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ABSTRACT
Research in data management profits when the performance eval-
uation is based not only on individual components in isolation,
but uses an actual DBMS end-to-end. Facilitating the integration
and benchmarking of new concepts within a DBMS requires a
simple setup process, well-documented code, and the possibil-
ity to execute both standard and custom benchmarks without
tedious preparation. Fulfilling these requirements also makes it
easy to reproduce the results later on.

The relational open-source database Hyrise (VLDB, 2010) was
presented to make the case for hybrid row- and column-format
data storage. Since then, it has evolved from being a single-
purpose research DBMS towards becoming a platform for various
projects, including research in the areas of indexing, data parti-
tioning, and non-volatile memory. With a growing diversity of
topics, we have found that the original code base grew to a point
where new experimentation became unnecessarily difficult. Over
the last two years, we have re-written Hyrise from scratch and
built an extensible multi-purpose research DBMS that can serve
as an easy-to-extend platform for a variety of experiments and
prototyping in database research.

In this paper, we discuss how our learnings from the previous
version of Hyrise have influenced our re-write. We describe the
new architecture of Hyrise and highlight the main components.
Afterwards, we show how our extensible plugin architecture
facilitates research on diverse DBMS-related aspects without
compromising the architectural tidiness of the code. In a first
performance evaluation, we show that the execution time of most
TPC-H queries is competitive to that of other research databases.

1 INTRODUCTION
Hyrise was first presented in 2010 [19] to introduce the concept
of hybrid row- and column-based data layouts for in-memory
databases. Since then, several other research efforts have used
Hyrise as a basis for orthogonal research topics. This includes
work on data tiering [7], secondary indexes [16], multi-version
concurrency control [42], different replication schemes [43], and
non-volatile memories for instant database recovery [44].

Over the years, the uncontrolled growth of code and function-
ality has become an impediment for future experiments. We have
identified four major factors leading to this situation:
• Data layout abstractions were resolved at runtime and in-
curred costs that sometimes had a disproportional overhead.

• Prototypical components have been implemented to work in
isolation, but did not interact well with other components.
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• The lack of SQL support required query plans to be written
by hand and made executing standard benchmarks tedious.

• Accumulated technical debt made it difficult to understand
the code base and to integrate new features.

For these reasons, we have completely re-written Hyrise and
incorporated the lessons learned. We redesigned the architecture
to provide a stable and easy to use basis for holistic evaluations of
new data management concepts. Hyrise now allows researchers
to embed new concepts in a proper DBMS and evaluate perfor-
mance end to end, instead of implementing and benchmarking
them in isolation. At the same time, we allowmost components to
be selectively enabled or disabled. This way, researchers can ex-
clude unrelated components and perform isolated measurements.
For example, when developing a new join implementation, they
can bypass the network layer or disable concurrency control.

In this paper, we describe the new architecture of Hyrise and
how our prior learnings have led to a maintainable and com-
prehensible database for researching concepts in relational in-
memory data management (Section 2). Furthermore, we present a
plugin concept that allows testing different optimizations without
having to modify the core DBMS (Section 3). We compare Hyrise
to other database engines, show which approaches are similar,
and highlight key differences (Section 4). Finally, we evaluate
the new version and show that its performance is competitive
(Section 5).

1.1 Motivation and Lessons Learned
The redesign of Hyrise reflects our past experiences in develop-
ing, maintaining, and using a DBMS for research purposes. We
motivate three important design decisions.

Decoupling of Operators and Storage Layouts. The previous
version of Hyrise was designed with a high level of flexibility
in the storage layout model: each table could consist of an ar-
bitrary number of containers, which could either hold data (in
uncompressed or compressed, mutable or immutable forms) or
other containers with varying horizontal and vertical spans. In
consequence, each operator had to be implemented in a way
where it could deal with all possible combinations of storage
containers. This made the process of adding new operators cum-
bersome and led to a system where some operators made undocu-
mented assumptions about the data layout (e.g., that all partitions
used the same encoding type). Instead of relying on operators to
properly process data structures with varying memory layouts,
Hyrise now follows an iterator-based approach. By accessing
data through iterators, the implementation of new operators is
decoupled from the implementation of new data storage concepts
without compromising the flexibility. Operators can implement
custom specializations for specific iterators, but execution falls
back to the default iterator if no implementation exists. The iter-
ator abstraction is explained in Section 2.3.
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Benchmarking. Just as modern software development pro-
cesses require that fundamental development steps, such as set-
ting up the environment, building the code, and running tests
should require only one step each, we believe that the same is true
for benchmarks. This might seem obvious, but in our experience,
also with other databases, both productive and research, this is
almost never the case. In Hyrise, benchmarks are now single
binaries that generate their data, run the queries, and print the
results. As of writing, the TPC-H benchmark is included in the
code base; the alternative data generator JCC-H [8], as well as the
TPC-C and Join-Order [30] benchmarks are work-in-progress.
Custom benchmarks can be easily added by creating table and
query files, which are automatically executed by a generic bench-
mark runner (cf. Section 2.10). To facilitate reproducibility, all
benchmark results contain the parameters relevant to their ex-
ecution, including the Git commit hash, information about the
utilized scheduler, thread count, and more. Benchmarks are exe-
cuted by the CI process for each commit on the master branch to
aid in the identification of performance regressions.

Memory Management & Metaprogramming. When the devel-
opment of Hyrise started 10 years ago, C++11 was not yet fi-
nalized. This meant that memory management had to be done
manually using new/malloc and delete/free, resulting in spurious
segmentation faults and considerable debugging efforts. In the
new version, Hyrise almost exclusively uses shared or unique
smart pointers, which guarantee that objects are only deleted
right after there is no remaining pointer to them. The overhead of
reference counting for shared pointers seems to be well justified
by the noticeable reduction in time spent on debugging memory
management issues. Only when these pointers become an actual
bottleneck, we look into whether the memory management in
that particular component can be made more explicit.

Hyrise employs template metaprogramming to decouple the
supported data types, storage layers, encoding types, and opera-
tors while at the same time preserving a high degree of compile-
time type safety. We use Boost.Hana to automatically generate
code for the different supported data types and for the resolution
of our iterators. Mostly because of this, but also because of other
C++17 features that are used all over the code base, Hyrise can
only be compiled with current versions of GCC and Clang.

1.2 Building a Database with Students
We believe that the best way to learn about database systems
is to program them yourself. Therefore, in addition to our PhD
research projects, we use Hyrise in a graduate-level database
class in which students develop, integrate, and test new features,
such as additional join implementations, optimizer rules, or index
structures. Not only does this hands-on experience help their un-
derstanding of databases and improve their programming skills;
it also raises their interest to research database topics in greater
depth, for example as part of their Master’s theses. As a result,
a considerable fraction of the Hyrise code has been developed
together with students as part of their class assignments or thesis
work.

Developing a database with students also entails one of the
main challenges in the process, which is a relatively short devel-
oper turnover time. Even those Master’s students who decide to
specialize in the field rarely spend more than two years on the
project. We address this challenge with strict code reviews, a high
degree of test coverage (currently at >85%), and by encouraging
new students to highlight existing components that are difficult

to understand. On the technical side, we use automatic format-
ting (clang-format), multiple linting tools (cpplint and clang-tidy),
sanitizers (ASan, UBSan, TSan, andMemcheck), and enforce most
compiler warnings (-Wall -Wextra -pedantic -Werror).

The main criterion for building a maintainable research DBMS
is that students without prior database knowledge can be brought
up to speed and contribute code in six weeks. The fact that we
were able to prove this repeatedly in our database seminars shows
us that we are on the right track.

2 SYSTEM ARCHITECTURE
In this section, we give an overview of the new architecture of
Hyrise. In places where it improves clarity, we refer to the original
Hyrise architecture as Hyrise1 and to that of the rewritten DBMS
Hyrise2. After a general description of the high-level architecture,
which follows the visualization in Figure 1 and focuses on query
execution, we describe major components in their respective
subsections, which are also given in the figure.

We decided to make as much functionality and as many com-
ponents optional as reasonably possible. This decision is based
on a learning from Hyrise1, where we found it difficult to isolate
the root of performance issues because of the number of involved
components. In Hyrise2, even core concepts, such as optimization,
concurrency control, or scheduling, can be disabled. Without an
optimizer, queries get executed close to how they are defined
in SQL; for example, joins are only identified if JOIN ... ON ...

is used. If MVCC is turned off, all tables are read-only, do not
store information with regards to transactions or concurrency,
and validation operators are not inserted into the query plan. If
the scheduler is turned off, tasks are immediately executed in
the same thread (while still guaranteeing progress). Similarly,
Hyrise2 can be benchmarked with and without the just-in-time
compiler, the network interface, or logging.

2.1 General Overview
Figure 1 shows the core components of Hyrise. We discuss them
by following the process of answering a user-provided SQL query.
Users have three options to submit queries to Hyrise. As a first op-
tion, we provide a command line interface, which can not only be
used to submit queries, but also offers convenience functions for
generating TPC-C or TPC-H benchmark tables, visualizing query
plans, and toggling optional Hyrise components. As a second
option of interacting with the database, Hyrise has an integrated
TCP/IP server implementing the wire protocol of PostgreSQL.
Users can send queries using PostgreSQL’s interactive terminal
psql or existing drivers for PostgreSQL. More details on how this
interface is designed and implemented can be found in Section 2.5.
Lastly, the third option is the SQL-C++ interface, which is used
by our benchmark binaries (cf. Section 2.10) and also enables
hand-written optimization of query plans. Currently, the bench-
mark binaries use the SQL-C++ interface. We are working on a
benchmark implementation that utilizes the network interface.

All of the three entry points hand the user’s SQL string to
Hyrise’s SQL Pipeline (cf. Section 2.6), which consists of multiple
steps that transform the provided SQL string to an efficient query
plan. The SQL Parser translates the SQL string to an abstract
syntax tree expressed as C++ data structures. Next, the SQL to
LQP Translator changes the abstraction level by creating a logical
query plan (LQP), which is a directed acyclic graph (DAG) whose
nodes loosely resemble the operations of the relational algebra.
Finally, the Optimizer applies a series of rules to the LQP, which
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Figure 1: Hyrise Architecture Overview.

transform it into a more efficient, semantically equivalent version
of the query. Some rules work by simply applying logical proper-
ties of the query plan (e.g., single-table predicates should almost
always be pushed below joins), while others utilize information
about the referenced tables that is only known at runtime. This
information is collected from auxiliary data structures, such as
general statistics, indexes, and filters (cf. Section 2.4). At the time of
writing, statistics rely on histograms (equal height, equal width,
equal distinct count) and other simpler metrics, e.g., the number
of distinct values. Filters are probabilistic data structures that
support approximate membership queries and allow the pruning
of chunks (i.e., logically ruling out the necessity to access a chunk
for a given predicate), whereas indexes return qualifying posi-
tions for a certain predicate directly without scanning through
the data.

Hyrise implements a query plan cache, which can store both
logical and physical query plans. Thereby, translation and opti-
mization can be skipped to avoid doing these steps repeatedly for
the same queries. While the cache does not yet auto-parameterize
incoming queries, users can use prepared statements for queries
with varying parameters. Both implicitly cached queries and
prepared statements use the same caching data structures and
shortcuts shown in the figure.

After optimization, the LQP is passed to the LQP Transla-
tor, which translates logical operators (such as predicates, joins,
and sorts) to physical operators. Physical operators are concrete
implementations of the logical concepts and more than one im-
plementation might exist for a logical operator. For example, we
implement joins as either sort-merge joins (cf. [2]), hash joins
(cf. [4]), or nested-loop joins. Based on the optimizer’s hints, one
of these implementations is chosen for each logical operator. The
result of the LQP Translator is another DAG, which we call Physi-
cal Query Plan (PQP). If the just-in-time compiler (cf. Section 2.7)
is enabled, the LQP is not passed to the LQP translator, but to

a JIT-aware LQP Translator, which creates JIT operators whose
code is specialized using runtime information.

In both cases, the resulting PQP is then handed to the scheduler,
which takes care of executing the translated operators. Once all
operators have been executed, the resulting table is returned to
the user.

Having looked at the entities that make executing a query
possible, we now go over the data structures that are accessed
for this. During execution, the primary table data as well as
secondary data structures such as indexes are accessed by the
operators. Tables are horizontally partitioned into chunks. Within
a chunk, we have vertical partitions called segments where the
segments across all chunks constitute the columns. Data within
a segment might be encoded (cf. Section 2.3), for example using
dictionary or run-length encoding. Additionally, chunks hold the
data needed for multi-version concurrency control (MVCC, cf.
Section 2.8). For more information on our storage layout refer to
Section 2.2.

There are two more components shown in Figure 1: Self-
Driving and Logging / Recovery. We envision future database
systems to be self-driving [26], meaning that they autonomously
adjust their configurations. Therefore, a self-driving component
that assesses the database’s current workload and tunes the con-
figuration accordingly is part of Hyrise as well. This component
is explained in more detail in Section 3.2. Logging and recovery are
currently work-in-progress and are not described in this paper.

2.2 Storage Layout
Hyrise1 offers hybrid layouts, providing a maximum of flexibility
with regards to storage layouts. This flexibility causes increased
system complexity as well as runtime overhead by introduced
abstractions.While the underlying system architecture of Hyrise2
supports hybrid layouts, we focus on columnar-oriented data for
now. Figure 2 depicts the storage layout for an example table.
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Storage layouts for HTAP database must support efficient read
and write operations. This is often achieved by separating the
data into read- and write-optimized partitions. Data is always
added towrite-optimized partitions. Update and delete operations
invalidate entries in read-optimized partitions. From time to time,
data has to be moved from write- to read-optimized partitions.

This transformation may happen by merging data of write-
optimized partitions into read-optimized partitions [15, 27]. Merg-
ing may require re-encoding of already compressed data. Further-
more, the merge algorithm introduces implementation-specific
complexity. For example, modifications to currently merged data
have to be handled. In addition, the same data is encoded re-
peatedly during consecutive merge processes. Last, merge costs
increase with the size of involved partitions.

To avoid a merge process in Hyrise2, tables are implicitly
divided into Chunks, horizontal partitions of a certain size. Opti-
mal chunk sizes are both data- and workload-dependent. A self-
driving database system would decide on these autonomously. So
far, our experiments showed suitable sizes to be between roughly
fifty thousand and a few million records. The optimal chunk size
is largely independent of the width of the table, both in terms of
data sizes and number of columns in our default setup, where a
column-based layout and dictionary encoding are used.

There are two types of chunks, mutable and immutable chunks.
Initially, chunks are mutable and append-only containers. Data is
added in a plain, unencoded fashion. When a chunk’s capacity is
reached it becomes immutable. Once this happens, encodings (cf.
Section 2.3) can be asynchronously applied. Chunks encapsulate
fractions of all of the table’s columns, so-called segments.

There are a couple of advantages of the chunk-based approach.
First, by implicitly partitioning the data, both multiprocessing
(one core processes one chunk) and data placement, e.g., in NUMA
environments, are simplified. Chunks can easily be distributed
over multiple NUMA nodes, thereby leveraging multiple memory
busses and CPUs for simultaneous processing.

Furthermore, auxiliary data structures like indexes and filters
can be created on a per-chunk basis. Thus, these data structures
are only created for those chunks where they yield a certain
benefit. It also offers the flexibility to create different structures,
for example, different index types for different chunks. The same
can be applied to encodings: Some segments of a column might
stay unencoded, others dictionary-encoded, and further segments
run length-encoded.

Chunks are implicitly prunable entities. Thereby, in some
cases, they can be excluded early from query processing without
having to process the contained data. This can be achieved by
using approximate membership query properties of filters (cf.
Section 2.4) or characteristics of certain encoding types.

Partitioning the data into chunks has some drawbacks that
need to be mitigated. First, it introduces the memory cost of
storing per-chunk metadata. If, however, chunk sizes are chosen
to be hundreds of thousands or millions of rows, this is not an
issue as we show in Section 5.2. Second, for some encoding types,
chunks may introduce redundant storage of information. For
example, chunks encoded using the dictionary encoding store
values that occur in all chunks over and over again in every chunk-
local dictionary. On the other hand, if the overlap of values across
chunks is low, the size of the dictionary can be kept low, and the
number of needed bits for the attribute vector is reduced. Thus,
choosing the optimal chunk size is a tradeoff between memory
overhead and flexibility.
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Figure 2: Depiction of Hyrise’s storage layout for an exem-
plary table T with n chunks and three attributes.

2.3 Segment Encoding
To our best knowledge, all modern columnar andmemory-resident
databases employ some form of column encoding. This is to (i)
compress data and reduce memory consumption, (ii) better utilize
the available memory bandwidth by increasing the entropy, and
(iii) increase performance since operations on integer-encoded
columns can be vectorized and processed by modern CPUs more
efficiently. This effect is even stronger when relational operators
can operate on encoded data without prior decoding.

Hyrise supports both logical (i.e., mapping input data to an
integer representation) and physical (i.e., further compressing
integer codes) encoding schemes (cf. [13]). The implemented
logical schemes include frame of reference, run length, and order-
preserving dictionary encoding. The physical ones include fixed-
size byte alignment and SIMD-BP128 for null suppression. Logical
and physical encoding schemes can be arbitrarily combined so
that existing logical schemes can profit from a new physical
encoding without modification.

Hyrise1 includes several encoding and compression schemes,
but as mentioned above, no abstraction layer separated the data
layout and the execution engine. This caused maintainability
and performance issues and led us to formulate the following
requirements for an encoding framework in Hyrise2:

• The encoding framework should be an abstraction layer
where operators do not need to be implemented for each
added encoding type.

• Still, implementing specialized access methods for cer-
tain encodings should be possible. For example, scans on
dictionary-encoded columns should search for the integer
value id, without having to decompress the data.

• Performance should be on par with manually optimized
encoding schemes. This means that the compiler should be
able to statically resolve the abstractions without having
to resort to virtual method calls in hot loops.
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tor upfront vs. positional decoding. Right: impact of static polymorphism via C++ templating vs. dynamic polymorphism
as done in the previous version of Hyrise.

• Abstractions should be analyzable by the compiler to the
point where auto-vectorization (i.e., the automatic genera-
tion of SIMD code) is possible.

• The framework should seamlessly cooperate with our
long-term plans on just-in-time query plan compilation.

• Instead of defining encodings per column, it should be
possible to have different encodings in different segments.

We fulfill these requirements by heavily relying on static poly-
morphism, i.e., C++ templates. For each implementation of an
encoding type, an iterable is implemented. These iterables inherit
from a common base class using the curiously recurring tem-
plate pattern (CRTP). The base class provides the with_iterators

interface to operators, but instead of implementing this method
using virtual inheritance, the CRTP is used to statically call a
protected _on_with_iterators method. Operators pass a functor
(i.e., a lambda or closure) to with_iterator as shown in Listing 1.
Optionally, with_iterators takes a position list, which is used to
selectively iterate over the values that, for example, are the result
of a previous scan operation.

segment_iterable.with_iterators(

[&]( auto left_it , auto left_end) {

for (; left_it != left_end; ++ left_it) {

const auto left = *left_it;

if (!left.is_null () && predicate(left.value ())) {

matches.emplace_back(left.chunk_offset ());

}}});

Listing 1: Implementation of a vectorizable1 scan operator
using the iterators provided by the encoding framework

Not only the iterators, but also the functors (in the exam-
ple, the predicate) are resolved at compile time. This allows us
to define an adaptable and flexible encoding framework that
avoids virtual method calls. Using iterators allows us to hide
implementation details of encoded columns, which eases the
maintainability of operators. In case query compilation is used,
the iterators also provide efficient accesses for tuple-at-a-time
processing without incurring virtual method calls. A downside
of this approach is that the number of template instantiations

1To enable the compiler’s auto-vectorization, it is helpful to first iterate over a
constant number of rows at a time. This is not shown in the example for the
purpose of brevity.

grows exponentially. For a scan on a single column, we instanti-
ate |DataTypes | ∗ |EncodinдSchemes | ∗ |Comparators | templates,
resulting in a compile time of up to five minutes for the most
complex operators. To prevent that cost from slowing down our
development, the static resolution only takes place for Release
builds; Debug builds use conventional virtual method calls.

The same iterator model can also be used to implement hybrid
data layouts. A row-oriented segment type can provide iterators
for each included attribute. Because the iterators are resolved
at compile-time, accesses to attributes within one tuple would
result in contiguous memory accesses.

Figure 3 shows two micro-benchmarks evaluating the perfor-
mance of our encoding schemes and the encoding framework. As
Hyrise is optimized for HTAP workloads, which include frequent
positional accesses, random access iterators play an important
role. Figure 3a shows the overhead of decoding the encoded vec-
tor beforehand (cf. [25]) compared to using positional random
access iterators. For most encodings, positional accesses are 2−3×
faster, even when decoding large position lists. For typical OLTP
queries with short position lists, the advantage is even more
pronounced.

The performance advantage of static polymorphism over dy-
namic polymorphism, i.e., virtual method calls, is shown in Fig-
ure 3b. In this benchmark, we aggregated a set of randomly cho-
sen positions (25% of 1M integer values). No matter the encoding
type, the cost of static polymorphism is significantly lower, with
the biggest improvement being a factor of 3×.

2.4 Indexes and Filters
During execution, two types of secondary data structures are
used to reduce the amount of data accessed: (i) secondary indexes
and (ii) filters, which are lightweight probabilistic data structures
for chunk pruning. Moreover, Hyrise uses these data structures
during query optimization for cardinality estimation.

Secondary Indexes. Indexes in Hyrise yield qualifying positions
for one or more predicate(s). Three secondary index structures
are implemented: (i) adaptive radix trees (ART, cf. [31]), (ii) B-
trees2, and (iii) the group-key index [16]. The group-key index has
been developed particularly for Hyrise. It builds on compressed
position lists and exploits order-preserving dictionaries.
2Google C++ B-tree: https://code.google.com/archive/p/cpp-btree/
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Filters. Filters are space-efficient (i.e., significantly smaller
than a secondary index) auxiliary data structures, which allow
the pruning of chunks (similar to partition elimination) for a
given predicate. Hyrise supports min-max filters, counting quo-
tient filters [37], and pruning-optimized histograms, which are
comparable to adaptive range filters [3]. The latter two are not
only capable of pruning but also support selectivity estimation.

Both indexes and filters are created on a per-chunk basis on
immutable chunks and not globally for the whole table so that
no maintenance cost is caused by inserts, updates, or deletes.
This simplifies the code base and avoids computational overhead
in forms of logging or heavy updates of large data structures.
However, it is conceptually possible to add, e.g., a B-tree in-
dex to mutable chunks when required in OLTP scenarios. As
filters and indexes are chunk-local, they can be selectively cre-
ated for chunks where the estimated performance improvement
outweighs the necessary memory space.

An important difference to previous work on filters is that,
in Hyrise, they are integrated with the query optimizer, instead
of being only used in the execution phase. Doing so enables
optimizations that can only be used at query planning time: First,
chunk pruning can be propagated through conjunctive predicate
chains down to the plan node that initially represents the input
table (cf. [6]). That plan node is configured to skip chunks that
would later be excluded by one of the predicates. As a result, the
number of accessed rows is reduced from the start and not only
at the location of the respective predicate. Second, in case chunk
pruning has a significant impact on the selectivity of a predicate,
this knowledge can be exploited for operator-reordering, which
would not be possible when pruning is done later in the execution
phase. Similarly, we plan to use indexes not only in the execution
phase but also for estimating cardinalities (cf. [32]).

2.5 Networking
Hyrise implements the wire protocol of PostgreSQL [40]. Reusing
existing wire protocols is common [41] for new systems for sev-
eral reasons. First, existing clients and drivers can be reused. This
is advantageous for database products as well as for research
platforms as it offers the possibility to access Hyrise from many
programming languages and makes it accessible to many users.
Second, tools such asWireshark can be used to investigate how
the sent and received PostgreSQL messages are encapsulated
in network packets. As Hyrise is a research platform, we only
implement the features needed for receiving SQL queries and
returning results, but do not implement features such as user
authentication or SSL. This keeps our implementation lean. The
wire protocol uses TCP/IP, and our server is implemented using
the asynchronous network features of Boost.Asio.

2.6 SQL
Figure 4 depicts the different steps in our SQL Pipeline. A ded-
icated SQLPipeline class is the main entry point to everything
related to query execution. It takes an SQL string as a parameter
and returns one or more tables. Optionally, all intermediary ar-
tifacts can be inspected by the developer in their text or graph
forms. This was designed based on our experience with other
databases where, in some cases, it is difficult to even understand
the path that an SQL query takes through the system and which
steps are involved. In the following paragraphs, we describe the
steps of the SQL pipeline.

SQL Parser SQL Translator

Parsed 
Select 

Statement

Optimizer

Logical 
Query Plan

(LQP)

LQP Translator

Optimized
LQP

Operators

Physical 
Query Plan

Figure 4: The different steps of the SQL Pipeline, leading
from an SQL string to executable operators

Parsing. The SQL parser transforms the SQL query string into
data structures that can be accessed and modified programmati-
cally. When we started to add SQL support to Hyrise, we found
no easy-to-use component that would transform an SQL string
into an Abstract Syntax Tree (AST) that uses C(++) structs. While
open-source databases come with their own parser (e.g., Post-
greSQL), we found these to be too interwoven with the rest of the
database for our purposes. Thus, we built a standalone C++ SQL
parser based on Flex and Bison and released it as open source
software3.

SQL-to-LQP Translation. Having parsed the SQL query string
into an Abstract Syntax Tree, which still resembles the structure
of the SQL Query, we now translate the AST into a Logical Query
Plan (LQP), which is based on the relational algebra. Each edge
in the LQP represents a table, either a user-defined table that is
stored in the central Storage Manager or an intermediary table
generated by the previous operator. It could also be a user-defined
SQL view, which we have stored as its LQP and can embed into
the query plan at this point. Operators do not need to perform
expensive materializations of intermediary results, but can also
pass positional references to the next operator. Having these
references avoids expensive materializations. These operators
are represented as nodes, which hold information about their
input relations and attributes and parameters for their execution.
LQP nodes are, however, not executable operators but only form
the basis for logical query optimization. They get translated into
physical operators only after all optimization steps have been
performed. An example of a Logical Query Plan is shown in
Figure 5.

Most LQP nodes, such as Predicates, Joins, or Aggregations,
are one-to-one representations of their equivalent in the rela-
tional algebra. One node type that stands out is the Projection,
which is our workhorse for most non-trivial column operations.
This includes more complex logical operators (nested AND/ORs),
string manipulation, but also the execution of subselects: In the
initial LQP, all subselects are expressed as sub-LQPs attached to
a Projection node close to the point of their first use. As such,
subselects are executed as if they were stand-alone queries. For
non-correlated subselects, this is done only once. For correlated
subselects, the query plan contains placeholders that are replaced
with the correlated attributes during the execution. Obviously,
this is quite inefficient, which is why the optimizer later rewrites
the LQP into a more efficient, join-based version.

Optimization. All optimizations are achieved by rules that are
executed on the Logical Query Plan (LQP). Rules are maintained
by the optimizer and are part of an optimization pipeline that con-
tains single-pass and multiple-pass rules. While some rules need

3Hyrise SQL Parser: https://github.com/hyrise/sql-parser
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to be executed only once (e.g., the substitution of constant expres-
sions), others can be re-executed if the LQP has been changed
by a different rule or if they themselves improve the resulting
LQP in multiple passes. A rule takes an LQP as a modifiable input
and returns whether it has modified that LQP. The information
on whether a rule modified the LQP is used by the optimizer
to decide whether iterative rules should be executed again. At
the end of every rule stands a valid LQP. Thus, the optimization
process can be skipped or stopped after a certain time, e.g., if the
expected runtime of the query is determined to be too low to
warrant further optimization efforts.

Out of the eight currently implemented rules, we use three
examples to highlight how these rules operate on the LQP: the
Predicate Pushdown Rule, the Join-Ordering Rule, and the Chunk
Pruning Rule. The Predicate Pushdown Rule is a rule that is almost
always applicable: For every LQP, it makes sense to execute
cheap filtering predicates as early as possible, that is, before more
expensive joins or aggregations. Currently, it is applied to all
trivial predicates. Correctly estimating the cost of more complex
predicates (such as nested predicates or LIKE expressions) is work
in progress. The Join-Ordering Rule is an example, which relies
on the statistics component to gather the estimated selectivities
of the join predicates and on the cost estimator to estimate the
cost of the different joins. These joins are then ordered using
DpCcp [34] in what is considered to be the most effective order.
Finally, our third example rule, the Chunk Pruning Rule, uses the
LQP and the filter information discussed in Section 2.4 to identify
chunks that will not contribute to the final result. While the LQP
is not structurally changed by this rule, the table nodes at the
bottom are augmented with the information of which chunks do
not need to be passed to the first operator (cf. Section 2.4).

LQP-to-PQP Translation. Finally, the LQP has to be translated
into a PQP. As described above, there are potentially multiple
physical implementations of a logical operator. The optimizer
has already left hints in the LQP nodes. An example of such a
hint is when a logical predicate node contains the information
that a secondary index can and should be used. Starting from
the bottom, each LQP node is now translated into one of the
available physical operators. Because all decisions have already
been made by the optimizer, nothing of great interest happens
here. This is different for the JIT-Aware LQP Translator, which
we describe in Section 2.7.

Prepared Statements and Query Plan Caching. One goal in the
design of the previous steps was to keep the SQL Pipeline lean,
which is why the cost of query planning is comparably low.
Still, commonly reoccurring queries can profit from previously
generated query plans. We treat SQL Prepared Statements and
Query Plan Caching similarly. In both cases, we store a mapping
from an SQL query string to a Physical Query Plan. The only
difference is that for Prepared Statements, entries in this mapping
are manually maintained, while the query plan cache is limited
and automatic eviction takes place. For Prepared Statements, we
store placeholders instead of actual values. Before the execution
of such a statement, these placeholders are replaced with actual
values.

Regular SQL queries are currently cached with all parameters
left in place. Automatically replacing these with placeholders
would increase the number of cache hits but at the same time
introduce further complexity. For example, for skewed workloads,
where the reuse of a previously generated query plans may not
be safe [5], caching PQPs might not always result in the best

[Sort]
o_totalprice DESC,
 o_orderdate ASC

[Aggregate]
aggregate sum(l_quantity)

by c_name, c_custkey, o_orderkey, o_orderdate, o_totalprice

[Predicate]
(o_orderkey) IN SUBSELECT (LQP, 0x7fb[..]) != 0 

[Projection]
(o_orderkey) IN SUBSELECT (LQP, 0x7fb[..])

[Join]
Mode: Inner

o_orderkey=l_orderkey

[Join]
Mode: Inner

c_custkey=o_custkey

[Validate]

[Projection]
c_custkey, c_name

[StoredTable]
Name: 'customer'

[Validate]

[Projection]
o_orderkey, o_custkey,

o_totalprice, o_orderdate

[StoredTable]
Name: 'orders'

[Validate]

[Projection]
l_orderkey, l_quantity

[StoredTable]
Name: 'lineitem'

[Projection]
l_orderkey

uncorrelated subquery

[Predicate]
sum(l_quantity) > 300

[Aggregate]
aggregate sum(l_quantity)

by l_orderkey

[Validate]

[Projection]
l_orderkey, l_quantity

[StoredTable]
Name: 'lineitem'

Figure 5: A sample visualization of a Logical Query Plan,
here of TPC-H query 18

execution strategy. For these cases, we can easily switch the cache
to only cache optimized LQPs, which are then re-optimized once
the actual parameters are bound to the placeholders. Because the
optimizer has already operated on the cached plan, we can save
on optimization time compared to starting the optimization from
scratch. Deciding when a PQP is safe to cache and reuse without
re-optimization is subject to future work.

2.7 Just-in-Time Compilation
Hyrise’s JIT engine is based on three components: The JIT Repos-
itory, which holds JITtable operators; the JIT-Aware LQP Transla-
tor, which translates Logical Query Plans into a chain of JITtable
operators; and the JIT Code Specializer, which optimizes the
operator code and fuses multiple operators into a single loop.

It is based on a code specialization approach, where, during
development, generalized C++ code is written for each operator.
This code still contains the virtual method calls for calling the
next operator, the switches for different column and encoding
types, or checks for null values. At runtime, when this infor-
mation is available, the JIT compiler replaces these abstractions
with their concrete values. This is done using LLVM’s ORC (On
Request Compilation) interface. For the examples, this means
that virtual method calls to the next operator can be inlined, type
switches can be removed and replaced with the known type, and
checks for null values can be removed if the column is known to
be non-nullable. The result of this optimization step is a single
binary that represents all logical operators between two pipeline
breakers. Because of this, we can optimize across operator bound-
aries and profit from keeping values in the CPU caches (or even
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registers) as well as from (auto-)vectorization of the code. We
believe that this specialization approach is a better fit for our
goals as it does not require developers to write code-generating
code. The downside of this approach is a high complexity of the
specializer component.

We maintain two execution engines, one with and one with-
out support for just-in-time compilation, for three reasons. First,
having two engines allows us to compare their performance and
identify bottlenecks. Second, despite all effort to make the de-
velopment of JIT operators as simple as possible, we consider it
to still be more complicated as developing traditional operators.
Not only do developers have to understand the JIT model, but
they also need to familiarize themselves with our specialization
engine in order to be able to debug or profile the resulting bi-
nary code. Especially for students who work on the project for
just a semester, this becomes a limiting factor. Third, most of
the research projects evaluated on Hyrise are orthogonal to the
optimizations achieved with JIT. The filter-based access prun-
ing methods presented in Section 2.4, for example, can prune
the same number of chunks no matter if the remaining chunks
are evaluated using traditional or JITted operators. As such, the
relative performance impact is comparable, even if the absolute
performance of the JITted queries is better.

In some cases, we can achieve a 22x performance improve-
ment over the traditional, operator-based approach, for example
when complex expressions have to be calculated. At the current
stage, not all operators are implemented as JIT operators (most
notably the different joins) and the JIT-aware LQP Translator
automatically falls back to non-JITtable implementations. Also,
the encoding-specific optimizations have not made it into the JIT
component yet, so table scans on dictionary-encoded segments
have to decompress all values. Because of this, the JIT component
has to be explicitly enabled.

2.8 Concurrency
As described in Section 2.2, chunks become immutable when
they reach their maximum capacity. This makes it easier to ef-
ficiently encode them without having to consider future modi-
fications. Updates to these chunks are thus implemented in an
insert-only fashion as invalidations and reinsertions. While a
table’s last chunk is mutable and would theoretically support
in-place updates, we keep the architecture simple by following
the insert-only approach for that chunk as well. For each chunk,
we store three vectors: the (1) begin and (2) end commit ids of the
transactions that inserted or invalidated this row, as well as the
transaction id of a transaction that currently has this row in its
set of modified rows.

When a transaction starts, it is assigned a unique (not nec-
essarily contiguous) transaction id by the transaction manager.
Also, it stores the commit id of the last transaction that was com-
mitted successfully. We previously called this "last commit id of a
transaction" [42] or lcidT , but have since renamed it to snapshot
commit id, which we believe communicates its purpose better.

A transaction can identify rows that are visible by comparing
the begin commit id with its snapshot id: If it is higher, the row
has been inserted after the transaction has started and should
not be visible. Similarly, a lower end commit id means that the
row has already been deleted by the time the transaction started.
Invalidations use the transaction id field for two purposes: First,
when checking the visibility of a row, seeing its own transaction
id in a row signals to the transaction that it has already modified

(i.e., inserted or invalidated) the row. This keeps us from having
to maintain a separate list of updated rows. Second, as modifying
the transaction id is an atomic compare-and-swap operation, it
identifies concurrency conflicts. If two transactions concurrently
try to set the transaction id of a single row, only one can succeed
and the other has to abort. For more detail on our implementation
ofMVCC, please refer to our description of transaction processing
in Hyrise1 [42].

2.9 Scheduling
Most databases do not leave the task of scheduling their work
items to the operating system’s scheduler [18]. We, too, have
instead implemented a cooperative task-based scheduler that tries
to keep the OS scheduling out of the equation. Our unit of work is
a task, which can be an operator, a subroutine within an operator,
a maintenance job, or any other subroutine. The easiest type of
task has been modeled after std::thread to take a function object
or a lambda. This keeps the entry threshold for new developers
low. All tasks are stored in a task queue, which is using a lock-
free tbb::concurrent_queue. Tasks can have dependencies on other
tasks and only tasks with fulfilled dependencies get emplaced
in the queue by the scheduler. Once a task finishes, it iterates
over its list of successors and asks them to check if they are now
ready to be scheduled.

Hyrise spawns one active worker thread per CPU core. It
polls the queue for new tasks to be executed. Once it has begun
executing a task, it continues to do so uninterruptedly until it
finishes. A task can also spawn subtasks, which are then emplaced
in the scheduling queue and executed in parallel.

On NUMA systems, we use one queue per node. Tasks can
specify a preferred node, for example when they should be sched-
uled close to the data that they are processing. When the queue
on one node runs dry, workers on that node perform work steal-
ing and attempt to help other nodes with finishing their queue.
To prevent high contention on the queues, workers back off for a
fixed time interval (currently 10 milliseconds) if the work stealing
was unsuccessful.

In line with our goal to keep the systemmodular, the scheduler
can be entirely disabled so that tasks are executed in the main
thread. When schedule is called on a task, it is either directly
executed or, if it has predecessors, their predecessors are executed
first. As a result, when measuring the multi-threaded scalability
of our system, there are differences between the measurements
for one core with and without scheduler. This allows us to inspect
the cost of the scheduler.

2.10 Benchmark Runner
Running standard benchmarks on different databases is often a
tedious task. Benchmark tables have to be generated and, in many
cases, the generated CSV files need some modifications before
they can be loaded. For many research databases, some features
of SQL are not supported and queries need to be reformulated
accordingly. Finally, many databases have special configuration
parameters that users need to be aware of. In our case, this in-
cludes the default chunk size and encoding options. Our goal is
to provide both developers and new users with a binary that is a
one-stop solution for executing such benchmarks.

Currently, Hyrise supports the TPC-H benchmark with the
binary hyriseBenchmarkTPCH. Support for the alternative data gen-
erator JCC-H, as well as the benchmarks TPC-C and Join Order
Benchmark are in development. These binaries return a JSON
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file with the total number of executed queries per second, as
well as the individual run times of each query and additional
information about the setup. Configuration parameters like de-
fault chunk size, encoding, or the number of used threads can
optionally be set either via the command line or in a JSON file.
Our idea is that by providing a git commit id and optionally a
JSON file, results can easily be communicated in a reproducible
way. Finally, users can provide their own table and queries in
.csv and .sql files, which are then automatically executed. We
use this to experiment with enterprise-specific workloads and
real-world data that, unfortunately, cannot be published. A tool
with a similar goal is OLTP-Bench [14], which we plan to support
in the future.

3 PLUGINS
For Hyrise to be a multi-purpose research vehicle, it is important
not to clutter the code base with limited-purpose extensions.
Often, research concepts and their implementations tackle very
distinctive challenges that are not necessary for normal database
operation. We believe that these specialized implementations
should not necessarily become part of the database core to avoid
complicating the process of understanding Hyrise and its source
code. Not merging them into the main code base also avoids
behavior that is unexpected by other researchers, for example
when self-tuning components automatically create new indexes.
We see plugins as a solution that allows us to extend the system’s
functionality beyond that of typical database systems. In this
section, we present the plugin interface offered by Hyrise and
our plans for its use by a self-driving database.

3.1 Interface
Plugins are dynamic libraries, which can be loaded and unloaded
by the user during database runtime. They can access all of
Hyrise’s components using the respective public interface. This
means that, except for the boilerplate code needed to initialize
them, the development of plugins is almost indistinguishable
from that of the database core. Also, most code can be moved
from the core into plugins without modification. The main limi-
tation is that while plugins can call public methods, they cannot
modify the code of existing components. For example, no new
encoding type can be added via a plugin, as all encoding types
have to be known during the compilation of Hyrise.

Plugins are implemented as Singletons to ensure that there
is only a single instance in the system. The Plugin Manager is
responsible for administrative work, such as loading and unload-
ing of plugins via libdl. We provide a blueprint for plugins4 that
can be used as a starting point for developing new plugins.

3.2 Self-Driving Database
One prime use case for plugins in Hyrise is the area of self-
driving database systems. In contrast to traditional databases,
these systems do not rely on human database administrators
(DBAs) anymore, but adjust their configuration and tune their
physical database design autonomously. Such behavior can be
achieved by employing workload-driven optimization and ma-
chine learning models. To achieve this efficiently, self-driving
components need to access and manipulate database-internal
data structures and processes. At the same time, it should still
be possible to run Hyrise independently of such a plugin and its
dependencies and it should not be necessary for other developers
4Exemplary plugin for Hyrise: https://github.com/Bensk1/example-plugin

to consider such external components. In addition, components
of such a self-driving system should be easily exchangeable to
enable experiments with different strategies.

The basic architecture and conceptual ideas for a Generalized
Self-Driving Framework [26] are currently under development
in Hyrise. A couple of typical database configuration and phys-
ical design aspects should be adjusted autonomously, e.g., the
selection of indexes, data placement in NUMA and in replicated
systems, and an automatic selection of efficient encoding and
compression schemes per chunk. These are either already part
of Hyrise and are going to be transferred to the plugin-based
self-driving system or are under development.

4 RELATEDWORK
The field of database systems for analytical applications has seen
vast progress over the last decade [1]. Amongst the first aca-
demic systems were MonetDB [9] and C-Store [46], which are
disk- and OLAP-optimized systems. While the first column stores
focused solely on analytical workloads, the rise of main memory-
optimized databases also led to the use of column stores for mixed
workload processing (OLxP or HTAP). Amongst these HTAP-
optimized column stores are SAP HANA [15] and Hyper [23].
Other comparable database systems include academic systems
like Quickstep [38] and Peloton [39]. In the remainder of this
section, we discuss major design decisions of Hyrise and how
other systems approached them.

The storage layouts of early column-oriented systems like
MonetDB and C-Store closely resemble the decomposition storage
model (DSM [12]), storing attributes in one large consecutive
allocation. In addition to the base attributes, both systems further
include additional sort orders (cf. C-Store’s projections [46] and
MonetDB’s cracking [22]). A similar layout is used in SAP HANA
with the difference that it tries to minimize the memory footprint
and avoids redundant data storage. More recent systems use a
different approach that splits columns into several smaller units.
With the rising importance of NUMA systems, such a form of an
automatic horizontal partitioning in fixed-size blocks eases the
equal distribution of data over several nodes [10]. This storage
paradigm is used, e.g., in Hyrise, HyPer, and Quickstep. Peloton’s
tiles are a hybrid storage layout and resemble the variable-width
containers of the first version of Hyrise.

One of the main challenges for columnar databases is handling
a steady stream of modifications in HTAP environments. C-Store
introduced the separation into read- and write-optimized stores.
A similar concept is used in SAP HANA and has been used in
Hyrise1, namely separating each table in a read-optimized main
partition and a write-optimized delta partition [27, 29]. In con-
trast, HyPer and Quickstep have chosen a model that is closer to
the chunk concept in Hyrise. While Quickstep is read-optimized,
HyPer uses uncompressed small blocks at the beginning and
shifts to larger and more compressed blocks over time [17].

Storing aggregated and space-efficient data structures for early
pruning of data is done by many database systems. The sim-
plest form is to store the min/max values of each column (e.g.,
Netezza’s zone maps or SAP HANA’s synopses [36]) or small ma-
terialized aggregates [33]. HyPer uses so-called positional small
materialized aggregates, which include scan ranges for multiple
value ranges [28]. More sophisticated approaches comparable to
Hyrise’s filters are adaptive range filters [3] or SuRF [47].

In the area of modern in-memory databases, Hyper has been
amongst the first systems that generated data-centric code using
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Figure 6: Runtimewhen executing the TPC-H queries on fresh database instances of Peloton, Quickstep, andHyrise (SF=1)

LLVM IR [35]. Since then, other database systems, both research
and productive, have started to compile queries at runtime, most
generating either LLVM IR or C code that is then compiled. Hyrise
differs from these approaches in that it does not generate new
code but specializes existing code that is stored in LLVM IR and
fuses it across operator boundaries. This approach has previously
been used by other projects, such as DexterDB [21] or Sharygin
et al.’s modifications to PostgreSQL [45]. Hyrise supports both
compiled and vectorized queries, allowing for similar evaluations
as done by Kersten et al. [24].

The idea of database systems that administrate themselves is
almost as old as that of databases itself. Early work [20] dates
back to the 1970s where certain aspects of the physical database
design were tuned. In later years, vendors of commercial database
systems integrated advisors into their products to support human
DBAs [11]. Recently, self-driving databases [39] received fresh
attention. New systems have a more holistic approach where
systems do not rely on human interaction anymore and aim for
administrating all aspects of databases instead of certain parts
only. With its plugin architecture, Hyrise enables the integration
and interplay of self-driving components with reusable compo-
nents and clearly specified interfaces.

5 EVALUATION
Only recently has the SQL and expression subsystem reached
the point where the syntax of all TPC-H queries was supported.
Since then, we have constantly been working on improving the
optimizer so that it generates better query plans. AlthoughHyrise
still misses some LQP optimizations, which currently limit the
performance of a few SQL queries, we can show that Hyrise is
already in the same ballpark as other research databases.

5.1 Single Query Comparison
In this section, we compare Hyrise’s performance with two
other open-source research databases, namely Quickstep [38]
and Peloton [39]. All databases were built from source in their
release mode5 using gcc 8.2. Our benchmark system has four
Intel Xeon E7-4880 v2 CPUs, a total of 60 cores with 2.5 GHz (up
to 3.1 in Turbo Boost Mode), and 2 TB of DRAM. We start the
databases using either their network interface and psql (Peloton
and Hyrise) or by sending queries to the command-line interface
using expect (Quickstep and Hyrise).
5Git-Hashes for Hyrise: 9a60098b, Peloton: 3bc6d461, Quickstep: 5cbaa7ef

The TPC-H CREATE statements have been slightly modified to
reflect the level of data type support in the databases. DECIMAL
has been replaced by FLOAT and DATE has been replaced by
CHAR(10). While Quickstep seems to offer a date type, using
it in comparisons gives us an error. Within the queries, slight
modifications have been made to compensate for the lack of
date functions. No indexes were created. This evaluation aims
at comparing the database performance that researchers can
expect when looking at a system for the first time. As such, no
additional settings were made. Most importantly, the databases
are running with their default number of threads: 1 for Hyrise6,
120 for Quickstep, and 4 for Peloton. We expect that there are
probably better settings for these databases or more advanced
code branches that would lead to better results, but limit the
evaluation to what is publicly available and what would be a
reasonable attempt at generating first numbers.

Results can be found in Figure 6. Considering the mentioned
limitations, we can see that for most queries, Hyrise’s perfor-
mance is within an order of magnitude of the other databases. It
also shows that there is still optimization potential both within
the optimizer and the query execution, but also especially within
our network component.

5.2 Chunk Size Evaluation
We discussed Hyrise’s storage layout, including the chunk con-
cept, in Section 2.2. In this subsection, we evaluate the perfor-
mance impact of chunks. The test setup (hardware, compiler, scale
factor) remains unchanged from the previous section. Figure 7
depicts the throughput for selected TPC-H queries for chunk
capacities varying from one thousand to ten million records per
chunk. The throughput is shown relative to a setup without any
form of chunking. In the figure, TPC-H queries for which the per-
formance is only marginally impacted by the chunk capacity are
combined into "Avg. of other queries". This experiment demon-
strates that the chosen chunk capacity influences the throughput
to a large extent. Compared to a chunk capacity of 10 000 000
rows, which effectively results in a single chunk for the given
scale factor, a chunk capacity of 100 000 improves the throughput
by a factor of 26 for TPC-H query 21. At the same time, chunks
containing only 1 000 records diminish the throughput by 97%
for TPC-H query 22.

6In the default configuration, the scheduler is currently disabled as we are investi-
gating a performance regression.
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Figure 7: Performance impact and memory consumption of varying chunk capacities (the highlighted chunk capacity of
100 000 is Hyrise’s default setting).

As stated earlier, chunks can influence the performance in
different ways. First, chunks provide inherent partitions that can
be used to distribute the workload. In the results above, however,
multithreading was disabled and we see a second effect: Because
chunks enable pruning, they can sometimes help in avoiding the
access to large parts of the data. Whether pruning is possible
depends on the underlying data. If pruning cannot be applied,
queries might see drawbacks when too small chunks are used.
Queries 6 and 22with a chunk capacity of 1 000 are an example for
this: pruning cannot be applied and many small chunks introduce
a significant overhead. Overall, the best throughput is achieved
with chunk sizes around 100 000. Compared to a non-chunked
layout in Hyrise, the performance increases by 146%.

In addition, the chunk size affects a table’s memory footprint
as stated in Section 2.2. The lower half of Figure 7 shows the
memory footprint for different chunk sizes of all TPC-H tables
for a scale factor of 1 when applying dictionary encoding. The
configuration that is best for throughput consumes roughly 10%
more memory than the most space-efficient configuration. Fine-
tuning this parameter on a per-table basis instead of setting it
globally is subject to future work. Depending on the encoding
scheme, a smaller chunk size can also reduce the footprint in edge
cases, for example when a lower number of dictionary entries
enables the use of fewer bits for their encoded representation.

6 SUMMARY
In this paper, we have presented how our research database
Hyrise was re-engineered and rewritten to be a platform for
future research projects. Our new architecture was built around
the goals of being easy to understand and extend, enabling end-to-
end benchmarking, and delivering high performance even in the
presence of multiple abstraction layers. We have described which
prior experiences with Hyrise1 have influenced the development,
both from an architectural, and from a processual perspective.

Most components that are relevant to our query execution
have been explained, including storage and encoding, auxiliary

data structures, networking, the SQL pipeline, JIT compilation,
multi-threading, and benchmarking. Furthermore, we have de-
scribed our plugin interface and the self-driving plugin as an
example for its use. Finally, we have evaluated chunks as the
main storage concept of Hyrise, have shown how pruning can
reduce the number of accessed rows during execution, and have
compared Hyrise to other research databases.

Future work has been discussed for the separate components.
From a high-level perspective, we will focus on implementing
the missing LQP optimizations that are current bottlenecks to
our performance, will implement more benchmarks, and improve
the performance of the system by making better use of modern
hardware components.

We invite the reader to experiment with Hyrise by following
our first steps guide7, which not only contains instructions on
how to setup Hyrise and run first benchmarks within minutes,
but also examples on how to run queries, and visualize them.
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