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ABSTRACT
Assessing the interestingness of data analysis actions has been

the subject of extensive previous work, and a multitude of inter-

estingness measures have been devised, each capturing a differ-

ent facet of the broad concept. While such measures are a core

component in many analysis platforms (e.g., for ranking associa-

tion rules, recommending visualizations, and query formulation),

choosing the most adequate measure for a specific analysis task

or an application domain is known to be a difficult task.

In this work we focus on the choice of interestingness mea-

sures particularly for Interactive Data Analysis (IDA), where

users examine datasets by performing sessions of analysis ac-

tions. Our goal is to determine the most suitable interestingness

measure that adequately captures the user’s current interest at
each step of an interactive analysis session.

We propose a novel solution that is based on the mining of IDA

session logs. First, we perform an offline analysis of the logs, and

identify unique characteristics of interestingness in IDA sessions.

We then define a classification problem and build a predictive

model that can select the best measure for a given a state of a user

session. Our experimental evaluation, performed over real-life

session logs, demonstrates the sensibility and adequacy of our

approach.

1 INTRODUCTION
Assessing the potential interestingness of the output generated by
a data analysis action has attracted considerable attention both

in research and in the industry, and was proven highly useful

for tasks such as association rules ranking [18], choosing data

visualizations [31], data summaries [6], query formulation [27],

etc.

Consequently, a multitude of interestingness measures has

been suggested in previous work, each measure attempting to

capture a different aspect of the broad “interestingness” concept.

For example, diversity measures favor data patterns in which ele-

ments differ significantly from one another, peculiarity measures
favor data patterns that display anomalous behavior. Other mea-

sures capture conciseness, novelty, and so on. Consequently, an
important (and still open) question is how can one choose which in-
terestingness measure to employ? To tackle this exact question, sev-
eral comprehensive empirical evaluations have been conducted

(e.g. [12, 17, 18, 22, 29]). These excellent surveys conclude that

(1) there is no single measure that consistently outperforms the

rest and (2) the adequacy of specific measures depends heavily

on the task at hand and on the application domain.

Whereas most previous work examines the interestingness

of specific, singular analysis actions, our work focuses on the

interestingness notion within the entire process of Interactive
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Data Analysis (IDA). There is a growing understanding in the

industry and research communities that users analyze datasets

interactively by issuing a sequence of analysis actions of different
types (e.g., OLAP, visualizations, mining). Notable and ubiquitous

IDA tasks are data exploration, business intelligence (BI), and

fraud detection. Typically in IDA, users interact with a dataset by

executing a series of analysis actions, referred to as session. After
issuing an action (e.g. group-and-aggregate, filter, plot, cluster),

the user examines its results output (which we call display) then
decides if and which action to issue next.

Our goal is to predict, at each step of a user’s analysis
session, what is themost suitable interestingnessmeasure
that adequately captures the user’s current interest.

If successful, such a predictive model may be highly useful

in several analysis “meta” tasks, such as facilitating an evalua-

tion method for analysts’ effectiveness, improving existing (and

future) analysis recommender systems (e.g. [16, 25, 31]) and en-

hancing systems for automatic data exploration e.g. ([9, 24]).

To our knowledge, our work is the first to consider dynami-

cally changing interestingness in the context of IDA. Therefore,

Our first intent is to demonstrate that interestingness in IDA

has different characteristics than the ones assumed in previous

work, posing both challenges and opportunities. We identified

the following key characteristics, based on an in-depth analysis

of real-life session logs:

1. There is not onemeasure that holistically captures “what
is interesting” in IDA sessions. When using a single interest-

ingness measure, even if it is the most prevalent one, our experi-

mental evaluation shows that it is inadequate for more than two
thirds of all our examined cases. Also, many valuable, interesting

actions obtain high scores w.r.t. one measure, and low to medium

scores by others, hence, different measures need to be employed

in different cases.

2. Interestingness (and correspondingly, themeasure used
to capture it) changes dynamically even in the same user
session.We empirically show that within a single user session

the “most adequate” interestingness measure changes every 2.2

analysis actions on average.

3. Interestingness is contextual. Namely, the analysis context,

comprising of previous actions in the same session and their

result displays, is, to some extent, correlated with the interesting-

ness preferences of the user (and the measures capturing them).

The following example illustrates the dynamically changing

nature of the interestingness notion in a typical IDA scenario.

Example. Clarice is a cyber security analyst assigned to exam-

ine inbound network traffic data of a large organization, with the

goal of searching for back-door communication channels. She

loads the dataset to an IDA interface and performs a sequence

of actions, as illustrated in Figure 1 (the sequence of actions is

depicted on the upper part of the figure, and the bottom tables

depict the actions’ results) First, she performs a group-by on the

field “Protocol” in order to view the amount of traffic of each
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q1: Group by Protocol

q2: Filter by Protocol=‘HTTP’ 
&  7pm <Time <4am 

q3: Group by IP_dst

qa: Group by IP_src

qb: Group by Length

d0

d1

d2 d3

da

db

d0

Time IP_src IP_dst Protocol Length
13:00:37 10.1.31.15 8.8.4.4 DNS 76
13:00:41 10.1.31.15 74.25.22.7 TCP 62

... ... ... ... ...
23:56:41 10.2.22.8 8.8.8.8 DNS 72
23:56:41 10.2.22.8 5.8.63.3 SSL 277

d1

Protoco
l

Count
HTTP 492910
SSL 22479

... ...
SMB 96
NBNS 4

d2

Time IP_src IP_dst Protocol Length
19:00:00 10.2.26.3 5.8.63.6 HTTP 549.0
19:00:00 10.2.28.12 5.8.63.6 HTTP 350.0

... ... ... ... ...
03:57:42 10.2.23.13 5.8.63.6 HTTP 279.0
03:58:01 10.1.14.11 5.8.63.2 HTTP 471.0

d3

IP_dst Count
5.8.63.6 100371
5.8.63.2 50538

da

IP_src Count
10.2.22.5 1624
10.2.28.12 1528

... ...
10.1.15.2 1316
10.1.14.11 1422

db

Length Count
231 971
238 1966
... ...

723 124
472 631

Figure 1: An Example IDA Session

network protocol. She then returns to the previous display, and is-

sues a filter action in order to examine HTTP packets transmitted

after business hours (i.e.,between 7pm to 4am). Last, she performs

another group-by action on the attribute ’Destination IP’, in order

to obtain a summary of the uncommon packets (transmitted after

business hours) categorized by their destination IP address.

Since Clarice is an expert analyst, assume that all her actions

yield interesting result displays. However, each action is consid-
ered interesting according to different measures: For instance, her
first group-by action results in a display (as depicted in Figure 1)

that summarizes all traffic according to the network protocol.

If we use a diversity-based measure (such as Variance [15] or

Simpson [15]) to assess the interestingness of this display, it

would rank high - as the amount of packets greatly differs be-

tween the different protocols. However, if assessed by peculiarity
based measures (e.g. [19, 28]), which consider displays showing

anomalous/extreme patterns as more interesting, this display

may obtain a low interestingness score.

In contrast, the results display of the second (filter) action

contains rather unusual packets transmitted after business hours

(e.g., having a very small length or issued from IP addresses

that are uncommon in the dataset). Therefore, this display may

be ranked as highly interesting by peculiarity measures. How-

ever, it may yield lower scores from diversity measures (since

the attributes of the unusual HTTP packets are rather evenly

distributed).

Last, her third (group-by) action results in a compact summary

of the unusual HTTP packets, grouped by their destination IP

address. This display is considered interesting according to con-
ciseness based measures (e.g. [6]) that favor displays conveying a

small, human-readable number of rows that summarize a large

number of elements. Indeed, all unusual HTTP packets are out-

going merely two different destination addresses. However, this

display obtains a low score from diversity and peculiarity based

measures. ■

As illustrated in the example, although the expert analyst
makes actions resulting in interesting displays - each ac-
tion is supported (i.e., given a high score) by a different in-
terestingness measure, and obtains low to medium scores
by others.

However, attempting to predict the most adequate interesting-

ness measure at each point in an IDA session poses immediate

challenges and questions: (1) How can we derive the “ground

truth”? Manual labeling may be possible yet time-consuming and

costly. (2) Even the simple task of examining a single action and

determining which measure finds it more interesting than others

is quite difficult, since the different measures capture different

facets of interestingness and have different value ranges and

distributions.

To overcome these challenges we propose mining analysis

session-logs, containing previous analysis actions performed by

the same or other users. Given the current user’s state in a session,

we search the repository to find points in other sessions that are

similar to the user’s state. We analyze what were the relevant

measures for these previous sessions and use them to predict the

most adequate measure for the current user.

The key contributions of our work are as follows:

1. A simple yet generic datamodel for interestingness in
an IDA environment. Our model is compatible with different

types of interactive analysis platforms, from traditional SQL to

OLAP and modern web-based interfaces (such as Splunk and

Tableau). Our generic model supports a wide range of existing

interestingness measures and can be easily extended to support

user-defined measures as well.

2. A-posteriori, offline interestingness analysis. The ses-
sion logs do not provide any information about what parts of

the session were interesting and which measures adequately

capture it. We therefore devise methods for deriving the most

adequate measure at each point in a past session by analyzing

the interestingness of the next-action performed within the same

session. By using new techniques for computing relative interest-
ingness, we can properly compare the scores of this action (given

by different measures) and determine which one best captures

its interestingness.

3. Online Interestingness Prediction. Using the results of
the above offline analysis, we define a classification problem

and build a predictive model that can select the most adequate

measure for a current session-state, without knowing its contin-

uation. This model can be used for a dynamic, context-aware

selection of interestingness measures in an ongoing session, and
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Class Measure Definition Reference

Diversity Variance

∑m
j=1

(pj−q̄ )2

m−1
[15]

Diversity Simpson

∑m
j=1

pj
2

[15]

Dispersion Schutz 1 −

∑m
j=1

pj−q̄
2mq̄ [15]

Dispersion MacArthur 1 +
∑m
j=1

pj+q̄
2

loд2

pj+q̄
2
−

loд2m−
∑m
j=1

pj loд2pj
2

[15]

Peculiarity Outlier Score Function See [19] [19]

Peculiarity Deviation δKL ({p
′
j }|{pj }) [31]

Conciseness Compaction Gain
|O |
m [6]

Conciseness Log-Length 1 −
min (logm,c )

c Following [26]

Table 1: A Partial List of Interestingness Measures

when combined with analysis assistance tools, can aid users in

discovering interesting patterns in the data, compose meaningful

visualizations, and so on.

4. Experimental evaluation.We evaluated our framework

on real-life IDA session logs [1] acquired from over 50 experi-

enced analysts in the domain of cyber security. Our empirical

results show that our system can predict, with high accuracy, the

correct measure to be used at each point in a user session.

The paper is organized as follows. In Section 2 we describe our

data model for IDA interestingness and articulate the problem

of interestingness measure prediction. Section 3 describes our

framework, comprising the offline interestingness analysis an the

online predictivemodel. Our experiments are detailed in Section 4.

Last, we overview related work in Section 5, and conclude in

Section 6.

2 BACKGROUND & PROBLEM DEFINITION
We first present a simple yet generic formal model for the IDA

process, then describe the different notions of interestingness that

we use. Last, we define the problem of dynamic interestingness
measure selection.

2.1 IDA: Model and Definitions
An IDA session begins when a user loads a dataset, denoted D,

to an analysis UI (could be SQL, OLAP or a visualization-driven

interface such as Tableau). Then, the user executes a series of anal-
ysis actions (e.g. SQL queries or visualization actions) q1,q2, . . . ,

examining the obtained results after each one. The results-set of

action qt , executed at step t is called a display (representing the

results "screen") and denoted by dt . The preliminary display is

d0, representing the dataset before any action was performed.

IDA session works intuitively like website navigation - at each

point the user may invoke an action or backtrack to a previous

display and take an alternative navigation path.We thusmodel an

analysis session as an ordered labeled tree
1
, denoted S . The nodes

represent displays, and the edges outgoing from each node are

labeled by the executed action and lead to the resulting display

node.

We use St to denote the session after step t , namely the state
in which the user examines the results display dt , before deciding
whether to execute a next action qt+1 or conclude the analysis.

1
If the same display is generated twice (yet on different paths) it is represented by

two different nodes

Figure 1 illustrates an analysis session tree that corresponds to
our running example, in which a user interacts with a dataset

of network packets (ignore, for now, the dashed and gray parts).

The directed edges represent actions q1-q3, and the nodes d1-d3

represent their corresponding results displays. The root node, d0

represents the first display of the dataset before any action was

invoked.

Last, we assume throughout this work that past analysis ses-

sions are recorded in a session log. We denote by R a repository

of such recorded sessions.
2

2.2 Interestingness Notions for IDA
A typical interestingness measure, denoted i , takes as input an
action q and its results display d , and returns a real number

i (q,d ) ∈ R indicating how interesting are the results (d) of the
action q (higher score indicates a more interesting action).

3
For

brevity, when d is clear from context, we omit it and simply refer

to the interestingness of action q by i (q).
While a multitude of different interestingness measures exist

(See Section 5 for a discussion), w.l.o.g. we focus our attention

in this work to eight common measures from the literature that

correspond to four different facets of interestingness, following

the categorization in [12] and [15].

The formal definitions of the considered measures (along with

a corresponding reference) are provided in Table 1. Next, we

intuitively describe each measure, then provide several examples.

Diversity. Diversity measures, e.g. Simpson and Variance [15]
rank higher displays whose elements demonstrate notable dif-

ferences in values. The definitions of the example measures that

we use here are stated in Table 1. The notations are borrowed

from [15], assuming an aggregated results display:m is the num-

ber of groups,vj is an aggregated value for group j , pj =
vj∑m
k=1

vk
and q̄ = 1

m . Example below.

Dispersion. In contrast to diversity, dispersion measures e.g.

Schutz andMacArthur [15] favor displays consisting of relatively
similar elements.

4

2
Analysis sessions may either be recorded by the IDA platform, or, when it does

not provide such a service, reconstructed from standard query logs by methods

e.g. [32].

3
Some measures consider more information, such as a reference display or a model

of the user’s prior belief. While our framework can be naturally extended to support

such measures we omit them for the simplicity of presentation.

4
In some cases the inverse score of a diversity measure can be used to evaluate

dispersion, and vice versa.
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Class Measure (i) Interestingness Scores Relative Scores
i (q1) i (q3) i (qa ) i (qb ) i (q3) (RB) i (q3) (N)

Diversity Simpson 0.65 0.55 0.15 0.63 1 -0.07

Dispersion Schutz 0.28 0.83 0.91 0.52 1 1.37

Peculiarity Outlier Score Function 19.37 1.76 1.02 7.05 1 -0.74

Conciseness Compaction Grain 51176 75454 39819 25706 2 2.2

Table 2: Interestingness Scores

Peculiarity. A display is peculiar if it presents or contains

anomalous patterns. An example is aDeviation-basedmeasure [31]

that ranks a display higher if it demonstrates a difference from

some reference display (e.g. the root display d0); the pj notation
in the formal definition (Table 1) is the same as above, {pj } de-
notes the discrete distribution of pj values, and {p

′
j } denotes the

distribution of the aggregated values in the reference display.

δKL (A|B) is the Kullback-Leibler divergence distance of the two
distributions. Another peculiarity measure is the Outlier Score
Function [19] (OSF) that focuses on the peculiarity of a single ele-

ment (i.e, a single tuple, group, or cube cell) within the examined

display. The final peculiarity score is simply the maximum of the

elements’ individual scores (See [19] for full details).

Conciseness. Such measures consider the size of the display,
i.e. the number of elements it contains. Intuitively, displays that

convey thousands of rows are difficult to interpret, therefore are

considered less interesting. Log-Length scores a display propor-

tionally to the log of its size, bounded by a constant c .Compaction-
Gain (CG) compares the size of the particular display to the num-

ber of tuples in the original dataset (denoted O in the formula in

Table 1).

In Section 5 we discuss other types of interestingness mea-

sures e.g. surprisingness, actionability and how they can also be

incorporated in our framework.

As the reader can observe, each measure values different prop-

erties of the data and may rank a given display differently. The

following example illustrates the interestingness evaluation ac-

cording to the measure types presented above.

Example 2.1. Consider again the IDA session described in Fig-

ure 1, and the different interestingness measures described in

Table 1. Let us assess the interestingness evaluation of actions

q1 (Group by ’Protocol’) compared to q3 (Group by ’Destination

IP’). In Table 2, we report the interestingness scores of q1 and

q3 according to four different measures, one from each interest-

ingness type (we do not exemplify the calculation of each score,

for that we refer the reader to the original papers as depicted in

Table 1). Let us examine some of the scores:

1. Diversity, Dispersion: The results of q1 are considered more

interesting than of q3 as i (q1) = 0.65 and i (q3) = 0.55 (See

Table 1). This is due to the larger deviation in the groups’ size

in d1 than what appears in d3 which only contains two groups

that are rather even in size. In terms of Dispersion, in which

displays with less variations yield higher scores, q3 is indeed

more interesting than q1 (i (q1) = 0.28 and i (q3) = 0.83)

2. Conciseness: In terms of the Compactness Grain measure,

which considers the ratio between the number of tuples to the

number of elements (e.g. groups) that covers them, we can see

that i (q1) = 51, 176 while i (q3) = 75, 454. q3 obtains a higher

score than q1 as its results-display d3 covers a high number of

packets in merely two groups (IP addresses), while d1 covers all

packets with a larger number of groups, one for each network

protocol.

Interestingness Measure Prediction. Given a predefined set of

interestingness measures I, and a user session state St after

t steps, our goal is to predict which measure in I adequately

captures “what is interesting” at this point of the session. Our
main hypothesis in this work is that interestingness (and
therefore the adequacy of measures) is contextual, hence
correlated with previous actions taken by the user in the
same session.We illustrate this with our running example.

Example 2.2. Consider the Example Session in Figure 1, at

state S2, i.e. when the user examines Display d2, before invoking

the next action q3. Our goal, as stated above, is to predict which

measure from I (e.g., Diversity-based, Peculiarity, Conciseness,

etc.) best captures the interestingness at this moment. While this

seems like a challenging task, examining the previous actions in

the session provides some intuition regarding which measure is

preferable: In q2 the user filters all packets to focus on unusual
HTTP traffic occurring after business hours. As she examines a

long list of anomalous elements, it is likely that she is interested

in a more concise display that summarizes the data, rather than a

display that demonstrates another peculiar pattern or one with

high Dispersion.

Following this premise, we form a supervised multi-class clas-

sification problem that considers session-states as “samples” and

assign them a “label” corresponding to interestingness measures

in I. In other words, we will assemble a training set containing

labeled samples of the form ⟨St , i⟩ and build a predictive model

F (St ) ≈ i that best fits the training data.

To properly define this process, one needs to (1) develop means

to determine “what is interesting” in a current state of an IDA

session and which measure captures it best. (2) Once this is deter-

mined, develop a classification model for predicting what mea-

sure best captures the interestingness for the current session

state.

We address the two issues in the following section, where we

explicitly define the predictive task and model.

3 INTERESTINGNESS PREDICTION
FRAMEWORK

We next describe our solution for interestingness measure predic-

tion in IDA sessions. Before we describe our predictive model, we

provide (Section 3.1) a set of techniques for offline interestingness
analysis, in which we retrospectively derive what was the most

suitable measure i ∈ I for a session state St , using the next ac-
tion qt+1. Then we describe in Section 3.2 how these techniques

are used when constructing the training set and building the

predictive model.

3.1 Offline Interestingness Analysis
Theoretically speaking, there are several possible ways to exam-

ine a session state St and determine what is the most suitable

measure for it.
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First, one can perform manual labeling by using expert an-

alysts, familiar with interestingness measures, that can label a

session state St with the most suitable measure as they see it.

The problem with this approach is that it requires, first of all, a

great manual effort that is not easily transfered to other contexts

(e.g. IDA session logs performed on different datasets or for dif-

ferent purposes). Also, existing measures are often not intuitive

even to expert analysts. A second approach could be prompting

for user feedback at each session-state, gathering details about

the user’s intention, goals, and details regarding if and why the

current display is interesting (w.r.t. each facet captured by the

measures in I). But this method, like the previous one, requires

a considerable manual effort (this time by the users performing

the sessions).

In contrast to these approaches, we devise means for deriving

the adequate measure for a session state St solely by examining

the continuation of the session. Assume for a moment that our

repository only contains actions resulting in interesting displays.

Then our key assumption is that for a session state St , if the
next action in the same session qt+1 is interesting enough
(we explain how this is determined in the sequel), then we can
use it to derive what is the measure that best captures the
interestingness at St .

A simplistic implementation of the above assumption is to

simply choose, given a session state St , the measure i ∈ I that

produces the highest scorei (qt+1). However, since the measures

in I may produce scores of different value ranges and distribu-

tions, this method must be refined.

We therefore devise two interestingness comparison methods
that are largely impartial to such biases. In each comparison

method, we first compute, w.r.t. each measure i , the relative inter-
estingness score of an action q denoted i (q), which is comparable
to the relative scores i ′(q) obtained by other interestingness mea-

sures i ′ ∈ I. Once we have the unbiased, relative scores, we

can simply choose a measure yielding the maximal relative in-
terestingness as one that best captures the interestingness of an

action qt+1, hence is suitable for St . We call a measure dominant
w.r.t. action q, denoted i⋆(q), if it yields the maximal relative

interestingness, i.e. i⋆(q) = arдmaxi ∈I (i (q)).
Last, we note that in real-life analysts are imperfect, hence

IDA sessions may contain erroneous/redundant actions or simply

uninteresting ones. We will show in the sequel how our analysis

is used to eliminate such actions and minimize their negative

effect.

We start by describing the Reference-Based Comparisonmethod,

which is comprehensive but expensive to compute. To overcome

this, we then present an alternative method, the Normalized Com-

parison, which also reduces the score bias but requires a lower

computational cost.

Reference-Based Comparison. Our first method for unbiased

interestingness comparison, denoted Reference-Based compari-

son, examines the score of an action q as obtained by a particular

measure and compares it to the scores achieved when employ-

ing alternative actions. Hence, instead of comparing individual

scores of different measures for an action q, we first calculate
how “high” each measure ranks q compared to a reference set of

alternative action, denoted R (q) (in Section 4 we explain how we

generate R (q) in our prototype implementation). Then we can

simply derive that the measure i which ranks q the highest, is

the one that best captures its interestingness (in case there is a

Algorithm 1 Re f erenceBasedComparison(I, ⟨q,p,d⟩,R (q))

1: for q′ ∈ R (q) do
2: d ′ ← The results of action q’ on display p
3: for i ∈ I do
4: Compute the score i (q′,d ′)

5: for i ∈ I do
6: Compute the score i (q,d )
7: i (q) ← |{q′ ∈ R (q) | i (q′,d ′) ≤ i (q,d )}|

8: return arдmaxi ∈I (i (q))

tie, all measures that yield the highest relative interestingness

are returned).

The Reference-Based comparison is depicted in Algorithm 1. It

takes as input a set of measure I, a tuple ⟨q,p,d⟩ which includes

an action q together with its parent display p (i.e., the display on

which q was employed), and its results display d , and last, a set

of alternative actions, denoted R (q). It then works as follows.

First, we execute each action in the reference set R (q) (from
the same parent display p of action q) then calculate its inter-

estingness scores w.r.t. each measure in I (Lines 1-4). Next, we

calculate the raw scores for q w.r.t. each measure i ∈ I (Line 6),

then derive the relative interestingness score of q , denoted i (q), by
counting the number of actions in R (q) that obtained a lower in-

terestingness score than q (Line 7). Last, we return the dominant

measure(s) i⋆(q) that produced the highest relative interesting-

ness score (Line 8).

Example 3.1. We use the Reference-Based method to assess

which is the dominant interestingness measure for action q3 in

our example session (Figure 1). While we can see from Table 2

that d3 has high Conciseness score, it is also rather disperse.

However is it more disperse than concise, or vice versa?
Let R (q3) be the set of alternative actions {qa ,qb } (The dashed

edges and Grey displays in Figure 1). Their interestingness scores

w.r.t. the different measures appear in Table 2. The relative inter-

estingness scores for q3 appears in the middle section of Table 2.

For instance, in terms of Dispersion, since q3 has a higher score

than qb yet a lower score than qa its relative score is 1. How-

ever, in terms of Conciseness, since the score of q3 is higher than

both qa and qb , its relative interestingness (Conciseness) is 2.

Indeed, Conciseness yield the highest relative score for q3, hence

is chosen as the dominant measure i⋆(q3) that best captures the
interestingness of action q3.

While this method completely eliminates the score biases of

the different measures, note that it is rather expensive to compute

(we demonstrate this in Section 4) as it requires to execute, at

each comparison, all alternative actions in the reference set and

compute their interestingness scores. Consequently, we devise a

second, more efficient comparison method which significantly

reduces the score biases using statistical analysis.

Normalized Comparison. The second interestingness compar-

ison method, denoted Normalized Comparison, eliminates the

score bias due to differences in the range and value distributions,

by applying a two-staged normalization process to each measure:

(1) to tackle the differences in the measures’ value distributions

we apply a Box-Cox [5] power transformation that makes the val-

ues resemble a normal-distribution. (2) To tackle the differences

in the value ranges, we calculate the mean and standard deviation

of each measure’s (transformed) value distribution then employ

z-score standardization [30] so that each computed value now
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represents the number of standard deviations the original value

differs from the mean. The transformed and standardized score

of each action q is defined to be its relative interestingness score
i (q), and can now be compared to the relative scores produced

by other measures in I.

The Normalized Comparison, depicted in Algorithm 2, is di-

vided into two parts.

First, Stage (1) of the normalization process is applied, in a

preprocessing manner, to a sample of the score distribution of

each measure. The function PreProcess (Lines 1-8) takes as input

the set of measures I and a set QD of actions and their corre-

sponding result displays, i.e. pairs of the form ⟨q,d⟩ (such a set

can be extracted from the session repository R). It then calculates

the interestingness score w.r.t. each measure in I (Line 4) and

transforms its value using the Box-Cox method (Line 5). Last, the

mean and standard deviation of the transformed interestingness

scores of each measure are returned (Line 8).

Once the preprocessing is done, the Normalized Comparison

function (Lines 9-15) can be employed. It takes as input an action

q with its results display d , a set I of interestingness measures

and the mean and standard deviation of the transformed scores

of each measure, and computes the dominant measure i⋆(q) as
follows: first, we calculate the interestingness scores i (q,d ) w.r.t.
each measure in I and apply the Box-Cox transformation to

it (Lines 11-12). Then the mean and standard deviation are up-

dated (Note that Lines 11 to 13 can be skipped if theses values

were already computed in the preprocessing phase), and the rela-

tive score is calculated by applying the z-score standardization

(Line 14). Finally, we return the measure(s) that obtained the high-

est relative interestingness score i⋆(q), as in the Reference-Based

method.

Example 3.2. To illustrate the computation, we demonstrate

how the Normalized method can be used to assess the measure

i⋆(q3) which gives the highest relative score to action q3 in our

running example (depicted in Figure 1).

Assume we performed the preprocessing routine and calcu-

lated the scores of all other actions in the log, then performed

the transformation and standardization described above. The

normalized relative scores for action q3 are depicted in the right-

hand section of Table 2. Consistently with the previous example,

the highest normalized score for q3 is given by the Conciseness
measure, as its score deviates more than 2.2 standard deviation

from the mean conciseness scores.

Also, observe that similar scores of different measures can

obtain significantly different results after the standardization

process. For instance, the absolute scores of q3 obtained by the

Dispersion and Peculiarity measures are 0.74 and 0.71 (resp.),

however their standardized scores are very different (2.39,−0.2

resp.)

In Section 4we examine the correlation between the Reference-

Based and the Normalized methods and compare their execution

times. In what comes next, we describe how these methods are

used to construct the training set and the predictive model.

3.2 Online Interestingness Prediction
We developed a predictive kNN-based model for selecting the

most suitable measure at a particular session-state.

First we discuss what information is used to describe a ses-

sion state St , then how the training set is constructed and the

mechanism of the kNN-based classification model.

Algorithm 2 NormalizedComparison

1: function PreProcess(I,QD)
2: for i ∈ I do
3: for ⟨q,d⟩ ∈ QD do
4: Compute the score i (q,d )
5: ĩ (q,d ) ← BOX-COX(i (q,d ))

6: for i ∈ I do
7: Calculate µ̃i and σ̃i , the mean and SD of all ĩ (q,d ).

8: Return µ̃I , σ̃I , containing µ̃i , σ̃i∀i ∈ I

9: function NormalizedComparison(I, ⟨q,d⟩, µ̃I , σ̃I )
10: for i ∈ I do
11: Compute i (q,d )
12: ĩ (q,d ) ← BOX-COX(i (q,d ))
13: Update µ̃i and σ̃i
14: i (q) ← Z-SCORE(ĩ (q,d ), µ̃i , σ̃i )

15: return arдmaxi ∈I (i (q))

Describing Session States. Recall that a session state St , is the
subtree of S containing the first t actions and their result displays.

However, as older actions in the sessions may be of less impor-

tance to the classification model, we follow [25] and consider in

our predictive model only the n most recent actions and displays,

which we call the n-context of St , denoted ct . More formally, ct
is defined as the minimal subtree of S that covers the most recent

min(n, 2t + 1) elements (i.e., displays and actions) up to step t
(inclusive).

As an example, the 3-context at step t = 2 in our example

session in Figure 1 includes Displays d0 and d2 and the action q2.

In Section 4 we evaluate the predictive performance of the

model when using n-contexts of various sizes.

Training Set Construction. Building a training set for a given
session repository R and a set I of interestingness measures is

performed as follows:

(1) Extracting n-contexts from the session repository. For
each session state St in every session S in the repository we first

compute its n-context. As we assume that the sessions in R are

already represented as trees, deriving the n-context for a session

state St can be done by a DFS-like traversal: Starting from display

dt , we process the nodes (i.e., displays) in reverse to the order

of execution of their corresponding actions, considering only

actions executed before step t until the size of the induced subtree
(nodes+edges) reaches n, which is a configurable parameter in

our framework.

For each session state St we keep a pair ⟨ct ,qt+1⟩ compris-

ing its corresponding n-context and the consecutive action qt+1

which will be used to derive its label (i.e., the suitable measure

for that session state). For space efficiency, it is sufficient to store

for each n-context only pointers to the original actions in the log

rather than duplications. In Section 4 we explain how n-contexts

are extracted and stored in our implementation.

(2) Assigning labels to n-contexts. For each pair ⟨ct ,qt+1⟩, we

use either one of the two comparison methods described above

to find the dominant measure i⋆(qt+1). This measure is assigned

as a label to the n-context ct , representing the most suitable

measure for the corresponding session state St (recall that more

than one measure may be qualified).

(3) Omitting globally "non-interesting" samples. Naturally,
some of the actions in the session repository may be erroneous

or simply non-interesting. Consequently, we want to eliminate
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from the training set samples whose consecutive action qt+1 is

not interesting enough w.r.t. any of the measures in I, hence can

not be used for deriving the right measure. This is done by using

a configurable threshold for the maximal relative interestingness

score of qt+1, denoted θI . If the relative interestingness obtained
by the dominant measure i⋆(qt+1) is lower than θI then we

discard the sample ⟨ct ,qt+1⟩ from the training set.

kNN-Based Classification. Once the training set containing

labeled n-contexts is constructed, a classification model can be

used, given n-context, to predict the dominant measure.

In principle, there are multiple techniques for performing su-

pervised classification, however many of them requires a numeric

vector representation for the samples (n-contexts in our case).

However, we are not aware of such numeric representation of

analysis sessions, yet numerous previous works [3, 11, 13, 25]

define a notion of distance/similarity for analysis sessions (or a

part thereof). For example the measure suggested in [25] uses

tree edit distance to compare two session trees, together with

two ground metrics that compare individual actions and displays.

Alternatively, in [3] the authors suggest a measure based on local

sequence alignment. We harness such a distance notion to form a

simple kNN classifier: Given an n-context ct , we search the train-

ing set for its k nearest-neighbors, then employ a majority-vote

and return the most common label among the nearest neighbors.

Last, it may be that some of the k nearest n-contexts may be too

distant from ct . To avoid the negative effect of such cases on the

model’s output, we use a distance threshold, denoted θδ , which
is used to enforce a maximal distance (i.e., a minimal degree of

similarity) between the kNN set and the given n-context. If the

nearest neighbors retrieved are not similar enough, the model

does not yield a prediction.

We intuitively explain this using our running example.

Example 3.3. Assume that our session repository R comprises

only the example session depicted in Figure 1. We first extract

n-contexts of e.g. size 3 from R: For each 1 ≤ t ≤ 3 we create the

3-context ct : c1 contains the single node d0, c2 contains d0,q1,d1

and c3 contains d0,q2,d2. Recall from the previous examples

that Compaction Gain measure (Conciseness) is the dominant

measure for action q3, therefore is used as a label for c3.

Assume we are given another user’s session on a different

network log, however with the following last action qu : “filter by
protocol=’SSL’ & 10pm < Time<3am” (which is intuitively similar

to q2 in our example session in Figure 1). After extracting the

n-context (containing qu , its results, and its parent display) from

the new session state, we predict what is the adequate measure

using the kNN model: If using k = 1, then the most similar n-

context in the repository is c3, hence Compaction Gain will be

return as prediction.

In Section 4 we explain howwe evaluated the predictive model

in various settings and compared its performance to several base-

line approaches.

4 EXPERIMENTAL EVALUATION
We applied our offline interestingness analysis methods as well

as the predictive model on an IDA session log containing real

life analysis actions. We begin by describing the session log and

our implementation choices, then describe our findings from

the offline analysis. Last we evaluate the accuracy of our predic-

tive model compared to other baselines, then test the effect on

performance induced by the model’s hyper parameters.

REACT-IDA: A repository of real-life IDA sessions. We used the

only publicly available (to our knowledge) collection of recorded

analysis sessions performed by real users on real-life datasets [1].

The sessions were collected as part of the experimental evalua-

tion of an existing IDA recommender system [25], developed by

some of the authors of this work (we discuss this system in more

details in Section 5). The repository contains sessions performed

by 56 network security analysts, recruited via dedicated forums,

security firms, etc. The participating analysts were asked to ex-

plore 4 different network-logs datasets using REACT-UI [23], a

dedicated, web-based analysis platform with an easy to use inter-

face supporting data filtering, grouping and aggregation. Each

dataset contains raw network logs that may reveal a distinct secu-

rity event, e.g. malware communication hidden in network traffic,

hacking activity inside a local network, an IP range/port scan,

etc. After completing an analysis sessions, REACT-UI prompts

the user to type a short summary of the findings. Sessions corre-

sponding to summaries that successfully reveal the underlying

security event are marked as successful. The repository contains

a total of 454 sessions comprising 2460 distinct analysis actions,

out of which 122 sessions (comprising 757 actions) are successful.

The REACT-IDA session database in [1] also contains the original

datasets used in the analysis, and the means for regenerating the

actions and inspect their result displays, so that the each recorded

session can be fully reconstructed.

4.1 Offline Analysis Evaluation
We next describe the application of our offline interestingness

analysis methods on the REACT-IDA sessions database, accom-

panied by selected findings.

Computing interestingness scores.We re-executed the recorded

actions in the REACT-IDA database and computed their interest-

ingness scores w.r.t. all measures presented in table 1. Next, to

form an unbiased set of measures I, i.e., that does not contain

dependent/highly correlated measures we computed the Pearson

Correlation Coefficient for every pair of measures. While the

average correlation score was 0.3 we saw that measures from

different types (e.g. Dispersion, Peculiarity, Conciseness) have
an average correlation of 0.071 compared to an average score of

0.543 obtained by measures of the same type. Consequently, we
experimented with 16 different configuration of I, containing

one measure from each type. .

Applying offline comparisons. We applied both compar-

ison methods to the REACT-IDA session database in order to

calculate the dominant interestingness measure i⋆(q) for each
action q. As for the Reference-Based Comparison, recall that it

compares the interestingness scores of an individual action to the

interestingness scores of alternative actions. We constructed the

reference action set as follows: For each action q with a parent

displayp we considered all actions in the databases from the same

type (e.g. group-by, filter), omitting actions that when executed

from display p result in displays comprising less than two rows.

As for the Normalized Comparison, we calculated the statistics

over all actions (and their results) in the REACT-IDA database by

applying the Box-Cox transformation and z-standardization to

their raw interestingness values as described in Section 3.1. Each

series of interestingness values (corresponding to a particular

measure) was first shifted by a constant in order to eliminate

negative scores (this is often required for power transformations).

The configurable power parameter λ, which is used as the ex-

ponent for the values to be transformed, was determined using
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maximum-likelihood estimation, as is standard for such transfor-

mations.

As an example, Figure 2 depicts the scores histograms of the

Outlier Score Function (Peculiarity) and the Compactness Grain

(Conciseness) measures, before and after normalization. The red

line in each figure represents the mean score, and the orange

line represents the median. While the non-normalized scores

are skewed towards zero, we can see that the normalized values

distribute much more evenly, resembling a normal distribution.
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Figure 2: Interestingness Scores Histograms

Understanding users’ interestingness preferences.
We studied the output of the interestingness comparison meth-

ods, namely the dominant measure w.r.t. each recorded action, in

order to empirically validate our first two hypotheses presented

in the introduction:

(1) Is there one measure/interestingness type that is sufficient
to capture “what is interesting” in IDA? If indeed so, then it is

sufficient to choose a-priori a single interestingness measure and

apply it to all IDA tasks. To answer this question we counted

how many actions in the REACT-IDA were labeled with the same

dominant measure.

Figure 3 depicts the proportion of actions labeled with mea-

sures from the same interestingness type (averaged over all set-

tings of I), when using both the Reference-Based and the Nor-

malized comparison methods.

We can see that in both comparison methods, the most com-

mon measure is dominant w.r.t. only 41% of the recorded actions,

and the proportions of the rest of the measures types are rather

evenly distributed. Due to ties, see that the sum of proportions is

slightly larger than 1, i.e. where more than one interestingness

measure was found dominant for the same action. Also, note

that there are differences in some of the classes’ size when a

different comparison method is used (mainly in the Peculiarity

and Conciseness classes). This is due to slight differences in the

comparison base for each method: The Reference-Based method

is affected by the parent display of the examined action (from

which it was executed), whereas the Normalized is affected by

the interestingness scores of other recorded actions, regardless

of their parent displays and context.

The above result indicates that there is no single interestingness
measure that can be used for all actions in the repository. However,
as users’ IDA sessions are performed on different datasets and for
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Figure 3: Interestingness Class Labeling Frequency

different purposes, one may still ask whether one interestingness
type is sufficient to capture interestingness within the same session?
If true, it may be sufficient to match a single interestingness mea-

sure with certain IDA tasks or datasets rather than dynamically

choose a measure for each state in a user session. We therefore

examined the relative interestingness scores of actions of the
same session. We found that on the course of a single session in
the REACT-IDA repository, the dominant measure is changed every
2.2 steps on average. This demonstrates that the interestingness

preferences of the user, as well as the measures capturing them,

are dynamically changing even within the same IDA session. In

Section 4.2 we empirically validate our third hypothesis arguing

that interestingness is contextual i.e., that one can successfully

predict the right measure for a given session state St based on

its corresponding n-context ct .
Correlation between the comparison methods.We stud-

ied how consistent is the output of the two comparison methods.

First, we found that 68% of all recorded actions obtained exactly

the same dominant measure as output, by both methods. We then

performed a Chi-Square test for independence between the out-

puts of the comparison methods on all actions: The methods were

found highly correlated with a negligible p-value < 10
−67

. The

latter result demonstrates the sensibility of our offline interesting-

ness analysis, and that the methods may be used interchangeably.

Execution times.
Applying the offline comparison methods includes three major

parts:

(1) Calculating interestingness scores. Recall that the raw inter-

estingness scores are precomputed for each measure in I. While

some measures are rather fast to compute (e.g. both Conciseness

measures), others (such as the Outlier Score Function) are much

more time consuming.

(2) Actions Execution. This part is relevant to the Reference-

Basedwhich compares the interestingness scores of a given action

to a set of alternative actions. Thus, each such reference action

needs to be executed on the same dataset (from the same parent

display) by the IDA platform.

(3) Computing relative interestingness scores: Both methods

calculate the relative interestingness score and return as output

the dominant measure(s), yielding the highest relative interest-

ingness.

Wemeasured the running times required to apply the Reference-

Based and the Normalized interestingness comparison methods,

w.r.t. each of these computation parts. For the Normalized Com-

parison, running times include the corresponding segment in the

preprocess routine for each action.

Table 3 depicts the average time required by the Reference-

Based and the Normalized comparison methods in order to select
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Component Time (Seconds)
Reference Based Normalized

Action Execution 2.218 –

Calc. Interstingness 4.84 0.106

Calc. Relative Scores 0.04 0.031

Total 7.2 0.138
Table 3: Offline Running Times

the dominant measure for a given action for each of the compu-

tation parts described above. First, observe that the Reference-

Based requires an overall of 7.2 seconds compared to the Nor-

malized which takes 0.138 seconds only. As for the computa-

tional parts, see that the Reference-Based requires a considerable

amount of time for executing the alternative actions (Part 2)

method (the average size of the reference actions set was 115)

which is unneeded for the Normalized method. Consequently,

the former requires computing all interestingness scores of the

alternative actions, therefore its running time w.r.t. Part 1 is sig-

nificantly longer than of the Normalized method. Part 3, in both

methods is negligible.

4.2 Predictive Model Evaluation
We next describe our predictive kNN based model. We then ex-

plain how we evaluated its performance in comparison with

several appropriate baselines.

Constructing the training set. Extracting n-contexts. We ex-

tractedn-contexts that belong to successful sessions from REACT-

IDA repository using the DFS base method described in Sec-

tion 3.2. We experimented with n-contexts of sizes 1 to 11 (we

explain below how the default size was chosen). For each session

state St , we stored the pair ⟨ct ,qt+1⟩ comprising its context and

the consecutive action.

Annotating n-contexts.We used the offline analysis results

as described above, to label each pair ⟨ct ,qt+1⟩ with its corre-

sponding dominant interestingness measure i⋆(qt+1). We then

discarded all samples in which the maximal relative interesting-

ness scores (obtained by i⋆(qt+1)) was smaller than the interest-

ingness threshold θI (as described in Section 3.2).

In case that identical n-contexts obtained different labels
5
we

unanimously labeled them by the most common label(s) associ-

ated with this n-context.

kNN Model implementation. As common for kNN based clas-

sification models, given a (non-labeled) n-context our model

searches the training set for the top-k most similar labeled n-

contexts, then selects the label by employing majority vote. To de-

termine the similarity between n-contexts, we used the distance

metric devised in [25] which was proven useful for IDA sessions.

The metric is based on tree edit-distance, i.e. the minimum-cost

sequence of edit operations (add, delete, and alter a node/edge) re-
quired to transform one n-context to the other. While a unit cost

is given to delete/add operations, the cost of an alter operation
(for a node/edge) is proportional to the similarity between the

data displays and analysis actions. The latter is determined by

two ground metrics for actions and displays: the first considers

differences in the actions’ syntax and the second measures the

differences in the content of the compared displays.

As for the model’s running times, we measured an average

time of 6.04 milliseconds required to output a single prediction.

5
This can happen when users perform an identical subsequence of actions yet

choose a different next action.

Parameter Value Range Default Configuration
Ref. Based Norm.

n-Context Size (n) [1, 11] 4 2

kNN Size (k) [1, 40] 1 1

Dist. Thres. (θδ ) [0, 0.5] 0.2 0.1

Int. Thres. (θI )
[0, 1] (RB)

[−2.5, 2.5] (N)

0.92 0.7

Table 4: Model Hyper-Parameters

We refrain from further discussing the computation costs and

the scalability of the model and refer the reader to [25] for an

in-depth performance evaluation of the nearest-neighbors search

w.r.t. their distance metric.

Evaluation Methodology. We formed multiple test sets using

the Leave-One-Out cross validation (LOOCV) method, i.e., in a

single prediction task we take one sample (n-context) out of the

training set to be used as a test set, then repeat the process for

each and every sample.

We then used the following evaluation metrics: (1) Accuracy,
which stands for the ratio between correctly predicted samples

(true positives) and the number of all samples. Then, as is standard

when evaluating multi-class classification models, we used the (2)
Macro-Averaged Precision and (3) Macro-Averaged Recallmeasures,

which takes the average of the precision (resp., recall) w.r.t. each
class (i.e., each interestingness measure).

6
We also computed the

(4)Macro-Averaged F1 which is the harmonic mean of (2) and (3).

Last, since in some cases the kNN model does not output a

prediction (recall from Section 3.2), we also measured the (5)
coverage rate, namely the proportion of samples for which our

model is able to produce a prediction.

Hyper-parameters tuning. Our model uses the following hyper-

parameters: (1) the size of n-contexts used when constructing the

training set to decide how many actions/displays are required to

represent each session state St . (2) The size of k , i.e. the number

of similar n-contexts used to perform a prediction. (3) n-contexts
distance threshold θδ , representing the maximal distance allowed

between each members of the kNN set and the given n-context.

(4) Interestingness Threshold θI , i.e. the minimal relative inter-

estingness score required for the sample to be considered as

interesting and not to be discarded. Recall that relative inter-

estingness is computed differently for each comparison method

therefore this parameter has two sets of scales: For the Reference-

Based method the threshold represents the minimal percentile
rank of the actions in the reference set surpassed by the score

of the given action (For example θI = 0.7 means that we are

interested in samples where the dominant measure ranks an ac-

tion higher than at least 70% of the actions in the reference set).

For the Normalized method, as the standardized scores largely

falls between −2.5 and 2.5 standard deviations, θI represents the
minimal number of standard deviations that the score should

(positively) deviate from the mean.

To choose an optimal parameters configuration, we used a

standard grid search consisting of more than 50K unique settings.

Table 4 depicts the minimal, maximal and default value for each

parameter, w.r.t. both interestingness comparison methods.

Since there is a tradeoff between the predictive performance

and the coverage-rate (we explain this in the sequel), in order to

choose an optimal configuration we calculated the skyline (also

6
In contrast, micro-averaged methods consider all true/false positives, regardless

of the class.
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Reference-Based Comparison Normalized Comparison

Accuracy Macro-Precision Macro-Recall Macro-F1 Accuracy Macro-Precision Macro-Recall Macro-F1

RANDOM 0.282 0.281 0.268 0.275 0.252 0.252 0.253 0.252

BestSM 0.397 0.397 0.250 0.306 0.329 0.329 0.250 0.284

I-SVM 0.632 0.636 0.482 0.549 0.655 0.674 0.617 0.643

I-kNN 0.730 0.646 0.569 0.605 0.763 0.730 0.664 0.694
Table 5: Interestingness Measure Prediction - Baseline Results
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Figure 4: Configurations Skyline

called the Pareto frontier) for every comparison method. This

resulted in a set of dominant configurations, w.r.t. the coverage
and the accuracy/F1 score

7
. Figure 4 depicts the skyline plot for

both comparison methods, between the coverage-rate (x-axis)

and the accuracy (y-axis).

We chose default configurations from the skyline, as depicted

in Table 4. Our default configurations yield accuracy scores of

0.730 and 0.763 (for the Reference-Based and Normalized meth-

ods, respectively), with coverage scores of 0.67 and 0.722 (resp.).

In principle, any other configuration on the skyline can be chosen

to ensure a different coverage-rate or predictive accuracy.

Baselines Comparison. We compared the performance of our

predictive model, denoted I-kNN, with several other baselines.

(1) RANDOM, a naive baseline that selects a measure out of

I uniformly at random. (2) Best-SM, this baseline chooses the

best single measure, namely it always selects the one measure

which is the most prevalent among the training set. This baseline

corresponds to the common approach, taken in many analysis

assistance tools (e.g. [10, 16, 31]), in which a single interesting-

ness measure is chosen a-priori and used for all cases. Next, we

experimented with two predictive models that are adequate to

our setting in which the samples (namely, n-context) are com-

pound objects rather than feature vectors: (3) I-SVM: a Support

Vector Machine (SVM) model with a modified kernel [7] that can

take an arbitrary distance matrix rather than using the Euclidean

distance between vector-shaped samples. We used it with the

dedicated distance metric for IDA sessions [25] described earlier

in this section. We employed a standard grid search to tune the

model’s hyper parameters.

Table 5 lists the predictive evaluation scores for both the

Reference-Based and Normalized comparison methods, averaged

over all 16 measure combinations in I.

First, we can see that the Best-SM baseline outperforms RAN-
DOM, yet its accuracy is less than 40%. The latter reestablishes our

first hypothesis that no single existing measure can adequately

capture users’ dynamic interestingness preferences, hence a-

priori choosing a single interestingness measure in IDA may

often lead to an erroneous outcome. Second, see that the I-kNN

7
A configuration with x coverage and y accuracy is dominant if there is no other

configuration with x ′ coverage and y′ accuracy such that x ′ ≥ x ∧ y′ > y .

model outperforms the I-SVM demonstrating 14% higher accu-

racy and 10% higher F1 score. However, recall that in contrast

to I-kNN (which uses the default configuration), the SVM base

model obtains 100% coverage. Yet, as mentioned above, it is pos-

sible to choose a different configuration from the skyline (see

Figure 4) to enforce full coverage. In such settings the improve-

ment obtained by the kNN model over the SVM is less significant.

Nevertheless, see that both predictive models I-SVM and I-kNN
significantly outperforms BEST-SM, which corresponds to ex-

isting approaches to interestingness measures. This establishes

our third hypothesis that the right measure can be successfully
predicted by examining the analysis n-context.

In what comes next we examine the effect on the predictive

performance (and coverage) of the model’s hyper-parameters.

Hyper-parameters Effect. To study the effect of the model’s

hyper-parameters we repeated the predictive evaluation of the

model while varying the values of each parameter and fixing the

rest to their default values as depicted in Table 4.

In Figure 5we present theAccuracy,Macro-F1 and the Coverage-

Rate as a function of each of the system parameters (for both

comparison method), where the other system parameters get

their values from the default configuration (w.r.t. the compari-

son method used) in Table 4. We next examine the effect on the

predictive performance and coverage when varying each of the

model’s parameters. Last, we present a summary of our findings.

n-context Size. The n-context size, determined when preparing

the training set, affects the amount of information the predictive

models consider. Figure 5a1 and 5b1 depict the effect of n on

the Accuracy, Macro-F1, and the Coverage-Rate of model for the

Reference-Based and Normalized settings (resp.). As expected,

increasing n (hence increasing the amount of information con-

sidered) positively affects the predictive performance. However,

observe that the Coverage-Rate decreases. This is expected since

when calculating the distance between larger, more compound,

n-contexts the scores increase thus in more cases the k nearest-

neighbors are not “similar enough” and themodel does not output

a prediction. When choosing n between 2-4, as in our default con-

figurations, we obtained almost optimal predictive performance

while retaining coverage of about 70% of the cases.

Size of k. The number of nearest neighbors considered by the

model has a milder effect on performance, as can be seen in Fig-

ure 5a2 and 5b2 that demonstrate the effect of k on the Reference-

Based and Normalized settings (resp.). In the Reference-Based

method we can see a small, noticeable increase in performance,

however it has a greater effect on the coverage of the model, since

finding a larger set of nearest neighbors which are all similar

enough to the given n-context is not always possible.

Distance Threshold θδ The distance threshold θδ is used by

the model to enforce that the set of retrieved nearest neighbors

are not too distant from the given n-context, hence avoiding

erroneous predictions.

As expected, the lower (more tight) the distance threshold, the

higher the predictive accuracy, as shown in Figures 5a3 and 5b3
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(b) Normalized Comparison

Figure 5: System Parameters Effect

displaying the effect of θδ when using the Reference-Based and

the Normalized comparison methods. Naturally, the coverage

decreases with θδ since there is not enough nearest neighbors

with high similarity in many cases.

Interestingness Threshold θI . Recall that after we apply one

of the offline comparison methods, we obtain the relative inter-

estingness of each action. This allows us to filter out cases where

the action executed by the user was not considered as interesting

w.r.t. any of the measures in I. For both comparison methods

this indeed increases the predictive performance, as can be seen

in Figures 5a4 and 5b4

Summary of Findings.We conclude this part by pointing out

the trade-off between the predictive performance of the model

and its coverage. When increasing the size of n-context and the

kNN set size we increase the amount of information considered

by themodel, since a larger set of more comprehensive n-contexts

are used as the basis for prediction. This naturally increases the

model’s predictive performance yet decreases the coverage since

there are fewer cases where we can find, e.g., a large number of

nearest neighbors highly similar to the given n-context.

A similar effect occurs when increasing the interestingness

and similarity thresholds θI and θδ , which are used to ensure that
the model uses only “high-quality” samples. Increasing theses

thresholds improves the predictive performance yet decreases

the Coverage-Rate, since there are fewer cases where such high-

quality samples are relevant.

5 RELATEDWORK
There is extensive literature that considers the interestingness

of analysis actions on one hand, and interactive data analysis on

the other.

Evaluating and comparing interestingness measures. As
mentioned in the introduction to this work, interestingness mea-

sures are widely used in the field of data analysis, employed

in tools e.g. for ranking and sorting association rules [17, 29],

data patterns [4], generating useful visualizations [31], exploring

OLAP data cubes [16] and many others.

Since dozens of measures were devised in the literature, each

capturing different facets of the broad concept, several surveys

and comparative studies have been performed to evaluate their

usefulness [12, 14, 17, 18, 22, 29]: In these works the authors

empirically evaluate many of the measures on real and synthetic

datasets, and provide guidelines for choosing the right one for a

given task and application domain. For example, [17] presents an

empirical evaluation of more than 30 interestingness measures,

applied for ranking buying patterns of customers. In [29], the

authors examine 21 measures for association rules, concluding

that neither one is consistently better than the others. [14] focuses

on measures for data summary, empirically showing that the

score distributions tend to be highly skewed.

While these notable studies contribute to the understanding of

the usefulness of measures for different analysis tasks and scenar-

ios, they do not address the case of IDA - in which the interestingness
criteria may dynamically change as the analysis session progresses.
To our knowledge, our work is the first to experimentally demon-

strate this phenomenon and to provide a dynamic interestingness

assessment (and selection of the appropriate measure), at each

step of an ongoing analysis session.

Subjective facets of interestingness. For brevity, we consid-
ered in this work only objective facets of interestingness, such as

Diversity, Peculiarity and Conciseness. However, several works

suggest measures that capture subjective facets of interesting-
ness [8, 20], i.e. that use prior information about the user and

provide a more personalized interestingness assessment. For ex-

ample, in [20] the authors devise measures for capturing inter-

estingness facets such as surprisingness and actionability by con-

sidering user prior beliefs encoded as a set of classification rules

(e.g. "has_job→ loan_approved").

Incorporating such measures in our framework is possible yet

requires the model to consider user information in addition to

the n-contexts. This is an exciting direction for future research.
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Learning Interestingness. Some works also suggest learning-

based solutions for interestingness assessment. In [9] the authors

present a system for guided data exploration based on active-

learning. The system presents users with an initial set of tuples

and asks then to annotate each tuple as interesting or not. Har-

vesting this feedback, the system can improve and personalize the

tuples presented to the users. In [21], they present a visualization

ranking system which is based on supervised binary classifica-

tion of visualization into “interesting” or “non-interesting”, based

on students’ annotations as ground truth.

In contrast to our work, these works tackle specific analysis

tasks (i.e. filter/select queries and visualizations) hence can not

be trivially generalized to the context of IDA which consists of

sequences of actions of multiple types, and where (as we had

shown in the experiments), interestingness, even for the same

action on the same dataset, may vary through the process.

Second, both [9] and [21] require, and rely on users’ feed-

back, which as explained in the introduction has limitations in

our context. Different from these works, our solution provides

a general-purpose system suitable for various types of analysis

actions, and does not relay on particular user annotations. How-

ever, harnessing user feedback and learning-to-rank models in

our system could be a promising direction for future work.

Mining IDA session-logs for action/query recommendation.
Previous work [2, 11, 13, 25] suggests that mining IDA session

logs can be used for predicting/recommending the next action

in a session. These works utilize a collaborative-filtering ap-

proach, intuitively arguing that “if users are posing similar se-

quences of queries, they are likely interested in the same subpart

of the dataset”. However, in our previous work [25] we argue

that in real life IDA scenarios analysts often examine different

datasets from different purposes, hence recommending previ-

ous actions from the log to new users is generally impractical.

To overcome this, the system described in [25] provides users

with high-level “suggestions” that aggregate meaningful action-

fragments mined from previous actions in the log. Combining

our solution with [25] is an interesting direction for future work,

where our solution can assist the system in [25] to better sort

the output suggestions and further materialize them to concrete,

executable actions.

6 CONCLUSION
This work examines interestingness measures in the context of

interactive data analysis (IDA). We show that interestingness

in IDA has unique characteristics: it dynamically changes even

within a single session, and can not be holistically captured by

just one measure. Using a real-life session log we demonstrated

these characteristics and evaluated our interestingness predictive

model, showing it can successfully select an appropriate interest-

ingness measure for each step in an IDA session. Our model and

framework may be employed in existing analysis recommender

systems, allowing them to better fit the recommended next ac-

tions (e.g., visualizations, queries) to the current interestingness

preferences of the user.

As for future work, we previously mentioned several ideas

such as using our system to evaluate the effectiveness of analysis

sessions. Also, incorporating user feedback and learning-to-rank

models in our system is an exciting idea for future research.
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