
MatchCatcher: A Debugger for Blocking in Entity Matching
Han Li1, Pradap Konda1, Paul Suganthan G.C.1, AnHai Doan1,

Benjamin Snyder2, Youngchoon Park3, Ganesh Krishnan4, Rohit Deep4, Vijay Raghavendra4
1University of Wisconsin-Madison, 2Amazon, 3Johnson Controls, 4@WalmartLabs

ABSTRACT
Blocking is a fundamental step in entity matching (EM). Much
work has examined the design and runtime of blockers. However,
very little if any work has examined the problem of debugging
blocking accuracy. In practice, blockers’ accuracy can vary dras-
tically, and using an accurate blocker is critical for many EM
applications. To address this problem, we describe the Match-
Catcher solution. Given two tables to be matched and a blocker,
MatchCatcher �nds matches killed o� by the blocker, so that
the user can examine these matches to understand how well the
blocker does accuracy-wise and what can be done to improve
its accuracy. We show how to quickly �nd such matches using
string similarity joins, iterative user engagement, rank aggre-
gation, and active/online learning. Extensive experiments show
thatMatchCatcher is highly e�ective in helping users develop
blockers, can help improve accuracy of even the best blockers
manually created or automatically learned. MatchCatcher has
been open sourced and used by 300+ students in data science
class projects and 7 teams at 6 organizations.

1 INTRODUCTION
Entity matching (EM) �nds data instances referring to the same
real-world entity [6, 14], such as tuples (Dave Smith, San Fran-
cisco, CA) and (David Smith, S.F., CA). This problem is critical
for many Big Data and data science applications.

When doing EM, we often must perform blocking. Consider
for example matching two tables A and B. Real-world tables of-
ten have hundreds of thousands, or millions, of tuples. Trying
to match all tuple pairs in A ⇥ B is practically infeasible. So we
often perform a step called blocking which uses domain heuris-
tics to quickly drop many pairs judged obviously non-matched
(e.g., person tuples that do not have the same state). The next
step, called matching, matches the remaining pairs, using rule-
or learning-based techniques. Blocking can greatly reduce the
number of pairs considered in the matching step, drastically re-
ducing the total EM time. As a result, virtually all real-world EM
applications use blocking.

Numerous blocking methods have been developed [6]. For
example, hash blocking drops all tuple pairs that do not have the
same hash value, using a prede�ned hash function. This method is
popular because it is easy to understand and fast. Other methods
include sorted neighborhood, overlap, phonetic, rule-based, etc.
(see Section 2).

Given two tables A and B to match, we often want a blocker
Q that is fast, selective, and accurate. “Fastness” is measured by
the time to apply Q to A and B to produce a set of tuple pairs
C . “Selectivity” is typically measured as the ratio |C |/|A ⇥ B |.
“Accuracy” is typically measured as the fraction of true matches
surviving blocker Q , i.e., |M \ C |/|M |, where M is the set of

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st
International Conference on Extending Database Technology (EDBT), March 26-29,
2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

(unknown) true matches in A ⇥ B. As such, it is also referred to
as recall.

In practice, blockers can vary drastically in recall, and using
a blocker with high recall is critical for many EM applications
(see Section 2). Yet today there is still no good way to develop
such blockers. For example, given the popularity of hash block-
ers, suppose we have decided to use a hash blocker Q on two
tables. While fast, Q may have low recall if the attribute values
to be hashed are dirty, misspelt, missing, or have many natural
variations (e.g., “New York”, “NY”, “NYC”). A common way to
address this problem is to use multiple hash blockers and take
the union of their outputs, to maximize recall. However, even in
this case, the recall can still be quite low. For instance, a recent
work [8] describes two real-world datasets where extensive ef-
fort at combining hash blockers achieves only 38.8% and 72.6%
recall. Such low recalls are simply unacceptable for many EM
applications. To improve recall, we can revise the current hash
blockers, replace some of them, or adding more blockers (of the
non-hash types). To do any of these, however, we need a way to
understand whether the current blocker has low recall, and if so,
then what the possible problems are, so that we can improve it.

The MatchCatcher Solution: In this paper we take the �rst
step toward solving the above problems. We describe Match-
Catcher, a solution to debug blocker accuracy. Given two tables
A and B to be matched and a blocker Q , MatchCatcher attempts
to �nd matches that are “killed o�” by Q , i.e., those that do not
survive the blocking step. We can examine these matches to see
if they are indeed true matches, and if so, then why they get
killed o� by Q . This tells us whether Q has low recall, and if so,
then how to improve it. The following example illustrates our
solution:

Example 1.1. Consider matching tables A and B in Figure 1.a.
Suppose a userU begins by creating a blocker Q1 that keeps only
tuple pairs sharing the same value for “City”. Figure 1.b shows
this blocker as Q1: a.Cit� = b .Cit�. (This is attribute-equivalence
blocking, a special type of hash blocking.) Applying Q1 to A and B
produces a set of tuple pairs C1 (see Figure 1.b).

User U wants to know if blocker Q1 kills o� too many true
matches. To answer this,U applies MatchCatcher, which operates
in iterations. In the �rst iteration, MatchCatcher shows the user n
tuple pairs judged most likely to be matches killed o� by Q1. These
pairs are listed on Figure 1.b, under “Debugger Output, Iter 1” (here
n = 3).

User U �nds that the �rst two pairs, (a1,b1) and (a3,b2), are
indeed true matches (shown in red color on the �gure). A closer
examination reveals that they do not survive blocking because their
“City” values do not match due to misspellings and abbreviation,
e.g., “Altanta” vs. “Atlanta”, “New York” vs. “NY”.

Next, U wants to know if there are any more true matches.
Toward this goal,U �ags the true matches in the �rst iteration (i.e.,
the above two pairs). MatchCatcher uses this feedback to �nd the
next n pairs judged most likely to be killed-o� matches, then shows
those pairs in the second iteration (see Figure 1.b, under “Iter 2”).

Series ISSN: 2367-2005 193 10.5441/002/edbt.2018.18

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2018.18

Name City Age
Dave Smith Altanta 18

Daniel Smith LA 18
Joe Welson New York 25

Charles Williams Chicago 45
Charlie William Atlanta 28

Table A

Name City Age
David Smith Atlanta 18
Joe Wilson NY 25

Daniel W. Smith LA 30
Charles Williams Chicago 45

Table B

a1
a2

a3

a4
a5

b1
b2

b3

b4

First Blocker
Q1: a.City = b.City
C1
(a2, b3)
(a4, b4)
(a5, b1)

Debugger Output
Iter. 1 Iter. 2 Iter. 3
(a1, b1) (a5, b4) (a1, b4)
(a3, b2) (a1, b3) (a2, b2)
(a2, b1) (a1, b2) (a2, b4)

Second Blocker
Q2: a.City = b.City OR
 lastword(a.Name) = lastword(b.Name)
C2
(a1, b1) (a4, b4)
(a1, b3) (a5, b1)
(a2, b1)
(a2, b3)

Debugger Output
Iter. 1
(a3, b2) …
(a1, b2)
(a1, b4)

Third Blocker
Q3: a.City = b.City OR
 ed(lastword(a.Name), lastword(b.Name)) ≤ 2

C3
(a1, b1) (a3, b2)
(a1, b3) (a5, b4)
(a2, b1) (a5, b1)
(a2, b3) (a5, b4)

Debugger Output
Iter. 1
(a1, b2) …
(a1, b4)
(a2, b2)

(a)

(b)

(c)

(d)

Figure 1: An example to illustrate MatchCatcher

U �nds no true matches in this iteration, as well as in the third
iteration.

At this point,U decides to stop looking formore killed-o�matches,
to focus on revising blocker Q1 to improve its recall. U observes
that the problem with pair (a1,b1), which disagree on “City”, can
be �xed by adding a new hash blocker that blocks on the last word
of “Name”, i.e., keeps a tuple pair if they agree on this word (which
is typically the last name). Figure 1.c shows Q2, the revised blocker,
which is the union of two hash blockers.

InvokingMatchCatcher for Q2 produces the list shown under
“Debugger Output, Iter 1” in Figure 1.c. This list shows that while the
new blocker Q2 successfully keeps (a1,b1), it still kills o� (a3,b2),
a true match. A closer examination reveals that this is due to a
mispelt last word: “Welson” vs. “Wilson”.

To �x such misspelling problems, U decides to keep a tuple
pair if the last words of “Name” are very similar, e.g., within an
edit distance of 2. This produces blocker Q3 in Figure 1.d. Here,
the hash blocker lastword (a.Name) = lastword (b .Name) has
been replaced by ed (lastword (a.Name), lastword (b .Name)  2,
a more general blocker where 00ed 00 computes the edit distance.
Invoking MatchCatcher for Q3 brings back no true matches, even
after several iterations. Thus, user U stops, deciding to use Q3 as
the �nal blocker for A and B.

It is important to emphasize thatMatchCatcher works with
any of the current blocker types. Indeed, it requires as input only
the two tables A and B and the set C resulting from applying
the target blocker to the tables. MatchCatcher thus is blocker
independent. We intentionally designedMatchCatcher this way
to maximize its real-world applicability, i.e, to make sure that
no matter which blocker a user has created, he or she can use
MatchCatcher. Subsequent work will examine extendingMatch-
Catcher to exploit the particularities of a speci�c blocker type.

Further, MatchCatcher does not estimate the actual recall,
i.e., the fraction of matches surviving blocking. Doing so would
require it to know the set of true matches in A ⇥ B, which would
be solving the EM problem itself! Indeed, MatchCatcher does
not attempt to match A and B. Instead, its goal is to quickly �nd a
large set of plausible matches killed o� by the blocker and bring
them to the user’s attention, so that the user can examine them to
�nd true matches, get a sense about whether the blocker kills o�
too many such matches, and if so, what the problems are, so that

he/she can �x them. Section 6 shows that real-world users indeed
�ndMatchCatcher very helpful in answering these questions.

Challenges: While promising, developingMatchCatcher raises
di�cult challenges. First, we must quickly search the vast space
D = A ⇥ B �C (whereC is the blocker’s output) to �nd plausible
matches killed o� by the blocker, and we must do so without
materializingD. This search is further complicated by the fact that
at this pointMatchCatcher does not even know what it means
to be a match (only the user knows). To address these problems,
we observe that matching tuples tend to have similar values for
certain attributes (e.g., Name, City). So we convert each tuple into
a string that concatenates these attributes, e.g., converting tuple
a1 of Table A in Figure 1.a into “Dave Smith Altanta”. We then
perform a top-k string similarity join (SSJ) to �nd the k tuple pairs
with the highest score with respect to these strings, and output
these pairs as plausible matches. The state-of-the-art solution for
top-k SSJs [34] proves too slow for our interactive setting. So we
develop a new solution that is signi�cantly faster.

Second, to �nd as many plausible matches as possible, we need
to repeat the above procedure, but for di�erent sets of attributes
(e.g., �nd tuple pairs that are similar with respect to Name only,
City only, both Name and City, etc.). We cannot consider all
such sets, called con�gs, as there are too many. So we develop a
solution to �nd a good set of con�gs.

Third, we must perform multiple related top-k SSJs, one for
each con�g. This raises the challenge of how to perform them
jointly across the con�gs. We develop an e�cient solution that
perform them in parallel on multiple cores yet reuse computa-
tions across the joins.

Finally, top-k SSJs over the con�gs produce a large set E of
plausible matches (e.g., in the thousands). We cannot realistically
expect the user to examine all of these matches. So we develop a
solution that uses rank aggregation and active/online learning to
rank the pairs in E, show the top n pairs to the user, ask him/her
to identify the true matches, use this feedback to rerank the pairs,
and so on, until the user has been satis�ed or a stopping condition
is reached. In summary, we make the following contributions:

• We show that debugging blocker accuracy is critical for
EM.
• We describe MatchCatcher. As far as we know, this is
the �rst in-depth solution to address the above problem.
Our solution advances the state of the art in top-k string
similarity joins, and exploits active/online learning to ef-
fectively engage with the user.
• Over the past two years, MatchCatcher has been suc-
cessfully used by 300+ students in data science projects
and by 7 teams at 6 organizations. We brie�y report on
this experience. We also describe extensive experiments
showing that MatchCatcher is highly e�ective in helping
users develop blockers, and that it can help improve the
accuracy of even the best blockers manually created or
automatically learned.

2 DEBUGGING BLOCKER ACCURACY
In this sectionwe show that debugging blocker accuracy is critical
for EM, discuss the limitations of current solutions, then provide
an overview of theMatchCatcher solution.

Entity Matching (EM): This problem has received signi�cant
attention (see [6, 14, 30] for recent books and surveys). Many EM
scenarios exist, e.g., matching two tables, matching within a table,

194

matching a table with a knowledge base, etc. [6]. In this paper,
as a �rst step, we will consider the common EM scenario that
matches two tablesA andB, i.e., �nds all tuple pairs (a 2 A,b 2 B)
that refer to the same real-world entity.

Types of Blockers: As discussed in the introduction, for large
tables A and B we typically perform EM by creating a blocker Q ,
applyQ toA and B to produce a relatively small set of tuple pairs
C , then apply a matcher to pairs in C . Over the past few decades
blocking has received much attention. The focus has been on
developing di�erent blocker types and scaling up blockers, e.g.,
[18, 22, 33] (see [7, 13] for surveys).

Many blocker types have been developed.MatchCatcherworks
with all of them. In what follows we brie�y discuss the most im-
portant types, as Section 6 experiments with many of them.

Well-known blocker types are attribute equivalence, hash, and
sorted neighborhood. Attribute equivalence (AE) outputs a pair
of tuples if they share the same values of a set of attributes
(e.g., blocker Q1: a.Cit� = b .Cit� in Figure 1.b). Hash block-
ing (also called key-based blocking) is a generalization of AE,
which outputs a pair of tuples if they share the same hash value,
using a pre-speci�ed hash function. For example, blocker Q2
in Figure 1.c combines the hash blocker lastword (a.Name) =
lastword (b .Name) and the AE blocker Q1. Sorted neighborhood
outputs a pair of tuples if their hash values (also called key values)
are within a pre-de�ned distance.

More complex types of blockers include similarity- and rule-
based [6, 8, 18]. Similarity-based blocking (SIM) is similar to AE, ex-
cept that it accounts for dirty values, misspellings, abbreviations,
and natural variations by using a predicate involving string simi-
larity measures, such as edit distance, Jaccard, overlap, etc. [36].
Examples include ed (lastword (a.Name), lastword (b .Name) 
2, a blocker which outputs tuple pairs where the last words of
their names have an edit distance of at most 2, and blocker
jaccard (a.title,b .title) � 0.4, which outputs pairs of books
whose titles have a Jaccard similarity score of at least 0.4. Rule-
based blocking is perhaps most general. It outputs a tuple pair
satisfying a rule or a set of rules encoding domain heuristics, e.g.,
blocker Q3 in Figure 1.d consists of two rules. Such blockers can
be viewed as the union of multiple blockers, one per rule.

Other types of blockers include phonetic (e.g., soundex), su�x-
array, canopy, etc. (see [6, 14] for an extensive discussion).

E�cient Execution of Blockers: E�cient techniques have
been developed to execute the above blocker types, both on a
single machine and a cluster of machines (e.g., [8, 18, 22]). To
execute hash/AE blocking, we partition the tuples in A and B
into blocks, such that all tuples in each block share the same hash
value, then output only pairs of tuples that are in the same block.

To execute a SIM blocker, e.g., ed (lastword (a.Name), lastword
(b .Name)  2, we build an index I (e.g., pre�x �ltering index
[36]) on the tuples inA, say. Next, for each tupleb 2 B, we consult
I to identify all tuples a 2 A such that the pair (a,b) can possibly
satisfy ed (lastword (a.Name), lastword (b .Name)  2. We check
if (a,b) indeed satis�es this predicate, and if yes, then output
the pair. Many e�cient string indexing techniques [36] can be
used to implement SIM blockers. Recent work [8] has also dis-
cussed e�cient techniques (e.g., using indexing and MapReduce)
to execute rule-based blockers.

Accuracy of Blockers: Blocker accuracy is typically measured
using recall, de�ned as follows:

De�nition 2.1. [Blocker recall] Suppose applying blocker Q to
two tables A and B produces the output C . Let M ✓ A ⇥ B be the
(unknown) set of true matches between A and B, then recall (Q) =
|M \C |/|M |.

Due to dirty data, misspellings, natural variations, synonyms,
missing values, etc., no single blocker type produces the highest
recall on all datasets. In fact, on any particular dataset, blockers
can vary drastically in recalls (e.g., 2.5-98.2% in our experiments).

Finding a blocker with high recall, however, is critical for
many EM applications. Counter-terrorism EM applications often
need very high coverage., i.e., �nding all person descriptions that
match, and thus want 100% blocking recall. Similar high-coverage
examples arise in fraud detection, e-commerce, law, medicine,
insurance, and pharmaceutical industry, among others. EM ap-
plications with inherently small numbers of matches naturally
do not want the blocker to kill o� many of these. Finally, EM
applications often compute statistics over the matches (e.g., the
percentage of patients attending both hospitals), which can be
seriously distorted by blockers with low recall.

Limitations of State of the Art: As a result, the topic of
blocker accuracy has received growing attention. Proposed so-
lutions include combining multiple blockers to maximize recall
(e.g., [12, 20, 22]), and using a sample of tuple pairs labeled as
match/no-match to learn blockers with high recall [2, 8, 18, 25].

While promising, these solutions can still produce blockers
with varying recalls, oftentimes falling short of 100%. For ex-
ample, a recent work [8] shows that extensive manual e�ort to
combine hash blockers achieves only 38.8% and 72.6% recall on
two datasets. (Obviously we cannot combine all possible blockers
as there are too many of them.) Another recent work [18] learns
blockers using samples labeled by crowdsourcing, but achieves
only 92% recall on a data set. In general, due to the di�culties
in obtaining a good sample, sampling �ukes, etc., today there is
still no guarantee that a blocker learned on a sample provably
achieves high recall when applied to the original tables.

Since there is still no “fool-proof” method to develop a blocker
with high recall, it follows that given a blocker Q (either created
manually or learned), it is still highly desirable to know how well
Q does recall-wise, and what the possible problems are, so that we
can improve it.MatchCatcher helps answer these questions, and
thus can be considered complementary to the above solutions. For
example, Section 6 describes a scenario where after the solution
in [8] had been used to learn a blocker, we appliedMatchCatcher
to this blocker and uncovered multiple problems, which can be
addressed to further improve the blocker recall.

Overview of MatchCatcher: As discussed, MatchCatcher
addresses the following problem:

De�nition 2.2. [Finding killed-o� matches] Let C be the output
of applying blocker Q to tables A and B. Then D = A ⇥ B � C
is the set of all pairs killed o� by Q . Help the user quickly �nd
as many true matches as possible in D (without materializing it).
Examining these matches helps the user understand how well Q
does recall-wise, and what can be done to improve its recall.

Figure 2 shows the architecture of MatchCatcher. Given two
tables A and B, the Con�g Generator examines the two tables
to generate a set of con�gs, each of which is a set of attributes
(e.g., {Name,Cit�}). For each con�g �, the Top-k SSJs module
performs a top-k string similarity join to �nd the k tuple pairs
that (a) have the highest score with respect to the attributes in �,
and (b) are killed o� by blocker Q . Note that to check Condition

195

Top-k SSJs

Match Verifier Matches in E
Explanations

User feedback

Top-n pairs

Config Generator Tables A, B
Set of
configs

Set E of match
candidates

Output C of blocker Q

Active/online learning

Figure 2: The MatchCatcher architecture

(b), this module does not need to know Q . It only needs to know
C , the output of applying Q to A and B. Hence MatchCatcher
works independently of the blocker type.

The Top-k SSJs module sends all top-k lists (one per con�g)
to the Match Veri�er. This module uses a rank aggregator to
combine the lists into a single global list, shows the top n pairs
to user U , asks U to identify true matches, uses this feedback
together with active and online learning to rerank the pairs, and
so on, until U is satis�ed or a stopping condition is met. U can
examine the true matches to understand how well blockerQ does
recall-wise, and to obtain explanations for why these matches
are killed o�. This helpsU decide if Q should be revised, and if
so, then how. The next few sections describeMatchCatcher in
detail.

3 GENERATION OF CONFIGURATIONS
We now describe the Con�g Generator, which outputs a set of
con�gs, each being a set of attributes. We cannot consider all
possible con�gs, so the key challenge is to select a good subset of
con�gs. We show how to do so, by carefully managing attributes
with many missing values, few unique values, or long string
values.

3.1 How Con�gurations Are Used
We �rst motivate the notion of con�gurations (or “con�gs” for
short) and explain how they are being used. Later we build on
this to discuss how to select a good set of con�gs.

Recall that we want to quickly search D = A ⇥ B �C , the set
of tuple pairs killed o� by blocker Q , to �nd pairs that can be
matches. This raises three problems. First, D is not materialized,
we only have A, B, and C . Second, even if D is materialized, it
would be too large to search quickly. Finally, we do not even
know what to search for, since at this point MatchCatcher does
not know what a match is (only the user knows).

To address these problems, we begin by assuming that tables
A and B share the same schema S (extendingMatchCatcher to
the case of di�erent schemas is future work). We observe that
matching tuples tend to share similar values in a set of attributes,
say � (e.g., {Name,Cit�}). So we want to quickly �nd tuple pairs
in D that share similar values for � and return those as possible
matches.

To do so, we convert each tuple a inA into a string str� (a) that
concatenates the values of all attributes in �. For example, if a is
(David Smith, Atlanta, 43) and � = {Name,Cit�}, then str� (a) is
“David Smith Atlanta”. This converts TableA into a setA� of such
strings. We convert Table B into a set B� of strings similarly.

Let h(x ,�) be a string similarity measure which computes a
score in [0, 1] between two strings x and �. Examples of such
measures are Jaccard, cosine, overlap, edit distance, etc. [36]. Then
next we perform a top-k string similarity join (SSJ) between A�
and B� to �nd the k tuple pairs in A ⇥ B with the highest h(x ,�)
score. Techniques have been developed to quickly perform top-k

SSJs [34, 37]. Of course, our goal is not to �nd pairs in A ⇥ B, but
rather in D = A ⇥ B �C . We can modify the above techniques
slightly to ensure this, by dropping a found pair if it is in C . We
then return the k pairs in D with the highest h(x ,�) score as
possible matches.

The above procedure does not require a materialized D, only
tablesA,B, andC (the output of blockerQ). It can quickly searchD
using a modi�ed version of top-k SSJs to return possible matches.
Of course, at this point we still do not know if these are indeed
matches. But later we can work with the Match Veri�er to quickly
shift through them to �nd true matches, if any. We now discuss
several important aspects of the above procedure.

Why Concatenating the Attributes? We can use a variety of
methods to �nd tuples that share similar values for attributes in �,
e.g., �nding pairs that share similar values for each attribute in �,
then taking their intersection, say. However, given the interactive
nature of debugging, we want this step to be as fast as possible.
Hence we decide not to treat the attributes in � separately, but
concatenate all of them into a single string, then compare them
using SSJs. Section 4 shows that this method can quickly search
a very large set D. But a drawback is that we can return false
positives such as tuple pair (Jim Madison, Smithville, 32) and (Jim
Smith, Madison, 32), because their concatenated strings are very
similar given certain similarity measures. Such false positives,
however, can be “weeded out” in the Match Veri�er, using user
feedback and active/online learning (see Section 5).

Which String SimilarityMeasure to Use? Given that similar
attribute values can still vary signi�cantly (e.g., “Dave Smith” vs
“David Frederic Smith”), measures that treat strings as sets (e.g.,
Jaccard, cosine, etc.) typically work better than those that treat
strings as sequences of characters (e.g., edit distance) [9]. So for
MatchCatcher, we use the well-known Jaccard measure that
tokenizes two strings x and � into two sets of words Px and
P� , then returns |Px \ P� |/|Px [P� | [34]. However, Theorem
4.2 shows that our solution can also work with other set-based
similarity measures, namely overlap, cosine, and Dice [34].

WhyMultiple Con�gurations? So far we have used just one
con�g � to �nd match candidates. Using multiple con�gs, how-
ever, can producemorematches. For example, con�g {Name,Cit�}
may not return the pair (David Smith, Seattle) and (Dave Smith,
Redmond) because the cities are di�erent. Con�g {Name} how-
ever can. Conversely, con�g {Name} may not return the pair
(Chuck Smith, San Francisco) and (Charles F. Smith, San Fran-
cisco) because the names are too di�erent, but con�g {Name,Cit�}
can. Together, these two con�gs can return more matches than
either of them in isolation. Generating a good set of con�gs
however is a major challenge, which we address next.

3.2 Generating Multiple Con�gurations
As a baseline, we can use all subsets of attributes in S (the schema
of A and B) as con�gs. But this generates too many con�gs even
for a moderate size (e.g., |S | = 8 produces 2 |S | � 1 = 255 con�gs).
We cannot use all of them because the total SSJ time would be
too high. So we must select a smaller set of con�gs.

To do so, we select a set of promising attributes in S , then use
them to generate con�gs, in a top-down fashion. In each step of
the process, we select which con�gs to generate next by carefully
considering the impact of attributes with many missing values,
few unique values, or long string values. The end result is a con�g
tree consisting of multiple con�gs. Later the Top-k SSJs module

196

ncsd

 csd nsd ncd ncs

 cd nd nc

d n

ncsd

 csd nsd ncd ncs

 cs ns nc

 c n
(a) (b)

Figure 3: An example of generating con�g trees.

will traverse this tree to perform top-k SSJs on the con�gs in a
joint fashion. We now elaborate on these steps.

Selecting the Most Promising Attributes: We �rst classify
attributes in S as string, numeric, categorical, and boolean, using
a rule-based classi�er. Next, we drop numeric attributes (e.g.,
Salary, Price) because matching tuples still often di�er in their
values (e.g., the same product having di�erent prices). Finally,
we drop categorical and boolean attributes whose appearances
in tables A and B are di�erent. For example, if Gender has val-
ues {Male, Female} in A but {M, F ,U } in B, then we drop it as
these two sets share no value (in general if the Jaccard score of
these two sets is less than a pre-speci�ed threshold then we drop
the attribute). The remaining attributes are string, or categori-
cal/boolean but with similar sets of values. We return these as
T , the set of the most promising attributes to be used for con�g
generation. (Of course, the user can also manually curate schema
S to generate T . The experiments in Section 6 however do not
involve any manual curation.)

Generating a Con�g Tree: Given the set T of promising at-
tributes, we generate a con�g tree in a top-down fashion, then
return all con�gs in the tree. Speci�cally, we start with T as
the con�g at the root of the tree. Next, we “expand” this node
by removing each attribute from T to obtain a smaller con�g
of size |T | � 1. This produces |T | new con�gs, which form the
nodes at the next level of the tree. We then select just one node
at this level to “expand” further, and so on (we will discuss how
to select shortly). This continues until we have reached con�gs
of just one node. Figure 3.a shows an example con�g tree, as-
suming T = {n, c, s,d } (which stand for Name, City, State, and
Description, respectively).

Intuitively, this strategy ensures that we generate a diverse
set of |T |(|T | + 1)/2 con�gs of varying size |T |, |T | � 1, . . . , 1. The
con�g tree will also be used to guide the joint execution of top-k
SSJs on the con�gs (see Section 4.2). We now turn to the challenge
of how to select a node to expand in the con�g tree.

Managing Many Missing Values and Few Unique Values:
Consider again the con�g tree in Figure 3.a. Suppose we are
currently at the second level of the tree, and need to select one
node among the four nodes csd , nsd , ncd , and ncs , to expand.
This selection is equivalent to selecting an attribute to exclude
from subsequent con�g generation. Indeed, if we exclude attribute
s , then we select node ncd to expand (as shown in the �gure).
Otherwise if we exclude d , then we select the rightmost node ncs
to expand, and so on.

So which attribute should we exclude? We observe that if an
attribute has manymissing values, then keeping it for subsequent
con�g generation is not desirable, because we will end up with
con�gs that produce similar top-k lists. For example, suppose
we have selected con�g ncd to expand (as shown in Figure 3.a),
and suppose that d has many missing values, then many strings
for con�g ncd and con�g nc will be identical, potentially leading
to similar top-k lists. In the extreme case, if all values for d are

Name: Bryan Lee, City: Austin, State: TX,
Desc: Joined in 8/2003, promoted to team lead 5/2005, promoted to
director of sales 4/2009. Currently on unpaid leave until 1/2013.

Name: Bryan M. Lee, City: Austin, State: TX,
Desc: Outstanding customer service record 03-05. Achieved sales of
$2M/year 05-09. Shortlisted for VP of sales 2011. Shortlisted for VP
of marketing 2012.

Figure 4: Examples of tuples with long string attributes.

missing, then these two top-k lists are identical. Clearly, we want
di�erent con�gs to produce substantially di�erent top-k lists, to
avoid redundant work and to maximize the number of matches
we can retrieve.

Another observation is that if an attribute has more unique
values than another, e.g., c vs s (which stand for City and State,
respectively), then it is better to exclude s , the one with fewer
unique values, because intuitively, if two tuples agree on c , they
are more likely to match than if they agree on s , all else being
equal. Thus, to maximize the number of matches we can retrieve,
we should strive to keep the “more speci�c” attributes, i.e., the
ones with more unique values.

Combining the above two observations, we de�ne the e-score
(shorthand for “expected bene�t”) of an attribute as follows:

De�nition 3.1. [E-score of an attribute] Let nA (f) be the ra-
tio of the number of non-missing values of attribute f in A over
the number of tuples in A, and uA (f) be the ratio of number of
unique values of f in A over the number of non-missing values
of f in A. We de�ne nB (f) and uB (f) similarly. De�ne eA (f) =
2nA (f)uA (f)/[nA (f) + uA (f)] and de�ne eB (f) similarly. Then
we de�ne the e-score of attribute f as e (f) = eA (f)eB (f).

We then select the attribute with the lowest e-score to exclude
at each level of the con�g tree. For example, suppose e (n) >
e (d) > e (c) > e (s). Then at the second level of the tree in Figure
3.a, we exclude attribute s , which means selecting node ncd to
expand. At the third level of the tree, we exclude c , which means
selecting node nd to expand.
Managing Long String Attributes: Many datasets contain
attributes with long string values, e.g., Comment, Desc, etc. Figure
4 shows two tuples where attribute Desc has such long values.
Such long attributes can cause two problems. First, they can cause
multiple con�gs to generate very similar top-k lists.

Example 3.2. Consider again the con�g tree in Figure 3.a. Sup-
pose attribute d has long string values (such as those shown in
Figure 4). Then all seven con�gs involving d can generate similar
top-k lists because the long values of d “overwhelm” the short values
of the remaining attributes. So when moving from a con�g involv-
ing d to another (e.g., from ncd to nd), the strings do not change
much, and therefore their similarity scores also do not change much
(we formalize this notion below), leading to similar top-k lists.

The second problem is that if the long string values are di�er-
ent for matching tuples, then a con�g involving this long attribute
will fail to return the match. For example, the two tuples in Figure
4 match, but any con�g involving attribute Desc will not return
this match, because the values for Desc here are very di�erent,
and so the score between the two tuples will be low.

To address this, we modify our con�g-tree generation proce-
dure as follows. Suppose we need to select a con�g node in the
tree to expand. Before, we select �def ault , the one without the
attribute with the smallest e-score. Now, we �rst run a procedure
FindLongA�r to see if there is any attribute that is “too long”
(i.e., likely to adversely a�ect selecting good con�gs). If such an

197

p

q

�	
�	 �	

�	 �	

r

subtree Tq
a

b

(a) (b)

u v w f

 u v w f

q

r
q

 r

Figure 5: Finding attributes judged too long.

attribute flon� exists, then we select the con�g without flon� to
expand. Otherwise we select �def ault , as usual.

Example 3.3. Consider again Figure 3.a, which shows the “de-
fault” con�g tree with root ncsd . To handle long attributes, once
we are at the second level, we do not automatically select ncd (the
con�g without s , the attribute with the smallest e-score) for expan-
sion. Instead, we run FindLongA�r at this level. Suppose it returns
d (thus judging d to be too long). Then we select ncs , the con�g
without d , for expansion. This produces new con�gs cs , ns , and
nc (see Figure 3.b). Suppose running FindLongA�r at the level of
these new con�gs returns no attribute. Then we select con�g nc
(the con�g without s , the attribute with the smallest e-score) for
expansion (see Figure 3.b).

We now explain procedure FindLongA�r. The key challenge is
to formalize what it means to be “too long”. Let p be a node in the
con�g tree. Suppose that when running the default con�g gener-
ation procedure (the one that does not consider long attributes),
we end up selecting q, a child node of p, for expansion, and that
we eventually generate a subtree Tq rooted at q (see Figure 5.a).

We say that an attribute f is too long if it “overwhelms” many
con�g nodes in subtree Tq , speci�cally if it overwhelms at least
half of the con�gs in F (Tq), the set of con�gs inTq that contain f .
In turn, we say that f overwhelms a con�g r 2 F (Tq) (see Figure
5.a) if the top-k list obtained from con�g r is “roughly the same”
as the top-k list obtained from con�g q (we formalize this below).
Intuitively, we want to avoid such cases, because we want each
con�g to return a di�erent top-k list, to maximize the number of
true matches that we will �nd. So if we �nd that f overwhelms
at least half of the con�gs in F (Tq), then we judge f to be too
long and should be removed. That is, instead of selecting q for
expansion, we will select the con�g (in the same tree level as q)
that does not contain f .

Of course, we do not have access to the top-k lists of r and
q. So we develop a condition which if true would suggest that
the two lists are “roughly the same”. Speci�cally, let sim� (a,b) =
h(str� (a), str� (b)) be the string similarity function between the
string values of two tuples a and b, for con�g �. Suppose that for
all tuple pairs (a,b) in D = A ⇥ B �C we have

Condition 1 : |simq (a,b) � simr (a,b) |/simq (a,b)  � ,

for a small pre-speci�ed � value, say 0.2. Then we can say that
when we switch con�g from q to r , the score of each tuple pair
does not change much, so the top-k list for r will stay roughly
the same as that of q.

Checking Condition 1 for all pairs (a,b) in D is not feasible.
Hence we perform a theoretical analysis for an idealized scenario
(described below). Of course, this idealized scenario rarely hap-
pens in practice. But understanding it helps us come up with an
e�cient heuristic to check Condition 1.

Let Lf (a) be the length (i.e., the total number of words) of
attribute f in tuple a, Lq (a) be the sum of the lengths of all
attributes in q, for tuple a, and so on. The idealized scenario

assumes that (a) attribute f takes the same proportion of the total
length of q in both a and b, i.e., Lf (a)/Lq (a) = Lf (b)/Lq (b) = � ,
and (b) the remaining length of q is equally distributed among
the remaining attributes of q, i.e., Lk (a) = [(1��)Lq (a)]/(|q |�1)
for all attribute k in q � { f }, and the same condition applies to
tuple b.

Example 3.4. Consider the two tuples a andb in Figure 5.b, where
q = {u,�,w, f } and r = {w, f }. We assume that Lf (a)/Lq (a) =
Lf (b)/Lq (b) = � , andLu (a)/Lq (a) = L� (a)/Lq (a) andLu (b)/Lq (b)
= L� (b)/Lq (b).

Then we can show that (see [24] for a proof sketch):

T������ 3.5. Let a 2 A and b 2 B be two tuples that satisfy
the above assumptions. If

• (R1) simq (a,b) � [
p
(1 + �)2 + 8 � (1 + �)]/4, and

• (R2) � � 1 � (|q |�1)
|q\r | ·

�
(1+�) ·

max {Lq (a),Lq (b) }
Lq (a)+Lq (b)

,

then pair (a,b) satis�es Condition 1.

Intuitively, this theorem says that if simq (a,b) is su�ciently
high (Requirement R1), and attribute f is su�ciently long (Re-
quirement R2), then simr (a,b) will be close to simq (a,b). It is
not di�cult to show that the quantity on the right-hand side of
R1 is upper bounded by 0.5. In practice, we observe that users
typically examine only the top few tens of pairs in each top-k
list (see Section 5), and that if these pairs are true matches, their
scores often exceed 0.5, making R1 true. As a result, if R2 is also
true, then attribute f is long enough to “overwhelm” these pairs.
That is, these pairs will change little score-wise when switching
from con�g q to r , thus typically will still show up in the top few
tens of pairs of the top-k list for r , an undesirable situation.

To avoid such situations, we will focus on checking R2. Check-
ing R2 for many pairs (a,b) is not practical. So we approximate
this checking using average lengths, i.e., we (a) replace � in the
left-hand side of R2 withmin{ALf (A)/ALq (A),ALf (B)/ALq (B)},
where ALf (A) for example is the average length of attribute f in
Table A, and (b) replace Lq (a) and Lq (b) in the right-hand side
of R2 with ALq (A) and ALq (B), respectively.

Procedure FindLongA�r then works as follows. Suppose we
have selected con�g q for expansion (because it does not contain
s , the attribute with the least e-score). Then for each attribute
f (other than s), we (a) identify F (Tq), the set of con�gs in Tq
that contain f , (b) declare f “too long” if the above approximate
checking is true for at least half of the con�gs r 2 F (Tq). It is not
di�cult to prove that at most one attribute f will be found too
long. If so, we do not select q, but select instead the con�g that
does not contain f for expansion. Otherwise, we select q, as usual.
This procedure takes less than a second in our experiments.

Discussion: Note that we do not completely remove attributes
with many missing values, few unique values, or long values
from con�g generation. Instead, each such attribute f may be re-
moved only at some point during the generation process. Con�gs
generated earlier still contain f .

Further, our work here is related to, but very di�erent from
work such as [3, 10]. Those works �nd attributes that are discrim-
inative for classi�cation, often using a labeled sample (as many
works in learning do). Here we do not look for discriminative
attributes. Instead, we look for attributes such that if two tuples
agree on their values, then they are likely to match. For exam-
ple, suppose all tuples in table A have the same value “US” for
“Country”, and all tuples in table B have the same value “Canada”.

198

Then “Country” is a discriminative attribute because if two tu-
ples disagree on it, they de�nitely do not match. For our purpose,
however, “Country” has little expected bene�ts, because if two
tuples agree on it, it is still not likely that they match (not as
much as if they agree on “State” and “City” say).

In fact, the work [29] also treats attributes with missing values
and few unique values in a way similar to ours (for blocking
and matching). However, it does not handle long attributes, and
uses only one con�g, and thus is signi�cantly outperformed by
MatchCatcher (see Section 6).

4 TOP-K STRING SIMILARITY JOINS
So far we have discussed generating a set of con�gs. We now
discuss performing top-k SSJs over these con�gs (one per con�g).
Previous work has discussed top-k SSJs for a single con�g [34].
Here we signi�cantly improve that work (and our solution can
be applied to top-k SSJ situations beyond this paper). We then
discuss executing multiple top-k SSJs jointly, by reusing results
across the con�gs, in a parallel fashion.

MatchCatcher currently works with the Jaccard string similar-
ity measure, and we will explain it using that measure. However,
it is important to note that all algorithms discussed below also
work with the set-based similarity measures cosine, overlap, and
Dice.

4.1 Improving Top-k Join for a Single Con�g
As far as we can tell, the state of the art in top-k SSJs is TopKJoin
[34]. Given a set � of strings, TopKJoin �nds the k string pairs
with the highest similarity scores, for a pre-speci�ed k , in a
branch-and-bound fashion. Speci�cally, it maintains a pre�x for
each string in � , incrementally extends these pre�xes, �nds string
pairs whose pre�xes overlap, computes their similarity scores,
use these scores to maintain a top-k list, then extends the pre�xes
again, and so on.

Example 4.1. Suppose � consists of the four stringsw,x ,�, z in
Figure 6.a. We begin by creating a pre�x p (w) = “a” forw , then a
pre�x p (x) = “a” for x . At this point the pre�xes of the pair (x ,w)
overlap. Hence we compute the Jaccard score 0.8 for this pair, then
initializes the top-k list K to be containing just this pair. (Here we
assume k = 2.)

Next, we create pre�x p (�) = “b”. This does not produce any
new pair whose pre�xes overlap. So we continue by creating pre�x
p (z) = “b”. This produces a new pair whose pre�xes overlap: (z,�)
with score 0.43. Figure 6.b shows the updated top-k list K .

Next, we select one pre�x to extend (we will discuss shortly how).
Suppose we select p (x) and extend it by one token. Then p (x) = “ab”
(see Figure 6.a). This produces two new pairs whose pre�xes overlap:
(x ,�) with score 0.67 and (x , z) with score 0.43. Figure 6.c shows
the updated top-k list K . We then select another pre�x to extend,
and so on. Finding new pairs with overlapping pre�x can be done
e�ciently using an inverted index from token to the pre�xes of the
strings [34].

We now discuss how to select a pre�x to extend. Suppose
we have imposed a global ordering on all tokens, and sorted
the tokens in each stringw,x ,�, z in that order (see Figure 6.a).
Suppose also that we have created pre�xes of size 1, namely
p (w) = “a”,p (x) = “a”,p (�) = “b”,p (z) = “b”, and are now
deciding which pre�x to extend. Suppose we select p (w) and
extend it by one token, to be “ab”. Then it is easy to show that
the scores of all new pairs generated by this extension are capped
by 0.75. Indeed, any new pair must involve w . Let such a pair

a b c e a b c e b c d e b c f gf f hw x y z
0.75 0.8 0.6 0.8 0.8

s(x,w) = 0.8
s(z, y) = 0.43

s(x,w) = 0.8
s(x, y) = 0.67

(a)

(b) (c)

Figure 6: An illustration of top-k computation.

be (w,�). Then the �rst common token that they share should
be “b” (the token just being added to p (w)). So they can share at
most this token b and the remaining “unseen” tokens ofw . Thus
|w \� |  3. Since |w [� |  |w | = 4, it follows that the Jaccard
score of (w,�) is capped by 3/4=0.75. We write 0.75 on top of
token “b” inw to indicate that when we extend p (w) to include
this token, the score of any new pair generated by TopKJoin will
be capped by 0.75. Similarly, we can write 0.8 for the second
tokens of x , �, z (see Figure 6.a).

We then select the pre�x that when extended will include the
token with the highest “cap” number (in the hope that it will
generate new pairs with the highest possible scores). In this case,
we select p (x) (but p (�) and p (z) also work).

We now discuss how to stop. Observe that the “cap” number for
“c” in x is 0.6. By the time we have to consider whether to extend
p (x) to include “c”, the top-k list already has a lower-bound score
of 0.67 (see Figure 6.c), greater than 0.6. As a result, we do not
have to extend p (x) to include “c”, and in fact, pre�x extension
on x can be stopped at this point. TopKJoin terminates when all
pre�x extensions have stopped, either early (as described above)
or because the pre�x has covered the entire string. The paper [34]
describes TopKJoin in detail, including optimizations to avoid
redundant computations.

The QJoin Algorithm: TopKJoin has a major limitation. Every
time it generates a new pair (u,�), it immediately computes the
similarity score of (u,�) (then updates the top-k list). Computing
this score turns out to be very expensive, especially if u and �
are long strings. In a sense, it is also “premature”, because it can
be shown that when we generate (u,�) (as a new pair), we only
know that they share a single token. There is no evidence yet
that they share more tokens and thus are likely to have high
similarity score. If they indeed share only one or few tokens, and
yet we still compute their score, then that score is likely to be
low. So the pair will not make it into the top-k list, yet we have
wasted time computing it score.

To address this problem, when generating new pairs, we do
not immediately compute their scores. Instead, we keep track of
the number of common tokens each pair has, and update this
number whenever a pre�x is extended. We then compute the
score of a pair only if it has q common tokens, and thus is likely
to have a high score. It is di�cult to select q analytically, so we
select it empirically as follows. Assuming at least four CPU cores,
we begin by running the modi�ed TopKJoin for q = 1, q = 2, etc.,
on all cores, one q value for each core, for k = 50. (Note that
TopKJoin always does q = 1.) Then whichever core �nishes �rst,
we keep the process on that core running to produce the rest of
the top-k list (e�ectively selecting the q value associated with
that core), and kill the processes on the other cores.

It is straightforward to adapt the above algorithm to work
with two tables (instead of just one), and to remove a pair from
the top-k list (during the top-k computation) if it happens to be
in the candidate setC . Henceforth we refer to this new algorithm
as QJoin.

199

 f1f2f3

 f2f3 f1f3 f1f2

 f1 f2

a b f1 f2 f3

(a,b): o(f1, f1)=2
o(f1, f2)=3
…
o(f3, f3)=1	

H (a,c): …

f1 f2 f3

Figure 7: Reusing across top-k computations.

4.2 Joint Top-k Joins Across All Con�gs
TopKJoin can only be applied to a single con�g [34]. Our setting
however involves multiple related con�gs. We now describe a
solution to �nd top-k lists jointly across the con�gs. To do so, we
use QJoin, but modify it to reuse similarity score computations
and top-k lists across the con�gs, and process the con�gs in
parallel.
Reusing Similarity Score Computations: As discussed in
Section 4.1, computing the similarity score of a pair (a,b) is very
expensive, especially for long strings. Hence, we want to reuse
such computations across the con�gs. To do so, we process the
con�gs in the con�g tree in a breadth-�rst order, e.g., processing
the root con�g f1 f2 f3 of the con�g tree in Figure 7 (where the
fi -s are attributes), then the next-level con�gs, f2 f3, f1 f3, f1 f2,
and so on.

When processing a con�g � (i.e., �nding its top-k list), we
keep track of certain information, then reuse it when process-
ing con�gs in the subtree of �. For example, consider again the
con�g tree in Figure 7. We start by tokenizing the strings wrt
the root con�g f1 f2 f3 into multisets of word-level tokens. Next,
we process the con�g f1 f2 f3. This process computes the Jaccard
score of multiple tuple pairs. When computing the score of such
a pair, say (a,b), we compute and store the number of overlap-
ping tokens between any two attributes fi of a and fj of b in
an in-memory database H . Figure 7 illustrates this step. Here,
o(f1, f1) = 2means attributes f1 of a and f1 ofb share two tokens.
(We only store in H attribute pairs that share tokens.)

Thenwe can reuseH to drastically speed up processing con�gs
in the subtree rooted at f1 f2 f3. For example, consider processing
con�g f1 f2. If during this process we need to re-compute the
score of (a,b) (now with respect to only f1 and f2), then we
can use H to compute O�erlapf1f2 (a,b) = o(f1, f1) + o(f1, f2) +
o(f2, f1) + o(f2, f2), then compute the above score as

O�erlapf1f2 (a,b)/(Lf1f2 (a) + Lf1f2 (b) �O�erlapf1f2 (a,b)),
where Lf1f2 (a) for instance is the length in tokens of the concate-
nation of f1 and f2 for a. Computing the score of (a,b) this way
is far faster than computing from scratch.

Note that while processing con�g f1 f2, if we have to compute
the score of a new pair (c,d) not yet in H , then we will store
similar overlap information for (c,d) in H , to enable reuse when
processing con�gs in the subtree rooted at f1 f2, and so on.
Reusing Top-k Lists: When applying to a con�g �, algorithm
QJoin starts with an empty top-k list K , then gradually grows
K as it iteratively expands the pre�xes. In our setting, however,
since we process multiple con�gs, a promising idea is to use the
top-k list of a previous con�g to initialize the top-k list of the
current con�g.

For example, after processing con�g � = f1 f2 f3 (Figure 7), we
store its top-k list K� . Then when processing con�g h = f1 f2,
we use the database H described earlier (which stores overlap
information) to re-adjust all scores in K� . This is necessary be-
cause these scores are computed wrt f1 f2 f3, but now we want

them to be adjusted to consider only f1 f2. This re-adjustment
is fairly straightforward (and inexpensive) because the overlap
information for all pairs in K� should already be in H . Next, we
run the algorithm QJoin as usual to process con�g h = f1 f2, but
using the K� list with the adjusted scores as the initial top-k list
Kh (instead of using an empty list).

Observe that the above procedure enables reusing top-k lists
from a parent to a direct child (e.g., from f1 f2 f3 to f1 f2). Reusing
across the “siblings” appears much more di�cult. For example,
given the top-k list for f1 f3, there is no obvious way to quickly
adjust its scores for f1 f2, using database H . Hence, currently we
do not yet consider such sibling reuse.

Finally, reuse does not come for free. It helps avoid computing
certain similarity scores from scratch, but incurs an overhead of
storing and looking up the overlap information. If the tuples are
short, then the overhead can easily overwhelm the savings. As a
result, we trigger reuse only if the average tuple length is at least
t tokens (currently set to 20).
Parallel Processing of the Con�gs: Finally we explore par-
allel processing on multiple cores. (We consider multicore single
machines for now because it is a common setting for many do-
main science users [19].) An obvious idea is to process each con�g
across multiple cores. For example, we can split Table A into two
halves A1 and A2 and Table B into B1 and B2, �nd the top-k list
for A1 and B1 on the �rst core, the top-k list for A1 and B2 on
the second core, etc., then merge the top-k lists. In practice, this
approach su�ers from severe skew: one core �nishes quickly
while another runs forever. While it is possible to split the tables
intelligently to mitigate skew, this adds considerable overhead
and implementation complexity.

As a result, we opted for processing one con�g per core. Specif-
ically, we traverse the con�g tree breadth-�rst, and assign con-
�gs to cores in that order (when a core �nishes, it gets the next
con�g “in queue”). This solution continuously utilizes all cores.
But it raises two problems. First, two con�gs (e.g., f1 f2 f3 and
f1 f2) may concurrently write, or one reads and the other writes,
into database H , causing concurrency control issues. To address
concurrent writes, observe that only con�gs with non-empty
subtrees (e.g., f1 f2 f3 and f1 f2 in Figure 7) will write. For each
such con�g �, we require it to write into a separate in-memory
database H� .

To address dirty reads (e.g., f1 f2 f3 writes into a database while
f2 f3 reads from it), we note that here each “write” just inserts
a value; it never modi�es or deletes. For such cases there are
atomic hashmaps that perform atomic inserts, thus avoiding dirty
reads. So we implement each database H� as one such hashmap
(using the Atomic Unordered Hashmap in Facebook’s C++ Folly
package).

Finally, if a parent con�g, e.g., � = f1 f2 f3, has not yet �nished,
then a direct-child con�g, h = f1 f2, cannot reuse �’s top-k list. In
such situations, we start con�g h with an initial empty top-k list.
When con�g� �nishes, it sends its top-k list toh. Con�ghmerges
its current top-k list with the new top-k list from �, to obtain a
potentially better top-k list, then continues. The technical report
[24] shows the pseudo code of the complete algorithm, and the
following theorem shows its correctness (see [24] for a proof
sketch):

T������ 4.2. Given two tables A and B, the output C of a
blocker on A and B, a set of con�gs G, a string similarity measure
which is Jaccard, consine, overlap, or Dice, and a value k , the above
algorithm returns a set of top-k lists, where each top-k list is the

200

output of applying Algorithm QJoin to A,B, and C , using a con�g
� 2 G and the given similarity measure and k value.

5 INTERACTIVE VERIFICATION
So far we have discussed processing con�gs to obtain a set of
tuple pairs. We now discuss identifying true matches in this
set, via user engagement, rank aggregation, and active/online
learning.
Engaging the User: Let E be the union of the top-k lists ob-
tained from processing all con�gs. Typically E is large (e.g., 3,011-
7,089 in our experiments) and the true matches make up just a
small portion of E. Thus expecting a userU to be able to examine
the entire set E to �nd true matches is unrealistic.

A reasonable solution is to rank the pairs in E such that the
true matches “bubble” to the top, then present the ranked list to
U . However, our experiments with a variety of ranking methods
(see below) suggest it is very di�cult to do so. Typically, the top
of the ranked list indeed contains multiple matches. But then the
remaining matches tend to be scattered far and wide in the list.

As a result, we decided to engage user U : we rank the pairs
in E, present the top-n pairs to U (currently n = 20), ask U to
identify the true matches, use this feedback to rerank the list,
then present the next top-n pairs toU , and so on. As such, we help
U iteratively identify true matches, but use this identi�cation to
help “bubble” the remaining matches to the top of the ranking.
Using Rank Aggregation: Let m be the number of con�gs
and L1, . . . ,Lm be the top-k lists obtained from these con�gs. To
engage userU , we �rst need to aggregate these lists into a single
list. Many aggregation methods exist, e.g., [4, 15]. Here we use
MedRank [15], a popular method. To use MedRank, we �rst sort
each list Li in decreasing order of score, then associate each item
in the list with a rank, i.e., an integer, such that the higher the
score, the lower the rank and items with the same score receive
the same rank. Next, we compute for each item a global rank
which is the median of its ranks in the lists. Finally, we sort the
items in increasing order of global rank, breaking ties randomly,
to obtain a list L⇤ which is the aggregation of all top-k lists Li -s.

Example 5.1. Figure 8 shows three top-k lists L1,L2,L3 and the
global list L⇤. A line such as “a: 1.0 (1)” under L1 means that item
“a” in list L1 has score 1.0 and has been assigned rank 1. The ranks
for “a” is 1, 1, 2 (see Figure 8). So its global rank is 1. The ranks for
“b” is 2, 4, 1 (here “b” is missing from L2, which has ranks 1-3; so we
assign to it rank 4). Thus “b”’s global rank is 2. And so on.

Once we have obtained the global list L⇤, we can present the
top-n items of L⇤ to user U . But how do we incorporate the user
feedback for the next iteration? A reasonable solution is to use
weighted median ranking (WMR): we �rst assign an equal weight
wi = 1/m to each top-k list Li (i 2 [1,m]). At the end of the �rst
iteration, we adjust wi = wi · [1 + lo�(1 + ri)], where ri is the
number of true matches user U has identi�ed that appear in Li ,
then normalize all weightswi . At the start of the next iteration,
we merge the lists L1, . . . ,Lm again, using WMR to compute the
global rank of each item. Next, we present the top-n pairs in this
merged list to the user, and so on. Intuitively, the top-k lists in
which more true matches appear will become more important,
and the weighted global ranking will be “leaning toward” those
lists.
Using Learning: WMR does not perform well in our experi-
ments (see Section 6). It uses a very limited combination model

a: 1.0 (1)
b: 0.8 (2)
c: 0.8 (2)
d: 0.6 (4)

a: 0.9 (1)
c: 0.7 (2)
d: 0.6 (3)

b: 0.8 (1)
a: 0.5 (2)
c: 0.3 (3)
d: 0.2 (4)

L1 L2 L3
 a (1)
 b (2)
 c (2)
 d (4)

L *

Figure 8: Combining top-k lists using MedRank.

which fails to fully utilize user feedback. To address this, we ex-
plored active learning. Speci�cally, we iteratively show the next
n items of L⇤ to userU , until we have obtained at least one match
and one non-match. Suppose we have carried out t iterations,
then this produces a setT of nt labeled items. We useT to train a
random forest classi�er F , use F to �nd n most informative items
in L⇤, show them to the user to label, add the newly labeled items
to T , then retrain F , and so on.

Active learning alone however is not quite suited for our pur-
pose. Its goal is to learn a good classi�er as soon as possible.
Hence it typically shows user U controversial items that it �nds
di�cult to classify. But many or most of these items can be non-
match. UserU , however, wants to �nd many true matches as soon
as possible (so thatU can examine them to quickly understand
the problems with the blocker).

The above two goals con�ict. To address this problem, we
adopt a hybrid solution. After we have obtained the training setT
and trained a classi�er F , as described above, for the next iteration,
we show userU n items where n/4 items are the top controversial
items chosen by F , as described above. The remaining 3n/4 items
however are those with the highest positive prediction con�dence,
where the con�dence is computed as the fraction of decision
trees in F that predict the item as a match. Intuitively, the �rst
n/4 items are intended to help the active learner, whereas the
remaining 3n/4 items can contain many true matches, and are
intended to help the user quickly �nd many true matches in the
�rst few iterations.

After three such iterations, we stop active learning completely
(judging that classi�er F has received enough labeled contro-
versial examples in order to do well), but continue the online-
learning process with F . Speci�cally, in each subsequent iteration,
we show user U the top n items with the highest positive pre-
diction con�dence, produced by F . Once these items have been
labeled byU , we add them to the existing training set, retrain F ,
and so on.
When to Stop? A natural stopping point is when userU �nds
no newmatches in 2 consecutive iterations. Of course,U can stop
earlier or continue. If the required blocker recall is very high,U
can continue for many iterations. Otherwise, U can stops after
the �rst few iterations (because if these iterations contain many
matches, then examining them often already reveals problems
with the blocker, whichU can then �x).

6 EMPIRICAL EVALUATION
We evaluated MatchCatcher in three ways. First, we experi-
mented with a broad range of blockers that vary in recall, types,
and complexity, representing blockers that users may write at
various points during the blocker development process. We show
that MatchCatcher works well with these blockers, thus can
e�ectively support the users in the development process.

Second, we experimented with blockers that are either the
best hash blockers manually developed or the best blockers auto-
matically learned using a state-of-the-art solution. We show that
even in these cases MatchCatcher can help uncover problems
and improve the blockers.

201

Dataset Tuple type Table A Table B # of
matches

of
attrs

Average
length

Amazon-Google software product 1363 3226 1300 5 205, 38
Walmart-Amazon electronic product 2554 22074 1154 7 76, 179

ACM-DBLP paper 2294 2616 2224 5 16, 19
Fodors-Zagats restaurant 533 331 112 7 11, 10

Music1 song 100000 100000 2978 8 9, 9
Music2 song 500000 500000 73646 8 9, 9
Papers paper 455996 628231 unknown 7 17, 18

Table 1: Datasets for our experiments.

Dataset Blocker Q

A-G (OL) title_overlap_word<3 (HASH) attr_equal_manuf (SIM) title_cos_word<0.4
(R) title_jac_word<0.2 AND manuf_jac_3gram<0.4

W-A (OL) title_overlap_word<3 (HASH) attr_equal_brand (SIM) title_cos_word<0.4
(R) price_absdiff>20 OR title_jac_word<0.5

A-D
(OL) authors_overlap_word<2 (SIM) title_jac_3gram<0.7
(R1) title_cos_word<0.8 AND authors_jac_3gram<0.8
(R2) year_abs_diff>0.5 OR title_jac_word<0.7

F-Z (OL) name_overlap_word<2 (HASH) attr_equal_city (SIM) addr_jac_3gram<0.3
(R) (name_cos_word<0.5 AND type_jac_3gram<0.7) OR addr_jac_3gram<0.3

M1
(OL) artist_name_overlap_word<2 (HASH) attr_equal_artist_name
(SIM) title_cos_word<0.5 (R) year_absdiff>0.5 OR title_cos_word<0.7

M2
(HASH1) attr_equal_artist_name (HASH2) attr_equal_release_OR_attr_equal_artist_name
(SIM1) title_cos_word<0.6 (SIM2) title_cos_word<0.7 (SIM3) title_cos_word<0.8

Table 2: Blockers for the �rst set of experiments.

Finally, we asked real-world users in several data science
classes, domain science projects, and at several organizations
to useMatchCatcher. We show thatMatchCatcher has proven
highly e�ective in helping these users develop blockers.

6.1 Supporting Users in Developing Blockers
For this experiment we need “gold” matches, so we use the six
datasets shown in the �rst six rows of Table 1. As far as we can
tell, these datasets are the largest ones used in previous EM work
for which “gold” matches are available. Here we created two
versions of the Music dataset, Music1 and Music2, to ensure a
diversity of size (from 331 to 100K to 500K of tuples per table).
The technical report [24] describes these datasets in details.

For each dataset we asked volunteers to create multiple block-
ers (see Table 2). They are of the types described in Section 2: over-
lap (OL), hash (HASH), similarity-based (SIM), and rule-based
(R). For example, the �rst row of Table 2 describes 4 blockers for
dataset A-G. These include a hash blocker on attribute “manufac-
turer” and a rule-based blocker that combines two SIM blockers.
See [24] for more details on these blockers. (The next subsec-
tion describes experiments with the best hash blockers manually
created for these datasets.)

Developing a blocker is typically a long process in which users
often start with a simple blocker, then revise it into more com-
plex ones with higher recall. The above blockers di�er in type,
recall, and complexity, representing blockers that users maywrite
at various points during the above process. We now show that
MatchCatcher can help debug these blockers, suggesting that it
can support the user during the entire development process.
Overall Accuracy: First we examine the top-k SSJs module. The
�rst two columns of Table 3 list datasets and blockers. ColumnC
lists the size of C , the output of the blocker on Tables A and B.
ColumnMD lists the number of true matches in D = A ⇥ B �C .
This number varies drastically, e.g., 137-1,267 for A-G, 87-566 for
W-A, etc., suggesting that blocker recall often varies widely and
that it is important to debug to improve recall.

Column E lists the size of E, the union of all top-k lists over
the con�gs (for k = 1000). ColumnME lists the number of true
matches in E (the numbers outside parentheses), and shows that
set E contains a substantial fraction of true matches in D, e.g.,
54-65% for A-G, 41-83% for W-A, 96-100% for A-D, etc. (see the

Q C MD E ME F I

A-G

OL 8,388 291 4,063 190 (65.3) 166 (87.4) 40
HASH 1,835 1,267 3,337 820 (64.7) 803 (97.9) 97
SIM 7,406 192 4,341 104 (54.2) 73 (70.2) 29
R 27,650 137 4,362 76 (55.5) 65 (85.5) 24

W-A

OL 210,782 87 6,570 48 (55.2) 37 (77.1) 7
HASH 256,341 201 5,089 168 (83.6) 147 (87.5) 26
SIM 46,900 135 7,089 56 (41.5) 46 (82.1) 7
R 4,265 566 5,027 256 (45.2) 233 (91.0) 33

A-D

OL 56,869 41 4,270 41 (100.0) 37 (90.2) 8
SIM 2,487 61 3,335 59 (96.7) 56 (94.9) 11
R1 3,764 41 3,843 41 (100.0) 38 (92.7) 10
R2 2,173 107 3,011 104 (97.2) 101 (97.1) 16

F-Z

OL 115 47 5,079 46 (97.9) 46 (100.0) 5
HASH 10,165 52 4,653 51 (98.1) 51 (100.0) 5
SIM 2,146 13 5,908 12 (92.3) 12 (100.0) 5
R 124 33 5,239 32 (97.0) 32 (100.0) 5

M1

OL 253,286 778 5,045 673 (86.5) 671 (99.7) 38
HASH 212,296 188 4,948 100 (53.2) 100 (100.0) 13
SIM 2,601,349 78 5,050 38 (48.7) 36 (94.7) 7
R 89,344 202 5,213 113 (55.9) 109 (96.5) 11

M2

HASH1 11,115,136 4,530 5,428 661 (14.6) 648 (98.0) 47
HASH2 14,632,318 3,844 5,735 450 (11.7) 432 (96.0) 35
SIM1 27,461,378 2,220 5,420 1,012 (45.6) 1,012 (100.0) 54
SIM2 14,924,148 3,238 5,533 1,087 (33.6) 1,087 (100.0) 58
SIM3 8,512,446 4,228 5,587 1,151 (27.2) 1,151 (100.0) 61

Table 3: Accuracy in retrieving the killed-o�matches.

numbers in parentheses). This suggests that the top-k module
can e�ectively �nd the true matches in D.

Next we examine the Match Veri�er. We want to know its
accuracy if run until its natural stopping point (see Section 5).
It is di�cult to recruit enough real users for this large-scale
experiment involving 25 blockers. So we use synthetic users,
whom we assume can identify the true matches accurately (we
describe multiple experiments with real users below).

Column F of Table 3 show that this module can retrieve a large
number of matches in E, e.g., 65-803 for A-G (see the numbers
outside parentheses), and that the retrieval rate is very high, e.g.,
70-98% for A-G, 77-91% for W-A, etc. (see the numbers inside
parentheses). Finally, Column I shows that the total number of
iterations is 5-13 in 12 cases, 16-40 in 8 cases, 47-61 in 4 cases,
and 97 in 1 case. The higher number of iterations is often due
to the larger number of matches that have to be retrieved from
E, e.g., for blocker HASH of dataset A-G, the module needed
97 iterations to retrieve 803 matches, a reasonable number of
iterations given that each iteration shows only 20 tuple pairs to
the user.

Thus, if the user runs the Match Veri�er until its natural stop-
ping point, he/she can retrieve a large number of matches. This
is good news for applications in which blocker recall is critical,
thus the user may want to examine all matches that the module
can retrieve.

Accuracy & Explanations for the First Few Iterations: To
examine if users can quickly �ndmanymatches and explanations,
we asked volunteers to manually work with the Match Veri�er
for the �rst three iterations. Table 4 shows the results (for space
reasons we only list �ve blockers for �ve datasets, the results for
other blockers are similar). The table shows that the user needed
only 7-10 mins to examine the �rst three iterations, was able
to identify a large number of matches (28-43), and was able to
identify multiple reasons for why they are killed o� (a reason
such as “large threshold (18)” means that tuple pair #18 was killed
o� due to the blocker using a large threshold, and this was the
�rst pair where the user observed this problem). Overall, the
results suggest that after examining the �rst few iterations, the

202

Blocker # iteration Label time Blocker problems

OL (A-G) 3 iterations
31 matches

8 mins large threshold (18); attribute “manuf" is sprinkled
in the attribute “title" (18)

HASH (W-A) 3 iterations
43 matches

10 mins di�erent words for the same brand (6); missing val-
ues in attribute “brand" (13)

SIM (A-D) 3 iterations
28 matches

7 mins large threshold (16); attribute “title" contains subti-
tle in one table (22)

R (F-Z) 3 iterations
32 matches

7 mins
di�erent descriptions for attribute “type" (11); un-
normalized attribute “address" (33); attribute “city"
is sprinkled in “name" (47)

R (M1)
3 iterations
41 matches

10 mins input tables are not lower-cased (5); missing values
in attribute “year" (12)

Table 4: Accuracy in the�rst 3 iterations and explanations.
user can already identify multiple problems with the blocker
(which he/she can then �x).

6.2 Debugging State-of-the-Art Blockers
Suppose a user has manually developed a good standard blocker,
or has used state-of-the-art techniques to learn a blocker, wewant
to know if MatchCatcher can still help improve the blocker’s
accuracy. Toward this goal, we performed two experiments.

Hash Blockers: First, we asked a user well-trained in EM to
develop the best possible hash blockers for �ve datasets (the �rst
�ve in Table 1). For example, for dataset A-G, this user created
the blocker Q1 which keeps a pair of tuples if they agree on
“manufacturer” or on a hash of “price” or on a hash of “title”.
Thus, Q1 combines three hash blockers. ([24] describes all �ve
blockers in details.) We selected hash blocking because it is well-
known, easy to understand, and fast. Hence it is considered a
standard blockingmethod commonly used in practice. On the �ve
datasets A-G, W-A, A-D, F-Z, and Music1, the best hash blockers
achieve 75.6, 95.1, 100, 97.3, and 100% recall, respectively.

We then asked the same user to useMatchCatcher to try im-
proving the above hash blockers. For A-D and Music1, which
already have 100% recall, usingMatchCatcher the user did not
�nd any killed-o� matches (as expected), so debugging termi-
nated early. For A-G, W-A, and F-Z, however, debugging signi�-
cantly improved recall from 75.6 to 99.7, 95.1 to 99.6, and 97.3 to
100%, respectively. [24] describes one such debugging scenario
in details.

Learned Blockers: From a group of researchers we obtained
Papers, the dataset described in the last row of Table 1. For this
dataset, they have applied the method in [8] to learn blockers
using a sample labeled by crowdsourcing, and we were able to
obtain three such blockers (learned on three separate samples).
The technical report [24] describes these blockers, which are the
best blockers that the learning method has found in a very large
space of blockers, including hash ones. Unfortunately, we do not
have the entire set of “gold” matches for Papers (we do have
some “gold” matches, but not all of them). Hence, we are unable
to report recalls for these blockers.

We then asked a user to applyMatchCatcher to these blockers.
After 5 iterations, the user found 76, 61, and 65 matches for the
three blockers, respectively. More importantly, the user was able
to identify a set of reasons for why these matches were killed o�
and suggestions for improving the blockers (see [24]). Given the
lack of “gold” matches, we were not able to improve the blockers
then compare their recalls. Nevertheless, the above experiments
suggest that blockers learned using state-of-the-art solutions can
still have many problems andMatchCatcher can help pinpoint
these, to help the user improve recall.

6.3 MatchCatcher “in the Wild”
Over the past two years variations ofMatchCatcher have been
used by 300+ students in 4 data science classes and 7 EM teams at

6 organizations. The feedback has been overwhelmingly positive.
For example, 18 teams used MatchCatcher in a class project,
and reported that it helped (a) discovering data that should be
cleaned, (b) �nding the correct blocker types and attributes, (c)
tuning blocker parameters, and (d) knowing when to stop. We
have reported on some of this experience in [23]. Overall, we
found that many real-world users have usedMatchCatcher as an
integral part of an end-to-end blocker development process: start
with a simple blocker, useMatchCatcher to identify problems,
improve the blocker, and so on, until MatchCatcher no longer
reports substantial problems with the blocker.

6.4 Runtime & Scalability
MatchCatcher was implemented in Cython, and all experiments
used a RedHat 7.2 Linux machine with Intel E5-1650 CPU. The
top-k module took 6.6-9.4 secs (for dataset A-G), 97-310 (W-A),
2.8-3.2 (A-D), 0.2 (F-Z), 12.1-24.4 (M1), 57-230 (M2), and 65-344
(Papers), respectively. For the �rst �ve datasets, these times are
quite small except 97-310 secs for W-A. On W-A, the k-th pair
on the top-k list (recall that k = 1000) often has a very low score,
e.g., 0.21-0.225. Thus the top-k module took more time. The last
two datasets (M2 and Papers) are much larger (500K tuples per
table), and so took longer to run. In all cases, however, the total
time is still under 5.8 minutes.

To examine how the top-k module scales, we measure its time
as we vary the size of the two largest datasets, M2 and Papers,
at various percentages of the original datasets (which have 500-
600K tuples per table). Figure 9 shows the results for the �rst
three blockers in Table 3 for M2 and all three blockers for Papers,
for k = 100 (the left two plots) and k = 1000. The results show
that the top-k module scales linearly or sublinearly as the table
size grows. Finally, on all datasets the Match Veri�er took under
0.1 sec to aggregate the top-k lists, and 0.14-0.18 secs to process
user feedback in each iteration.

6.5 Additional Experiments
The technical report [24] describe extensive experiments on the
performance of theMatchCatcher components, sensitivity analy-
sis, and comparison with a recent related work. For space reasons
we only brie�y summarize those experiments here.

Performance of the Components: We show that using mul-
tiple con�gs instead of just one con�g signi�cantly increases
the number of retrieved matches, by 10-74%. Handling long at-
tributes increases the recall of E (the fraction of matches in D
that are in E) by up to 11%, compared to not handling them in
con�g generation. Our experiments also show that the joint top-k
processing strategy over multiple con�gs signi�cantly outper-
forms the baseline of executing each con�g individually, by as
much as 3.5 times. Finally, we found that active/online learning
signi�cantly outperforms weighted median ranking in the Match
Veri�er.

Sensitivity Analysis: We found that increasing k (the number
of pairs retrieved per con�g) does increase the number of true
matches retrieved, but only up to a certain k , and comes at the
cost of higher runtime, and that using 3 active learning iterations
(as we currently do) provides a good balance between increasing
the classi�er accuracy and increasing recall in the Match Veri�er.

Comparison with Recent Work: We found MatchCatcher
signi�cantly outperforms the work in [29], which uses a single
con�g, e.g., improving the recall of E by 26-47% on the A-G
dataset.

203

M2
k=100

Dataset size Dataset size

M2
k=1000

0
50

100
150
200
250

10% 40% 70% 100%
HASH1 HASH2 SIM1 0

20
40
60
80

100
120

10% 40% 70% 100%

R
un

tim
e

(s
ec

)

HASH1 HASH2 SIM1

0

20

40

60

80

10% 40% 70% 100%

R
un

tim
e

(s
ec

)

R1 R2 R3

Papers
k=100

0

100

200

300

400

10% 40% 70% 100%
R1 R2 R3

Papers
k=1000

Figure 9: Runtime of top-kmodule for varying table sizes.

7 ADDITIONAL RELATEDWORK
We have discussed related work throughout the paper. We now
discuss additional related work. As far as we can tell, our recent
work [23] is the �rst to raise the need for debugging for blocking.
But that work focuses on developing end-to-end EM systems.
It does not discuss any debugging solution in depth, as we do
here. Other related works include debugging for data cleaning
[17], schema mapping [5], and data errors in spreadsheets [1].
They do not address EM and their solutions do not apply to our
context. But they do underscore the importance of debugging for
data integration and cleaning.

SSJs have received much attention, e.g., [21, 35] (see [36] for
a survey). Top-k SSJs are studied in [34, 37]. [37] proposes a B+
tree based index to scale top-K SSJs on edit distance. It does not
work well for datasets with large textual di�erence [36], however,
a common occurrence in our case. The work [34], which uses
pre�x �ltering to �nd the top-k pairs, is better suited to our
case. But it does not handle long strings well [36]. Here we have
signi�cantly improved this work and extended it to work over
multiple con�gs.

The idea of computing the similarity score of a string pair only
if their pre�xes share at least q tokens (see Algorithm QJoin in
Section 4.1) is also discussed in [32]. That work however focuses
on SSJs with thresholding, e.g., matching two strings x and �
if jaccard (3�(x), 3�(�)) � � . Its solution uses threshold � to
�nd the optimal q, and is not applicable to the top-k context
considered in this paper (which has no threshold �).

The work [27] describes a blocking method that performs a
variation of weighted overlap blocking to �nd tuples that are
highly similar string-wise. MatchCatcher however does not use
this method in top-k SSJs because it is not clear how to modify
it to enable reuse (among the di�erent con�gs). The work [16]
is related to our work on con�g generation in that it de�nes the
notion of matching dependencies, using which we can deduce
a set of attributes for comparing tuple pairs. However, it is not
applicable to our context because it requires the user to manually
specify matching dependencies, using domain knowledge, in a
potentially time consuming process.

Rank aggregation has been studied extensively in the data-
base/IR communities, e.g., [4, 11, 15]. Active learning (AL) for EM
has been studied in [18, 26, 28]. But they perform extensive AL
to learn an accurate matcher. In contrast, we use only a few AL
iterations to learn a classi�er with reasonable accuracy, then use
it to surface matches for debugging purposes. The above work
also does not combine AL with online learning as we do. Finally,
the work [31] uses a learning-based UI model similar to ours, but
for IR tasks.

8 CONCLUSIONS & FUTUREWORK
We have shown that debugging blocker accuracy is critical for
EM, and have describedMatchCatcher, a solution to this problem.

As for future work, in certain cases the user may �nd a large
number of killed-o� matches. So we plan to develop a method to
automatically explain why each match is killed o� by the blocker,
summarize these explanations, then present the summary to the
user. When �xing a problem a�ecting a killed-o�match, the user
may want to know how pervasive this problem is (and focus on
�xing the most pervasive ones �rst). For this purpose, given a
killed-o� match, we plan to develop a method to �nd all tuple
pairs that are similar to that match (from a blocking point of
view).

REFERENCES
[1] D. Barowy, D. Gochev, and E. Berger. 2014. CheckCell: data debugging for

spreadsheets. OOPSLA.
[2] M. Bilenko, B. Kamath, and R. J. Mooney. 2006. Adaptive blocking: learning

to scale up record linkage. ICDE.
[3] M. Bilenko and R. J. Mooney. 2003. Adaptive duplicate detection using learn-

able string similarity measures. SIGKDD.
[4] B. Brancotte, B. Yang, G. Blin, S. Cohen-Boulakia, A. Denise, and S. Hamel.

2015. Rank aggregation with ties: experiments and analysis. VLDB.
[5] L. Chiticariu et al. 2006. Debugging schema mappings with routes. VLDB.
[6] P. Christen. 2012. Data Matching. Springer.
[7] P. Christen. 2012. A survey of indexing techniques for scalable record linkage

and deduplication. IEEE TKDE 24, 9 (2012), 1537–1555.
[8] S. Das et al. 2017. Falcon: scaling up hands-o� crowdsourced entity matching

to build cloud services. SIGMOD.
[9] A. Doan, A. Halevy, and Z. Ives. 2012. Principles of Data Integration. Elsevier.
[10] X. Dong, A. Halevy, and J. Madhavan. 2005. Reference reconciliation in

complex information spaces. SIGMOD.
[11] C. Dwork et al. 2001. Rank aggregation methods for the web. WWW.
[12] V. Efthymiou, G. Papadakis, et al. 2017. Parallel meta-blocking for scaling

entity resolution over big heterogeneous data. Inf. Syst. 65 (2017), 137–157.
[13] V. Efthymiou, K. Stefanidis, and V. Christophides. 2016. Benchmarking block-

ing algorithms for web entities. IEEE Transactions on Big Data (2016).
[14] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios. 2007. Duplicate record

detection: a survey. IEEE Trans. Knowl. Data Eng. 19, 1 (2007), 1–16.
[15] R. Fagin, R. Kumar, and D. Sivakumar. 2003. E�cient similarity search and

classi�cation via rank aggregation. SIGMOD.
[16] W. Fan et al. 2009. Reasoning about record matching rules. VLDB.
[17] H. Galhardas, D. Florescu, D. Shasha, et al. 2000. AJAX: an extensible data

cleaning tool. SIGMOD.
[18] C. Gokhale, S. Das, A. Doan, J. F. Naughton, N. Rampalli, J. Shavlik, and X.

Zhu. 2014. Corleone: hands-o� crowdsourcing for entity matching. SIGMOD.
[19] Y. Govind et al. 2017. CloudMatcher: A Cloud/Crowd Service for Entity

Matching. BIGDAS@KDD.
[20] M. A. Hernández and S. J. Stolfo. 1998. Real-world data is dirty: data cleansing

and the merge/purge problem. Data Min. Knowl. Discov. 2, 1 (1998), 9–37.
[21] Y. Jiang, G. Li, J. Feng, et al. 2014. String similarity joins: an experimental

evaluation. VLDB.
[22] L. Kolb, A. Thor, and E. Rahm. 2011. Parallel sorted neighborhood blocking

with MapReduce. BTW.
[23] P. Konda et al. 2016. Magellan: toward building entity matching management

systems. VLDB.
[24] H. Li et al. 2017. MatchCatcher: a debugger for blocking in entity matching.

Technical Report. http://pages.cs.wisc.edu/~anhai/papers1/matchcatcher-tr.
pdf.

[25] M. Michelson. 2006. Learning blocking schemes for record linkage. AAAI.
[26] B. Mozafari, P. Sarkar, M. Franklin, M. Jordan, and S. Madden. 2014. Scaling

up crowd-sourcing to very large datasets: a case for active learning. VLDB.
[27] G. Papadakis, G. Koutrika, T. Palpanas, and W. Nejdl. 2014. Meta-blocking:

taking entity resolutionto the next level. IEEE TKDE 26, 8 (2014), 1946–1960.
[28] S. Sarawagi and A. Bhamidipaty. 2002. Interactive deduplication using active

learning. SIGKDD.
[29] D. Song and J. He�in. 2011. Automatically generating data linkages using a

domain-independent candidate selection approach. ISWC.
[30] K. Stefanidis, V. Efthymiou, M. Herschel, and V. Christophides. 2014. Entity

resolution in the web of data. WWW (Companion Volume).
[31] A. Tian and M. Lease. 2011. Active learning to maximize accuracy vs. e�ort

in interactive information retrieval. SIGIR.
[32] J. Wang, G. Li, and J. Feng. 2012. Can we beat the pre�x �ltering?: an adaptive

framework for similarity join and search. SIGMOD.
[33] S. E. Whang, D. Menestrina, G. Koutrika, M. Theobald, and H. Garcia-Molina.

2009. Entity resolution with iterative blocking. SIGMOD.
[34] C. Xiao, W. Wang, X. Lin, and H. Shang. 2009. Top-k set similarity joins. ICDE.
[35] C. Xiao, W. Wang, X. Lin, J. X. Yu, and G. Wang. 2011. E�cient similarity joins

for near-duplicate detection. TODS 36, 3 (2011), 15.
[36] M. Yu, G. Li, D. Deng, and J. Feng. 2016. String similarity search and join: a

survey. Frontiers of Computer Science 10, 3 (2016), 399–417.
[37] Z. Zhang, M. Hadjieleftheriou, B. Ooi, et al. 2010. Bed-tree: an all-purpose

index structure for string similarity search based on edit distance. SIGMOD.

204

	MatchCatcher: A Debugger for Blocking in Entity MatchingHan Li, Pradap Konda, Paul Suganthan G C, Anhai Doan, Benjamin Snyder, Youngchoon Park, Ganesh Krishnan, Rohit Deep, Vijay Raghavendra

