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ABSTRACT

A relevant task in the exploration and understanding of large
datasets is the discovery of hidden relationships in the data. In
particular, functional dependencies have received considerable
attention in the past. However, there are other kinds of relation-
ships that are significant both for understanding the data and for
performing query optimization. Order dependencies belong to
this category. An order dependency states that if a table is ordered
on a list of attributes, then it is also ordered on another list of
attributes. The discovery of order dependencies has been only
recently studied. In this paper, we propose a novel approach for
discovering order dependencies in a given dataset. Our approach
leverages the observation that discovering order dependencies
can be guided by the discovery of a more specific form of de-
pendencies called order compatibility dependencies. We show that
our algorithm outperforms existing approaches on real datasets.
Furthermore, our algorithm can be parallelized leading to fur-
ther improvements when it is executed on multiple threads. We
present several experiments that illustrate the effectiveness and
efficiency of our proposal and discuss our findings.

1 INTRODUCTION

In the big data era, the volume and complexity of available
datasets has grown so much that data engineers are having a hard
time interpreting the information contained in them. In such a
reality, the ability to discover hidden dependencies in some auto-
matic way is fundamental. Dependencies across different parts
of the data play a significant role in query optimization, since
redundant information may be ignored making the query evalu-
ation faster. Furthermore, parts of the data may be replaced with
others that are easier to manipulate, without affecting the final re-
sult. Data profiling may help with data quality since it highlights
constraints that may exist in the data but are not fully satisfied
and have not been enforced when designing the database.

Dependency discovery is not a new challenge. Functional and
inclusion dependencies are the most common type of depen-
dencies and have been studied extensively [14]. A functional
dependency states that if two different data elements sharing a
common structure have the same part A, then some other part B
should also have the same value. An inclusion dependency states
that the values of the data elements in some part A must be a
subset of the values in a subpart B of some other portion of the
dataset.
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An example of functional dependency can be seen in Table 1,
that shows a relational table with data regarding yearly incomes,
savings and taxes. Assume that the tax system is a progressive one
that categorizes the different incomes into brackets, each of them
characterized by a tax percentage. Thus, there is a functional
dependency from the income amount to the tax brackets, i.e.,
income→ bracket. Since for every income range the percentage
is fixed, there are two other functional dependencies from the
income to the tax amount and vice-versa, i.e., income → tax
and tax → income. Using the transitive property of functional
dependencies a new one can be inferred, i.e., tax→ bracket.

A closer look at Table 1 can illustrate another, stronger, form of
dependency: as the income is increasing, bracket and tax amount
are increasing as well. In other words, if we were to order the
table based on the income column, each one of the bracket and
the tax amount columns will also end up being ordered. This form
of dependency is known as an order dependency and is typically
noted with the ↦ symbol, i.e., income ↦ tax, which is read as:
income orders tax.

The knowledge encoded by order dependencies can be ap-
plied to various tasks during the entire data life-cycle [3]: in
the design phase, order dependencies can be exploited to assist
schema design [21] or for selecting indexes [7]; if data are ex-
tracted from unstructured sources, order dependencies can aid
knowledge discovery, to find hidden properties of the data; in the
context of data profiling [13], data integration and cleansing [5],
order dependencies can be used to describe a dataset; for data
quality [8], order dependencies can be used as requirements or
constraints [1].

The most important application of order dependencies is their
use in the optimization of queries; in particular, they can be used
to rewrite the ORDER BY clauses in SQL queries in ways similar to
that of functional dependencies for the GROUP BY statements [17,
22]. Consider the following query:

SELECT income, bracket, tax
FROM TaxInfo
ORDER BY income, bracket, tax

TaxInfo

name income savings bracket tax

T. Green 35,000 3,000 1 5,250
J. Smith 40,000 4,000 1 6,000
J. Doe 40,000 3,800 1 6,000
S. Black 55,000 6,500 2 8,500
W. White 60,000 6,500 2 9,500
M. Darrel 80,000 10,000 3 14,000

Table 1: A relational table with financial information.
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Given that the order dependencies income↦ tax and income↦
bracket hold, the query optimizer can infer that sorting by
income makes the ordering on the other two columns redun-
dant, so the ORDER BY clause can be simplified to ORDER BY
income.

The concept of order dependency in the context of database
systems first appeared under the name of point-wise order [9–11].
A point-wise ordering specifies that a set of columns orders an-
other set of columns. In the example of Table 1, the point-wise
order dependency income,tax ↝ bracket holds because if
both of the tuples (income, tax) and (tax, income) are lexico-
graphically ordered, then the column bracket is ordered in the
same way. A new definition for order dependency was later in-
troduced [21] to represent an order-preserving mapping between
lists of attributes. In contrast to point-wise ordering, the new
definition was distinguishing tuples with attributes in different
order, thus having lists of attributes instead of sets.

There are cases where two lists of attributes order each other
when taken together. This property is known as order compati-
bility and is denoted with the symbol ∼. In Table 1, e.g., it holds
that

(income, savings)↦ (savings, income) and
(savings, income)↦ (income, savings)

and thus income ∼ savings. Another way to see an order com-
patibility dependency between two columns is that their values
are bothmonotonically non-decreasing when they are considered
pairwise.

Dependencies are typically derived from design specifications,
from the context of queries or from other known dependencies
using inference rules. Discovering dependencies by analyzing
the data is a process known as dependency discovery [14]. It
conceptually requires to check for all potential dependencies if
they hold in the database instance under examination, which
may be time consuming. Thus, there is interest in developing
strategies that limits the number of combinations to be checked.
The task becomes even more challenging in the case of order
dependencies, where the order of attributes matters, leading to a
search space much larger than that of functional dependencies.

In this work we study ways for efficiently discovering order
dependencies. We follow a bottom-up approach in which we
start by checking short lists of columns and progressively check
longer and longer lists. In this process, once an order dependency
between two lists of attributes is found not to hold, we prune the
search space by ignoring larger lists that include them. In this
way, many of the combinations that would have normally been
checked are avoided.

We advocate that this whole process can be significantly im-
proved by framing the discovery of order dependencies in the
context of order compatibility dependencies. This is based on a
recently introduced theorem [21] that established that an order
dependency holds if and only if a functional and an order com-
patibility dependency hold between the two attribute lists of the
order dependency. We illustrate in details how the order compat-
ibility dependencies can be exploited to find order dependencies
and propose a new algorithm for finding them.

Recently, two algorithms to automatically detect order depen-
dencies in relational data have been proposed: order, proposed
by Langer and Naumann [13], and fastod proposed by Szlichta et
al. [18]. order explores a lattice of order dependency candidates,
in a level-wise fashion reminiscent of the tane algorithm [12].

After building a dependency candidate, order checks its valid-
ity against the data and then it applies pruning rules to reduce
the search space over the lattice. order has been shown to be
incomplete [18], i.e. it does not find the complete set of order
dependencies. In particular, this approach is unable to discover
dependencies with repeated attributes, for example, the order
dependency (income, savings) ↦ savings of Table 1 cannot
be discovered. Dependencies of this form, however, may not be
inferred from other dependencies and are useful in the case of
queries that involve ordering with multi-column indexes. In the
example of Table 1, an index over (income, savings) can be used
to simplify the clause ORDER BY savings. fastod [18] is based
on a different axiomatization of order dependencies that allows
mapping dependencies between lists of attributes to dependen-
cies between sets of attributes written in a canonical form. In
this way, several order dependencies are mapped to the same
set-based canonical form. fastod explores the space of order
dependencies of this set-based canonical form, still retaining the
ability to find a complete set of dependencies. While we have
reproduced the results presented in the original work, we have
found that an implementation error of the original work produces
wrong results over simple datasets, this vitiates the validity of
their results and the comparison with our approach.

The approach we present in this paper is able to provide a
complete set of dependencies that is based on the idea that the
whole process of order dependency discovery could be performed
through the search of order compatibility dependencies. While our
approach has a higher worst-case complexity than fastod, it
outperforms all the state-of-the-art approaches [13, 18] when
tested over real datasets.

In particular, our contributions are the following:
● we introduce a definition of minimality for a set of order
compatibility dependencies that we show being complete
in the sense that it can recover all valid order compatibility
dependencies that hold over a given instance of relational
data;

● we propose a novel algorithm for finding order depen-
dencies that is complete and can perform the detection of
order dependencies in parallel.

● we perform an exhaustive experimental evaluation that
shows the performance of our algorithm in comparison
with existing works, including a study of its scalability
over big datasets and multiple threads.

● we discuss possible solutions for the discovery of the most
important order dependencies in the case of dataset that
could not be managed (too many columns) in a reasonable
amount of time.

The paper is structured as follows: in Section 2 we review the
relevant definitions and theorems that formalize the connection
between order dependencies and order compatibility dependen-
cies. In Section 3 we prove that order dependency discovery can
be guided by order compatibility dependencies without losing
completeness. Our novel algorithm is presented in Section 4,
while Section 5 contains the discussion of our experimental eval-
uation. Finally, a thorough review of the related work can be
found in Section 6 and we present our conclusions in Section 7.

2 BACKGROUND

To provide the background of our problem, we first review the
definition of order dependency and its axiomatization, then we
describe the formal relation between order dependencies (ODs),
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functional dependencies (FDs) and order compatibility depen-
dencies (OCDs).

2.1 Notational Conventions and Definitions

We adopt the notational conventions summarized in Table 2,
consistently with the literature [21]. Let R be a relation over the
set of attributes 𝒰 and r be a table instance of R, i.e. a set of
tuples under R’s schema. A tuple p can be projected over a single
attribute A, over a set of attributes 𝒳 and over a list of attributes
X by subscripting the tuple as follows: pA, p𝒳 , pX.

We assume that a total ordering is defined over each of the
attributes, denoted ≤A; in the following, however, we will drop
the attribute specification and use ≤, as the attribute will be
always clear from the context. Order dependencies are defined
based on the operator ≼, which is equivalent to a lexicographical
ordering over a list of attributes, and is defined by:

Definition 2.1 (operator ≼). Given a list of attributesX ∶= (︀A⋃︀T⌋︀
and two tuples p,q ∈ r, the operator ≼ (and its associated operator
≺) are defined as follows:

pX ≼ qX ⇔ (pA < qA) ∨
((pA = qA) ∧ (T = (︀⋅⌋︀ ∨ pT ≼ qT))

pX ≺ qX ⇔ pX ≼ qX ∧ pX ≠ qX
(1)

The ≼ operator reproduces the ordering clause ORDER BY ASC
in SQL [21].

Based on the comparison operator of Definition 2.1, we can
introduce the concept of order dependency [21].

Definition 2.2 (Order dependency (OD)). Given a relation R
and two lists X and Y, X↦ Y is an order dependency if, for any
instance r of R and for every pair of tuples p,q ∈ r, the following
implication holds:

pX ≼ qX ⇒ pY ≼ qY (2)

If both X ↦ Y and Y ↦ X hold, we say that X and Y are
order equivalent and we write X ↔ Y. If XY ↔ YX we say
that X and Y are order compatible and we write X ∼ Y. We will
discuss the latter relation in Section 2.2.

Order dependencies satisfy the set of axioms 𝒥OD, introduced
by Szlichta et al. [21], which are reported in Table 3. These axioms
are analogous to the Armstrong axioms for functional dependen-
cies [2].

Relations:
▸ R, written as a capital letter in bold italics, is a relation

over a set of attributes 𝒰 ;
▸ r, written as a lowercase letter in bold italics, is a table

instance over R, i.e. a set of tuples;
▸ Single attributes are represented with capital letters: A, B,

and C;
▸ Tuples are represented with lowercase letters: p, q, s , and t .

Lists:
▸ Bold capital letters are lists of attributes: X,Y, and Z. they

can represent the empty list (︀⋅⌋︀;
▸ A list is denoted with square brackets (︀A,B,C⌋︀. A list (︀A⋃︀T⌋︀

is composed by a head A and a tail T;
▸ XY is a shorthand for X ○ Y, XA and AX are shorthands

for X ○ (︀A⌋︀ and (︀A⌋︀ ○X respectively, AB denotes (︀A,B⌋︀.
Table 2: Notational conventions

AX1: Reflexivity

XY↦ X

AX2: Prefix
X↦ Y

ZX↦ ZY

AX3: Normalization

WXYXV↔WXYV

AX4: Transitivity
X↦ Y
Y↦ Z

X↦ Z

AX5: Suffix

X↦ Y
X↔ YX

AX6: Chain
X ∼ Y1

∀i∈(︀1,n−1⌋︀Yi ∼ Yi+1
Yn ∼ Z

∀i∈(︀1,n⌋︀YiX ∼ YiZ
X ∼ Z

Table 3: The set of axioms 𝒥
OD

for order dependen-

cies [21]

2.2 Decomposing Order Dependencies

We show how an order dependency can be decomposed in a pair
composed of one functional dependency and one order compati-
bility dependency.

Functional dependencies. Functional dependencies encode
the fact that, in a relation, one attribute determines completely
another attribute.

Definition 2.3 (Functional dependency (FD)). Given a relation
R and two sets of attributes 𝒳 and 𝒴 , 𝒳 → 𝒴 is a functional
dependency if, for any instance r of R and for every pair of tuples
p,q ∈ r, the following implication holds:

p𝒳 = q𝒳 ⇒ p𝒴 = q𝒴 (3)

Order Compatibility Dependencies. Order compatibility de-
pendencies encode the fact that in a relation two lists of attributes
show the same monotonicity. If we order either combination of
the lists in non-decreasing order, they end up both ordered such
their values are both monotonically non-decreasing.

Definition 2.4 (order compatibility dep. (OCD)). Given a relation
R and two lists of attributes X and Y in R, X ∼ Y is a order
compatibility dependency if, for any instance r of R and for every
pair of tuples p,q ∈ r, the following implications hold:

pXY ≼ qXY⇔ pYX ≼ qYX (4)

Order dependencies are a stricter relation between two at-
tributes with respect to functional and order compatibility de-
pendencies; furthermore, when an order dependency between
two lists of attributes X and Y holds, an order compatibility de-
pendency between X and Y holds as well. In this sense, order
dependencies combine the fact that an attribute functionally
determines and have the same monotonicity of another when
ordered together.

We present previous results [21] that formally highlight the
nature of the relationship between these dependencies, showing
that when an order dependency does not hold there are only two
possible scenarios called split and swap. When X does not order
Y, i.e. when the order dependency between X and Y does not
hold, we write X↦̸ Y.
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t1
t2
t3
t4
t5

A B

1 4
2 5
3 6
3 7
4 1

Table 4: A relational table containing both a split and a

swap between the two attributes A and B.

Split. A split indicates the case where there exists a pair of tuples
that have the same values when projected over the attributes X,
but have different values over the attributes Y. Formally:

Definition 2.5 (Split). Two tuples s,t ∈ r form a split over two
lists of attributes X, Y iff sX = tX but sY ≠ tY, or equivalently:

∃s, t ∈ r ∶ sX = tX ∧ sY ≻ tY
When an OD between two attribute lists is valid, then a FD is

valid as well (Theorem 15, [21])

Theorem 2.6 (ODs subsume FDs). For every instance r of rela-
tion R, if the OD X↦ Y holds, then the FD 𝒳 → 𝒴 holds.

Whereas if there is a split between two lists of attributesX and
Y, there is no guarantee that ordering data will result in ordered
tuples over Y and XY; in other words, both the ODs X↦ Y and
X↦ XY do not hold. Furthermore, a split falsifies the functional
dependency 𝒳 → 𝒴 as well.

The relationship between order and functional dependencies
is formalized as follows (Theorem 13, [21]):

Theorem 2.7 (FD and OD correspondence). For every in-
stance r of a relation R, the functional dependency 𝒳 → 𝒴 holds
iff X↦ XY holds for all lists X that order the attributes of 𝒳 and
all lists Y that order the attributes of 𝒴 .

In Table 4, tuples t3 and t4 form a split for the attributes A and
B, thus A↦̸ B and A↦̸ AB. The functional dependency A→ B is
not valid, as well.

Swap. A swap indicates the case where there exists a pair of
tuples whose values projected over two lists of attributes X and
Y are swapped, i.e. they are sorted differently when they are
ordered with respect to X or Y. Formally:

Definition 2.8 (Swap). Two tuples s,t ∈ R form a swap over two
list of attributes X and Y, iff sX ≺ tX but tY ≺ sY, or equivalently:

∃s, t ∈ r ∶ sX ≺ tX ∧ sY ≻ tY
Swaps between X and Y falsify the ODs of the form X↦ Y,

Y ↦ X, and XY↔ YX. For example, tuples t1 and t5 in Table 4
form a swap for attributes A and B, thus A ↦̸ B, AB ↦̸ B, and
AB ↦̸ BA.

Splits and swaps establish a correspondence between order
dependencies, functional dependencies and order compatibility
dependencies, as in the following theorem (Theorem 15, [21]):

Theorem 2.9 (OD = FD + OCD). X ↦ Y holds iff 𝒳 → 𝒴
(X↦ XY) and X ∼ Y (XY↔ YX) hold.

In summary, when an order dependency between two lists of
attributes X and Y holds:

● a functional dependency 𝒳 → 𝒴 holds, which implies the
absence of split conditions;

● an order compatibility dependency betweenX andY holds,
which implies the absence of swap conditions.

We exploit this relation to guide our discovery algorithm as es-
tablished in Section 4.2.

3 ORDER DEPENDENCY THROUGH

ORDER COMPATIBILITY

This section introduces the concepts that lay the foundations to
our approach.

3.1 Minimality of Discovered Dependencies

Similarly to what has been done for functional dependencies, we
introduce the notion of minimality of a set of order compatibility
dependencies. In principle, minimality is the property for which a
set of dependencies equipped with inference rules can recover all
the dependencies that are valid in a given instance of relational
data. Axioms AX1-AX6 presented in Table 3 provide inference
rules for order dependencies.

The concept of minimality for order dependencies, as for other
types of dependencies, has several uses. First of all, it allows
reasoning about the validity of pruning rules, e.g., to show that
they do not lead to loss of information about valid dependencies
in the relation.

Minimality serves also the purpose of compressing informa-
tion to a manageable size: in fact, if we take a relation with n
attributes, in the worst case where each of which is order equiv-
alent to every other, the minimal set of ODs would contain n − 1
dependencies (A ↔ B,A ↔ C , etc.), while the set of all valid
dependencies would contain 𝒪((n!)2) elements: all the possible
combinations of attributes on the left-hand and right-hand sides,
a prohibitively large number.

Finally, real applications may not need the whole list of de-
pendencies: for example, in knowledge discovery, redundant
dependencies do not add value to the properties discovered and
too many dependencies can cause the most important ones to be
missed; in query optimization, the only useful dependencies are
those that can be applied to the queries to be performed.

Any pruning rule applied by a dependency discovery algo-
rithm needs to respect minimality, in the sense that it should
allow the recovery of the full set of valid dependencies. A com-
plete algorithm must find at least allminimal order dependencies
over an instance r of a relation R.

To introduce the concept of minimality for ODs, we start by
presenting the concepts of closure and equivalence of sets of
order dependencies.

Definition 3.1 (Closure). The closure of the set of ODsℳ, de-
notedℳ+, is the set of ODs that are logically implied fromℳ
by the axioms 𝒥OD = {AX1 −AX6} defined in Table 3.

ℳ+ = {X↦ Y ⋃︀ℳ ⊢𝒥OD X↦ Y}
Definition 3.2 (Equivalence of sets of ODs). Two setsℳ1 and

ℳ2 of order dependencies are equivalent if and only if they have
the same closureℳ+1 =ℳ+2 .

The closure of a set of minimal dependencies is the set of all the
dependencies that are valid over r. We build this definition first
showing which lists of attributes are in minimal form and then
when an OCD is minimal. Finally, we prove that our definition
of minimality is complete.

Order compatibility dependencies employ attribute lists in-
stead of attribute sets, thus we introduce the concepts ofminimal
attribute list. An attribute list is minimal if it has no embedded
order dependency, i.e., the list of attributes is the shortest possi-
ble.
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Definition 3.3 (minimal attribute list). An attribute list X is
minimal if there is no other list X′ such that:

● X′ is smaller than X, and
● X and X′ are order equivalent.

For example, the attribute listABA is never minimal, in fact, by
the Normalization axiom (AX3) we know that ABA ↔ AB and
AB is a shorter list than ABA. Instead, AB is a minimal attribute
list, unless A ↔ B.

An OCD is minimal if both sides are given as minimal attribute
lists and there are no repeated attributes:

Definition 3.4 (minimal OCD). An OCD X ∼ Y is minimal if:
● X and Y are minimal attribute lists;
● 𝒳 ∩𝒴 = ∅.

In the following theorem, we show that OCDs with repeated
attributes can be derived from OCDs without repeated attributes:

Theorem 3.5 (Completeness of minimal OCD). Order com-
patibility dependencies with repeated attributes can be derived from
OCD without repeated attributes.

Proof. The proof of this theorem is split in three cases:
(1) OCDs of the form XY ∼ XZ can be derived from Y ∼ Z;
(2) OCDs of the form XY ∼MY can be derived from XY ∼M

and X ∼MY;
(3) OCDs of the form XY ∼MYN can be derived from X ∼M,

XY ∼M, X ∼MY and XY ∼MN;
which are covered respectively by Theorems 3.10, 3.11 and 3.12
which are presented separately for clarity in Section 3.3. □

The following result extends the Downward Closure theorem
(Theorem 12, [21]):

Theorem 3.6. Downward closure for OCD
XY ∼ ZV
X ∼ Z

Theorems 3.5 and 3.6 provide the justification for the structure
of the search tree used in our approach, as explained in Section 4.2.
In particular, we derive the following pruning rule:

Theorem 3.7 (Pruning rule for OCD).
X ≁ Z

XY ≁ ZV

Proof. This theorem is the contronominal preposition of The-
orem 3.6. □

Theorem 3.5 justifies the reduction of the search space that
we highlight in the following section.

3.2 Dimension of the Search Space

The number of valid ODs over a relation R is vast: in fact, if R
has n attributes, then all permutations of length k of n elements
must be considered both for the left-hand side and the right-
hand side of the OD. We address a limitation of the previous
work by Langer and Naumann [13] and we show that some order
dependencies with repeated attributes cannot be derived from
other dependencies without repeated attributes.

For example, in Table 5 (a) we have that AB ↦̸ B, instead
in Table 5 (b) we have AB ↦ B and A ∼ B. For both tables the
dependencies A↦̸ B and B ↦̸ A do not hold, thus the validity of
AB ↦ B and A ∼ B, in this case, cannot be inferred from shorter
ODs.

t1
t2
t3
t4
t5

(a)

A B

1 4
2 5
3 6
3 7
4 1

(b)

A B

1 4
2 5
3 6
3 7
4 7

Table 5: Two relations where the ODs A↦̸ B and B ↦̸ A do

not hold; furthermore in (a) AB ↦̸ B while in (b) AB ↦ B
and A ∼ B.

Finding all valid order dependencies thus requires, in principle,
the need for checking all combinations X↦ Y where both X and
Y can be permutations of length k of the n attributes in R with
1 ≤ k ≤ n. If we denote with S(n) the number of k-permutations
of n elements we have:

S(n) = ⟨︀e ⋅ n!⧹︀ − 1

Excluding trivial ODs of the form X↦ X, the number of candi-
dates that needs to be checked would be:

C(n) = (S(n) − 1) ⋅ (S(n) − 1) − (S(n) − 1)∝ 𝒪((n!)2) (5)

With n = 10, there are more than 97 ⋅ 1012 candidates ODs.
In contrast to general order dependencies, OCDs candidates

with repeated attributes, i.e., X→ Y or X ∼ Y where 𝒳 ∩𝒴 ≠ ∅,
are redundant in the sense that their validity can be inferred
from the validity of other dependencies of the same type without
repeated attributes and with shorter attribute lists.

Theorem 3.8. X ∼ Y iff XY↦ Y

Proof. We prove the implication in each direction:
⇒ By definition X ∼ Y implies that both the order depen-

dencies XY↦ YX and YX↦ XY are valid. By Reflexivity
(AX1) YX ↦ Y and thus by Transitivity (AX4) the order
dependency XY↦ Y is valid.

⇐ Conversely, if XY ↦ Y, by Suffix (AX5) XY ↦ YXY and
Normalization (AX3) XY↦ YX. □

□

This means that ODs of the form XY ↦ Y and OCDs of the
form X ∼ Y are equivalent. We are thus enabled to solve the
problem by considering only OCDs without repeated attributes,
and thus the dimension of the search space is reduced to 𝒪(n!).

As shown in Theorem 2.9, if X ↦ Y then X ∼ Y is valid; we
can thus derive the following theorem, which will provide the
foundation for the pruning rules detailed in Section 4.2.1.

Theorem 3.9.
X↦ Y
XZ ∼ Y (6)

Proof. By the Augmentation theorem [21], X ↦ Y implies
XZ ↦ Y. By Theorem 2.9 of Section 2.2, XZ ↦ Y implies XZ ∼
Y. □

3.3 Completeness of Minimal OCD

We divide the proof of the completeness of our definition of mini-
mality for OCDs in three parts: first, in the following theorem we
prove that attribute lists with repeated attributes at the beginning
are redundant:

413



Theorem 3.10 (Completeness of minimal OCD - 1).

Y ∼ Z

XY ∼ XZ

Proof. By the Shift theorem [21] and the fact that X↔ X by
Reflexivity (AX1):

YZ↦ ZY
X↔ X

XYZ↦ XZY

by Normalization (AX3) and Replace [21] XYXZ↦ XZXY. Anal-
ogously by the Shift theorem [21] starting from ZY↦ YZ we ob-
tain XZXY↦ XYXZ. Thus XYXZ↔ XZXY, i.e., XY ∼ XZ □

The following theorem proves that attribute lists with repeated
attributes at the end are also redundant:

Theorem 3.11 (Completeness of minimal OCD - 2).
X ∼ Y

XZ ∼ Y
X ∼ YZ

XZ ∼ YZ

Proof. (1) using XY ↔ YX and XZY ↔ YXZ, by Nor-
malization (AX3) XZY ↔ XZYZ and by Replace [21]
YXZ↔ XZYZ;

(2) using XY ↔ YX and XYZ ↔ YZX, by Normalization
(AX3) YZX↔ YZXZ, by Replace [21] YXZ↔ YZX and
by Transitivity (AX4) YXZ↔ YZXZ;

By Transitivity (AX4) YXZ ↔ XZYZ and YXZ ↔ YZXZ
imply XZYZ↔ YZXZ, i.e., XZ ∼ YZ. □

Finally, the following theorem proves that attribute lists with
repeated attributes in the middle are redundant:

Theorem 3.12 (Completeness of minimal OCD - 3).
X ∼M

XY ∼M
X ∼MY

XY ∼MN

XY ∼MYN
Proof.

(1) from XY ∼ MN, by Normalization (AX3) XYMYN ↔
MNXY;

(2) from XY ∼M and X ∼MY, using X ∼M and Replace [21]
we get MYX↔ XYM andMXY↔MYX↔ XYM;

(3) from (2), by the Shift theorem [21] with MY↔ MY and
MNXY↔ XYMMYNwe getMYMNXY↔MYXYMMYN;

(4) by Normalization (AX3) MYMNXY↔MYNXY;
(5) from MYXYMMYN, using MYX ↔ XYM and Normal-

ization (AX3) we get XYMYMYN and finally XYMYN;
From points (3), (4) and (5) we finally getMYNXY↔ XYMYN,
i.e., XY ∼MYN. □

4 THE OCDDISCOVER ALGORITHM

We present now the details of our algorithm, called ocddiscover,
by first examining its search strategy to cover all the possible
combinations and then presenting an implementation in pseudo-
code.

AA BB CC

A ⇠ CA ⇠ CA ⇠ BA ⇠ B B ⇠ CB ⇠ C

B ⇠ CAB ⇠ CABA ⇠ CBA ⇠ CA ⇠ CBA ⇠ CBAB ⇠ CAB ⇠ CA ⇠ BCA ⇠ BCAC ⇠ BAC ⇠ B

` = 2` = 2

` = 0` = 0

` = 1` = 1

` = 3` = 3

Figure 1: Permutation tree for a table withn = 3 attributes.

4.1 Column Reduction

Given that the search space grows with the number of columns,
we start our discovery algorithm focusing on the columns show-
ing special properties and we perform two operations: (a) the re-
moval of constant columns; (b) the reduction of order-equivalent
columns. The dependencies provided by these operations are an
integral part of the results provided by our algorithm.

Removal of constant columns. Constant columns generate
a huge amount of ODs; in fact, over an instance r a constant
column C is ordered by any other attribute list X.1 Thus, we
remove all constant columns and we collect the corresponding
dependencies.

Reduction of order-equivalent columns. Order-equivalent
columns asA↔ B describe a relation inwhich both the directions
of the order dependency hold. By the Replace theorem (Theorem
6, [21]), we can replace any order dependency where A appears
with another dependency with any instance of A replaced with
B, that is:

XAY↦MAN⇔ XBY↦MBN

We check any combination of order-equivalent dependencies,
i.e. for all A,B ∈ 𝒰 we verify the validity of A ↦ B and B ↦ A,
and we build the equivalence classes of columns using the Tarjan
algorithm [25].

We choose a representative from each of these equivalence
classes; we then remove all other columns. We store this infor-
mation to later recover the redundant dependencies.

4.2 Search Tree

We use a breadth-first search strategy for identifying OCD re-
lations in r ; in this way, shorter minimal dependencies are dis-
covered before longer ones. At the first level, we consider the
set of all pairs of single attributes. Given that OCDs are com-
mutative, we build this set by enumerating all the attributes
with A1,A2, . . . ,An and taking all the pairs (Ai ,Aj) such that
{(Ai ,Aj) ⋃︀ Ai ,Aj ∈ 𝒰 , i < j}.

Figure 1 shows the tree 𝒯 of generated candidates for a relation
r with attributes 𝒰 = {A,B,C} where all possible candidates are
generated.

Each OCD candidate X ∼ Y is checked for order compatibility;
we are then confronted with two possibilities:

1If C is constant column, the following property holds for any tuple p, q in any
instance r of R: pX ≤ qX ⇒ pC = qC , where the second part of the implication is
always true by definition of constant column.
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● if the candidate is not order compatible, we do not gen-
erate any other candidate starting from it, as stated by
Theorem 3.7 in Section 3.1;

● if the candidate is order compatible, we generate new
OCD candidates in the following way: for each attribute
not already present in the OCD, for each A ∈ 𝒰 / {𝒳 ∪𝒴},
we add it to the right of each attribute list, i.e. XA ∼ Y and
X ∼ YA, then we apply further pruning rules as explained
in Section 4.2.1.

4.2.1 Pruning Rules. When we find a new OCD X ∼ Y, we
further check the validity of the OD X↦ Y and Y↦ X.

From Theorem 3.9 we derive the following pruning rules:
● if X ↦ Y we do not generate the candidates of the form
XZ ?∼ Y, i.e. the left-hand children candidates of X ∼ Y are
pruned;

● if Y↦ X, we do not generate the candidates of the form
X ?∼ YZ, i.e. the right-hand children candidates of X ∼ Y
are pruned;

If both dependencies are valid we prune all the subtree from the
given OCD candidate.

With reference to Figure 1, if the order compatible dependency
A ∼ B is valid:

● if A↦ B, the children candidate AC ?∼ B is pruned;
● if B ↦ A, the children candidate A ?∼ BC is pruned.

4.2.2 Parallelizability. ocddiscover explores the tree of
candidates breadth-first. Each branch of the tree can be visited
independently since each OCD candidate is independent from the
others; furthermore, a candidate is generated for each level if and
only if its father in the tree was a valid order dependency. We ex-
ploit this structure to parallelize the execution of ocddiscover by
assigning candidates from different branches to different queues;
each queue is then processed by a different thread. With refer-
ence to Algorithm 1, if we have K cores available, we can have
K independent subtrees 𝒯 1

ℓ ,𝒯
2
ℓ , . . . ,𝒯

K
ℓ (lines 7 — 12) each one

containing the OCD candidates belonging to a different branch
of the tree. The number of queues used by the algorithm can be
chosen as a run-time parameter provided by the user.

4.3 Order Checking

One of the most important steps in our approach is the check of
order compatibility candidates.

Single check. Given an OCD candidate in the form X ?∼ Y,
we need to verify if it holds. The general definition of order
compatibility states that X ∼ Y ≡ XY ↔ YX, i.e. X and Y are
order compatible if XY↦ YX and YX↦ XY; however, with the
following theorem, we can reduce the problem of checking the
validity of an OCD to a single check.

Theorem 4.1. XY↦ YX is valid iff X ∼ Y.
Proof.
⇒ we have to prove that XY ↦ YX ⇒ YX ↦ XY. If, by

contradiction, YX↦̸ XY, then:

∃ p,q ⋃︀ pYX ≤ qYX ⇒ pXY > qXY (7)

thus since pXY > qXY we can distinguish two cases:
– if pX > qX, we can conclude that:

qXY < pXY ⇒ qYX > pYX
thus XY↦̸ YX;

– if pX = qX ∧ pY > qY, we always obtain a contradiction
with the condition expressed in Eq. 7;

thus both XY↦ YX and YX↦ XY are valid and X ∼ Y;
⇐ by definition if X ∼ Y then both YX↦ XY and XY↦ YX

are valid;
□

Checking with Indexes. To compute if an order dependency
candidate holds, we sort the relation by the left-hand side at-
tributes of the candidate. We build an index that contains only
the position of each tuple in the order in which it appears. Then,
we iterate over the tuples following this index, and we check if
the attributes on the right-hand side violate the ordering, specif-
ically if we detected a pair of tuples forming a swap. We break
the detection loop as soon as we find a violation and return true
otherwise. In the worst case, the number of comparisons to be
made is O(m +m logm) wherem is the total number of tuples
in the relation.

NULL Values. In real-world datasets, and in many of the test
cases that will be analyzed in Section 5, data contains NULL values,
which destroy the total ordering assumption because they can
not be compared with the other values. We use the standard SQL
semantics given by set ansi nulls ON, i.e. NULL equals NULL,
and NULLS FIRST for sorting.

4.4 Description of the Algorithm

Algorithm 1 is the main algorithm that implements our approach.
The input is given by the instance of relational data r and its set
of attributes 𝒰 .

Algorithm 1 ocddiscover
Input: r: a relational instance
Input: 𝒰 : the set of attributes associated with r
1: function ocddiscover(r,𝒰 )
2: ℓ ← 2
3: 𝒰 ′ ← columnsReduction(𝒰)
4: 𝒯1 ← {(A,B) ⋃︀ A,B ∈ 𝒰 ′,B ≻ A}
5: while 𝒯ℓ ≠ ∅ do ▷Main loop
6: 𝒯ℓ+1 ← ∅
7: for each (X,Y) ∈ 𝒯ℓ do
8: if checkCandidate(XY,YX, r) then
9: emit X ∼ Y
10: 𝒯ℓ+1 ← 𝒯ℓ+1 ∪ generateNextLevel(X,Y,𝒰 ′)
11: end if

12: end for

13: ℓ ← ℓ + 1
14: end while

15: end function

In Line 3, function columnReduction() (not shown here) is
called to apply the operations described in Section 4.1: the re-
moval of constant attributes and the reduction of order-equivalent
columns. This function prints a list of order-equivalence relations
and a list of constant attributes and returns a reduced set of at-
tributes 𝒰 ′ where (a) the constant columns are removed; and (b)
for each class of order-equivalent attributes, one representative
is chosen.

The initial tree of OCD candidates is built in Line 4; by the
commutativity of OCDs, only half of the combinations are added.
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Figure 1 shows that the second level of the tree (ℓ = 2) contains
only the initial candidates A ?∼ B, A ?∼ C and B ?∼ C .

Then, the algorithm continues with the main loop where
each OCD candidate X ?∼ Y is tested against the data in r in
the form of an OD candidate XY

?↦ YX using the function
checkCandidate(), which is described in Algorithm 2.

The function checkCandidate() iterates over the index built
on the left-hand side of the candidate with generateIndex() and
checks that the values over the attributes in the right-hand side
are in the same order. The loop is terminated early if a violation
is detected.

Algorithm 2 checkCandidate
Input: X,Y: an OD candidate
Input: r: the instance of relational data
Output: true ifX↦Y, false otherwise.
1: function checkCandidate(X,Y, r)
2: lr ← len(r)
3: index ← generateIndex(X,Y,r)
4: for i ← 1 to lr − 1 do
5: for each A ∈Y do

6: if r(︀index (︀i⌋︀,A⌋︀ > r(︀index (︀i + 1⌋︀,A⌋︀ then
7: return false

8: else if r(︀index (︀i⌋︀,A⌋︀ < r(︀index (︀i + 1⌋︀,A⌋︀ then
9: return true

10: end if

11: end for

12: end for

13: return true

14: end function

If the candidate is a valid OCD, we emit it as a result and
generate the new candidates through generateNextLevel(),
which is described in Algorithm 3.

The function generateNextLevel() builds a set containing
all the OCD candidates of the form XA ∼ Y and X ∼ YA, where A
is an attribute that does not already belong to the lists X and Y,
this corresponds to creating a new level of the tree presented in
Section 4.2 using the pruning rules of Section 4.2.1. The function
further checks if the ODs X ?↦ Y or Y ?↦ X hold. If so, it applies
the pruning rules and returns the remaining candidates. We emit
the valid ODs found in Lines 9 and 16 of Algorithm 3.

The new candidates are added to the queue of candidates
to check for the next level in line 10 of Algorithm 1. The loop
terminates when there are no candidates left.

5 EXPERIMENTAL EVALUATION

In this section, we evaluate the results of our approach, with
particular emphasis on its scalability in the number of rows
and columns, and we compare it with previous work on order
dependency detection. We analyze the results of ocddiscover
over 6 real-world datasets and 5 synthetic datasets.

Our algorithm is implemented in Java 1.7 and is designed
to work on the Metanome data profiling framework [15] as a
multi-threaded program.

All experiments were run on a i686 Intel Xeon E52440 2.40
GHz machine with 12 cores in hyper-threading and 128 GB RAM,
over a Linux kernel v4.15.0. The execution environment is a
64-bit Oracle JDK version 1.8.0_171, with the JVM heap space
limited to 110 GB.

Algorithm 3 generateNextLevel
Input: X,Y: an OCD candidate
Input: 𝒰 ′: the set of reduced attributes of relation R
Output: C: the candidate OCD generated from X ∼ Y
1: function generateNextLevel(X,Y,𝒰 ′)
2: C ← ∅
3: 𝒜+ ← 𝒰 ′ − set(X) − set(Y)
4: if ¬checkCandidate(X,Y, r) then ▷ X↦̸ Y
5: for each A ∈ 𝒜+ do

6: C .add((XA,Y))
7: end for

8: else ▷ X↦ Y
9: emit X↦ Y
10: end if

11: if ¬checkCandidate(Y,X, r) then ▷ Y↦̸ X
12: for each A ∈ 𝒜+ do

13: C .add((X,YA))
14: end for

15: else ▷ Y↦ X
16: emit Y↦ X
17: end if

18: return C
19: end function

5.1 Datasets

We use the datasets provided by the Information Systems Group
of Hasso-Plattner-Institut.2 These datasets are the same used by
the previous work on order dependency discovery by Langer
and Naumann [13]. We have also created three simple additional
synthetic datasets, called YES, NO, and NUMBERS created to high-
light the differences of our approach with previous works. In
particular, YES and NO reproduce, respectively, the examples in
Tables 5 (a) and 5 (b), while NUMBERS is shown in Table 7.

Table 6 presents the datasets and their properties; for each
dataset, the table reports: the dataset name, the number of rows
⋃︀ r ⋃︀, the number of attributes ⋃︀𝒰 ⋃︀, the number of functional de-
pendencies discovered by the fastfds algorithm [26] ⋃︀ℱd ⋃︀, the
number of ODs discovered ⋃︀𝒪d ⋃︀ by order. For fastod we pro-
vide: (a) the number of FDs discovered ⋃︀ℱd ⋃︀, (b) the number of
ODs discovered ⋃︀𝒪d ⋃︀. For ocddiscover we provide: (a) the num-
ber of OCDs discovered ⋃︀𝒪c ⋃︀, which are missed by order [13],
since they are order dependencies with repeated attributes; (b)
the number of ODs discovered ⋃︀𝒪d ⋃︀; and (c) the total number
of dependency candidates checked during the execution of the
algorithm.

Execution time is averaged across 5 independent runs and we
set a time threshold at 5 hours. When the time limit is reached,
for order, and fastod we are unable to present the number
of dependencies discovered so far, while for ocddiscover we
report the number of dependencies discovered and the number
of checks made until the limit.

5.2 Comparison with Previous Work

We discuss the results of the extensive comparison with the previ-
ous state-of-the-art algorithms for detecting order dependencies.
The code used for the comparison has been provided by the
respective authors.3

2https://hpi.de/naumann/projects/repeatability/data-profiling/fd-algorithms.html
3 the source code for order is available at: https://hpi.de/naumann/projects/
repeatability/data-profiling/fds.html#c168192 while the source of fastod has been
provided to us by the authors through direct communication.
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Dataset properties fastfds [26] order [13] fastod [18] ocddiscover

Dataset ⋃︀r⋃︀ ⋃︀𝒰 ⋃︀ ⋃︀ℱd ⋃︀ ⋃︀𝒪d ⋃︀ time (ms) ⋃︀𝒪d ⋃︀ ⋃︀ℱd ⋃︀ time (ms) ⋃︀𝒪d ⋃︀ ⋃︀𝒪c ⋃︀ time (ms) checks

DBTESMA 250,000 30 89,571 —∗ 5 h∗ 400 89,571 4,641,485 138 0 337,289 4,118
DBTESMA_1K 1000 30 11,099 —∗ 5 h∗ 30 11,099 5,799 138 0 1,835 4,118
FLIGHT_1K 1,000 109 —∗ —† —† —∗ —∗ 5 h∗ 3,216,069∗ 29,404,555∗ 5 h∗ 7,473,951
HEPATITIS 155 20 8,250 0 182 32,717 8,250 211,903 0 5 361 556
HORSE 300 29 128,727 31 46,907 —∗ —∗ 5 h∗ 31 7 618 1,185
LETTER 20,000 17 61 0 1,215 —∗ —∗ 5 h∗ 0 0 1,720 272
LINEITEM 6,001,215 16 —∗ 1 982,075 —∗ —∗ 5 h∗ 1 0 1,039,517 255
NCVOTER_1K 1,000 19 758 18 796 2,333 758 90,000 18 1 872 338
NO 5 2 1 0 323 0 1 24 0 0 4 2
YES 5 2 0 0 329 1 0 28 1 1 3 2
NUMBERS 7 4 4 0 331 6 4 325 0 0 28 12

Table 6: Datasets and execution statistics for the ocddiscover, order [13], and fastod [18] algorithms. “
∗
” indicates that

the execution has reached the time limit of 5 hours, while “
†
” that it has exceeded the memory limit of 110GB. When the

time limit is reached, for ocddiscover we present partial results.
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A B C D

1 3 1 1
2 2 3 2
2 3 2 2
2 5 2 2
3 1 2 3
4 4 4 2
4 5 3 2

Table 7: NUMBERS dataset.

To compare our algorithm with order and fastod we need
to transform OCDs back to ODs. In fact, in a relation R over
attributes A,B and C where A ↔ B, A ∼ C and B ∼ C , the set
of OCDs 𝒪 = {A ∼ B, A ∼ C, B ∼ C} is minimal following Defi-
nition 3.4. However, columnsReduction() would discover the
order-equivalence A↔ B and choose one attribute as a represen-
tative, e. g. A. Thus ocddiscover would return as valid OCDs
only 𝒪 = {A ∼ C}. From this information, we infer the remain-
ing dependency B ∼ C using the axioms 𝒥OD. We perform this
expansion and compare the results produced by ocddiscover,
order and fastod. The function performing the expansion is not
shown in Algorithm 1, but the times reported in Table 6 include
it. This step did not impact the running time of ocddiscover.

5.2.1 Comparison with Langer and Naumann [13]. For
order, dependencies are considered to be completely non-trivial,
if their left- and right-hand side attribute lists are disjoint. How-
ever, we argue that limiting the discovery of order dependencies
to candidates where the left-hand side and the right-hand side
are completely disjoint gives incomplete results. Our algorithm,
instead, is complete.

Following Theorem 3.8 in Section 3.2, order dependencies
of the form XY ↦ Y can be inferred from order compatibility

dependencies of the form X ∼ Y. Note that these dependencies
have repeated attributes between its left- and right-hand sides.

We show the difference between our approach and previous
work with the YES and NO datasets. As reported in Table 6, the
order algorithm does not find any order dependency in either of
the YES and NO datasets. ocddiscover, instead, finds correctly the
order compatibility dependencyA ∼ B, i.e., the order equivalence
AB ↔ BA, in YES.

Our approach detects all the dependencies found by order,
and additional dependencies on HEPATITIS, NCVOTER_1K, and
HORSE. For FLIGHT_1K and NCVOTER_ALLC we found several de-
pendencies but we were not able to compare the results with
order because the latter does not report the discovered depen-
dencies when the time limit is reached.

Provided that the order compatibility dependencies found by
ocddiscover are translated to the corresponding OD in the form
XY↦ Y, ocddiscover effectively discovers a minimal set of ODs
even following the definition of minimality provided by Langer
and Naumann [13].

When a candidate dependency is found to be false, pruning
rules are applied. For this reason, notwithstanding the factorial
dimension of the search space, datasets with several columns,
such as datasets HEPATITIS and HORSE, are successfully and com-
pletely tested. When pruning cannot be applied, the generation of
candidates grows – e.g., more than 7 million candidates are gen-
erated in FLIGHT_1K. For this dataset, ocddiscover detects more
than 32million ODs. In this particular case, the number of checks
is smaller than the number of discovered dependencies because
we also count the dependencies inferred from constant and order-
equivalent columns reported by the columnsReduction() func-
tion.

Furthermore, Table 6 shows that using order compatibility
dependencies does not hinder the performance of the detection. In
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all dataset tested, the performance of our algorithm with respect
to the execution time is comparable to order; in some cases, we
obtain significant speedups up to a factor of 75, e.g. in HORSE.

5.2.2 Comparison with Szlichta et al. [18]. As shown in
Table 6, ocddiscover and fastod compute a different number
of order dependencies. We claim that this difference, which also
affects also the results published in [18], is due to an implementa-
tion error in the code. Table 7 presents an instance of a relational
table where the implementation of fastod we received finds
several order dependencies that are not actually present in the
data, e.g. (︀B⌋︀↦ (︀AC⌋︀. Other datasets were also affected by this
issue, but, unfortunately, we were not able to isolate and resolve
the root cause of this incorrect behavior. In addition, fastod
considers all columns as if they contain data of type String,
thus using a lexicographical ordering, while order and ocddis-
cover perform type inference over the datasets provided, and
use the natural ordering for real and integer numbers. We have
also implemented for ocddiscover the possibility of forcing lex-
icographical ordering, i.e., treat all data as if they were of type
String, but we do not report these results since this change does
not affect the execution time of our approach.

Furthermore, the scalability experiments reported by Szlichta
et al. [18] used trimmed-down versions of the datasets. For the
row scalability experiments, the datasets were reduced to 1,000
rows, while for the column scalability experiments columns were
chosen at random. For this reason, we report in Table 6 both
the DBTESMA and DBTESMA_1K datasets, which are respectively
the full dataset with 250,000 rows, and a trimmed-down ver-
sion with the first 1,000 rows. For column scalability, we tested
ocddiscover and fastod against HEPATITIS, FLIGHT_1K, and
NCVOTER_1K, which were used in full, so we were able to compare
the performance of the two algorithms.

As shown in Table 6, ocddiscover gains significant speed-ups.
This highlights the fact that, while the worst-case complexity of
ocddiscover is (O)(⋃︀r ⋃︀!), which is greater than that of fastod,
O(2⋃︀r ⋃︀), the execution time depends on the actual number of
dependencies contained in the dataset.

5.3 Performance

In the following, we analyze the scalability of our approach with
respect to the number of rows, the number of columns, and the
number of parallel threads used.

5.3.1 Scalability in the number of rows. We performed
our analysis on the synthetic dataset LINEITEM with 6,001,215
rows and 16 columns. We also test the algorithm on the NCVOTER
dataset. This dataset has 938,084 rows and 94 columns, but since
our algorithm did not terminate on the full datasets, we consider
only a subset of 20 randomly chosen columns. Figure 2 shows the
results for the scalability experiment on LINEITEM and NCVOTER.
Ten samples of the original dataset have been created, ranging
from 10% to 100% of the rows with a step of 10%. Five repetitions
have been performed for each of the samples and the average is
reported. Variance is very small and thus not shown.

The experiments show that the algorithm scales almost lin-
early with the number of rows, and it is able to find a complete
set of OCDs over datasets with millions of rows.

The execution time would be expected to grow log-linearly
with respect to the number of rows, due to the indexing phase;
but an increasing number of rows may correspond to a smaller

number of dependencies; thus, the pruning phase could reduce
the number of checks to be computed.

Previous work, instead, has shown the ability to scale linearly
on the number of rows performing the check of dependency
candidates with sorted partitions computed from the data. This
method could have been re-implemented in our approach as well,
but it would have been out of the scope of this paper.

5.3.2 Scalability in the number of columns. Scalability
over columns is the key challenge in detecting dependencies in
relational data since in many cases the dimension of the search
scales with the number of columns.

We choose the HORSE and HEPATITIS datasets, that are well-
suited to evaluate the influence of an increasing number of
columns, given that their execution completes. We also consider
FLIGHT_1K that has a very high number of columns and does not
terminate.

The evaluation approach is as follows: we start with two ran-
dom columns from each dataset, and we incrementally add more
randomly-chosen columns, until the total number of columns in
the dataset is reached.

To avoid skewing the results, we generate 50 samples of each
dataset with the process described above and we run our al-
gorithm over these samples. We average the execution time of
ocddiscover of each sample with c columns over all the 50
samples.

Figures 3 and 4 show the results of the column scalability
experiment on the HEPATITIS and HORSE datasets.

Figure 5 shows how the algorithm behaves when the number
of dependencies discovered in the data grows on a single run.
Times on the y-axis are in logarithmic scale. ocddiscover is very
susceptible to columns that are quasi-constant, i.e., attributes
with very few distinct values, but not constant. In this case, ocd-
discover cannot eliminate these columns during the column-
reduction phase. As argued in Section 4.1, constant columns are
ordered by any other attribute; quasi-constant columns are asso-
ciated with a large number of valid OCDs and consequently the
size of the tree to be explored grows enormously.

In fact, the slowdown corresponding to the sample with 28
columns in Figure 5 is caused by the addition of a column with 3
distinct values. This column appears on the right-hand side of
more than 94% of the dependencies found in that sample.

5.3.3 Scalability over parallel threads. As described in
Section 4.2.2, ocddiscover can be run over multiple threads.

Figure 6 shows the results of the multithreading scalability
experiments on the LETTER, LINEITEM, and DBTESMA datasets.
On the y-axis times are normalized to the runtime over a single
thread, which is the maximum for each case. Table 8 reports the
executions times.

Time (s) vs number of threads

Dataset 1 2 4 8

LETTER 5.7 4.6 3.6 3.4
LINEITEM 2,848.8 1,770.0 1,243.5 1,040.0
DBTESMA 2,228.9 1,240.0 686.0 414.0

Table 8: Execution time of ocddiscover versus number

of threads.

As it is shown in Figure 6, using multiple parallel threads short-
ens the execution time of our dependency discovery algorithm.
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Figure 6: Execution times for LETTER (red straight line),

LINEITEM (green dotted line), DBTESMA (blue dashed line),

when executed overmultiple threads, normalized over the

runtime over a single thread.

The amount of this improvement varies based on the character-
istics of each dataset and in particular, depends on the of OCD
candidates checked.

If we compare LETTER and LINEITEM, we see that while the
number of checks performed on each dataset is comparable (272
for LETTER versus 255 for LINEITEM), the number of their rows
differ by several orders of magnitude (∼ 20k lines for LETTER, ver-
sus ∼ 6M for LINEITEM). This implies that checking the validity
of an OCD candidate for LINEITEM takes longer than checking a
candidate for LETTER. Thus the relative gain when splitting the
work over multiple threads is greater for LINEITEM.

Instead, comparing LINEITEM and DBTESMA we can see that
for the latter dataset the number of checks performed is much
higher, thus the workload of candidate checking can be spread
over multiple threads, leading to greater relative improvements.

5.4 Quasi-constant Columns

The quasi-constant column scenario is challenging for our algo-
rithm. We further develop the idea of measuring how varied the
values in a column are by measuring its entropy.

Definition 5.1 (Entropy). Given an attribute A ∈ 𝒰 of an in-
stance r of a relation R, the entropy of A is defined as:

H(A) = −∑
(︀a⌋︀

p(︀a⌋︀ log (p(︀a⌋︀) (8)

where (︀a⌋︀ are the equivalence classes of distinct values in A
and p(︀a⌋︀ is the probability of extracting an instance of class a,
computed as the relative frequency of instances class (︀a⌋︀ over
the total number of tuples in r:

p(︀a⌋︀ =
⋃︀{t ∈ r ⋃︀ tA ∈ (︀a⌋︀}⋃︀

⋃︀r ⋃︀
For constant columns there is only one equivalence class and

p(︀a⌋︀ = 1, thus H(A) = 0. If all values are distinct, for each (︀a⌋︀,
⋃︀(︀a⌋︀⋃︀ = 1 and p(︀a⌋︀ = 1⇑⋃︀r ⋃︀:

H(A) = −∑
(︀a⌋︀

1
⋃︀r ⋃︀ log (1⇑⋃︀r ⋃︀) = log (⋃︀r ⋃︀)

We test the idea that progressively less diverse columns cause
the slowdown of ocddiscover by taking the FLIGHT_1K dataset
and running it over multiple samples build with the following
criteria: we calculate the entropy of each column in FLIGHT_1K
and then we build samples of increasing size in the number of
columns by adding progressively the columns with decreasing
entropy, i.e., we start with the columns with the greatest number
of distinct values and we progressively add columns with less
distinct values. Eventually, the constant columns are added.

0 4 8 12 16 20 24 28 32 36 40 44 48 52

Number of columns

102

103

104

105

106

107

108

T
im

e
(m

s)

time

entropy

0.0

0.2

0.4

0.6

0.8

1.0

E
nt

ro
py

FLIGHT 1K (entropy)

Figure 7: Execution times (red straight line) for the

FLIGHT_1K when adding columns of decreasing entropy

(blue dotted line). On the y-axis, times (left-hand side) are

in logarithmic scale, entropy (right-hand side) is normal-

ized with respect to the maximum value over the dataset.

The result of the execution on ocddiscover over this set
of samples is reported in Figure 7. With 50 columns the ocd-
discover completes in 4 minutes, adding the 51st column the
execution time grows by an order of magnitude to over 1 hour.
With the addition of the 52nd column, the algorithm reaches the
time limit of 5 hours. The 50th, 51st, and 52nd columns have
respectively 4, 2, and 2 distinct values respectively.

With respect to applications, this insight could be exploited
to develop algorithms that return results for the most diverse
columns, which can be the most interesting with respect to other
properties of the data such as unique column combinations (UCC).
Detection of unique column combinations is usually performed
to find primary keys candidates that may be also interesting
candidates from the point of view of ordering and query opti-
mization.

In summary, the column scalability experiments show that
ocddiscover can find a complete set of ODs over datasets with
tens of columns. Furthermore, ocddiscover can be easily adapted
to perform the detection over a set of interesting columns, where
the interestingness of an attribute can be determined providing
a function measuring the properties chosen by the user.

6 RELATEDWORK

Functional Dependencies: Theory, Discovery and Applica-

tions. Literature on functional dependencies is vast [2, 12, 14, 16].
Applications of functional dependencies span several fields from
query optimization [6], to data cleaning [5], to data quality man-
agement [8]. Given this variety of applications, several algorithms
for the discovery of functional dependencies have been devel-
oped. The first algorithm to be proposed was TANE [12], which
has served as inspiration for many subsequent efforts [14, 16].
Research on better functional dependency discovery algorithms
is still ongoing [15]. Functional dependencies have been extended
in several ways: from conditional functional dependencies [4],
to approximate (or partial) functional dependencies [14].

OrderDependencies Theory andApplications. In the 1980’s,
Ginsburg and Hull were the first to consider the idea of analyzing
orderings between the attributes of a relation as a kind of depen-
dency [9–11]. They introduced the concept of point-wise order-
ing [11], that is a relation where a set of attributes orders another
set of attributes. Recently, Szlichta et al. introduced the concept
of order dependency [21], which is the one used throughout this
paper. Order dependencies are defined over lists of attributes,
and can be formalized in a similar way to functional dependen-
cies [21, 23]. In this paper we focused on dependencies where the
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attributes are all ordered in the same direction, also called "uni-
directional" order dependencies; however order dependencies
can be generalized to "polarized" or "bidirectional" ODs where
a different direction of the ordering can be specified for each
attribute on either side of the dependency [20]. One of the main
theoretical problems concerning dependencies in relational data
is the problem of inference. For order dependencies this problem
is shown to be co-NP-complete [24].

Applications of Order Dependencies. Notwithstanding their
recent theoretical formulation, order dependencies have been
already used in several applications, such as query optimization.

Sorting is a fundamental database operation. Since the semi-
nal works [10], research has focused on developing optimization
strategies for dealing with queries with an ORDER BY clause [17].
Order dependencies can be used for this purpose, as it has been
shown with an implementation of a query optimizer in IBM DB2.
Optimizing queries with order dependencies yields significant
speedups in execution times over the well-known TPC-DS bench-
mark and on queries taken from real-world scenarios [22].

Discovery Algorithms for Order Dependencies. These ap-
plications are driving the need for discovering order dependen-
cies in existing datasets. The first work proposing an algorithm to
solve this problem is the one by Langer and Naumann [13]. Their
approach, called order, follows the path of tane, computing the
potential order dependency candidates from the permutations of
attributes and traversing the lattice in a level-wise, bottom-up
manner. Pruning rules are applied to reduce the number of can-
didates to check, with the caveat of eliminating only redundant
relations that can be later inferred from the dependencies discov-
ered together with the axioms. However, as shown in this paper,
this approach does not consider all the possible order dependency
candidates, discarding repeated attributes. While this gives a sig-
nificant advantage in execution time, reducing the worst-case
time complexity of the algorithm to O(⋃︀r ⋃︀!), its major drawback
is the possibility of losing completeness. More recently Szlichta et
al. [18] proposed an algorithm called fastod that is complete and
faster than order. This algorithm exploits a novel polynomial
mapping that transforms ODs with lists of attributes into canon-
ical forms of ODs that are established between sets of attributes.
fastod has exponential worst-case time complexity, O(2⋃︀r ⋃︀), in
the number of attributes. Recently, this work was extended in
order to discover bidirectional order dependencies [19].

7 CONCLUSIONS

In this work, we presented a novel method for discovering order
dependencies (ODs). We based our approach on the fact that an
order dependency is valid if and only if both a functional depen-
dency (FD) and an order compatibility dependency (OCD) are
valid. Thus, we designed a novel and efficient algorithm – called
ocddiscover – where the search for ODs is guided by checking
the validity of OCDs. Our approach outperforms existing two
state-of-the-art algorithms, order [13] and fastod [18] with
respect to order, we are complete, meaning that we detect or-
der dependencies that are ignored. We have shown that these
dependencies cannot be inferred by other detected dependen-
cies. While the worst-case complexity of ocddiscover is greater
than fastod, the execution time on real datasets depends on
the actual number of dependencies found, thus our algorithm
outperforms fastod. Furthermore, we presented an extensive set
of experiments that illustrate that our approach can be executed

in parallel over multiple threads. We have also suggested that
considering the entropy of attributes can lead to further develop-
ments in discovery the most interesting order dependencies. As
a future work, we would like to consider dynamic inputs, where
additional rows and columns may be added at runtime.
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