
Data Structures for Efficient Computation of Influence
Maximization and Influence Estimation

Diana Popova

University of Victoria

British Columbia, Canada

dpopova@uvic.ca

Akshay Khot

University of Victoria

British Columbia, Canada

akshay03@uvic.ca

Alex Thomo

University of Victoria

British Columbia, Canada

thomo@uvic.ca

ABSTRACT
Algorithmic problems of computing influence estimation and in-
fluence maximization have been extensively studied for decades.

We researched several data structures for implementing the Re-

verse Influence Sampling method proposed by Borgs, Brautbar,

Chayes, and Lucier in 2014. Our implementations solve the prob-

lems of influence estimation and influence maximization in large

graphs fast and using small memory footprint. For instance, we

are able to produce results 3 times faster and scale 8 times more

than a state-of-the-art algorithm, all this while preserving the the-

oretical guarantees of Borgs et al. for Reverse Influence Sampling.

1 INTRODUCTION AND DEFINITIONS
The most popular definition of influence relies on probabilistic

reachability [4, 7]. The network is modeled as a directed graph

and a node influence is calculated as the (expected) number of

other nodes reachable from it. Given a set of seeds (initial nodes),
influence estimation is calculated as the total number of nodes

reachable from all the seeds in the set. To find a set of seeds that

gives the maximum influence spread (the number of influenced

nodes) is the influence maximization problem.

Running time and required space are the primary considera-

tions for the algorithms solving influence estimation and influ-

ence maximization problems; the networks of interest are usually

quite massive in size. Kempe et al. [7] showed that the influence

maximization problem is NP-hard, and Chen et al. [3] showed for
the influence estimation problem that computing the exact influ-

ence of a single seed is #P-hard. Moreover, as Feige [5] proved in

1998, the problem is hard to approximate to anything better than

1 − (1 − 1/s)s of the optimum for a seed set of size s .
To model the influence spreading, Kempe et al. proposed the

Independent Cascade (IC) model [7]: Starting from a seed, influ-

ence spreads in rounds/steps: each node after getting influenced

has one possibility to influence its neighbors. IC selects edges

from the seed neighborhood with independent probabilities. In-
fluenced neighbors, in their turn, have one possibility to influ-

ence their neighbors forming a cascade of information propaga-

tion. Kempe et al. proved that influence maximization on the IC

model is monotone and submodular, and therefore the approxi-

mate Greedy algorithm produces near-optimal solutions with a

theoretical guarantee. Approximate Greedy starts with an empty

seed set S . In each iteration, it adds to S a seed - the node with

maximum marginal gain. IC became a standard model of infor-

mation diffusion, and we are using it for our algorithms.

Building on the Kempe et al. results, several approximate

algorithms with theoretical guarantees have been developed

[3, 6, 10, 11, 13, 14]. However, the problem of scalability remains.

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st

International Conference on Extending Database Technology (EDBT), March 26-29,

2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons

license CC-by-nc-nd 4.0.

Recently, a new approach was proposed by Borgs et al. [2]: the
Reverse Influence Sampling (RIS) method. RIS selects (uniformly

at random, with replacement) a node and finds a set of nodes that

would have influenced it. The set of found nodes is stored in a

structure called hypergraph. This process is repeated many times.

If a node appears often in sets of “influencers”, then this node is

a good candidate for the most influential node in the graph. RIS

is a faster algorithm for the influence maximization problem, ob-

taining the near-optimal approximation factor of (1 − 1/e − ϵ),
for any ϵ > 0, in time O ((m ∗ k ∗ ϵ−2 ∗ loд(n)), where k is the

number of seeds. RIS can be modified to allow an early termi-

nation: if it is terminated after O (β ∗m ∗ k ∗ loд(n)) steps, then
it returns a solution with an approximation factor that depends

on β (the greater the β , the better the approximation is, and the

guarantees are made precise in [2]). However, still RIS needs to

sample nodes many times and consumes vast amounts of mem-

ory. The problem of scalability remains.

We note that there are several works that propose better

bounds on the number of samples that need to be taken to achieve

the same theoretical approximation (cf. [6, 9, 13]). Our research

is orthogonal to these works. We aim at optimizing the compu-

tation and storage of sketches in the hypergraph; the aforemen-

tioned works aim at reducing the number of sketches needed.

Algorithms in this paper.Our main goal is to scale-up comput-

ing of influence maximization and influence estimation to large

graphs with tens of millions of edges. We use several data struc-

tures all aiming at reducing the required memory and speeding

up the computation.

(1) We use Webgraph, a highly efficient, and actively main-

tained graph compression framework [1].

(2) We design a new way of storing the hypergraph that sig-

nificantly decreases the required space, without affecting

the theoretical guarantee of the approximation.

(3) We conduct experiments on large graphs on a consumer-

grade laptop comparing the data structures, and provide a

detailed analysis of the results.

2 PRELIMINARIES
Notations
Let G = (V ,E,p) be a directed graph, where V is the node set

(|V | = n), E is the edge set (|E | = m), and p : E → [0,1] is

a probability function on the edges existence. Let S be a set of

seeds. The influence spread of a seed set S under the Independent

Cascade (IC) model, denoted by σ (S), is defined as the expected

total number of reachable nodes for S .

IM and IE Problems
Influence EstimationProblem (IE). Given a graphG = (V ,E,p)
and a seed set S ⊆ V , compute the influence spread σ (S) of S .

Short Paper

Series ISSN: 2367-2005 505 10.5441/002/edbt.2018.58

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2018.58

InfluenceMaximization Problem (IM). Given a graphG =
(V ,E,p) and an integer k , find a seed set S ⊆ V of size k that

maximizes σ (S).

3 PROPOSED DATA STRUCTURES
We developed three different algorithms implementing RIS. Each

algorithm uses a distinct data structure for storing the hyper-

graph. We compared the performance of different data structures

on a consumer-grade laptop.

3.1 RIS
The original RIS method (Algorithm 1 in [2]) selects nodes uni-

formly at random. Let v be such a node. Then RIS determines the

set of nodes that would have influenced v by running a search

in the inverse graph (the graph with the directions of edges re-

versed). RIS stores the found set of nodes, called a sketch, in a

data structure, called a hypergraph. The process continues until
the hypergraph reaches a pre-defined weight.

The weight of the hypergraph is defined as the number of

graph edges "touched" by RIS. RIS selects an edge to follow at

random, with a given edge probability p. During search, each

edge incident to a visited node is counted as "touched" and con-

tributes to the weight calculation. Note, that the edge is consid-

ered "touched" regardless of it being selected by the search or

not. How large the weight should be in order to guarantee an

approximation to the optimal solution is defined in [2].
1

The RIS hypergraph is a two-dimensional (2D) list that con-

tains, for each node u in the graph, the IDs of the sketches where

u appeared. Further, RIS runs an approximate Greedy algorithm

on the hypergraph, which returns a set of k seeds (nodes with
approximately maximal influence in the original graph).

3.2 Two-Dimensional List (2DL)
We started with a straightforward implementation of RIS de-

scribed in subsection 3.1, where we use a two-dimensional list

structure (list of lists) for storing the hypergraph. Algorithm 1

shows the pseudocode of this implementation.

For a better performance, we added the following improve-

ments: 1. The Webgraph [1] format for the input inverse graph

(saves space); 2. Java 8 parallel streams and lambda expressions

(speeds up performance by executing several reachability proce-

dures in parallel); 3. BitSet structure for marking deleted sketches

(speeds up the marginal influence calculation); and 4. Leskovec

et al. technique [8] (speeds up the seed calculation).

Influence estimation is part of seeds calculation. With minor

changes, the code provides the solution for IE problem, when a

seed set is inputted.

We compared the runtime and space of 2DL and DIM, a state-

of-the-art implementation of RIS by Ohsaka et al. ([12]). For
both algorithms, we used the same lower bound on the hyper-

graph weight from [2]. Our 2DL implementation significantly

outperforms DIM. Testing results are discussed in detail in sub-

section 4.1.

3.3 Flat Arrays (FA)
FA implementation modifies the BuildHypergraph procedure of

2DL (subsection 3.2). The pseudocode is shown in Algorithm 2.

To store the hypergraph, FA creates two flat, one-dimensional,

arrays of integers: sketches and nodes. sketches stores the sketch

1
Theorem 4.1 in [2], version 5, updated June 22, 2016.

Algorithm 1 2DL

Input: directed graph G with n nodes andm edges, coefficient

β , number of seeds k
Output: seeds set S ⊆ V of size k , spread σ (S)
1: R ← β ∗m ∗ k ∗ loд(n)
2: H ← BuildHyperдraph(R)
3: return GetSeeds (H)
4: procedure BuildHypergraph(R)
5: while H_weiдht < R do
6: v ← random vertex of GT

7: sketch ← reachable nodes in GT
starting from v

8: for each node u ∈ sketch do
9: append sketchID to u’s list of sketches
10: count[u]← count[u] + 1

11: return hypergraph H

12: procedure GetSeeds(H)

13: S ← ∅, σ (S) ← 0

14: for i = 1, ...,k do
15: seed vi ← arдmaxv {count[v])}
16: S .insert (vi)
17: σ (S) ← σ (S) + count[vi]
18: remove the sketches containing vi

19: output S , σ (S)

ID, nodes stores the node IDs reached by this sketch. Arrays

sketches and nodes are synchronized, so that knowing the index

of a sketch, we can easily find the corresponding nodes, and vice
versa. In the following figure we show an example of a sketches
array (first row) and corresponding nodes array (second row):

0 0 0 0 1 1 2 2 3 4 4 5

0 1 2 3 2 3 1 3 2 2 3 0

In this example, sketch IDs and their corresponding node IDs

are divided by double bars from other sketches: sketch 0 contains

four nodes: 0, 1, 2, and 3; sketch 1 contains two nodes: 2 and 3; and

so on. Note that sketches are listed in ascending order, and the

corresponding nodes for each sketch are listed in ascending order

as well. We use these features for speeding up the calculation of

seeds. Testing FA on real-life graphs shows its better usage of

space and faster performance than 2DL (subsection 4.1).

Algorithm 2 FA

1: procedure BuildHypergraph(R)
2: initialize sketches and nodes arrays to -1

3: while H_weiдht < R do
4: v ← random vertex of GT

5: sketch ← reachable nodes in GT
starting from v

6: for each node u ∈ sketch do
7: sketches[i]← sketchID
8: nodes[i]← u
9: count[u]← count[u] + 1

10: return hypergraph H = (sketches,nodes)

3.4 Compressed Flat Arrays (CS-FA)
Here we present a more efficient implementation, the CS-FA algo-

rithm (Algorithm 3). The main difference between CS-FA and FA

is the design of the sketches array: CS-FA stores the accumulated

506

Algorithm 3 CS-FA

1: procedure BuildHypergraph(R)
2: initialize nodes array to -1

3: while H_weiдht < R do
4: v ← random vertex of GT

5: sketch ← reachable nodes in GT
starting from v

6: for each node u ∈ sketch do
7: node_count ← node_count + 1
8: add nodeID to array nodes
9: count[u]← count[u] + 1

10: add node_count to array sketches
11: return hypergraph H = (sketches,nodes)

count of nodes included in sketches, thus making the sketches ar-
ray compressed. Now we do not need to store sketch id’s explic-

itly: sketch id’s are the indexes in array sketches. The example be-

low shows that sketch 0 includes three nodes, sketch 1 includes

(5 - 3) = 2 nodes, and so on. The nodes array lists the correspond-

ing nodes.

sketches: 3 5 6 8 10

nodes: 0 1 3 0 1 0 2 3 3 4

When we want to retrieve a sketch with id, say i , we need to

find where its nodes start in the nodes array. This is given by

the number stored in sketches[i − 1] or 0 if i = 0. Testing shows

CS-FA’s smaller footprint and better run time than 2DL’s or FA’s

(subsection 4.1).

4 EXPERIMENTAL RESULTS
We tested our IM and IE solutions by extensive experiments on

several real-world graphs. For brevity, we included in this paper

only the most interesting and telling results for IM and their

analysis. All the presented results are achieved on a consumer-

grade laptop with 16G of main memory.

We implemented the algorithms in Java 8 taking advantage

of parallel streams and lambda expressions, and used Webgraph

[1] as a graph compression framework. We compared our imple-

mentations with each other and with the DIM algorithm, imple-

mented in C++ ([12]). We used the DIM code from

https://github.com/todo314/dynamic-influence-analysis.

Datasets. Due to space constraints, we only present results

for three real world graphs. Results for other datasets were simi-

lar. The datasets are available from the Laboratory for Web Algo-

rithmics (http://law.di.unimi.it/datasets.php).

Dataset n m

UK100K 100,000 3,050,615

CNR-2000 325,557 3,216,152

EU-2005 862,664 19,235,140

Table 1: Datasets ordered bym.

While the size of the networks we considered is in the medium

range, since each node can be sampled many times (we use sam-

pling with replacement), the count of edges touched by the algo-

rithms is in the billions. For example, the smallest of presented

datasets, UK100K, requires a hypergraph with a weight of at least

5.6 billion, in order to produce the IM solution for β = 16 and

k = 100.

Equipment. The experiments were conducted on a laptop

with processor 2.2 GHz Intel Core i7 (4-core), RAM 16GB 1600

MHz DDR3, running OS X Yosemite.

Parameters. The parameters we use in our testing are as

follows. k is the number of seeds in the seed set, β is a coefficient

in Borgs et al. formula for the hypergraph weight, and p is the

probability of edge existence . The tests are conducted varying k
and β for p = 0.1.

4.1 Comparison of arrays, 2D list, and DIM
performance

Fig. 1 shows the total running time and the time used for seeds

calculation by DIM vs. our implementation of 2DL vs. FA vs. CS-
FA. The test shown was conducted on CNR-2000, for k = 10,

p = 0.1, and ϵ = 0.1, varying β in powers of 2, from 2 to 128.

(1) Total Time (sec) (2) Seeds Time (sec)
Figure 1: Processing time for cnr-2000; k=10, varying β .

The two-dimensional list implementations, DIM and 2DL, run

slower and require more memory than array implementations.

The reason for comparatively poor performance of 2D list imple-

mentations is the fragmentation of the main memory, when allo-

cating space for each second-dimension list of sketch numbers

for a node. This causes the memory manager to perform a lot of

work trying to rearrange memory blocks. Improvements imple-

mented in 2DL listed in subsection 3.2 allow for a better time per-

formance on both the hypergraph computation and seed calcula-

tion, compared to DIM. For example, for β = 16, DIM took three

times longer than 2DL to produce the result. The running times of

FA and CS-FA are almost identical with each other. This is good

for CS-FA; the compression we perform not only does not slow

downCS-FA, but it makes CS-FA slightly faster due to bettermem-

ory utilization. Both FA and CS-FA are faster than 2DL and DIM.

On both charts in Fig. 1, some data points are missing, because

of the required memory being higher than what is available on

the machine. 2DL and FA can handle runs with a β up to 32 and

64, respectively, while CS-FA can handle β equal to 128 due to its

smaller memory footprint. That is, CS-FA scales the most, about

8 times more than DIM.

Fig. 2 shows the performance of 2DL, FA, and CS-FA when

parameters k and β are growing, from the first chart, where

all three implementations could run to completion, till the last

one, where only the most efficient data structure (CS-FA) could

produce one result, for the lowest β . The larger the β and k , the
longer it takes for building the hypergraph and calculating the

seeds, within one graph. This can be seen in the charts, while

following a column from the top chart down. The larger the graph,

the longer it takes for building the hypergraph and calculating

the seeds. This can be seen in the charts, while following a row

from the left chart to the right.

The largest hypergraph, successfully created and processed on

the laptop, touched almost 5.6 billion edges. This hypergraph was

507

(1) uk100K (2) uk100K (3) cnr2000 (4) cnr2000 (5) eu2005 (6) eu2005

(7) uk100K (8) uk100K (9) cnr2000 (10) cnr2000 (11) eu2005 (12) eu2005

(13) uk100K (14) uk100K (15) cnr2000 (16) cnr2000 (17) eu2005 (18) eu2005

(19) uk100K (20) uk100K (21) cnr2000 (22) cnr2000 (23) eu2005 (24) eu2005

(25) uk100K (26) uk100K (27) cnr2000 (28) cnr2000 (29) eu2005 (30) eu2005

Figure 2: Total time (sec), and seeds time (sec). Per row, k = 5, 10, 25, 50, 100

processed by CS-FA (subsection 3.4). It took CS-FA one hour six

minutes, including five minutes for calculating 100 seeds. We do

not know another algorithm that can process such a hypergraph

on a comparable machine.

Finally, in both Fig. 1 and 2, we observe that the time for

calculating seeds is only a small part of the total time, which

influenced our decision to not show separately experiments for

IE (due to space constraints).

5 CONCLUSIONS AND FUTURE RESEARCH
We presented several implementations for computing influence

estimation and influence maximization on graphs with multimil-

lion edges. Our algorithms use different data structures.We tested

the performance of these data structures on larger graphs, and

provided a comparative analysis of test results. We substantially

reduce the running time and required memory, without affecting

the theoretical guarantees, to the point that multimillion-edge

graphs could be processed on a consumer-grade laptop. Future

research will involve further compression and parallelism aim-

ing at scaling the computation of influence to bigger networks.

The source code for this paper can be found at:

https://github.com/dianapopova/InfluenceMax

REFERENCES
[1] P. Boldi and S. Vigna. The webgraph framework i: compression techniques.

In WWW, 2004.

[2] C. Borgs, M. Brautbar, J. Chayes, and B. Lucier. Maximizing social influence

in nearly optimal time. In SODA, pages 946–957, 2014.
[3] W. Chen, Y. Wang, and S. Yang. Efficient influence maximization in social

networks. In KDD, pages 199–208, 2009.
[4] E. Cohen, D. Delling, T. Pajor, and R. F. Werneck. Sketch-based influence

maximization and computation: Scaling up with guarantees. In CIKM, pages

629–638, 2014.

[5] U. Feige. A threshold of ln n for approximating set cover. Journal of the ACM
(JACM), 45(4):634–652, 1998.

[6] K. Huang, S. Wang, G. S. Bevilacqua, X. Xiao, and L. V. S. Lakshmanan. Re-

visiting the stop-and-stare algorithms for influence maximization. PVLDB,
10:913–924, 2017.

[7] D. Kempe, J. Kleinberg, and É. Tardos. Maximizing the spread of influence

through a social network. In KDD, pages 137–146, 2003.
[8] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen, and N. Glance.

Cost-effective outbreak detection in networks. In KDD, pages 420–429, 2007.
[9] H. T. Nguyen, M. T. Thai, and T. N. Dinh. Stop-and-stare: Optimal sampling

algorithms for viral marketing in billion-scale networks. In SIGMOD, pages
695–710, 2016.

[10] H. T. Nguyen, M. T. Thai, and T. N. Dinh. A billion-scale approximation

algorithm for maximizing benefit in viral marketing. IEEE/ACM Trans. Netw.,
25(4):2419–2429, Aug. 2017.

[11] N. Ohsaka, T. Akiba, Y. Yoshida, and K.-i. Kawarabayashi. Fast and accurate

influence maximization on large networks with pruned monte-carlo simula-

tions. In AAAI, pages 138–144, 2014.
[12] N. Ohsaka, T. Akiba, Y. Yoshida, and K.-i. Kawarabayashi. Dynamic influence

analysis in evolving networks. PVLDB, 9(12):1077–1088, 2016.
[13] Y. Tang, Y. Shi, and X. Xiao. Influence maximization in near-linear time: A

martingale approach. SIGMOD ’15, New York, NY, USA.

[14] Y. Tang, X. Xiao, and Y. Shi. Influence maximization: Near-optimal time

complexity meets practical efficiency. SIGMOD ’14, New York, NY, USA.

508

	Data Structures for Efficient Computation of Influence Maximization and Influence EstimationDiana Popova, Akshay Khot, Alex Thomo

