
eLinda: Explorer for Linked Data

Tal Yahav Oren Kalinsky Oren Mishali Benny Kimelfeld
Technion – Israel Institute of Technology

Haifa 32000, Israel

ABSTRACT

To realize the premise of the Semantic Web towards knowledge-
able machines, one might often integrate an application with
emerging RDF graphs. Nevertheless, capturing the content of a
rich and open RDF graph by existing tools requires both time and
expertise. We demonstrate eLinda—an explorer for Linked Data.
The challenge addressed by eLinda is that of understanding the
rich content of a given RDF graph. The core functionality is an ex-
ploration path, where each step produces a bar chart (histogram)
that visualizes the distribution of classes in a set of nodes (URIs).
In turn, each bar represents a set of nodes that can be further
expanded through the bar chart in the path. We allow three types
of explorations: subclass distribution, property distribution, and
object distribution for a property of choice. To efficiently com-
pute the exploration queries, we offer a query engine powered
by a worst-case-optimal join algorithm.

1 INTRODUCTION

The potential of enhancingArtificial Intelligencewith rich human
knowledge intensifies with the growth of Linked Data resources
with high quality, volume, and wealth of domains. To realize this
potential, developers continuously explore emerging datasets
and investigate their relevance to the application at hand. We
present eLinda—an exploration tool for RDF that implements
a novel visual query language for exploratory search, designed
especially to facilitate comprehension of unfamiliar datasets. To
that end, we exploit the ontology that is typically associated to
an RDF graph, describing its semantics in terms of classes, class
hierarchies and properties.

The formal model underlying our visual query language ap-
plies in an iterative manner the basic principle for effective data
visualization by Shneiderman [6]: “Overview first, zoom and fil-
ter, then details-on-demand.” Specifically, our formal model is
based on histograms over focus sets of nodes (URIs) that are
constructed iteratively by the user. In this model a bar chart con-
sists of a set of bars, each representing a portion of the focus set.
The user selects a bar and applies an expansion operation that
transforms a bar into a new bar chart that now focuses on the
portion of the selected bar. In addition, a filter can be applied
to restrict the bar chart according to a search condition. The
user can then continue the exploration of the new bar chart, and
hence, construct focus sets of arbitrary depths. (See Section 2 for
the formal model.)

We illustrate the mission and functionality of eLinda through
a hypothetical exploration scenario over the DBpedia dataset [1].
Suppose that the user is interested in understanding what infor-
mation DBpedia has on cities where scientists were born. The ini-
tial bar chart shows how all DBpedia nodes are distributed among
the 49 top-level classes (see Figure 1). For example, the user can
observe that the most popular classes are Agent andWork. The

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st
International Conference on Extending Database Technology (EDBT), March 26-29,
2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

user then selects Agent and applies a subclass expansion to get
a histogram over agents. Two additional subclass expansions
are then applied to focus on the Scientist nodes (through class
Person). Next, a property expansion is applied to get the distribu-
tion of properties of scientists, and from that the user selects the
birthPlace bar. An object expansion over this bar results in the
histogram over the birth places of scientists, and from there the
user selects the City bar.

The basic implementation of eLinda translates each expan-
sion into a SPARQL query that is sent to an endpoint. A major
challenge is the execution cost, since the queries often involve
large numbers of nodes to extract and apply aggregates to, and a
naïve translation to a black-box SPARQL engine yields impracti-
cal responsiveness. For example, computing the distribution of
properties over all DBpedia nodes takes around 10.5 minutes on
a standard Virtuoso endpoint. Therefore, we have implemented a
novel query engine that is specialized (and restricted) to support
eLinda’s exploration model. For that, we adopt and extend the
Cached Trie Join (CTJ) of Kalinsky et al. [5], an algorithm from
the breed of worst-case-optimal joins, to an evaluation algorithm
that we refer to as CTJ*. Specifically, CTJ*, supports reachability
queries and grouped aggregations. Our engine often achieves
1.5-2 orders of magnitude speedups compared to Virtuoso.

In addition to CTJ*, eLinda supports a remote execution mode
that works on Virtuoso endpoints that are accessible only through
a standard Web interface. In that case, eLinda accelerates respon-
siveness by retrieving data incrementally and caching results.
eLinda has an accompanying demonstration video that is avail-
able at https://tinyurl.com/y9hu2gxl.
Related Work. eLinda is inspired mostly by LD-VOWL [8]
that extracts ontological information from the actual RDF graph
by sending SPARQL queries to the RDF endpoint. The results are
visualized in a graph-based fashion. The fundamental difference
between LD-VOWL and eLinda is the iterative explorationmodel
of the latter—we use the visual tool for iteratively constructing
focus sets of arbitrary description depth (as described earlier).
Another important difference is our handling of efficiency that
does not have any correspondence in LD-VOWL. Many of the
existing ontology visualization tools, such as FlexViz [3] and
GLOW [4] visualize an ontology, yet independently of the data.
On the other extreme, a family of tools known as linked-data
browsers [2] are able to provide informative insights into the
details of a dataset by supporting the exploration of individual
nodes via properties and relations with other nodes. Examples
includeMarbles1 and Sig.ma [7]. In constrast to eLinda, browsers
are appropriate in cases where the task at hand is to look for
specific information from a dataset that the user is familiar with.

2 FRAMEWORK

In this section, we give the formal definition of the data and
interaction model underlying eLinda.

1http://mes.github.io/marbles/

Demonstration

 

 

Series ISSN: 2367-2005 658 10.5441/002/edbt.2018.78

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2018.78


Figure 1: Initial chart in the exploration pane over DBpedia.

RDF graphs. We adopt a standard model of RDF data. Specif-
ically, we assume collections U of Unique Resource Identifiers
(URIs) and L of literals. An RDF triple, is an element of U × U ×
(U ∪ L). An RDF graph is a finite collection G of RDF triples. In
the remainder of this section, we assume a fixed RDF graphG . A
URI u is said to be of class c ifG contains the triple (u, rdf:type, c).
Bar charts. eLinda enables the visual exploration of the RDF
graph by means of bar charts that are constructed interactively
(see Figure 2). We have two kinds of bars: a class bar represents
URIs of a common class, and a property bar represents URIs with
a common property. For a bar B, we denote by U(B) the set of
URIs represented by B. The category of B is the corresponding
class or property, depending on the kind of B. A bar chart (or just
chart for short) is a mapping from categories to bars.
Bar expansion. A bar expansion is a function E that transforms
a given bar B into a chart E(B). eLinda supports three specific
bar expansions E that we define as follows.

Subclass expansion: This expansion is enabled for class bars
B; in this case, the category c of B is a class. The categories of
the chart E(B) are all the subclasses of c , that is, the URIs c ′ such
thatG contains the triple (c ′, rdfs:subClassOf, c). The bar Bc ′ that
E(B) maps to category c ′ is a class bar with the category c ′, and
U(Bc ′) consists of all the URIs u ∈ U(B) such that u is of type c ′.

Property expansion: This expansion is again enabled for class
bars B. The categories of the chart E(B) are the properties of the
URIs of B, that is, the URIs p such that G contains (s,p,o) for
some s ∈ U(B). The bar Bp that E(B) maps to p is a property bar
with the category p, and U(Bp ) consists of all URIs s ∈ U(B) that
have the property p, that is, (s,p,o) ∈ G for some o.

Object expansion: This expansion is enabled for property bars
B; in this case the category of B is a property p. The categories of
the chart E(B) are the classes c of the objects that are connected
to the URIs in U(B) through the property p; that is, the classes c
such that for some triple (s,p,o) ∈ G it is the case that s ∈ U(B)
and o is of class c . The bar Bc that E(B) maps to category c is a
class bar with the category c , and U(Bc ) consists of the p-targets

of type c , that is, all URIs o of class c such that (s,p,o) ∈ G for
some s ∈ U(B).

The property and object expansions are defined above for
outgoing properties, that is, the URIs of B play the roles of the
subjects. We similarly define the incoming versions, where the
URIs of B play the roles of the objects.
Exploration. Finally, eLinda enables the exploration of G by
enabling the user to construct a list of charts in sequence, each
exploring a bar of the previous chart. The exploration begins
with a predefined initial chart that we denote by B0. In our im-
plementation this bar has the form E(B) where E is the subclass
expansion and B is a bar that consists of all URIs of a prede-
fined class. A sensible choice of such class is a general type such
as owl:Thing. By exploration we formally refer to a sequence of
the form (c1,E1) 7→ B1 , (c2,E2) 7→ B2 , . . . , (cm ,Em ) 7→ Bm
where each chart Bi is obtained by selecting the bar B of category
ci from the chart Bi−1 and applying to B the expansion Ei . As
a feature, eLinda enables the user to generate SPARQL code to
extract each of the bars along the exploration.

In addition to the expansion tasks, eLinda allows, at any
stage, to filter the current chart by a filtering condition (e.g.,
the name of the node contains a certain string). The semantics is
straightforward—every bar is restricted to the nodes that satisfy
the condition.

3 USER INTERFACE

eLinda is implemented as a single-page Web application that
points to an online SPARQL endpoint hosting the explored data.
During an exploration, eLinda fetches data from the endpoint by
sending numerous SPARQL queries. The user experience is visual,
and no SPARQL knowledge is needed. The user should have only
a basic understanding of ontology classes and properties.

eLinda’s basic UI component is a tabbed pane as in Figure 1.
Each tab in the pane presents a specific bar chart, which is the
result of an expansion applied on a bar of a previous pane. The
opened tab in Figure 1 shows the initial subclass expansion for
DBpedia. The bar chart visualizes the distribution of all DBpedia

659



Figure 2: Screenshot of two exploration panes over DBpedia (upper is partially visible). Lower pane shows property data

about persons who have influenced philosophers.

subjects (instances of class owl:Thing) into subclasses. Each bar
matches a specific subclass, with a height proportional to its
number of instances. The bars are sorted by decreasing height.
Hovering over a bar opens a pop-up box with basic informa-
tion, for instance, DBpedia’s Agent class has more than 2 million
instances, 5 direct subclasses, and 275 subclasses in total.

To support visualization of large charts, a widget allows to
control the visible part of the chart. Class navigation is done by
clicking a bar, which opens a new pane under the current one.
For example, navigation to type Philosopher involves opening
three panes: Agent→ Person→ Philosopher. Alternatively, an
autocomplete search box for class types may be used, in cases
where top-down class navigation is less intuitive.
Property and object expansions. A pane has a second tab
with a property chart—the result of a property expansion. Fig-
ure 2 shows a property chart for Person subjects who have influ-
enced philosophers. Here, a bar represents instances that share
a specific property. (Switching to an incoming chart shows in-
coming properties, as explained in Section 2.) Bars are sorted by
coverage—the percentage of instances that feature the property.
The number of possible properties may be very large, and thus,
eLinda filters out properties with a coverage lower than a thresh-
old (defaults to 20% and adjustable by the user). In the figure,
only 57 properties out of 722 possible properties are shown.

The property chart in the figure was derived after applying
an object expansion to a previous pane of type Philosopher. In
that previous pane (partially shown in Figure 2), an influencedBy
property was selected in its property chart. Then, via a third
object chart, eLindawas asked to open a new pane (current pane)
with instances of type Person connected to philosophers through

the influencedBy property. This allows the user to further explore
only persons who have influenced philosophers.

A user interested in looking into the details of the dataset, may
use the data table that appears below the chart. Upon selection
of properties (bars) in the chart, columns are added to the table
and filled-in with values fetched from the dataset. The SPARQL
query used to generate the data table may be retrieved by the user
for future consumption. Data filters attached to table columns
may restrict the displayed data. In Figure 2, only persons born in
Austria (and have influenced philosophers) are presented.

4 SYSTEM ARCHITECTURE

The architecture design of eLinda is driven primarily by respon-
siveness, aiming for bar chart expansions to occur instantly. This
is challenging, since some of the queries that are submitted to
the endpoint require an execution time of up to several min-
utes on a Virtuoso endpoint. This is mostly because Virtuoso
utilizes traditional join algorithms, which generate up to billions
of intermediate results that are not part of the final result.

eLinda expansion queries retrieve the subject distribution
between subclasses or properties of a given class. Retrieving all
subjects of a class incurs a reachability query that retrieves the
subjects of all transitive subclasses. For example, when applied to
class Thing, the query retrieves all of its subjects, including those
of direct and indirect subclasses. The subjects are later grouped
by each Thing subclass or property and counted distinctly.

To provide the required responsiveness, we built a novel ex-
ploration query engine called eLinda-QE. Our query engine is
based on Cached Trie Join (CTJ) [5], a worst case optimal join
algorithm. CTJ generates only partial intermediate results that
will accelerate the join query. CTJ shows orders of magnitude

660



endpoint
Remote

eLinda

Web browser

Reverse proxy

HTTP response

HTTP request

OptionalStandard

CTJ∗
eLinda-QE

Virtuoso

Figure 3: Basic system architecture of eLinda.

speedup over traditional approaches on graph workloads. Yet,
CTJ supports only equi-join queries, and COUNT and SUM ag-
gregations. To support eLinda expansions, we extended CTJ
and refer to the extended algorithm as CTJ*. First, our CTJ* can
compute reachability queries. Second, CTJ aggregations were ex-
tended to support group aggregations. Queries containing outer
joins, such as queries containing the OPTIONAL clause, are not
supported by CTJ*. Such queries are offloaded to a Virtuoso end-
point. We plan to add outer join support to CTJ* in future work.
Different orders of (s,p,o) indexes are maintained and used by
CTJ*, similar to the indexes managed by Virtuoso.

Figure 4 shows the runtime of the slowest and most commonly
used queries by eLinda on an Ubuntu server with 16 cores and
128GB RAM. These queries construct the bar charts of the out-
going and incoming property expansions and the subclasses ex-
pansions in the first levels. The Virtuoso endpoint is configured
to utilize all available memory if needed. For all the queries in
Figure 4, the eLinda-QE is 1–2 orders of magnitude faster than
Virtuoso. For example, the runtime of class Thing property ex-
pansions on the Virtuoso SPARQL endpoint is 630 and 96 seconds
for the incoming and outgoing bar charts, respectively. On the
eLinda engine, the runtime is 11 and 3 seconds, respectively. The
speedups are consistent with other heavy queries we tested.

eLinda remote mode can work with any Virtuoso SPARQL
endpoint. Remote mode incorporates two methods to provide
effective latency for a user interface. First, an incremental evalu-
ation is being applied. eLinda builds the chart of an expansion
by computing it on the first N triples in the RDF graph. It then
continues to compute the query on the next N triples and ag-
gregates the results in the frontend. It continues for k steps, or
until the full chart is computed. The parameters N and k are
determined by an administrator configuration. Second, caching
is used to reduce the latency. These methods allow eLinda to
quickly present information to the user that otherwise will take
minutes or be rejected by the endpoint for running too long.

0.1

1

10

100

1000

Ti
m
e	
(s
ec
)

Virtuoso
CTJ*

Figure 4: Running times of property and subclass expan-

sions on different engines (log scale).

Figure 3 depicts the architecture of eLinda. The frontend is
implemented as a Web page that communicates with the server
via AJAX. Expansion queries are sent to eLinda engine (running
CTJ*) while OPTIONAL queries are offloaded to a Virtuoso end-
point. The eLinda engine is a Web server developed in C++17,
incorporates a multithreaded Web API for query evaluation, and
uses OpenMP for fine-grained parallelism in CTJ*. In remote
mode, all queries are sent to the remote endpoint and are cached
either in the reverse proxy or in the browser.

5 DEMONSTRATION SCENARIOS

During the demonstration, participants will explore several RDF
datasets such as DBpedia and LinkedGeoData with eLinda. Sev-
eral kinds of explorations will be exercised.

The first kind will tackle the task of understanding a large and
unfamiliar dataset. The participants will examine the bar chart
showing the first-level classes of the dataset (subclass expansion).
They will be presented with key statistics that may be inferred
from the chart, such as the three largest classes, the number of
instances these classes have, and the number of their direct and
indirect subclasses.

In the second scenario, the participants will analyze the prop-
erty chart of the largest class in the dataset (property expansion).
They will examine the twenty most significant properties, then
select a few of them and see their values appear in the data table.
Selected properties will be added with filters, and the data pre-
sented in the table will be reduced. The participants will adjust
the default coverage threshold to 50% and see the number of
presented properties decreasing. Similarly, incoming properties
will be explored. Additional scenarios will look into sophisticated
exploration paths such as “the types of people that influenced
philosophers,” “cities where scientists were born,” and “spouses
of former US presidents.” These scenarios will involve opening
several charts in sequence to achieve the desired goal.

Another scenario will demonstrate the performance issue elab-
orated in Section 4. The participants will be presented with sev-
eral explorations that entail heavy queries with the discussed
solutions turned on and off. This demonstration will include
working with the described eLinda engine, as well as working
in remote mode where standard Virtuoso SPARQL endpoints
are used “as is.” In the remote mode, incremental evaluation of
queries and the use of caching will be illustrated.

The last scenario will demonstrate how eLinda can be used
to detect erroneous data such as “people who are indicated to be
born in resources of type food.”

REFERENCES

[1] C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, C. Becker, R. Cyganiak, and S. Hell-
mann. DBpedia - a crystallization point for the web of data. Web Semant.,
7(3):154–165, Sept. 2009.

[2] A.-S. Dadzie and M. Rowe. Approaches to visualising linked data: A survey.
Semantic Web, 2(2):89–124, 2011.

[3] S. M. Falconer, C. Callendar, and M.-A. D. Storey. A visualization service for the
semantic web. In EKAW, volume 6317 of LNCS, pages 554–564. Springer, 2010.

[4] W. Hop, S. de Ridder, F. Frasincar, and F. Hogenboom. Using hierarchical edge
bundles to visualize complex ontologies in GLOW. In SAC, pages 304–311.
ACM, 2012.

[5] O. Kalinsky, Y. Etsion, and B. Kimelfeld. Flexible caching in trie joins. In EDBT,
pages 282–293, 2017.

[6] B. Shneiderman. The eyes have it: A task by data type taxonomy for information
visualizations. In VL, pages 336–343, 1996.

[7] G. Tummarello, R. Cyganiak, M. Catasta, S. Danielczyk, R. Delbru, and S. Decker.
Sig.ma: Live views on the web of data. J. Web Sem, 8(4):355–364, 2010.

[8] M. Weise, S. Lohmann, and F. Haag. LD-VOWL: extracting and visualizing
schema information for linked data endpoints. In VOILA, volume 1704 of
CEUR-WS, pages 120–127. CEUR-WS.org, 2016.

661


	eLinda: Explorer for Linked DataTal Yahav, Oren Kalinsky, Oren Mishali, Benny Kimelfeld

