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ABSTRACT

Increasing interest in JSON data has created a need for its efficient
processing. Although JSON is a simple data exchange format, its
querying is not always effective, especially in the case of large
repositories of data. This work aims to integrate the JSONiq ex-
tension to the XQuery language specification into an existing
query processor (Apache VXQuery) to enable it to query JSON
data in parallel. VXQuery is built on top of Hyracks (a framework
that generates parallel jobs) and Algebricks (a language-agnostic
query algebra toolbox) and can process data on the fly, in con-
trast to other well-known systems which need to load data first.
Thus, the extra cost of data loading is eliminated. In this paper,
we implement three categories of rewrite rules which exploit
the features of the above platforms to efficiently handle path
expressions along with introducing intra-query parallelism. We
evaluate our implementation using a large (803GB) dataset of
sensor readings. Our results show that the proposed rewrite rules
lead to efficient and scalable parallel processing of JSON data.

1 INTRODUCTION

The Internet of Things (IoT) has enabled physical devices, build-
ings, vehicles, smart phones and other items to communicate and
exchange information in an unprecedented way. Sophisticated
data interchange formats have made this possible by leveraging
their simple designs to enable low overhead communication be-
tween different platforms. Initially developed to support efficient
data exchange for web-based services, JSON has become one
of the most widely used formats evolving beyond its original
specification. It has emerged as an alternative to the XML format
due to its simplicity and better performance [28]. It has been
used frequently for data gathering [22], motion monitoring [20],
and in data mining applications [24].

When it comes time to query a large repository of JSON data,
it is imperative to have a scalable system to access and process
the data in parallel. In the past there has been some work on
building JSONiq add-on processors to enhance relational database
systems, e.g. Zorba [2]. However, those systems are optimized
for single-node processing.

More recently, parallel approaches to support JSON data have
appeared in systems like MongoDB [10] and Spark [7]. Nev-
ertheless, these systems prefer to first load the JSON data and
transform them to their internal data model formats. On the other
hand systems like Sinew [29] and Dremel [27] cannot query raw
JSON data. They need a pre-processing phase to convert the input
file into a readable binary for them (typically Parquet [3]). They
can then load the data, transform it to their internal data model
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and proceed with its further processing. The above efforts are ex-
amples of systems that can process JSON data by converting it to
their data format, either automatically, during the loading phase,
or manually, following the pre-processing phase. In contrast, our
JSONIiq processor can immediately process its JSON input data
without any loading or pre-processing phases. Loading large data
files is a significant burden for the overall system’s execution time
as our results will show in the experimental section. Although,
for some data, the loading phase takes place only in the beginning
of the whole processing, in most real-time applications, it can be
a repetitive action; data files to be queried may not always been
known in advance or they may be updated continuously.

Instead of building a JSONiq parallel query processor from
scratch, given the similarities between JSON and XQuery, we
decided to take advantage of Apache VXQuery [4, 17], an ex-
isting processor that was built for parallel and scalable XQuery
processing. We chose to support the JSONiq extension to XQuery
language [8] to provide the ability to process JSON data. XQuery
and JSONiq have certain syntax conflicts that need to be resolved
for a processor to support both of them, so we enhanced VX-
Query with the JSONigq extension to the XQuery language, an
alteration of the initial JSONiq language designed to resolve the
aforementioned conflicts [9].

In extending Apache VXQuery, we introduce three categories
of JSONiq rewrite rules (path expression, pipelining, and group-by
rules) to enable parallelism via pipelining and to minimize the
required memory footprint. A useful by-product of this work is
that the proposed group-by rules turn out to apply to both XML
and JSON data querying.

Through experimentation, we show that the VXQuery proces-
sor augmented with our JSoniq rewrite rules can indeed query
JSON data without adding the overhead of the loading phase
used by most of the state-of-the art systems.

The rest of the paper is organized as follows: Section 2 presents
the existing work on JSON query processing, while Section 3 out-
lines the architecture of Apache VXQuery. Section 4 introduces
the specific optimizations applied to JSON queries and how they
have been integrated into the current version of VXQuery. The
experimental evaluation appears in Section 5. Section 6 concludes
the paper and presents directions for future research.

2 RELATED WORK

Previous work on querying data interchange formats has pri-
marily focused on XML data [26]. Nevertheless there has been
considerable work for querying JSON data. One of the most pop-
ular JSONiq processors is Zorba [2]. This system is basically a
virtual machine for query processing. It processes both XML
and JSON data by using the XQuery and JSONiq languages re-
spectively. However, it is not optimized to scale onto multiple
nodes with multiple data files, which is the focus of our work. In
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contrast, Apache VXQuery is a system that can be deployed on a
multi-node cluster to exploit parallelism.

A few parallel approaches for JSON data querying have emerged
as well. These systems can be divided into two categories. The
first category includes SQL-like systems such as Jaql [14], Trill
[18], Drill [6], Postgres-XL [11], MongoDB [10] and Spark [13],
which can process raw JSON data. Specifically, they have been
integrated with well-known JSON parsers like Jackson [1]. While
the parser reads raw JSON data, it converts it to an internal (table-
like) data model. Once the JSON file is in a tabular format, it can
then been processed by queries. Our system can also read raw
JSON data, but it has the advantage that it does not require data
conversion to another format since it directly supports JSON’s
data model. Queries can thus be processed on the fly as the JSON
file is read. It is also worthwhile mentioning that Postgres-XL (a
scalable extension to PostgreSQL [12]) has a limitation on how
it exploits its parallelism feature. Specifically, while it scales on
multiple nodes it is not designed to scale on multiple cores. On
the other hand, our system can be multinode and multicore at
the same time. In the experimental section we show how our
system compares with two representatives from this category
(MongoDB and Spark).

We note that AsterixDB [5], can process JSON data in two ways.
It can either first load the file internally (like the systems above) or,
it can access the file as external data without the need of loading it.
However, in both cases and in contrast to our system, AsterixDB
needs to convert the data to its internal ADM data model. In
our experiments we compare VXQuery with both variations of
AsterixDB.

Systems in the second category (e.g. Sinew [29], Argo [19]
and Oracle’s system [25]) cannot process raw JSON data and
thus need an additional pre-processing phase (hence an extra
overhead than the systems above). During that phase, a JSON file
is converted to a binary or Parquet ([3]) file that is then fed to
the system for further transformation to its internal data model
before query processing can start.

Systems like Spark and Argo process their data in-memory.
Thus, their input data sizes are limited by a machine’s mem-
ory size. Recently, [23] presents an approach that pushes the
filters of a given query down into the JSON parser (Mison). Using
data-parallel algorithms, like SIMD vectorization and Bitwise
Parallelism, along with speculation, data not relevant to the ac-
tual query is filtered out early. This approach has been added
into Spark and improves its JSON performance. Our work also
prunes irrelevant data, but does so by applying rewrite rules.
Since the Mison code is not available yet, we could not compare
with them in detail; we also need to note that Mison is just a
parallel JSON parser for JSON data. In contrast, VXQuery is an
integrated processor that can handle the querying of both JSON
and XML data (regardless of how complex the query is).

As opposed to the aforementioned systems, our work builds a
new JSONIiq processor that leverages the architecture of an exist-
ing query engine and achieves high parallelism and scalability
via the employment of rewrite rules.

3 APACHE VXQUERY

Apache VXQuery was built as a query processing engine for
XML data implemented in Java. It is built on top of two other
frameworks, namely the Hyracks platform and the Algebricks
layer. Figure 1, also, shows AsterixDB [5], which uses the same
infrastructure.

577

SQL++

U

AQL

Y

XQuery / JSONig

ORI I B A A B I O I

[ Apache VXQuery || AsterbDB | b
[ AIgebricksAI:qebra Layer J ;,

Hyracks

Figure 1: The VXQuery Architecture

3.1 Infrastructure

The first layer is Hyracks [16], which is an abstract framework
responsible for executing dataflow jobs in parallel. The processor
operating on top of Hyracks is responsible for providing the
partitioning scheme while Hyracks decides how the resulting
job will be distributed. Hyracks processes data in partitions of
contiguous bytes, moving data in fixed-sized frames that contain
physical records, and it defines interfaces that allow users of the
platform to specify the data-type details for comparing, hashing,
serializing and de-serializing data. Hyracks provides built-in base
data types to support storing data on local partitions or when
building higher level data types.

The next layer, Algebricks [15], takes as input a logical query
plan and, via built-in optimization rules that it provides, converts
it to a physical plan. Apart from the transformation, the rules are
responsible for making the query plan more efficient. In order to
achieve this efficiency, Algebricks allows the processor above (in
this case Apache VXQuery) to provide its own language specific
rewrite rules.

The final layer, Apache VXQuery [4, 17], supports a XQuery
processor engine. To build a JSONiq processor, we used the
JSONiq extension to XQuery specifications. Specifically, we fo-
cused mostly on implementing all the necessary modules to suc-
cessfully parse and evaluate JSONiq queries. Additionally, several
modules were implemented to enable JSON file parsing and sup-
port an internal in-memory representation of the corresponding
JSON items.

The resulting JSONiq processor accepts as input the original
query, in string form, and converts it to an abstract syntax tree
(AST) through its query parser. Then, the AST is transformed
with the help of VXQuery’s translator to a logical plan, which
becomes the input to Algebricks.

As mentioned above, VXQuery uses Hyracks to schedule and
run data parallel jobs. However, Hyracks is a data-agnostic plat-
form, while VXQuery is language-specific. This creates a need
for additional rewrite rules to exploit Hyracks’ parallel proper-
ties for JSONigq. If care is not taken, the memory footprint for
processing large JSON files can be prohibitively high. This can
make it impossible for systems with limited memory resources
to efficiently support JSON data processing. In order to identify
opportunities for parallelism as well as to reduce the runtime
memory footprint, we need to examine in more depth the char-
acteristics of the JSON format as well as the supported query

types.



3.2 Hyracks Operators

We first proceed with a short description of the Hyracks logical
operators that we will use in our query plans.

o EMPTY-TUPLE-SOURCE: outputs an empty tuple used
by other operators to initiate result production.

o DATASCAN: takes as input a tuple and a data source and
extends the input tuple to produce tuples for each item in
the source.

o ASSIGN: executes a scalar expression on a tuple and adds
the result as a new field in the tuple.

o AGGREGATE: executes an aggregate expression to cre-
ate a result tuple from a stream of input tuples. The result
is held until all tuples are processed and then returned in
a single tuple.

e UNNEST: executes an unnesting expression for each tuple
to create a stream of output tuples per input.

o SUBPLAN: executes a nested plan for each tuple input.
This plan consists of an AGGREGATE and an UNNEST
operator.

o GROUP-BY: executes an aggregate expression to produce
a tuple for each set of items having the same grouping
key.
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Figure 2: XML vs JSON structure

It is imperative for understanding this work to describe the rep-
resentation along with the navigation expressions of JSON items
according to the JSONiq extension to the XQuery specification.
A json-item can be either an array or an object, in contrast to an
XML structure, which consists of multiple nodes as described in
Figure 2. An array consists of an ordered list of items (members),
while an object consists of a set of pairs. Each pair is represented
by a key and a value. The following is the terminology used for
JSONIiq navigation expressions:

e Value: for an array it yields the value of a specified (by
an index) array element, while for an object it yields the
value of a specified (by a field name) key.

e Keys-or-members: for an array it outputs all of its ele-
ments, and for an object it outputs all of its keys.

4 JSON QUERY OPTIMIZATION

The JSONiq rewrite rules are divided into three categories: the
Path Expression, Pipelining, and Group-by Rules. The first cate-
gory removes some unused expressions and operators, as well as
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streamlining the remaining path expressions. The second cate-
gory reduces the memory needs of the pipeline. The last category
focuses on the management of aggregation, which also contains
the group-by feature (added to VXQuery in the XQuery 3.0 spec-
ification). For all our examples, we will consider the bookstore
structure example depicted in Listing 1.

-
{
"bookstore": {
"book": [
{
"-category": "COOKING",
"title": "Everyday Italian",
"author": "Giada De Laurentiis",
"year": "2005",
"price": "30.00"
3,
]
}
- J

Listing 1: Bookstore JSON File

4.1 Path Expression Rules

The goal of the first category of rules is to enable the unnesting
property. This means that instead of creating a sequence of all
the targeted items and processing the whole sequence, we want
to process each item separately as it is found. This rule opens up
opportunities for pipelining since each item is passed to the next
stage of processing as the previous step is completed.

[json -doc ("books. json") ("bookstore") ("book") () ]

Listing 2: Bookstore query

The example query in Listing 2 asks for all the books appearing
in the given file. Specifically, it reads data from the JSON file
("book.json") and then, the value expression is applied twice,
once for the bookstore object (("bookstore")) and once for the
book object (("book")). In this way, it is ensured that only the
matching objects of the file will be stored in memory. The value
of the book object is an array, so the keys-or-members expression
(()) applied to it returns all of its items. To process this expression,
we first store in a tuple all of the objects from the array and then
we iterate over each one of them. The result that is distributed at
the end is each book object separately.

DISTRIBUTE-RESULT($59 )

UNNEST( $59:iterate(558) )

ASSIGN( 558:(keys-or-members(552)) )

ASSIGN( $52:value(value(json-doc(promote(data("books.json"),
string)),”bookstore”),"book"))

EMPTY-TUPLE-SOURCE

Figure 3: Original Query Plan

In more detail, we can describe the aforementioned process
in terms of a logical query plan that is returned from VXQuery
(Figure 3). It follows a bottom-up flow, so the first operator in
the query plan is the EMPTY-TUPLE-SOURCE leaf operator. The
empty tuple is extended by the following ASSIGN operator, which
consists of a promote and a data expression to ensure that the
json-doc argument is a string. Also, the two value expressions
inside it verify that only the book array will be stored in the
tuple.



The next two operators depict the two steps of the processing
of the keys-or-members expression. The first operator is an AS-
SIGN, which evaluates the expression to extend its input tuple.
Since this expression is applied to an array, the returned tuple
includes all of the objects inside the array. Then, the UNNEST
operator applies an iterate expression to the tuple and returns a
stream of tuples including each object from the array.

The final step according to the query plan is the distribution of
each object returned from the UNNEST. From the analysis above,
we can observe that there are opportunities to make the logical
plan more efficient. Specifically, we observe that there is no need
for two processing steps of keys-or-members.

Originally, the tuple with all the book objects produced by the
keys-or-members expression flows into the UNNEST operator
whose iterate expression will return each object in a separate
tuple. Instead, we can merge the UNNEST with the keys-or-
members expression. That way, each book object is returned
immediately when it is found.

Finally, to further clean up our query plan, we can remove
the promote and data expressions included in the first ASSIGN
operator. The fully optimized logical plan is depicted in Figure 4.

DISTRIBUTE-RESULT($513 )

UNNEST( $513:keys-or-members($52))

ASSIGN( $52:value(value(json-doc{"books.xml") ,”bookstore”),"book")
EMPTY-TUPLE-SOURCE

Figure 4: Updated Query Plan

The new and more efficient plan opens up opportunities for
pipelining since when a matching book object is found, it is
immediately returned and, at the same time, passed to the next
stage of the process.

4.2 Pipelining Rules

This type of rule builds on top of the previous rule set and con-
siders the use of the DATASCAN operator along with the way to
access partitioned-parallel data. The sample query that we use is
depicted in Listing 3.

{collection("/books") ("bookstore") ("book") ()

Listing 3: Bookstore Collection Query

According to the query plan in Figure 5, the ASSIGN operator
takes as input data source a collection of JSON files, through
the collection expression. Then, UNNEST iterate iterates over the
collection and outputs each single file. The two value expressions
integrated into the second ASSIGN output a tuple source filled
with all the book objects produced by the whole collection. The
last step of the query plan (created in the previous section) is
implemented by the keys-or-members expression of the UNNEST
operator, which outputs each single object separately.

The input tuple source generated by the collection expression
corresponds to all the files inside the collection. This does not
help the execution time of the query, since the result tuple can
be huge. Fortunately, Algebricks offers its DATASCAN opera-
tor, which is able to iterate over the collection and forwards to
the next operator each file separately. To accomplish this proce-
dure, DATASCAN replaces both the ASSIGN collection and the
UNNEST iterate.

579

DISTRIBUTE-RESULT($513 )

UNNEST( $$13:keys-or-members($56))

ASSIGN( $S6:value(value(554,"bookstore”),"book™))
UNNEST( $S4:iterate($52))

ASSIGN( collection("/books"), $52)
EMPTY-TUPLE-SOURCE

Figure 5: Query Plan for a Collection

DISTRIBUTE-RESULT( $513 )

UNNEST( 5513:keys-or-members(554))

ASSIGN( 554:value(value ( $52,"bookstore”),"book"))
DATASCAN( collection("/books"), $52)
EMPTY-TUPLE-SOURCE

Figure 6: Introduction of DATASCAN

By enabling Algebrick’s DATASCAN, apart from pipeline im-
provement, we also achieve partitioned parallelism. In Apache
VXQuery, data is partitioned among the cluster nodes. Each node
has a unique set of JSON files stored under the same directory
specified in the collection expression. The Algebricks’ physical
plan optimizer uses these partitioned data property details to
distribute the query execution. Adding these properties allows
Apache VXQuery to achieve partitioned-parallel execution with-
out any user-level parallel programming.

To further improve pipelining, we can produce even smaller
tuples. Specifically, we extend the DATASCAN operator with
a second argument (here it is the book array). This argument
defines the tuple that will be forwarded to the next operator.

In the updated query plan (Figure 6), the newly inserted DATAS-
CAN is followed by an ASSIGN operator. Inside it, the two value
expressions populate the tuple source with all the book objects
of the file fetched from DATASCAN. We can merge the value
expressions with DATASCAN by adding a second argument to
it. As a result, the output tuple, which was previously filled with
each file, is now set to only have its book objects (Figure 7).

DISTRIBUTE-RESULT($513 )

UNNEST( $513:keys-or-members($54))

DATASCAN( collection("/books"), $$4, (“bookstore”)(“book”) )
EMPTY-TUPLE-SOURCE

Figure 7: Merge value with DATASCAN Operator

At this point, we note that by building on the previous rule
set, both the query’s efficiency and the memory footprint can
be further improved. In the query plan in Figure 7, DATASCAN
collection is followed by an UNNEST whose keys-or-members
expression outputs a single tuple for each book object of the
input sequence.

DISTRIBUTE-RESULT( $54 )
DATASCAN( collection("/books"), $54, (“bookstore”)(“baok”)() )
EMPTY-TUPLE-SOURCE

Figure 8: Merge keys-or-members with Datascan Operator

This sequence of operators gives us the ability to merge DATAS-
CAN with keys-or-members by extending its second argument.



Figure 8 shows this action, whose result is the fetching of even
smaller tuples to the next stage of processing. Specifically, in-
stead of storing in DATASCAN’s output tuple a sequence of all
the book objects of each file in the collection, we store only one
object at a time. Thus, query’s execution time is improved and
Hyracks’ dataflow frame size restriction is satisfied.

for $x in collection("/books")("bookstore")
("book™") )

group by $author:=$x("author")

return count($x("title"))

DISTRIBUTE-RESULT( $520 )
UNNEST($520:iterate($519))
ASSIGN($519:count(value($516, “title”)))
GROUP-BY($517:0->5514){
AGGREGATE(SS16:create _sequence($513))
}
ASSIGN(SS14:data(value($513, “author”)))

DATASCAN( collection("/books"), $513, (“bookstore”)("book”)())
EMPTY-TUPLE-SOURCE

Listing 4: Bookstore Count Query

4.3 Group-by Rules

The last category of rules can be applied to both XML and JSON
queries since the group-by feature is part of both syntaxes. Group-
by can activate rules enabling parallelism in aggregation queries.

for $x in collection("/books") ("bookstore")
("book™") )

group by $author:=$x("author")

return count(for $j in $x return $j("title"))

Listing 5: Bookstore Count Query (2nd form)

The example query that we will use to show how our rules
affect aggregation queries is in Listings 4 and 5. Both forms of
the query read data from a collection with book files, group them
by author, and then return the number of books written by each
author.

DISTRIBUTE-RESULT{ $520 )
UNNEST(S$20:iterate($519))
ASSIGN(5519:count(value($518, “title™)))
ASSIGN(SS$18:treat(item,$516))
GROUP-BY(S517:0->5514){
AGGREGATE(SS16:create_sequence($513))
}
ASSIGN(SS14:data(value($513, “author”)))

DATASCAN( collection("/books"), $513, (“bookstore”)("book”)())
EMPTY-TUPLE-SOURCE

Figure 9: Query Plan with Count Function

In Figure 9, the DATASCAN collection passes a tuple, for one
book object at a time, to ASSIGN. The latter applies the value
expression to acquire the author’s name for the specific object.
GROUP-BY accepts the tuple with the author’s name (group-by
key) and then its inner focus is applied (AGGREGATE) so that all
the objects whose author field have the same value will be put in
the same sequence.

At this point, ASSIGN treat appears; this ensures that the input
expression has the designated type. So, our rule searches for the
type returned from the sequence created from the AGGREGATE
operator. If it is of type item which is the treat type argument,
the whole treat expression can be safely removed. As a result,
the whole ASSIGN can now be removed since it is a redundant
operator (Figure 10).

After the former removal, GROUP-BY is followed by an AS-
SIGN count which calculates the number of book titles (value
expression) generated by AGGREGATE sequence. According to
the JSONiq extension to XQuery, value can be applied only on a
JSON object or array. However, in our case the query plan applies
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Figure 10: Query Plan without treat Expression

value to a sequence, since GROUP-BY aggregates all the records
having the same group-by key in a sequence. Thus, ("title") is
applied on a sequence. To overcome this conflict, we convert
the ASSIGN to a SUBPLAN operator (Figure 11). SUBPLAN’s
inner focus introduces an UNNEST iterate which iterates over
AGGREGATE sequence and produces a single tuple for each item
in the sequence. The inner focus of SUBPLAN finishes with an
AGGREGATE along with a count function which incrementally
calculates the number of tuples that UNNEST feeds it with.

DISTRIBUTE-RESULT( $$20 )
UNNEST(S520:iterate($519))
SUBPLAN{
AGGREGATE(5519:count(value(5518, “title”)))
UNNEST(S518:iterate(5516))
}
GROUP-BY($$17:0->5514){
AGGREGATE(S516:create_sequence($5513))
}
ASSIGN($514:data(value(5513, “author”)))

DATASCAN( collection("/books"), $513, (“bookstore”)(“book”)())
EMPTY-TUPLE-SOURCE

Figure 11: Convert scalar to aggregation expression

This conversion not only helps resolving the aforementioned
conflict but it also converts the scalar count function to an ag-
gregate one. This means that instead of calculating count on a
whole sequence, we can incrementally calculate it as each item
of the sequence is fetched.

In Figure 11, GROUP-BY still creates a sequence in its inner
focus, which is the input to SUBPLAN UNNEST. Instead, we can
push the AGGREGATE operator of the SUBPLAN down to the
GROUP-BY operator by replacing it (Figure 12). That way, we
exploit the benefits of the aforementioned conversion and have
the count function computed at the same time that each group
is formed (without creating any sequences). Thus, the new plan
is not only smaller (more efficient) but also keeps the pipeline
granularity introduced in both of the previous rule sets.

At this point, it is interesting to look at the second format of
the query in Listing 5. The for loop inside the count function
conveniently forms a SUBPLAN operator right above the GROUP-
BY in the original logical plan. This is exactly the query plan
described in Figure 11, which means that in this case we can
immediately push the AGGREGATE down to GROUP-BY, without
any further transformations.



DISTRIBUTE-RESULT( 5520 )
UNNEST($520:iterate($516))
GROUP-BY($517:0->5514){
AGGREGATE(5516:count(value($513,"title”)))
}
ASSIGN($514:data(value($$13, “author”)))
DATASCAN( collection("/books"), $513, (“bookstore”)(“book”)( })
EMPTY-TUPLE-SOURCE

Figure 12: Updated Query Plan with Count Function

Now that the count function is converted into an aggregate
function, there is another rule introduced in [17] that can be acti-
vated to further improve the overall query performance. This rule
supports Algebricks’ two-step aggregation scheme, which means
that each partition can calculate locally the count function on its
data. Then, a central node can compute the final result using the
data gathered from each partition. Thus, partitioned computation
is enabled, which improves parallelism effectiveness.

The final query plan, produced after the application of all the
former rules, calculates the count function at the same time that
each grouping sequence is built as opposed to first building it
and then processing the aggregation function.

5 EXPERIMENTAL EVALUATION

We have tested our rewrite rules by integrating them into the
latest version of Apache VXQuery [4]. Each node has two dual-
core AMD Opteron(tm) processors, 8GB of memory, and two
1TB hard drives. For the multi-node experiments we built a clus-
ter of up to nine nodes of identical configuration. We used a
real dataset with sensor data and a variety of queries, described
below in Sections 5.1 and 5.2 respectively. We repeated each
query five times. The reported query time is an average of the
five runs. We first consider single-node experiments and include
measurements for execution time (before and after applying our
rewrite rules) and for speed-up. For the multi-node experiments
we measure response time and scale-up over different numbers
of nodes. We, also, include comparisons with Spark SQL and
MongoDB that show that the overhead of their loading phase
is non-negligible. Finally, we compare with AsterixDB which
has the same infrastructure as our system; in particular we com-
pare with two approaches, one that sees the input as an external
dataset (depicted in the figures as AsterixDB) and one that first
loads the file internally (depicted as AsterixDB(load)).

5.1 Dataset

The data used in our experiments are publicly available from the
National Oceanic and Atmospheric Administration (NOAA) [21].
The Daily Global Historical Climatology Network (GHCN-Daily)
dataset was originally in dly format and was converted to its
equivalent NOAA web service JSON representation.

Listing 6 shows an example JSON sensor file structure. All
records are wrapped into a JSON item, specifically array, called
"root". Each member of the "root" array is an object item which
contains the object "metadata" and the array "results". The
latter stores various measurements organized in individual ob-
jects. A specific measurement includes the date, the data type (a
description of the measurement, with typical values being TMIN,
TMAX, WIND etc.), the station id where the measurement was
taken, and the actual measurement value. The "count" object
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included into the "metadata" denotes the number of measure-
ments objects in the accompanying "results" array. Typically a
"results" array contains measurements from a given station for
one month (i.e. typically 30 measurements). A sensor file contains
only one "root" array which may consist of several "results"
(measurements from the same or different stations) accompanied
by their "metadata".

Sensor file sizes vary from 10MB to 2GB. Each node holds a
collection of sensor files; the size of the collection varies from
100MB to 803GB. The collection size is varied throughout the
experiments and is cited explicitly for each experiment. In our ex-
periments, we assume that the data has already been partitioned
among the existing nodes.

e M
{

"root": [

"metadata": {

"count":31,
3,
"results": [
{
"date":"20132512700:00",
"dataType":"TMIN",
"station":"GSW123006",
"value":4
3,
]
3,
{
"metadata": {
"count":29,
3,
"results": [
{
"date":"20142512T00:00",
"dataType":"WIND",
"station":"GSW957859",
"value":30
3,
]
3,
]
3}
- J

Listing 6: Example JSON Sensor File Structure

5.2 Query Types

We evaluated our newly implemented rewrite rules by evaluating
different types of queries including selection (Q0, QOb), aggre-
gation (Q1, Q1b) and join-aggregation queries (Q2). The query
description follows.

ffor $r in collection("/sensors")("root") () ("
results") ()
let $datetime := dateTime(data($r("date")))
where year-from-dateTime($datetime) ge 2003
and month-from-dateTime($datetime) eq 12
and day-from-dateTime($datetime) eq 25
return $r
-
Listing 7: Selection Query (Q0)
for $r in collection("/sensors")("root") () ("
results") () ("date")
let $datetime := dateTime(data($r))
where year-from-dateTime($datetime) ge 2003
and month-from-dateTime($datetime) eq 12
and day-from-dateTime ($datetime) eq 25
return $r

Listing 8: Selection Query (QO0b)




QO: In this query (Listing 8), the user asks for historical data
from all the weather stations by selecting all December 25 weather
measurement readings from 2003 on.

QOb is a variation of Q0 where the input path (1st line in Listing
8), is extended by a value expression ("date").

for $r in collection ("/sensors") ("root")()
("results") ()

where $r("dataType") eq "TMIN"

group by $date:= $r("date")

return count($r("station"))

Listing 9: Aggregation Query (Q1)

for $r in collection ("/sensors") ("root")()
("results") ()

where $r("dataType") eq "TMIN"

group by $date:= $r("date")

return count(for $i in $r return $i("station"))

Listing 10: Aggregation Query (Q1b)

Q1: This query (Listing 10), finds the number of stations that
report the lowest temperature for each date. The grouping key is
the date field of each object.

Q1b is a variation of Q1 that has a different returned result
structure.

Q2: This self-join query (Listing 11) joins two large collec-
tions, one that maintains the daily minimum temperature per
station and one that contains the daily maximum temperature
per station. The join is on the station id and date and finds the
daily temperature difference per station and returns the average
difference over all stations.

avg(
for $r_min in collection("/sensors") ("root") ()(
"results") ()
for $r_max in collection("/sensors")("root")()(
"results") ()
where $r_min("station") eq $r_max("station")
and $r_min("date") eq $r_max("date")
and $r_min("dataType") eq "TMIN"
and $r_max("dataType") eq "TMAX"
return $r_max("value") - $r_min("value")
) div 10

Listing 11: Join-Aggregation Query (Q2)

5.3 Single Node Experiments

To explore the effects of the various rewrite rules we first con-
sider a single node, one core environment (i.e. one partition)
and progressively enable the different sets of rules. We start by
considering just the path expression rules. Figure 13 shows the
execution time for all five queries with and without these rules.
For this experiment, we used a 400MB collection of sensor files
(each of size 10MB). Note that for these experiments we used a
relatively small collection size since without the JSONiq rules
Hyracks would need to process the whole (possibly large) file
thus slowing its performance. The application of the Path Ex-
pression Rules results to a clear improvement of the execution
time for all queries. These rules decrease the buffer size between
operators since large sequences of objects are avoided. Instead,
each object is passed on to the next operator separately, resulting
in faster query execution.

Using the same dataset and having enabled the Path Expres-
sion rules, we now examine the effect of adding the Pipelining
rules (Figure 14). We observe that in all cases the pipelining
rules provide a drastic improvement (note the logarithmic scale!),

2500
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“o 1500
u
E 1000 B Without Path
F 1 Rules

With Path
300 - Rukes
0 T T
ao Qaob ai Qib Qa2
Queries

Figure 13: Execution Time before and after Path Expres-
sion Rules
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[
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Figure 14: Execution Time (logscale) before and after the
Pipelining Rules

speeding queries up by about two orders of magnitude. Apply-
ing these rules decreases the initial buffering requirement since
we don’t store the whole JSON document anymore, but just the
matching objects. It is worth noting that the best performance is
achieved by Q0b. QOb stores in memory only the parts of the ob-
jects whose key field is "date". By focusing only on the "date", this
gives the DATASCAN operator the opportunity to iterate over
much smaller tuples than Q0. Clearly, the smaller the argument
given to DATASCAN, the better for exploiting pipelining.
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Figure 15: Execution Time before and after Group-by
Rules



Having enabled both the path expression and the pipelining
rules, we proceed considering the effect of adding the Group-by
rules. The results are depicted in Figure 15. Clearly Q0, Q0b and
Q2 are not affected since the Group-by rules do not apply. The
Group-by rules improve the performance of both queries Q1 and
Q1b. The improvement for both queries comes from the same
rule, the rule that pushes the COUNT function inside the group-
by. We note that the second Group-by rule, the one performing
conversion, applies only to Q1; we do not enjoy an improvement
from the conversion rule here because Q1b is already written
in an optimized way. It is worth mentioning that the efficiency
of the group-by rules depends on the cardinality of the groups
created by the query. Clearly, the larger the groups, the better
the observed improvement.

To study the effectiveness of all of the rewrite rules as the
partition size increases, we ran an experiment where we varied
the collection size from 100MB to 400MB. Figure 16 (again with
a log scale) depicts the execution time for query Q1 both before
and after applying all three sets of rewrite rules. We chose Q1
here because it is indeed affected by all of the rules. We can see
that the system scales proportionally with the dataset size and
that the application of the rewrite rules results in a huge query
execution time improvement.

10000

1000

Time (s)

B Without Rules

With Rules
10

1 T T T 1
100 200 300 400

Data Size (MB)

Figure 16: Execution Time (logscale) for Q1 before and af-
ter Rewrite Rules for different Data Sizes

From the above experiments, we can conclude that the Pipelin-
ing rules provide the most significant impact. It is also worth
noting that the execution of the rewrite rules during query com-
pilation adds a minimal overhead (just a few msec) to the overall
query execution cost.

Single node Speed-up: To test the system’s single node speed
up, we used a dataset larger than our node’s available memory
space (8GB). Specifically, we used 88GB of JSON data, which we
progressively divided from one up to eight partitions (our CPU
has 4 cores and supports up to 8 hyperthreads). Each partition
corresponds to a thread. The results are shown in Figure 17.

For up to 4 partitions and for almost all query categories, we
achieve good speed-up since our observed execution time is re-
duced by a factor close to the number of threads that are being
used. On the other hand, when using 8 hyperthreaded partitions
we observe no performance improvements and in some cases
a slightly worst execution time. This is because our processing
is CPU bound (due to the JSON parsing), hence the two hyper-
threads are effectively run in sequence (on a single core). In
summary, we see the best results when we match the number of
partitions to the number of cores.
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Figure 17: Single Node Speed-up

Comparison with MongoDB and AsterixDB: When com-
paring our performance against MongoDB and AsterixDB we
observed that the performance of these systems is affected by
the structure of the input JSON file. For example, a file with the
structure of Listing 6 will be perceived by MongoDB and Aster-
ixDB as a single, large document. Since MongoDB and AsterixDB
are optimized to work with smaller documents (MongoDB has
in addition a document size limitation of 16MB), to make a fair
comparison we examined their performance while varying the
number of documents per file.

We first unwrapped all the JSON items inside "root" (Listing
6). This results to many individual documents per file, each doc-
ument containing a "metadata" JSON object and its correspond-
ing "results" JSON array (typically with 30 measurements).
We further manipulated the number of documents per file by
varying the number of member objects (measurements) inside
the "results" array from 30 (one month of measurements per
document) to 1 (one day/measurement per document).

Figure 18.a depicts the query time performance for query Q0b
for VXQuery, MongoDB, AsterixDB and AsterixDB(load); the
space used by each approach appears in Figure 18.b. The total
size of the dataset is 88GB and we vary the measurements per
JSON array.

In contrast to MongoDB and the AsterixDB approaches, we
note that the performance of VXQuery is independent of the
number of documents per file. MongoDB has better query time for
larger documents (30 measurements per array). Since MongoDB
performs compression per document, larger documents allow for
better compression and thus query time performance. This can
also be seen in figure 18.b, where the space requirements increase
as the document becomes smaller (and thus less compression is
possible). The space for both AsterixDB approaches and VXQuery
is independent from the document size (which is to be expected
as currently these systems do not use compression).

AsterixDB shows a different query performance behavior than
MongoDB. Its best performance is achieved for smaller document
sizes (one measurement per document). Since it shares the same
infrastructure as VXQuery, the difference in its performance rel-
ative to VXQuery is due to the lack of the JSONiq Pipeline Rules.
Without them, the system waits to first gather all the measure-
ments in the array before it moves them to the next stage of
processing. This holds for both AsterixDB and AsterixDB(load).
Among the two approaches, the AsterixDB(load) approach has
better query performance since it is optimized to work better for
data that is already in its own data model. Interestingly, for the
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Figure 18: (a) Execution Time and (b) Space Consumption for Different Measurement Sizes per Array

Measurements/Array ‘ 30 22 15 7 1
MongoDB 9000 11703 14443 17146 19876
AsterixDB (load) 24659 23987 24205 24547 24612

Table 1: Loading Time in sec for AsterixDB (load) and Mon-
goDB for Different Record Sizes

smaller document sizes (where compression is limited), Aster-
ixDB and MongoDB have similar query performance. For larger
document sizes their query performance difference seems to be
directly related to their data sizes. For example, with 30 measure-
ments per document, MongoDB uses about 4.5 times less space
due to compression and has about 4 times less query time than
AsterixDB(load).

Table 1 depicts the loading times for MongoDB and Aster-
ixDB(load) for different measurements/array (in contrast there
is no loading time for AsterixDB and VXQuery). The different
loading times can also be explained by the space consumed by
MongoDB and AsterixDB(load) (Figure 18.b). Specifically, Mon-
goDB needs less loading time due to its use of compression; as
expected, its loading time increases as the number of measure-
ments per array is decreased due to less compression.

Comparison with SparkSQL: We next compare with a well-
known NoSQL system, SparkSQL. In this experiment we ran Q1
both on VXQuery with the JSONiq rewrite rules and on Spark
SQL and we compared their execution times. We used a single
node and one core as the setup for both systems. We varied the
dataset sizes starting from 400MB up to 1GB. We could not run
experiments with larger input files because Spark required more
than the available memory space to load such larger datasets.

Table 2 shows the SparkSQL loading times for the datasets used
in this experiment. Figure 19 shows the query times for query
Q1 for the different data sizes. Note that the VXQuery bar shows
the total execution time for each file (which includes the loading
and query processing) while the SparkSQL bar corresponds to
the query processing time only. VXQuery’s total execution time
is slower than Spark’s query time for small files. The two sys-
tems show similar performance for 800MB files. However, as the
collection size increases, Spark’s behavior starts to deteriorate.
For the 1GB dataset our system’s overall performance is clearly
faster. If one counts also for the file loading time of SparkSQL
(the overhead added by loading and converting JSON data to
a SQL-like format), the VXQuery performance is faster. While
the overhead of the loading phase is not a significant burden for
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Figure 19: Spark SQL vs VXQuery Execution Time for
Query Q1 Using Different Data Sizes (MB)

l Data Size (MB) Loading Time (s) ‘

400 6.3
800 15
1000 40

Table 2: Loading Time for Spark SQL

l Data Size (MB) Spark Memory (MB) VXQuery Memory (MB) ‘

400 5650 1690
800 6230 1750
1000 7953 1760

Table 3: Data size to system memory in MBs

SparkSQL when considering small inputs (400MB) it becomes an
important limiting factor even for medium size files (800MB).

We also examined the memory allocated by both systems (Ta-
ble 3). The results show that VXQuery stores only data relevant
to the query in memory, as opposed to SparkSQL, which stores
everything. For file sizes above 2GB, the memory needs of Spark-
SQL exceeded the node’s available 16GB, so it was unable to load
the input data so as to query it.

5.4 Cluster Experiments

The goal of this section is to examine the cluster speed-up and
scale-up achieved by VXQuery due to our JSONiq rewrite rules
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and compare it with AsterixDB and MongoDB. For all the follow-
ing experiments we used 4 partitions per node which achieves
the best execution time as shown in the previous section.

To measure the cluster speed-up we started with a single node
and extended our cluster by one node until it reached to 9 nodes.
We used 803GB of JSON weather data which were evenly parti-
tioned among the nodes used in each experiment. This dataset
exceeds the available cluster memory. The results for this evalua-
tion are shown in Figure 20. We note that in all the cases cluster
speed-up is proportional to the number of nodes being used,
without depending on the type of the query. We observe that the
last query (Q2) takes the most time to execute. This is expected
because Q2 is a self join query, which means that it has to process
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twice the amount of data. On the other hand, for VXQuery, Q0b
has the best response time due to its small input search path as
described in previous sections.

To show the scalability achieved by VXQuery, we started with
a dataset of size 88GB which exceeds one node’s available mem-
ory (8GB). With each additional node added we add four parti-
tions totaling 88GB (hence when using 9 nodes the whole collec-
tion is 803GB). The results appear in Figure 21. As it can be seen
our system achieves very good scale-up performance; the query
execution time remains roughly the same, which means that the
additional data is processed in roughly the same amount of time.

Comparison with AsterixDB: In the cluster experiments,
we compare against AsterixDB (i.e. without loading; each dataset
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is provided as an external data source). As seen in the single-node
experiments, the best performance for AsterixDB is achieved
when "results" consists of only one measurement; thus we use
this structure for the following evaluation.

Following similar reasoning with the single-node comparison,
we observe that VXQuery performs better both for speed up
(Figure 22) and scale up (Figure 23), using queries QOb and Q2 as
representative examples.

Comparison with MongoDB: Similarly, we compare against
the MongoDB configuration that achieved the best performance

in the single-node experiments (i.e., "results" contains all monthly

measurements). Overall, MongoDB has faster query time for se-
lection queries than VXQuery (Figure 24 shows speedup for query

QOb; the Q0 query performed similarly). Since MongoDB per-
forms a compression during the loading phase of the dataset, the
dataset stored in the database is much smaller giving an advan-
tage to selection queries. However, VXQuery’s execution time
for query QOb is still comparable since its small input search path
gives the opportunity for the Pipeline rules to be exploited.

In contrast, VXQuery has a faster execution time than Mon-
goDB on join queries (like Q2). For this self-join, MongoDB tries
to put all the documents that share the same station and date in
the same document; thus creating huge documents which exceed
the 16MB document size limit causing it to fail. To overcome
this problem, we perform an additional step before the actual
join. We unwind the "results" array and we project only the
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Data Size (GB) Loading Time (sec) ‘
88 9000
803 81000
Table 4: Loading Time for MongoDB

necessary fields. After that, we perform the actual join on the

corresponding attributes (i.e. station, date of measurement).
On the other hand, in VXQuery there is no document size

limitation, making VXQuery more efficient in handling large

JSON items. Table 4 shows the MongoDB loading times per node.

This adds a huge overhead to the performance of the overall
system and it can be prohibitively large for real-time applications
where the dataset may not been known in advance.

Comparison with SparkSQL: As mentioned in the single
node experiments SparkSQL could not run experiments with
larger input files because of the required memory space to load
such larger datasets. Hence we omit multi-node experiments with
SparkSQL, since the dataset size will be very small to indicate
and difference in the execution time.

6 CONCLUSIONS AND FUTURE WORK

In this work we introduced two categories of rewrite rules (path
expression and pipelining rules) based on the JSONiq extension
to the XQuery specification. We also introduced a third rule

category, group-by rules, that apply to both XML and JSON data.

The rules enable new opportunities for parallelism by leveraging
pipelining; they also reduce the amount of memory required as
data is parsed from disk and passed up the pipeline. We integrated
these rules into an existing system, the Apache VXQuery query
engine. The resulting query engine is the first that can process
queries in an efficient and scalable manner on both XML and
JSON data. Through experimentation, we showed that these rules
improve performance for various selection, join and aggregation
queries. In particular, the pipelining rules improved performance
by several orders of magnitude. The system was also shown both
to speed-up and scale-up effectively. Moreover, when compared
with other systems that can handle JSON data, VXQuery shows
significant advantages. In particular, our system can directly
process JSON data efficiently without the need to first load it and
transform it to an internal data model.

We are currently working on supporting indexing over both
types of data (XML and JSON). Indexing presents a significant
challenge, as there is no simple way to decide the level at which
an object could be indexed; indexing will further improve the
system’s performance since the searched data volume will be
significantly reduced. All of the code for our JSONiq extension
is available through the Apache VXQuery site [4] and it will be
included in the next Apache VXQuery release. Furthermore, we
plan to add the proposed path and pipelining rules directly to
AsterixDB given that it shares the same infrastructure (Algebricks
and Hyracks) with VXQuery.
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