O

proceedings

Routing and Slot Allocation in 5G Hard Slicing

Nicolas Huin
Huawei Technologies
nicolas.huin@huawei.com

Paolo Medagliani
Huawei Technologies
paolo.medagliani@huawei.com

ABSTRACT

5G networks will enable the creation of network slices to serve
very different user requirements. Flex Ethernet (FlexE) is a stan-
dard technology that provides strict isolation between slices,
also called hard slicing, by allocating capacity slots of physical
links to slices. The resulting resource allocation problem is called
Routing and Slot Allocation problem (RSA). We first prove that
this problem is NP-hard and cannot be approximated. Then, we
develop two matheuristics to efficiently solve the problem, by
leveraging on a combination of Column Generation and Gauss
Seidel procedures. The numerical evaluation, carried out by com-
paring the two matheuristics against a greedy algorithm over a
realistic IP-RAN networks, shows an optimality gap smaller than
7%, while reducing the reservation cost by 4% compared to the
greedy algorithm.

1 INTRODUCTION

The deployment of next generation 5G networks is paving the
road for custom and personalized network services. In particular,
due to the improvement in terms of end-to-end network capacity,
latency and reliability, it is now possible to envision the decompo-
sition of the physical network into several virtual sub-networks
with very different requirements. Each sub-network, also called
a slice, is independent from each other, and operated by different
players, often referred to as tenants. The partitioning of network
resources aims at guaranteeing that the requirements of tenants
are met in all slices.

The importance of network slicing relies on the fact that these
virtual networks can be designed to guarantee different Quality
of Service (QoS) requirements. In 5G networks [5], three main use
cases are commonly identified, namely enhanced Mobile Broad
Band (eMBB), ultra Reliable and Low Latency Communications
(uRLLC), and Massive IoT (mloT), using the same physical in-
frastructure. The resources are provisioned inside each slice in
such a way that the SLA (Service Level Agreement) requirements
specified for each tenant can be met.

According to the isolation level, we categorize slicing tech-
nologies into soft and hard slicing. In soft slicing [1, 4], despite
that QoS performance guarantees are pledged to slices, the traf-
fic is actually multiplexed in a queuing system. A high load on
a physical link may introduce an additional latency for all the
slices that are routed through that link. And the traffic in one
slice may impact the other slices in case of congestion. However,
within hard slicing [8], each slice has dedicated resources at both
physical and MAC layers. Performance misbehaviors of one slice
can not have any influence on the other slices.

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the
International Network Optimization Conference (INOC), June 12-14, 2019:
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

ISBN 978-3-89318-079-0 on OpenProceedings, ISSN 2510-7437

Jérémie Leguay
Huawei Technologies
jeremie.leguay@huawei.com

72

Sébastien Martin
Huawei Technologies
sebastien.martin@huawei.com

Shengming Cai
Huawei Technologies
caishengming@huawei.com

The main technology used to provide hard isolation is Flex
Ethernet (FlexE) [10]. As mentioned in [1], it is a key enabler of
5G networks. The way FlexE can provide isolation between slices
is through the reservation of resources at physical and MAC
layers in a Time-Division Multiplexing Access (TDMA) fashion.
The capacity of physical ports inside FlexE-enabled devices is
allocated to each slice in the form of slots, i.e., multiples of a
fundamental unit, normally expressed in Gigabits. Once a slot is
allocated to a slice, it cannot be shared with another one. When
a slice is created, FlexE slots must be reserved on physical links
and user traffic must be steered through these slots. A network
controller is typically taking routing and slot allocation decisions
with the goal of minimizing unused resources.

In this paper, we present the Routing and Slot Allocation (RSA)
problem for hard slicing with FlexE in 5G networks where the
goal is to minimize the cost of resource reservations for a slice,
under the constraint that all services in the slice are accepted. We
show that this problem is NP-hard and it cannot be approximated
with constant factors unless P = NP. We also present an efficient
heuristic to quickly approximate the optimal solution.

The RSA problem is similar to problems such as the multi-
commodity network optimization problems with general step cost
functions [6], or the energy-aware routing with discrete link rates
problem [2]. However, a few key differences exist. Firstly, the prob-
lem studied by [6] considers splittable flows unlike our problems
where each service must be routed on a unique path. Secondly,
even though [2] consider unsplittable flows, we cannot apply
their method due to statistical multiplexing available in IP-RAN
networks (see Section 2.3). To the best of our knowledge, we are
the first to propose a column generation algorithm to solve this
problem.

The structure of the paper is the following. We explain hard
slicing in Section 2 and formally present the RSA problem in
Section 2.3. We then propose an extended formulation of the
problem in Section 3 and detail the column generation proce-
dure. We then show in Section 4 two heuristics and compare,
in Section 5, our heuristics on realistic 5G scenarios using IP-
RAN network. Finally, we conclude this paper and discuss future
works in Section 6.

2 HARD SLICING

Hard physical isolation between different slices can be acheived
with Flex Ethernet (FlexE). This section presents how the technol-
ogy works and the Routing and Slot Allocation problem (RSA).

2.1 Flex Ethernet for hard slicing

As shown in Figure 1, the Optical Internetworking Forum (OIF)
has designed the FlexE standard as an extension of the traditional
IEEE 802.3 standard for wired Ethernet. In more details, FlexE
is implemented at the layer 1.5 of the OSI stack, adding a shim

DOI: 10.5441/002/inoc.2019.14

https://OpenProceedings.org/
https://OpenProceedings.org
http://dx.doi.org/10.5441/002/inoc.2019.14

<IEEE

802.3
Architecture

Same function
(can be variable rate)

RS Layer

Clause 4 MAC

Clause 81

{, __________ — - \ 64b/66b
1 Add a FlexE Shim ! [o |
ToMm Framing

6db/66b
Scramble
Lane Distribution

| between the [e

6ab/ssb

Scramble

Clause 82
Lane Distribution (64b/66b bypassed)

same function
Clause 91 { FEC

6“1
[
1 PMA
Same function
PMD | PMD

Figure 1: Extension of IEEE 802.3 to support Flex Ethernet.

-
|
same function

Clause 83 —_—

Various
Clauses

layer which is in charge of allocating transmission slots to each
slice with a fixed calendar, as presented in Figure 2. This rigid

Stream 0 Stream 1 Stream 2
P2 F2 P2
S|IG€‘ P P1 Pl
2] PO)
Y
FlexE Shim
Group
EPHY | =eeeeeeeeeaa Eth PHY

[Eth PHY

AU

64/66Bit block granularity TOM

v

Figure 2: Role of the FlexE shim.

mapping forces the bandwidth reserved over a sub-interface to
be expressed as a multiple of fundamental slot units. In the FlexE
implementation we considered, the bandwidth is reserved in
blocks of 5 Gb [10]. However, the first 5 slots allocated to each
slice can be of 1 Gb, for a finer bandwidth reservation.

Data packets from the FlexE shim are then mixed on different
PHY interfaces that carry all or part of the traffic coming from
one or more sub-interfaces. The PHY interfaces are then multi-
plexing in a TDMA fashion, according to 64/66-bit block data line
encoding. This multiplexing operation follows a rigid calendar,
which is shared between the transmitter and the receiver to let
the latter decodes the data when received.

2.2 Slot allocation policy

FlexE follows three bandwidth reservation rules: (i) it is necessary
to activate enough slots on a link to cover all the services of the
slice routed through that link; (ii) if there is enough activated

73

slots over a link to accommodate a new service, it is not necessary
to activate a new one; (iii) the slot activation sequence comes
with a given order. For instance, referring to Figure 3, Service 1
of 7 Gb and Service 2 of 3 Gb need to use the same FlexE link. For
Service 1, it is necessary to activate the first 5 1-Gb slots and 1
5-Gb slot, for a total of 10 Gb. This means that there are 3 Gb that
are activated and not used by Service 1 and that can be used "for
free" by Service 2. In particular, according to the FlexE standard,
it is not possible to activate a 5-Gb slot before having activated
all the 1-Gb slots. Thus, only the following link configurations
are allowed: 1 Gb, 2 Gb, 3 Gb, 4 Gb, 5 Gb, 10 Gb, 15 Gb, 20 Gb and
other multiples of 5 Gb slots.

FlexE link
capacity

FlexE link

2 7 T~

Service 1
7Gb

|
5x1Gb __1x5Gb
U]IU:’D
&

3Gb reserved
but not used

Figure 3: Scheme of FlexE link utilization

On top of the three rules mentioned above, there is another
bandwidth reservation policy that must be followed in IP-RAN net-
works (IP networks for mobile radio networks in 4G or 5G). Fig-
ure 4 shows that in aggregation and core networks statistical
multiplexing can be used to save resources. The main idea of
statistical multiplexing is to assume all services crossing a link
will not be active at the same time. Therefore, it is possible to
reserve only a portion of the bandwidth required by the services.
However, it is necessary to reserve enough bandwidth to ensure
that (i) the scaled sum of the capacities of the services passes and
(ii) each service alone can pass. The scaling factor applied in the
aggregation and in the core network is different as it depends on
the number of services using the network. This mechanism is
referred to as Convergence Ratio (CR). The CR scaling factor can
be applied only to services that explicitly support it. For example,
if two services, requesting for 4 Gb each, are routed on a link
with a convergence ratio of 2, 4 Gb must be allocated as to allow
each service to be routed alone.

CR=n

CR=1 CR=m

Reserved bandwidth
B/(n*m)

Reserved bandwidth | Reserved bandwidth

B/1 B/m
Aggregation

Access

S1 service
Bandwidth B/

Figure 4: Convergence ratio (CR) in IP-RAN networks.

2.3 Routing and Slot Allocation problem

Let G = (V, E) be the graph representing the network, where V
is the set of nodes associated with the routers and E is the set
of links between the routers. For each link e € E we consider a
positive cost C, per unit of bandwidth used, a capacity b, and,
a latency Ae. In particular, b can be expressed as a multiple
of a basic unit, referred to as slot, whose size is defined by the
FlexE standard. For each link, it is possible to define a set of

valid slot configurations S¢ that enumerates the possible slot
activations. To each link configuration s € S¢ corresponds a
bandwidth utilization &.

A slice consists of a set of demands K to be allocated in the
network. Each demand k € K is characterized by a source node
sk e V, a destination node th e V, a bandwidth requirement Dy
and a latency bound Aj. As we are considering an IP-RAN net-
work, statistical multiplexing applies in some parts of the network
for the subset K¢ C K of the demands. For each link e, we define
a CR factor y¢ and the amount of bandwidth used by a demand
k € Kc is given by Dy = yi®Dy.. However, the bandwidth alloca-
tion of a link with statistical multiplexing must ensure that each
demand in K¢ can be routed alongside the demand without con-
vergence ratio. Thus, the bandwidth usage of a link e to allocate
the set of demands K, it is given by

Z Dy + max

keK.NKyc

ue,Ke) = Z D¢, max Dy (1)
kekonKe keK.NK¢

where Kyc € K is the set of demands that are not requesting for
statistical multiplexing.

The Routing and Slot Allocation problem (RSA) consists in
computing a feasible path for all demands within the slice, while
respecting the link capacities and delay constraints and minimizing
the cost of resource reservation in the network.

3 COLUMN GENERATION MODEL

In this section, we first formulate the problem via an Integer
Linear Program (ILP). As this model requires an exponential
number of variables, we propose a pricing procedure, based on
Column Generation (CG) techniques to dynamically add the
necessary variables.

3.1 Problem formulation

For each demand k € K, we denote by P¥ the set of all possible
paths between source s¥ and destination tX. The number of paths
for each demand can be exponential. For each demand k and each
path p € Pk a binary variable xi, is equal to 1 if the path p is
used by demand k, 0 otherwise. For this extended model we also
consider the slot configuration variables y,s for each e € E and
s € §¢ defined in the previous section.

The following ILP FlexE-CG is a valid formulation for the FlexE
problem.

min Z Ce Z EesYes (2a)
ecE seSse
s.t Z Z Dkxkp
keKnc pePk:eep
+ Z Z lleDkxpk = Z fesyes Ve €E (2b)
keKc pePk:eep sese
2. 2 Dexpe
k’€Kne pePk :eep
+ > Dixkp <). Eesyes VeeEkeKe (20)
pePk:ecp sese
> k=1 VkeK (2d)
pePk
Z%sﬁl Ve € E (2e)
seS
Xpp €{0.1} VkeK,pePk (2f)

74

Yes € {0,1} Ve € E,s €S (2g)

The inequalities (2b) are the traditional capacity constraints
on each link e where the amount of traffic for demands in Kyc
and demands scaled with the convergence ratio in K¢ must be
smaller or equal than the size of the activated slot &. Inequal-
ities (2c) ensure that each demand in K¢ can be routed on its
own. Inequalities (2d) ensure that at least one path is assigned
to one demand. Inequalities (2e) guarantee that only one slot
configuration is activate on each link. Remark that, as we aim
at minimizing costs which are positive, it is useless to take two
paths for each demand. In order to help the pricing procedure,
we do not consider strict equality in (2e). The inequalities (2f)
and (2g) are the integrality constraints.

Pricing procedure. Since the model FlexE-CG has an exponen-
tial number of variables, it is necessary to propose a pricing pro-
cedure to generate only the necessary columns (i.e., to activate
variables) inside the CG algorithm. Indeed, the pricing procedure
is a sub module of the CG algorithm allowing to generate only
the necessary columns that improve the linear relaxation of the
FlexE-CG model and allow to reach the optimal relaxed solution.
The pricing procedure consists in solving a sub problem to define
if there exists a column such that the associated constraint in the
dual formulation is violated([3]).

At each step of the column generation algorithm, we obtain
the optimal dual values §* € Rf, n* e RE'KC, Y e Rf, 0" € Rf
associated with the inequalities (2b), (2c), (2d), (2e), respectively.
Thus, for a given demand k € K, the separation of a violated dual
constraint is equivalent to finding a path p such that

—ZDi&e—ZDkn§+yk>o 3)
eep eep
if k € K¢, and the following if k € Kjc:
—ZDkée—Z Z Dkﬁ§/+yk>0 (4)

ecp
For each demand k € K¢ (resp. k € Kyc), the constrained
shortest path where the cost on each link is e € E by Dz5e +Dy né‘

e€p k’eKc

(resp. Dide + 2 prek, Dknf) solves the pricing procedure. If
solved optimally, it guarantees that a path is found if it exists.
If the cost of the shortest path is strictly smaller than yi, then
we add the column (variable) associated with this path and this
demand to the problem. If for all demands, no columns are added,
the column generation procedure terminates.

Note that additive end-to-end QoS constraints, such as delay,
jitter or packet loss (taking the logarithm), can be integrated in the
path computation procedure. In our heuristic algorithm, we use
well-known algorithms such as LARAC [9] or GEN-LARAC [11]
to solve the constrained shortest path problem.

3.2 Column generation algorithm

As mentioned in Section 3.1, the FlexE-CG formulation contains
an exponential number of variables and is adapted to a column
generation algorithm to solve its relaxation. Figure 5 depicts the
whole procedure where the fractional solution is then fixed to
integer using a rounding algorithm. Column generation relies
on a pricing problem to generate variables on-the-fly instead of
enumerating them in the master problem. We combine it with a
constraint generation procedure for constraints (2c) to avoid any
stability issue and improve convergence speed.

The algorithm works as follows: first, we warm-start the FlexE-
CG model with a solution found using a greedy algorithm (see

Algorithm 2 for more details). Then, we proceed with the follow-
ing steps:
1) The column generation alternates between solving the
master problem and the pricing problems:

a) We solve a reduced FlexE-CG, i.e., FlexE-CG with a sub-
set of paths, using a linear solver.

b) Using the dual values of FlexE-CG, for each demand, we
look for constrained paths that violate (3) or (4), using
the LARAC algorithm. If we find any, we add them to
FlexE-CG and go back to step 1a).

2) We then search for any violated multiplexing constraint (2c).

If none is violated, we have an optimal solution 2, for
the relaxation, otherwise we go back to step 1.

Algorithm 1 Randomized rounding

Input: A network G = (V, E), link capacity b, Ve € E, set of
demands K, set of paths P = (i cx Px, vector x € RIP! of value
for each path
Output: Set of paths P

1: p;'; — 0,Vk e K

2: Ko —0 Ve€E

3: for demand k € K do

4 while P, # 0 do

5: p <« path drawn at random from P, with

. X, =

Pr(p is selected) = —Zpepi % Vp € Py
6: if Vlink e € p : u(e, K U {k}) < b, then
7: PP
8: for Vlink e € p do
9: Ke «— Ko U {k}
10: break
11: else
12: Xp < 0
13: Pk — Pk 5

14: Kpeg «— {k €K :p,*C =0} » Get set of demands not routed
15: return UkeK{Pz} U Greedy(G, Kre, Ke, b)

Randomized Rounding. Since the column generation proce-
dure only provides a relaxed solution for FlexE-CG, we need to
derive an integral solution from it. We propose a randomized
rounding algorithm, shown in Algorithm 1. For each demand,
we randomly (with uniform distribution) choose a path amongst
all the paths generated during the column generation procedure.
The probability of choosing a path p is given by

P(k is routed on p) = x;k

where x; « is the value of x,; in the optimal solution of the

relaxation of FlexE-CG. We check that the selected path can be
routed on the current network configuration. If this is the case,
we update the link-slot allocation and move to the next demand.
Otherwise, we remove the path from the set of possible paths
and pick a new one at random. If there is no more path in the
pool, we add the demand to the list of rejected demands. Once all
demands are considered and if the list of rejected demands is not
empty, we try to find a solution for the rejected demands with
the greedy algorithm.

Parallelization. As depicted below in Figure 5, the master prob-
lem and the pricing problems are solved iteratively but columns
in the pricing can be generated in parallel. In the rounding step,

75

we run in parallel several randomized rounding routines to en-
sure that the final solution will be integer and feasible. Finally,
the best solution among those provided in the rounding step is

selected.

Column Generation routine
Solve restricted LP | Update dualprices foredges | pa g
with FlexE demand
constraints Generate a new embedding
Master column for demand k Pricing

l {Parallel randomized rounding 1

| Select best solution |

Figure 5: Algorithmic framework to solve FlexE-CG.

4 HEURISTICS

In this section, we present two heuristics we designed to solve
the RSA problem. The first one is a simple greedy algorithm
that we use as benchmark. The second one is an adaptation of
a procedure from the literature [7] to solve a network planning
problem with splittable flows and no considerations on statistical
multiplexing.

4.1 Greedy algorithm

Algorithm 2 Greedy algorithm

Input: A network G = (V, E), link capacity b, Ve € E, set of
demands K to route, set of demands K, on each link e
Output: Set of paths P

: P—0

2: Ke «— 0,VYe € E

3: for demand k € K do

4 EF — {e:u(e, Ko U{k}) < be}

) = {1 if A(u(e, Ke)) > u(e, Ke U {k})
1+ Ce otherwise

Ve € EX

6 Build weighted graph GX = (V, EF, wk)
7: Find shortest path p from s¥ to t* in G¥
8: P« PU {p}

9 for link e € p do

10: Ke «— K¢ U {k}
return P

Algorithm 2 is a greedy algorithm that selects a path, for each
demand, by solving a constrained shortest path problem and
update the slot allocation accordingly.

For each k € K, we build a weighted graph G¥ = (V, EX, wk)
and search for a constrained shortest path from sk to tk on Gk
using the LARAC algorithm [9].

The weights w¥ are chosen in order to favor paths that do not
need a bigger slot allocation to route k and is given by

wk(e) _ 1if A(u(e, Ke)) > u(e, Ke U {k})
1 + C, otherwise.

where K, is the set of demands on e and A(x) returns the mini-
mum bandwidth allocation needed to route x units of bandwidth.

We also filter out links that do not have enough capacity to route
demand k. Once a path p is found, we update the sets K, for each
link on p and move on the next demand.

4.2 Gauss-Seidel algorithm

Algorithm 3 Gauss-Seidel algorithm

Input: A network G = (V, E), link capacity b.Ve € E, set of
demands K, set of paths P = {p;. : Vk € K}
Output: Set of paths P

1: ECAND «— E

2: while Ecanp # 0 do

3 Ke —{k:ecp} VeeE
€ < argmaxe e, Ce X (S(u(e, Ke)) — ule, Ke))
Ecanp < Ecanp \ €
(PoLp, Kovp, borp) < (P, Kz, bz)
bs — [S(u(e, K¢)))
for demand k € Ko p do

for link e € p. do

10: Ke — K¢ \ k
11 pr—0
12: Pnew < P U Greedy(G, KoLp, Ke, b)
13: if Cost(Pnew) < Cost(PoLp) then

R A A

14: P «— Pnew

15: else

16: P «— Poip

17: Restore (PoLp, KoLp, PoLp) as current solution

18: return P

Finally, we present a Gauss-Seidel procedure in Algorithm 3
that aims at improving any existing solution, similar to the link-
rerouting algorithm in [7]. It is a local search heuristic which tries
to reduce the number of active slots of each link by rerouting
demands on new paths.

More precisely, for a valid solution, the algorithm chooses the
link e with the most free bandwidth on it, weighted by its cost,
ie,

arg max Ce X (A(u(e,Ke)) — u(e, Ke))
e€Ecap

where Ecanp is the set of links not yet considered for removal.
We remove all demands using e from the network and reduce
the number of slot on e by one, e.g., if e was a FlexE link with a
reservation of 15G, we reduce it to 10G. We then greedily route
the removed demands on the new network configuration. If we
obtain a lower cost with the new routing, we use it as our new
best solution. Otherwise, we restore the link to its previous slot
configuration, restore the removed demands on their previous
paths. We continue until all links have been considered.

5 NUMERICAL RESULTS

In this section, we present numerical results to compare the
algorithms on an IP-RAN scenario. The compact formulation
(not presented in this paper) and the FlexE-CG model have been
solved using CPLEX 12.7 and all algorithms have been executed
on a server with 4 Intel(R) Xeon(R) CPU E5-4627 v2 @ 3.30GHz
and 504GB of RAM.

5.1 IP-RAN scenario

We generate instances of an IP-RAN network with multiple do-
mains connected to a mesh network. Each domain is composed

76

Topology type Instance name # Nodes # Edges # Demands
Small VLAN|FlexEsy 50 60 60

Middle VLAN|FlexEjzs0 1250 1600 300

Large VLAN|FlexEsgpy 5000 6000 600

Table 1: Number of nodes, edges and demands for each in-
stance type

of a set of nodes connected in single or dual-homing (access
network) to a ring with probabilistic shortcuts (aggregation net-
work). Services in slices can exists between nodes in the access
networks or between a node in an access network and a node in
the core network. The bandwidth requirement of services is ran-
domly chosen between 50 Mb and 1 Gb. We consider two types of
scenarios: hard slicing, denoted FlexE, and soft slicing, denoted
VLAN (Virtual LAN), a candidate technology for this scenario.
For VLAN, we assume that the granularity of each slot is 1 Mb,
which is negligible compared to the size of the smallest demand.
All algorithms are executed with a time limit of one hour. Results
are averaged over 5 trials. A summary of the parameters used in
the experiments is shown in Table 1.

Lower bounds: Figure 6 shows the lower bounds obtained with
the compact formulation and the optimal solution z', of the re-
laxation of FlexE-CG. The compact formulation can provide the
optimal solution for small instances; we can thus evaluate the
quality of the bounds computed by FlexE-CG. On small VLAN sce-
narios (i.e., with 50 demands), the bounds provided by FlexE-CG
are close to the optimal (less than 3%); however they are larger for
the hard slicing scenarios (around 22%) as the bigger granularity
of FlexE worsens the relaxation of the objective function.

On middle size instances (i.e., with 1250 demands), the compact
formulation cannot be solved to optimality within the one-hour
limit. Moreover, the bounds computed is much smaller than the
ones computed by FlexE-CG. Thus, we use the bounds of FlexE-
CG to evaluate the solutions of our algorithms on middle and
large instances.

Solution quality: In Figure 7, we compare the solutions of
the greedy and FlexE-CG algorithms, improved by the Gauss-
Seidel algorithm, in terms of gap to the best lower bound, i.e., the
compact solution for small instances and the FlexE-CG bounds for
middle and large instances. The gap is computed as (zso_ —LB)/LB,
where zgg, is the value of the solution and LB is the best known
lower bound of the instance. Solutions of the compact formulation
provided by CPLEX are not shown as CPLEX cannot return a
valid solution in one hour.

First, we can see that the greedy provides good solutions,
whose gap is 10.5% in the worst case. FlexE-CG can further im-
prove the solution provided by the greedy algorithm and, on
average, the gap is reduced by 3.8%. Moreover, FlexE-CG solu-
tions are close to the optimal on soft slicing scenarios, with a gap
smaller than 1.4%. The gap of hard slicing scenarios is larger, up
to 6.2%, on middle size instances. However, the gap to optimality
might be smaller as the bounds for hard slicing are not as tight
as the ones for soft slicing.

Computational time: Finally, in Figure 8, we compare the com-
putational time of the algorithms. The compact formulation is
quite slow to be solved compared to the other algorithms. While
it takes up to 36s, on average to solve small instances, FlexE-CG
finds a solution in less than 2 s and the greedy algorithms takes

Il Greedy

I FlexE-CG

Figure 6: Average lower bounds ob-
tained with the compact formula-
tion (optimal for small networks)
and FlexE-CG (1h timeout).

less than 20 ms. As previously mentioned, the compact formu-
lation exceeds the time budget on middle instances. The greedy
remains efficient as it takes less than one second even for large
instances. FlexE-CG, instead, is considerably slower than greedy
for middle and large scale networks, but it provides for better
results.

Given the different performance in terms of optimality gap
and execution time of the two approaches, they could be used
in parallel to efficiently solve the RSA problem. The greedy al-
gorithm can be used to quickly accept demands in an online
fashion, while FlexE-CG can be used to periodically reconfigure
the network and minimize the total resource reservation cost.

6 CONCLUSION

In this paper, we presented the Routing and Slot Allocation prob-
lem for 5G hard slicing. We modeled the problem using math-
ematical programming and proposed an extended formulation,
solved using column generation. We analyzed its strength against
a basic integer linear formulation. Based on this extended formu-
lation, we derived a matheuristic, referred to as FlexE-CG, that we
benchmarked against a greedy algorithm. We also strengthened
our matheuristic through an adaptation of the Gauss-Seidel proce-
dure allowing to improve the performances of the two heuristics.
We showed that the extended formulation can provide good dual
bounds in a reasonable amount of time compared the the compact
formulation. The derived heuristic manages to obtain an optimal-
ity gap smaller than 7%, while improving the cost value of the
solutions provided by the greedy up to 4%. In future works, we
will propose valid inequalities to reduce the computational time
of our matheuristic and increase the dual bound. Furthermore,
we will investigate on others matheuristics and exact method
based on our extended formulation.

REFERENCES

[1] 5G Service-Guaranteed Network Slicing White Paper. Huawei whitepaper,
February 2017.

Mohamad Khattar Awad, Yousef Rafique, and Rym A. M‘'Hallah. Energy-aware
routing for software-defined networks with discrete link rates: A benders
decomposition-based heuristic approach. Sustainable Computing: Informatics
and Systems, 13:31 — 41, 2017.

V. Chvatal. Linear Programming. Freeman, USA, 1983.

A. Destounis, G. Paschos, S. Paris, J. Leguay, L. Gkatzikis, S. Vassilaras,
M. Leconte, and P. Medagliani. Slice-based column generation for network
slicing. In IEEE INFOCOM 2018 - Poster, April 2018.

X. Foukas, G. Patounas, A. Elmokashfi, and M. K. Marina. Network slicing in
5g: Survey and challenges. IEEE Communications Magazine, May 2017.

[2

Il Compact
1010 12% —r T
10% ---oone i
g
E . 8%
Q 9 0,
o 10 g 6%
z 4%
3
2%
108 0%
Q Q N 9 INJANY Q
g ° S S @ D H
\y,é & e”% (00 \; &
< < F Q\@“r &<

4\?% &

Figure 7: Average gap of each solu-
tions for the greedy and FlexE-CG.

77

Time

Q Q Q
N
& g

&yé ¥

Figure 8: Average computation times
of each algorithms.

[6] V. Gabrel, A. Knippel, and M. Minoux. Exact solution of multicommodity
network optimization problems with general step cost functions. Operations
Research Letters, 25(1):15 — 23, 1999.

Virginie Gabrel, Arnaud Knippel, and Michel Minoux. A comparison of
heuristics for the discrete cost multicommodity network optimization problem.
Journal of Heuristics, 9(5):429-445, Nov 2003.

Liang Geng, Jie Dong, Stewart Bryant, Kiran Makhijani, Alex Galis, Xavier
de Foy, and Slawomir Kuklinski. Network Slicing Architecture. Internet-Draft
draft-geng-netslices-architecture-02, Internet Engineering Task Force, July
2017. Work in Progress.

A. Juttner, B. Szviatovski, I. Mecs, and Z. Rajko. Lagrange relaxation based
method for the qos routing problem. In Proceedings IEEE INFOCOM 2001.
Conference on Computer Communications. Twentieth Annual Joint Conference of
the IEEE Computer and Communications Society (Cat. No.01CH37213), volume 2,
pages 859-868, April 2001.

OIF. Flex Ethernet 2.0 Implementation Agreement, June 2018.

Ying Xiao, Krishnaiyan Thulasiraman, and Guoliang Xue. Gen-larac: A gen-
eralized approach to the constrained shortest path problem under multiple
additive constraints. In Algorithms and Computation, 2005.

[7

—

(8]

(9]

[10]

—_
_

	Routing and Slot Allocation in 5G Hard SlicingNicolas Huin, Jérémie Leguay, Sébastien Martin, Paolo Medagliani, Shengmin Cai

