
HASQL: A Method of Masking System Failures
Mark Hannum, Adi Zaimi, Michael Ponomarenko, Dorin Hogea, Akshat Sikarwar, Mohit

Khullar, Rivers Zhang, Lingzhi Deng, Nirbhay Choubey, Joe Mistachkin

Bloomberg L.P.

{mhannum,azaimi,mponomar,dhogea,asikarwar1,mkhullar1,hzhang320,ldeng33,nchoubey,jmistachkin}@

bloomberg.net

ABSTRACT
We demonstrate a methodology of masking system failures in a

way that doesn’t require programmer or operational intervention,

and that strives to be imperceptible to the client. High Availability

SQL (HASQL) masks system failures in a clustered database-

system by seamlessly restoring a transaction’s state against a

different machine in the cluster. We have implemented HASQL

in Comdb2, an open source RDBMS developed by Bloomberg L.P.

To demonstrate, we allow participants to kill (via a button)

database instances one at a time, and all instances simultaneously,

as we execute an ongoing transaction against a Comdb2 cluster.

Upon achieving this, viewers will see the command-line session

and transaction pause briefly as the Comdb2 client-API connects

to a different cluster node and re-establishes the transaction’s

state, allowing it to resume processing at the exact point of the

disconnect. We repeat this demonstration, showing that a trans-

action’s state can be correctly re-established even though it is

midway through consuming a result set.

1 INTRODUCTION
Plummeting hardware prices have created increasing pressure on

software developers to design redundant systems, as the chance

for failure for any component of a system increases over time

(see figure 1). For RDBMS systems, High-Availability solutions

attempt to restore service quickly and minimize the effects of

outages[2]; indeed, many commercial RDMBS systems[3, 5, 6]

support automatic failover to provide uninterrupted service un-

der the loss of part of a database cluster. In traditional failover

strategies, a crashed server will return a CONNECTION LOST error
to the client. Application writers address this by programming

defensively, marrying database API calls to complex and often

poorly tested retry logic[7]. Handling a CONNECTION LOST er-

ror in response to a COMMIT directive gives the programmer the

additional burden of determining the fate of that transaction.

Our contribution is unique in that we show how to provide

seamless continuation of in-flight transactions under an optimistic
concurrency control (OCC) system: HASQL clients do not reissue

SQL in the face of machine failure, and need not be aware that a

machine failure has occurred, as every in-flight transaction will

be automatically re-established and continued against another

machine in the cluster, and any partially consumed result set will

continue to be returned, as the system we describe guarantees

that the client will never experience duplicate or missing data.

Oracle’s Application Continuity[4] feature is a proprietary im-

plementation which achieves the same goal. As we have imple-

mented this as part of an open source system, we are able to

describe our methodology explicitly, and we hope that by doing

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the

22nd International Conference on Extending Database Technology (EDBT), March

26-29, 2019, ISBN 978-3-89318-081-3 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons

license CC-by-nc-nd 4.0.

Figure 1: ’Bathtub curve’ hazard function, adopted from
[1], describes the failure rate of a single-component.

so, other systems can likewise provide this feature to their users.

We note that any correct methodology will ensure that the re-

played SQL modifies the same set of records that would have

been modified on the original host, but that in an OCC system,

write conflicts for replayed transactions are handled in the same

manner as write conflicts for any two competing transactions:

the winning transaction will be allowed to modify the rows in its

write-set, while the losing transaction will return a verify error

to the client. So even though HASQL provides the ability to per-

fectly replay a read-write transaction, as with every transaction

in an OCC system, the replayed transaction will only be able to

commit successfully if the rows in its write-set have not been

modified.

In this paper, we describe HASQL as implemented in Comdb2,

an open source RDBMS developed at Bloomberg L.P.
1
, noting

that a brief overview of HASQL was outlined in [8]. As this

method relies on a limited number of architectural features, we

describe it generally, trusting that it should be straightforward

to implement HASQL in a similar system. Our motivation for

this feature grew organically from Bloomberg’s business need to

have an always available database server and to provide an intu-

itive and reliable software infrastructure layer to its application

developers. HASQL achieves this by shifting the responsibility

for handling hardware failures from the client application to the

database system.

2 SYSTEM OVERVIEW
We now describe the architecture and methodology for imple-

mentingHASQL. See [8] for a comprehensive review of Comdb2’s

architecture.

1
https://github.com/bloomberg/comdb2

Demonstration

 

 

Series ISSN: 2367-2005 610 10.5441/002/edbt.2019.68

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2019.68


2.1 Architecture
A database cluster consists of N database instances running on N

physically separate machines sharing no components and con-

nected to each other by a network. Each instance contains a

complete copy of the data, and is able to start and maintain arbi-

trary point-in-time snapshot transactions.

The cluster maintains a single master which may modify data-

base state, and which synchronously replicates these modifi-

cations to every other instance in the cluster. We assume that

transactions are immutable and are applied atomically on the

master in a serial order defined by the global order of transaction

COMMITs.
For any two committed transactions, T1 and T2, if T1 is com-

mitted first, a point-in-time snapshot transaction started at T1’s

commit point will observe all the effects of T1’s modifications,

and none of the effects of T2’s modifications, while new snap-

shot transactions will observe the effects of both T1 and T2.

Modifications are applied to non-master instances (or replicants)
atomically in the same serial order as they were applied on the

master.

A point-in-time token (or PIT-token) identifies a specific point
in the serial order of committed transactions. Given a PIT token,

each instance is able to produce a snapshot view corresponding

to that point in the serial order. The transaction-id (tid) is a unique
identifier for a transaction; it is generated by the client API at

the beginning of a transaction.

Writes performed against a replicant are not executed locally,

but rather validated and executed on the master after the client

issues a COMMIT. The client API is aware of the cluster’s topology
and maintains a single connection against an arbitrary replicant.

2.2 Methodology
At the beginning of a transaction, the client API generates a

tid, establishes a connection against a replicant (if not already

connected), and retrieves from that instance a PIT-token corre-

sponding to the current state of that instance. As transactions

are applied in the same order on replicants as they are on the

master, the snapshot described by this PIT-token is guaranteed

to be equivalent to the current or some former state of the data

as it existed on the master, and may be used on any instance to

recreate the same snapshot so long as that instance has applied

transactions at least up to that point. During the course of the

transaction, all write statements and the most recent read state-

ment are cached by the client API. It’s important to note that the

results returned by the most recent read statement need not be

retained: rather, the API retains only a count of the rows already

retrieved from an in-flight SELECT statement.

Upon losing connection with the cluster, the client API recon-

nects to a different instance and begins a snapshot transaction at

the time described by the original PIT-token, as doing so ensures

that the client’s view of the database on that instance will be

identical to its view on the original. The client API then re-issues

the transaction’s write statements. If the connection was lost

while the client was consuming results of a read statement, the

client API re-issues the most recent read statement using the

cached count to skip (or alternatively, ask the server to skip)

records that have been previously returned to the user.

At commit time, the tid is used as a key to store the trans-

action’s result in a replicated global-transaction-table. The pre-
existence of a tid in the global-transaction-table indicates that

the transaction has already executed, and that the current thread

N1

N2

N3

Comdb2 Cluster

Client

(a) Client’s Connection to instance N1 gets sev-
ered

N1

N2

N3

Comdb2 Cluster

Client

(b) Client reconnects to instance N2

Figure 2: Connection to Cluster gets severed and Client
subsequently reconnects to a different instance.

should roll back any work that it has done and return the origi-

nal result to the client. The tid and the global-transaction-table

ensure that a transaction will only be executed once should the

client API replay a transaction after issuing a COMMIT.

2.3 Illustrated Example
We describe a concrete example using the event diagram shown

in Figure 3. Events in green represent SQL statements submitted

by the user. Events in blue represent operations executed on

behalf of the user by the client API code. Server responses are

displayed in black.

As previously described, upon beginning a transaction, the API

generates a unique tid, which is sent to the server along with the

BEGIN statement. The server responds with the PIT-token. Each

write statement of the transaction is cached locally as it is sent

to the server. Figure 3 shows a failure occurring after reading the

second record of a SELECT statement. The client API reconnects

to Node 2, begins a transaction at the point-in-time described

by the PIT-token, reissues the transaction’s write statements,

and the most recent incomplete SELECT. As the first two rows

611



have been returned to the application, the client API skips them,

returning the third result row to the caller. The client finally

issues a COMMIT to complete the transaction.

2.4 Considerations
The HASQL scheme as described above works with SQL which

behaves deterministically. It requires that each participating in-

stance impose the same implicit order for results not sorted by

an ORDER BY clause. We note also that the implicit ordering re-

quirement does not exclude server-side parallelism, but concede

that any ORDER BY clause, either explicit or implicit, may incur a

performance penalty.

Node 1 Node 2

BEGIN tid=12

PIT=12:53854

INSERT ... VALUES(1)

INSERT ... VALUES(2)

ok

ok

SELECT ...

row 1

row 2

INSERT ... VALUES(1)

INSERT ... VALUES(2)

ok

ok

SELECT ...

BEGIN PIT=12:53824 tid=12

row 3

done

COMMIT

ok

Application

row 2 (skipped)

row 1 (skipped)

ok

Figure 3: Example HASQL sequence: After connection to
Node 1 is severed, Client Application reconnects to Data-
base Cluster Node 2, and continues processing where it
left off.

Wenow consider strategies for handling other non-deterministic

SQL. Rather than attempting to address this exhaustively, we con-

sider two situations which can employ a similar strategy; we offer

this strategy as a blueprint for how non-determinism might be

addressed.

BEGIN

DELETE FROM schedule WHERE updatetime <= NOW()

SELECT * FROM schedule

COMMIT

Listing 1: SQL using the NOW() function

If replayed, the NOW() function will execute at a different time

on a second machine, and delete a different set of records. A

replay which occurs during the SELECT could have already re-

turned records which are deleted on the retry. The replay would

subsequently skip over non-deleted records, as the client API’s

cached count pertains to the original result set. To address this,

we propose that NOW() be frozen during the course of a snapshot

transaction, always returning the wall clock time of the BEGIN
issued on the original node. This time can be included as part of

an extended PIT-token.

BEGIN

UPDATE contestants SET winner = 1 WHERE

ticketnumber = (SELECT ticketnumber FROM

contestants ORDER BY RANDOM() LIMIT 1)

SELECT * FROM contestants ORDER BY ticketnumber

COMMIT

Listing 2: SQL using the RANDOM() function

Because RANDOM() can return a different value on the replay

machine, the re-issued UPDATE statement can update a different

record. Should a replay event occur while retrieving results from

the SELECT, the result set can show that two different contestants

have winner set to 1. A system could work around this issue by

making note of the RANDOM() number generator’s current seed
value at the beginning of a transaction. A replicant which seeds

its RANDOM() number generator with this value should return

the same sequence of random numbers as the original machine.

As with NOW(), the seed value could be included as part of an

extended PIT-token.

3 DEMO
We present a simple interactive demonstration which exhibits

the HASQL scheme. We begin by starting a 3-node cluster and

presenting a volunteer with three buttons, each programmed

to stop and restart the database instance running on one of the

cluster nodes. From a separate machine, we open a command-line

session and begin a transaction against this cluster. Our volunteer

will be instructed to press, at his or her discretion, the kill-and-

restart-button corresponding to the machine that is currently

executing the transaction. We present this as a simple game,

allowing us to demonstrate the HASQL feature in a lighthearted

and engaging way.

When the volunteer kills the correct instance, spectators will

see the client-session pause briefly as the client API reconnects

to a different cluster machine. We encourage our volunteer to kill

and restart the active cluster node multiple times as we continue

the transaction, being sure to demonstrate HASQL’s ability to

resume a transaction in the middle of retrieving a result set.

We then perform a second demonstration which is identical to

the first, except that instead of killing a single cluster node, we ask

612



Figure 4: Demonstration of HASQL with additional trace
enabled. Left panel shows trace emitted from client ap-
plication. Right panels show trace emitted by the three
Comdb2 cluster nodes. Server instance on Node 1 (top-
right) was manually terminated.

three volunteers to kill all three cluster nodes simultaneously. As

the cluster restarts, spectators will see again that the transaction

is resumed seamlessly.

We proceed to describe our implementation of HASQL, and

repeat both demonstrations with additional trace enabled, which

allows audience members to witness the sequence of events out-

lined in Figure 3. In contrast to seemlessly continuing a transac-

tion, this demonstration seeks to exhibit HASQL’s underlying

mechanism.

We further exploreHASQL’s behavior by repeating both demon-

strations, this time with an increased number of database in-

stances, and with varying levels of background writes. Specta-

tors will observe that HASQL’s performance is unaffected by the

increased cluster size, but that it is directly impacted by external

writes to a table which an HASQL transaction reads. We use

this as a starting point for a discussion of Comdb2’s implementa-

tion of point-in-time snapshot isolation and other architectural

features of Comdb2.

4 FUTUREWORK
A transaction which survives a machine crash naturally takes

longer to complete. While this does not effect the correctness

of a read-only query, the increased transaction time increases

the likelihood that a write transaction, T1, will fail, as it allows

greater opportunity for a competing transaction to write in the

space of T1’s write-sets. This is a small concession to make, as

prior to HASQL, a machine crash would certainly cause T1 to

fail, and there are a great number of non-intersecting write loads

that would permit T1 to commit.

Future work includes finding ways to minimize the amount

of time it takes to restore a partially completed transaction. We

observe that the slowness is most pronounced when a machine

crash occurs after a client has retrieved a substantial part of a

large result set which must be skipped.

We could gain substantial improvement by maintaining si-

multaneous connections to multiple cluster machines, using the

original PIT-token from the primary connection to establish one

or more secondary connections. Each SQL statement would be

issued to the primary and to the secondary handles in lock-step.

In the normal case, the redundant sessions are essentially wasted

computing power, but as hardware resources continue to become

cheaper, this may eventually be a valid concession to make.

5 CONCLUSION
HASQL’s contribution is one of resiliency: application devel-

opers need not know or care if the underlying system has ex-

perienced a critical error. We believe this is superior to other

failover schemes, where a machine failure, in addition to failing

all outstanding transactions, can stall clients for several minutes

before a failover machine is available. An API return code which

does not designate the success or failure of an operation places a

disproportionate burden on the application programmer in an-

swering a question which would be more appropriately addressed

by the database system itself. Though we concede that this is

unavoidable at times, HASQL addresses a significant subset of

these errors. As hardware is guaranteed to fail, it is the respon-

sibility of system designers to minimize the impact of failure.

HASQL demonstrates an intelligent way to utilize increasingly

less expensive hardware to create more robust service.

REFERENCES
[1] Bathtub curve. https://en.wikipedia.org/wiki/Bathtub_curve. Accessed: 2017-

11-17.

[2] Gray, J. N., and Siewiorek, D. P. High-availability computer systems. IEEE
Computer 24 (1991), 39–48.

[3] MySQL. Mysql high availability. https://www.mysql.com/products/enterprise/

high_availability.html. Accessed: 2017-11-17.

[4] Oracle. Application continuity. https://www.oracle.com/database/

technologies/high-availability/app-continuity.html. Accessed: 2018-11-28.

[5] Oracle. Oracle database high availability. https://www.oracle.com/database/

high-availability/index.html. Accessed: 2017-11-17.

[6] PostgreSQL. Postgresql high availability. https://www.postgresql.org/docs/8.

3/static/high-availability.html. Accessed: 2017-11-17.

[7] Scotti, A. Adventures in building your own database. In In All Your Bases
Conference (November 2015).

[8] Scotti, A., Hannum, M., Ponomarenko, M., Hogea, D., Sikarwar, A.,

Khullar, M., Zaimi, A., Leddy, J., Angius, F., Zhang, R., and Deng, L. Comdb2:

Bloomberg’s highly available relational database system. PVLDB 9, 13 (2016),
1377–1388.

613


	HASQL: a Method of Masking System FailuresMark Hannum, Adi Zaimi, Mike Ponomarenko

