Industrial and Applications Paper

O

proceedings

RQL: Retrospective Computations over Snapshot Sets

Nikos Tsikoudis

Brandeis University
tsikudis@cs.brandeis.edu

ABSTRACT

Applications need to analyze the past state of their data to provide
auditing and other forms of fact checking. Retrospective snapshot
systems that support computations over data store snapshots,
allow applications using simple data stores like Berkeley DB or
SQLite, to provide past state analysis in a convenient way. Cur-
rent snapshot systems however, offer no satisfactory support for
computations that analyze multiple snapshots. We have devel-
oped a Retrospective Query Language (RQL), a simple declarative
extension to SQL that allows to specify and run multi-snapshot
computations conveniently in a snapshot system, using a small
number of simple mechanisms defined in terms of relational con-
structs familiar to programmers. We describe RQL mechanisms,
explain how they translate into SQL computations in a snapshot
system, and show how to express a number of common analysis
patterns with illustrative examples. We also describe how we im-
plemented RQL in a simple way utilizing SQLite UDF framework
in a Berkeley DB data store using Retro page-level incremen-
tal snapshot system. Multi-snapshot computations running over
page-level incremental snapshots bring up interesting perfor-
mance issues that have not been studied before. We present the
first study defining a performance envelope for multi-snapshot
computations over page-level incremental snapshots.

1 INTRODUCTION

To provide auditing and other forms of claim checking more and
more applications need to answer questions, often formulated
after the fact, about the past states of their data. To free applica-
tions from the burden of managing past states on their own, data
management systems need to run ad-hoc computations over past
states of the objects they store.

Computations over past states have been long supported by
temporal databases, used by applications in specialized domains
but not used by general applications because of cost and perfor-
mance penalty for in-production operation. More recently, cheap
storage and interest in using past state analytics for in-production
operation led to development of systems that integrate past state
analytics in a database [7, 11, 13], and all major vendors today
offer products providing OLTP and OLAP processing in a single
system [16]. These products however are not a good match for In-
ternet applications that store their data in simple key value stores
such as Berkeley DB (BDB) [15] or SQLite [8] and need past state
analysis for on-line historical claim checking or auditing. Today
however, even applications using key value stores can support
past state analysis using snapshot systems that support retro-
spection, the ability of a data store to run queries over consistent
snapshots of application past state as if they were the current
state [22]. Retrospection makes it easy for programmers to pro-
vide expressive past state analysis since it allows to implement
ad-hoc queries as general programs in the application language

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st
International Conference on Extending Database Technology (EDBT), March 26-29,
2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Series ISSN: 2367-2005

Liuba Shrira
Brandeis University
liuba@cs.brandeis.edu

600

Sara Cohen
Hebrew University, Jerusalem
sara@cs.huji.ac.il

using the application code base and then run these programs on
the snapshots of interest. For example, Retro [21], a snapshot
system of BDB, allows to analyze the state of BDB SQLite appli-
cations at a particular point in time simply by running SQLite
queries over the corresponding BDB snapshot.

As convenient as it is to analyze a single point in time using a
snapshot system, many analyses concern multiple data points.
Retro and other snapshot systems come short when it comes to
analyzing multiple snapshots. A programmer needs to write a
C script that manually identifies snapshots of interest, queries
each snapshot separately, manually collects the results, and then
processes the results. This approach is cumbersome, error prone
and onerous for a SQL programmer who needs to learn a new
language. The programmer would much prefer to specify the
computation in a declarative manner using the language of the
application.

To help with programming the desired computation logic for
multiple snapshot analysis, we have developed a Retrospective
Query Language (RQL), a simple declarative extension to SQL
that allows to specify and run multi-snapshot computations with-
out the need to use a low-level script. RQL mechanisms combine
in a modular way high-level relational constructs to express gen-
eral SQL computations over arbitrary sets of past BDB SQLite
application snapshots. The constructs specify in SQL the set of
snapshots that identify the past states of interest, the computa-
tions over each snapshot, and the computations that process the
results.

We describe RQL mechanisms and explain how each high-
level mechanism translates into a SQL computation over multiple
snapshots in the Retro snapshot system. We also show how to
express a number of common analysis patterns with illustrative
examples. We then describe how we implemented RQL in a simple
way using SQLite UDF.

RQL programs bring to light important performance considera-
tions that arise when programs compute over multiple snapshots.
For one, RQL mechanisms allow to specify computations over
arbitrary size sets of snapshots. The number of snapshots stored
by a snapshot system such as Retro, only limited by available
storage, can be very high given today’s low storage costs. Each
snapshot includes the entire state of the database. RQL program
therefore can compute over potentially very large amounts of
data. A programmer needs to know how much CPU, memory
and I/0 resources his program requires, especially in today’s
utility computing environments. Furthermore, an important per-
formance consideration in the design of snapshot systems like
Retro is to avoid interfering with the data store performance
so that snapshots can be created at required frequency without
blocking or disrupting in-production application performance.
Retro snapshot system achieves this by using a low-cost copy-on-
write technique that creates an incremental page-level snapshot
representation with a compact snapshot index [22, 23]. Such rep-
resentation is known to be slower to compute with but the slow-
down is considered to be an acceptable trade-off to preserve in-
production performance. The reason a computation runs slower
over a snapshot and incurs higher resource costs compared to

10.5441/002/edbt .2018.70

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2018.70

the current database state is that the snapshot state needs to be
assembled on-the-fly from the incremental representation. In-
herently however, with a snapshot representation created using
copy-on-write, consecutive snapshots share large parts of their
state. An RQL program that iterates computations over multiple
consecutive snapshots can therefore reduce its costs and improve
performance by assembling such a shared state only once. The
performance of programs computing over multiple page-level
copy-on-write snapshots however has not been studied before.

To this end, we implemented RQL in SQLite BDB using Retro
snapshot system and conducted an experimental study that char-
acterizes the performance envelope of RQL programs. The goal
of the study is to explain the performance in a way that is easy
to understand by the programmer. Since the programmer spec-
ifies RQL mechanisms as a modular composition of relational
constructs in SQLite, we relate the performance of RQL program
to the performance of its SQL components, a cost that should
be familiar to the programmer. Our experiments use workloads
derived from the standard TPC-H benchmark to evaluate RQL
performance so that even though our system is different from
other past state systems, its performance is explained using a
standard workload.

In summary, the paper makes the following contributions:

e RQL, a SQLite extension that allows to express compu-
tations over multiple snapshots in a convenient way in
the language of the application. Our focus here is SQL ex-
tension but we believe a similar approach can be used for
BDB applications in other languages since the BDB/Retro
system is language-independent.

o An implementation of RQL system using SQLite UDF.

A performance study of RQL programs including the first

analysis explaining the performance of computations run-

ning over multiple page-level copy-on-write snapshots.

While the performance results reported in our study are

specific to our system, our performance analysis is more

general and applies to other page-level copy-on-write
snapshot systems.

The rest of the paper is organized as follows. Section 2 de-
scribes the RQL mechanisms, Section 3 outlines the salient points
of RQL implementation using SQLite UDF, Section 4 briefly out-
lines the basic structure of the copy-on-write snapshot system
Retro, providing the background for our performance analysis,
Section 5 describes the experimental study, Section 6 considers
the related work, Section 7 concludes.

2 ROQL LANGUAGE

In this section we present RQL, the programming language for
specifying SQL computations over sets of snapshots of past states
in a data store. Our departure point is a transactional key value
store with an integrated snapshot system that allows a SQL ap-
plication to take snapshots of its state and subsequently run a
SQL computation over a snapshot. Specifically, we assume the
Retro snapshot system integrated with the BDB SQLite [21]. We
first explain the snapshot computation model provided by Retro,
and the concrete language constructs used by SQL programmers
to create snapshots and to specify a program that runs over a
snapshot.

Retro extends BDB/SQLite with a language construct that al-
lows to declare a snapshot as part of normal transaction commit
using the BEGIN; and COMMIT WITH SNAPSHOT; commands.
The declaration command creates a transactionally consistent

601

1_userid 1_time 1_country
UserA 2008-11-09 13:23:44 USA
UserB 2008-11-09 15:45:21 UK
UserC 2008-11-09 15:45:21 USA
(a) Snapshot S1
1_userid ‘ 1_time ‘ 1_country
UserB 2008-11-09 15:45:21 UK
UserC 2008-11-09 21:33:12 USA
(b) Snapshot S2
1 _userid ‘ 1 _time ‘ 1_country
UserB 2008-11-09 15:45:21 UK
UserC 2008-11-09 21:33:12 USA
UserD 2008-11-11 10:08:04 UK

(c) Snapshot S3

Figure 1: LoggedIn table in snapshots 1-3

snap_id ‘ snap_ts
1 2008-11-09 23:59:59
2 2008-11-10 23:59:59
3 2008-11-11 23:59:59

Figure 2: Snaplds table

persistent snapshot that includes the state of the entire database
(e.g., tables, indexes, system catalogs). The snapshot reflects the
modifications committed by the declaring transaction T, and all
the transactions committed before T. The declaration perma-
nently associates with the snapshot a unique snapshot identifier
that names the snapshot. The identifier and a current timestamp
are entered in a table with name Snaplds. Although Retro uses
integer sequence numbers as snapshot identifiers internally, a
programmer can associate meaningful snapshot names with the
identifiers.

A query can run on a snapshot at any point following the
snapshot declaration. To run a SQL program, such as "SELECT
.." over previously declared snapshot with identifier sid, the pro-
grammer simply specifies "SELECT AS OF sid ..". SQL queries
and update transactions that do not declare snapshots remain
unchanged by Retro.

Consider an example SQL application using a LoggedIn table
that stores the users who are logged in a system, along with the
time and the country from which each user has logged in. When-
ever a user logs out, he is deleted from the table. Figure 3 shows a
SQL program containing three consecutive snapshot declaration
commands, (lines 1-2, lines 3-5, and lines 6-8), a snapshot query
command that runs on the snapshot sid 1 (line 9), and the same
query that runs on the current database state (line 10). Figure 1
shows the table state in three declared snapshots, and Figure 2
shows the Snaplds table. Note, that the state of LoggedIn table in
the snapshot 2 declared in lines 3-5 does not include UserA since
a snapshot reflects updates of the declaring transaction.

Retro makes it easy to analyze a single snapshot but has no
support for analysis concerning multiple snapshots. In order to
provide this functionality we propose RQL, a simple language
for specifying computations over a set of Retro snapshots.

Declare snapshot S1
1. BEGIN;
2. COMMIT WITH SNAPSHOT;

Update table and declare snapshot S2

3. BEGIN;

4. DELETE FROM LoggedIn WHERE 1_userid = "UserA’;
5. COMMIT WITH SNAPSHOT;

Update table and declare snapshot S3

6. BEGIN;

7. INSERT INTO LoggedIn (I_userid, 1_time, 1_country)
VALUES ('UserD’, 2008-11-11 10:08:04’, 'UK’);

8. COMMIT WITH SNAPSHOT;

Retrospective query
9. SELECT AS OF 1 * FROM LoggedIn;

Query on current state

10. SELECT * FROM LoggedIn;

Figure 3: Retro SQL example

RQL queries specify computations using a small set of basic
computational mechanisms that compose relational constructs
familiar to a SQL programmer. A computation defined by an
RQL query iterates over a set of snapshots, runs a SQL query
on each snapshot, collects results of the query and performs on
the results different combining computations determined by the
specific mechanism used.

In specifying the set of snapshots to iterate over, and the
snapshot query to be executed in each iteration, RQL uses two
auxiliary constructs, a snapshot table that holds all the declared
snapshot identifiers and timestamps, referred to as Snaplds, and
a function current_snapshot that provides the identifier of the
snapshot used in the iteration where the current computation is
performed.

The RQL mechanisms Collate Data, Aggregate Data In Variable,
Aggregate Data In Table and Collate Date Into Intervals are best
described operationally by explaining the SQL computation each
one performs.

2.1 Collate Data

The RQL mechanism Collate Data collects records from multiple
snapshots into a table.

CollateData(Qs, Qg, T)

Collate Data requires three parameters, the queries Qs, Qq
and table name T. Query Qs returns a single column containing
snapshot identifiers selected from the snapshot table Snaplds. The
Qs output represent the snapshot set (interval) the programmer
is interested in. Query Qq is applied to every snapshot in the
snapshot interval. T is the name of the table into which we collate
the results of every Qq.

For the first snapshot identifier Sx returned by the Qs, the
mechanism issues "CREATE TABLE T AS Qq" within the snap-
shot Sx. For all the subsequent Sy returned by Qs, "INSERT INTO
T Qq" is issued, within snapshot Sy.

The following example collects all the user_ids and the snap-
shot identifier of the snapshot they appear in.

CollateData("SELECT snap_id FROM Snaplds",

602

"SELECT DISTINCT 1_userid, current_snapshot()
FROM LoggedIn", "Result")

Collate Data along with the snapshot table Snapids and the
current_snapshot() function provide a general language for imple-
menting any kind of computation by issuing SQL queries on the
Collate Data output. However, Collate Data can have a large foot-
print in terms of the memory required to hold its result, especially
when the Qs set and Qq result set are large.

The two aggregation mechanisms we present next, allow to
reduce the memory footprint for RQL computations that need to
aggregate results over snapshots.

2.2 Aggregate Data In Variable

The first aggregation mechanism Aggregate Data In Variable ap-
plies an aggregate function on a single element across multiple
snapshots.

AggregateDatalnVariable(Qs, Qg, T, AggFunc)

In addition to the queries Qs, Qq and table name T, it requires
an aggregate function as a parameter and it expects from Qq to
return a single row and a single column. For the first snapshot
identifier Sx returned by Qs, we execute Qq on snapshot Sx
and save the single value in a variable V1. For all subsequent
identifiers Sy returned by Qs, we issue Qq on snapshot Sy, save
the single value in a variable V2 and update V1 as AggFunc(V1,
V2). Finally, we store the result in the table T.

The following example shows how we can count the number
of snapshots in which a tuple appears. For example, we want to
count the number of snapshots in which user UserB is logged in.

AggregateDatalnVariable("SELECT snap_id FROM SnapIds"
"SELECT DISTINCT 1 FROM LoggedIn
WHERE 1_userid = 'UserB', "Result", "sum")

In the next example, we want to find the first occurrence of
the same user.

AggregateDatalnVariable("SELECT snap_id FROM SnapIds"
"SELECT DISTINCT current_snapshot() FROM LoggedIn
WHERE 1_userid = 'UserB' ", "Result", "min")

2.3 Aggregate Data In Table

The mechanism Aggregate Data In Table provides the ability to
apply aggregate functions on records of multiple columns across
snapshots.

AggregateDataInTable(Qs, Qq, T, ListOfColFuncPairs)

The additional required parameter is a list of pairs of column
names and aggregate functions.

For the first snapshot identifier Sx returned by Qs, we create a
table T and insert the Qq output. For all the subsequent identifiers
Sy returned by Qs we issue the query Qq and for each record
in its output we search in table T to find a tuple with the same
values in columns not included in the ListOfColFuncPairs. If
such a record exists we perform the required computation on the
values in columns of ListOfColFuncPairs, otherwise we insert
into T the record returned by Qq. Note, the Aggregate Data In
Table queries can be considered as across time GROUP BY queries
where the grouping columns are the columns of the Qq output
not appearing in the ListOfColFuncPairs. So, for the aggregation
across snapshots to be well defined, Qq should never return two
records that coincide on all the values in the grouping columns.

The following example shows how we can find the first time
that each user has logged in.

’

’

i Snapshot
RQL mechanism | set

(Qs,Qq, T, ...)

RQL Query
Qs execution
on Snaplds

—

A

Programmer

BDB/SQLite
RQL mechanism

Qq result Aggregation
i T T T T T result
Qq execution on ! Aggregation | Table T
current_snapshot : 1 update

Figure 4: General structure of RQL computations

AggregateDataInTable("SELECT snap_id FROM SnapIds",
"SELECT DISTINCT 1_userid, 1_time FROM LoggedIn",
"Result", "(1_time,min)")

The next example shows how we can compute, for each coun-
try, what is the maximum number of users who are simultane-
ously logged in, from that country.

AggregateDataInTable("SELECT snap_id FROM SnapIds",
"SELECT 1_country, COUNT(*) AS ¢ FROM LoggedIn
GROUP BY 1_country", "Result", "(c,max)")

In order for Aggregate Data in Variable and Aggregate Data in
Table to work as described, we require the aggregate function to
satisfy certain mathematical properties. Formally, the aggregate
function must be definable by an abelian monoid (X, op, €) where
X is the domain of values, op is an associative and commutative bi-
nary operation and e is the identity element. Most SQL aggregate
functions eg. min, max, count and sum, satisfy the requirement
but some, e.g. average, and aggregations over distinct elements
e.g. count distinct or sum distinct do not. Because average is
widely used in SQL, our aggregation mechanisms implement a
simple extension that support average as a special case. Aggrega-
tions over distinct elements can use the Collate Data mechanism
to return a column containing the elements and then use SQL to
perform the needed aggregation. Of course, such approach may
not reduce the memory footprint of the result computation.

2.4 Collate Data Into Intervals

The mechanism Collate Data Into Intervals creates an alternative,
potentially more compact snapshot data representation that re-
sembles the traditional record lifetime representation used by
temporal databases, and could be used by applications that ex-
pect this kind of representation. When the snapshots are taken
frequently, it is likely that the same record appears in many
consecutive snapshots. The mechanism collects records from
multiple snapshots into intervals which indicate the lifetime of
the records. This is achieved by creating two attributes in our
result table and storing the start_snapshot and the end_snapshot
for each record’s lifetime.

CollateDatalntoIntervals(Qs, Qq, T)

Collate Data Into Intervals requires the same parameters as
Collate Data. For the first snapshot identifier Sx returned by
the Qs, we create the table T and insert the records returned
by Qq with start_snapshot and end_snapshot for each record
set to Sx. For all the subsequent Sy returned by Qs we issue the
query Qq and for each record in its output we search in table
T to find a tuple with the same values in all columns except
the start_snapshot and end_snapshot. If a tuple exists and if its
end_snapshot value is the same as the snapshot identifier of the
previous iteration we update the end_snapshot to Sy, otherwise
we insert a new tuple with start_snapshot and end_snapshot set
to Sy.

603

The following example calculates the interval during which
each user was logged in.

CollateDataIntoIntervals("SELECT snap_id FROM SnapIds",
"SELECT 1_userid FROM LoggedIn", "Result")

Figure 4 provides the general structure of our RQL computa-
tions. The Aggregation part is bypassed in case of Collate Data.

3 IMPLEMENTATION

An RQL computation iterates (loops) over the snapshots in the
snapshot set defined by the parameter query Qs, and for each
snapshot it executes a "loop body" that invokes the query Qq
on this snapshot, processing its results in a way specific to each
mechanism. This section explains how we implement this com-
putation in SQLite/BDB Retro system using SQLite UDF. We
highlight the salient points of the implementation, including the
cross snapshot iteration with constructs current_snapshot() and
Snapids, and the processing of snapshot query results.

We create the SQL program for RQL computation by com-
posing the Qs and Qq query programs using the callback infras-
tructure provided by SQLite UDF. The infrastructure allows to
interpose a UDF callback function on a SELECT statement so
that the callback is invoked for each element of a set returned by
the SELECT.

We define the "loop body" of our computation in a UDF call-
back function, providing for each mechanism a mechanism-specific
callback, and iterate over snapshots by interposing the "loop
body" callback on the SELECT statement for Qs.

The following SQLite statement shows the general syntax used
by our implementation for an RQL mechanism.

SELECT rqgl_udf (snap_id, Qq, T, ...)
FROM SnapIds WHERE...;

By issuing this statement to SQLite, we achieve the iteration
over the snapshot identifiers in the table Snaplds returned by the
SELECT (i.e. Qs), where for each returned snapshot identifier,
SQLite invokes the "loop body" defined by the UDF callback
rql_udf. Figure 5 shows the general structure of the resulting
computation.

The UDF argument snap_id is filled at runtime by SQLite with
values returned by Qs in each iteration, the other parameters,
including the string defining the Qq query, the table name T, and
additional parameters needed for the aggregation mechanisms
are specified by the programmer.

Inside the "loop body" UDF, we treat the parameter snap_id
as "loop index". The "loop body" UDF uses Retro to run the query
Qq on snapshot snap_id in every iteration it gets invoked.

To run on a snapshot snap_id, Retro requires a query to be
in the form of "SELECT AS OF snap_id ..". Furthermore, the
SQL program Qq may include the function current_snapshot(),
explained in Section 2, that denotes the snapshot identifier of the
current iteration. Therefore, as a first step, our "loop body" UDF
rewrites the Qq, binding it to the value of "loop index" snap_id.

RQL UDF

Qqgresult || - — — — — — lAggregation

/Q\Qs

if not exist

% invocation Create table T | Qq rewrite

Qq 1
record ‘:Aggregation result Ta!()jletT
update

—> —_—

Programmer Non-snapshotable DB
(Snaplds, T)

J' ~_ “Loop body” rql_udf callback

Snapshotable DB |

Aggregate callback

Qs: SELECT rql_udf (snap_id, Qq, T, ...) FROM Snaplds WHERE ...;
Qq: SELECT AS OF snap_id ...;

Figure 5: Implementation structure of RQL computations

The rewriting involves adding the "AS OF snap_id" extension,
and replacing every occurrence of current_snapshot() function
with the value of snap_id.

For example, for the iteration with snap_id value of Si, the
following Qq query typed by the programmer:

SELECT DISTINCT current_snapshot() FROM LoggedIn
WHERE 1_userid = 'UserB';

will be rewritten by the RQL UDF to take the following form:

SELECT AS OF Si DISTINCT Si FROM LoggedIn
WHERE 1_userid = 'UserB';

After Qq is rewritten, the UDF issues it to SQLite, invoking
the sqlite3_exec function from the SQLite APL The "loop body"
UDF then proceeds to process the results across snapshots in
a mechanism-specific manner, as shown in Figure 5. Note the
shaded area depicts the Qq computation run by Retro within a
single snapshot.

Consider an example Collate Data query specified below:

SELECT CollateData(snap_id,
"SELECT DISTINCT 1_userid, current_snapshot() AS sid
FROM LoggedIn", "Result") FROM Snaplds;

Since the mechanism does not perform any computation be-
sides Qq, its "loop body" UDF only utilizes the SQLite API That
is, Collate Data UDF callback executes SQL statements using the
sqlite3_exec function to insert Qq results into the result table T.

The UDF callbacks that implement our aggregate mechanisms
are more involved since they need to implement aggregation.
Consider and example of Aggregate Data in Variable specified as
follows:

SELECT AggregateDatalnVariable(snap_id,
"SELECT DISTINCT current_snapshot() AS sid
FROM LoggedIn WHERE 1_userid = 'UserB' ",
"Result", "min") FROM Snaplds;

In the first iteration, its "loop body" UDF creates a table Result
with attribute sid. It then rewrites Qq and invokes the sqlite3_exec
function from the SQLite API to run the Qq. One of the arguments
of sqlite3_exec is a callback function which gets invoked for ev-
ery tuple returned by the Qq, providing access to the returned
tuple. In this callback function we implement the aggregate com-
putation for Aggregate Data In Variable, directly following he
specification in the previous section.

Consider next an example of Aggregate Data in Table specified
as follows.

SELECT AggregateDatalnTable(snap_id,
"SELECT 1_country, COUNT(*) AS c FROM LoggedIn
GROUP BY 1_country", "Result", "(c,max)") FROM Snaplds;

Here the first "loop body" iteration creates the table Result with
attributes 1_country and c. It then rewrites and issues Qq and for

604

every tuple returned by the Qq a callback function is invoked that
inserts the tuple in the table Result. At the end of the first "loop
body" iteration we also create an index on Result using as key
the values in non-aggregating columns, in this case 1_country. In
subsequent iterations, for every record returned by the Qq, in the
callback function we utilize the index to search in table Result. If a
tuple with the same values in non-aggregating columns is present,
we apply the aggregate functions on the columns specified in
the ListOfColFuncPairs and update the record in the result table
accordingly, otherwise we insert a new tuple.

We have also experimented with alternative Aggregate Data
in Table implementation using a sort-merge based algorithm that
turned out to be costlier.

For brevity, we omit the implementation details of Collate Data
Into Intervals. It is implemented similarly to Aggregate Data in
Table but instead of applying an aggregate function we check
whether we need to update the record’s lifetime or insert a new
tuple in the result table.

Note that RQL mechanisms by default create the result table T
as temporary non-snapshotable table. However, it can be created
as persistent if the programmer decides otherwise.

We now briefly consider the construct Snapids. It is currently
implemented at application level to support user friendly snap-
shot names. Also, it is stored in a separate SQLite database than
application data because it is a non-snapshotable persistent table
(whereas the rest of the data are snapshotable). Every time the ap-
plication declares a snapshot and gets back the snapshot identifier,
it inserts the identifier in the Snaplds along with a timestamp
and any application meaningful information the programmer
needs to later refer to the snapshot. The update operations on
Snaplds table are transactional. Note, that concurrent updates
to Snaplds table and RQL queries do not block each other since
Retro runs snapshot queries as read-only snapshot transactions
taking advantage of MVCC concurrency control in BDB, as we
explain in section 4. Nevertheless, updating Snapids in a transac-
tion adds overhead so we are currently working on an internal
implementation to reduce this overhead.

4 RETRO SNAPSHOT SYSTEM

We briefly describe Retro, the snapshot system used in RQL. Our
goal is to explain how the cost of snapshot query is impacted
by the method of incremental page-level snapshot creation and
indexing, and the different update workloads. The complete de-
scription of Retro system can be found in [21-23].

Retro snapshot system is implemented as a small set of modu-
lar extensions to the Berkeley DB transactional storage manager.
The extensions interpose on transaction commit, page flush, page
fetch and recovery operations. The implementation at the stor-
age manager level allows to create transactionally consistent,

recoverable snapshots efficiently, without blocking application
transactions, by exploiting the BDB MVCC concurrency control
and recovery mechanisms [22].

The snapshot system interface supports two operations, snap-
shot declaration and snapshot query, that can be exposed to ap-
plications in a language-specific way. Section 2 presented the
SQL interface. A Retro snapshot is a set of immutable logical
data pages that reflect the entire consistent database state, in-
cluding the catalog and indexes, at snapshot declaration point.
This allows to run on a snapshot any database query g that could
run in the database at the snapshot declaration point. The snap-
shots are captured using a page-level copy-on-write technique
(COW) that copies out and saves snapshot pages incrementally
as transactions commit modifications to pages, following a snap-
shot declaration. At transaction commit time, Retro identifies
any page P that is modified for the first time following the decla-
ration of a snapshot S and copies out the pre-modification state
(pre-state) of P. The pre-state corresponds to the state of P as-of
snapshot S. If this modification of P is also the first since an earlier
declared snapshot S/, the pre-state is shared by S’.

Retro accumulates the copied-out pre-states in memory and
writes them to an on-disk log-structured snapshot archive called
Pagelog when the database flushes updates. The pre-states are
indexed at low cost by simply recording a mapping that associates
a snapshot page P with its Pagelog location. Retro writes the
mappings to an on-disk log-structured list called Maplog [23].
When a snapshot S is needed, an efficient scan of Maplog allows
to construct a snapshot page table SPT(S) that maps every page P
in snapshot S to its location in Pagelog. The scan length is nlog(n)
where n is the number of pages in the snapshot, independent of
snapshot history length [23].

To run a query g on a snapshot S Retro interposes on the
database page fetch operation. When q requests a page P, Retro
looks up page location in SPT(S) and fetches P from Pagelog, the
same way g would fetch P from the database if it was running
on the current database state.

Retro caches snapshot pages in a buffer cache along with the
database pages and needs extra cache memory to hold the snap-
shot pages when running snapshot queries. While we expect the
database pages to reside in memory given today’s large memories,
we do not expect snapshot pages to fully reside in memory be-
cause with long snapshot histories Pagelog can grow very large,
limited only by the available disk space. For this reason, even
with a large snapshot cache, when a query runs on a snapshot
that has not been accessed recently, we expect the snapshot page
cache hit rate to be low. The I/O cost of a snapshot query there-
fore depends on the number of pages it fetches from Pagelog
when the page is not present in the cache.

Retro allows to run snapshot queries concurrently with cur-
rent state queries and update transactions. It relies on the BDB
concurrency control scheme MVCC to avoid snapshot queries
from interfering with updates. Consider a snapshot query g that
runs over snapshot S following the snapshot declaration. At this
point the snapshot shares all its pages with the database. Con-
sider a page P requested by g and a concurrent transaction T that
modifies page P. Retro runs q as a read-only MVCC transaction
relying on MVCC to provide q with the unmodified pre-state of
P to the end of ¢, without interfering with T.

We now consider the amount of Pagelog I/O needed by a
snapshot query. Consider a set of update transactions T1,...Tn
that updates every page in the database following the declaration
of snapshot S. We call such transaction set an overwrite cycle

605

of S. After the overwrite cycle of S completes, the entire state
of S and all the snapshots declared before S, is copied out into
Pagelog. A snapshot declared a long time ago is likely to have a
complete overwrite cycle so a query running over old snapshots
fetches all its pages not present in a cache from Pagelog. On the
other hand, consider a snapshot S that has been declared recently.
Some of the pages of the database likely have not been modified
since snapshot S declaration, so its overwrite cycle is incomplete.
If a page P has not been modified since snapshot S declaration,
S shares P with the database. A snapshot query running on S
and requesting a shared page P will fetch P from the database.
Therefore, we expect a query running on recent snapshots to
have less Pagelog I/0.

Finally, consider two snapshots S1 and S2 declared consec-
utively, and the set of update transactions T1, ...Tk committed
between S1 and S2. Note that snapshot S1 and 52 share all their
pages except those pages modified by T'1, ..Tk. Let shared(S1, S2)
be the set of pages shared by S1 and 52, and dif f(S1, S2) be the
set of pages that are not shared by S1 and S2. Consider a snapshot
query g running consecutively over two old snapshots S1 and
S2 using a cache large enough to hold all the snapshot pages re-
quested by q. If snapshots S1 and S2 have not been accessed for a
long time, all pages of S1 will need to be fetched from Pagelog but
any page P in shared(S1, 52) needs to be fetched from Pagelog
only once since P will be in the cache after q runs on 5S1. On the
other hand, any page Q in dif f(S1, S2) requested by q running
on S2 likely will need to be fetched from Pagelog. The size of
dif f(S1,52) will therefore determine the cache miss rate for q
running on S2. The size of dif f(S1,52) is determined by the
transaction update workload, i.e. by how many pages the trans-
actions modify, and by the frequency of snapshot declarations,
i.e. how many transaction apart are the declarations S1 and S2.
If transactions modify many pages and snapshot declaration are
infrequent, dif f(S1, S2) will be large, but if transactions modify
few pages and snapshot declarations are frequent, dif f(S1, S2)
will be small and S1 and S2 will share most of the pages.

5 PERFORMANCE EVALUATION

This section presents an experimental study that characterizes
the performance of RQL computations. We aim to explain RQL
performance in terms that are familiar to a SQL programmer.
Since the programmer specifies an RQL query r by providing SQL
programs Qs, Qq and the aggregation functions, we consider how
the performance characteristics of these SQL programs impact
the performance of r.

To explain the performance of RQL we need to characterize
the costs of a computation that iterates over snapshots. The
performance of a snapshot computation that runs over a stand-
alone single snapshot has already been studied [21]. However,
as we explain in Section 4 because of snapshot page sharing, a
snapshot computation that runs as one of the RQL iterations can
have a different performance than a snapshot computation that
runs on a stand-alone snapshot. Our study evaluates the benefit
of page sharing for different transaction update workloads and
explains how the benefit of sharing depends on the properties of
the snapshot set Qs, and whether the snapshot computation Qq is
I/O or computation intensive. Our experiments also analyze the
memory requirements of different RQL mechanism and quantify
the memory benefits of the aggregation mechanisms.

Our experiments run our implementation of RQL in the Retro
snapshot system integrated with BDB SQLite version 5.3.21.

Parameters ‘ Notations ‘ Description
Update Workload UW15 Delete and insert 15K orders and their lineitem records per snapshot
UW30 Delete and insert 30K orders and their lineitem records per snapshot
Query Qs ‘ Qs_N ‘ Query that determines the snapshot interval length N
Query Qq Qq_io SELECT COUNT(*) FROM orders WHERE o_orderstatus = 'O’ ;
0q ¢ SELECT SUM(I_extendedprice) AS revenue FROM lineitem, part
9-CPY | WHERE p_partkey = |_partkey and p_type = 'STANDARD POLISHED TIN’;
Qq_collate SELECT o_orderkey FROM orders WHERE o_orderdate < '[DATE]’;
0q a SELECT o_custkey, COUNT(*) AS cn,
1-288 AVG(o_totalprice) AS av FROM orders GROUP BY o_custkey;
Qq_int SELECT o_orderkey, o_custkey FROM orders;
RQL UDF CollateData (Qs, Qq, T)
AggregateDatalnVariable (Qs, Qq, T, AggFunc)
AggregateDataInTable (Qs, Qq, T, ListOfColFuncPairs)
CollateDataIntoIntervals (Qs, Qq, T)

Aggregate function ‘

MIN, MAX, SUM, COUNT, AVG

Table 1: Parameters and notations

The hardware platform consists of 2 hexa-core Intel Xeon CPU
clocked at 2.50 GHz with Hyper-Threading enabled, 2 Intel 400
GB SATA SSD and 64 GB of RAM. The operating system is Red
Hat Enterprise Linux Server release 6.8 (Santiago), x86_64 and
the file system is formatted with ext4.

RQL performance depends on the database update workload,
the in-snapshot query workload, and the type of RQL computa-
tion that combines the results of the snapshot queries. We expect
the in-snapshot queries to include both native queries the applica-
tion runs in the current state, e.g. when performing auditing, and
ad — hoc queries formulated after the fact, e.g. when performing
fact checking. The native queries are more likely to have native
indexes captured in the snapshot. The ad-hoc queries may need
to create the indexes at RQL execution time. Our experiments
use both native and ad-hoc queries.

The database we use for our experiments is a TPC-H database.
TPC-H [6] is a standard decision support benchmark consist-
ing of tables designed to be business relevant and the database
schema includes tables with information about Customers, Or-
ders, Lineitems, etc. We create the database by using the TPC-H
dbgen tool to produce the initial state of the database with size
of 1.4 GB (the default size) without additional indices. The size
increases accordingly when indices are included.

In order to create a snapshot history, we utilize the TPC-H
refresh functions which produce a set of order identifiers for
deletion and a set of order records along with Lineitem records
associated with the orders for insertion. Our update workload
program receives as input the TPC-H refresh function output,
updates the database by deleting and inserting a certain number
of Orders and their Lineitem records and creates snapshots. Be-
tween two consecutive snapshot declarations a constant number
of orders and their associated records are inserted and deleted
making it easier to interpret the performance results and memory
requirements.

We consider two update workloads that delete and insert differ-
ent amount of data, as defined in Table 1. These update workloads
generate different dif f(S1, S2), the amounts of non-shared data
between two consecutive snapshots S1 and S2, and affect how
frequently the database gets overwritten, i.e. the length of the

606

snapshot overwrite cycle. The UW30 overwrites the database ev-
ery 50 snapshots while the UW15 overwrites every 100 snapshots,
so the dif f(S1,S2) in UW30 is double the size of UW15.

We assume the current state database is memory resident, and
the snapshot pages are stored in Pagelog on the SSD. We achieve
the expected snapshot cache behavior by assuming the snapshot
page cache is empty at the start of an RQL query, and assume
the cache can hold the snapshot pages requested by a single RQL
query, except when discussing memory costs.

For our experiments, we define custom queries that stress
different RQL costs in both native and ad-hoc queries. Table 1 re-
ports all the queries used throughout our performance evaluation.
We explain the characteristics of each query when describing
the experiments that use them. The reason we don’t provide
any experimental results using TPC-H queries is because their
complexity makes them CPU intensive and does not allow us to
stress and focus on a single RQL cost each time.

5.1 I/O intensive queries: Impact of snapshot
sharing

Our first set of experiments considers the impact of snapshot
sharing on the I/O costs of an RQL query for old and recent
snapshots.

We first consider old snapshots. When all the snapshots in-
cluded in the set defined by Qs are old, the first iteration fetches
from the Pagelog disk all the pages it needs and is likely to fetch
the highest number of pages compared to the subsequent itera-
tions. We refer to the first iteration as cold, and to the subsequent
iterations as hot. Note, the number of pages fetched by a cold
iteration is identical to a stand-alone snapshot query and is de-
termined by the code of Qg. The maximum number of pages
potentially fetched by the subsequent hot iterations depends on
two factors, the dif f(S1, S2) in the update workload explained
in Section 4 and how far apart are the snapshots in the hot iter-
ations, determined by the number of snapshots skipped in the
Qs query. In the extreme case, if Qs defines a skip that exceeds
the snapshot overwrite cycle length, the performance of a hot
iteration will be no different than a performance of a cold itera-
tion. We refer to an RQL query run where all iterations are cold

—— UW30, AggV(Qs_N, Qq_io, AVG)
- = UW15, AggV(Qs_N, Qqg_io, AVG)
"""" UW30, AggV(Qs_N with step 10, Qq_io, AVG)
=-=-UW15, AggV(Qs_N with step 10, Qq_io, AVG)|

40 60
Snapshot interval length

Figure 6: Ratio C with old snapshots: impact of sharing
between snapshots.

as all — cold. In general, we expect sharing to improve the RQL
query performance compared to all — cold but the amount of
improvement depends on the snapshot interval length since for
short intervals the performance of cold iteration may dominate.

The combined impact of sharing can be succinctly captured
using a ratio C of latency of an RQL query r with a given Qq and
Qs, to the latency of an all — cold run with the same number of
snapshots.

Figure 6 shows the ratio C as the number of snapshots in the
interval increases, for update workloads with different amount
of sharing, UW30 and UW15 and different distance between
consecutive iterations. To isolate the impact of sharing on total
I/O costs we use a computationally light RQL Aggregate Data
in Variable query with an I/O intensive and computationally
light Qqg_io. At each RQL iteration, Qq scans the table Orders and
returns the number of open orders for the current snapshot and
the RQL query computes the average number of open orders per
snapshot.

Since all snapshots are old, the cost of the all—cold run remains
constant. Sharing increases as we move from update workload
UW30 to UW15 and when the number of skipped snapshots
drops from 10 to 1. The ratio C drops with increased sharing
reflecting the RQL query latency decrease compared to all — cold
run. Overall, C is high for short intervals since sharing makes
little difference as the cost of the first cold iteration dominates
the RQL query latency. For sufficiently long intervals however
(more than 20 snapshots) C converges to a constant as the cost
of the cold iteration stops being the dominant cost, and the RQL
query latency is fully determined by sharing. The first two bars
in Figure 8 break down the cost of the cold and hot iteration for
UW30 showing the impact of sharing on the absolute I/O costs
in the hot and cold iterations in this workload.

We next consider recent snapshots. When the set of snapshots
defined by Qs includes recent snapshots, the number of pages
fetched from Pagelog in a given snapshot iteration is impacted by
an additional factor, namely by the number of pages the snapshot
shares with the current state of the database since page shared
with the current state is fetched from the main memory, as ex-
plained in Section 4. Therefore, the number of pages fetched by a
snapshot iteration decreases as snapshot gets closer to the end of
our snapshot history and snapshots share more pages with the
current state.

607

[|——UW30, AggV(Qs_50, Qq_io, AVG
| |—*—UW15, AggV(Qs_50, Qg_io, AVG

9’\’\“0

$a
N
e\’\g =

o
Snasphot interval start

Figure 7: Ratio C with recent snapshots: impact of sharing
with current state.

The ratio C, defined as ratio of measured RQL query cost to
the cost of all — cold run, can be used to explain the additional
impact of sharing pages with the current state database. Due to
the database overlap, the cost of the cold iteration depends on
the starting point of the interval. Therefore, the cost of all — cold
run for two intervals with the same number snapshots drops
when interval starts at a more recent snapshot. Figure 7 shows
the ratio C(x) for fixed size interval of consecutive snapshots
(skip 1) starting at snapshot x, for intervals that include recent
snapshots. We show two update workloads UW30 and UW15
exhibiting different inter-snapshot sharing dif f(S1, S2).

Assuming Slast is the most recent declared snapshot, and Over-
writeCycle is the overwrite cycle length for a given update work-
load UW, the interval starting at snapshot Slast-OverwriteCycle-
20 is the earliest interval to include a snapshot sharing pages
with the database. OverwriteCycle is 100 in case of UW15 and
50 in case of UW30. We consider therefore intervals starting at
x = Slast — 100 — 20 and later for UW 15, and x = Slast — 50 — 20
and later for UW30.

For intervals starting with an old snapshot x, C(x) drops as x
becomes more recent since the measured RQL cost decreases but
the cost of all-cold run remains constant. For intervals starting
with a recent snapshot x, C(x) increases since the cost of all-cold
run decreases and converges to the measured RQL cost, as both
cost drop as intervals become more recent.

In absolute terms, RQL cost decreases sharply as we move to
more recent intervals as shown in Figure 8, where an iteration
on a more recent snapshot Slast-25 performs significantly better
that on older Slast-50 (UW30).

Where cold iteration cost can be a dominant factor for old
snapshot intervals since it can fetch substantial number of pages
from Pagelog, this is not so for recent intervals where cold iter-
ation fetches a substantial number of pages from the database
so the dominating factor for intervals of recent snapshot is the
sharing with the current state of the database.

5.2 CPU intensive queries

We expect snapshot page sharing to have less impact on CPU
intensive RQL queries.

We consider two kinds of CPU intensive RQL queries. In one
case, an RQL query issues a computationally heavy Qq so that
SQL query execution time is the dominant cost, in the other case

e}

[SPT build
[Query evaluation
I RQL UDF

EN [[

[N

Single iteration execution time (sec)

o

Old snapshot
hot iteration
cold iteration
hot iteration
cold iteration
hot iteration
hot iteration
Current State

hot iteration

° c
28
S ©
c @
g 2
23
O o

Figure 8: Single iterations cost for the RQL query Ag-
gregateDatalnVariable(Qs_50, Qq_io, T, AVG) with update

Slast-50
Slast-50

Slat-25
Slat-25
Slast

workload UW30.

n
o
1

[/0

[SPT build

[0 Index creation
[JQuery evaluation
I RQL UDF

o
o
T

FN @ @
o =] o

Single iteration execution time (sec)
n
o

S+
o

ot RN W 6

o a0t (88 o W 0 (\ 00

“4\0 @ W \(\6 &2 We o 2 Y &2
S N\ o

Figure 9: Single iteration cost for the RQL query Aggre-
gateDataInVariable(Qs_50, Qq_cpu, T, AVG) with update
workload UW30.

RQL defines a Qq with a large output size. In the latter case the
RQL UDF becomes the dominant cost.

For computationally intensive Qq, especially with join opera-
tions, if there is no native index in the snapshot, SQLite creates
covering indices to assist the query evaluation. An experiment
reported in Figure 9 shows that index creation always dominates
RQL cost. Our experiment uses Aggregate Data in Variable to
avoid introducing significant RQL UDF cost and Qq_cpu. The
Qq performs a join operation on tables Part and Lineitem and
returns the revenue of the orders that include an item of a certain
type. SQLite decides the building of a covering index on table
Lineitem as part of the query execution plan. Note, unlike for
I/O intensive queries, here the cost difference between a cold
and hot iteration is less since I/O cost is small part of total Qq
execution cost.

The Qq will not always be an ad — hoc query in the database
workload and may have a native index built by the programmer.
We evaluate the cost of the same RQL query where a native index
is available in the snapshot. As shown in Figure 9 the I/O cost due

608

/0

[SPT build

[Query evaluation
I RQL UDF

n [&]
o o

Single iteration execution time (sec)
=

0

6
'o‘\

d
@QQ Nl '8\\ Q‘(\‘

I @
660\6 \e"‘} 66@(\
©

“\~“

Figure 10: Single iteration cost for CollateData(Qs_50,
Qq_collate, T) with varying Qq output size with UW30.

to index creation drops but instead the SPT build cost increase
since an index increases the size of the database and the Pagelog.

Our last experiment considers Qq that returns as a result a
large number of records. This increases RQL UDF cost since
SQlite UDFs invokes a callback function to perform operations
for every record returned by the Qq. These operations are either
insert operations in case of Collate Data or aggregations in case
of Aggregate Data in Table.

Figure 10 shows the RQL performance where the CPU cost
is dominated by the cost of UDF for Collate Data with a com-
putationally light Qq query (Qq_collate in Table 1). The query
scans the table Orders and returns the orders with order date less
than a certain date. It has a single predicate which we vary to
control the query output size. As in earlier CPU intensive queries,
sharing has minimal impact on RQL cost.

5.3 Memory costs

The memory requirements of an RQL computation include two
parts, the memory to hold the snapshot pages requested by Qq
iterations, and the memory needed for result computation and to
hold the result table T. Since Qq iterates over snapshots sequen-
tially, the first part is independent of snapshot set size, and is
essentially the memory needed to run Qq over a single snapshot,
which includes the snapshot pages holding the working set of
Qq plus the snapshot metadata structures such as Maplog and
SPT(S). The memory costs of single snapshot computation have
been studied before [21]. Here we consider the memory costs of
RQL mechanism result computation for different mechanisms.

RQL can support general computations over snapshots using
Collate Data and running SQL computations over the results.
However, such a method could incur high memory cost when Qs
requires to compute over large number of snapshots. Memory
cost can be reduced for RQL computations that perform aggre-
gations on records across snapshots by using RQL aggregation
mechanisms.

Consider the case where given the table Orders of TPC-H
the user wants to find out, for each customer, what is maximum
number of orders placed in a single snapshot by the customer and
their average total price. This can be accomplished by running a
single Aggregate Data in Table.

AggregateDatalnTable(Qs_50, Qq_agg, T, (MAX,cn))

[1e]

I SPT build

[Query evaluation
I RQL UDF

[Extra Agg. Query

n

a

o

[S)
T

RQL query execution t
I
o
o

4]

=]

S
T

(]

Q

23500 -

[0

£ 3000 |
2000 -
1000 -

0

\&
S
\&° <\ a o <\ 2
o gw e 0 g? @ o
A PO gg(' ,Lp@ o g<§°

Figure 11: Comparison of RQL queries that producing the
same result using Aggregate Data in Table and Collate
Data for different number of aggregations.

The same result can be produced using Collate Data by first
collecting how many orders each customer has placed in every
snapshot in the given snapshot interval along with their average
total price.

CollateData(Qs_50, Qq_agg, T)
A single SQL query can then compute the final result.
SELECT o_custkey, MAX(cn), av FROM T;

In Figure 11, the first two bars compare the performance of the
two approaches for Qs that iterates over 50 snapshots. The RQL
UDF cost dominates the RQL cost because the query’s output
is approximately 1M of records for every snapshot. The Collate
Data performs slightly better than Aggregate Data in Table.

However, Aggregate Data in Table has a significantly smaller
memory footprint. Where Collate Data result table is more than
1GB, the Aggregate Data in Table result table is less than 100MB.
Aggregate Data in Table achieves the memory footprint reduction
for only 6% overhead in total execution time. Importantly, the
memory footprint of Aggregate Data in Table is independent of
Qs since we don’t expect the result table to grow significantly
after each iteration, whereas Collate Data inserts the entire Qq
output at each iteration.

The reason why Aggregate Data in Table is costlier than Col-
late Data can be explained in Figure 12 which shows single cold
and hot iteration of the two RQL queries issuing the same Qq_agg.
The first cold iteration is more expensive in case of Aggregate
Data in Table even though they insert exactly the same number
of records in the result table, because the Aggregate Data in Table
creates an index on its result table. In addition, the insert opera-
tions in Collate Data is slightly cheaper than in Aggregate Data
in Table because the result table of Collate Data does not have a
primary key. Maintaining a primary key on a table introduces
overhead to the insert operations. The reason why hot iteration is
more expensive in case of Aggregate Data in Table is because we
overall perform more operations. The Qq query returns approxi-
mately 1M records so, Collate Data in a single iteration executes
1M insert operations. Aggregate Data in Table on the other hand
executes 1M select operation on the result table and a number
of inserts or updates given the aggregation it performs. In this
experiment is perform approximately 22K inserts or updates.

609

n
o
1

/0

[SPT build

[Query evaluation
I RQL UDF

i

o\\?’ e
() e PQQ@Q

o
S

5 @ ®
o o o

Single iteration execution time (sec)
n
o

0
9B
X\

PQQA‘QQ &’5‘\ &
00\6

oo

Figure 12: Single iteration cost for the RQL queries Collate-
Data(Qs_50, Qq_agg) and AggregateDatalnTable(Qs_50,
Qq_agg, (MAX,cn)) and update workload UW30.

S [__1le]
o [SPT build
;’ Query evaluation
£ 150 - | I UDF
=
rel
S
[
€ 100 -
[V}
c
o
©
£ 501
Q
©
£
%}

0

a\\ a%
\S
\NA*PT o2 \)«\ N? \Nz)*_% 'S\\o o PO
“o o R
O

Figure 13: Single iteration cost for Aggregate Data in Table
for different aggregate function

Since the Aggregate Data in Table is able to aggregate on
multiple columns Figure 11 also evaluates the cost of additional
aggregation. The second aggregation calculates the maximum
among averages of the total price using the following Aggregate
Data in Table query:

AggregateDatalnTable(Qs_50, Qq_agg, (MAX,cn):(MAX,av))
And the extra query required by the Collate Date will be:
SELECT o_custkey, MAX(cn), MAX(av) FROM collate_result;

As we can see adding extra aggregation does introduce signif-
icant overhead.

For some aggregate functions like SUM and COUNT the Ag-
gregate Data in Table have to update its result table for every
record returned by the Qq. For these aggregations, we expect
the hot iterations to have increased cost. Figure 13 compares
Aggregate Data in Table RQL queries that apply different aggre-
gate functions, MAX and SUM on the results of the Qq_agg. The
cold iterations perform the same because they do the same initial
insert operations and index creation. The hot iterations do the
same number of search operations on the result table but in case
of SUM they will do significantly more updates, 1M versus 22K
in case of MAX.

Next, we briefly consider the Collate Data Into Intervals mech-
anism, comparing it to Collate Data. We focus on the memory
costs since the non-memory costs of Collate Data Into Intervals
closely resemble Aggregate Data In Table.

The result table size of Collate Data Into Intervals depends
on the size of Qq, and the lifetimes of records, i.e. the number
of updated and deleted records between consecutive snapshots.
The mechanism also needs memory to store the index. The result
table size of Collate Data only depends on the size of Qq. Our
experiment uses a Qs that defines an interval of 50 consecutive
snapshots, a Qq that returns 1.5 millions records in each snap-
shot (Qq_int in Table 1), and four different update workloads
UW7.5, UW15, UW30, and UW60 that respectively modify be-
tween consecutive snapshots 7,500, 15,000, 30,000, and 60,000
order records.

For Collate Data mechanism, the result table has 75M records
of total size more than 3GB. For Collate Data Into Intervals, the
result table has respectively 1.86M records (89 MB), 2.3M records
(105MB), 2.97M records (138 MB) and 4.4M records (204 MB) for
UW7.5, UW15, UW30 and UW60 update workloads. For each
workload, the mechanism requires about 50% additional memory
to hold the index during the computation. Interestingly, with our
workloads, increasing the number of modified records between
snapshots does not increase the result table size proportionally.
Overall the experiment shows Collate Data Into Intervals can
substantially reduce memory costs, confirming the known space
saving properties of record lifetime based snapshot representa-
tion compared to naive page-level representation [24].

6 RELATED WORK

Computations over past state have been investigated in depth
by a rich body of work on temporal databases [17, 27]. The most
common data model adopted by the temporal databases is the
extension of the relational data model with time-stamps that
record lifetimes of record values via attributes indicating the start
and end time [17]. The temporal dimensions can vary depending
on whether a database supports the transaction time or the valid
time, or both (bi-temporal databases). Temporal databases have
not been widely adopted by general applications because of poor
performance during normal in-production operation [10] and
portability concerns.

One of the first commercial databases to support historical
data management was Oracle Flashback [18] which allows to
store all the modifications in a compressed format using the
undo tablespace without affecting application portability. IBM
provides support for bi-temporal tables in DB2 [19] by allowing
the declaration of additional attributes in temporal tables to indi-
cate the time dimension. Both Flashback and DB2 provide time
travel operation to a single point in the past but offer no support
for temporal computations over multiple past points which is
the main focus for our work. Teradata [1] supports bi-temporal
tables by extending the tables with columns representing the
time domain and supports a set of temporal computations called
temporal aggregations [30]. These computations scan the values
which participate in the aggregation at the logical level, to deter-
mine how they have changed between different timestamps, and
then compute the aggregation on the values changes.

In contrast to the logical record level approaches to past state
management, RQL computations run in a snapshot system that
manages the past state using a different low-level page-based
approach where snapshots expose to application the entire past

610

state of the database, and portions of the state required by the
snapshot computation are assembled on demand from the low-
level representation. Using the snapshot system RQL provides
multi-snapshot computations to applications in a seamless man-
ner as we have explained. Moreover, in terms of expressive power,
these computations can compute anything a record-level past
state system can compute assuming snapshots capture all up-
dates to the database. In particular, our Collate Data Into Intervals
mechanism can create the same time-stamped representation
used by the temporal databases. A potential downside of the
snapshot system approach is that snapshot representation is less
compact than logical record level representation and adds space
overhead. However, prior work has shown that a snapshot system
can reduce the space overhead substantially without impacting
normal in-production application performance, using an adap-
tive low-level page-diff approach [24], that offers a convenient
trade-off between more compact snapshot representation and a
higher cost of snapshot reconstruction.

Temporal aggregations apply aggregate functions on relations
that evolves over time, e.g. the average salary of an employee
over the past certain years. Efficient methods for computing tem-
poral aggregations have been the subject of numerous studies in
temporal database research. The implementation of temporal ag-
gregations is challenging in the logical temporal models because
in order to aggregate along the time dimension a temporal com-
putation may need to assemble the consistent state of multiple
records at each time. Many of the proposed techniques in the liter-
ature accelerate this process using sophisticated data-structures
that impose a variety of constraints to achieve efficiency. An early
work by Kline and Snodgrass uses a non-indexed approach based
on a data structure called Aggregation Tree [12]. The approach
requires the entire structure to be memory resident, and has a
worst case complexity of O(n?) when the tree is unbalanced. The
complexity can be improved in special cases of ordered data. SB-
Tree [28] and MVSB-Tree [29] relax the in-memory limitation by
introducing disk-based indexes for temporal aggregations. The
approach limits the type of aggregate functions if data deletion
is expected to SUM, COUNT and AVG. Moreover, the index size
can be larger than the database. The TMDA [3] and Timeline
Index [9] do not limit the aggregation functions. TMDA how-
ever does not support time travel queries. The Timeline Index is
an in-memory system that requires large amount of memory to
perform well. In contrast, RQL relies on state reconstruction at
a lower level, and since each Retro snapshot includes the entire
state of the database, RQL computations can aggregate over con-
sistent state seamlessly without restricting types of aggregation
and without requiring special temporal indexes. Nevertheless,
auxiliary temporal data-structures can potentially be beneficial
for repeated RQL computations and we consider this future work.

Similarly to temporal aggregations, temporal join is another
challenging computation for temporal databases due to the need
to identify all the versions of the join candidates that overlap in
the time domain. Like with aggregation, in a snapshot system
temporal join poses no addition challenge because the join can-
didates that overlap in time exist in the same snapshots and the
temporal join is executed as if they were in current state.

Several temporal query languages have been adopted by tem-
poral systems. The most notables are the TSQL2 [26] and TQuel [25]
which extend SQL and Quel languages respectively. Some of the
TSQL2 temporal properties have been adopted in SQL:2011 stan-
dard and the Teradata database. T4SQL [5] and TENORS [4] are
more recent languages designed based on the time-stamping data

model. These languages are not suitable for our snapshot based
system because of the different data model. Our SQL UDF based
query language is fully compatible with SQL and does not require
any change to the current ISO standard version. Languages de-
signed for streaming data management such as CQL [2], resemble
temporal computations since stream tuples include timestamps
but since they are specialized for computations subject to real-
time performance requirements they offer less expressive power
compared to the temporal languages and RQL.

Although, RQL computations are most closely related to tem-
poral databases, the snapshot system RQL extends is also similar
to versioning systems with linear branching. These systems man-
age historical data by creating versions of the dataset somewhat
similarly to the way Retro uses compact diff-based snapshot [24].
Array data versioning system [20] supports time travel queries
and uses a SELECT primitive similar to ours to collect data from
multiple versions. Decibel [14] is a branching system for rela-
tional datasets and supports time travel queries and multi-version
aggregation. Our snapshot system does not support non-linear
branching so many of the computation primitives and methods
they explore are not applicable to RQL.

A snapshot system called Hyper [11] utilizes hardware-assisted
memory snapshots to implement a hybrid OLTP and OLAP re-
lational database system. OLTP and OLAP queries can run in
parallel, in separate processes. The analytical queries access trans-
action consistent snapshots of the current state which are dis-
carded after the queries are evaluated. Hyper does not consider
a language for snapshot computations.

7 CONCLUSION

Auditing and other forms of claim checking require applications
to compute over multiple past states of their data. The current
systems supporting past state computations cannot be easily
used by general applications using simple data stores. These ap-
plications however can easily use a snapshot system but current
snapshots systems do not provide convenient support for multi-
snapshot computations. Trying to bridge this gap, we proposed
RQL, a retrospective query language that allows programmers
to specify multi-snapshot computations in a snapshot system.
Our language, implemented as a SQL extension using SQL UDF
callbacks in SQLite BDB with Retro snapshot system, provides
programmers a convenient way to express computations using
the language of the application. Our experimental study evaluates
the performance of RQL computations and explains how RQL
program parameters, the SQL programs Qq and Qs interact with
the page-level copy-on-write snapshot representation. This is the
first study explaining the performance of programs running on
multiple page-level copy-on-write snapshots. Our future work
includes performance optimizations for RQL programs exploring
how computations can be shared across multiple snapshots and
whether parallelization can be applied.

8 ACKNOWLEDGEMENTS

This work was partially supported by National Science Founda-
tion award CNS-1318798.

REFERENCES

[1] Mohammed Al-Kateb, Ahmad Ghazal, Alain Crolotte, Ramesh Bhashyam,
Jaiprakash Chimanchode, and Sai Pavan Pakala. 2013. Temporal query pro-
cessing in Teradata. In Proceedings of the 16th International Conference on
Extending Database Technology. ACM, 573-578.

611

[2] Arvind Arasu, Shivnath Babu, and Jennifer Widom. 2006. The CQL con-

tinuous query language: semantic foundations and query execution. The
VLDB Journal?The International Journal on Very Large Data Bases 15, 2 (2006),

121-142.
Michael H Bohlen, Johann Gamper, and Christian S Jensen. 2006. Multi-
dimensional aggregation for temporal data. In EDBT, Vol. 3896. Springer,
257-275.
Cindy Xinmin Chen, Jiejun Kong, and Carlo Zaniolo. 2003. Design and Im-
plementation of a Temporal Extension of SQL. In Data Engineering, 2003.
Proceedings. 19th International Conference on. IEEE, 689-691.
Carlo Combi, Angelo Montanari, and Giuseppe Pozzi. 2007. The T4Sql Tem-
poral Query Language. In Proceedings of the Sixteenth ACM Conference on
Conference on Information and Knowledge Management (CIKM ’07). ACM, New
York, NY, USA, 193-202.
Transaction Processing Performance Council. 2010. TPC-H: Decision Support
Benchmark. http://www.tpc.org/tpch. (2010).
William Endressi. 2013. On-line Analytic Processing with Oracle Database
12c. An Oracle White Paper (2013).
Hipp, D. R, Kennedy, D. and Mistachkin, J. 2017. SQLite (Version 3.21.0)
[Computer software]. (2017). https://www.sglite.org/
Martin Kaufmann, Peter M Fischer, Norman May, Chang Ge, Anil K Goel, and
Donald Kossmann. 2015. Bi-temporal timeline index: A data structure for
processing queries on bi-temporal data. In Data Engineering (ICDE), 2015 IEEE
31st International Conference on. IEEE, 471-482.
Martin Kaufmann, Peter M Fischer, Norman May, and Donald Kossmann. 2014.
Benchmarking Bitemporal Database Systems: Ready for the Future or Stuck
in the Past?. In EDBT. 738-749.
Alfons Kemper and Thomas Neumann. 2011. HyPer: A hybrid OLTP&OLAP
main memory database system based on virtual memory snapshots. In Data
Engineering (ICDE), 2011 IEEE 27th International Conference on. IEEE, 195-206.
Nick Kline and Richard T Snodgrass. 1995. Computing temporal aggregates.
In Data Engineering, 1995. Proceedings of the Eleventh International Conference
on. IEEE, 222-231.
David Lomet, Roger Barga, Mohamed F Mokbel, German Shegalov, Rui Wang,
and Yunyue Zhu. 2005. Immortal DB: transaction time support for SQL
server. In Proceedings of the 2005 ACM SIGMOD international conference on
Management of data. ACM, 939-941.
Michael Maddox, David Goehring, Aaron J Elmore, Samuel Madden, Aditya
Parameswaran, and Amol Deshpande. 2016. Decibel: The relational dataset
branching system. Proceedings of the VLDB Endowment 9, 9 (2016), 624-635.
Olson, M. A., Bostic, K. and Seltzer, M. I. 1999. Berkeley DB. In Proceedings of
USENIX Annual Technical Conference, FREENIX Track. Monterey, CA, USA.
Fatma Ozcan, Yuanyuan Tian, and Pinar Téztin. 2017. Hybrid Transac-
tional/Analytical Processing: A Survey. In Proceedings of the 2017 ACM Inter-
national Conference on Management of Data. ACM, 1771-1775.
Gultekin Ozsoyoglu and Richard T Snodgrass. 1995. Temporal and real-time
databases: A survey. IEEE Transactions on Knowledge and Data Engineering 7,
4(1995), 513-532.
Ravi Rajamani. 2007. Oracle total recall/flashback data archive. An Oracle
White Paper 12 (2007).
Cynthia M Saracco, Matthias Nicola, and Lenisha Gandhi. 2010. A matter of
time: Temporal data management in DB2 for z. IBM Corporation, New York
(2010).
Adam Seering, Philippe Cudre-Mauroux, Samuel Madden, and Michael Stone-
braker. 2012. Efficient versioning for scientific array databases. In Data Engi-
neering (ICDE), 2012 IEEE 28th International Conference on. IEEE, 1013-1024.
Ross Shaull. 2013. Retro: a methodology for retrospection everywhere. Brandeis
University.
Ross Shaull, Liuba Shrira, and Barbara Liskov. 2014. A Modular and Efficient
Past State System for Berkeley DB.. In USENIX Annual Technical Conference.
157-168.
Ross Shaull, Liuba Shrira, and Hao Xu. 2008. Skippy: a new snapshot indexing
method for time travel in the storage manager. In Proceedings of the 2008 ACM
SIGMOD international conference on Management of data. ACM, 637-648.
Liuba Shrira and Hao Xu. 2006. Thresher: An Efficient Storage Manager for
Copy-on-write Snapshots.. In USENIX Annual Technical Conference, General
Track. 57-70.
Richard Snodgrass. 1987. The temporal query language TQuel. ACM Transac-
tions on Database Systems (TODS) 12, 2 (1987), 247-298.
Richard T. Snodgrass (Ed.). 1995. The TSQL2 Temporal Query Language.
Kluwer.
Abdullah Uz Tansel, James Clifford, Shashi Gadia, Sushil Jajodia, Arie Segev,
and Richard Snodgrass. 1993. Temporal databases: theory, design, and imple-
mentation. Benjamin-Cummings Publishing Co., Inc.
[28] Jun Yang and Jennifer Widom. 2001. Incremental computation and mainte-
nance of temporal aggregates. In Data Engineering, 2001. Proceedings. 17th
International Conference on. IEEE, 51-60.
Donghui Zhang, Alexander Markowetz, Vassilis J. Tsotras, Dimitrios Gunopu-
los, and Bernhard Seeger. 2001. Efficient Computation of Temporal Aggregates
with Range Predicates. In Proceedings of the Twentieth ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, May 21-23, 2001, Santa
Barbara, California, USA.
[30] Xin Zhou. 2011. Processing a temporal aggregate query in a database system.
(Aug. 30 2011). US Patent 8,010,554

(10

[11

(12

(14

(15

(16]

(17

=
&

(19

[20]

[21

[22

N
&2

(24

[25

[26]

[27

[29

	RQL: Retrospective Computations over Snapshot SetsNikos Tsikoudis, Liuba Shrira, Sara Cohen

