ML2SQL
Compiling a Declarative Machine Learning Language to SQL and Python

Maximilian E. Schüle
schuele@in.tum.de
Alfons Kemper
kemper@in.tum.de
Matthias Bungeroth
bungeroth@in.tum.de
Stephan Günnemann
guennemann@in.tum.de
Dimitri Vorona
vorona@in.tum.de
Thomas Neumann
neumann@in.tum.de

Technical University of Munich

ABSTRACT
This demonstration presents a machine learning language MLearn that allows declarative programming of machine learning tasks similarly to SQL. Our demonstrated machine learning language is independent of the underlying platform and can be translated into SQL and Python as target platforms. As modern hardware allows database systems to perform more computational intensive tasks than just retrieving data, we introduce the ML2SQL compiler to translate machine learning tasks into stored procedures intended to run inside database servers running PostgreSQL or HyPer. We therefore extend both database systems by a gradient descent optimiser and tensor algebra.

In our evaluation section, we illustrate the claim of running machine learning tasks independently of the target platform by comparing the run-time of three in MLearn specified tasks on two different database systems as well as in Python. We infer potentials for database systems on optimising tensor data types, whereas database systems show competitive performance when performing gradient descent.

1 INTRODUCTION
Database systems provide with SQL a declarative language that allows data manipulation and data retrieving without caring about optimisation details. With increasing hardware performance, database systems will not fully exploit the servers’ hardware potentials as long as they are used for data retrieval only. To shift computation to the data stored in database systems, algorithms can be specified in SQL—as it has been Turing complete since providing recursive tables—or as user-defined functions. The latter allow injecting code as stored procedures to be executed inside the database system and make an additional data manipulation layer on top obsolete. Even though the run-time would decrease, user-defined functions are not fully established as they form a mixture of declarative and procedural language and are inconvenient to express for data scientists.

When dealing with data and minimisation problems, dedicated tools as TensorFlow [1] or Pytorch form the status quo for performing machine learning tasks with tensors and gradient descent. Another approach of formulating machine learning tasks is using a declarative language as MLog [7], that compiles to code using TensorFlow, but, so far, it lacks support for use together with database systems. For computations inside of database systems, the support of linear algebra together with tensor calculus and gradient descent in database systems is independent of the underlying platform and can be translated to SQL (for PostgreSQL or HyPer) or to Python. We infer potentials for database systems on optimising tensor data types, whereas database systems show competitive performance when performing gradient descent.

ML2SQL

Figure 1: The compilation process: the MLearn language first gets preprocessed twice for handling includes, then the language gets tokenised and parsed. For each target platform, a generator allows to translate the abstract syntax tree into the target language.

integration of linear algebra [8] and matrices inside of database systems [5]. Going one step further, so called array database systems replace relations by arrays as the native way of storing attributes. To support machine learning, TensorFlow [6] aims at providing tensor calculus on top of array database systems. One study even provide an own declarative language (BUDS) [2] on top of a prototyped database system that supports matrix data types. Comparable domain specific languages are Weld1 for data driven workloads and IBM SystemML2 for creating flexible algorithms, but both cannot be used inside of database systems. The intermediate language Ferry [3] allows to translate from various code (i.e. Ruby or Haskell) into SQL but is not designed for use with array datatypes.

However, while linear algebra in database systems have been integrated and declarative language concepts have been proposed, there is no successful study on bringing a declarative language, tensor calculus and gradient descent in database systems together. We therefore develop a declarative machine learning language named MLearn aiming to optimising models for supervised machine learning and data analysis. Our MLearn language allows specifying tasks independently of the target language, changing the underlying engine and makes it easy to compare run-times and results of different underlying frameworks. This demonstration presents the ML2SQL compiler in particular, which compiles code written in MLearn to SQL (for PostgreSQL or HyPer) or to Python using the frameworks NumPy and TensorFlow (see Fig. 1).

This demonstration paper is structured as follows: First, we introduce the MLearn language specifications and the details of the corresponding compiler. We evaluate the run-time of the generated code on the target platforms using the Chicago taxi driver potentials as long as they are used for data retrieval only.
dataset as input data and linear regression as optimisation model
(optimised by gradient descent or as closed form solution). At the
end, we introduce the demonstration concept including our web
interface for online testing and conclude by improvements that
might increase database systems’ computation performance.

2 MLEARN AND THE ML2SQL COMPILER
The MLearn language is designed to define machine learning
tasks in a declarative manner to be compiled to SQL or Python.
We begin by introducing the language specification needed for
enjoying the demonstration as a visitor. We precede by listing
the prerequisites of the target platforms in order to run the in-
troduced tasks. Finally, we will give examples on how to use the
MLearn language during the demonstration later on.

2.1 Language Specification
All operations work on integers, floating point numbers, Boolean
values or strings as basic types, which can be composed to tensors.
On these types, MLearn provides the following features (s. Lst. 5):

- Reading CSV files as the fundamental operation to store
 the data in variables or relations of the database system.
- Mathematical expressions as provided by NumPy or
 SQL (as part of the projection operator).
- Tensors form the main part in our computations. Beside
 mathematical operations we support accessing, slicing,
 concatenation and transposition.
- Functions allow to structure the code and to reduce code
 duplication. Also external functions imported from other
 files or of a target language are allowed.
- Control blocks. In addition to our declarative statements,
 we allow conditional expressions and loops.
- Distributions are used for data sampling when initializ-
 ing tensors with random values.
- Preprocessor statements as known from C can be used
 to include files and to allow the abstraction of different
 functions to different files.
- k-fold cross validation as a predefined building block
 splits up a data set into training and test sets to find the
 best—so-called—hyper parameters.
- Gradient descent as a separate building block optimises
 the weights for a given loss function on input data.

2.2 Target Language
We designed our machine learning language to compile to Python
code with the libraries that data scientists would use. To work
with SQL we picked out the disk-based database system Post-
greSQL and its main-memory counterpart, HyPer. We assume for
both systems an underlying script language, PL/pgSQL in Post-
greSQL and HyPerScript in HyPer, that combines declarative SQL
statements with procedural control blocks. The tensor operations
in Python are performed using NumPy library calls. HyPer has al-
ready implemented all basic tensor operations including addition,
(scalar) multiplication, power (including inverse for matrices on
negative exponents), transposition, initializing an identity matrix
and filling a matrix by a predefined value. As those operations do
not exist in PostgreSQL, we have implemented these operations
as C library function calls, also supporting parallelism. Further-
more, we make use of predefined array operations as slicing and
concatenation to divide the input dataset into training and testing
one. Also, we wrap a PostgreSQL library extension around our al-
ready presented gradient descent [9] library to allow in-database
gradient descent in PostgreSQL.

2.3 Example
Fig. 2 shows the exemplary usage of the MLearn language where we
specify linear regression as closed form solution:

\[\hat{w} = (X^T X)^{-1} X^T y. \]

The example code (see Lst. 1) splits a tensor (A) into features (X,
the first three attributes) and labels (y). Then a tensor out of the
value 1 as bias is prepended in front of the features. Afterwards,
the optimal weights (w) are computed out of tensor algebra. The
compiled code to Python can be seen in Lst. 2, the one for Post-
greSQL in Lst. 4 and the one for HyPer in Lst. 3. We can see that
the code written in our declarative language is much more
compressed.

3 EVALUATION
For evaluation (s. Fig. 3), we specify linear regression as closed
form or using gradient descent in our machine learning lan-
guage and let the tasks run on the following target platforms:
PostgreSQL version 10.5, Python 2.7.15 with NumPy 1.13.3 and
TensorFlow 1.3.0 and the current HyPer system. We used an
Ubuntu 18.04.01 LTS server with two sockets and twenty cores
of Intel Xeon E5-2660 v2 processors in total (supporting hyper-
threading). The server has 256 GiB of main memory and uses
1 TiB of SSD as background storage. As test data served 85 mio.
tuples of the Chicaco taxi rides dataset. We tested the run-time
of loading data from CSV (s. Fig. 3a),

Fig. 2 shows the exemplary usage of the MLearn language where we
specify linear regression as closed form solution:

\[\hat{w} = (X^T X)^{-1} X^T y. \]

The example code (see Lst. 1) splits a tensor (A) into features (X,
the first three attributes) and labels (y). Then a tensor out of the
value 1 as bias is prepended in front of the features. Afterwards,
the optimal weights (w) are computed out of tensor algebra. The
compiled code to Python can be seen in Lst. 2, the one for Post-
greSQL in Lst. 4 and the one for HyPer in Lst. 3. We can see that
the code written in our declarative language is much more
compressed.

3 EVALUATION
For evaluation (s. Fig. 3), we specify linear regression as closed
form or using gradient descent in our machine learning lan-
guage and let the tasks run on the following target platforms:
PostgreSQL version 10.5, Python 2.7.15 with NumPy 1.13.3 and
TensorFlow 1.3.0 and the current HyPer system. We used an
Ubuntu 18.04.01 LTS server with two sockets and twenty cores
of Intel Xeon E5-2660 v2 processors in total (supporting hyper-
threading). The server has 256 GiB of main memory and uses
1 TiB of SSD as background storage. As test data served 85 mio.
tuples of the Chicaco taxi rides dataset. We tested the run-time
of loading data from CSV (s. Fig. 3a),

Fig. 2 shows the exemplary usage of the MLearn language where we
specify linear regression as closed form solution:

\[\hat{w} = (X^T X)^{-1} X^T y. \]

The example code (see Lst. 1) splits a tensor (A) into features (X,
the first three attributes) and labels (y). Then a tensor out of the
value 1 as bias is prepended in front of the features. Afterwards,
the optimal weights (w) are computed out of tensor algebra. The
compiled code to Python can be seen in Lst. 2, the one for Post-
greSQL in Lst. 4 and the one for HyPer in Lst. 3. We can see that
the code written in our declarative language is much more
compressed.

3 EVALUATION
For evaluation (s. Fig. 3), we specify linear regression as closed
form or using gradient descent in our machine learning lan-
guage and let the tasks run on the following target platforms:
PostgreSQL version 10.5, Python 2.7.15 with NumPy 1.13.3 and
TensorFlow 1.3.0 and the current HyPer system. We used an
Ubuntu 18.04.01 LTS server with two sockets and twenty cores
of Intel Xeon E5-2660 v2 processors in total (supporting hyper-
threading). The server has 256 GiB of main memory and uses
1 TiB of SSD as background storage. As test data served 85 mio.
tuples of the Chicaco taxi rides dataset. We tested the run-time
of loading data from CSV (s. Fig. 3a),

Fig. 2 shows the exemplary usage of the MLearn language where we
specify linear regression as closed form solution:

\[\hat{w} = (X^T X)^{-1} X^T y. \]

The example code (see Lst. 1) splits a tensor (A) into features (X,
the first three attributes) and labels (y). Then a tensor out of the
value 1 as bias is prepended in front of the features. Afterwards,
the optimal weights (w) are computed out of tensor algebra. The
compiled code to Python can be seen in Lst. 2, the one for Post-
greSQL in Lst. 4 and the one for HyPer in Lst. 3. We can see that
the code written in our declarative language is much more
compressed.

3 EVALUATION
For evaluation (s. Fig. 3), we specify linear regression as closed
form or using gradient descent in our machine learning lan-
guage and let the tasks run on the following target platforms:
PostgreSQL version 10.5, Python 2.7.15 with NumPy 1.13.3 and
TensorFlow 1.3.0 and the current HyPer system. We used an
Ubuntu 18.04.01 LTS server with two sockets and twenty cores
of Intel Xeon E5-2660 v2 processors in total (supporting hyper-
threading). The server has 256 GiB of main memory and uses
1 TiB of SSD as background storage. As test data served 85 mio.
tuples of the Chicaco taxi rides dataset. We tested the run-time
of loading data from CSV (s. Fig. 3a),

Fig. 2 shows the exemplary usage of the MLearn language where we
specify linear regression as closed form solution:

\[\hat{w} = (X^T X)^{-1} X^T y. \]

The example code (see Lst. 1) splits a tensor (A) into features (X,
the first three attributes) and labels (y). Then a tensor out of the
value 1 as bias is prepended in front of the features. Afterwards,
the optimal weights (w) are computed out of tensor algebra. The
compiled code to Python can be seen in Lst. 2, the one for Post-
greSQL in Lst. 4 and the one for HyPer in Lst. 3. We can see that
the code written in our declarative language is much more
compressed.
A = [[1.1, 0.98, 87.3, 3], [0.1, 3.15, 42.05, 3.3], [100.5, 26.8, 10.1, 225.1], [1097.5, 23000, 10.1, 24850.1]]

X = A[:][0:1:2+1][3+1:3+1]

w = (X.T*X)^(-1) * X.T * y

Figure 2: Closed form linear regression specified in MLearn.

Listing 1: The specification in MLearn.

CREATE OR REPLACE FUNCTION ML_main() AS $$
var A = array[array[1.1::0.98::87.3::3], [0.1::3.15::42.05::3.3], [100.5::26.8::10.1::225.1], [1097.5::23000::10.1::24850.1]]

bias ::= [bias = array_slice(A, 1, array_length(A, 1), (0+1::int),(1+1::int))]
var y = array_resetlower(array_slice(A, 1, array_length(A, 1), (0+1::int), (1+1::int)))

bias = array_full(float, 1, array_length(0, 0+1::int);

w = (Xt*X)^(-1) * X * y

print('w', w)

$$ LANGUAGE 'hyperscript' strict;

select ML_main(); DROP FUNCTION ML_main();$$

Listing 3: As HyPerScript code for HyPer.

Listing 2: The translated code for Python using NumPy.

DO $$ declare
A float[3]; X float[3]; y float[3];

bias float[3]; w float[3]; y float[3];

begin
A := array[array[1.1::float, 0.98::float, 87.3::float, 3], array[0.1::float, 3.15::float, 42.05::float, 3.3], array[100.5::float, 26.8::float, 10.1::float, 225.1], array[1097.5::float, 23000::float, 10.1::float, 24850.1]]

X := A[:][0+1:2+1][3+1:3+1]; y := A[:][3+1:3+1];

bias := array_full(float, 1, array_length(0, 0+1::int))

w := matrx_power((Xt * X), (-1+1::int)) * X * y;

RAISE NOTICE 'w', w;

END$$;

Listing 4: For PostgreSQL as PL/pgSQL procedure.

we run a PostgreSQL and an HyPer database server fed with an excerpt of the Chicago taxi dataset. The demonstration visitors are invited to try out the introduced types of tensor algebra as well as minimising arbitrary loss functions as, for example, linear or logistic regression.

5 CONCLUSION

This demonstration presented the first declarative machine learning language MLearn, which allows describing machine learning tasks independently of the target engine and whose compiler allows running the code in the core of database systems. This paper first introduced comparable approaches before it presented the language specifications for performing linear regression and gradient descent using any possible loss function. Then, we evaluated the run-time of the tasks on the different target databases PostgreSQL, HyPer and Python using NumPy and TensorFlow. The results showed that it was indeed feasible to run the tasks as stored procedures inside of database systems showing comparable run-time especially during matrix creation.

Overall we have shown the potential of a declarative machine learning language of expressing tasks compactly and being independent of the underlying engine. As future work—to boost the capabilities of database systems for array data—remains the development of efficient array data types and the standardised integration of optimisation methods such as gradient descent inside of database systems.

ACKNOWLEDGEMENTS

This work is part of the TUM Living Lab Connected Mobility (TUM LLCM) project and has been funded by the Bavarian Ministry of Economic Affairs, Energy and Technology (StMWi) through the Centre Digitisation.Bavaria, an initiative of the Bavarian State Government. Dimitri Vorona has been sponsored in part by the German Federal Ministry of Education and Research.
(BMBF), grant TUM: 01IS12057. This research has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 725286).

REFERENCES