
Query-Driven Data Minimization with the DataEconomist

Peter K. Schwab
Friedrich-Alexander-Universität Erlangen-Nürnberg

peter.schwab@fau.de

Julian O. Matschinske
Friedrich-Alexander-Universität Erlangen-Nürnberg

julian.matschinske@fau.de

Andreas M. Wahl
Friedrich-Alexander-Universität Erlangen-Nürnberg

andreas.wahl@fau.de

Klaus Meyer-Wegener
Friedrich-Alexander-Universität Erlangen-Nürnberg

klaus.meyer-wegener@fau.de

ABSTRACT

In this paper, we explain the demonstration of the DataEcono-
mist, a framework for query-driven data minimization in rela-
tional DBMS conformable to law. Our approach automatically
minimizes user access rights based on the analysis of SQL query
logs and thereby enables a parsimonious data processing. A mini-
mization of data collection is reached by automatic detection and
manual deletion of data belonging to unneeded schema elements.

In contrast to existing approaches, the DataEconomist sup-
ports privacy officers by focusing on the queries instead of mak-
ing them trawl through a vast amount of collected personal data
and specify legal use cases for their processing. SQL queries easily
showwho has processed when which data for which purpose and
make it easy for the privacy officers to decide about the queries’
compliance with data privacy regulations. Our framework does
not require any knowledge of SQL by providing a graphical tool
for searching and filtering queries and visualizations of query
result sets.

1 INTRODUCTION

The new EU General Data Protection Regulation (GDPR) has an
impact on every organization around the world [16], but most of
them are prepared inadequately and are not aware of upcoming
legal requirements [4]. They face the challenge of adapting their
handling of personal data to become compliant to the contempo-
rary requirements of data privacy. Art 5(1) GDPR postulates data
minimization, which is one of the six general data-protection
principles of the GDPR [1]. It requires that all collection and
processing of personal data is only for a specific purpose, and
that the quantity of these data is kept down as much as possible,
so they are stored only as long as it is required to reach the in-
tended purpose [15]. There are approaches like privacy by design
[17] that include privacy protection in the overall conception of
technical systems, but the vast majority of current systems does
not consider these approaches. In order to ensure conformance
to the principle of data minimization it is not sufficient to analyze
the collected data sets only. This does not provide a possibility
to verify that the data processing is exclusively for a specific
purpose. But the responsible privacy officers often lack technical
knowledge, which is usually required for the evaluation of data
processing.

Problem Statement. In order to enable privacy officers to
ensure data privacy in established systems, novel approaches are
required, which provide mechanisms that do not premise pro-
found technical knowledge to determine who collects personal
data from where and who processes when which data for which

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the
22nd International Conference on Extending Database Technology (EDBT), March
26-29, 2019, ISBN 978-3-89318-081-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

purpose. The mechanisms must provide user-friendly interfaces
and a data-processing description close to natural language [7].

Contribution. We demonstrate an extensible framework for
query-driven data minimization in existing IT landscapes. We
analyze SQL query logs and enrich querieswithmeta-information
about the query structure, their environment, their execution,
and their context. In contrast to currently trending approaches,
queries are our first-class citizens for analysis of conformance
to data privacy, instead of trawling through data stores that
harbor vast amounts of personal data. Our framework aims to
complement such approaches and supports privacy officers in
minimizing user access to personal data, minimizing the storage
of personal data to what is really necessary, and preventing future
collection of unnecessary data.

Our framework is minimally-intrusive because it has no im-
pact on productive operations. It can serve as a foundation of a
system that automatically identifies unneeded schema relations
and attributes in target databases (DBs), based on the queries run-
ning on these systems. Queries can be classified manually as legal
or illegal regarding data-privacy regulations. User access rights
can automatically be customized, and unnecessary data can be
automatically deleted from the target DBs. Furthermore, we list
the queries and the related users that have inserted unneeded
data into the target DBs.

This paper describes the client-server architecture of our frame-
work (cf. sec. 2.1), illustrates the conceptual schema for the query
characteristics, i. e. the queries and their meta-information (cf.
sec. 2.2), and outlines the reference implementation of the Data-
Economist (cf. sec. 2.3). In [12], we have already described a user
story from a healthcare scenario to emphasize our approach’s
benefits for ensuring data privacy, especially data minimization.

2 SYSTEM OVERVIEW

The software system is implemented with a client-server architec-
ture usingWeb technologies. An end user can have three different
roles: administrator, DB user, and privacy officer. Each of them
needs to interact with the system, so it has to be accessible from
different personal machines. Splitting the application into a client
and server part allows for that and additionally simplifies initial
setup for end users.

2.1 Client-Server Architecture

Internally, the DataEconomist server uses a PostgreSQL DB to
persist query characteristics. It also connects with target DBs
when needed to retrievemeta schemas required to understand the
queries and execute them when requested. It supports all major
relational DBMS and the Java JDBC API as well as standard SQL
and several of its dialects.

Demonstration

 

 

Series ISSN: 2367-2005 614 10.5441/002/edbt.2019.69

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2019.69


The multi-user Web client is platform independent and does
not require any kind of installation for the end user. It communi-
cates with the server over HTTP using a RESTful JSON API.

The backend is implemented in Java using Apache Calcite [6]
and the Spring Framework1. Fig. 1 shows its architecture.

The Query Manager and the Database Manager take care of
ensuring consistency between main-memory representations
of Query and Database objects and their DB entries. We must
store additional information about these objects to control the
redundancy. For queries, this information includes syntactical
correctness, the number of restrictions, compliance with user
privileges, and other potentially interesting properties. For target
DBs, we fetch and store the schema in Java objects on the server.

The Query Controller and the Database Controller perform
actions requested by the API on the resp. objects. They can only
cause updates on the internal DB by using a manager module.

The SearchModulemaps search requests from the visual search
form onto the internal DB. On top of that, it makes use of the
Query Manager to consider information only available on the
server application.

Client
Client

Client

External DB Interface Client API

Apache 
Calcite

Spring 
Framework

Query 
Controller

Database 
Controller

Analysis 
Module

Search 
Module

Query 
Manager

Internal DB Interface

Database 
Manager

Internal 
PostgreSQL DB

Target DBs

Figure 1: Architecture of the DataEconomist

2.2 Conceptual Schema

Fig. 2 shows an Entity-Relationship diagram containing the Da-
taEconomist’s conceptual schema to hold the queries and their
meta-information. The Query entity is identified by the Text
attribute, holding the query text. The complex, multi-valued at-
tribute Relations stores the query’s relations and attributes. It
contains the two nested attributes RelName and Attributes. For
each relation, we store its name in RelName and the names of all
the relation’s attributes in the multi-valued attribute Attributes.

The purpose of the Project entity is to group several target
DBs in order to analyze their queries collectively. The Database
entity holds connection information to target DBs.

A Query Execution reflects the run of a certain Query by a
certain User on a certain Database at a certain Timestamp. The

1http://spring.io/projects/spring-framework

entity’s further attributes are the RunTime in case of a successful
query execution and the ErrorMessage if the query failed.

The Query Context points out a user’s intention or the situa-
tion in which aQuery Execution happens. Regarding this, privacy
officers can specify the query’s priority and its legitimacy con-
cerning data privacy in this context. A query execution can only
happen in one context, but a context may contain many query
executions.

Fig. 2 highlights four groups of query characteristics in color.
Some of them can be derived automatically; others must be en-
tered manually. TheQuery Environment group is derived from
the user and her initial connection to the target DB. TheQuery
Execution group bundles when which query ran with what run-
time successfully or not. Finally, theQuery Context group cannot
be derived automatically at all; it must be entered manually as it
externalizes tacit user knowledge.

Query 
Environment

Query 
Context

Query 
Execution

Query

Database

1

DBName

Host

Port

Priority

Legitimacy Description

RunTime

ErrorMessage

User

Username
1

Text

Credentials

Query 
Execution

Timestamp

runs
at

1 Query 
Context

happens in

N

ContextName

Project

comprises

1

N

ProjID

ProjName

1

Figure 2: Conceptual schema of the DataEconomist

2.3 Reference Implementation

As first step, Apache Calcite performs basic syntax checking for
each query. When checking which tables and columns are used
by a query (a task that belongs to the core functionality of our
DataEconomist), syntax alone is not sufficient. We additionally
need the schema information. Asterisk selections are a trivial
example to illustrate that. In order to detect used schema objects,
Calcite’s query planner transforms the query into a logical query
plan. Calcite performs a query optimization and normalization.
By applying the visitor pattern, the query-plan object is traversed
and all used tables and columns are detected and collected for
later review.

To provide the HTTP API, we use the model-view-controller
module of the Spring framework. It maps HTTP requests onto the
corresponding Java methods and serves as a bridge between Java
objects and their JSON representation. The API mainly follows a
CRUD approach, offering endpoints for entity creation, retrieval,
update, and deletion.

615



The frontend is implemented in Angular2, a widely used Web
framework written in TypeScript. It allows for the use of ad-
vanced GUI techniques such as reusable components and pro-
gramming patterns such as reactive programming.

Fig. 3 shows the functionalities of the frontend interface. They
are partitioned in three main views for projects, target DBs, and
queries. The admin role can create projects and relate one or
several target DBs. The admin needs to specify credentials for
the target DBs so that the DataEconomist can connect to them
and can fetch their schema information and import query logs.
The admin role can also add and modify queries in our frontend,
whereas the DB-user role can only choose a project and run the
related queries.

Privacy officers can browse through all queries. We support
them with a tool for extensive search-query formulation that can
be utilized with purely visual means and does not require any
knowledge of SQL. They can span a search-query tree by arbitrar-
ily nesting search conditions concerning query structure or query
characteristics. Any result set of queries can be manually filtered
to be used in the next step for automatic detection of unneeded
schema elements. Privacy officers can then check and adjust the
DataEconomist’s proposal of user-access-right minimization.
The final configuration can be enforced to the target DBs with a
single click.

Manage Queries

Run Query

Query Overview

Search Queries

Analyze Queries

Check Privileges

Adjust Priviledges

Manage DBs

DB OverviewProject Overview

Manage Projects

Admin

DB User

Privacy Officer

Figure 3: Frontend Use of the DataEconomist

3 DEMONSTRATIONWALKTHROUGH

For this demonstration, we will shortly present our approach’s
fundamental concepts to the conference attendees. Then they
will be briefed to use our framework and learn about various
aspects of the current version of our DataEconomist. Attendees
may go through three different demonstration scenarios that
build upon each other, but do not require the preceding steps
for understanding. Most steps in the process include interaction
with the attendees.

Setting up a project and analyzing queries. We have pre-
pared a substantial SQL query log containing queries of different
complexities from an enterprise scenario, stored in a MS-SQL DB.
The attendees can choose the queries to be investigated. When
a query is added to the DataEconomist, it will automatically
start to find various properties of that query and to make them
available for a potential search (see next scenario).

2https://angular.io/

After the analyzing step is finished, attendees can see its re-
sults. The derived properties include the number of restrictions,
the level of nesting, the number of different columns used by a
query, and more.

Along with these properties, a sample of the query result is
shown as well to help understand the query (see Fig. 4).

Figure 4: Query stats and results dialog

Finding potentially illegal queries. For this scenario, we
challenge the attendees to play the role of a privacy officer and
to find queries violating data-privacy regulations. The attendees
can use the visual-search interface and track down queries that
retrieve for example data revealing racial or ethnic origin, politi-
cal opinions, or religious or philosophical beliefs. To achieve a
high level of flexibility, the visual-search queries can be nested
and combined with Boolean operators (see fig. 5).

The attendees can directly consider accessible properties, such
as the names of DB users, query-execution times, SQL strings,
and all other query characteristics mentioned before.

We will examine two different cases that require different
approaches. One requires the correct choice of properties to
check. The other additionally requires a correct combination
of properties. Both demonstrate the possibilities offered by the
search-query formulation implemented in the DataEconomist.

Minimizing user privileges and deleting unnecessary
data. When illegal queries have been found, we demonstrate
how the DataEconomist displays which tables and columns are
used by a query or a set thereof (see Fig. 6).

Attendees can then adapt the user privileges by unchecking
tick boxes at all schema objects the user should no longer have
access to. These user privileges will actually be enacted on the
MS-SQL server through the interface. To show the effects, we
will then try to execute an illegal query on the DB, which will
fail, and inform the user about the illegal access attempt.

After that, attendees can use the DataEconomist to automati-
cally determine unnecessary schema elements, i. e. data that have
no user access to them. Again, by a single click, all these data
will be deleted on the MS-SQL server.

4 STATE OF THE ART

Srivastava et al. provide a relational framework for managing
queries [5].We adopt their way of administrating queries together
with their meta-information in a relational model. There are

616



Figure 5: Visual query search form

Figure 6: Privilege adaption form

several systems dedicated to query management, e. g. [2, 10].
However, these tools are aimed at experts and lack usability
for privacy officers. During the query-log analysis of [3], we
considered the query structure and detected similarities among
queries. However, we did not yet provide a way to report user-
specific meta-information about queries.

QueRIE [9] performs a query-log analysis to give personalized
query recommendations. Manta and SQLDep3 visualize schema
lineage of SQL queries. None of these approaches considers query
context and other meta-information. This is also the case for
several graph-based approaches to representing SQL queries,
e. g. [8, 11]. Tools like the Query Patroller [14] or the DataLawyer
[13] provide a wide range of mechanisms for query analysis.
However, they aim at SQL experts and the latter is even limited
to a particular DBMS.

5 CONCLUSION AND FUTUREWORK

The DataEconomist supports several aspects of data minimiza-
tion: Based on the query-driven approach, user access to un-
needed schema elements can be automatically customized. Com-
pletely unneeded data can be automatically detected and deleted.
3https://getmanta.com/ and https://sqldep.com/

These features minimize data processing. In first measurements,
we determined the average latency for analyzing the structure
(117ms) and detecting unneeded schema elements (19ms) of a
single query. The structure analysis includes the generation of
the query execution plan, the detection works with this execution
plan. We intend to present more detailed measurement results in
a follow-up publication.

Our framework also points at queries inserting unneeded data
and at these queries’ authors. That allows privacy officers to take
specific measures in minimizing data collection.

Up to now, privacy officers have to manually classify illegal
queries regarding data privacy, which can be an outrageous effort.
Therefore, we work on a semi-automatic classification of illegal
queries to minimize user interaction. We are also enhancing our
framework by an intuitive visualization of all data processed by
a query to fully support non-expert SQL users in classification.
Furthermore, we aim to additionally consider unneeded tuples
for a more fine-grained data minimization.

Acknowledgement: The authors would like to thank the anony-
mous reviewers for their valuable remarks.

REFERENCES

[1] Council of European Union. 2016. Council regulation (EU) no 2016/679 of the
European Parliament and of the Council of 27 April 2016 on the protection
of natural persons with regard to the processing of personal data and on the
free movement of such data, and repealing Directive 95/46/EC (General Data
Protection Regulation). OJ L 119 (4 5 2016), 1–88.

[2] Jan Van den Bussche et al. 2005. Towards practical meta-querying. Inf. Syst.
30, 4 (2005), 317–332.

[3] Andreas M. Wahl et al. 2018. A graph-based framework for analyzing SQL
query logs. In Proceedings of the 1st ACM SIGMOD Joint International Workshop
on Graph Data Management Experiences & Systems (GRADES) and Network
Data Analytics (NDA), Houston, TX, USA, June 10, 2018. 11:1–11:5.

[4] Christina Tikkinen-Piri et al. 2018. EU General Data Protection Regulation:
Changes and implications for personal data collecting companies. Computer
Law & Security Review 34, 1 (feb 2018), 134–153.

[5] Divesh Srivastava et al. 2007. Intensional associations between data and
metadata. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, Beijing, China, June 12-14, 2007. 401–412.

[6] Edmon Begoli et al. 2018. Apache Calcite: A Foundational Framework for
Optimized Query Processing Over Heterogeneous Data Sources. In Proceed-
ings of the 2018 International Conference on Management of Data, SIGMOD
Conference 2018, Houston, TX, USA, June 10-15, 2018. 221–230.

[7] Fei Li et al. 2014. Constructing an Interactive Natural Language Interface for
Relational Databases. PVLDB 8, 1 (2014), 73–84.

[8] George Papastefanatos et al. 2005. Hecataeus: A Framework for Representing
SQL Constructs as Graphs. In Proceedings of 10th International Workshop on
Exploring Modeling Methods for Systems Analysis and Design-EMMSAD, Vol. 5.

[9] Magdalini Eirinaki et al. 2014. QueRIE: Collaborative Database Exploration.
IEEE Trans. Knowl. Data Eng. 26, 7 (2014), 1778–1790.

[10] Nodira Khoussainova et al. 2009. A Case for A Collaborative Query Manage-
ment System. In CIDR 2009, Fourth Biennial Conference on Innovative Data
Systems Research, Asilomar, CA, USA, January 4-7, 2009, Online Proceedings.

[11] Nodira Khoussainova et al. 2010. SnipSuggest: Context-Aware Autocompletion
for SQL. PVLDB 4, 1 (2010), 22–33.

[12] Peter K. Schwab et al. 2018. Towards Query-Driven Data Minimization. In
Proceedings of the Conference "Lernen, Wissen, Daten, Analysen", LWDA 2018,
Mannheim, Germany, August 22-24, 2018. 335–338.

[13] Prasang Upadhyaya et al. 2015. Automatic Enforcement of Data Use Policies
with DataLawyer. In Proceedings of the 2015 ACM SIGMOD International Con-
ference on Management of Data, Melbourne, Victoria, Australia, May 31 - June
4, 2015. 213–225.

[14] Sam Lightstone et al. 2002. Toward Autonomic Computing with DB2 Universal
Database. SIGMOD Record 31, 3 (2002), 55–61.

[15] Thibaud Antignac et al. 2014. Privacy Architectures: Reasoning about Data
Minimisation and Integrity. In Security and Trust Management - 10th Interna-
tional Workshop, STM 2014, Wroclaw, Poland, September 10-11, 2014. Proceedings.
17–32.

[16] Michelle Goddard. 2017. The EU General Data Protection Regulation (GDPR):
European Regulation that has a Global Impact. International Journal of Market
Research 59, 6 (nov 2017), 703–705.

[17] Marc Langheinrich. 2001. Privacy by Design - Principles of Privacy-Aware
Ubiquitous Systems. In Ubicomp 2001: Ubiquitous Computing, Third Inter-
national Conference Atlanta, Georgia, USA, September 30 - October 2, 2001,
Proceedings. 273–291.

617


	Query-Driven Data Minimization with the DataEconomistPeter K. Schwab, Julian Matschinske, Andreas M. Wahl, Klaus Meyer-Wegener

