proceedings
Demonstration
FastOFD: Contextual Data Cleaning with
Ontology Functional Dependencies
Zheng Zheng Morteza Alipour Langouri Zhi Qu, Ian Currie
McMaster University McMaster University McMaster University
zhengzl3@mcmaster.ca alipoum@mcmaster.ca {quz1,curriei}@mcmaster.ca
Fei Chiang Lukasz Golab Jaroslaw Szlichta
McMaster University University of Waterloo University of Ontario IT
fchiang@mcmaster.ca lgolab@uwaterloo.ca jaroslaw.szlichta@uoit.ca
ABSTRACT lid] cC | CTRY [sYymp |DIAG [MED
Functional Dependencies (FDs) define attribute relationships f| US Um,ted States jomnt pain OSteoarthr?S ibuprofen
. . t;| IN | India joint pain | osteoarthritis | NSAID
based on syntactic equality. As a result, FD-based data clean- L . o
R . . R t3| CA | Canada joint pain | osteoarthritis | naproxen
ing systems incorrectly label syntactically different but seman- t;| IN | Bharat nausea migrane analgesic
tically equivalent values as errors. To address this problem, we ts| US | America nausea migrane tylenol
demonstrate FastOFD: a system for discovering Ontology Func- ts| US | usa nausea migrane acetaminophen
tional Dependencies (OFDs) which express semantic attribute t7| IN | India chest pain | hypertension | morphine

relationships such as synonyms and is-a hierarchies defined by
an ontology. In addition to discovering OFDs, FastOFD generates
suggestions for repairing erroneous data, and we demonstrate
that FastOFD significantly reduces the number of false positive
errors compared to FD-based data cleaning techniques.

1 INTRODUCTION

In constraint-based data cleaning, tuples that violate the given in-
tegrity constraints are identified as erroneous. Candidate repairs
are then generated to suggest how erroneous tuples could be
modified to eliminate inconsistencies. The most popular integrity
constraint considered in the data cleaning literature has been
the Functional Dependency (FD) [2] and its extensions such as
conditional FDs [3]. However, FDs are limited to identifying at-
tribute relationships based on syntactic equivalence or syntactic
similarity in case of metric FDs [5]. As a result, data cleaning sys-
tems that are based on FDs have a common flaw: they incorrectly
label syntactically different but semantically equivalent values
as errors. This leads to an increased number of reported “errors”
and a larger search space of candidate data repairs.

Example: Table 1 shows a sample of clinical records con-
taining patient country codes (CC), country (CTRY), symptoms
(SYMP), diagnosis (DIAG), and the prescribed medication (MED).
Consider two FDs: F;: [CC] — [CTRY] and F,: [SYMP, DIAG]
— [MED]. The tuples (t1,t5, ts) violate F; as ‘United States’,
‘America’, and ‘USA’ are not syntactically equivalent (the same is
true for (2, ta, t7)). However, ‘United States’ is synonymous with
‘America’ and ‘USA’, and (11, t5, t6) all refer to the same country.
Similarly, ‘Bharat’ in t4 is synonymous with ‘India’ as it is the
country’s original Sanskrit name. For Fy, (t1, t2, t3) and (t4, t5, tg)
do not satisfy the dependency as the consequent values all refer
to different medications. However, with domain knowledge from
a medical ontology shown in Figure 2, we see that the values
participate in an inheritance relationship. Both ‘ibuprofen’ and
‘naproxen’ are non-steroidal anti-inflammatory drugs (NSAID),
and ‘tylenol’ is an ‘acetaminophen’ drug, which in turn is an
‘analgesic’.
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Table 1: Sample clinical trials data

To address these problems, we demonstrate FastOFD!, a tool
for contextual data cleaning with a novel class of dependencies
called Ontology Functional Dependencies (OFDs) which take
synonyms and inheritance relationships into account. In the
above example, if F; and F; were specified as OFDs then no
tuples would be falsely reported as erroneous. Our demonstration
focuses on the following novel features of FastOFD:

(1) Automatic discovery of OFDs to show how prevalent
they are in real data. We have recently proposed an efficient
algorithm for discovering OFDs from data [1]. The FastOFD
system uses this algorithm, and conference participants will
be able to run it on several real datasets and ontologies, and
visualize the results. Furthermore, conference participants
will learn, through real examples, about an interesting aspect
of OFDs that does not arise in standard FDs: the notion of
senses or interpretations with respect to a given ontology. For
example, the value “jaguar” can be interpreted as an animal
or as a vehicle.

Data cleaning with OFDs. FastOFD discovers OFDs that
mostly hold but may be violated by a bounded number of
tuples. Once such OFDs are discovered, FastOFD identifies
erroneous tuples and suggests how to modify them in order to
remove inconsistencies. Conference participants will be able
to apply the suggested modifications (or propose different
modifications) in real-time.

Comparison with FD-based data cleaning methods. We
demonstrate that FastOFD is practically as fast as existing
algorithms for discovering traditional FDs, yet OFDs are more
expressive. We also show that FastOFD significantly reduces
the number of false positive errors compared to FD-based
data cleaning techniques. This reduces the computational
effort of data cleaning and the manual burden for users to
identify falsely categorized data errors.
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Figure 1: FastOFD Architecture.

2 SYSTEM OVERVIEW
2.1 Ontology Functional Dependencies

A functional dependency (FD) F over arelation R is represented as
X — A, where X is a set of attributes and A is a single attribute in
R. An instance I of R satisfies F if for every pair of tuples t1, f2 € I,
if #1[X] = t2[X], then #1[A] = t2[A]. A partition of X, ITy, is the
set of equivalence classes containing tuples with equal values in
X. For example, in Table 1, IIcc = {{t1, ts, te}{t2, ta, t7Ht3}}-

An ontology S is a spec-
ification of a domain that
includes concepts, entities,
properties, and relationships
among them. The meaning
of these constructs can be
modeled according to differ-
ent senses leading to different
ontological interpretations.
For example, the value ‘jaguar’ can be interpreted as an ani-
mal or as a vehicle. As an animal, ‘jaguar’ is synonymous with
‘panthera onca’, but not with the value ‘jaguar land rover’
which is an automotive company.

We define classes E to capture the senses defined in S. Let
synonyms(E) be the set of all synonyms for a class E. For instance,
synonyms(E1) = {‘car’, ‘auto’, ‘vehicle’}, synonyms(E2) = { jaguar’,
jaguar land rover’} and synonyms(E3) = { jaguar’, ‘panthera onca’}.
Let names(C) be the set of all classes, i.e., interpretations or senses,
for a given value C. For example, names(jaguar) = {E2, E3} as
jaguar can be an animal or a vehicle. Let descendants(E) be a set of
all string representations for the class E or any of its descendants,
i.e., descendants(E) = {s | s € synonyms(E) or s € synonyms(E;),
where E; is-a Ej_1, ..., E1 is-a E}. For instance, descendants(E3) =
{jaguar’, ‘peruvian jaguar’, ‘mexican jaguar’.

We consider two ontological relationships in the right-hand-
side of a dependency, synonyms and inheritance, leading to the
following definitions for synonym OFDs and inheritance OFDs:

analgesic

P N

NSAID acetaminophen opioid

/SN 1]

ibuprofen naproxen tylenol morphine

Figure 2: A medical ontology

Definition 2.1. A relation instance I satisfies a synonym OFD
X —syn A, if for each equivalence class x € ITx(I), there exists
an interpretation in S under which all the A-values of tuples in x
are synonyms. That is, X —syn A holds if for each class x,

# 0.
names(a),ac{t[A]|tex}

Definition 2.2. Let 6 be a threshold representing the allowed
path length between two nodes in S over an attribute A (each
attribute can have a different 6). A relation instance I satisfies
an inheritance OFD X —;,, A if for each equivalence class
x € Ix(I), the A-values of all tuples in x are descendants of

OFDs, error records
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a Least Common Ancestor (LCA) which is within a distance of 0
in S. That is, X —;,5 A holds if for each equivalence class x,

#0
descendants(names(a)),ac{t[A]|tex}

and the resulting LCA is within a distance of 6 in S to each a.

Example: Consider the OFD ¢1: [CC] —y, [CTRY] from
Table 1. We have IIcc = {{t1, t5, te{{t2, ta, t7}{t3}}. The first equiva-
lence class, {t1, t5, tg}, representing the value ‘US’, corresponds to
three distinct values of CTRY. According to a geographical ontol-
ogy, names(‘United States’) N names(‘America’) N names(‘USA’)
= ‘United States of America’. Similarly, the second class {t2, t4, t7}
gives names(‘India’) N names(‘Bharat’) = ‘India’. The last equiv-
alence class {t3} contains a single tuple, so there is no conflict.
Since all references to CTRY in each equivalence class resolve to
some common interpretation, ¢; holds over Table 1. Now con-
sider the OFD ¢;: [SYMP, DIAG] —;,, [MED], and the ontology
in Figure 2. For the first equivalence class, {t1, 2,3}, the LCA is
‘NSAID’ which is within a distance of one to each MED value in
this class. For the second equivalence class, {t4, t5, t¢ }, the LCA is
‘analgesic’, which is within a distance of two to each MED value
in this class. The third equivalence class consists of a single tuple
(t7) so there is no conflict. Thus, ¢ holds with 6 = 2 over MED.

Synonym OFDs subsume traditional FDs, where all values
are assumed to have a single canonical name (i.e., for all classes
E, |synonyms(E)| = 1). Furthermore, inheritance OFDs subsume
synonym OFDs since we can recover synonym OFDs by setting
0 = 0 for each attribute. For example, the inheritance OFD [SYMP,
DIAG] —;,, [MED] allows synonyms such as ’ibuprofen’ and
’advil’ to appear in tuples having the same SYMP and DIAG
values; however, different medications under the same LCA such
as 'ibuprofen’ and 'naproxen’ are not allowed.

OFDs cannot be reduced to traditional FDs or Metric FDs [5]
(which assert that two tuples whose left-hand side attribute val-
ues are equal must have syntactically similar righthand side
attribute values according to some distance metric). Since values
may have multiple senses (e.g., jaguar the animal and jaguar the
car), it is not possible to create a normalized relation instance by
replacing each value with a unique canonical name. Furthermore,
ontological similarity is not a metric since it does not satisfy the
identity of indiscernibles (e.g., for synonyms).

2.2 OFD Discovery

The notion of senses makes OFDs non-trivial and has important
implications on their discovery. While checking pairs of tuples is
sufficient to identify violations and therefore verify traditional
FDs (or metric FDs), this is not the case for OFDs. To verify an
OFD, we must find a common interpretation of the Y-values for
each equivalence class, as shown in Definitions 2.1 and 2.2. As a
result, existing dependency discovery algorithms that validate
dependencies via pairwise tuple comparisons (e.g., FastFD [6])
cannot be easily extended to OFDs.

Instead, we use our OFD discovery algorithm [1] which uses
an Apriori-like approach, similar to the TANE FD discovery al-
gorithm [4]. In this approach, the set of possible antecedent and
consequent values considered by FastOFD is modeled as a set
containment lattice. OFD candidates are considered by traversing
the lattice in a breadth-first search manner. We consider all X
consisting of single attribute sets, followed by all 2-attribute sets,
and continue level by level to multi-attribute sets until (poten-
tially) level k = n, where n is the number of attributes. When the



algorithm processes an attribute set X, it verifies candidate OFDs
of the form (X \ A) — A, where A € X. This guarantees that only
non-trivial OFDs are considered. For each candidate, we check
if it is a valid synonym or inheritance OFD as per Definition 2.1
and Definition 2.2. This small-to-large search strategy guarantees
that only minimal OFDs are discovered, and we develop novel
optimizations to prune the search space effectively [1]. In our
evaluation, we found that FastOFD incurred an average overhead
of 5% to 10% over TANE [4] while discovering a larger set of
(synonym, inheritance and approximate) dependencies.

2.3 Data Cleaning with Approximate OFDs

In addition to OFDs that hold over the entire data instance,
FastOFD can discover approximate OFDs that hold with some
exceptions. We define a minimum support level, 7, that speci-
fies the minimum number of tuples that must satisfy an OFD ¢.
Given a relational instance I, and a minimum support threshold
7,0 < 7 < 1, FastOFD can find all minimal OFDs ¢ such that
s(¢) = v where s(¢) = max {|r| | r C I, r |= $}. Since approximate
OFDs are satisfied by most of the relation, violating tuples may be
considered erroneous. These are records involving syntactically
different but semantically equivalent attribute values that would
otherwise be identified as errors using traditional FDs.

Furthermore, unlike previous dependency discovery algo-
rithms, FastOFD discovers OFDs that hold under a given sense,
which provides context for data cleaning. For a given ontology,
we assume a sense is provided that defines the ontological context
under which we identify the exceptions and the corresponding
fixes (based on satisfying record values). For synonym OFDs, the
set of potential clean values includes all synonyms defined in the
ontology. For inheritance OFDs, we identify the highest ancestor
a of the frequent (clean) values in the data, and record the set of
ontology values from the sub-tree with a as the root. We ensure
that the height of the sub-tree does not exceed 6.

2.4 FastOFD Architecture

FastOFD is an interactive web application running on Flask +
uWSGI using Python and JavaScript libraries. The backend is
implemented using Java v1.8, running on an Intel Xeon CPU
E7-LL8867 2.13GHz with 32GB of memory. Figure 1 shows the
FastOFD architecture, consisting of a user-interface (UI) layer, the
OFD discovery engine, and a data cleaning module that identifies
and corrects error values by interactively engaging with a user.
The user interface (UI) layer provides the input specifications for
the data instance, parameter configuration, and ontology RDF
files along with the corresponding attributes and senses. Config-
uration settings include specifying the path length threshold (6),
the desired type of OFDs to be discovered (synonym or inheri-
tance, or both), whether approximate OFDs are desired, and if
so0, the minimum support level. Discovered OFDs are returned to
the user along with approximate OFDs for interactive cleaning.

The discovery algorithm generates candidate OFDs by travers-
ing the attribute lattice in a level-wise manner. FastOFD checks
whether a candidate ¢ : X — A satisfies a synonym or inheri-
tance OFD relative to the given parameter settings. If so, then
candidate OFDs that are supersets of X are pruned from the
lattice, and ¢ is added to the list of discovered OFDs. If ¢ is an ap-
proximate OFD (i.e., with support greater than 7), we record the
satisfying (clean) values along with the exceptions, and continue
the search by evaluating candidate OFDs containing supersets of
X. The efficiency of our algorithm relies on pruning candidates

696

e

3¢ FastOFD
Data Ontology
O Clinical Pollution Census
Sample Ontologies Upload your own Ontology
Upload your data
Choose File No file chosen | medicine |
Algorithm Relationship Type: @ Synonym Inheritance
O FastOFD 8 (N/A)
Synonym OFD
--Include Approximate OFDs Serine EU
Inheritance OFD
. Select corresponding attribute:
--Include Approximate OFDs
TANE countrycode | country  disease status | study_design
(%) %

Figure 3: Input and parameter configurations.

through our axioms from the lattice that are supersets of discov-
ered OFDs, keys, and FDs. We also disqualify approximate OFD
candidates that do not have a minimum 7 support. That is, for a
candidate X — A, adding a new attribute B to X only fragments
the equivalence classes, and does not increase the support level.

3 DEMONSTRATION OVERVIEW

In this demo, conference participants will interact with FastOFD
to: (1) discover OFDs and see first-hand how prevalent they are in
real data. We show examples from both synonym and inheritance
OFDs, and cases where similar OFDs exist under different senses;
(2) interactively clean the data using approximate OFDs where
candidate repairs are provided, and users can apply these changes
in real-time with immediate feedback on the impact to support
levels; and (3) experience the effectiveness of FastOFD to reduce
the number of false positive errors while achieving comparable
runtimes to traditional FD discovery algorithms.

Input Interface. Figure 3 shows the input interface where
users can select a sample dataset among clinical trials
data from LinkedCT.org, pollution data from the Canadian
Pollutant Release Inventory, and census-income data from
https://archive.ics.uci.edu/ml/. In this paper, we use the clinical
data to demonstrate example scenarios. Users can then select the
type of dependencies, configure 7 to return approximate OFDs
with minimum 7 support, and inheritance OFDs containing IS-A
relationships within a distance of 0 in the ontology. For each
input ontology, users can define the corresponding synonym or
inheritance relationship, the applicable attribute, and the sense
interpretation. For example, in Figure 3, we add an ontology con-
taining synonyms for attribute ‘medicine’ to be interpreted under
the sense ‘EU’ for European Union.

3.1 Automatic Discovery of OFDs

Figure 4 shows an example output of two discovered synonym
OFDs, and four approximate synonym OFDs ranked according to
decreasing support. Each dependency shows the corresponding
sense under which it holds over the data. The inclusion of senses
is unique to FastOFD (in contrast to other dependency discov-
ery systems) as it provides a specific interpretation under which
an OFD holds. For example, Figure 4 shows that the synonym
OFD [disease] — [medicine] holds over the clinical data under
two senses: (i) as an OFD under sense ‘EU’ (for the ‘European
Union’), and (ii) as an approximate (synonym) OFD under sense
‘US’ (for the ‘United States’) with 93.4% support. This example
shows that the same medication may be used to treat different
diseases, and is referred to by different names, in different regions
of the world (i.e., in different geographical senses). Senses help
to differentiate semantically equivalent entities under different
contexts. Similarly, the OFD [country] — [countryCode] holds



Name: Clinical # Columns: 7

# Rows: 3000 # Ontologies: 5

# Synonym OFD: 2 # Inheritance OFD: 0 Running time: 101.2 ms

# Approximate Syn OFD: 4  # Approximate Inh OFD: 0

Synonym

OFD

Inheritance

disease --> medicine (sense:EU)

country --> countrycode (sense:UN)

Approximate OFD

P country-->countrycode 1:0.943  Sense: ISO
P disease-->medicine 1.0.934  Sense:US
P countrycode,medicine,status-->disease 1:0.902 Sense: Disease
P countrycode,medicine-->disease T: 0.901 Sense: Disease

Figure 4: Viewing discovered OFDs.

under the sense ‘UN” denoting country name abbreviations pub-
lished by the United Nations, but holds approximately under the
sense ‘ISO’ denoting the abbreviations used by the International
Organization for Standardization. Conference participants will
be able to delve deeper (by clicking on each OFD) to explore
these distinctions between similar dependencies. Unlike previ-
ous dependency discovery algorithms that assume equivalence
classes, FastOFD provides a contextual view for discovered OFDs
that can be customized with interpretations according to a user’s
domain or application requirements.

3.2 Contextual Data Cleaning

Given a set of approximate OFDs, we now show how users can
interact with FastOFD to correct these exceptions. Figure 5 shows
a data cleaning example w.r.t. the OFD ¢: [disease] — [medicine],
that states a given disease is treated by prescribed medications.
However, while ¢ holds over the clinical data under the sense
‘EU’, it holds only approximately under the ‘US’ sense as medi-
cation names vary between the two regions. An example of this
semantic data quality issue is shown in Figure 5 by expanding
the approximate OFD version of ¢. Users can view the positive
(supporting) examples highlighted in green, while the exceptions
are highlighted in red. In this example, ‘asthma’ is treated by
medications {'Advicor’, ‘Advair’, ‘Seretide’}, which are all syn-
onymous in the ‘EU’ sense. However, in the ‘US’, ‘Seretide’ is
not recognized as a synonym, and is flagged as an exception.
The frequency levels for each tuple pattern are shown such that
users can correct exceptions directly, and receive immediate feed-
back. By clicking ‘Apply’, if the entered value(s) are correct, the
corresponding 7 support level for the OFD is updated, and the
tuple pattern changes from red to green. Conference participants
will be able to perform hands-on exploration and cleaning, and
observe how prevalent these OFDs are in real data.

3.3 Effectiveness of FastOFD

Finally, we show that FastOFD significantly reduces the number
of ‘false positive’ errors that are found in FD-based data clean-
ing solutions, with comparable running times to FD discovery
algorithms even though OFDs have greater expressiveness and
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Synonym

OFD

Inheritance

disease --> medicine (sense:EU)

country --> countrycode (sense:UN)

Approximate OFD

P country-->countrycode Support T: 0.943 Sense: ISO
W¥disease-->medicine Support t: 0.934 Sense: US
disease medicine Frequency
asthma_attacks advair 114
asthma_attacks advicor 18
asthma_attacks Apply

Figure 5: Data cleaning with approximate OFDs.

larger result sets [1]. Figure 6 shows the comparative perfor-
mance between FastOFD and TANE, and more importantly, the
distinctions between the two sets of approximate dependencies.
While the same set of dependencies are discovered, the support
level 7 is higher for approximate OFDs than approximate FDs.
Upon closer inspection, users will be able to drill down and no-
tice that these differences are caused not only due to true errors
(highlighted in red), but also the false positive errors (highlighted
in blue). These false positive values represent values that are syn-
tactically different than the clean (green highlighted) values, but
are semantically equivalent. For example, the medication ‘Celexa’
is synonymous with ‘Celebrex’ in treating ‘osteoarthritis’. These
values are identified as clean in FastOFD but as exceptions in
TANE. Our case studies show that an average 33% of errors found
in traditional FD-based data cleaning solutions are false positive
errors that can be eliminated. This reduces the manual burden of
having users validate these ‘errors’, and also reduces the space
of possible repairs, thereby improving the overall data cleaning
runtime. In addition to the synonym examples described here,
conference participants will be able to explore examples involv-
ing inheritance properties that are present in real data.

TANE: Running Time: 91.1 ms FastOFD: Running Time: 101.2 ms

Approximate FD Approximate OFD

) country->countrycode T 0.712 P country->countrycode  T:0.943  Sense: ISO
¥ disease-->medicine . 0.623 ¥ disease-->medicine . 0.934 Sense: US
disease medicine Frequency disease medicine Frequency
osteoarthritis celexa 33 osteoarthritis celexa 33
osteoarthritis celebrex 80 osteoarthritis celebrex 80
osteoarthritis celebra 12 osteoarthritis celebra 12

Figure 6: Reducing the number of false positives.
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