function c(t) the sum of the arrival times
at destination of the trains, subject to constraints (1), (2), and (3)
for all routes, and constraints (4), (6), and (7) for all resources
r ∈ R and all the minimally infeasible sets Q ∈ A(r) of trains.

4Observe that, by Helly’s property, if every pair of trains inQ meet in r , then there
exist a point in time where all trains in Q are simultaneously in r .

The full model can be written as follow:
min c(t)

subject to:

tra − to ≥ Γa , nra ∈ NO

tr+1
a − tra ≥ Λra , nra ∈ N \ ND

touta − tra ≥ Λra , nra ∈ ND

yrba + y
r
ab + x

r
ab = 1, {a,b} ⊆ A(r), r ∈ R

trb − tr+1
a ≥ −M(1 − yrab), {a,b} ⊆ A(r), r ∈ R

tra − tr+1
b ≥ −M(1 − yrba), {a,b} ⊆ A(r), r ∈ R

tr+1
b − tra ≥ −M(1 − xrab), {a,b} ⊆ A(r), r ∈ R

tr+1
a − trb ≥ −M(1 − xrab), {a,b} ⊆ A(r), r ∈ R∑
{a,b }⊆Q

xrab ≤
(|Q |

2
)
− 1, Q ∈ A(r), r ∈ R

yrab ,y
r
ba ,x

r
ab ∈ {0, 1}, {a,b} ⊆ A(r), r ∈ R

tra ∈ IR, nra ∈ N

touta ∈ IR, a ∈ A

to ∈ IR.

(8)

As mentioned above, the cost function c(t) in (8) usually consists
of the sum of the weighted arrival time at destination of all trains,
that is c(t) =

∑
a∈Awat

out
a , where wa is the weight of train a.

However, this can be generalized to more complex functions. For
example, an objective function commonly used in the railway
industry is a piece-wise linear one, where the delay of a train is
taken into account only if it is greater than few minutes5.

3 AN EXTENDED MILP FORMULATION
As discussed in the previous section, the model in (8) assumes
that travel times in tracks are constant and do not depend on
the fact the train has stopped at the previous station or that it is
going to stop in the next station. Similarly with travel times in
stations. While this assumption is usually tolerated for passenger
trains, it cannot be applied to heavy freight trains. In fact, they
usually need a very long time to reach the nominal speed after
they stopped, and to reach a full stop when travelling at nominal
speed. Based on theese observations, we identified four different
running times for each track and two different running times for
each station.

We define by RT ,RS ⊂ R as the sets of resources that represent
tracks and stations, respectively. Now, for each track r ∈ RT and
for each train a ∈ A we have:

• Λra : the minimum running time if a does not stop at the
previous or next station;

• Λra + ∆̄
r
a : the minimum running time if a stops at the next

station but not at the previous one;
• Λra + ¯

∆ra : the minimum running time if a stops at the
previous station but not at the next one;

• Λra + ∆̄
r
a + ¯

∆ra : the minimum running time if a stops both
at the previous and next station.

Instead, for each station r ∈ RS and for each train a ∈ Awe have:
• Λra : the minimum running time if a does not stop in this
station;

• Λra + ∆ra : the minimum running time if a stops in this
station.

In order to include this flexible running times into model (8), we
introduce binary variables zra ,a ∈ A, r ∈ RS that are equal to

5Note that the delay of a train a ∈ A can be computed by subtracting the originally
scheduled arrival time at destination from t outa .

80

1 if train a stops in station r , 0 otherwise. In other words, we
introduce this additional (indicator) constraint:

zra = 0 =⇒ tr+1
a − tra = Λra . (9)

Similarly to what done in (6), we can linearize this constraint by
using the big-M trick:

tr+1
a − tra ≤ Λra +Mzra . (10)

Indeed, when zra is equal to 0, then this constraint together with
(2) imply that the travel time of train a in r is exactly Λra , which
means that the train did not stop and traversed the station at its
nominal speed.

With these “stopping” binary variables at hand, we can now
define the constraints that model the travel times in stations and
tracks more accurately.

For each station r ∈ RS , and each train a ∈ A, we introduce
the following set of constraints:

tr+1
a − tra ≥ Λra + ∆

r
az

r
a . (11)

Similarly, for each track r ∈ RT , and each train a ∈ A, we have:

tr+1
a − tra ≥ Λra + ∆̄

r
az

r−1
a +

¯
∆raz

r+1
a , (12)

where zr−1
a , zr+1

a represent the stopping variables at the previous
and next stations, respectively.

We can now substitute constraints (2) with constraints (10),
(11), and (12) to obtain the final MILP model:

min c(t)

subject to:

tra − to ≥ Γa , nra ∈ NO

tr+1
a − tra ≥ Λra + ∆

r
az

r
a , nra ∈ N \ ND , r ∈ RS

tr+1
a − tra ≥ Λra + ∆̄

r
az

r−1
a +

¯
∆raz

r+1
a , nra ∈ N \ ND , r ∈ RT

tr+1
a − tra ≤ Λra +Mzra , nra ∈ N \ ND , r ∈ RS

touta − tra ≥ Λra , nra ∈ ND

yrba + y
r
ab + x

r
ab = 1, {a,b} ⊆ A(r), r ∈ R

trb − tr+1
a ≥ −M(1 − yrab), {a,b} ⊆ A(r), r ∈ R

tra − tr+1
b ≥ −M(1 − yrba), {a,b} ⊆ A(r), r ∈ R

tr+1
b − tra ≥ −M(1 − xrab), {a,b} ⊆ A(r), r ∈ R

tr+1
a − trb ≥ −M(1 − xrab), {a,b} ⊆ A(r), r ∈ R∑
{a,b }⊆Q

xrab ≤
(|Q |

2
)
− 1, Q ∈ A(r), r ∈ R

yrab ,y
r
ba ,x

r
ab ∈ {0, 1}, {a,b} ⊆ A(r), r ∈ R

zra ∈ {0, 1}, nra ∈ N , r ∈ RS

tra ∈ IR, nra ∈ N

touta ∈ IR, a ∈ A

to ∈ IR.
(13)

4 SOLUTION APPROACH
In our real-life implementation of train rescheduling, Problem
(13) is solved iteratively every 10 seconds. Each time, the current
status of the trains (i.e. position, speed, etc.) is gathered from the
field, along with the current status of the rail network. The associ-
ated initial event graph is built. This is the pre-processing phase.
Then, the MILP associated to the current instance is solved. The
solution method is based on the decomposition in the macro prob-
lem and the micro problems described in Section 2 and shown
in Figure 2. Indeed, this can be seen a master-slave approach, as
described in [7]. If the master (or macro) problem is infeasible,
then there is no solution to the scheduling problem (and we are

Figure 3: Solution Algorithm

Preprocess

Solve
master problem

Solve
slave problem

Feasible

Solution

No

Add constraints

Yes

Re-solve

in a deadlock situation). Otherwise, it produces an optimal tenta-
tive schedule t∗. Recall that the schedule variables in the macro
problem are associated with the times each train enters a macro
railway resource, in our case a station or a track between two
stations in the line. Thus, the schedule t∗ may be interpreted as a
tentative (disposition) timetable. Next, this timetable is used by all
micro (or slave) problems in order to solve the routing/scheduling
within each station or track (even though for tracks this is trivial).
If they are all feasible, then we have found the optimal solu-
tion. Otherwise, we generate the constraints that invalidate the
current schedule in at least on piece of the railway, forcing the
master problem to find a new tentative schedule.

In Figure 3 we give a schematic representation of the overall
algorithm. First, the real-time data are pre-processed and the
event graph is updated (pre-processing). Second, the MILP Mas-
ter Problem is solved considering only a subset (initially empty)
of constraints (7): this MILP is called restricted master. The cur-
rent master solution is then checked for feasibility by solving the
slave problems. Namely, we check if any constraint (7) not in-
cluded in the current restricted master is violated by the current
solution - we call such violation a conflict. Observe that, while
checking conflicts on tracks is in general a simple exercise, a
similar check for stations can be indeed hard (some polynomial
cases of practical interest are discussed in [7]). If this is the case,
the violated constraints are added to the master problem and the
process is iterated until no violated constraints exists.

Note that this delayed row-generation approach usually gen-
erates models that are much smaller than the ones generated
by the full MILP formulation (see [7]). This helps to drastically
reduce the computation time.

5 RESULTS & CONCLUSIONS
Implementing an algorithm of this sort in real-life poses, as de-
scribed earlier, some additional challenges both with respect to
removing theoretical assumptions and adapting formulations to
problem specific peculiarities. Another major challenge is to in-
terface with real-time systems in order to get the correct data in
real-time. Collaboration with the dispatchers is very important
as they have the final word on whether the decisions suggested
by the algorithm is accepted or not. Here eliciting why they make
their decisions should not be underestimated. The interaction

81

Figure 4: Train graph

with the dispatchers does also make it difficult to compare the
algorithm to the current as we do simply not know what would
have happened had the dispatchers accepted all dispatching sug-
gestions.

The algorithm has been implemented into a user interface
where we are able to show the dispatchers a classical train graph
representing the line, see Figure 4. On the x-axis we have time,
both past and present separated by a red line. The stations along
the line are placed on the y-axis. Each train is shown as a line in
the graph with its train number, the black line is the schedule,
the full red line represent the past real-time data. Where the
dashed red line is the future dispatching suggestions. This train
graph has been tested over a period by the dispatchers in Narvik
operational constrol center in real-time.

When running in a real-time setting the input data in the al-
gorithm is updated every 10 seconds before it is executed again.
Testing on real-time data over an extended period the approach
presented in this paper has been able to provide solutions within
(the wanted) 2 seconds. The planning horizon covers the follow-
ing 2 hours, and the solution returned must be conflict free. The
computing speed is extremely important as solutions which are
constantly updated on the status of the trains and of the railway
must be presented to dispatchers. Hence, with longer solution
times the dispatching suggestions might already be out of sync
with the real-time data.

The implementation was funded by the Norwegian National
Research Council, and the system was indeed operative only
on the Norwegian side of the line, supporting the Norwegian
dispatchers sitting at Narvik. However, for the Swedish part of
the line, there is a second control center located in Boden (not far
from the Gulf of Bothnia where the line ends). It is worth noticing
here that the limited coordination between the two brains of the
line generates various problems. The dispatchers at Narvik may
become aware of scheduling decisions taken at Boden only when
the trains are approaching the border and in any case they cannot

affect such decisions (if not occasionally through some laborious
negotiations on the phones). It should be apparent that having
a single optimization tool on both sides of the border would
significantly increase the coordination, the quality of the overall
solutions and the awareness of both teams of dispatchers.

REFERENCES
[1] Egon Balas. 1969. Machine sequencing via disjunctive graphs: an implicit

enumeration algorithm. Operations research 17, 6 (1969), 941–957.
[2] Srinivas Bollapragada, Randall Markley, Heath Morgan, Erdem Telatar, Scott

Wills, Mason Samuels, Jerod Bieringer, Marc Garbiras, Giampaolo Orrigo, Fred
Ehlers, et al. 2018. A Novel Movement Planner System for Dispatching Trains.
Interfaces 48, 1 (2018), 57–69.

[3] Quentin Cappart and Pierre Schaus. 2017. Rescheduling railway traffic on real
time situations using time-interval variables. In International Conference on AI
and OR Techniques in Constraint Programming for Combinatorial Optimization
Problems, June 5–8, 2017, Padua, Italy. Springer, Cham, 312–327.

[4] Francesco Corman and Lingyun Meng. 2015. A review of online dynamic
models and algorithms for railway traffic management. IEEE Transactions on
Intelligent Transportation Systems 16, 3 (2015), 1274–1284.

[5] Matteo Fischetti and Michele Monaci. 2017. Using a general-purpose mixed-
integer linear programming solver for the practical solution of real-time train
rescheduling. European Journal of Operational Research 263, 1 (2017), 258–264.

[6] Pavle Kecman, Francesco Corman, Andrea D’Ariano, and Rob MP Goverde.
2013. Rescheduling models for railway traffic management in large-scale
networks. Public Transport 5, 1-2 (2013), 95–123.

[7] Leonardo Lamorgese and Carlo Mannino. 2015. An exact decomposition
approach for the real-time train dispatching problem. Operations Research 63,
1 (2015), 48–64.

[8] Leonardo Lamorgese, CarloMannino, Dario Pacciarelli, and Johanna Törnquist
Krasemann. 2018. Train Dispatching. In Handbook of Optimization in the
Railway Industry. Springer, Cham, 265–283.

[9] Leonardo Lamorgese, Carlo Mannino, and Mauro Piacentini. 2016. Optimal
train dispatching by Benders’-like reformulation. Transportation Science 50, 3
(2016), 910–925.

[10] Carlo Mannino and Alessandro Mascis. 2009. Optimal real-time traffic control
in metro stations. Operations Research 57, 4 (2009), 1026–1039.

[11] Alessandro Mascis and Dario Pacciarelli. 2002. Job-shop scheduling with
blocking and no-wait constraints. European Journal of Operational Research
143, 3 (2002), 498–517.

[12] Paola Pellegrini, Grégory Marlière, and Joaquin Rodriguez. 2016. A detailed
analysis of the actual impact of real-time railway traffic management op-
timization. Journal of Rail Transport Planning & Management 6, 1 (2016),
13–31.

[13] SCI-Verkher. 2017. Rail transport markets - global market trends 2016-2025.

82

	MILP approaches to practical real-time train scheduling: the Iron Ore Line caseLukas Bach, Carlo Mannino, Giorgio Sartor

