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ABSTRACT
Cliques are commonly used for social network analysis tasks, as

they are a good representation of close-knit groups of people. For

this reason (as well as for others), the problem of enumerating,

i.e., finding, all maximal cliques in a graph has received extensive

treatment. However, considering only complete subgraphs is too

restrictive in many real-life scenarios where “almost cliques” may

be even more useful. Hence, the notion of an s-clique, a clique
relaxation that allows every node to be at distance at most s
from every other node, has been introduced. Connected s-cliques
add the natural requirement of connectivity to the notion of an

s-clique.
This paper presents efficient algorithms for finding all maximal

connected s-cliques in a graph. We present a provably efficient al-

gorithm, which runs in polynomial delay. In addition, we present

several variants of the well-known Bron-Kerbosch algorithm

for maximal clique generation. Extensive experimentation over

both real and synthetic datasets shows the efficiency of our algo-

rithms, and their scalability with respect to graph size, density,

and choice of s .

1 INTRODUCTION
Maximal cliques have long been considered a key component in

the analysis of social networks [34]. Cliques are indeed highly

cohesive sets of nodes, and as such are used to detect close-knit

overlapping communities [13, 29, 36]. For this reason (among

others), there has been extensive work on algorithms for finding

all maximal cliques in a given graph, e.g., [1, 6, 8, 11, 17].

While the notion of a clique captures a completely cohesive

group of nodes within a graph, this definition is often overly re-

strictive. In practice, it is obvious that sets of nodes can represent

cohesive groups even if several links are missing; for example,

within a community not all pairs of people will be friends. In ad-

dition, as networks are often built from observation of empirical

data, there may be real-life links that are missing within the data

captured. Searching for groups of nodes that are cliques will miss

highly related groups of nodes for which links have been omitted

from the dataset. To overcome these limitations, relaxations to

the notion of a clique have been studied [30].

One useful relaxation to the notion of a clique, called an s-
clique, was introduced over 65 years ago [24] to describe and

measure connectivity in social groups. Given a graphG, we say
that a set of nodesU is an s-clique, where s is a (typically small)

natural number, if every pair of nodes u,v ∈ U is at distance at

most s one from another in G. In particular, when s = 1, the no-

tions of a clique and an s-clique coincide. An s-clique is maximal
if it cannot be extended with additional nodes, while retaining

the required distances property. Unlike cliques, s-cliques may be
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Figure 1: Example of a small social network G.

unconnected. Connected s-cliques add the natural requirement

of connectivity.

Example 1.1. Consider the example of a small social network

G in Figure 1. Graph G contains six maximal cliques, namely

{a,b, c}, {b, c,d}, {d, e, f }, {e, f ,h}, {d,д}, {д,h}, where a is a

shorthand for Ann,b is a shorthand for Bob, and so on. This graph
contains three maximal 2-cliques {a,b, c,d}, {b, c,d, e, f ,д} and
{d, e, f ,д,h}. Intuitively, the 2-cliques seem to better capture the

graph communities, as they are a bit coarser. They also highlight

the fact that d is a bridge between the communities.

GraphG contains twomaximal 3-cliques {a,b, c,d, e, f ,д} and
{b, c,d, e, f ,д,h}, which (by their symmetric difference) indicate

the people who, if linked, could help merge the communities.

Thus, such a link might be suggested to Ann and Hal. Finally, we

note that there is a single maximal 4-clique in G , as the diameter

of G is four.

This paper studies the problem of enumerating (i.e., finding) all

maximal connected s-cliques in a graph. Maximal clique enumer-

ation has been shown to be useful in other areas (beyond social

network analysis), e.g., finding subgraphs common to a set of in-

put graphs [19], genome mapping and protein clustering in bioin-

formatics [14, 25], clustering for wireless sensornetworks [4],

and statistical analysis of financial networks [5]. As s-cliques are
relaxations of cliques, they allow significantly greater flexibil-

ity, and may be useful for the above applications, e.g., to find

subgraphs that are “almost common” to input graphs (i.e., that

appear in slight variations in the various input graphs), to inte-

grate genome mappings based on very similar subportions or

to cluster protein sequences while allowing more flexibly for

missing information.

An algorithm for enumerating maximal connected s-cliques
can be used for new and interesting applications, such as link

prediction in social networks [22], since missing direct links in

large s-cliques are prime candidates for link suggestion. Note

that large cliques could not be used for this purpose, as they are

missing no links at all, by definition. Similarly, another possi-

ble application would be to help identify hidden connections in

a social network, by finding maximal s-cliques that may form

unidentified communities. We leave the development of such ap-

plications to future work, and focus in this paper on algorithms

for efficiently enumerating all maximal s-cliques from a given

graph.
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The main contributions of this paper are three new algorithms

for enumerating all maximal connected s-cliques from a given

graph G. While it may seem from Example 1.1 that graphs have

a small (polynomial) number of maximal s-cliques, this is in fact

not always the case. As we demonstrate later, a graph may have

exponentially many maximal s-cliques. (This was already well

known for s = 1, and is true for larger values of s as well.) Hence,
we cannot hope to derive a polynomial time algorithm for the

problem at hand, as it may take exponential time to simply print

the output. Instead, our first algorithm guarantees polynomial

delay between results, i.e., the time to produce the first result,

between every pair of subsequent results, and from the final

result until completion, is polynomial.

The other two algorithms we present are adaptations of the

well-known Bron-Kerbosch method, originally developed for

finding all maximal cliques, to the problem at hand. While Bron-

Kerbosch clique enumeration does not run in polynomial delay,

it is known to be the fastest method, in practice, for maximal

clique enumeration (when used with some specific optimizations).

Hence, adapting this method to s-cliques is of interest. Optimiza-

tions for our adaptations, including pivoting and checking for

feasibility, are studied. Extensive experimentation, over both real

and synthetic datasets, proves the efficiency of our techniques,

as well as their suitability for use over social network data.

2 RELATEDWORK
Due to their numerous uses, the problem of finding all maximal

cliques of a graph has received extensive attention. In the worst

case, there can be exponentially many maximal cliques in a graph.

In fact, [26] shows that the maximal number of cliques in graph

with n nodes is O(3n/3). Thus, the focus is on finding maximal

cliques in time that is efficient with respect to the input and

output. One well-known algorithm is that of Bron-Kerbosch [6],

which, with the pivoting improvement of [32], guarantees a worst-

time complexity of O(3n/3) for graphs of size n. Hence the total
time spent is no worse than required to return all maximal cliques

on the graph with the most possible cliques.

Additional work on maximal clique enumeration has focused

on output-efficient algorithms, i.e., algorithms whose runtime

is a function of the number of maximal cliques in the given

input graph [1, 17]. Several works have studied enumeration

over sparse graphs [7, 12], as such graphs tend to be common

in practice. Recent work has also focused on maximal clique

enumeration over uncertain graphs [38], and over massive net-

works [9, 11].

Enumeration of maximal graphs for several relaxations of the

notion of a clique has also been studied. The problem of mining

all maximal k-plexes was studied in [3, 35], and enumeration of

maximal c-isolated cliques was studied in [15]. There has also

been work on mining quasi-cliques (i.e., densest subgraphs) in a

single graph [23, 33, 37], and over a set of graphs [16], as well as

mining locally dense subgraphs [31].

Among clique relaxations, both quasi-cliques and s-clubs ap-
pear to be most related to s-cliques. Formally, quasi-cliques are
parameterized by a value γ , i.e., a subset S of nodes in a graph

G is a γ -quasi-clique if every node in S is connected to at least

γ (|S | − 1) nodes in S . It has been shown [16] that there is a strong

relationship between the parameter γ , and the diameter of the

induced subgraph ofG on S . For example, if
1

2
≤ γ ≤ |S |−2

|S |−1
, then

the induced subgraph on S will have diameter at most 2. At first

glance, it would seem then that this property can be utilized to

enumerate (connected) s-cliques, e.g., by enumerating γ -quasi-
cliques with an appropriate (s-dependent) choice of γ . In fact,

this is not the case, and previous algorithms for γ -quasi-cliques
do not enumerate s-cliques. The difference is subtle, as every pair
of nodes in an s-clique S is of distance at most s inG , but may be

of larger distance in the graph induced by S .
A subsetU of nodes in a graphG is an s-club, if the diameter of

U is at most s , i.e., if there is a path between every two nodes in

U that only traverses nodes inU , that is of length at most s . This
definition is different from that of s-cliques, where the distance
between nodes is determined by the shortest path in the entire

graph G. Similar to the maximum clique problem, the problem

of finding an s-club of maximum size is also NP-complete [2].

However, unlike cliques and s-cliques, s-clubs are not heredi-

tary (i.e., a subgraph of an s-club is not necessarily an s-club),
and indeed s-club maximality testing is NP-complete [28]. Since

maximal s-clubs cannot be efficiently recognized, enumerating

maximal s-clubs cannot be achieved in polynomial delay (unlike

enumerating maximal connected s-cliques, as we show in this

paper).

The enumeration problem for connected s-cliques has not yet
been studied. However, the optimization problem for s-cliques,
i.e., the NP-complete problem of finding an s-clique of maximal

size, was studied in [2]. Enumerating s-cliques with given labels,

over a labeled graph, is also NP-complete problem, and is stud-

ied in [18]. Finally, [28] has shown that for graphs with some

special properties, the notions of connected s-cliques and s-clubs
coincide.

3 FORMAL FRAMEWORK
Graphs and Induced Subgraphs.We useG, H (possibly with

subscripts or superscripts) to denote simple undirected graphs.

We use V (G) to denote the nodes of G and E(G) to denote the

edges of G. Note that an edge is a pair {v,u} where v and u are

two different nodes in V (G).
We will often be interested in induced subgraphs of a given

graph G. Formally, a subset of nodes U ⊆ V (G) defines the in-
duced subgraphG[U ] ofG consisting of precisely the set of nodes

U , and the edges in E(G) that are incident only on nodes inU . In

notation, we have V (G[U ]) = U and E(G[U ]) = E(G) ∩U 2
. We

say that H is an induced subgraph of G if H = G[U ], for someU ,

and denote this fact by H ⊑ G.
We use distG (u,v) to denote the number of edges on the short-

est path between u and v in G and N i
G (v) to denote the set

N i
G (v) := {u | distG (v,u) ≤ i and u , v}

of the nodes at distance at most i from v in G. We use NG (v)
for the special case where i = 1, i.e., NG (v) contains all direct

neighbors of v . Extending this notation, we use N∀,i
G (V ) and

N∃,i
G (V ) to denote the set of nodes at distance at most i from all

and at least one, respectively, v in V , i.e.,

N∀,i
G (V ) := {u | ∀v ∈ V , distG (v,u) ≤ i and u < V } ,

N∃,i
G (V ) := {u | ∃v ∈ V , distG (v,u) ≤ i and u < V } .

If G is clear from the context, we will omit the subscript.

Example 3.1. Consider graph G from Figure 1. Let V = {e,h}.
We have:

N∃,1(V ) = {d, f ,д} N∀,1(V ) = { f }
N∃,2(V ) = N∃,1(V ) ∪ {b, c} N∀,2(V ) = N∃,1(V ) .
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Figure 2: Graph G ′.

Cliques and s-Cliques. A set of nodes U in a graph G is a

clique if all pairs u,v ∈ U are adjacent one to another in G.
Cliques are useful in many problem areas, as they represent fully

cohesive portions ofG. As discussed earlier, in many scenarios,

the requirement that a set of nodes form a clique may be overly

restrictive.

Previous work [30] has studied various relaxations of the no-

tion of a clique. In the following, let s be an integer and U be a

set of nodes in a graph G. We say that

• U is an s-clique if, for allu,v ∈ U , it holds that distG (u,v) ≤
s .
• U is a connected s-clique ifU is an s-clique and the induced
graph G[U ] is connected.

When s = 1, cliques coincide with both s-cliques and connected

s-cliques.

Example 3.2. Consider graphG from Figure 1. The set of nodes

{a,b, c,d, e, f ,д} is a (connected) 3-clique, but is not a 2-clique,
e.g., distG (a, f ) = 3 > 2. The set of nodes {a,b, c,d} is a con-

nected 2-clique, and the set {a,d} is a 2-clique, but is not a con-
nected 2-clique.

We say that U is a maximal (connected) s-clique in G, if U is

a (connected) s-clique, and for allU ′ such that U ( U ′, it holds
thatU ′ is not a (connected) s-clique. It is natural to focus onmax-
imal (connected) s-cliques. Indeed, every (connected) s-clique is
contained in some maximal (connected) s-clique. Hence, maximal

(connected) s-cliques can be viewed as a succinct representation

for all (connected) s-cliques.

Example 3.3. Consider graph G ′, from Figure 2. Let

V = {v1,v2,v3} U = {u1,2,u1,3,u2,1,u2,3,u3,1,u3,2}

V ′ = {v ′
1
,v ′

2
,v ′

3
} W = {w,w ′}

Now, it is easy to observe that every subset C of V ∪ V ′ that
does not contain both vi and v

′
i for some i ≤ 3 is a 2-clique.

Such 2-cliques are not maximal, however. A subset C ⊆ V ∪
V ′ ∪W will be a maximal connected 2-clique if (1) C contains

precisely one amongvi ,v
′
i for each i ≤ 3, and (2)C containsw,w ′.

Thus, for example, {v1,v2,v
′
3
} is a 2-clique (but not maximal

nor connected), and {v1,v2,v
′
3
,w,w ′} is a maximal connected 2-

clique inG . Note that there are additional ways to form maximal

connected 2-cliques, when taking nodes from U . For example,

{v1,v
′
2
,w,w ′,u1,2} is also a maximal connected 2-clique.

We can now formally state our problem of interest: Given a
graph G and an integer s , enumerate (i.e., find, one after another)
all maximal connected s-cliques in G. As larger s-cliques can,
naturally, be more interesting, we will also briefly consider a

v1

v2 v6

v3 v4 v5

(a) H

v1

v2 v6

v3 v4 v5

(b) H 2

Figure 3: Graph H and corresponding graph H2.

related problem, i.e., that of finding maximal s-cliques of size at
least k , for some given number k .

Remark 1. We do not consider enumeration of maximal s-
cliques that are not necessarily connected. This is because enu-
meration of maximal s-cliques over a graph G can be reduced to
maximal clique enumeration: DefineGs as the graph containing an
edge between nodes u,v if they are of distance at most s inG . Then,
the maximal cliques inGs are precisely the maximal s-cliques inG .
However, this reduction is not applicable for connected s-cliques,
as cliques in Gs can correspond to unconnected sets in G. Hence,
enumeration of maximal connected s-cliques is more difficult, as
the following example demonstrates.

Consider the graphs H , H2 in Figures 3 (a) and (b). The graph
H2 contains an edge between every pair of nodes in H that are
of distance at most 2 one from another. Every 2-clique in H is a
clique (in the standard sense) in H2. Observe, for example, that
the sets C1 = {v1,v2,v6} and C2 = {v1,v3,v5} are 2-cliques in H
and cliques in H2. Unlike the set C1, the set C2 is not a connected
2-clique. Indeed no two nodes in C2 are connected in H , and thus,
C2 forms an unconnected subgraph of H . This cannot be seen when
looking at H2 alone; the information about connectedness is lost in
the given graph transformation.

Wenote that due to the fact that the number of sets in the result

can be exponential in the size of G, the problem of enumerating

all maximal connected s-cliques cannot be solved in polynomial

time. Hence, exponential time may be needed just to print the

output. Therefore, we focus on finding algorithms whose runtime

is either provably efficient with respect to the output size (e.g.,

polynomial delay) or of high efficiency in practice.

Example 3.4. We demonstrate a graph with exponentially

many maximal connected s-cliques for s = 2. It is easy to extend

this idea to derive a graph with exponentially many maximal

connected s-cliques for other values of s . Let n be an integer. Let

V = {vi | i ≤ n} U = {ui, j | i , j ≤ n}

V ′ = {v ′i | i ≤ n} W = {w,w ′}

be sets of nodes. We add edges {vi ,ui, j }, {ui, j ,v
′
j } for all i ,

j ≤ n, as well as edges {vi ,w}, {v
′
i ,w
′} for all i ≤ n. Finally, we

add the edge {w,w ′}. Graph G ′ from Figure 2 has precisely this

structure, for n = 3.

Every pair of nodesvi ,v
′
j where i , j have distance 2 one from

another, while vi ,v
′
i have distance 3. Nodesw,w

′
are at distance

at most 2 from every node in the graph. Thus, it is easy to see

that every choice of nodes including precisely one among vi ,v
′
i ,

for all i ≤ n, as well as nodesw,w ′, yields a maximal connected

2-clique. (Note that nodes ui, j cannot be added to such sets.)

Thus, the graph derived has at least 2
n
maximal connected 2-

cliques, while it has only 2n +n(n − 1)+ 2 nodes, i.e., the number

of maximal connected 2-cliques is exponential in the size of the

graph.
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Algorithm PolyDelayEnum(G, s)
1. Q ← EmptyQueue()

2. I ← EmptyIndex()

3. C ← ExtendMax(∅,G, s)
4. Enqeue(Q,C)
5. Insert(I,C)
6. while NotEmpty(Q)
7. do C ← Deqeue(Q)

8. Print(C)

9. for v ∈ N∃,1
G (C)

10. C ′ ← ExtendMax({v},G[C ∪ {v}], s)
11. C ′′ ← ExtendMax(C ′,G, s)
12. if C ′′ < I
13. then Enqeue(Q,C ′′)
14. Insert(I,C ′′)

Algorithm ExtendMax(C,G, s)
1. if C = ∅
2. then add an arbitrary node to C

3. while ∃v ∈ N∀,s
G (C) ∩ N∃,1

G (C)
4. do C ← C ∪ {v}
5. return C

Figure 4: An polynomial delay algorithm for enumerating
all maximal connected s-cliques.

4 A POLYNOMIAL DELAY ALGORITHM
We present a provably efficient algorithm for enumerating all

maximal connected s-cliques in a given graph G. This algorithm
is inspired by the general purpose algorithm for enumerating

maximal subgraphs satisfying some connected-hereditary prop-

erty, appearing in [10]. Our algorithm, called PolyDelayEnum,

appears in Figure 4.

The algorithm PolyDelayEnum uses two data structures:

• Q, a queue, containing maximal connected s-cliques that
must still be processed. Later, in Section 6, we will also

consider using a priority queue for Q.

• I, an index containing maximal connected s-cliques that
have already been generated. In order to achieve the re-

quired runtime, access to I (both insertions and member-

ship checks) must be in time that is at most logarithmic in

the size of I. Thus, for example, I can be implemented as

a BTree.

PolyDelayEnum uses a sub-procedure, called ExtendMax,

which is given, as input, a set C , a graph G and the integer s .
We note that the set C provided as input is always a connected

s-clique. ExtendMax returns a set C ′ such that

• C ⊆ C ′ (this is ensured as C ′ is created by adding nodes

to C);
• C ′ is a connected s-clique (as we only add a node that is

connected to and of distance at most s from the nodes

presently in C);
• C ′ is maximal in G, with respect to the above two proper-

ties (as we continue to add nodes as long as possible).

For example, when callingExtendMaxwith the empty set (Line 3

of PolyDelayEnum), a single maximal connected s-clique is re-
turned. In general, the output of ExtendMaxmay differ, depend-

ing on the order in which we iterate over the nodes of G. In the

special case that G is almost a connected s-clique, i.e., contains
a single node that contradicts this property (as occurs in the

invocation of ExtendMax in Line 10 of PolyDelayEnum), there

is only one possible output for ExtendMax.

Now, PolyDelayEnum begins by finding a single maximal

connected s-clique, using ExtendMax, and adding this set to

both Q and I (Lines 1–5). While Q is not empty, we remove

a maximal connected s-clique C from Q, and print C (Lines 6–

8). Now, for each node v that is a neighbor of some node in C ,
we proceed as follows. First (Line 10) we find the s-clique C ′

containing v that is maximal with respect to G[C ∪ {v}]. Next
(Line 11), we extend this set so as to derive an s-clique C ′′ that
is maximal with respect to G. If we have not created C ′′ yet (i.e.,
C ′′ < I), we add it to Q and I (Lines 12–14). We note that a

key aspect of the algorithm is the fact that ExtendMax is called

twice, consecutively (Lines 10 and 11) with different graphs as

input. The first invocation guides the creation of a new connected

s-clique C ′ to contain portions from C . The second invocation

ensures maximality with respect to the input graph G.

Example 4.1. Consider calling PolyDelayEnumwith the graph

G from Figure 1 and s = 2. At first, an arbitrary 2-clique will

be created, such as C = {a,b, c,d}. This set C will be added into

the queue Q. When removed from the queue (Line 7), we will

print C and then iterate over the set N∃,1
G (C) = {e, f ,д}. Con-

sider the case where we choose v = e (in Line 9). We will call

ExtendMax({e},G[C ∪ {e}], 2), deriving the setC ′ = {b, c,d, e}.
There is only one way to extend C ′ in order to derive a maximal

connected 2-clique. This extension will be returned from the next

call to ExtendMax in Line 11,C ′′ = {b, c,d, e, f ,д}, and inserted
into the queue. Execution will proceed similarly, first for all other

neighbors of C , which will return the same result C ′′, that will
not be enqueued again. Then, the next graph dequeued will be

C ′′, that will form the last s-clique {d, e, f ,д,h} when h is added.

The following result holds. (In practice, the delay between

answers is typically lower than the theoretical result.)

Theorem 4.2. Given a connected graph G and an integer s ,
the algorithm PolyDelayEnum prints every maximal connected s-
clique inG , precisely once. In addition, the delay before printing the
first answer, and between every two consecutive answers, and from
the time the last answer is printed until termination, is O(|V (G)|3).

Proof. We start by showing correctness of the algorithm.

First, it is immediate from the structure of ExtendMax that

every set printed must be a maximal connected s-clique. Second,
observe that every set in printed at most once, as we only insert

C into Q if it was not already generated in the past (i.e., does not

appear in I). It remains to show that every maximal connected

s-clique is indeed printed.

Let v be an arbitrary node in G. Then, there is some set C ,
printed by PolyDelayEnum, that containsv . (This can be shown

by induction on the distance of v from the closest node in the

first set generated by PolyDelayEnum.)

We can now prove that every maximal connected s-clique is
printed. Let C∗ be some maximal connected s-clique. Let Cm be

the set printed by PolyDelayEnum for which the largest con-

nected component inC∗∩Cm is maximal. (If there are ties, choose

Cm arbitrarily among all such sets.) If Cm = C∗, we have indeed
printed C∗. Suppose otherwise. Observe first that Cm ∩C∗ can-
not be empty, as PolyDelayEnum must print some set contain-

ing each node in C∗. Now, since Cm , C∗, there is some node

v ∈ C∗ −Cm , such that v is connected to the largest connected

component inCm ∩C∗. After dequeuingCm from Q in Line 7, we

will iterate over the node v in Line 9. Then, Line 10 will return a
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Algorithm Cliqes(R, P ,X )

1. if P = ∅ and X = ∅
2. then print(R)
3. for v ∈ P
4. do Cliqes(R ∪ {v}, P ∩ N (v),X ∩ N (v))
5. P ← P − {v}
6. X ← X ∪ {v}

Figure 5: Bron-Kerbosch algorithm for enumerating max-
imal cliques.

set C ′ containing v , as well as the largest connected component

inCm ∩C∗ (since these together form a connected s-clique). This
set will be enlarged to C ′′ in Line 11. Now, C ′′ is either inserted
into Q (and eventually printed) or was already inserted in Q (and

eventually printed). Observe that the largest connected compo-

nent in C ′′ ∩ C∗ must be larger than that in Cm ∩ C∗, which
contradicts the maximality of choice of Cm . Hence, it must be

Cm = C∗, and C∗ is indeed printed.

We will now show that the delay is O(|V (G)|3). First, note
that by a preprocessing step we can compute N s

G (v) for every

node v ∈ V (G) in time O(|V (G)|3). In addition, ExtendMax

runs in O(|V (G)|2), since it traverses each edge at most once, in

increasing distance from the setC . Now, the delay before printing
the first answer is determined by (1) the preprocessing step which
finds the distances between nodes and (2) running ExtendMax

in Line 3. Therefore the delay before printing the first answer is

O(|V (G)|3).
The delay between every two consecutive answers, and from

the time the last answer is printed until termination, is deter-

mined by the runtime of a single iteration of the while loop in

Line 6 in PolyDelayEnum, because in each iteration a single

answer is printed and the last answer is printed in the last iter-

ation. In each iteration, the for loop in Line 9 goes over the set

N∃,1
G (C), that is of size O(|V (G)|), and for each node v in the set

calls ExtendMax, which runs in O(|V (G)|2). In total we derive

that each iteration runs in O(|V (G)|3). �

5 ADAPTATION OF BRON-KERBOSCH
ALGORITHM

We start by reviewing the Bron-Kerbosch algorithm for enumerat-

ing maximal cliques. We then present strategies and optimization

techniques to adapt this algorithm for enumerating maximal

connected s-cliques.

5.1 Maximal Cliques
The Bron-Kerbosch algorithm for enumerating maximal cliques

appears in Figure 5. This algorithm, called Cliqes, recursively

searches for all maximal cliques. When called with sets R, X and

P , it searches for all maximal cliques containing all nodes in R,
possibly some nodes in P , and no nodes in X . In particular, in the

first invocation, we send the empty set for R and X , and the set

V (G) for P .
Throughout the execution, R is always a clique. The sets P and

X are disjoint, and always satisfy that P ∪ X contains precisely

every node that is connected to all nodes in R (i.e., those can

potentially be used to extend R). Therefore, when P and X are

both empty, R is a maximal clique. Otherwise, if P is not empty,

the algorithm attempts to add each node v ∈ P in turn to R,
updating P and X to contain only nodes that are connected to

v (in addition to being connected to the rest of R). After the
recursive call that includes v , the node v is added to X , so as to

create additional unseen cliques—those that exclude v . (Cliques
containing v will be produced in the recursive call.)

The algorithm Cliqes, as presented in Figure 5, runs quite

poorly in practice. To improve the runtime, [32] presented a

technique called pivoting to reduce the branching factor of the

recursion, by iterating over only a subset of P . In particular,

instead of iterating over P , their algorithm:

• first, chooses a pivot node u ∈ P ∪ X .

• then, iterates only over the nodes v in P − N (u).

The intuition behind this improvement is that, for any node

u, every maximal clique must either contain u, or contain some

node that is not a neighbor ofu. (Otherwise, if the maximal clique

contains only neighbors of u, it must also contain u.) Hence, it is
sufficient to iterate over the nodes in P , other than the neighbors

of u. The pivot node is chosen so as to minimize the set P −N (u).

This optimization ensures a worst case runtime of O(3n/3), which

is order of the largest number of cliques possible in a graph of n
nodes. Previous work has shown that this improvement causes

the algorithm to run very well in practice.
1

5.2 Maximal Connected s-Cliques
We adapt the Bron-Kerbosch algorithm to return all maximal

connected s-cliques, instead of all maximal cliques. There are,

perhaps, two different natural approaches to adapt the algorithm

Cliqe to this new setting:

(1) R is always a connected s-clique: In the Cliqe algo-

rithm, we have seen that R is always a clique. It is natural

to adapt this algorithm so as to preserve the invariant that

R is always a connected s-clique. This approach is taken

in CsCliqes1 in Figure 6. Thus, when choosing a node

v with which to extend R (Line 3), we will only choose

nodes from P that are adjacent to some node in R. After
choosingv , we perform a recursive call, withv added to R
and we intersect sets P and X with the nodes of distance

at most s from v . Thus, throughout the algorithm, P and

X always contain precisely the nodes at distance at most

s from every node in R. Only such nodes may possibly be

used to extend R in the future.

Note the final change in the algorithm, in the condition

for printing R (Line 1). We print R only if it is maximal,

i.e., there are no nodes at distance at most s from R (i.e.,

nodes in P or X ) that are adjacent to R.
(2) R is always an s-clique, but may be unconnected: In

the second adaptation, we do not requireR to be connected.

In the algorithm CsCliqes2 in Figure 7, the set R may be

unconnected. To observe this, see that in Line 3 we can

add any node v from P to R, even if v is not adjacent to R.
Thus, R will be an s-clique throughout the execution, but
may be unconnected. This requires an additional change

to the condition for printing R in Line 1—we print R only

if it is connected.

Example 5.1. Consider using CsCliqes1 to find all maximal

connected 2-cliques for graph H in Figure 3. When first called,

R = X = ∅, P = {v1, . . . ,v6} and s = 2. Since, R is empty, we

iterate over all nodes in P . Suppose the first node chosen is v1.

1
Additional optimizations to the algorithm have been considered in the past, such

as iterating over v in the outermost recursion according to a degeneracy ordering

of G [12] and early recognition of special branching cases [27]. Such optimizations

can also be included in our algorithm.
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Algorithm CsCliqes1(R, P ,X , s)
1. if P ∩ N∃,1(R) = ∅ and X ∩ N∃,1(R) = ∅
2. then print(R)
3. for v ∈ P ∩ N∃,1(R)

◃ If R = ∅, then take N∃,1(R) = G(V )
4. do CsCliqes1(R ∪ {v}, P ∩ N s (v),X ∩ N s (v), s)
5. P ← P − {v}
6. X ← X ∪ {v}

Figure 6: Adaptation of Bron-Kerbosch algorithm for enu-
merating all maximal connected s-cliques. Throughout
the execution, R is always a connected s-clique.

Algorithm CsCliqes2(R, P ,X , s)
1. if P ∩ N∃,1(R) = ∅ and X ∩ N∃,1(R) = ∅ and

R is connected

2. then print(R)
3. for v ∈ P
4. do CsCliqes2(R ∪ {v}, P ∩ N s (v), X ∩ N s (v), s)
5. P ← P − {v}
6. X ← X ∪ {v}

Figure 7: Adaptation of Bron-Kerbosch algorithm for enu-
merating all maximal connected s-cliques. Throughout
the execution, R is always an s-clique, but may be uncon-
nected.

In the recursive call to CsCliqes1, we will have R = {v1}, P =
{v2,v3,v5,v6} and X = ∅. When a recursive call is made for the

second node v2, we will have R = {v2}, P = {v3,v4,v6} and X =
{v1}. (Note thatv1 was removed from P in Line 5 and added to X
in Line 6, in the previous iteration.) Now, consider the execution

of CsCliqes1({v2}, {v3,v4,v6}, {v1}, 2). We will iterate over

nodes that are neighbors of {v2} in {v3,v4,v6}, i.e., only over v3.

This will cause a single recursive call toCsCliqes1({v2,v3}, {v4}

, {v1}, 2), which will eventually produce the maximal connected

2-clique {v2,v3,v4}.

We contrast this execution with the execution of algorithm

CsCliqes2. At first, the algorithms will proceed in the same

fashion, as R = ∅ and both algorithms will iterate over all nodes

in the graph. However, consider the execution of the recursive

call to CsCliqes2({v2}, {v3,v4,v6}, {v1}, 2). Instead of iterat-

ing only over neighbors of v2 in {v3,v4,v6}, we will iterate

over all nodes in this set. Assuming the order of iteration is

v3 < v4 < v6, this will cause two additional recursive calls:

CsCliqes2({v2,v4}, ∅, {v3}, 2) andCsCliqes2({v2,v6}, ∅, {v1

,v4}, 2). Neither of these calls will produce maximal connected

s-cliques.

When comparing these two approaches, it is immediately

obvious that CsCliqes2 does extra work that is avoided by

CsCliqes1, as CsCliqes2 can create many sets that will never

be printed, as they are unconnected. The algorithm CsCliqes1

completely avoids this by ensuring that R is connected through-

out its execution. Notwithstanding the fact that CsCliqes1

would seem to be much superior to CsCliqes2, in fact, we will

see that the latter is much more amenable to optimizations (in-

cluding the pivoting technique). This will be discussed further

in Section 5.3. However, before discussing this further, we prove

correctness of both algorithms.

In order to prove correctness, let ≺ be an arbitrary ordering

of the nodes in G. We assume that the iteration over (the subset

of) P in Line 3 of both cscliqesi and CsCliqes2 follows this

ordering, i.e., if v,v ′ ∈ P (resp. v,v ′ ∈ P ∩ N∃,1(R)) and v ≺ v ′,
then we will choose to iterate over v before iterating over v ′.
The ordering ≺ implies two types of total orderings over nodes

in a connected s-clique C . Let ω2(C) = v1, . . . ,vk be the total

ordering overC , defined by ≺. Letω1(C) = u1, . . . ,uk be the total

ordering over C , defined as follows:

• u1 = v1;

• for all i > 1, it holds thatui = vj wherevj in the first node

according to ω2(C) that is not already among u1, . . . ,ui−1,

for which G[{u1, . . . ,ui }] is connected.

Example 5.2. Consider graph G ′ from Figure 2. Let ≺ be the

total ordering that orders the nodes as seen in the graph from

left to right, top to bottom, i.e.,

v1 ≺ · · · ≺ w ≺ u1,2 ≺ · · · ≺ u3,2 ≺ v
′
1
≺ · · · ≺ w ′ .

Consider the setC = {v1,v
′
2
,w,w ′,u1,2}. Then, we haveω1(C) =

v1,w,u1,2,v
′
2
,w ′.

We consider the execution tree Ti formed by (recursive) calls to

CsCliqesi , for i = 1, 2. To be precise, this tree has nodes of the

form (R, P ,X ) where R, P ,X are subsets of V (G). An edge from a

node (R, P ,X ) to a node (R′, P ′,X ′) is labeled by a node v . This
tree is defined recursively as follows: The root of Ti is (∅,V (G), ∅).
A node (R, P ,X ) has a child (R′, P ′,X ′) with a connecting edge

labeled v if the call to CsCliqesi with parameters (R, P ,X )
results in a recursive call with parameters (R′, P ′,X ′) when the

node v is chosen in Line 3.

Given a series of nodes ū = u1, . . . ,un , we say that ū is a path

in Ti if there is a path of edges starting from the root of Ti with

labels u1, . . . ,un (precisely in that order). A node (R, P ,X ) in Ti
is an output node if R is printed by CsCliqesi , during the call

with parameters (R, P ,X ).
Several important properties of Ti hold.

Lemma 5.3. Let G be a graph and let Ti be the execution tree
derived by callingCsCliqesi(∅,V (G), ∅, s). Let (R, P ,X ) be a node
in Ti .

(1) The set R is an s-clique;
(2) If i = 1, the set R is connected;
(3) P ∪ X = N∀,s (R);
(4) Letu1, . . . ,uk be the path to (R, P ,X ) in execution tree Ti . If

u1, . . . ,uk is a prefix of ωi (C) for some maximal connected
s-clique C , then C − R ⊆ P ;

(5) For every other node (R′, P ′,X ′) in Ti it holds that R , R′;
(6) If C is a maximal connected s-clique, then ωi (C) is a path

in Ti .

Proof. We show Properties 1–4 by induction on the depth

(i.e., distance from the root) of the node (R, P ,X ). For base case
of distance 0, i.e., the root node, all four properties are immediate.

(For Property 3, note that R = ∅, and thus, every node inG is of

distance at most s from all nodes in R. Indeed P = V (G)).
Now, assume that Properties 1–4 hold for nodes of distance at

most k from the root. We prove the required for nodes at distance

k + 1. Let (R, P ,X ) be a node at distance k + 1 from the root,

and let (R′, P ′,X ′) be its parent. Let v be the label of the edge

from (R′, P ′,X ′) to (R, P ,X ). By the induction hypothesis, R′ is
an s-clique, if i = 1, R′ is connected, and every node in P ′ is of
distance at most s from all nodes in R′. Since v is chosen from

66



P ′, and is chosen so as to be connected to R′, if i = 1, it follows

immediately that R satisfies Properties 1 and 2.

Let S ′ = N∀,s (R′). By the induction hypothesis, S ′ = P ′ ∪ X ′.
During the loop of Line 3, before the recursive call CsCliqesi(R,
P ,X , s), we remove nodes from P ′ and add them to X ′. Thus,
when node v is chosen in Line 3, it still holds that S ′ = P ′ ∪ X ′.
Let S be the set of nodes that are of distance at most s from all

nodes in R′. Clearly, S = S ′ ∩ N s (v). Now, since P = P ′ ∩ N s (v)
and X = X ′ ∩ N s (v), it follows that S = P ∪ X , as required in

Property 3.

Finally, suppose that u1, . . . ,uk+1
is a prefix of ωi (C) for some

maximal connected s-cliqueC . This implies that alsou1, . . . ,uk is

also a prefix of ωi (C). Hence, C − R
′ ⊆ P ′. Since we only choose,

in Line 3, a node that is in P ′ (and hence, by Property 3 is of

distance at most s from every node in R′) and if i = 1, we only

continue with nodes that are connected to R, it follows that no
node in C is removed from P in Line 5. Otherwise, this would

contradict the minimality of choice of uk+1
in the definition of

ωi (C). Hence, it follows thatC −R ⊆ P , as required in Property 4.

Now, we show Property 5. Let (R′′, P ′′,X ′′) be the lowest

common ancestor of (R, P ,X ) and (R′, P ′,X ′). We consider two

cases:

• Case 1: (R′′, P ′′,X ′′) is the node (R, P ,X ). (The case is

which (R′′, P ′′,X ′′) is the node (R′, P ′,X ′) is identical.)
In this case, Let v be the node on the outgoing edge of

(R, P ,X ) on the path leading to (R′, P ′,X ′). Clearly, v < R
and v ∈ R′, and therefore R , R′.
• Case 2: Neither node among (R, P ,X ) and (R′, P ′,X ′) is
an ancestor of the other. Let v and v ′ be the nodes on the

outgoing edges of (R′′, P ′′,X ′′) on the paths leading to

(R, P ,X ) and (R′, P ′,X ′), respectively. Suppose, without
loss of generality, that the node v was chosen before v ′ in
the loop of Line 3. Clearly, R contains v . However, since v
is removed from the set P ′′ before the recursive call with
v ′, it follows that v is not in R′. Hence, R , R′.

Finally, we show Property 6. Let ωi (C) = u1, . . . ,un . We show,

by induction, that for every prefix u1, . . . ,uk of ωi (C), it holds
thatu1, . . . ,uk is a path in Ti . Obviously, this holds for the empty

prefix. Assume the required for a prefix of length k , and we

show that the claim holds for a prefix of length k + 1. By the

induction hypothesis, u1, . . . ,uk is a path in Ti leading to a node

(R, P ,X ). Observe that R = {u1, . . . ,uk }. By Property 4, it holds

that C − R ⊆ P , i.e., uk+1
∈ P . For i = 1, by the definition of

ωi (C), it holds that uk+1
is connected to R. Hence, at some point,

the node uk+1
will be chosen in Line 3. Therefore, there will be

a recursive call made where uk+1
is added, i.e., u1, . . . ,uk+1

is a

path in Ti . �

We can now show correctness of the algorithm.

Theorem 5.4. Let G be a graph. Then, calling the procedure
CsCliqesi(∅,V (G), ∅, s) will result in the printing of every max-
imal connected s-clique in G precisely once, and no other sets of
nodes will be printed.

Proof. First observe that no set will be printed more than

once. This follows immediately from the Property 5 of Lemma 5.3,

since we print the set R, and there are no two nodes in the exe-

cution tree that contain the same set R.
Next, we show that every set that is printed is a maximal s-

clique. Assume that R is printed. Let (R, P ,X ) be the node of Ti
in which R is printed. By Property 1 of Lemma 5.3, it follows

that R is an s-clique. If i = 1, R is also connected (Property 2 of

Lemma 5.3). If i = 2, R must be connected if it is printed, as this

is part of the requirement before printing (Line 1). Hence, R is a

connected s-clique. Suppose, by way of contradiction, that R is

not maximal. Then there is a node v that is connected to R and

is of distance at most s from every node in R. By Property 3 of

Lemma 5.3, it holds that v ∈ P ∪ X . Hence, either P ∩ N (R) , ∅
or X ∩N (R) , ∅, and thus, R will not be printed, in contradiction

to the assumption.

Finally, we show that every maximal connected s-clique will
be printed. LetC be a maximal connected s-clique. By Property 6

of Lemma 5.3, it holds that ωi (C) is a path in Ti leading to a node

(R, P ,X ). Assume, byway of contradiction, that this node is not an

output node. It then follows that there is a nodev ∈ (P ∩N (R)) ∪
(X ∩N (R)), i.e.,v is connected to R and is in P orX . By Property 3

of Lemma 5.3, it follows thatv is of distance at most s from every

node in R. Hence, R ∪ {v} is a connected s-clique. However,
R = C , and thus, this is a contradiction to the assumption that

C is maximal. Hence, it follows that if C is a maximal connected

s-clique, C will be printed during execution. �

5.3 Optimizing the Algorithm
We consider two different strategies to optimize the algorithm

CsCliqes2. Unfortunately, neither of these strategies are appli-

cable to CsCliqes1, as will be made clear.

Pivoting.As discussed earlier, a critical improvement toCliqes,

which renders the algorithm efficient in practice, is that of piv-

oting [32]. This strategy reduces the branching factor in the

execution tree by avoiding iteration over the entire set P , and
iterating over P − N (u), for some u ∈ P ∪ X , instead. Node u is

called the pivot. This technique can be applied when generating

maximal connected s-cliques, due to the following proposition.

Proposition 5.5. Let C be a maximal connected s-clique and
let u ∈ V (G) be a node. Then, one of the following conditions must
hold: (1) u ∈ C , (2) C * N s (u) or (3) C ∩ N (u) = ∅.

Proof. Suppose, by way of contradiction, that none of the

above conditions hold. Then,

(1) u < C;
(2) C ⊆ N s (u);
(3) C contains a node in N (u).

It immediately follows that C is not maximal, in contradiction to

the assumption, as u can be added to C (since it is close enough

to all nodes in C , and has a neighbor in C). �

It may not be immediately obvious how to utilize this property,

to improve the runtime, as it states that every clique must either

contain u, or contain some node that is not at distance s from u,
or cannot contain any neighbor of u. Thus, if instead of iterating

over P , we iterate over P − N s (u) (in a similar fashion to the

pivoting of Cliqe), we can miss maximal connected s-cliques
that do not contain any node from P − N s (u) (and also contain

no neighbor of u).
To overcome this problem, we will always choose the pivot

as a neighbor of some node in R. To be precise, we choose a

pivot node u ∈ (P ∪ X ) ∩ N∃,1(R) that minimizes P − N s (u).
Then, in Line 3 of CsCliqes2, instead of iterating over P , we
iterate over P − N s (u). Now, every maximal connected s-clique
containing R must either contain u, or must contain some node

that is not within N s (u). (Otherwise, if it does not contain any

node in N s (u), we could always add u, since u is connected to R
and of distance at most s from every node in R.)
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Figure 8: Graph used to demonstrate the reduction of Theorem 5.6
.

We note that this improvement cannot be integrated with

CsCliqes1, as it requires us to iterate over nodes that may not

be neighbors of R. The algorithm CsCliqes1 always preserves

the invariant that R is connected, and iterating over such nodes

would cause them to be added toR, thereby, losing the correctness
of the invariant.

To summarize, integrating pivoting into CsCliqes2 is per-

formed by replacing Line 3 with the following two lines:

3.1 u ← arg minu {|P − N
s (u)| | u ∈ (P ∪ X ) ∩ N∃,1(R)}

3.2 for v ∈ P − N s (u)

Checking for Feasibility. CsCliqes1 never creates a set R
that is unconnected. On the other hand, CsCliqes2 may go

deep into the recursion tree even if a set R is being considered,

for which it is not possible to add nodes and derive a connected

maximal s-clique. It would be preferable to prune branches for

calls of the form (R, P ,X , s) if there is no connected s-clique C
such that R ⊆ C and C ⊆ R ∪ P . (Recall that we will only try to

add nodes from P to R.) In such cases, the branches cannot lead

to a solution. Unfortunately, this cannot be verified efficiently, in

the general case, as shown stated by the following theorem.

Theorem 5.6. Let G be a graph, s > 1 be an integer, and R be
an s-clique. Determining whether there exists a connected s-clique
C such that R ⊆ C is NP-complete.

Proof. Membership in NP is immediate, as we can guess a

set C and check whether it satisfies all requirements. We show

NP-hardness by a reduction from 3-SAT.

Letψ be a 3-SAT formula withm clausesC1, . . . ,Cm , over the

variables X1, . . . ,Xk . We assume, without loss of generality, that

no clause contains both a variable and its negation.

Let V0 be the set of nodes:

{cki | i ≤ m,k ≤ s} ∪ {x
j
i | i ≤ m, j ≤ 3} ∪ { f }

Let G0 be the graph derived by taking the nodes in V0, and

adding the following edges:

• {c
j
i , c

j+1

i } for every i ≤ m and j < s;

• {csi ,x
j
i } for every i ≤ m and j ≤ 3;

• {x
j
i , c

1

i+1
} for every i < m and j ≤ 3;

• {x
j
m , f } for every j ≤ 3.

We say that a pair of nodes inV0 is conflicting if they are of the
form x

j
i ,x

j′
i′ and the j-th literal in Ci is the negation of the j ′-th

literal in Ci′ . Let G be the graph derived by taking the graph G0,

and adding a path of length s (using new nodes) between every

pair of non-conflicting nodes in V0 that are at distance greater

than s in G0.

Figure 8 (a) demonstrates graph G0 for s = 2,m = 3 and the

3-SAT formulaψ = (X1∨X̄2∨X3)∧(X1∨X2∨X3)∧(X̄1∨X̄2∨X3).

Figure 8 (b) focuses on the framed subgraph in (a) and shows all

the nodes and edges that will appear in G. Observe that there is
no path of length s = 2 between x2

1
and x2

2
as they correspond to

X̄2 and X2.

Now, we make several observations about the graph G.

(1) Let U be any subset of V0 that does not contain nodes

corresponding to a literal and its negation. Then,U is an s-
clique (although may be unconnected). This is immediate,

since we have paths of length s between every two nodes

inU .

(2) Let U be any subset of V (G) that does contain nodes cor-

responding to a literal and its negation. Then, U is not an

s-clique. This is also apparent, from a careful analysis of

the graph. We did not include paths of length s between
such nodes, in the beginning. Furthermore, when adding

edges between nodes in V0, we never create a path of

length at most s between such nodes. Indeed, the use of s
nodes c1

i , . . . , c
s
i is precisely to avoid such cases.

(3) LetU be any subset ofV (G) containing the nodes c1

1
, . . . , c1

m
, f . If U is an s-clique, then U must be a subset of V0, i.e.,

cannot contain the additional new nodes. To see why this

is so, observe that every node that is not among V0 is on

a path of length s between two nodes in V0, and will be

at distance greater than s from at least one node among

c1

1
, . . . , c1

m , f .

Now, consider s-clique R = {c1

1
, . . . , cs

1
, . . . , c1

m , . . . , c
s
m , f }.

We claim that there exists a connected s-cliqueC such that R ⊆ C
if and only ifψ is satisfiable. Suppose first thatψ is satisfiable, and

let µ be a satisfying assignment forψ . LetC be the set containing

R, as well as all nodes corresponding to literals that are satisfied

in µ. Clearly,C is an s-clique, by our first observation. In addition,

since C must include at least one node x
j
i corresponding to a

satisfied literal in each clause ci , the setC is connected (as x
j
i will

connect between csi and c
1

i+1
).

For the other direction, suppose there exists such a set C .
By Observation 3, C can contain only nodes from V0, and by

Observation 2,C will not contain nodes corresponding to a literal

and its negation. Therefore, C defines a truth assignment forψ ,
in which true is assigned to literals corresponding to nodes in

C . As before, the fact that C is connected implies that the truth

assignment gives the value of true to at least one literal in each

Ci , i.e.,ψ is satisfiable. �

Theorem 5.6 implies that we cannot have an efficient algorithm

that prunes useless branches whenever possible. Instead, we
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apply a simple optimization, that is sufficient, but not complete,

for pruning (i.e., branches are pruned only if they cannot lead to

a result, but not all such branches will be pruned). In particular,

we remove from P each nodev for which the set of nodes R∪{v}
is not completely contained in a single connected component of

G[R ∪ {v} ∪ (P ∩ N s (v))] .

Intuitively, v can be added to R, only if eventually, we may find

nodes in P ∩ N s (v) (= N∀,s (R ∪ {v})) that can fill in the gaps

between the nodes in R to derive a single connected graph. There-

fore, if we discover that this is not the case, we can remove v
from P , as it can never be in a connected s-clique together with R.

Example 5.7. Consider running CsCliqes2 algorithm with

the above feasibility check, on graph H from Figure 3 (a). When

first called, R = X = ∅, P = {v1, . . . ,v6} and s = 2. Since, R
is empty, we iterate over all nodes in P . Suppose the first node
chosen is v1. In the recursive call to CsCliqes2, we will have

R = {v1}, P = {v2,v3,v5,v6} and X = ∅. We will iterate over

all nodes in P . In the second iteration of the loop of Lines 3-6,

v = v3 (v2 was removed from P at the end of the first iteration)

and P ∩ N s (v) = v5. Now R ∪ {v} = {v1,v3} is not a connected

component in G[R ∪ {v} ∪ (P ∩ N s (v))] = {v1,v3,v5} and v3

will be removed from P without calling the recursion.

6 FINDING LARGE RESULTS
We now consider the problem of finding large maximal connected

s-cliques. In particular, assume we are given an integer k ≥ 0, and

our goal is to find all maximal connected s-cliques C such that

|C | ≥ k . When s = 1, s-cliques are standard cliques. For this case,

it is well known that determining whether there exists a clique

of size k is NP-complete. Therefore, it is interesting to consider

k as a parameter of the problem and determine whether a fixed

parameter algorithm exists, i.e., whether there is an algorithm

that runs in time O(f (k) · |G |O(1)), for an arbitrary function f .
Sincek is expected to bemuch smaller than |G |, such an algorithm
would be useful. Unfortunately, determining existence of a clique

is known to beW [1]-complete, i.e., we cannot expect to find an

algorithm with time O(f (k) · nO(1)).
We now consider the case in which s > 1. Interestingly, deter-

mining whether there exists a s-clique of size k is fixed param-

eter tractable with respect to k , for both the case of connected

s-cliques, and for arbitrary s-cliques. This gives hope that large
maximal connected s-cliques can be enumerated with delay be-

tween answers that is exponential in k , but not in |G |. Unfortu-
nately, for general s-cliques, this is not the case, as the following
theorem states. (The proof has been omitted due to space limita-

tions.) For connected s-cliques this problem is still open.

Theorem 6.1. Let k and s > 1 be integers.
(1) The problem of determining whether a graph G contains

a (connected) s-clique of size k is NP-complete, but is fixed
parameter tractable with respect to k .

(2) It is not possible to enumerate all maximal s-cliques of size
at least k in a graph G with fixed parameter delay with
respect to k , unlessW [1] =W [0].

Our algorithms can already mine all maximal connected s-
cliques of size at least k , by simply finding all maximal con-

nected s-cliques, and then filtering out all those that do not sat-

isfy the size bound. This process may be highly inefficient, as

many smaller s-cliques will be generated. We consider optimiza-

tions that can be made to our algorithms to speed up the process

of finding all maximal connected s-cliques of size at least k . In
PolyDelayEnum, we replace the queue with a priority queue

that returns larger maximal connected s-cliques first. In the algo-

rithms CsCliqes1 and CsCliqes2, we prune (i.e., do not make

recursive calls) the cases in which |R | + |P | < k . Clearly, in such

cases it is not possible to create maximal connected s-cliques
with k nodes at least.

7 EXPERIMENTAL RESULTS
Our algorithms were implemented in 32bit C++, as an extension

of the SNAP library [21]. All experimentation was run on a Win7

desktop with 16GB RAM and an Intel i5-4570 processor, with

2GB of memory allocated to the program.

We run our algorithms on synthetic Erdős-Réyni (ER) graphs

and scale-free (SF) graphs (which simulate social networks) of

varying sizes, generated by the SNAP library. All data points in

our figures are derived by generating three random graphs of the

same size, and taking the average runtime in seconds. We also

use several real datasets, as follows, taken from [20]. (Some of

these datasets are directed graphs, but for our experimentation,

we ignore the direction of the edges.)

• DBLP, with 317,080 nodes and 1,049,866 edges

• Amazon, with 334,863 nodes and 925,872 edges

• LiveJournal, with 3,997,962 nodes and 34,681,189 edges

• Twitter, with 81,306 nodes and 1,768,149 edges

• YouTube, with 1,134,890 nodes and 2,987,624 edges

One of the most costly operations in all algorithms is comput-

ing the set N s (v) for various nodes v . To save time, whenever

we compute this set, we store it in a hash table, to be reused

again later on, if needed. For large data sets, there is insufficient

memory to store all neighbors of distance s within the hash table.

When memory begins to run low, we remove some entries from

the hash table (using an LRI ordering) to make room for new

neighbor results.

Comparing Bron-Kerbosch Adaptations. We start by com-

paring the baseline versions of our Bron-Kerbosch adaptations,

i.e., CSCliqe1 and CSCliqe2, with the versions including the

two optimizations considered. We append the letter “P” and “F”

to CSCliqe2 to indicate that pivoting is used and that our feasi-

bility check is performed.

Figure 9a shows the result of running our adaptations of the

Bron-Kerbosch algorithm to find 100 connected 2-cliques, with

and without various optimizations, for random ER graphs of vary-

ing numbers of nodes (between one thousand and one million),

and average node degree 10. As was to be expected, CSCliqe1

is significantly superior to CSCliqe2. However, all three ver-

sions that do not use pivoting are much slower that the pivoting

versions (the two overlapping lines at the bottom of the graph),

running 30 to 60 times slower than the pivoting versions, for

graphs of one million nodes. For SF graphs, the gap is even larger,

with the non-pivoting versions running approximately 120 times

slower on graphs with only one thousand nodes (and average

node degree 10). For this reason, in the remainder of the exper-

imentation, we only consider the algorithms CSCliqe2P and

CSCliqe2PF, along with PolyDelayEnum (which will be de-

noted PD in our graphs).

Varying Node Size. We continue in our study of how the size

of the graph (as determined by the number of its nodes) affects

runtime. As before, we generated random graphs with between
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Figure 9: Execution times for varying parameters.

one thousand and one million nodes, and average node degree 10.

We chose s = 2 and measured the time to return 100 connected

s-cliques.
This experiment appears in Figures 9b and 9c. All times are

in seconds, and that in Figure 9c the times are in log-scale. Algo-

rithm PolyDelayEnum (PD in the graphs) slightly outperforms

CsCliqes2P and CsCliqes2PF on the ER graphs, but is signifi-

cantly worse on the SF graphs. In addition, all algorithms perform

worse on the latter, than on the former, probably due to the fact

that average size of connected 2-cliques generated is much larger

in a scale-free graph. For example, PolyDelayEnum returned

connected 2-cliques of average size 10.79 and 105.83, respectively,

on the ER and SF graphs of size one million. The change in the

trend of Figure 9b between 1M and 10M follows since the average

size of connected 2-cliques is smaller over graphs with 10 million

nodes, as the graph is sparser.

Varying Edge Density. We consider how the density of the

edges affects the speed in which results can be returned. We gen-

erated random graphs with 100 thousand nodes, and an average

degree of 4, 10, 20, 40 and 80. We chose s = 2, and measure the

time to return 100 connected 2-cliques.

Figures 9d and 9g contain the result of this experiment for

ER and SF graphs, respectively. As the density increases, algo-

rithm PolyDelayEnum once again outperforms CsCliqes2P

and CsCliqes2PF on the ER graphs. CsCliqes2PF is superior

toCsCliqes2P for degree density 80, as it avoids many recursive

calls. (This is in contrast to the many other cases in which we ob-

serve that its time is inferior, as the overhead for testing feasibility

is large.) On the SF graphs, on the other hand, PolyDelayEnum

is the slowest and CsCliqes2PF performs slightly worse than

CsCliqes2P probably do to the high connectivity of scale-free

graphs, which causes the feasibility check to always return true.

Varying s. We study how the choice of s affects the runtime.

Once again, we generated a random graph with 100K nodes

and average degree of 10. We measure the time to generate 100

connected s-cliques for values of s varying from 1 to 3. Recall

that when s = 1, we actually return cliques.

The runtime appears in Figures 9e and 9h. Runtime increases as

s increases, as it is increasingly more expensive to find neighbors

of distance s . As before, runtime is significantly slower for SF

graphs, as they have s-cliques that are much larger. The algorithm

PolyDelayEnum is slower than the others, but returns s-cliques
that are larger, on average. (For example, for s = 3, on SF graphs,
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Figure 10: Execution time for returning large results.
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PolyDelayEnum returns 3-cliques of average size 1084, while

the other algorithms return 3-cliques with average size 668.) Even

for s = 3, the runtime remains reasonable, and in practice, larger

values of s are usually not of interest.

Returning all Results.We consider the runtime when return-

ing all connected s-cliques in a graph. For this experiment, we

generated an ER graph with 100 thousand nodes and average

degree of 10. This graph has 112,134 connected 2-cliques. We

measure time elapsed between generating every 10 thousand

results, until all results are generated.

Figures 9f contains the result of this experiment. Recall that

PolyDelayEnum runs in polynomial delay (Theorem 4.2), i.e.,

the delay between results is polynomial in |V (G)|. However, the
CsCliqesi variations have no such guarantee. It is therefore

somewhat surprising to see that, in practice, the delay between

successive sets of 10 thousand results grows for PolyDelayEnum

while for CsCliqes2P and CsCliqes2PF remaining almost

steady. Perhaps this can be explained by the high memory re-

quirements of PolyDelayEnum (e.g., as it must store all results

created), which makes access to auxiliary data structures more

expensive as more results are created.
2

Non-synthetic Datasets. In Figure 9i we show the results of

returning 100 connected 2-cliques over the real datasets presented

in the beginning of this section. Once again, the algorithms

CsCliqes2P and CsCliqes2PF outperform PolyDelayEnum

almost consistently. PolyDelayEnum performs better only over

the LiveJournal dataset, but the difference in runtime is small.

Returning Large Results.We consider the heuristics presented

in Section 6 to find 100 connected 2-cliques that are larger than k ,

2
Also, the reader may note that while the delay given by Theorem 4.2 is polynomial

in the input, it is still quite large.

for some given size k . Once again, we generated random graphs

with 100K nodes and average degree of 10 and used the real

datasets as well. Our range of values for k for the random graphs

was determined by the average size of answers returned by the

algorithms when no size restriction was given. (With no size

restriction, the average result size for the ER graph was approxi-

mately 10, and for the SF graphwas between 35 and 60, depending

on the algorithm used.) For the real graphs, we set k = 50.

In Figures 10a, 10b and 10c, the result of this experiment ap-

pears, comparing the optimized version of the algorithms (in

black) against the regular algorithms (in red) until a hundred large

results are found. Interestingly, the time for PolyDelayEnum on

SF graphs is steady, as this algorithm naturally creates large re-

sults in this setting. The Bron-Kerbosch adaptations timed out

on SF graphs with large k and PolyDelayEnum timed out on

the youtube graph, running over an hour. Clearly, the optimiza-

tions for CsCliqes2P and CsCliqes2PF improve the runtime

significantly in most cases, but the optimization for algorithm

PolyDelayEnum is not consistently superior.

We note that the optimizations discussed in Section 6 were

very important in achieving the runtimes shown. The speedup

with respect to the regular (non-optimized) versions were signif-

icant in most cases.

Comparing cliques and s-cliques size. To further motivate

enumerating s-cliques for s > 1, we compare the sizes of s-
cliques for s = 1, 2, 3 over the real datasets. For this experiment

we randomly sampled 100 s-cliques, for each of the datasets

and each of the values of s . We then calculated both average

and maximum sizes. The result of this experiment appears in

Figure 11. The datasets are organized by increasing edge density,

and for each graph, we plot the average and maximum size of

cliques, 2-cliques and 3-cliques. Unsurprisingly, the size of s-
cliques is larger (for all choices of s) when the graph is more

dense. In addition, observe that as s grows larger, the average
and maximum size of the s-cliques increases. Note that the sizes
are in log scale, and hence, differ significantly.

Depending on the application, finding highly cohesive sets

of larger (or smaller) sizes may be more useful. For example, in

many settings, communities that are very small, or very large,

may be less useful. Smaller communities may not well-represent

the actual facts on the ground, while huge communities may

contain people who are not sufficiently related. The ability to

choose a value for s , and then enumerate (as our algorithms do)

gives the user maximum flexibility.
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Summary of Results. As is apparent from the results above, all

algorithms PolyDelayEnum, CsCliqes2P and CsCliqes2PF

have runtimes that are quite reasonable. Usually, the adaptations

of Bron-Kerbosch have superior runtime to that of the algorithm

PolyDelayEnum, but the latter may be preferable for returning

larger s-cliques, particularly on sparse graphs. When comparing

CsCliqes2P and CsCliqes2PF, one can observe that usually

the overhead of checking for feasibility (done in the latter algo-

rithm) is larger than the gains derived by avoiding unnecessary

recursive calls. (The only exception was for highly dense ER-

graphs, in which feasibility checking clearly pays off.)

Another important difference between PolyDelayEnum and

the Bron-Kerbosch adaptations is in memory requirements. Run-

ning PolyDelayEnum requires additional data structures (e.g.,

the queue Q and index I). Thus, its memory requirements are

linear in the size of the output. This contrasts with the Bron-

Kerbosch adaptations, which require memory that is linear in

the input. In our implementation, we assumed that the structures

for PolyDelayEnum fit in main memory, but for larger inputs

(or when desiring to run the algorithm until all results have been

found), it would be necessary to use external memory structures.

8 CONCLUSION
This paper studied the problem of finding maximal connected

s-cliques in a graph—a problem of high interest, due to the use-

fulness of clique relaxations. We have presented the first algo-

rithms for this problem, by taking two completely different ap-

proaches for solving this problem. The correctness of our algo-

rithms is proven and experimentation shows the efficiency of

our approaches.

As future work, we intend to study applications in which con-

nected s-cliques can be useful, such as community detection and

link prediction. Optimizations of the algorithms, for special types

of graphs (e.g., sparse graphs or bipartite graphs) are also an

interesting direction for future work. Another important direc-

tion is adapting the algorithms to a distributed environment, as

returning all s-cliques for large graphs can become infeasible for

a single machine.
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