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ABSTRACT
There is a new generation of databases specifically addressing
Big Data Variety: Multi-model databases store and process struc-
turally heterogeneous data, managing several data models in
one integrated backend. Yet one of the many challenges these
systems face is evolution management. In our demonstration,
we present our prototype implementation of a tool called MM-
evolver. MM-evolver carries out user-triggered schema modifi-
cation operations over a multi-model database, and propagates
them across all models. As a novelty, MM-evolver supports both
inter- and intra-model schema modification operators. To the
best of our knowledge, ours is the first tool addressing evolution
management in the world of multi-model databases.

1 INTRODUCTION
In recent years, the Big Data movement has broken down the
borders of many technologies and approaches that have so far
been acknowledged as mature and robust. One of the most chal-
lenging issues is the “Variety” of Big Data. Data may be present
in various types and formats – structured, semi-structured, and
unstructured – and produced by different sources, and hence
natively have various models.

The challenge of handling variety has inspired a new gen-
eration of dedicated multi-model databases (MMDs), capable of
storing and processing structurally different data, by supporting
several data models in a single DBMS having a unified query
language and API. The MMD way of solving the polyglot per-
sistence problem offers advantages in data modeling, allowing
to represent data in its most native model. This can be consid-
ered as opposite to the “One Size Does Not Fit All” argument [10].
However, it can be also understood as a way of re-architecting
traditional database models to address new requirements [4].
Nothing shows the picture better than the Gartner Magic quad-
rant for operational database management systems [3], which
(correctly) assumed that, by 2017, the majority of leading DBMSs
will offer multiple data models in a single DBMS platform.

To illustrate the challenge of multi-model data management,
consider the simple example depicted in Figure 1. There we have
data with four distinct data models. Customer data is stored in a
relational table – their ID, name, and credit limit. Graph data bear
information about mutual relationships between the customers,
i.e., who knows whom. In JSON documents, each order has an ID
and a sequence of ordered items, each of which includes product
number, name, and price. The fourth type of data, key/value pairs,
bears a relationship between customers (or rather, their IDs) and
orders (or rather, their IDs).
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Figure 1: A multi-model data scenario [6]

One of the many challenges [6] these systems are facing is
evolution management. As user requirements change, the data
structures evolve, and, consequently, also the respective storage
strategy, queries etc. This problem is challenging even in the
world of single-model databases. In simpler applications, we can
rely on a skilled DB administrator, but in more complex situations
it is a difficult and error-prone task. In addition, we can observe
contradictory approaches to this problem in different types of
DBMSs. In the world of traditional relational or XML databases,
the evolution of data structures requires immediate changes in
the schema.With NoSQL systems, we can (to some extent) exploit
the schemalessness and ability to store data with similar, but not
necessarily the same structure. Considering the existence of a
schema, another complication is existence of schema-full, schema-
less and even schema-mixed MMDs. Consequently, the problem
of evolution management in MMDs is much more complex.

Consider again Figure 1. We may want to add a new property
to one of the models (e.g., an address to JSON documents rep-
resenting orders), which does not affect the other models. But,
later we may decide to move this property to another model (e.g.,
to represent addresses in the relational model instead). Hence,
we need to change data in both models. In addition, there might
already exist a reference to the modified property, which then
needs to be updated accordingly.

To address the indicated problems, we extend our previous
research results [7, 8] for single-model systems (XML or rela-
tional) or systems with closely related models (namely aggregate-
oriented NoSQL). In this demonstration, we present a tool called
MM-evolver, which carries out user-required changes over amulti-
model schema and propagates them across all sub-models. To the
best of our knowledge, this is the first solution addressing the
problem of evolution management in the world of multi-model
databases. We see it as the first step towards a unification of
evolution management across multiple models.

In the remainder of this paper, we introduce the ideas imple-
mented in MM-evolver and outline our demonstration.

Demonstration
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2 MULTI-MODEL EVOLUTION
MANAGEMENT

There are two main approaches to supporting different models:
• Complex engine (e.g., CouchBase [2]) – TheDBMS trans-
forms all supported data types to a single core model. Its
engine has to pre-process and map all operations to the
core model.

• Layer-based architecture (e.g., Oracle Database 12c [1])
– The DBMS supports different models via different lay-
ers on top of an engine. Data are stored in the relevant
model. Each data model has its own component which
communicates with the engine.

We focus on the layer-based architecture, which is used in a
significant portion of existing MMDs, because there is no need
to introduce a generic approach for specific complex engines,
since they often internally map all supported models onto a sin-
gle model. Figure 2 shows two main layers of the layer-based
approach inspired by the principles of the Model Driven Archi-
tecture: model-specific and model-independent1. For the sake of
simplicity we assume that the data in the individual models have
a schema. However, such a schema does not have to be explicitly
defined. It can be a kind of an agreed structure, as often used in
practice. The engines in the model-specific layer can thus differ
also with regards to this aspect.

The MMD engine is located in the model-independent layer.
It is a facade for functions of the database, such as queries, and
distributes queries and commands to the respective individual
models. Also, it collects data from them and creates the final
result for the user.

2.1 Database Schema Evolution Language
Our aim is a general solution for schema evolution in MMDs and
the following models as the most common representatives: (1)
relational, (2) column, (3) graph, (4) key/value, and (5) document
(i.e., JSON or XML). By the generic term kind, we refer to an
abstract label that describes or groups related records. In the rela-
tional model, this corresponds to a table. Some MMD vendors use
the terms class (as in OrientDB2) or collection (as in ArangoDB3).

First, we settle on a common set of operations which can
be supported by all models. For this purpose, we extend the
work from [9], where the NoSQL Schema Evolution Language
(NoSQLSEL) covers most of the representatives, namely the ag-
gregate-oriented NoSQL databases, i.e., document, column and
key/value models. It involves three basic operations that affect
all entities of a given kind to (1) add (introducing a new property
with a specified default value), (2) delete (removing a property),
and (3) rename (changing the name of a property). It further
involves operations to (4) move (removing a property from one
kind of entity and adding it to another one), and (5) copy (copying
a property from one kind of entity to another one).

In order to avoid complex extensions of NoSQLSEL towards
the missing models, we use a strategy common to most of the
existing MMDs [5], i.e., a kind of a unification of the models. For
example, we can treat the graph model like ArangoDB, where
special edge collections bear information about edges in a graph
whose nodes correspond to documents. Similarly, we can as-
sume that entities are represented as rows in a specific table and

1We borrow from the idea only two layers (levels) and call them slightly different
to express our specific context.
2https://orientdb.com/
3https://www.arangodb.com/

their properties are columns of the table, where each entity has
a unique identification id. We call this extension covering the
model-specific layer the Database Schema Evolution Language.4

2.2 Multi-Model Schema Evolution Language
Having a common interface supported by all models in the model-
specific layer, we can introduce theMulti-Model Schema Evolution
Language (MMSEL) which is executed in the model-independent
layer. The multi-model engine has to distinguish which models
are affected by a given operation and propagate the operations
to them. We can divide the operations into two separate groups:

• Intra-model operations (i.e., add) affect just one model.
• Inter-model operations (i.e., copy,move, delete and rename)
can affect multiple models5. The first two can also trigger
data transfer between a source and a target model; the
last three can trigger changes in other models, due to
references that need to be updated accordingly.

Figure 3 shows the EBNF grammar for the MMSEL syntax and
Figure 6 shows an example statement. Intra-model operations, as
well as inter-model operations operating within a single model
are propagated by the multi-model engine to the specific target
model(s) which is/are already able to ensure correct data pro-
cessing.6 When entities should be transferred between models
(i.e., copied or moved), the multi-model engine gets all entities
of the given kind from the source model and inserts them into
the target model. In case of operation move, it has to delete them
from the source model. It is also able to track all cross-model
references. When the engine detects a change in a referenced
entity, it propagates these changes to the referencing entity.

2.3 Implementation of MMSEL
The core logic of the MMSEL happens in the model independent
layer. Internally, MMSEL schema modification operations are
translated into a lower-level language, which we introduce next.
To distinguish between the models, we introduce the data model
set DMS = {column,document ,key/value,дraph, relational} and
amodel key δ : δ ∈ DMS . To create an abstract model of the MMD,
we follow the notation from [9] which uses the term application
state for the current state of the application space. It is a non-
persistent application memory. Database state is the current state
of the database and it represents all stored data.

We need to call specific schema evolution functions in specific
models. Consequently, we introduce a modified set of functions
called Multi-Model Database Programming Language (MMDPL)
which extends the NoSQL Database Programming Language [9]
with DMS operations (see Figure 4). The main difference is in
operations for getting entities from the database and to save them
in the database. Function empty does not modify the application
space or the database. Despite the original plan of having a com-
mon set of operations, we decided to use it for the key/value
model, where there is no support for operation move since in
this model, entities do not have several properties, just a sin-
gle, opaque value. Otherwise it could be implemented as rename.
The remaining operations are extended with the DMS, but their
logic remains. Rule 7 extends function put(δ ,κ) by parameter
δ to distinguish where the entity with the key κ is stored. For
that purpose we introduce function model(κ) which returns a

4We refer interested readers to the extended version [11] for technical details.
5But they can be restricted to intra-model only, like they are in existing MMDs.
6We assume re-use of existing single-model change propagation approaches and
therefore focus on the novel problem of multi-model change propagation.
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Figure 2: Architecture of a layer-based MMD

mmevolutionop ::= add | delete | rename | move | copy;

add ::= "add" property "=" value [selection];
delete ::= "delete" property [selection];
rename ::= "rename" property "to" pname [selection];
move ::= "move" property "to" kind [complexcond];
copy ::= "copy" property "to" kind [complexcond];

selection ::= "where" conds;
complexcond ::= "where" (joincond | conds |

(joincond "and" conds));

joincond ::= property "=" property;
conds ::= cond {"and" cond};
cond ::= property "=" value;

property ::= mname "." kname ["." pname];
kind ::= mname "." kname;
mname ::= identifier;
kname ::= identifier;
pname ::= identifier;

Figure 3: EBNF syntax of MMSEL

model where the entity occurs. We use this approach to detect
the affected model in all modified functions. In Rule 8 we ex-
tend function delete(δ ,κ) by key of the model δ which contains
the entity with key κ. Rules 9, 10, and 11 add parameter δ to
function дet . All modified functions дet load entity/entities from
the specified model by key δ to the application space. Rule 12 is
also extended by the model key δ to load the property from the
specified model.

2.4 Reference Evolution in MMDs
We next discuss how referential integrity is maintained as schema
modification operations are carried out.7 In the first version of
our solution, we consider the reference simply as a pointer from
a property of a referencing entity to a property of a referenced
entity. We describe the source or target of a reference by a triple
(model, entity, property). A reference is then represented as a pair
(source, tarдet) and we assume that at least one model is able to
store the pairs in a reference space.

Next we can divide operations into two groups: Safe operations
(i.e., add and copy) do not trigger any reference updates, whereas
unsafe operations (i.e., delete, rename, and move) can.

To avoid complex extensions and instead stay within the
MMDPL framework, we internally represent a reference as a
special type of entity. It has three properties: (1) the referenced
property of the entity, (2) the key of the property in the MMD,
and (3) an array of triples describing entities referencing it. Each
triple in the array consists of three properties: a model, a kind,
and a property.

During our analysis of reference migration, we discovered that
WHERE conditions make the solution much more difficult. It is
caused by the nature of MMDs which allow a user to move a
subset of the properties. This behavior can split, delete or move
completely an existing reference based on the affected set of the
values. We introduce a solution for operations without WHERE
conditions and keep it as an open challenge.

Another point to discuss is the behavior when a referenced
property is removed. We have two options what can happen with
the referencing property: (1) set to a default value, (2) delete the
property. We decided to use the second approach, because it is
a clear solution for the used models. (The first approach has to
define what should be the behavior when a MMD contains an

7Note that the earlier language NoSQLSEL does not consider references, because
most NoSQL databases do not support them. Maintaining referential integrity is
therefore another new contribution of MM-evolver .

entity without a referencing property, as well as default values
for all models. Also, the default value can be considered as a value
of the property in an application so it can be confusing.)

The next step defines operations for creating and managing
references in the MMDPL. We need to create a reference, store it,
remove it and find it. Let reference store model (RSM) be a store
which is able to persist the reference entities. We use the RSM
to extend the MMDPL and define functions which help us to
implement reference management in the MMSEL. Figure 5 shows
the extension of the MMDPL which provides functions for the
mentioned operations. We introduced a special type of entities
for the references which is stored in the RSM, but we work with
the type in the same way as with other database entities.

3 DEMONSTRATION OUTLINE
For the purpose of experimental evaluation of the above described
ideas, we have implemented a first prototype called MM-evolver.
The application is based on the .NET framework and is written in
C#. To be able to experiment in the future with various models,
not just those provided by a particular MMD, we created an
abstract layer-based model, where each particular model can be
represented by a separate DBMS. To test also this feature, in the
first version we use MongoDB8 and MariaDB9 representing the
document model and the relational model.

In our demo of MM-evolver , we build two use cases – one
around real-world data, which is based on the Internet Movie
Database (IMDb)10, and the other on the multi-model benchmark
UniBench11. As shown in Figure 6 for the first case, the data
is stored both in the document model (such as movies.Contri-
butor to the left), as well as in the relational model (name_ba-
sics to the right). To the top, we show an inter-model schema
modification operation that we are about to execute. We further
highlight the affected data (relational in red, document in blue).
In interaction with our audience, we will gradually evolve the
database state, simulating realistic demands. We intend to make
the benefits of the declarative language evident, so that atten-
dees get a clear picture how they would use it in practice. For
each supported operation (both intra-model and inter-model),
we demo:

(1) the state of the database before and after the change,

8https://www.mongodb.com/
9https://mariadb.org/
10https://www.imdb.com/
11http://udbms.cs.helsinki.fi/?projects/ubench
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Let dms be a DMS, ds be a database state, as be an application state, δ be a model key, and Ω be a data model. Let κ , κ′ be entity keys. Let n, n′ be property names, and let v be a property value.
Symbol ⊥ denotes an undefined value. Let π , π ′ be properties, i.e., mappings from property names to property values. kind : Keys 7→ Kind is a function that extracts the entity kind from a key. model
: Keys 7→ Data model is a function that extracts the entity model from a key. Θ is a conjunctive query, and c is a string constant.

[[empty()]](dms, ds, as) = (dms, ds, as) (1)

[[new (κ)]](dms, ds, as) = (dms, ds, as[κ 7→ ∅]) (2)

[[new (κ, π )]](dms, ds, as) = (dms, ds, as[κ 7→ π ]) (3)

[[setProper ty(κ, n, v)]](dms, ds, as ∪ {κ 7→ π }) = (dms, ds, as ∪ {κ 7→ (π [n 7→ v])}) (4)

[[setProper ty(κ, n, κ′)]](dms, ds, as ∪ {κ 7→ π } ∪ {κ′ 7→ π ′ }) = (dms, ds, as ∪ {κ 7→ (π [n 7→ π ′])} ∪ {κ′ 7→ π ′ }) (5)

[[r emoveProper ty(κ, n)]](dms, ds, as ∪ {κ 7→ π }) = (dms, ds, as ∪ {κ 7→ (π [n 7→ ⊥])}) (6)

[[put (δ, κ)]](dms ∪ {δ 7→ Ω}, ds, as ∪ {κ 7→ π }) = (dms ∪ {δ 7→ Ω}, ds[{κ 7→ π | model (κ) = δ }], as ∪ {κ 7→ π }) (7)

[[delete(δ, κ)]](dms ∪ {δ 7→ Ω}, ds, as) = (dms ∪ {δ 7→ Ω}, ds[{κ 7→ ⊥ | model (κ) = δ }], as) (8)

[[дet (δ, κ)]](dms, ds, as) = (dms ∪ {δ 7→ Ω}, ds, as ∪ [{κ 7→ π | κ 7→ π ∈ ds ∧model (κ) = δ }]) (9)

[[дet (δ, kind = c)]](dms, ds, as) = (dms ∪ {δ 7→ Ω}, ds, as[{κ 7→ π | κ 7→ π ∈ ds ∧ kind (κ) = c ∧model (κ) = δ }]) (10)

[[дet (δ, kind = c ∧ Θ)]](dms, ds, as) = (dms ∪ {δ 7→ Ω}, ds, as[{κ 7→ π | κ 7→ π ∈ ds ∧ kind (κ) = c ∧model (κ) = δ ∧ [[Θ]](κ 7→ π )}]) (11)

[[дetProper ty(δ, κ, n)]](dms ∪ {δ 7→ Ω}, ds,as ∪ {κ 7→ ({n 7→ v } ∪ π ) | κ 7→ ({n 7→ v } ∪ π ) ∈ ds ∧model (κ) = δ }) = v (12)

Figure 4: The commands for interfacing with the multi-model database

Let r s be a RSM, ρ1 ,ρ2 be keys in r s and η1 its set of properties. Let dms be a DMS, ds be a database state, as be an application state. Let κ1 , κ2 be entity keys. Let n1 be property name. Let δ be a
model key, c be a kind and ν be an array of triples of m, k, and p. Symbol ⊥ denotes an undefined value. Let π1 be properties, i.e., mappings from property names to property values. key : RSM keys
7→ model keys is a function that extracts the entity key from a reference store model key.

[[newReference(κ1)]](dms, ds, as, r s) = (dms, ds, as[{ρ1 7→ ⊥ | key(ρ1) = κ1 }], r s) (13)

[[putReference(ρ1)]](dms, ds, as ∪ {ρ1 7→ η1 }, r s) = (dms, ds, as ∪ {ρ1 7→ η1 }, r s[ρ1 7→ η1]) (14)

[[getReference(κ1)]](dms, ds, as, r s) = (dms, ds, as[{ρ1 7→ η1 | ρ1 7→ η1 ∈ r s ∧ key(ρ1) = κ1 }], r s) (15)

[[getReferencedBy(δ, c1, n1)]](dms, ds, as, r s) = (dms, ds, as[{ρ1 7→ η1 | ρ1 7→ η1 ∈ r s ∧ {′′s′′, ν } ∈ η1 ∧ {′′m′′ : δ,′′ k′′ : c,′′ p′′ : n1 } ∈ ν }], r s) (16)

[[deleteReference(κ1)]](dms, ds, as, r s) = (dms, ds, as, r s[{ρ1 7→⊥| key(ρ1) = κ1 }]) (17)

[[renameReference(κ1, κ2)]](dms, ds, as, r s ∪ {ρ1 7→ η1 | ρ1 7→ η1 ∧ key(ρ1) = κ1 }) = (dms, ds, as, r s[{ρ2 7→ η1 | key(ρ2) = κ2 }]) (18)

Figure 5: Dedicated commands for manipulating references in the multi-model database

Figure 6: Carrying out an inter-model schema modification operation inMM-evolver

(2) the number of affected entities, i.e., those changed during
the execution of an operation,

(3) the number of targeted entities, i.e., those that correspond
to the change request, and

(4) the generated code which propagates these changes.
Interested attendees can experiment withMM-evolver , issuing

their own operations and thus evaluating our approach.
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