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ABSTRACT

This paper introduces a branch-and-bound (B&B) algorithm for
the maximum weight perfect matching problem with conflicting
edge pairs which is an N‘P-hard problem. The proposed B&B
algorithm is based on the relaxation obtained by removing the
cardinality restriction on the feasible matchings and uses a non-
dichotomized branching rule considering exposed vertices in a
relaxed optimum solution. We have performed extensive compu-
tational experiments on randomly generated test instances and
compared the proposed B&B algorithm with two Binary Integer
Linear Programming models solved with an off-the-shelf com-
mercial solver. According to our experiments, we have observed
that the proposed B&B algorithm yields promising performance.
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1 INTRODUCTION

The well-known Maximum Weight Perfect Matching Problem
(MWPMP) consists of finding a perfect matching with maxi-
mum total weight [9]. The MWPMP is known to be polynomially
solvable and it has several applications in scheduling, facility
location and workforce planning [1]. In this work, we address
an extension of the MWPMP with additional conflicting edge
pair constraints. The so-called conflict constraints are also re-
ferred to as the exclusionary side constraints or the disjunctive
constraints. Hence, the extended problem is named as the Maxi-
mum Weight Perfect Matching Problem with Conflicting Edge Pairs
(MWPMC) which deals with determining a maximum weight
perfect matching such that no two conflicting edges are in the
solution at the same time, namely a maximum weight conflict
free perfect matching. The MWPMC is known to be NP-hard
[7].

As a practical application of the MWPMC, we can mention
the case arising in logistics, where toxic chemical substances
and foods are prohibited to be stored in the neighbor locations.
In a potential extension of the ordinary Symmetric Traveling
Salesman Problem (STSP) there can be an incompatibility relation
between the edges incident with vertices: some of them may not
be selected if a particular edge is in the tour and a tour can consist
of only compatible edges. This scenario is possible due to security
reasons during the routing of an important person. Recall that
a tour for a salesperson is a connected spanning subgraph in
which all points have degree 2. If we drop the connectedness

“Corresponding author

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the
International Network Optimization Conference (INOC), June 12-14, 2019:
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

ISBN 978-3-89318-079-0 on OpenProceedings, ISSN 2510-7437

M. Hakan Akyiiz
Endiistri Mithendisligi Bolumi
Galatasaray Universitesi
Istanbul, TURKIYE
mhakyuz@gsu.edu.tr

31

I. Kuban Altinel
Endiistri Mithendisligi Bolumi
Bogazici Universitesi
Istanbul, TURKIYE
altinel@boun.edu.tr

requirement, i.e. the subtour elimination constraints, the STSP
turns into the determination of optimum 2-factors. The 2-factor
problem is a natural extension of the perfect matching problem
and in fact the determination of an optimal 2-factor reduces to
the determination of an optimal perfect matching. In other words,
the MWPMC can be viewed as a relaxation of the mentioned
STSP extension.

In the literature, several combinatorial optimization problems
with conflict constraints have been addressed. Among them we
can mention, the minimum spanning tree problem with conflict
constraints [6, 7, 16, 22, 24], the shortest path problem with con-
flict constraints [7], the transportation problem with exclusionary
side constraints [10, 13, 23], the knapsack problem with conflict
constraints [3, 4, 19], the bin packing problem with conflict con-
straints [5, 12, 21], the maximum flow problem under conflict
and forcing constraints [20] and the minimum cost non-crossing
flow problem on layered networks [2].

For all we know, the only work addressing the MWPMC is
performed by Darmann et al. [7] where they provide complexity
results of this problem and discuss its approximation hardness.
As a special case, the MWPMC on bipartite graphs has been con-
sidered by Oncan et al. [16] and Oncan and Altinel [15]. In [16],
the authors have introduced some complexity results as well as
polynomially solvable cases. They have also proposed heuristics
and lower bounding procedures. Recently, Oncan and Altinel
[15] have developed two branch-and-bound (B&B) algorithms
with dichotomized branching rules for the MWPMC in bipartite
graphs.

The motivation of this work is to devise an exact solution
approach, namely a specially tailored B&B algorithm, for the
MWPMC in general graphs. Two Binary Integer Linear Program-
ming (BILP) formulations are also proposed for the MWPMC.
Computational experiments are performed on randomly gener-
ated test instances in order to compare the performance of the
proposed B&B algorithm with the ones of the BILP formulations
solved with CPLEX Mixed-Integer Linear Programming (MILP)
solver. We have observed that the proposed B&B algorithm yields
an outstanding performance for most of the cases.

In the next section, we introduce some definitions which are
used throughout the paper and present two BILP formulations for
the MWPMC. Then, in Section 3, we give the outline of the new
B&B algorithm. Section 4 is where we report the experimental
results. Finally, concluding remarks are discussed in Section 5.

2 TWO BINARY INTEGER LINEAR
PROGRAMMING FORMULATIONS

Let G = (V(G), E(G)) be a graph, where V(G) and E(G) stand

for the set of vertices and edges, respectively. We associate non-

negative weights w, for all edges e € E(G) and let dG(v) denote

the subset of edges incident with vertex v € V(G). Then, the

degree of vertex v € V(G) is defined as dg(v) = |8g(v)| where
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|| stands for the cardinality of a set. Besides, the complement of
G is defined as the graph G = (V(G), E(G)) where V(G) = V(G)
and E(G) = {{u,v} ¢ E(G) : u,v € V(G), u # v}.

A stable set (independent vertex set) of G is any subset S C
V(G) such that no two vertices in S are adjacent. The Maximum
Cardinality Stable Set Problem (MCSP) consists of finding a stable
set with a maximum number of vertices. This number is so-called
as the stability number of G which is designated as a(G). When
we associate weights to all vertices in V(G), for every subset
S C V(G) the weight w(S) is computed as the sum of the weights
of vertices in S. The Maximum Weight Stable Set Problem (MWSP)
tries to find a stable set S of G with maximum weight w(S) which
is represented as a,,(G). Both MCSP and MWSP are well-known
NP-complete combinatorial optimization problems [11].

A matching (independent edge set) M = (V(M), E(M)) of G
is defined as a subset of E(G) where no two edges share the
same vertex. A perfect matching stands for a matching such that
each vertex of V(G) is incident with exactly one of the edges
in the matching [8, 14]. The weight of a matching, i.e. w(E(M)),
is calculated as the sum of the edge weights in the matching.
Formally speaking, MWPMP tries to find a perfect matching M
of G with maximum w(E(M)).

A clique K = (V(K), E(K)) is a complete subgraph of G. A
clique is maximal if no other vertex v € V(G)\ V(K) is adjacent
to all vertices in V(K). Clearly, each clique in G corresponds to a
stable set in G. Therefore, the MCSP and the MWSP defined on
G are equivalent to the Maximum Clique Problem (MCP) and the
Maximum Weight Clique Problem (MWCP) on G, respectively.

Now we are at the stage to present two BILP formulations for
the MWPMC. Given a set of conflicting edges with each edge e €
E(G), the MWPMC tries to find a perfect matching M such that
no two conflicting edges e and f are allowed to be in E(M). The
conflicting edge pairs can be represented with a conflict graph
C = (V(C), E(C)) where V(C) = E(G) and each conflicting edge
pair corresponds to an edge in E(C). The set of conflicting edges
with edge e € E(G) is denoted as §c(e) and the degree of vertex e
in the conflict graph C is |5¢c(e)| = dc(e). In other words, the set
of edges incident with vertex e is represented with §c(e) € E(C)
in the conflict graph. Note that, when f € §c(e) then e € §c(f)
and for two edges e, f € E(G) such that {e, f} € E(C).

Let the binary decision variable x, be equal to 1 if and only if
edge e € E(G) is in the perfect matching. Recall that w, represents
non-negative weight for edge e € E(G). Then we can formulate
the MWPMC as follows:

max z = WeXe (1)
{e}€E(G)
subject to
Z xe =1 forv e V(G) @)
e€ds(v)
xe +xp <1 fore € E(G); f € 6c(e) 3)
xe € {0,1} fore € E(G) (4)

The objective function (1) is to minimize the weight of the
perfect matching, i.e. w(E(M)). Constraints (2) enforce that every

vertex is connected to exactly one of the edges in the solution.

Constraints (3) obviate the conflicting edge pairs to be in the
perfect matching. Constraints (4) are for the binary restrictions
on the decision variables.

Notice that when we aggregate constraints (3) for all f € dc(e)
we obtain the following equivalent inequalities:
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Z xp +dc(e)xe < dc(e) for e € E(G)
fede(e)

®)

We will call the formulation which consists of (1)-(4), as STRONG
and the formulation including (1), (2), (4) and (5) as WEAK. Note
that, when we define Ps and Py as the polytopes corresponding
to feasible solution sets of the Linear Programming (LP) relax-
ation of the STRONG and WEAK formulations respectively, then
Ps C Py holds.

3 A BRANCH-AND-BOUND ALGORITHM
FOR THE MWPMC

The proposed B&B algorithm employs maximum weight match-
ing with conflicting edge pair (MWMC) relaxation of the MW-
PMC, which is obtained when we replace the equality signs =’
in constraints (2) with inequalities *<’. Hence, at each node of
the B&B tree, including the root node, we solve the MWMC
relaxation of the MWPMC.

During the exploration of the B&B tree, the solution of the
MWMC relaxation yields a conflict free matching which is not
necessarily perfect, and hence there may exist a set of exposed
vertices in the relaxed optimal solution. Hence, given an exposed
vertex v € V(G), subproblems of the B&B tree are generated by
enforcing one by one the edges incident to v to be in the solution.
Note that the B&B tree is not necessarily a binary tree.

All B&B nodes but the root node, are characterized by a set of
edges. The ones which must be included in the solution and the
edges that must be excluded from the solution. The edges in the
former set are called as included edges and the edges in the latter
one are named as excluded edges. The remaining edges of E(G) are
the free edges. Broadly speaking, during the run of the algorithm,
at each node of the B&B tree, we consider a set of free edges
and enforce them to be included in the solution. Meanwhile, we
prune a B&B node either by comparing its upper bound value
with the best known lower bound value or by making sure that
the current node can not provide a feasible solution, i.e. a conflict
free perfect matching. A formal outline of the proposed B&B
algorithm is depicted with Algorithm 1.

Now we will discuss the details of the B&B algorithm. To this
end, we will introduce some additional notation. Let t be the
B&B node index and let I*) and X(*) stand for the subsets of
edges which must be included to and excluded from a conflict
free perfect matching at node ¢ of the B&B tree, respectively.
Then the subproblem at node ¢ is denoted by M WPMC") which
is the MWPMC solved on the subgraph G = (V(G(t)), E(G(t)))
of the original graph G, with the vertex set V(G(*)) obtained
by deleting the vertices incident with the edges in I () and the
edge set E(G)= EG) \ {I¥ u X}, For an upper bound on
the MWPMC) we solve its maximum weight matching with
conflicting edge pair relaxation, namely M wMC),

Let us define extended conflict graph c® = (v(c®), E(cMy),
at node t of the B&B tree, corresponding to G), where V(C(*))
and E(C()) are the set of vertices and edges of c, respectively.
Vertices of the extended conflict graph c® correspond to the
edges of G\, i.e. E(G(")). The weights associated with the edges
in E(G1) are the weights of the vertices in €. On the other
hand, the edges of the conflict graph represent the set of conflict-
ing edge pairs and the set of incident edge pairs in G(*). Further-

more, we define the complement of C) as C(0),



3.1 Initialization

At the initialization of the proposed B&B algorithm, we set t = 0
and we start with the original graph G = Gandits correspond-
ing conflict graph C(*). The best known lower bound z is set to
—oo. The set of active problem list is initialized with M wpPMC©
and initially, both of the edge subsets I ©) and X© are empty.

3.2 Lower Bound
First of all, we check whether |E(G(t))‘ < m - )I(t)‘ holds in

order to guarantee that the graph G has the potential to yield
a perfect matching. Otherwise we prune node ¢.

Next, we perform another check at the lower bounding step
right after finding the maximum cardinality conflict free match-
ing on G'*) which is denoted with S(*). Let a(C(*)) be the size of
a maximum cardinality stable set S on cW). In case a(C(t)) =

M - )I (t)‘ holds then we again prune node t since we have

a feasible solution for the MW PMC(* ), i.e. a conflict free perfect
matching, which consists of I (1)yS(™)_Here, this feasible solution
gives us a chance to update the best known lower bound z. After
a lower bound is calculated we proceed to perform the upper
bound computation. The determination of a(C(*)) requires the
solution of the NP-hard MCSP at every node of the B&B tree.
However, the use of exact value helps fathoming a larger number
of nodes, which can balance the increase in the computational
cost.

3.3 Upper Bound

At each node t, we compute an upper bound for the MWPMC®)
by solving the subproblem MW M C®). In case the MWMC) has
an optimum solution with weight z() then we have a maximum
weight conflict free matching M with value z(*). Hence, we de-
termine an upper bound value at node t as 7= 4 eIt Ce-
In case the MWMC®) has no solution then we set z(*) = —co
in order to prune current node t. MwMcW s actually equiva-
lent to the solution of the NP-hard MWSP on C(*). Hence, the
determination of an upper bound at every node of the B&B tree
has similar negative effect on the overall computational cost of
the B&B algorithm. Again similarly, this can be balanced by the
increasing ability to fathom more nodes because of the tightness
of the upper bound.

3.4 Pruning

At this stage we either prune the current active node ¢ or proceed
to the division operation. Actually, we consider three cases. First,
we check whether the current upper bound value is less than the
best known lower bound value, i.e. z® < zholds. In such case the
current active node is not taken into further consideration and
fathomed. In the second case, the solution obtained in the upper
bounding procedure, i.e. matching M® which is obtained by
solving MW M () on G, yields a conflict free perfect matching
together with the edge subset I(!). Then, we have a chance to
update the best known lower bound value. For the remaining case,
we have at least one exposed vertex which will be considered in
the division operation.

3.5 Branching Rule for Division

We perform branching operation considering the selected ex-
posed vertex v € V(G). Note that this operation does not
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necessarily outputs a dichotomized B&B tree. Recall that, at each
node t of the B&B tree, I® and X stand for the set of edges
which must be included to and excluded from a conflict free
perfect matching, respectively. Hence, given M ) which is the
maximum weight conflict free matching obtained by solving
MWMC® on G and v € V(G(t>) be an M(") exposed vertex,
we create d(*) =d () (v) new subproblems by enforcing one by
one each edge e; incident to v, i.e. e; € §51)(v), to be in the so-
lution. Therefore, we generate subproblems with the following
characterizations:

140 = [y {e;}
XD = Xy §c(e;)
EG*)) = E(G) \ {I¢D u x(tD}

fori=1,...,d%" (6)

3.6 Stable Sets on Extended Conflict Graph

During the run of the B&B algorithm, we try to find a maxi-
mum cardinality conflict free matching and a maximum weight
conflict free matching on G in order to compute lower and up-
per bound values for the M wPMC®), respectively. To compute
a lower bound for the MWPMC('), we solve the MCSP on the
extended conflict graph C() and find a stable set 5() with the
stability number a(C®*)). For that purpose, we solve the MCP

on the complement of c, namely C(*) by running the exact
algorithm by Ostergard [18]. On the other hand, to find an upper
bound for the MWPMCY) we solve the subproblem MwMc®)

by transforming it into an equivalent MWCP on C(*), For that
purpose, we employ the MWCP algorithm by Ostergérd [17].

4 COMPUTATIONAL EXPERIMENTS

We have performed the computational experiments in order to
compare the performance of the proposed B&B algorithm with
two BILP formulations solved by the state-of-the-art MILP solver
CPLEX 12.7.0. All computations are performed on an HPE SRV
DL380 GEN9 Server with a 2.20 GHz E5-2650v4 Processor and 192
GB RAM operating within Windows Server 2016 environment.
To the best of our knowledge, there is no standard test library
for MWMCP hence, we have generated random test instances.

4.1 Test Instances

In Table 1 we report the properties of the randomly generated
instances. The first column includes the name of the instance
sets where each of which contains 5 randomly generated test
problems. The number following the letter “N" stands for the
number of vertices of the corresponding instance set. Besides,
a suffix is added to represent the density of the graph G. For
example, a suffix of “H" is used to represent high edge density of
the graph generated for the test instance.

In Table 1 configurations are presented in the columns two
to six. The second column gives the number of vertices in G, i.e.
|[V(G)|, for each instance set. In our test bed, |V(G)| changes from
36 to 58 vertices. The third column incorporates the number of
edges in G, i.e. |[E(G)| which varies from 126 to 770 edges. The
fourth column includes the number of conflicting edge pairs in G
or equivalently the number of edges in the conflict graph C, i.e.
|E(C)|. The fifth column stands for the edge density of G, i.e. d(G),
which is calculated as the number of edges in G divided by the
maximum possible number of edges. We have employed three
levels for edge density of graphs 0.2, 0.5 and 0.8 respectively for



Algorithm 1: Branch-and-bound algorithm for solving MW-
PMC using MWMC relaxations

Input: A graph G = (V(G), E(G)) edge weights we > 0,
conflict graph C = (V(C), E(C));
Output: A maximum weight conflict free perfect matching
M* = (V(M"), E(M"))
begin
(Initialization): Set t = 0, MWPMC(®) — MWPMC, G0= G,
CO=¢, £ = (MWPMCO}, [0= 0, X©= 0.z = —c0
(Termination test): If £ = 0, then output E(M™) and stop.
(Lower bounding): Select and delete a problem from £, say
MWPMC®),
if [EG)| < 2L - 10| then
there is no conflict free perfect matching of G with edges
in I U E(GM). Set 2) = —co, to prune MWPMC(?) and
go to Pruning
else
Find the maximum cardinality conflict free matching in
G, which is () and let its size be a(C(t))
if a(C(t) < O _ )z(”‘ then
there is no conflict free perfect matching of G with
edges in 1O U EGW).
Set z) = —o0 to prune MWPMC® and go to Pruning
else
if (1) = WO _ (I<f>| then

10U s are the edges of a conflict free perfect
matching;
if wI® us®)y > z then
Update the lower bound and incumbent by setting
z = w(I® us®), EM*) — 1) U S and
go to Upper bounding
end if
end if
end if
end if
(Upper bounding): Solve MWMC®) relaxation on G(*)
if MWMC(®) has a solution then
Let M(*) be a maximum weight conflict free matching
on G and z(*) be its optimal value.
Set 2 = 2(1) 4 w(I®)
else
Setz!) = —co
end if
(Pruning):
i 170 < z, then go to Termination test.
ii. If there is no M(t)-exposed vertex in G) (i.e. M) is a
perfect matching in G and I) U E(M®)) are the edges
of a perfect matching of G) and z*) < z then set z® = z
and E(M*) — I') U E(M() go to Termination test
iii. If there is an M(!)-exposed vertex in G)(i.e. M(*) is not
a perfect matching in GW) then go to Division.
(Division): Select an M()-exposed vertex v of G(*) and create
i=1,2,...,d0 =d (1 (v) subproblems.
Let {MWPMC“ i} obtained from {MWPMC(t)} by enforcing
edge e; to be in the perfect matching for e; € 55 (v). Add
them to the active node list £ with z(/9=z") for
i=1,2,... ,d(t) and go to Termination test
end
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low (L), medium (M) and high (H) edge density. The last column
is for the density of the conflict graph, namely d(C).

Instance generation process of the MWPMC is not straightfor-
ward and hence must be carefully handled. For that purpose, an
initial perfect matching is arbitrarily generated and it is kept to
guarantee the feasibility of the MWPMC test instance. Therefore,
|V(G)/2| edges which correspond to the initial perfect matching
and some more edges are randomly generated, summing up to
|E(G)| edges. The generation of edges are performed such that
each vertex has a degree of at least two in order to avoid trivial
solutions. Besides, |E(C)| conflicting edge pairs are randomly
selected among possible edge pairs excluding the edge pairs of
the initial perfect matching. Finally, the edge weights w, are
randomly generated such that we € [10,900] is satisfied. The
process is repeated for each instance and we have generated a
total of 110 test instances in 22 sets reported in Table 1.

4.2 Computational Results

In Table 2 we present the results obtained with the proposed B&B
algorithm. Table 3 includes the results output by the solution of
STRONG and WEAK formulations with the CPLEX MILP solver.
All experiments are performed with a CPU time limit of 600 secs.

In Table 2 and Table 3, the rows correspond to the average
values for the instance sets. In the last rows, the overall averages
of the corresponding columns are given. The act column includes
the average number of active nodes remaining in the B&B node
list £ when the B&B algorithm stops. The LB and UB columns
incorporate the average lower and upper bound values output
by the B&B algorithm, respectively. In the CPU(s) column we
provide the average CPU time required in seconds. The rightmost
column, i.e. column exp, reports the average number of explored
nodes during the run of the B&B algorithm.

Table 3 introduces the results obtained with the solution of the
BILP formulations via CPLEX MILP solver with default options
with a CPU time limit of 600 secs. The last row denotes the overall
average values of the corresponding columns. The values under
Bound columns are the average solution values obtained with
CPLEX MILP solver. The columns CPU(s) are for the average
CPU times is seconds required by the CPLEX MILP solver.

Considering the results reported with Table 2 and Table 3, we
can observe that the B&B algorithm is more efficient than solving
the BILP formulations via CPLEX MILP solver. Observe that, the
overall average CPU time requirement of the B&B algorithm
is 34.76 secs. compared to the ones by STRONG and WEAK
formulations which are 97.12 secs. and 61.20 secs., respectively.
Furthermore, we should state that, all instances except the ones in
the set N56-M are solved to optimality by both the B&B algorithm
and CPLEX MILP solver within the CPU time limit of 600 secs.

Last but not least, we should report that, the B&B algorithm
could not yield the optimum in only 2 instances in the set N56-M.
On the other hand, the STRONG and WEAK formulations solved
with CPLEX MILP solver could not output the optimum in 3 and
2 cases in the set N56-M within the CPU time limit, respectively.

5 CONCLUDING REMARKS AND
DISCUSSION

We have proposed an exact solution procedure and two math-
ematical programming formulations for the Maximum Weight
Matching Problem with Conflicting Edge Pairs (MWPMC). Con-
sidering our preliminary computational experiments on ran-
domly generated test instances we can state that the proposed



Table 1: Instance properties

VGl [EG)  [EC)  d(G) d(©
N36-H 36 504 80000 0.8 0.74
N36-L 36 126 5000 0.2 0.73
N36-M 36 315 30000 0.5 0.71
N38-H 38 563 90000 0.8  0.67
N38-L 38 141 7500 0.2 0.85
N38-M 38 352 40000 0.5 0.75
N42-H 42 689 110000 0.8  0.56
N42-L 42 173 12000 0.2  0.89
N42-M 42 431 60000 0.5 0.74
N44-L 44 190 14000 0.2  0.86
N44-M 44 473 70000 0.5 0.71
N46-L 46 208 16000 0.2 0.82
N46-M 46 518 80000 0.5 0.68
N48-L 48 226 18000 0.2 0.78
N48-M 48 564 73800 0.5 0.65
N52-L 52 266 22000 0.2 0.70
N52-M 52 663 104000 0.5 0.55
N54-L 54 287 24000 0.2 0.65
N54-M 54 716 108000 0.5 0.49
N56-L 56 309 26000 0.2  0.61
N56-M 56 770 112000 0.5 0.45
N58-L 58 331 28000 0.2  0.58
Average 45.73 400.68 51377.27 0.40 0.69

B&B algorithm outperforms the MILP solver. It should be borne
in mind that in its current form of the B&B algorithm two NP-
hard problems have to be solved at every search node, which
can be bound to pay a very high computational price with the
increase of instance size and conflict density. However, it can
be possible to compute upper bounds to both a(CW) and the
optimum value of MwMC) using heuristics and further relax-
ations with considerably lower costs, which remains as a part of
our future investigations. Furthermore, efficient heuristics and
as well as meta-heuristics for the solution of MWPMC can be
another fertile research avenue.
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Table 2: Performance of the B&B Algorithm

act LB UB CPU (s) exp
N36-H 0 537.2 537.2 1.5 1043.4
N36-L 0 485.2 485.2 0.0 34.2
N36-M 0 560.2 560.2 0.3 436.6
N38-H 0 815.6 815.6 6.7 3608.8
N38-L 0 851.2 851.2 0.0 15.2
N38-M 0 455.8 455.8 0.2 335.8
N42-H 0 1032.4 1032.4 129.8 48724.8
N42-L 0 631.4 631.4 0.0 8.8
N42-M 0 491.6 491.6 0.5 442.4
N44-L 0 981.4 981.4 0.0 12
N44-M 0 932.6 932.6 0.7 557.2
N46-L 0 1025.6  1025.6 0.0 23.2
N46-M 0 840.4 840.4 1.7 1101.4
N48-L 0 760.2 760.2 0.0 31.8
N48-M 0 991.0 991.0 2.0 1102.8
N52-L 0 906.2 906.2 0.0 99.6
N52-M 0 1041.8 1041.8 38.7 15486.8
N54-L 0 874.6 874.6 0.1 137.8
N54-M 0 1051.4 1051.4 88.4 28790
N56-L 0 945.6 945.6 0.1 242.2
N56-M 16.4 1092.6 1096.8 491.5 130753
N58-L 0 1095.0 1095 0.2 293.4
Average 0.75 836.32 836.51 34.67 10603.67

Table 3: Performance of the BILP Formulations

STRONG WEAK
Bound Cpu(s) Bound Cpu(s)
N36-H 537.2 7.8 537.2 17.9
N36-L 485.2 0.3 485.2 0.2
N36-M 560.2 1.3 560.2 1.5
N38-H 815.6 77.5 815.6 174.5
N38-L 851.2 0.3 851.2 0.3
N38-M 455.8 2.5 455.8 1.9
N42-H 1032.4 363.0 1032.4 293.3
N42-L 631.4 0.5 631.4 0.3
N42-M 491.6 2.7 491.6 6.1
N44-L 981.4 0.7 981.4 0.5
N44-M 932.6 5.0 932.6 8.4
N46-L 1025.6 1.1 1025.6 2.2
N46-M 840.4 35.5 840.4 9.4
N48-L 760.2 1.4 760.2 0.5
N48-M 978.6 159.3 978.6 15.1
N52-L 906.2 1.6 906.2 1.1
N52-M 1041.8 316.0 1041.8 190.1
N54-L 874.6 1.7 874.6 1.1
N54-M 1051.4 572.8 1051.4 238.0
N56-L 945.6 1.7 945.6 1.4
N56-M 974.2 581.7 1092.6 381.2
N58-L 1095.0 2.1 1095.0 1.3
Average 830.37 97.12 835.75 61.20
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