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ABSTRACT
To maintain the accuracy of supervised learning models in the

presence of evolving data streams, we provide temporally-biased

sampling schemes that weight recent data most heavily, with

inclusion probabilities for a given data item decaying exponen-

tially over time. We then periodically retrain the models on the

current sample. This approach speeds up the training process

relative to training on all of the data. Moreover, time-biasing lets

the models adapt to recent changes in the data while—unlike

in a sliding-window approach—still keeping some old data to

ensure robustness in the face of temporary fluctuations and pe-

riodicities in the data values. In addition, the sampling-based

approach allows existing analytic algorithms for static data to be

applied to dynamic streaming data essentially without change.

We provide and analyze both a simple sampling scheme (T-TBS)

that probabilistically maintains a target sample size and a novel

reservoir-based scheme (R-TBS) that is the first to provide both

complete control over the decay rate and a guaranteed upper

bound on the sample size, while maximizing both expected sam-

ple size and sample-size stability. The latter scheme rests on the

notion of a “fractional sample” and, unlike T-TBS, allows for

data arrival rates that are unknown and time varying. R-TBS and

T-TBS are of independent interest, extending the known set of

unequal-probability sampling schemes. We discuss distributed

implementation strategies; experiments in Spark illuminate the

performance and scalability of the algorithms, and show that our

approach can increase machine learning robustness in the face

of evolving data.

1 INTRODUCTION
A key challenge for machine learning (ML) is to keep ML models

from becoming stale in the presence of evolving data. In the

context of the emerging Internet of Things (IoT), for example, the

data comprises dynamically changing sensor streams [26], and a

failure to adapt to changing data can lead to a loss of predictive

power.

One way to deal with this problem is to re-engineer existing

static supervised learning algorithms to become adaptive. Some

parametric algorithms such as SVM can indeed be re-engineered

so that the parameters are time-varying, but for non-parametric

algorithms such as kNN-based classification, it is not at all clear

how re-engineering can be accomplished. We therefore consider

alternative approaches in which we periodically retrain ML mod-

els, allowing static ML algorithms to be used in dynamic settings

essentially as-is. There are several possible retraining approaches.

Retraining on cumulative data: Periodically retraining a

model on all of the data that has arrived so far is clearly infeasible

because of the huge volume of data involved. Moreover, recent
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data is swamped by the massive amount of past data, so the

retrained model is not sufficiently adaptive.

Sliding windows: A simple sliding-window approach would

be to, e.g., periodically retrain on the data from the last two hours.

If the data arrival rate is high and there is no bound on mem-

ory, then one must deal with long retraining times caused by

large amounts of data in the window. The simplest way to bound

the window size is to retain the last n items. Alternatively, one

could try to subsample within the time-based window [14]. The

fundamental problem with all of these bounding approaches is

that old data is completely forgotten; the problem is especially

severe when the data arrival rate is high. This can undermine the

robustness of an ML model in situations where old patterns can

reassert themselves. For example, a singular event such as a holi-

day, stock market drop, or terrorist attack can temporarily disrupt

normal data patterns, which will reestablish themselves once the

effect of the event dies down. Periodic data patterns can lead to

the same phenomenon. Another example, from [27], concerns

influencers on Twitter: a prolific tweeter might temporarily stop

tweeting due to travel, illness, or some other reason, and hence

be completely forgotten in a sliding-window approach. Indeed, in

real-world Twitter data, almost a quarter of top influencers were

of this type, and were missed by a sliding window approach.

Temporally biased sampling: An appealing alternative is a

temporally biased sampling-based approach, i.e., maintaining a

sample that heavily emphasizes recent data but also contains a

small amount of older data, and periodically retraining a model

on the sample. By using a time-biased sample, the retraining

costs can be held to an acceptable level while not sacrificing

robustness in the presence of recurrent patterns. This approach

was proposed in [27] in the setting of graph analysis algorithms,

and has recently been adopted in the MacroBase system [3]. The

orthogonal problem of choosing when to retrain a model is also

an important question, and is related to, e.g., the literature on

“concept drift” [13]; in this paper we focus on the problem of how

to efficiently maintain a time-biased sample.

In more detail, our time-biased sampling algorithms ensure

that the “appearance probability” for a given data item—i.e., the

probability that the item appears in the current sample—decays

over time at a controlled exponential rate. Specifically, we assume

that items arrive in batches (see the next section for more details),

and our goal is to ensure that (i) our sample is representative

in that all items in a given batch are equally likely to be in the

sample, and (ii) if items i and j belong to batches that have arrived
at (wall clock) times t ′ and t ′′ with t ′ ≤ t ′′, then for any time

t ≥ t ′′ our sample St is such that

Pr[i ∈ St ]/Pr[j ∈ St ] = e−λ(t
′′−t ′). (1)

Thus items with a given timestamp are sampled uniformly, and

items with different timestamps are handled in a carefully con-

trolled manner. The criterion in (1) is natural and appealing in

applications and, importantly, is interpretable and understand-

able to users. As discussed in [27], the value of the decay rate λ
can be chosen to meet application-specific criteria. For example,

by setting λ = 0.058, around 10% of the data items from 40 batches
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ago are included in the current analysis. As another example,

suppose that, k = 150 batches ago, an entity such as a person

or city was represented by n = 1000 data items and we want

to ensure that, with probability q = 0.01, at least one of these

data items remains in the current sample. Then we would set

λ = −k−1 ln
(
1 − (1 − q)1/n

)
≈ 0.077. If training data is available,

λ can also be chosen to maximize accuracy via cross validation.

The exponential form of the decay function has been adopted

by the majority of time-biased-sampling applications in practice

because otherwise one would typically need to track the arrival

time of every data item—both in and outside of the sample—and

decay each item individually at an update, which would make

the sampling operation intolerably slow. (A “forward decay" ap-

proach that avoids this difficulty, but with its own costs, has been

proposed in [9]; we plan to investigate forward decay in future

work.) Exponential decay functions make update operations fast

and simple.

For the case in which the item-arrival rate is high, the main

issue is to keep the sample size from becoming too large. On

the other hand, when the incoming batches become very small

or widely spaced, the sample sizes for all of the time-biased

algorithms that we discuss (as well as for sliding-window schemes

based on wall-clock time) can become small. This is a natural

consequence of treating recent items as more important, and

is characteristic of any sampling scheme that satisfies (1). We

emphasize that—as shown in our experiments—a smaller, but

carefully time-biased sample typically yields greater prediction

accuracy than a sample that is larger due to overloading with too

much recent data or too much old data. I.e., more sample data is

not always better. Indeed, with respect to model management,

this decay property can be viewed as a feature in that, if the

data stream dries up and the sample decays to a very small size,

then this is a signal that there is not enough new data to reliably

retrain the model, and that the current version should be kept

for now.

It is surprisingly hard to both enforce (1) and to bound the

sample size. As discussed in detail in Section 7, prior algorithms

that bound the sample size either cannot consistently enforce

(1) or cannot handle wall-clock time. Examples of the former

include algorithms based on the A-Res scheme of Efraimidis and

Spirakis [12], and Chao’s algorithm [5]. A-Res enforces conditions

on the acceptance probabilities of items; this leads to appearance

probabilities which, unlike (1), are both hard to compute and not

intuitive. A similar example is provided by Chao’s algorithm [5].

In Appendix D of [16] we demonstrate how the algorithm can

be specialized to the case of exponential decay and modified to

handle batch arrivals. We then show that the resulting algorithm

fails to enforce (1) either when initially filling up an empty sample

or in the presence of data that arrives slowly relative to the decay

rate, and hence fails if the data rate fluctuates too much. The

second type of algorithm, due to Aggarwal [1] can only control

appearance probabilities based on the indices of the data items.

For example, after n items arrive, one could require that, with 95%

probability, the (n−k)th item should still be in the sample for some

specified k < n. If the data arrival rate is constant, then this might

correspond to a constraint of the form “with 95% probability a

data item that arrived 10 hours ago is still in the sample”, which

is often more natural in applications. For varying arrival rates,

however, it is impossible to enforce the latter type of constraint,

and a large batch of arriving data can prematurely flush out older

data. Thus our new sampling schemes are interesting in their

own right, significantly expanding the set of unequal-probability

sampling techniques.

T-TBS:Wefirst provide and analyze Targeted-Size Time-Biased

Sampling (T-TBS), a simple algorithm that generalizes the sam-

pling scheme in [27]. T-TBS allows complete control over the

decay rate (expressed in wall-clock time) and probabilistically

maintains a target sample size. That is, the expected and average

sample sizes converge to the target and the probability of large

deviations from the target decreases exponentially or faster in

both the target size and the deviation size. T-TBS is simple and

highly scalable when applicable, but only works under the strong

restriction that the mean data arrival rate is known and constant.

There are scenarios where T-TBS might be a good choice (see

Section 3), but many applications have non-constant, unknown

mean arrival rates or cannot tolerate sample overflows.

R-TBS:We then provide a novel algorithm, Reservoir-Based

Time-Biased Sampling (R-TBS), that is the first to simultaneously

enforce (1) at all times, provide a guaranteed upper bound on

the sample size, and allow unknown, varying data arrival rates.

Guaranteed bounds are desirable because they avoid memory

management issues associated with sample overflows, especially

when large numbers of samples are being maintained—so that

the probability of some sample overflowing is high—or when sam-

pling is being performed in a limited memory setting such as at

the “edge” of the IoT. Also, bounded samples reduce variability in

retraining times and do not impose upper limits on the incoming

data flow.

The idea behind R-TBS is to adapt the classic reservoir sam-

pling algorithm, which bounds the sample size but does not allow

time biasing. Our approach rests on the notion of a “fractional”

sample whose nonnegative size is real-valued in an appropri-

ate sense. We show that, over all sampling algorithms having

exponential decay, R-TBS maximizes the expected sample size

whenever the data arrival rate is low and also minimizes the

sample-size variability.

Distributed implementation: Both T-TBS and R-TBS can

be parallelized. Whereas T-TBS is relatively straightforward to

implement, an efficient distributed implementation of R-TBS is

nontrivial. We exploit various implementation strategies to re-

duce I/O relative to other approaches, avoid unnecessary con-

currency control, and make decentralized decisions about which

items to insert into, or delete from, the reservoir.

Organization: The rest of the paper is organized as follows.

In Section 2 we formally describe our batch-arrival problem set-

ting and discuss two prior simple sampling schemes: a simple

Bernoulli scheme as in [27] and the classical reservoir sampling

scheme, modified for batch arrivals. These methods either bound

the sample size but do not control the decay rate, or control the

decay rate but not the sample size. We next present and ana-

lyze the T-TBS and R-TBS algorithms in Section 3 and Section 4.

We describe the distributed implementation in Section 5, and

Section 6 contains experimental results. We review the related

literature in Section 7 and conclude in Section 8.

2 SETTING AND PRIOR SCHEMES
After introducing our problem setting, we discuss two prior sam-

pling schemes that provide context for our current work: simple

Bernoulli time-biased sampling (B-TBS) with no sample-size con-

trol and the classical reservoir sampling algorithm (with no time

biasing), modified for batch arrivals (B-RS).

Setting: Items arrive in batches B1,B2, . . ., at time points

t = 1, 2, . . ., where each batch contains 0 or more items. This
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simple integer batch sequence often arises from the discretization

of time [24, 28]. Specifically, the continuous time domain is parti-

tioned into intervals of length ∆, and the items are observed only

at times {k∆ : k = 0, 1, 2, . . .}. All items that arrive in an interval[
k∆, (k + 1)∆

)
are treated as if they arrived at time k∆, i.e., at

the start of the interval, so that all items in batch Bi have time

stamp i∆, or simply time stamp i if time is measured in units of

length ∆. As discussed below, our results can straightforwardly

be extended to arbitrary real-valued batch-arrival times.

Our goal is to generate a sequence {St }t ≥0, where St is a

sample of the items that have arrived at or prior to time t , i.e., a
sample of the items in Ut = S0 ∪

(⋃t
i=1 Bi

)
. Here we allow the

initial sample S0 to start out nonempty. These samples should

be biased towards recent items so as to enforce (1) for i ∈ Bt ′

and j ∈ Bt ′′ while keeping the sample size as close as possible to

(and preferably never exceeding) a specified target n.
Our assumption that batches arrive at integer time points can

easily be dropped. In all of our algorithms, inclusion probabilities—

and, as discussed later, closely related item “weights”—are up-

dated at a batch arrival time t ′ with respect to their values at the

previous time t = t ′ − 1 via multiplication by e−λ . To extend our

algorithms to handle arbitrary successive batch arrival times t

and t ′, we simply multiply instead by e−λ(t
′−t )

. Thus our results

can be applied to arbitrary sequences of real-valued batch arrival

times, and hence to an arbitrary sequences of item arrivals (since

batches can comprise single items).

Bernoulli Time-Biased Sampling (B-TBS): In the simplest

sampling scheme, at each time t , we accept each incoming item

x ∈ Bt into the sample with probability 1. At each subsequent

time t ′ > t , we flip a coin independently for each item currently

in the sample: an item is retained in the sample with probabil-

ity p = e−λ and removed with probability 1 − p. It is straightfor-
ward to adapt the algorithm to batch arrivals; see Appendix A

of [16], where we show that Pr[x ∈ St ′] = e−λ(t
′−t )

for x ∈ Bt ,
implying (1). This is essentially the algorithm used, e.g., in [27]

to implement time-biased edge sampling in dynamic graphs. The

user, however, cannot independently control the expected sample

size, which is completely determined by λ and the sizes of the

incoming batches. In particular, if the batch sizes systematically

grow over time, then sample size will grow without bound. Ar-

guments in [27] show that if supt |Bt | < ∞, then the sample size

can be bounded, but only probabilistically. See Remark 1 below

for extensions and refinements of these results.

Batched Reservoir Sampling (B-RS): The classic reservoir
sampling algorithm can be modified to handle batch arrivals; see

Appendix B of [16]. Although B-RS guarantees an upper bound

on the sample size, it does not support time biasing. The R-TBS

algorithm (Section 4) maintains a bounded reservoir as in B-RS

while simultaneously allowing time-biased sampling.

3 TARGETED-SIZE TBS
As a first step towards time-biased sampling with a controlled

sample size, we describe the simple T-TBS scheme, which im-

proves upon the simple Bernoulli sampling scheme B-TBS by

ensuring the inclusion property in (1) while providing probabilis-

tic guarantees on the sample size. We require that the mean batch

size equals a constant b that is both known in advance and “large

enough” in that b ≥ n(1 − e−λ), where n is the target sample size

and λ is the decay rate as before. The requirement on b ensures

that, at the target sample size, items arrive on average at least as

fast as they decay.

Algorithm 1: Targeted-size TBS (T-TBS)
1 λ: decay factor (≥ 0)

2 n: target sample size

3 b : assumed mean batch size such that b ≥ n(1 − e−λ )

4 Initialize: S ← S0 ; p ← e−λ ; q ← n(1 − e−λ )/b
5 for t ← 1, 2, . . . do
6 m ← Binomial( |S |, p) //simulate |S | trials
7 S ← Sample(S,m) //retain m random elements

8 k ← Binomial( |Bt |, q)
9 B′t ← Sample(Bt , k ) //down-sample new batch

10 S ← S ∪ B′t
11 output S

The pseudocode is given as Algorithm 1. T-TBS is similar to

B-TBS in that we downsample by performing a coin flip for each

item with retention probability p. Unlike B-TBS, we downsample

the incoming batches at rate q = n(1 − e−λ)/b, which ensures

that n becomes the “equilibrium” sample size. Specifically, when

the sample size equals n, the expected number n(1 − e−λ) of
current items deleted at an update equals the expected number

qb of inserted new items, which causes the sample size to drift

towards n. Arguing similarly to Appendix A of [16], we have for

t ′ ≥ t ≥ 1 and x ∈ Bt that Pr[x ∈ St ′] = qe−λ(t
′−t )

, so that the

key relative appearance property in (1) holds.

For efficiency, the algorithm exploits the fact that for k inde-

pendent trials, each having success probability r , the total number

of successes has a binomial distribution with parameters k and

r . Thus, in lines 6 and 8, the algorithm simulates the coin tosses

by directly generating the number of successesm or k—which
can be done using standard algorithms [17]—and then retaining

m or k randomly chosen items. So the function Binomial(j, r )
returns a random sample from the binomial distribution with

j independent trials and success probability r per trial, and the

function Sample(A,m) returns a uniform random sample, with-

out replacement, containing min(m, |A|) elements of the set A;
note that the function call Sample(A, 0) returns an empty sample

for any empty or nonempty A.
Theorem 3.1 below precisely describes the behavior of the

sample size; the proof—alongwith the proofs of most other results

in the paper—is given in Appendix C of [16]. Denote by Bt =
|Bt | the (possibly random) size of Bt for t ≥ 1 and by Ct =
|St | the sample size at time t for t ≥ 0; assume that C0 is a

finite deterministic constant. Define the upper-support ratio for a
random batch size B as r = b∗/b ≥ 1, where b = E[B] and b∗ is
the smallest positive number such that P[B ≤ b∗] = 1; set r = ∞
if B can be arbitrarily large. For r ∈ [1,∞), set

ν+ϵ,r = (1 + ϵ) ln
(
(1 + ϵ)/r

)
− (1 + ϵ − r ).

for ϵ > 0 and

ν−ϵ,r = (1 − ϵ) ln
(
(1 − ϵ)/r

)
− (1 − ϵ − r )

for ϵ ∈ (0, 1). Note that ν+ϵ,r > 0 and is strictly increasing in ϵ
for ϵ > r − 1, and that ν−ϵ,r increases from r − 1 − ln r to r as ϵ
increases from 0 to 1. Write “i.o.” to denote that an event occurs

“infinitely often”, i.e., for infinitely many values of t , and write

“w.p.1” for “with probability 1”.

Theorem 3.1. Suppose that the batch sizes {Bt }t ≥1 are i.i.d
with common mean b ≥ n(1 − e−λ), finite variance, and upper
support ratio r . Then, for any p = e−λ < 1,

(i) for allm ≥ 0, we have Pr[Ct =m i.o.] = 1;
(ii) E[Ct ] = n + p

t (C0 − n) for t > 0;
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Figure 1: Targeted TBS: Sample Size Behavior, λ = decay rate and ϕ = batch size multiplier.

(iii) limt→∞(1/t)
∑t
i=0Ci = n w.p.1;

(iv) if C0 = n and r < ∞, then
(a) Pr[Ct ≥ (1 + ϵ)n] ≤ e−nν

+
ϵ,r

(
1 +O(nϵpt )

)
and

(b) Pr[Ct ≤ (1 − ϵ)n] ≤ e−nν
−
ϵ,r

(
1 +O

(
n(1 − ϵ)pt

) )
for (a) ϵ, t > 0 and (b) ϵ ∈ (0, 1) and t ≥ ln ϵ/lnp.

In Appendix C of [16], we actually prove a stronger version

of the theorem in which the assumption in (iv) that r < ∞ is

dropped.

Thus, from (ii), limt→∞ E[Ct ] = n so that the expected sample

size converges to the target size n as t becomes large; indeed, if

C0 = n then the expected sample size equalsn for all t > 0. By (iii),

an even stronger property holds in that, w.p.1, the average sample

size—averaged over the first t batch-arrival times—converges

to n as t becomes large. For typical batch-size distributions, the

assertions in (iv) imply that, at any given time t , the probability
that the sample size deviates fromn bymore than 100ϵ% decreases

exponentially with n and—in the case of a positive deviation as

in (iv)(a)—super-exponentially in ϵ . However, the assertion in

(i) implies that any sample sizem, no matter how large, will be

exceeded infinitely often w.p.1; indeed, it follows from the proof

that the mean times between successive exceedances are not only

finite, but are uniformly bounded over time. In summary, the

sample size is generally stable and close to n on average, but is

subject to infrequent, but unboundedly large spikes in the sample

size, so that sample-size control is incomplete.

Indeed, when batch sizes fluctuate in a non-predicable way, as

often happens in practice, T-TBS can break down; see Figure 1,

in which we plot sample sizes for T-TBS and, for comparison,

R-TBS. The problem is that the value of the mean batch size b
must be specified in advance, so that the algorithm cannot handle

dynamic changes in b without losing control of either the decay

rate or the sample size.

In Figure 1(a), for example, the (deterministic) batch size is

initially fixed and the algorithm is tuned to a target sample size

of 1000, with a decay rate of λ = 0.05. At t = 200, the batch size

starts to increase (with Bt+1 = ϕBt where ϕ = 1.002), leading

to an overflowing sample, whereas R-TBS maintains a constant

sample size.

Even in a stable batch-size regime with constant batch sizes

(or, more generally, small variations in batch size), R-TBS can

maintain a constant sample size whereas the sample size under

T-TBS fluctuates in accordance with Theorem 3.1; see Figure 1(b)

for the case of a constant batch size Bt ≡ 100 with λ = 0.1.

Large variations in the batch size lead to large fluctuations

in the sample size for T-TBS; in this case the sample size for

R-TBS is bounded above by design, but large drops in the batch

size can cause drops in the sample size for both algorithms; see

Figure 1(c) for the case of λ = 0.1 and i.i.d. uniformly distributed

batch sizes on [0, 200] so that E[Bt ] ≡ 100. Similarly, as shown in

Figure 1(d), systematically decreasing batch sizes will cause the

sample size to shrink for both T-TBS and R-TBS. Here, λ = 0.01

and, as with Figure 1(a), the batch size is initially fixed and then

starts to change at time t = 200, with ϕ = 0.8 in this case. This

experiment—and others, not reported here, with varying values of

λ and ϕ—indicate that R-TBS is more robust to sample underflows

than T-TBS.

Overall, however, T-TBS is of interest because, when the mean

batch size is known and constant over time, and when some

sample overflows are tolerable, T-TBS is simple to implement and

parallelize, and is very fast (see Section 6). For example, if the data

comes from periodic polling of a set of robust sensors, the data

arrival rate will be known a priori and will be relatively constant,

except for the occasional sensor failure, and hence T-TBS might

be appropriate. On the other hand, if data is coming from, e.g., a

social network, then batch sizes may be hard to predict.

Remark 1. When q = 1, Theorem 3.1 provides a description

of sample-size behavior for B-TBS. Under the conditions of the

theorem, the expected sample size converges to n = b/(1 − e−λ),
which illustrates that the sample size and decay rate cannot

be controlled independently. The actual sample size fluctuates

around this value, with large deviations above or below being

exponentially or super-exponentially rare. Thus Theorem 3.1

both complements and refines the analysis in [27].

4 RESERVOIR-BASED TBS
Targeted time-biased sampling (T-TBS) controls the decay rate

but only partially controls the sample size, whereas batched reser-

voir sampling (B-RS) bounds the sample size but does not allow

time biasing. Our new reservoir-based time-biased sampling al-

gorithm (R-TBS) combines the best features of both, controlling

the decay rate while ensuring that the sample never overflows

and has optimal sample size and stability properties. Importantly,

unlike T-TBS, the R-TBS algorithm can handle any sequence of

batch sizes.

4.1 The R-TBS Algorithm
To maintain a bounded sample, R-TBS combines the use of a

reservoir with the notion of item weights. In R-TBS, the weight

of an item initially equals 1 but then decays at rate λ, i.e., the

weight of an item i ∈ Bt at time t ′ ≥ t is wt ′(i) = e−λ(t
′−t )

.

All items arriving at the same time have the same weight, so

that the total weight of all items seen up through time t isWt =∑t
j=1 Bje

−λ(t−j)
, where, as before, Bj = |Bj | is the size of the jth

batch.

R-TBS generates a sequence of latent “fractional samples”

{Lt }t ≥0 such that (i) the “size” of each Lt equals the sample
weight Ct , defined as Ct = min(n,Wt ), and (ii) Lt contains ⌊Ct ⌋
“full” items and at most one “partial” item. For example, a latent

sample of size Ct = 3.6 contains three “full” items that belong to

the actual sample St with probability 1 and one partial item that
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Algorithm 2: Reservoir-based TBS (R-TBS)

1 λ: decay factor (≥ 0)

2 n: maximum sample size

3 Initialize: A← A0 ;W ← C ← |A0 |; π ← ∅ // |A0 | ≤ n
4 for t ← 1, 2, . . . do
5 ifW < n then //has been unsaturated

6 W ← e−λW //decay current items

7 ifW > 0 then
8 (A, π , C) ← Dsample

(
(A, π , C),W

)
9 A← A ∪ Bt //accept all items in Bt

10 W ←W + |Bt | //update total weight

11 ifW > n then //sample is now saturated
//adjust for overshoot

12 (A, π , C) ← Dsample

(
(A, π ,W ), n

)
13 else //has been saturated

14 W ← e−λW + |Bt | //new total weight

15 ifW ≥ n then //still saturated
16 m ← StochRound( |Bt |n/W )

//replace m A-items with m Bt -items

17 A← A \ Sample(A,m) ∪ Sample(Bt ,m)
18 else //now unsaturated

//adjust for undershoot

19 (A, π , C) ← Dsample

(
(A, π , n),W − |Bt |

)
20 A← A ∪ Bt //all batch items are full

21 S ← getSample(A, π , C)
22 output S

a b c d

partial item

a b ca b c a b c d

Figure 2: Latent sample Lt (sample weight Ct = 3.6) and possible
realized samples.

belongs to St with probability 0.6. Thus St is obtained by includ-

ing each full item and then including the partial item according

to its associated probability, so that Ct represents the expected
size of St . E.g., in our example, the sample St will contain either

three or four items with respective probabilities 0.4 and 0.6, so

that the expected sample size is 3.6; see Figure 2. Note that if

Ct = k for some k ∈ {0, 1, . . . ,n}, then with probability 1 the

sample contains precisely k items, and Ct is the actual size of St ,
rather than just the expected size. Since each Ct by definition

never exceeds n, no sample St ever contains more than n items.

More precisely, given a set U of items, a latent sample of U
with sample weight C is a triple L = (A,π ,C), where A ⊆ U
is a set of ⌊C⌋ full items and π ⊆ U is a (possibly empty) set

containing at most one partial item. At each time t , we randomly

generate St from Lt = (At ,πt ,Ct ) by sampling such that

St =

{
At ∪ π with probability frac(Ct );

At with probability 1 − frac(Ct ),
(2)

where frac(x) = x − ⌊x⌋. That is, each full item is included with

probability 1 and the partial item is included with probability

frac(Ct ). Thus

E[|St |] = ⌈Ct ⌉ frac(Ct ) + ⌊Ct ⌋
(
1 − frac(Ct )

)
= (⌈Ct ⌉ − ⌊Ct ⌋) frac(Ct ) + ⌊Ct ⌋

= frac(Ct ) + ⌊Ct ⌋ = Ct

(3)

as previously asserted. By allowing at most one partial item, we

minimize the latent sample’s footprint: |At ∪ πt | ≤ ⌊Ct ⌋ + 1.
The key goal of R-TBS is to maintain the invariant

Pr[i ∈ St ] =
(
Ct /Wt

)
wt (i) (4)

for each t ≥ 0 and each item i ∈ Ut , where, as before,Ut denotes
the set of all items that arrive up through time t , so that the

appearance probability for an item i at time t is proportional to
its weight wt (i). This immediately implies the desired relative-

inclusion property (1). Sincewt (i) = 1 for an arriving item i ∈ Bt ,
the equality in (4) implies that the initial acceptance probability

for this item is

Pr[i ∈ St ] = Ct /Wt . (5)

The pseudocode for R-TBS is given as Algorithm 2. Suppose

the sample is unsaturated at time t − 1 in thatWt−1 < n and

hence Ct−1 =Wt−1 (line 5). The decay process first reduces the

total weight (and hence the sample weight) toW ′t−1 = C ′t−1 =

e−λWt−1 (line 6). R-TBS then downsamples Lt−1 (line 8) to re-

flect this decay and maintain a minimal sample footprint; the

downsampling method, described in Section 4.2, is designed to

maintain the invariant in (4). If the weight of the arriving batch

does not cause the sample to overflow, i.e.,C ′t−1 + |Bt | < n, then
Ct = C ′t−1 + |Bt | =W

′
t−1 + |Bt | =Wt . The relation in (5) then

implies that all newly arrived items are accepted into the sample

with probability 1 (line 9); see Figure 3(a) for an example of this

scenario. The situation is more complicated if the weight of the

arriving batch would cause the sample to overflow. It turns out

that the simplest way to deal with this scenario is to initially

accept all incoming items as in line 9, and then run an additional

round of downsampling to reduce the sample weight ton (line 12),
so that the sample is now saturated; see Figure 3(b). Note that

these two steps can be executed without ever causing the sample

footprint to exceed n.
Now suppose that the sample is saturated at time t − 1, so that

Wt−1 ≥ n and hence Ct−1 = |St−1 | = n. The new total weight is

Wt =W
′
t−1 + |Bt | as before (line 14). IfWt ≥ n, then the weight

of the arriving batch exceeds the weight loss due to decay, and

the sample remains saturated. Then (5) implies that each item

in Bt is accepted into the sample with probability p = n/Wt .

Letting Ij = 1 if item j ∈ B is accepted and Ij = 0 otherwise, we

see that the expected number of accepted items is

m = E

[ ∑
j ∈Bt

Ij
]
=

∑
j ∈Bt

E[Ij ] =
∑
j ∈Bt

Pr[Ij = 1] = Btn/Wt .

There are a number of possible ways to carry out this acceptance

operation, e.g., via independent coin flips. To minimize the vari-

ability of the sample size (and hence the likelihood of severely

small samples), R-TBS uses stochastic rounding in line 16 and

accepts a random number of items M such that M = ⌊m⌋ with
probability ⌈m⌉ −m andM = ⌈m⌉ with probabilitym − ⌊m⌋, so
that E[M] =m by an argument essentially the same as in (3). To

maintain the bound on the sample size, the M accepted items

replace M randomly selected “victims” in the current sample

(line 17). IfWt < n, then the sample weight decays toW ′t−1 and
the weight of the arriving batch is not enough to fill the sample

back up. Moreover, (5) implies that all arriving items are accepted

with probability 1. Thus we downsample to the decayed weight

ofW ′t−1 =Wt − |Bt | in line 19 and then insert the arriving items

in line 20.

4.2 Downsampling
Before describing Algorithm 3, the downsampling algorithm, we

intuitively motivate a key property that any such procedure must

have. For any item i ∈ L, the relation in (4) implies that we must

have Pr[i ∈ S] = (C/W )wi and Pr[i ∈ S ′] = (C ′/W ′)w ′i , where
W andwi represent the total and item weight before decay and
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Figure 3: R-TBS scenarios for n = 4 and e−λ = 0.5. For simplicity, we takeWt−1 = Ct−1. “DS” denotes downsampling.

Algorithm 3: Downsampling

1 L = (A, π , C): input latent sample

2 C ′: input target weight with 0 < C ′ < C
3 L′ = (A′, π ′, C ′): output latent sample

4 U ← Uniform()

5 if ⌊C ′⌋ = 0 then //no full items retained
6 if U > frac(C)/C then
7 (A′, π ′) ← Swap1(A, π )

8 A′ ← ∅
9 else if 0 < ⌊C ′⌋ = ⌊C ⌋ then //no items deleted

10 if U >
(
1 − (C ′/C) frac(C)

)
/
(
1 − frac(C ′)

)
then

11 (A′, π ′) ← Swap1(A, π )

12 else //items deleted: 0 < ⌊C ′⌋ < ⌊C ⌋
13 if U ≤ (C ′/C) frac(C) then
14 A′ ← Sample(A, ⌊C ′⌋)
15 (A′, π ′) ← Swap1(A′, π )
16 else
17 A′ ← Sample(A, ⌊C ′⌋ + 1)
18 (A′, π ′) ← Move1(A′, π )

19 if C ′ = ⌊C ′⌋ then //no fractional item
20 π ′ ← ∅

downsampling, andW ′ andw ′i represent the weights afterwards.
Since decay affects all items equally, we have w/W = w ′/W ′,
and it follows that

Pr[i ∈ S ′] = (C ′/C) Pr[i ∈ S]. (6)

That is, the inclusion probabilities for all items must be scaled

down by the same fraction, namely C ′/C . Theorem 4.1 (later in

this section) asserts that Algorithm 3 satisfies this property.

In the pseudocode for Algorithm 3, the function Uniform()

generates a random number uniformly distributed on [0, 1]. The

subroutine Swap1(A,π ) moves a randomly selected item from

A to π and moves the current item in π (if any) to A. Similarly,

Move1(A,π )moves a randomly selected item fromA to π , replac-
ing the current item in π (if any). More precisely, Swap1(A,π ) ex-
ecutes the operations I ← Sample(A, 1),A← (A\I )∪π , and π ←
I , and Move1(A,π ) executes the operations I ← Sample(A, 1),
A← A \ I , and π ← I .

To gain some intuition for why the algorithm works, consider

a simple special case, where the goal is to form a fractional sample

L′ = (A′,π ′,C ′) from a fractional sample L = (A,π ,C) of integral
sizeC > C ′; that is, L comprises exactlyC full items. Assume that

C ′ is non-integral, so that L′ contains a partial item. In this case,

we simply select an item at random (from A) to be the partial

item in L′ and then select ⌊C ′⌋ of the remaining C − 1 items at

random to be the full items in L′; see Figure 4(a). By symmetry,

each item i ∈ L is equally likely to be included in S ′, so that the

inclusion probabilities for the items in L are all scaled down by

the same fraction, as required for (6). For example, taking t = 0

in Figure 4(a), item a appears in St with probability 1 since it is

a full item. In S ′t , where the weights have been reduced by 50%,

item a (either as a full or partial item, depending on the random

outcome) appears with probability 2 · (1/6) + 2 · (1/6) · 0.5 = 0.5,

as expected. This scenario corresponds to lines 17 and 18 in the

algorithm, where we carry out the above selections by randomly

sampling ⌊C ′⌋ + 1 items from A to form A′ and then choosing a

random item in A′ as the partial item by moving it to π .
In the case where L contains a partial item i∗ that appears in S

with probability frac(C), it follows from (6) that i∗ should appear

in S ′ with probability p = (C ′/C)P[i∗ ∈ S] = (C ′/C) frac(C).
Thus, with probability p, lines 13–15 retain i∗ and convert it to

a full item so that it appears in S ′. Otherwise, in lines 17 and

18, i∗ is removed from the sample when it is overwritten by a

random item from A′; see Figure 4(b). Again, a new partial item

is chosen from A in a random manner to uniformly scale down

the inclusion probabilities. For instance, in Figure 4(b), item d
appears in St with probability 0.2 (because it is a partial item)

and in S ′t , appears with probability 3 · (0.1/3) = 0.1. Similarly,

item a appears in St with probability 1 and in S ′t with probability

(1.8)/6 + 0.6 · (1.8/6) + 0.6 · (0.1/3) = 0.5.

The if-statement in line 5 corresponds to the corner case in

which L′ does not contain a full item. The partial item i∗ ∈ L
either becomes full or is swapped into A′ and then immediately

ejected; see Figure 4(c).

The if-statement in line 9 corresponds to the case in which

no items are deleted from the latent sample, e.g., when C =
4.7 and C ′ = 4.2. In this case, i∗ either becomes full by being

swapped into A′ or remains as the partial item for L′. Denoting
by ρ the probability of not swapping, we have P[i∗ ∈ S ′] =
ρ · frac(C ′) + (1 − ρ) · 1. On the other hand, (6) implies that

P[i∗ ∈ S ′] = (C ′/C) frac(C). Equating these expression shows

that ρ must equal the expression on the right side of the inequality

on line 10; see Figure 4(d).

Formally, we have the following result.

Theorem 4.1. For 0 < C ′ < C , let L′ = (A′,π ′,C ′) be the
latent sample produced from a latent sample L = (A,π ,C) via
Algorithm 3, and let S ′ and S be samples produced from L′ and L
via (2). Then Pr[i ∈ S ′] = (C ′/C) Pr[i ∈ S] for all i ∈ L.

4.3 Properties of R-TBS
Theorem 4.2 below asserts that R-TBS satisfies (4) and hence

(1), thereby maintaining the correct inclusion probabilities; see

Appendix C of [16] for the proof. Theorems 4.3 and 4.4 assert that,

among all sampling algorithms with exponential time biasing,

R-TBS both maximizes the expected sample size in unsaturated

scenarios and minimizes sample-size variability. Thus R-TBS

tends to yield more accurate results (from more training data)

and greater stability in both result quality and retraining costs.

Theorem 4.2. The relation Pr[i ∈ St ] = (Ct /Wt )wt (i) holds
for all t ≥ 1 and i ∈ Ut .

Theorem 4.3. LetH be any sampling algorithm that satisfies (1)
and denote by St and SHt the samples produced at time t by R-TBS
and H. If the total weight at some time t ≥ 1 satisfiesWt < n, then
E[|SHt |] ≤ E[|St |].

Proof. SinceH satisfies (1), it follows that, for each time j ≤ t
and i ∈ Bj , the inclusion probability Pr[i ∈ SHt ] must be of the
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Figure 4: Downsampling examples (t = 0).

form rte
−λ(t−j)

for some function rt independent of j. Taking
j = t , we see that rt ≤ 1. For R-TBS in an unsaturated state, (4)

implies that rt = Ct /Wt = 1, so that Pr[i ∈ SHt ] ≤ Pr[i ∈ St ] ,
and the desired result follows directly. □

Theorem 4.4. LetH be any sampling algorithm that satisfies (1)
and has maximal expected sample sizeCt and denote by St and SHt
the samples produced at time t by R-TBS and H. Then Var[|SHt |] ≥
Var[|St |] for any time t ≥ 1.

Proof. Considering all possible distributions over the sample

size having amean value equal toCt , it is straightforward to show
that variance is minimized by concentrating all of the probability

mass onto ⌊Ct ⌋ and ⌈Ct ⌉. There is precisely one such distribution,
namely the stochastic-rounding distribution, and this is precisely

the sample-size distribution attained by R-TBS. □

5 DISTRIBUTED TBS ALGORITHMS
In this section, we describe how to implement distributed versions

of T-TBS and R-TBS to handle large volumes of data.

5.1 Overview of Distributed Algorithms
The distributed T-TBS and R-TBS algorithms, denoted as D-T-

TBS and D-R-TBS respectively, need to distribute large data sets

across the cluster and parallelize the computation on them.

Overview of D-T-TBS: The implementation of the D-T-TBS

algorithm is very similar to the simple distributed Bernoulli time-

biased sampling algorithm in [27]. It is embarrassingly parallel,

requiring no coordination. At each time point t , each worker in

the cluster subsamples its partition of the sample with probability

p, subsamples its partition ofBt with probabilityq, and then takes
a union of the resulting data sets.

OverviewofD-R-TBS:This algorithm, unlikeD-T-TBS,main-

tains a bounded sample, and hence cannot be embarrassingly

parallel. D-R-TBS first needs to aggregate local batch sizes to com-

pute the incoming batch size |Bt | to maintain the total weight

W . Then, based on |Bt | and the previous total weightW , D-R-

TBS determines whether the reservoir was previously saturated

and whether it will be saturated after processing Bt . For each

possible situation, D-R-TBS chooses the items in the reservoir

to delete through downsampling and the items in Bt to insert

into the reservoir. This process requires the master to coordinate

among the workers. In Section 5.3, we introduce two alternative

approaches to determine the deleted and inserted items. Finally,

the algorithm applies the deletes and inserts to form the new

reservoir, and computes the new total weightW .

BothD-T-TBS andD-R-TBS periodically checkpoint the sample

as well as other system state variables to ensure fault tolerance.

The implementation details for D-T-TBS are mostly subsumed by

those for D-R-TBS, so we focus on the latter.
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Figure 5: Design choices for implementing the reservoir
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5.2 Distributed Data Structures
There are two important data structures in the D-R-TBS algo-

rithm: the incoming batch and the reservoir. Conceptually, we

view an incoming batch Bt as an array of slots numbered from

1 through |Bt |, and the reservoir as an array of slots numbered

from 1 through ⌊C⌋ containing full items plus a special slot for

the partial item. For both data structures, data items need to be

distributed into partitions due to the large data volumes. There-

fore, the slot number of an item maps to a specific partition ID

and a position inside the partition.

The incoming batch usually comes from a distributed stream-

ing system, such as Spark Streaming; the actual data structure is

specific to the streaming system (e.g. an incoming batch is stored

as an RDD in Spark Streaming). As a result, the partitioning strat-

egy of the incoming batch is opaque to the D-R-TBS algorithm.

Unlike the incoming batch, which is read-only and discarded at

the end of each time period, the reservoir data structure must be

continually updated. An effective strategy for storing and operat-

ing on the reservoir is thus crucial for good performance. We now

explore alternative approaches to implementing the reservoir.

Distributed in-memory key-value store: One quite nat-

ural approach implements the reservoir using an off-the-shelf

distributed in-memory key-value store, such as Redis [25] or

Memcached [23]. In this scheme, each item in the reservoir is

stored as a key-value pair, with the slot number as the key and

the item as the value. Inserts and deletes to the reservoir naturally

translate into put and delete operations to the key-value store.
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There are two major limitations to this approach. Firstly, the

hash-based or range-based data-partitioning scheme used by a

distributed key-value store yields reservoir partitions that do not

correlate with the partitions of incoming batch. As illustrated in

Figure 5(a), when items from a given partition of an incoming

batch are inserted into the reservoir, the inserts touch many (if

not all) partitions of the reservoir, incurring heavy network I/O.

Secondly, key-value stores incur needless concurrency-control

overhead. For each batch, D-R-TBS already carefully coordinates

the deletes and inserts so that no two delete or insert operations

access the same slots in the reservoir and there is no danger of

write-write or read-write conflicts.

Co-partitioned reservoir: In the alternative approach, we

implement a distributed in-memory data structure for the reser-

voir so as to ensure that the reservoir partitions coincide with the

partitions from incoming batches, as shown in Figure 5(b). This

can be achieved in spite of the unknown partitioning scheme

of the streaming system. Specifically, the reservoir is initially

empty, and all items in the reservoir are from the incoming

batches. Therefore, if an item from a given partition of an in-

coming batch is always inserted into the corresponding “local”

reservoir partition and deletes are also handled locally, then the

co-partitioning and co-location of the reservoir and incoming

batch partitions is automatic. For our experiments, we imple-

mented the co-partitioned reservoir in Spark using the in-place

updating technique for RDDs in [27]; see Appendix E of [16].

Note that, at any point in time, a given slot number in the

reservoir maps to a specific partition ID and a position inside the

partition. Thus the slot number for a given full item may change

over time due to reservoir insertions and deletions. This does

not cause any statistical issues, because the functioning of the

set-based R-TBS algorithm is oblivious to specific slot numbers.

5.3 Choosing Items to Delete and Insert
In order to bound the reservoir size, D-R-TBS requires careful

coordination when choosing the set of items to delete from, and

insert into, the reservoir. At the same time, D-R-TBS must ensure

the statistical correctness of random number generation and

random permutation operations in the distributed environment.

We consider two possible approaches.

Centralized decisions: In themost straightforward approach,

the master makes centralized decisions about which items to

delete and insert. For deletes, the driver generates slot numbers

of the items in the reservoir to be deleted, which are then mapped

to the actual data locations in a manner that depends on the rep-

resentation of the reservoir (key-value store or co-partitioned

reservoir). For inserts, the driver generates the slot numbers of

the incoming items Bt at time t that need to be inserted into

the reservoir. Suppose that Bt comprises k ≥ 1 partitions. Each

generated slot number i ∈ {1, 2, . . . , |Bt |} is mapped to a par-

tition pi of the Bt (where 0 ≤ pi ≤ k − 1) and a position ri
inside partition pi . Denote by Q the set of “item locations”, i.e.,

the set of (pi , ri ) pairs. In order to perform the inserts, we need

to first retrieve the actual items based on the item locations. This

can be achieved with a join-like operation between Q and Bt ,

with the (pi , ri ) pair matching the actual location of an item in-

side Bt . To optimize this operation, we make Q a distributed

data structure and use a customized partitioner to ensure that

all pairs (pi , ri ) with pi = j are co-located with partition j of Bt
for j = 0, 1, . . . ,k − 1. Then a co-partitioned and co-located join

can be carried out between Q and Bt , as illustrated in Figure 6(a)

for k = 3. The resulting set of retrieved insert items, denoted as

S, is also co-partitioned with Bt as a by-product. After that, the

actual deletes and inserts are then carried out depending on how

reservoir is stored, as discussed below.

When the reservoir is implemented as a key-value store, the

deletes can be directly applied based on the slot numbers. For

inserts, the master takes each generated slot number of an item

in Bt and chooses a companion destination slot number in the

reservoir into which theBt itemwill be inserted. This destination

reservoir slot might currently be empty due to an earlier deletion,

or might contain an item that will now be replaced by the newly

inserted batch item. After the actual items to insert are retrieved

as described previously, the destination slot numbers are used to

put the items into the right locations in the key-value store.

When the co-partitioned reservoir is used, the delete slot num-

bers in the reservoir are mapped to (pi , ri ) pairs of partitions
of the reservoir and positions inside the partitions. As with in-

serts, we again use a customized partitioner for the set of pairs R

such that deletes are co-located with the corresponding reservoir

partitions. Then a join-like operation on R and the reservoir per-

forms the actual delete operations on the reservoir. For inserts,

we simply use another join-like operation on the set of retrieved

insert items S and the reservoir to add the corresponding insert

items to the co-located partition of the reservoir. In this approach,

we don’t need the master to generate destination reservoir slot

numbers for these insert items, because we view the reservoir as

a set when using co-partitioned reservoir data structure.

Distributed decisions: The above approach requires gener-

ating a large number of slot numbers inside the master, so we

now explore an alternative approach that offloads the slot num-

ber generation to the workers while still ensuring the statistical

correctness of the computation. This approach has the master

choose only the number of deletes and inserts per worker ac-

cording to appropriate multivariate hypergeometric distributions.

For deletes, each worker chooses random victims from its local

partition of the reservoir based on the number of deletes given

by the master. For inserts, the worker randomly and uniformly

selects items from its local partition of the incoming batch Bt
given the number of inserts. Figure 6(b) depicts how the insert

items are retrieved under this decentralized approach. We use the

technique in [15] for parallel pseudo-random number generation.

Note that this distributed decision making approach works

only when the co-partitioned reservoir data structure is used.

This is because the key-value store representation of the reser-

voir requires a target reservoir slot number for each insert item

from the incoming batch, and the target slot numbers have to be

generated in such a way as to ensure that, after the deletes and

inserts, all of the slot numbers are still unique and contiguous in

the new reservoir. This requires a lot of coordination among the

workers, which inhibits truly distributed decision making.

6 EXPERIMENTS
In this section, we study the empirical performance of D-R-TBS

and D-T-TBS, and demonstrate the potential benefit of using

them for model retraining in online model management. We im-

plemented D-R-TBS and D-T-TBS on Spark (refer to Appendix E

of [16] for implementation details).

Experimental Setup:All performance experimentswere con-

ducted on a cluster of 13 IBM System x iDataPlex dx340 servers.

Each has two quad-core Intel Xeon E5540 2.8GHz processors and

32GB of RAM. Servers are interconnected using a 1Gbit Ether-

net and each server runs Ubuntu Linux, Java 1.7 and Spark 1.6.
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One server is dedicated to run the Spark coordinator and, each

of the remaining 12 servers runs Spark workers. There is one

worker per processor on each machine, and each worker is given

all 4 cores to use, along with 8 GB of dedicated memory. All

other Spark parameters are set to their default values. We used

Memcached 1.4.33 as the key-value store in our experiments.

For all experiments, data was streamed in from HDFS using

Spark Streaming’s microbatches. We report run time per round

as the average over 100 rounds, discarding the first round from

this average because of Spark startup costs. Unless otherwise

stated, each batch contains 10 million items, the target reservoir

size is 20 million elements, and the decay parameter is λ = 0.07.
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Figure 7: Per-batch distributed runtime comparison
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6.1 Runtime Performance
Comparison of TBS Implementations: Figure 7 shows the

average runtime per batch for five different implementations

of distributed TBS algorithms. The first four (colored black) are

D-R-TBS implementations with different design choices: whether

to use centralized or distributed decisions (abbreviated as "Cent"

and "Dist", respectively) for choosing items to delete and insert,

and whether to use key-value store for storing reservoir or co-

partitioned reservoir (abbreviated as "KV" and "CP", respectively).

The first two implementations both use the key-value store rep-

resentation for reservoir together with the centralized decision

strategy for determining inserts and deletes. They only differ in

how the insert items are actually retrieved when subsampling

the incoming batch. The first uses the standard repartition join

(abbreviated as "RJ"), whereas the second uses the customized

partitioner and co-located join (abbreviated as "CJ") as described

in Section 5.3 and depicted in Figure 6(a). This optimization ef-

fectively cuts the network cost in half, but the KV representation

of reservoir still requires the insert items to be written across

the network to their corresponding reservoir location. The third

implementation employs the co-partitioned reservoir instead,

resulting in an significant speedup of over 2.6x. The fourth imple-

mentation further employs the distributed decision for choosing

items to delete and insert. This yields a further 1.6x speedup. We

use this D-R-TBS implementation in the remaining experiments.

The fifth implementation (colored grey) in Figure 7 is D-T-

TBS using co-partitioned reservoir and the distributed strategy

for choosing delete and insert items. Since, D-T-TBS is embar-

rassingly parallelizable, it’s much faster than the best D-R-TBS

implementation. But, as we discussed in Section 3, T-TBS only

works under a very strong restriction on the data arrival rate,

and can suffer from occasional memory overflows; see Figure 1.

In contrast, D-R-TBS is much more robust and works in realistic

scenarios where it is hard to predict the data arrival rate.

Scalability of D-R-TBS: Figure 8 shows how D-R-TBS scales

with the number of workers. We increased the batch size to 100

million items for this experiment. Initially, D-R-TBS scales out

very nicely with the increasing number of workers. However,

beyond 10 workers, the marginal benefit from additional workers

is small, because the coordination and communication overheads,

as well as the inherent Spark overhead, become prominent. For

the same reasons, in the scale-up experiment in Figure 9, the run-

time stays roughly constant until the batch size reaches 10 million

items and increases sharply at 100 million items. This is because

processing the streaming input and maintaining the sample start

to dominate the coordination and communication overhead.With

10 workers, R-TBS can handle a data flow comprising 100 million

items arriving approximately every 14 seconds.

6.2 Application: Classification using kNN
We now demonstrate the potential benefits of the R-TBS sampling

scheme for periodically retraining representative ML models in

the presence of evolving data. For each model and data set, we

compare the quality of models retrained on the samples generated

by R-TBS, a simple sliding window (SW), and uniform reservoir

sampling (Unif). Due to limited space, we do not give quality

results for T-TBS; we found that whenever it applies—i.e. when

the mean batch size is known and constant—the quality is very

similar to R-TBS, since they both use time-biased sampling.

Our first model is a kNN classifier, where a class is predicted

for each item in an incoming batch by taking a majority vote of

the classes of the k nearest neighbors in the current sample, based

on Euclidean distance; the sample is then updated using the batch.

To generate training data, we first generate 100 class centroids

uniformly in a [0, 80] × [0, 80] rectangle. Each data item is then

generated from a Gaussian mixture model and falls into one of

the 100 classes. Over time, the data generation process operates

in one of two “modes". In the “normal" mode, the frequency of

items from any of the first 50 classes is five times higher than

that of items in any of the second 50 classes. In the “abnormal"

mode, the frequencies are five times lower. Thus the frequent

and infrequent classes switch roles at a mode change. We gener-

ate each data point by randomly choosing a ground-truth class

ci with centroid (xi ,yi ) according to relative frequencies that

depend upon the current mode, and then generating the data

point’s (x ,y) coordinates independently as samples from N (xi , 1)
and N (yi , 1). Here N (µ,σ ) denotes the normal distribution with

mean µ and standard deviation σ .
In this experiment, the batch sizes are deterministic with

b = 100 items, and k = 7 neighbors for the kNN classifier. The

reservoir size for both R-TBS and Unif is 1000, and SW contains

the last 1000 items; thus all methods use the same amount of data

for retraining. (We choose this value because it achieves near

maximal classification accuracies for all techniques. In general,

we choose sampling and ML parameters to achieve good learning

performance while ensuring fair comparisons.) In each run, the

sample is warmed up by processing 100 normal-mode batches

before the classification task begins. Our experiments focus on

two types of temporal patterns in the data, as described below.

Single change: Here we model the occurrence of a singular

event. The data is generated in normal mode up to t = 10 (time is

measured here in units after warm-up), then switches to abnormal
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mode, and finally at t = 20 switches back to normal (Figure 10(a)).

As can be seen, the misclassification rate (percentage of incorrect

classifications) with R-TBS, SW and Unif all increase from around

18% to roughly 50% when the distribution becomes abnormal.

Both R-TBS and SW adapt to the change, recovering to around

16% misclassification rate after t = 16, with SW adapting slightly

better. In comparison, Unif does not adapt at all. But, when the

distribution snaps back to normal, the error rate of SW rises

sharply to 40% before gradually recovering, whereas R-TBS error

rate stays low around 15% throughout. These results prove that

R-TBS is indeed more robust: although slightly more sluggish

than SW in adapting to changes, R-TBS avoids wild fluctuations

in classification error as with SW.
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Figure 10: Misclassification rate (percent) for kNN

Periodic change: For this temporal pattern, the changes from

normal to abnormal mode are periodic, with δ normal batches

alternating with η abnormal batches, denoted as Periodic(δ ,η),
or P(δ ,η) for short. Figures 10(b) shows the misclassification

rate for Periodic(10, 10). Experiments on other periodic patterns

(in Appendix F of [16]) demonstrate similar results. The robust

behavior of R-TBS described above manifests itself even more

clearly in the periodic setting. Note, for example, how R-TBS

reacts significantly better to the renewed appearances of the ab-

normal mode. Observe that the first 30 batches of Periodic(10, 10)

display the same behavior as in the single event experiment in

Figure 10(a). We therefore focus primarily on the Periodic(10, 10)

temporal pattern for the remaining experiments.

Robustness and Effect of Decay Parameter: In the context
of online model management, we need a sampling scheme that

delivers high overall prediction accuracy and, perhaps even more

importantly, robust prediction performance over time. Large fluc-

tuations in the accuracy can pose significant risks in applications,

e.g., in critical IoT applications in the medical domain such as

monitoring glucose levels for predicting hyperglycemia events.

To assess the robustness of the performance results across dif-

ferent sampling schemes, we use a standard risk measure called

expected shortfall (ES) [22, p. 70]. ES measures downside risk,

focusing on worst-case scenarios. Specifically, the z% ES is the

average value of the worst z% of cases.

For each of 30 runs and for each sampling scheme, we compute

the 10% ES of themisclassification rate (expressed as a percentage)

starting from t = 20, since all three sampling schemes perform

poorly (as would be expected) during the first mode change,

which finishes at t = 20. Table 1 lists both the accuracy, measured

in terms of the average misclassification rate, and the robustness,
measured as the average 10% ES, of the kNN classifier over 30

runs across different temporal patterns. To demonstrate the effect

of the decay parameter λ on model performance, we also include

numbers for different λ values in Table 1.

In terms of accuracy, Unif is always theworst by a largemargin.

R-TBS and SW have similar accuracies, with R-TBS having a

slight edge in most cases. On the other hand, for robustness, SW

is almost always the worst, with ES ranging from 1.4x to 2.7x the

maximum ES (over different λ values) of R-TBS. Mostly, Unif is

also significantly worse than R-TBS, with ES ratios ranging from

1.4x to 1.7x. The only exception is the single-event pattern: since

the data remains in normal mode after the abnormal period, time

biasing becomes unimportant and Unif performs well. In general,

R-TBS provides both better accuracy and robustness in almost

all cases. The relative performance of the sampling schemes in

terms of accuracy and robustness tend to be consistent across

temporal patterns. Table 1 also shows that different λ values affect
the accuracy and robustness, however, R-TBS provides superior

results over a fairly wide range of λ values.

Varying batch size: We now examine model quality when

the batch sizes are no longer constant. Overall, the results look

similar to those for constant batch size. For example, Figure 11(a)

shows results for a Uniform(0,200) batch-size distribution, and

Figure 11(b) shows results for a deterministic batch size that

grows at a rate of 2% after warm-up. In both experiments, λ = 0.07

and the data pattern is Periodic(10, 10). These figures demon-

strate the robust performance of R-TBS in the presence of varying

data arrival rates. Similarly, the average accuracy and robustness

over 30 runs resembles the results in Table 1. For example, pick

λ = 0.07 and a Periodic(10, 10) pattern. Then, the misclassifica-

tion rate under uniform/growing batch sizes is 1.16x/1.14x that

of R-TBS for SW, and 1.47x/1.40x for Unif. In addition, the ES is

1.82x/1.98x that of R-TBS for SW, and 1.76x/1.78x for Unif.

Table 1: Accuracy and robustness of kNN performance
Single Event P(10,10) P(20,10) P(30,10)

λ Miss% ES Miss% ES Miss% ES Miss% ES

0.05 19.8 17.7 18.2 24.2 17.9 28.2 15.5 31.6

0.07 19.1 18.7 17.4 23.2 17.2 28.1 14.9 31.0
0.10 18.0 20.0 16.6 24.1 16.6 29.9 15.1 31.0
SW 19.2 53.3 19.0 49.8 18.8 47.3 16.5 44.5

Unif 25.6 19.3 25.4 42.3 25.0 43.2 21.0 47.6
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Figure 11: Varying batch sizes for kNN classifier

6.3 Application: Linear Regression
We now assess the effectiveness of R-TBS for retraining regres-

sion models. The experimental setup is similar to kNN, with data

generated in “normal” and “abnormal”modes. In bothmodes, data

items are generated from the standard linear regression model

y = b1x1 + b2x2 + ϵ , with the noise term ϵ distributed according

to a N (0, 1) distribution. In normal mode, (b1,b2) = (4.2,−0.4)
and in abnormal mode, (b1,b2) = (−3.6, 3.8). In both modes, x1
and x2 are generated according to Uniform(0, 1) distribution. As

before, the experiment starts with a warm-up of 100 “normal”

mode batches and each batch contains 100 items.

Saturated samples: Figure 12(a) shows the performance of

R-TBS, SW, and Unif for the Periodic(10, 10) pattern with a maxi-

mum sample size of 1000 for each technique. We note that, for

this sample size and temporal pattern, the R-TBS sample is always

saturated. (This is also true for all of the prior experiments.) The

results echo that of the previous section, with R-TBS exhibiting
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slightly better prediction accuracy on average, and significantly

better robustness, than the other methods. The mean square er-

rors (MSEs) across all data points for R-TBS, Unif, and SW are

3.51, 4.43, 4.02 respectively, and their 10% ES of the MSEs are

6.04, 10.05, 10.94 respectively.

Unsaturated Samples: We now investigate the case of un-

saturated samples for R-TBS. We increase the target sample size

to n = 1600. With a constant batch size of 100, and a decay rate

λ = 0.07, the reservoir of R-TBS is never full, stabilizing at 1479

items, whereas Unif and SW both have a full sample of 1600

items.

For the Periodic(10, 10) pattern, shown in Figure 12(b), SW

has a window size large enough to keep some data from older

time periods (up to 16 batches ago), making SW’s robustness

comparable to R-TBS (ES of 5.86 for SW and 5.97 for R-TBS).

However, this amalgamation of old data also hurts its overall

accuracy, with MSE rising to 4.17, as opposed to 3.50 for R-TBS.

In comparison, the shape of R-TBS remains almost unchanged

from Figure 12(a), and Unif behaves as poorly as before. When the

pattern changes to Periodic(16, 16) as shown in Figure 12(c), SW

doesn’t contain enough old data, making its prediction perfor-

mance suffer from huge fluctuations again, and the superiority of

R-TBS is more prominent. In both cases, R-TBS provides the best

overall performance, despite having a smaller sample size. This

backs up our earlier claim that more data is not always better. A

smaller but more balanced sample with good ratios of old and

new data can provide better prediction performance than a large

but unbalanced sample.

6.4 Application: Naive Bayes
In our final experiment, we evaluate the performance of R-TBS

for retraining Naive Bayes models with the Usenet2 dataset (mlkd.

csd.auth.gr/concept_drift.html), which was used in [18] to study

classifiers coping with recurring contexts in data streams. This

dataset contains a stream of 1500 messages on different topics

from the 20 News Groups Collections [21]. They are sequentially

presented to a simulated user who marks whether a message is

interesting or not. The user’s interest changes after every 300

messages. More details of the dataset can be found in [18].

Following [18], we use Naive Bayes with a bag of words model,

and set the optimal parameters for SW with maximum sample

size of 300 and batch size of 50. Since this dataset is rather small

and contexts change frequently, we use the optimal value of 0.3

for λ. We find through experiments that R-TBS displays higher

prediction accuracy for all λ in the range of [0.1, 0.5], so precise

tuning of λ is not critical. In addition, there is not enough data to

warm up the models on different sampling schemes, so we report

the model performance on all the 30 batches. Similarly, we report

20% ES for this dataset, due to the limited number of batches.

The results are shown in Figure 13. The misprediction rate for

R-TBS, SW, and Unif are 26.5%, 30.0%, and 29.5%; and the 20% ES

values are 43.3%, 52.7%, and 42.7%. Importantly, for this dataset

the changes in the underlying data patterns are less pronounced

than in the previous two experiments. Despite this, SW fluctuates

wildly, yielding inferior accuracy and robustness. In contrast,

Unif barely reacts to the context changes. As a result, Unif is very

slightly better than R-TBS with respect to robustness, but at the

price of lower overall accuracy. Thus, R-TBS is generally more

accurate under mild fluctuations in data patterns, and its superior

robustness properties manifest themselves as the changes become

more pronounced.

7 RELATEDWORK
Time-decay and sampling: Work on sampling with unequal

probabilities goes back to at least Lahiri’s 1951 paper [20]. A grow-

ing interest in streaming scenarios with weighted and decaying

items began in the mid-2000’s, with most of that work focused

on computing specific aggregates from such streams, such as

heavy-hitters, subset sums, and quantiles; see, e.g., [2, 7, 8]. The

first papers on time-biased reservoir sampling with exponential

decay are due to Aggarwal [1] and Efraimidis and Spirakis [12];

batch arrivals are not considered in these works. As discussed in

Section 1, the sampling schemes in [1] are tied to item sequence

numbers rather than the wall clock times on which we focus;

the latter are more natural when dealing with time-varying data

arrival rates.

Cormode et al. [9] propose a time biased reservoir sampling

algorithm based on the A-Res weighted sampling scheme pro-

posed in [12]. Rather than enforcing (1), the algorithm enforces

the (different) A-Res biasing scheme. In more detail, if si denotes
the element at slot i in the reservoir, then the algorithm in [12]

implements a scheme where an item x is chosen to be at slot i + 1
in the reservoir with probabilitywx /(

∑x
j=1w j −

∑i
j=1wsj ). From

the form of this equation, it becomes clear that resulting sam-

pling algorithm violates (1). Indeed, Efraimidis [11] gives some

numerical examples illustrating this point (in his comparison of

the A-Res and A-Chao algorithms). Again, we would argue that

the constraint on appearance probabilities in (1) is easier to un-

derstand in the setting of model management than the foregoing

constraint on initial acceptance probabilities.

The closest solution to ours adapts the weighted sampling

algorithm of Chao [5] to batches and time decay; we call the

resulting algorithm B-Chao and describe it in Appendix D of [16].

Unfortunately, as discussed, the relation in (1) is violated both

during the initial fill-up phase and whenever the data arrival

rate becomes slow relative to the decay rate, so that the sample

contains “overweight” items. Including overweight items causes

over-representation of older items, thus potentially degrading

predictive accuracy. The root of the issue is that the sample size

is nondecreasing over time. The R-TBS algorithm is the first

algorithm to correctly (and optimally) deal with “underflows”

by allowing the sample to shrink—thus handling data streams

whose flow rates vary unrestrictedly over continuous time. The

current paper also explicitly handles batch arrivals and explores

parallel implementation issues. The VarOpt sampling algorithm

of Cohen et al. [6]—which was developed to solve the specific

problem of estimating “subset sums”—can also be modified to our

setting. The resulting algorithm is more efficient than Chao, but

as stated in [6], it has the same statistical properties, and hence

does not satisfy (1).

Model management: A key goal of our work is to support

model management; see [13] for a survey on methods for detect-

ing changing data—also called “concept drift” in the setting of

online learning—and for adapting models to deal with drift. As

mentioned previously, one possibility is to re-engineer the learn-

ing algorithm. This has been done, for example, with support-

vector machines (SVMs) by developing incremental versions of

the basic SVM algorithm [4] and by adjusting the training data in

an SVM-specific manner, such as by adjusting example weights

as in Klinkenberg [19]. Klinkenberg also considers using curated

data selection to learn over concept drift, finding that weighted

data selection also improves the performance of learners. Our ap-

proach of model retraining using time-biased samples follows this
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Figure 12: Mean square error for linear regression
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Figure 13: Misclassification rate (per-
cent) for Naive Bayes

latter approach, and is appealing in that it is simple and applies to

a large class of machine-learning models. The recently proposed

Velox system for model management [10] ties together online

learning and statistical techniques for detecting concept drift. Af-

ter detecting drift through poor model performance, Velox kicks

off batch learning algorithms to retrain the model. Our approach

to model management is complementary to the work in [10] and

could potentially be used in a system like Velox to help deployed

models recover from poor performance more quickly. The de-

velopers of the recent MacroBase system [3] have incorporated

a time-biased sampling approach to model retraining, for iden-

tifying and explaining outliers in fast data streams. MacroBase

essentially uses Chao’s algorithm, and so could potentially bene-

fit from the R-TBS algorithm to enforce the inclusion criterion (1)

in the presence of highly variable data arrival rates.

8 CONCLUSION
Our experiments with classification and regression algorithms,

together with the prior work on graph analytics in [27], indicate

the potential usefulness of periodic retraining over time-biased

samples to help ML algorithms deal with evolving data streams

without requiring algorithmic re-engineering. To this end we

have developed and analyzed several time-biased sampling algo-

rithms that are of independent interest. In particular, the R-TBS

algorithm allows simultaneous control of both the item-inclusion

probabilities and the sample size, even when the data arrival rate

is unknown and can vary arbitrarily. R-TBS also maximizes the

expected sample size and minimizes sample-size variability over

all possible bounded-size algorithms with exponential decay. Us-

ing techniques from [9], we intend to generalize these properties

of R-TBS to hold under arbitrary forms of temporal decay.

We have also provided techniques for distributed implementa-

tion of R-TBS and T-TBS, and have shown that use of time-biased

sampling together with periodic model retraining can improve

model robustness in the face of abnormal events and periodic be-

havior in the data. In settings where (i) the mean data arrival rate

is known and (roughly) constant, as with a fixed set of sensors,

and (ii) occasional sample overflows can be easily dealt with by

allocating extra memory, we recommend use of T-TBS to pre-

cisely control item-inclusion probabilities. In many applications,

however, we expect that either (i) or (ii) will violated, in which

case we recommend the use of R-TBS. Our experiments showed

that R-TBS is superior to sliding windows over a range of λ values,
and hence does not require highly precise parameter tuning; this

may be because time-biased sampling avoids the all-or-nothing

item inclusion mechanism inherent in sliding windows.
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