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ABSTRACT

Today’s databases excel at processing data using simple, mostly
arithmetic operators. They are, however, not efficient at process-
ing that includes pattern matching, speech recognition or similar
tasks humans can execute quickly and efficiently. One of the few
ways to integrate such powerful operators into data processing
is to simulate neural networks or to resort to the crowd.
Neuromorphic hardware will become common-place in com-
plementing traditional computing infrastructure and will, for the
first time, enable the time-efficient emulation of neural networks.
Given the impact hardware accelerators like FPGAs and GPUs
had on querying, the question is if neuromorphic devices can be
used to a similar effect by enabling richer database operators.
In this paper we thus discuss how neuromorphic devices can
be used as database co-processors. The goal of this paper is to
understand their potential as well as limitations, what future
developments will make them suitable to accelerate databases and
what the research challenges are. We also evaluate a prototype
implementation of a query operator on neuromorphic hardware.

1 INTRODUCTION

While today computers have a clear advantage over the brain
in terms of raw computing power, the brain is superior in error
resilience and speed for approximate tasks like understanding
speech or recognizing objects. It is for these reasons but also
due to the limitations of current CPU designs (pin bottleneck
limiting data transfer, limited heat dissipation, power supply)
that scientists have developed neuromorphic devices which for
the first time enable the energy and time-efficient simulation of
spiking neural networks (SNN).

The vision is that neuromorphic devices will be as prevalent as
FPGAs or GPUs are today: in a first instance neuromorphic chips
can be plugged into existing systems and computations are of-
floaded (e.g., image recognition). Later, neuromorphic chips may
share sockets and caches to accelerate exchange of data. With
Intel, IBM and others developing neuromorphic hardware, the
question is not if, but rather when, it will become commonplace.

Research has developed methods by which hardware accel-
erators are used to accelerate queries. GPUs are used to offload
parallel computation (e.g., joins [14]) while FPGAs are used to
compute histograms when data is read from storage [13, 20].

The question we thus ask is how neuromorphic hardware will
support query execution in databases. In this paper we first dis-
cuss what neuromorphic hardware is and how it can be used to
simulate spiking neural networks. We then discuss how neuro-
morphic hardware has the potential to act as a co-processor for
databases to offload computation which is best executed using a
SNN. We finally also discuss a prototype application.
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2 SIMULATING NEURAL NETWORKS

The simulation of neural networks and neuronal activity is not a
new development. Perceptron-based multilayer networks have
been used for decades in applications like pattern recognition
and memory. With neuromorphic hardware, however, it is for
the first time possible to efficiently emulate large SNNs.

In neural networks, neurons communicate via spikes, that is,
discrete events that occur at defined times. Depending on the
weight of the synapse, these events either increase or decrease
the probability that the receiving neuron will produce a spike.

Over time, neuron models of increasing bio-realism and thus
complexity have been proposed. Early models did not use voltage
spikes, but used neurons as threshold gates that simply add input
and fire once the threshold is exceeded [18]. These neuron models
only take binary input, produce binary output and can thus be
used to compute any boolean function.

Next generation neuron models based on the perceptron [24]
use an activation function (typically sigmoid or a linear satu-
ration function) on the sum of weighted inputs to compute a
continuous, differentiable output. Concatenated ensembles of
perceptron units are able to approximate arbitrary functions and
can thus be used as universal classifiers in pattern recognition.

More powerful than this are networks with spiking neurons.
They use a model of a neuron that receives several spikes, adds
them up to the local potential P over time and fires a spike once
P exceeds a given threshold. Information can thus not only be
encoded in the number of spikes, the firing rate, but also in
the timing of spikes [10]. From an information theory point of
view we can encode more information and reduce the number of
neurons to perform the same computation with this approach.

Additionally, the time-dependence of spiking neural models en-
ables using additional learning algorithms that operate in the time
domain. In neural networks that use non-spiking models, learn-
ing is achieved through backpropagation of errors [25], where
synaptic weights are iteratively adjusted until the applied stimu-
lus leads to the desired output. In spiking networks, this learning
rule is extended with spike timing or spike-timing-dependent
plasticity (STDP). In STDP, the weight of a synapse changes as
a function of the time difference between spikes produced by
the pre- and the postsynaptic neuron (neuron before and after
the synapse). In STDP, a synapse is strengthened when the pre-
synaptic neuron fired a spike shortly before the post-synaptic
neuron fired. Vice versa, the synapse is weakened if the post-
synaptic spike precedes the pre-synaptic one [2]. STDP thus
extends firing-rate based learning by including spike timing.

3 NEUROMORPHIC DEVICES

The brain is a massively parallel system of highly interconnected
but computationally simple neurons. Neurons act entirely event
driven and thus operate asynchronously, integrating incoming
spikes and sending spikes to other neurons.

Integrating spikes is very efficiently done on von Neumann
based hardware (traditional CPUs or GPUs) while other aspects
cannot be executed efficiently. First, to simulate, a very high
number of very small messages (i.e., spikes) must be sent be-
tween neurons. While spikes are encoded with a few bits, most
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communication protocols require an order of magnitude more
bits for header and routing information alone. Moreover, today’s
communication protocols lack efficient means for multi-cast com-
munication which is crucial to send the same spike to a large set
of neurons. Second, while neurons are only active when receiving
and processing spikes, traditional CPUs or GPUs are always on,
rendering the simulation of SNNs energy inefficient.

3.1 Brain-like Hardware

With these challenges, traditional CPUs or GPUs cannot effi-
ciently simulate SNNs. As a consequence, neuromorphic hardware
is being developed to better support simulation of SNNs. While
the design depends on the manufacturer, all proposals are driven
by similar ideas.
Computation: Key to neuromorphic hardware is massive par-
allelism, i.e., a large number of computational units/cores. Each
of the cores has the relatively simple task of simulating several
neurons and it can thus be comparatively wimpy (few FLOPS).
Communication: Unlike traditional communication between
cores or computers, the payload sent between neurons is very
small as only the timing of the spike matters. This information can
be encoded in a few bits (40-72). Key to neuromorphic hardware
thus is an efficient communication optimized for small payloads.
Given the massive number of connections between neurons,
multicast communication must also be efficiently supported.
Energy Efficiency: Since the computational requirements to
model neurons are modest, the computing infrastructure can be
of low complexity. Also, since neurons operate fully event-driven,
there is no need for global synchronization. These properties
allow for making neuromorphic devices very energy efficient.

3.2 State of the Art Devices

The prototypes developed share key features like a massively par-
allel infrastructure with a fast interconnect for small messages.

For example, the SpiNNaker architecture is based on a large
number of ARM processors [8]. Memory with little capacity is
local to each processor (which itself has several cores) while there
is also slower, global memory used for communication between
processors. More important is a very efficient communication
infrastructure for small packets (~24 Bytes for a spike).

IBM’s TrueNorth project is a platform with 4096 cores each
simulating 256 neurons [19]. Similar to SpiNNaker, memory,
computation and networking is handled locally by each core,
therefore moving past the von Neumann architecture. With an
event driven model where cores are only powered when needed,
TrueNorth reduces energy consumption similarly to SpiNNaker.

Intel’s design reduces energy consumption by using spin de-
vices to simulate the neurons (thereby restricting the neuron
models that can be used) as well as memristor as local memory
(to store synapse weight) [27].

Spikey [23] takes energy efficiency even further by using a
mixed-signal approach. Neurons are implemented using analog
elements. While this makes them more bio-realistic, it limits
the flexibility to use arbitrary neuron models. New models can-
not simply be implemented through programming, but require
changes in the hardware. Nevertheless, Spikey has proven to be
versatile enough to implement a wide range of networks [23].

4 APPLICATIONS IN DATA MANAGEMENT

Spiking neural networks are capable of modelling arbitrary com-
plex processes thanks to their ability to represent different infor-
mation dimensions, such as time, space, frequency and phase.

In this section we discuss applications where neuromorphic
hardware can support databases. In the applications we discuss,
extracting all features a priori and storing them in a database
may at first seem an option but is unfeasible as the feature space
will explode, thus requiring excessive storage space.
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The simulation of SNNs is thus key. Any application based on a
SNN can be simulated on a CPU or GPU but only inefficiently. The
benefit of using neuromorphic hardware is that it can run bigger
SNNss faster and crucially, substantially more energy efficient.

While there is a plethora of potential applications which can
be simulated with SNNs, our discussion is primarily driven by
application domains where SNNs are used successfully.

4.1 Multimedia Databases

Neural networks can be used for data classification [26] but they
prove particularly useful for recognising media. Several SNNs
have been trained based on supervised learning methods [3, 21,
22, 26] and have been tested on imaging benchmarks. SNNs
frequently outperformed non-spiking classification methods [3].
Content-based Image Retrieval Research has produced mul-
tiple approaches for content-based image retrieval in multimedia
databases [4]. Most approaches are based on two phases: feature
extraction (i.e., color, shape and others) and the indexing of the
features [17]. Feature extraction is application specific [4] while
indexing is general and based on high-dimensional indexes for
similarity searches (R-Trees [11] and variants).

State-of-the-art approaches generally have two shortcomings.
First, the semantic gap [6] means that it is very challenging to de-
termine the semantics of an image from its low-level features, i.e.,
there is little connection between pixel statistics and the seman-
tics of an image. Second, due to the high number of dimensions of
extracted features and the curse of dimensionality, content-based
retrieval of images is not efficient and scales poorly [5].

Spiking neural networks, however, are very useful for image
and pattern recognition [1]: using a network with spike-timing
dependent plasticity, one of the images is presented to a two layer
network in the learning phase. The presentation triggers a single
spike in each neuron in the first network layer and the incoming
activity propagates to the next layer. The first neuron to fire
in the second layer inhibits its neighbors and triggers learning.
As a result each neuron fires if again presented with the same
image. The learning step is substantially faster compared to other
methods (particularly backpropagation) as is the recognition step.

Using spiking neural networks for image retrieval in multi-
media databases (or databases in general) thus has two major
advantages. First, using SNNs, no feature extraction is neces-
sary and the method consequently can work directly on the raw
data. By doing so there is less risk of basing retrieval on a highly
specific set of features. Whether the use of SNNs bridges the
semantic gap, however, has not been determined yet [1] but it de-
couples image recognition from features. Second, by using SNNs,
no high-dimensional indexes are needed and image retrieval is
more efficient and scales better. By simulating SNNss efficiently,
neuromorphic hardware enables their use for image retrieval.
Audio & Video Retrieval The problem of audio and video re-
trieval is very similar to image retrieval with the difference that
both also have a time dimension, e.g., videos have consecutive
different frames. Simple approaches for video retrieval are based
on the same ideas as image retrieval with a additional features
drawn from changes between frames. By doing so they have the
same drawbacks as current image retrieval methods.

Spiking neural networks support time very well. Any stimuli
of a SNN is time-based, e.g., even images need to be encoded as a
succession of neuron stimuli over time. SNNs and neuromorphic
hardware thus lend themselves well for audio or video [28].

4.2 Spatial Indexing

A vast number of spatial indexes has been developed [9]. Many
spatial indexes (particularly based on data-oriented partition-
ing like the R-Tree and variants), however, suffer from limited
performance due to overlap and dead space in the index [11].



SNNs have also been used for spatial navigation: through
learning mental maps of the environment it enables planning of
paths [12]. The particular neuron in the network is activated as a
simulated animal explores different locations in the environment
and connections between neurons activated in a close temporal
proximity are strengthened, i.e, cells representing neighboring
locations develop strong synaptic interactions. This mechanism
can be used for answering nearest neighbor queries.

A SNN run on neuromorphic hardware thus has the potential
to execute nearest neighbor queries and planning paths.

5 CHALLENGES

We propose to use neuromorphic hardware as a co-processor for
databases. We use the hardware to efficiently simulate a SNN
for a complex query operator, e.g., pattern recognition for image
retrieval. The associated research challenges can be identified for
neuroscience and data management research alike.

On the level of hardware, while existing neuromorphic hard-
ware already scales substantially better than traditional von Neu-
mann architectures, it has to be investigated how current ap-
proaches can scale to simulate SNNs beyond millions of neurons,
so that more sophisticated operators can be implemented.

Regarding neuroscience, the challenge lies in finding more
SNNs that solve generic computing problems and are amenable to
simulation on neuromorphic hardware. Several such SNNs have
been developed but more applications from human cognition
need to be considered as they are useful as database operators.

On the level of databases the challenges are as follows:

5.1 Data Preparation/Encoding

The data in the database and the query need to be encoded for
the neuromorphic hardware. More precisely, as is common for
SNN, the data needs to be encoded as temporal spikes that can
be fed into the system. Consider, for example, pattern recognition
in images. All images as well as the query need to be encoded as
temporal spiking patterns for it to be matched on a SNN.

Encodings for video and audio can be computed very effi-
ciently: because they already have a temporal structure, data
like movies or sound are converted to sequences of spikes using
little computational effort. Similarly, for imaging data, sensors
are available that efficiently produce time series of spikes [16].

As numerous examples of functional SNNs show, it is often
possible to convert arbitrary data into spikes. Whether the effort
to produce such an encoding is outweighed by the gain in compu-
tational power that a SNN will provide over more conventional
approaches of data processing, however, is questionable.

Furthermore, while the same encoding can be used for match-
ing different queries, it is very likely that different query opera-
tors will benefit from encoding that is tuned to that particular
operator. A more difficult challenge thus is to decide what en-
codings should be stored and the organization in storage. It may
suffice to only store the difference between encodings instead of
storing one encoding per operator.

The most difficult challenge, however, is how to execute queries
on multiple attributes. Going back to the imaging example: a
query may restrict the area in which to find a particular pattern.
Restricting the area on an already encoded imaging is difficult as
all positional information (about the area) is lost in the encoding.

5.2 Query Planning

Current prototypes of neuromorphic hardware have a very lim-
ited interface to move data making query execution challenging.
Modelling Execution Cost A crucial question is when SNNs
are run faster on neuromorphic hardware compared to the CPU.
The query plan has to consider a cost model with the time to
transfer data to and from the device and the execution time of
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the simulation. Execution time, however, is not the only con-
sideration as running an operator on the device is more energy
efficient than on the CPU. A second consideration thus has to be
the energy needed to move the data and to run the SNN.
Query Optimization Given the high cost of moving data, mov-
ing all data to the device should be avoided. Considering the
selectivity of predicates other than SNN (e.g., metadata infor-
mation) early in the query plan is therefore imperative. Further,
a crucial research challenge is to investigate if features in the
raw data can be identified, extracted and indexed such that they
can be used early in the query execution to curb data movement.
Selecting the features is very challenging without reintroducing
the semantic gap known from image retrieval.

5.3 Query Execution

Setting Up New Operators To define an operator, a network
needs to be trained by adjusting synaptic weights. Key to the
training phase is to encode the stimulus appropriately and inject-
ing all learning stimulus consecutively to train the network. The
learning phase can also be performed in a simulated environment
and the resulting weights can be transferred to the hardware.
Swapping Operators One network cannot serve all purposes
so operators/networks need to be loaded and unloaded. The state
of a SNN or operator is captured in the neurons, their placement,
their interconnections and the synaptic weights.

To swap an operator, a new SNN needs to be set up by loading

neurons and synapse weights which is a slow process. In many
cases, however, it may suffice to only define rules and derive the
precise connections/network on the fly.
Interpreting Results Depending on the SNN, the result is in-
dicated differently. In some cases the result is binary, i.e., one
neuron being active indicates the result. In other cases, for ex-
ample in case of the spatial application, the proximity of two
points is expressed by the proximity of two active neurons. Each
operator must therefore come with an implementation of an
interpreter able to understand the result.

The major research challenge is how ambiguous simulation
results are interpreted. The result is rarely precise and this ambi-
guity has to be propagated to the user. One approach is the use of
ideas from uncertain databases, e.g., attribute-level uncertainty.

6 CURRENT LIMITATIONS

Neuromorphic hardware still is a new proposition and most
available prototypes focus on the efficient execution of SNNs as
a proof of concept whereas the programmability, data transfer
and others are currently only second order considerations.
Moving Data: Current hardware, in particular the SpiNNaker
system, has a very limited interface to move data to and from
the device (Ethernet interface with 100MBps). The issue of band-
width will, however, be addressed if neuromorphic hardware
demonstrates its usefulness.

Simulation Size: The current challenge for hardware developers
is increasing the capacity of neuromorphic systems. The largest
systems today can simulate at most millions of neurons. Nev-
ertheless, it is believed that scaling the number of neurons up
to the human brain (i.e., 10!° neurons) will give neuromorphic
systems the ability to infer relationships in data of a complexity
that is inaccessible to conventional computers [7].

7 PROTOTYPE IMPLEMENTATION

To show the basic feasibility of using neuromorphic hardware as
a database co-processor, we implement a proof of concept based
on a simple application. Clearly this is only an example with
several obvious optimizations which we address in future work.



7.1 Sample Application

As our sample application we use the recognition of digits in
images [26]. Images containing hand written digits are stored
as bitmaps in the database and a users query to find images
containing a particular digit. To answer a query, a SNN run on
neuromorphic hardware infers the digit in the image. The SNN is
trained offline by showing sample digits (0 - 9) from MNIST [15].

In the current implementation we use the same digits for learn-
ing and querying. We do so to avoid the challenge of interpreting
the result — an open research challenge as we discussed. Hence,
when training we store the response (active neurons) to the stim-
ulus for a particular digit. When asking what images contain a
particular digit, we present the stored images to the SNN and
compare the stimulus response (active neurons) with stored re-
sponses. Due to the nondeterminism of SNNs, the stored and the
current result may not be identical. We thus compute the share of
active neurons the current and the stored response agree on and
consider the result a match if it exceeds a predefined threshold.

Compared to preprocessing all data and storing the result, we
remain flexible as the SNN can be updated and ran on the hard-
ware to query the data (with potentially more accurate results).

7.2 Setup

For the current implementation we use Postgres. Given the im-
ages from MNIST are stored as bitmaps, we store them as two
dimensional arrays without need for transformation.

We use a user defined C function in Postgres: given a number
n and a images stored in a table ¢, the UDF presents all images in
t to the classifier and returns the ones likely to contain n.

For the experiments we use a 4 chip SpiNNaker board [8], the
smallest board but adequate for a proof of concept. The board has
72 identical Arm968 processors (18 per SpiNNaker chip) operating
at 200MHz. The SpiNNaker board currently only provides an
Ethernet interface which connect to the host running Postgres.

7.3 Experimental Analysis

Training the SNN takes on average 68.2 seconds. The vast major-
ity (95.5%) of time is spent transferring data: images to the device
(8.4%), reading the stimulus responses (29.2%) and reading the
trained SNN (57.9%). Learning only takes 3.1 seconds as each of
the hundred digits is exposed to the SNN for 20ms.

Querying for one number — classifying all images and finding
the ones matching the user input — takes on average 52.5 seconds.
Most time is spent on moving data, i.e., moving the trained SNN
(84.4%) and sending all images (10.5%) to the device. Classification
on the device takes 0.2s while the time spent in the UDF is 2.48s.

Clearly, querying (as well as learning) suffers from loading
(and storing) the SNN — the main bottleneck. Even without,
however, moving the images is a very costly operation. The time
for learning and classifying, on the other hand, is insignificant.

7.4 Open Challenges

As simple as the example used is, it shows some of the challenges
discussed. A major challenge is the transfer of data. Currently
this can only be done through Ethernet and is slow but future
versions will have SATA and TrueNorth, for example, uses PCIL.

Related to the limited bandwidth is the challenge of reducing
the data moved: only images which contain the digit with high
probability should be moved. Means to index the stimuli need to
be devised so that a preselection of images can be performed.

Finally, scoring the result (and the inherent uncertainty) is a
challenge which we worked around. Clearly, better approaches
need to be devised for more sophisticated applications.

8 CONCLUSIONS

While neuromorphic hardware systems are still maturing, the
high-level design is well-defined and the benefits are clear. It is
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thus the right time to start assessing the viability of neuromor-
phic applications. In this paper we have sketched the research
challenges for query execution. Some challenges are implied by
the prototypic nature of the hardware, but most are due to more
fundamental reasons (e.g., query planning). By addressing these
challenges we believe neuromorphic hardware will enable the
efficient execution of more sophisticated query operators.
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