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ABSTRACT

False alarms triggered by security sensors incur high costs for all
parties involved. According to police reports, a large majority of
alarms are false. Recent advances in machine learning can enable
automatically classifying alarms. However, building a scalable
alarm verification system is a challenge, since the system needs
to: (1) process thousands of alarms in real-time, (2) classify false
alarms with high accuracy and (3) perform historic data analysis
to enable better insights into the results for human operators. This
requires a mix of machine learning, stream and batch processing
- technologies which are typically optimized independently. We
combine all three into a single, real-world application.

This paper describes the implementation and evaluation of an
alarm verification system we developed jointly with Sitasys, the
market leader in alarm transmission in central Europe. Our sys-
tem can process around 30K alarms per second with a verification
accuracy of above 90%.

1 INTRODUCTION

False alarms triggered by sensors of alarm systems pose a signifi-
cant challenge due to the high costs they incur for all involved
parties. On the one hand, false alarms waste expensive police,
medical and firefighter resources. On the other hand, Alarm Re-
ceiving Centers (ARCs) cannot efficiently prioritise important
alarms, because they are overwhelmed with false ones. According
to police reports, a large majority of alarms prove to be false [34].
This is often attributed to technical errors, installation errors
or user errors. As a consequence, owners of alarm systems end
up switching their systems off to avoid the risk of paying for
intervention forces deployed as a response to a false alarm.
From a technical perspective, false alarm verification is very
challenging, since it requires the combination of three tradition-
ally separate fields, namely stream processing, batch processing
and machine learning. Depending on the data sources used for
verification, both structured data (originating from the physical
security sensors) and unstructured (originating from external
sources, such as social media or police news feeds, available in
free-text format) should be integrated. Recently, stream and batch
processing have been integrated into combined systems such as
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Flink [7] or Apache Structured Streaming [44]. However, adding
machine learning, unstructured data and a real use-case to the
equation makes the problem much harder. Machine learning has
proven successful in a wide range of classification and anomaly
detection tasks [26]. In particular, a classification model can be
trained in order to compute the likelihood that a new alarm is
either true or false, based on the history of alarms previously
received in the system. Such algorithms have the potential to
significantly reduce costs involved by false alarms, by enabling
ARCs to focus on the alarms that are most likely true, while
reducing the priority and the resources allocated for alarms that
are likely false.

In this paper we present our experience in building an end-to-
end alarm verification system that combines stream processing,
batch processing and machine learning on both structured and
unstructured data in an industrial setting. We use state-of-the-art
Big Data technology such as Apache Kafka [21], MongoDB [33]
and Apache Spark [38]. We show that our models can classify
false alarms with over 90% accuracy and can scale up to 30K
alarms per second including historical analysis using real alarm
data from our industrial partner. Furthermore, we show that our
models can be adapted with minimal effort and achieve good
performance for similar use cases. For example, we use the same
algorithms to train a new model from the history of fire incidents
recorded by the cities of London and San Francisco.

The main contributions of this paper are:

e We present an end-to-end application that combines stream
processing, batch processing and machine learning in or-
der to uncover false alarms in an industrial setting. Using
a dataset of 350K real alarms from alarm sensors deployed
in production, we evaluate 4 machine learning algorithms
and show that the best 2 algorithms (random forest and
deep neural networks) can classify alarms with over 90%
accuracy. This is, to our knowledge, the first study to show
the applicability of machine learning techniques for false
alarm reduction in the field of physical security, using real
data collected from alarm sensors used in production.

e We show that a simple set of generic alarm features (loca-
tion, time, property type) can be used for similar use cases.
By reusing the exact same algorithms implemented for
our industrial use case, we yield a verification accuracy
of above 80% for the additional datasets from the cities of
London and San Francisco.
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o We discuss how to extend the approach to include a-priori
risk factors extracted from external sources, such as news
articles and social media postings, that potentially cover
incidents related to alarms ("hybrid approach”). These
sources usually provide unstructured, free-text data. In our
prototype implementation, we focus on reports about fire
and intrusion incidents. Even though we had only limited
external data available, we increased the accuracy of our
classifications from a baseline of 86.56% for the subset of
fire and intrusion alarms to 87.56% when including the
a-priori risk in the machine learning model.

The rest of this paper is organized as follows: We introduce
Related Work in Section 2. In Section 3 we present the indus-
trial use case for alarm management. We discuss the architecture
as well as the design of our system in Section 4. We describe
our experiments with various machine learning algorithms as
well as end-to-end performance results based on stream process-
ing, batch processing and machine learning in Section 5. Finally,
we present an extensive list of lessons learned in Section 6 and
conclude in Section 7.

2 RELATED WORK

2.1 Stream Processing

Stream and continuous event processing for real-time analyt-
ics has been a major topic of the database community for more
than a decade with Aurora [9] being one of the pioneers. Other
popular systems are Gigascope [13], Esper [16] or Stream Base
[40]. Common to these systems is that they provide a declarative
query language based on SQL to process data streams. The advan-
tage of these systems is that end users can formulate analytics
queries using the expressiveness of SQL rather than learning new
APIs. Moreover, since SQL is declarative, the end-users need not
care of how they would optimize the system performance since
the stream systems can apply query optimization techniques by
understanding the query patterns.

Common to all these systems is that they are highly specialized
for one particular functionality, namely stream processing with
short time windows. However, they are inadequate for combined
stream and batch processing since they only focus on stream
processing.

2.2 Real-time Data Warehousing

Typical data warehouses of large enterprises are used for report-
ing, analytical and predictive purposes. In order to optimize query
performance, these systems organize data in a star schema [10].
Moreover, data is usually ingested on a daily or subdaily basis.
Common to all traditional data warehouses is that they are very
efficient for processing historical data but not particularly well
suited for processing streams of data.

In order to overcome these problems, recently so-called data
stream warehouses have been proposed to handle both big and
fast amounts of data within one single system. In other words,
the idea is to use one, combined system for stream and historical
data analytics. Examples of such systems include Borealis [1],
DataDepot [17], DejaVu [14], Moira [6] or TruViso [24].

The advantage of these systems over streaming-only systems
is that they can handle combined workloads of both stream and
batch processing.
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2.3 Combined Stream and Batch Processing

As part of our previous work we have used bitmap indexes to
enable stream and batch processing in TelegraphCQ [35]. We
have demonstrated the approach for analyzing a large set of
network traffic data.

To tackle the problem of combined stream and historical data
analytics for more recent Big Data systems, the Lambda archi-
tecture [31] was introduced that currently sets the standard in
system design for building big data real-time analytics environ-
ments. It is trying to provide a solution to compensate latency
and waiting time when accessing and analyzing batch processed
data through the availability of real-time data streams. However,
criticism on the Lambda architecture revolves around the oper-
ational complexity of systems implementing this architecture.
This does not only include operations of the systems but espe-
cially also implementing and maintaining an efficient code base
for the two different data processing approaches - stream and
batch processing - used in systems built according to the Lambda
architecture.

Real-time processing for NoSQL systems has recently been
introduced in Muppet [25], SCALLA [29] and Spark Streaming
[44]. In particular, structured streaming seems very promising.
Another system that provides both stream and batch processing
is Apache Flink [7]. However, it is still difficult to smoothly in-
tegrate different technologies to develop a system for complex
scenarios that can leverage existing legacy systems. A more re-
cent reflection on main memory vs. stream systems can be found
in [23].

2.4 Machine Learning for Anomaly Detection

Machine learning has been widely used for classification and
anomaly detection. The research closest to ours has been done in
intrusion detection systems in the field of computer and network
security [26]. Subsequently, in order to make these systems usable
in practice, a lot of work has focused around means to reduce
their false positives [27], [4], [12]. The recent shift of the alarm
industry towards IoT and smart connected sensors has opened
the path for applying the same algorithms in a relatively new
context, namely that of physical security, which is our focus in
this paper. There is to-date surprisingly little published data on
the effectiveness of these techniques for physical IP-connected
alarm systems.

Most of the related work published either in research papers
or in industrial patents aims at reducing false alarms by means
of verification through a secondary channel - e.g. a video camera
or additional sensors, such as temperature, shock or vibration
sensors. In [30], an intelligent home security system based on the
ZigBee protocol is presented. The system detects false alarms by
means of image processing from surveillance cameras. However,
we do not rely on any other information apart from alarm device
properties, the type of supervised premise, location and time.

Similarly, a patent issued by Honeywell AG presents a system
that reduces false alarms in a home security system by using
information provided by additional sensors, such as an acous-
tic glass break sensor, shock sensor and vibration sensor [3].
More recently, Honeywell extended their systems with a video-
verification step to reduce the number of false alarms [19]. In
contrast, our approach has the advantage of being more generic,
given that it relies only on information provided by basic sensors
and a model trained offline (from the history of alarms received
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Figure 1: Alarm System Architecture. ARC = Alarm Re-
ceiving Center.

from these same sensors), even in the lack of more contextual
information (camera images, weather sensors etc).

An interesting approach is presented in [32], where the most
suitable machine learning algorithm is chosen adaptively based
on the performance of the currently used one - this could be
an interesting path for future work in our system, as we have
already implemented 4 machine learning pipelines, therefore we
would only require the logic to adaptively choose among these
at run-time. Another angle to consider would be a majority vote
among the different classifiers, providing the overall verification
and probability as an aggregate of the information provided by
all 4 classifiers.

In a recent publication, Spark Streaming [44] and Apache
Kafka [21] were used to detect anomalies in Big Data streams by
applying various metrics based on entropy theory and Pearson
correlation [36]. In our project we partially build on these results.
Our initial machine learning experiments showed promising
results [37].

3 ALARM VERIFICATION USE CASE

In a typical security installation, transmitting an alarm originat-
ing from a sensor (e.g. motion or smoke detector) to a security
organization involves a chain of equipment and people. A simpli-
fied view of this setup is shown in Figure 1. An alarm triggered
at a supervised premise (a home or enterprise) will reach the se-
curity organization (also called Alarm Receiving Center - ARC),
where the alarm is handled by one of multiple operators who
take predefined actions based on the so called action plan which
was previously elaborated together with the customer. This usu-
ally involves trying to contact the customer by phone to verify
the alarm. This is an important step because more than 90% of
all alarms are false positives [34]. If the operator is not able to
reach out to the customer or the alarm was verified, he sends out
intervention personnel (police, ambulance or firefighters) to go
on-site.

The high amount of false alarms makes alarm handling costly.
Certas AG, one of the major companies in the alarm monitoring
market, processes nearly 5 million alarms and over 2 million
phone calls a year, as they report in the Alarm Management Sym-
posium in 2017 [11]. Our industrial partner, Sitasys, operates a
platform that connects hundreds of such monitoring centers. To-
day, a large number of messages are generated from a relatively
small amount of sources (like fire sensors or motion detectors).
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With the advent of Smart Homes and IoT technologies, the num-
ber of sensors and therewith the number of alarms is expected to
increase drastically. Meanwhile the demand for security also in-
creases. The security industry in Austria, for example, has grown
almost 45% between 2010 and 2016 (as indicated in the yearly
security book 2017 published by VSO [42]). With these trends,
the monitoring centers risk to get flooded with alarm messages.
Keeping in mind that the rate of false alarms is above 90%, it
becomes clear that there is a need for improvement.

Uncovering false alarms through machine learning is challeng-
ing, since there may not even be a clear definition on whether an
alarm is worthy of investigation or not, thus rendering a 100%
accuracy a hypothetical goal. However, by changing the pro-
cess of alarm handling, there might be a way to use predictive
modelling in a safe way in order to reduce costs significantly.
The way this could be achieved is to transfer the verification of
the alarm partly to the customer. The idea is to transmit alarms
with a high probability of being false positives to the customer’s
mobile phone first. The customer can then decide within a time
window whether the alarm is real or false and whether it should
be sent to the alarm receiving center. Only alarms with a high
probability of being true (and those for which a timely answer
could not be received directly from the customer), are forwarded
to the monitoring center, which can then send out intervention
personnel.

With this approach, the number of alarms arriving at the
monitoring center decreases, while the handling of the particular
alarm becomes more effective, since the manual verification can
be omitted. With this self-monitoring solution, the customer
can actively take part in the alarm processing chain, which will
decrease the workload at the monitoring center and consequently
potential errors caused by overwhelmed operators.

Furthermore, the probability for true and false alarms can be
used by the monitoring center in order to effectively prioritize
alarms. This is especially helpful in the case of large events, which
generate a spike of messages that need to be processed fast. An
effective prioritization of alarms allows a more effective use of
intervention personnel. This ultimately benefits the customer as
well, because it reduces the fees he has to pay if the police or fire
brigades respond to false alarms repeatedly.

The solution envisioned by Sitasys involves an online portal
called "My Security Center". Using "My Security Center" the cus-
tomer can configure the threshold for the probability of alarms
being classified as true. The customer thus decides which alarms
should be sent to the monitoring center and which should be sent
to his mobile phone first. He can also decide not to send technical
alarms, like connection interruptions, to the monitoring station
at all. Based on his settings, the alarm handing can be offered for
about 40% of the price that is currently common in the market
- without any sacrifice concerning security. Since "My Security
Center" allows dynamic changes of the rules how and where
alarms are being transmitted, it will also allow the offering of
more custom tailored services.

4 SYSTEM DESIGN

In this section we motivate the main workflow, the system ar-
chitecture for our alarm verification application and discuss our
design choices.
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Figure 2: System design consisting of four components: (1)
Stream Processing, (2) Batch Processing (Alarm History),
(3) Machine Learning (Verification Service) and (4) Hybrid

Approach (Incident History).

1) Stream processing: /)
Identify MAC address of devices that triggered an alarm.

mAddrsInWindow =
alarms.map (Alarm: :getMacAddress) .distinct () ;

!

2) Batch processing:

Create histogram of devices that triggered alarm in the past.

SELECT MacAddress, count(*) FROM MongoDB
WHERE MacAddress in mAddrsInWindow AND timestamp > t
GROUP BY MacAddress;

l

3) Machine learning:

Classify each alarm as true or false.
Use ML model (classifier) trained offline.

!

4) Hybrid approach:

Collect reports of incidents
Use a-priori risk to enhance classification accuracy

Figure 3: Workflow diagram.

4.1 Workflow

For each
window of n
seconds

The workflow for alarm verification, shown in Figure 3, consisting
of stream processing, batch processing and machine learning,

can be characterized as follows.

The stream processing part identifies all devices that trigger
an alarm within a certain observation period (the streaming
window). As part of the batch processing part, all devices that
triggered an alarm are analyzed in more detail by producing a
histogram of the number of alarms starting from a specific time
t. Finally, for all the new alarms in the given time window, a
machine learning algorithm verifies whether the alarm is true or
false, based on a classifier trained periodically offline (for example,

once per day during idle periods, such as after midnight).
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Figure 4: System Architecture and Process Flow

4.2 System Architecture

An overview of the system we developed for handling the above
mentioned workflow is shown in Figure 2. The four main com-
ponents we developed are:

(1) Streaming Component. This component is responsible for
transmitting and receiving alarms. The simplified format
of an alarm sent by a Sitasys sensor through a Kafka
stream is shown on the left hand-side of Figure 4. We chose
Apache Kafka [21] for this component as it is the state-
of-the-art distributed streaming platform, highly scalable
and also easy to integrate with Spark. We coupled Spark
with Kafka through Direct Dstreams [44], which offers
exactly-once semantics "out-of-the-box". This is crucial in
our case in order to ensure that we neither miss an alarm,
nor process the same one multiple times. For more details
refer to [22].

(2) Batch Component (Alarm History). This component is re-
sponsible for long-term storage of alarms and for doing
batch analytics on the history of alarms. For this com-
ponent we chose to use MongoDB [33], both because of
its flexibility (we can store alarms directly as JSON-like
documents and query by fields, such as by location of the
alarm in order to compute a histogram) and because of its
scalability.

(3) Machine Learning Component (Verification Service). The
reception of a new alarm through the stream immedi-
ately triggers the computation of a classification (true/false
alarm) and the associated probability (confidence), based
on a machine learning model trained offline. The verifica-
tions will be used by the Alarm Receiving Centers in order
to prioritize incidents where an intervention (police or
fire department) is highly likely to be required. We chose
to implement this component using Apache Spark, first
because it is easy to scale-out when required - for exam-
ple, if more customers install alarm systems - and second,
because of its fault tolerance guarantees. Coupling Kafka
with Spark results in an exactly-once semantics streaming
application.

(4) Hybrid Approach (Incident History). For the hybrid ap-
proach we collect reports about fire and intrusion inci-
dents in Switzerland. The incidents are reported as textual
data, for example in RSS feeds, Twitter messages or web-
pages (see Figure 5). The goal is to use this historical data
in order to calculate an a-priori risk factor per each lo-
cation (village or city in Switzerland) and incorporate it
in the machine learning model. Our pipeline collects as
many reports as possible and then filters those pertaining
to relevant topics (fire and intrusion), based on a set of
keywords defined in the pipeline. Each incident report is
then annotated with a time and location, extracted directly
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Figure 5: Schema of the incidents history pipeline. In a
first step, reports from different sources, such as Twitter,
RSS feeds and web pages are collected. Next, reports re-
lated to relevant topics (e.g. fire, intrusion) are selected (fil-
tered). The remaining relevant reports are annotated with
a date, a location and a language and saved in MongoDB.

from the textual data or from the metadata (if available).
Finally, similar to the alarm history, we store the incident
history in MongoDB. The a-priori risk factors are defined
as the number of incidents per capita on location level.

4.3 Reflection on Design Choices

One of the major design choices was the architecture and technol-
ogy used for streaming processing, batch processing and machine
learning. For stream processing the main options available were
Apache Storm [39], Apache Kafka and Apache Spark Streaming
[44]. We have decided for the combination of Apache Kafka and
Spark Streaming due to the good integration and the scalability
of both systems. Even though Storm allows topologic modelling
of streaming tasks, we decided against it since our application
does not have a complex dependency between tasks.

In order to combine stream and batch processing, the design
choices would be either the more traditional Hadoop stack for
batch processing combined with Storm for streaming processing,
or the more recent, in-memory, Apache Spark technology. We
have chosen the latter due to its tighter integration of function-
ality (stream and batch processing as well as machine learning
available in a single framework). This was an important advan-
tage for our industry partner Sitays, in order to decrease the
complexity of the overall system architecture, as well as to re-
duce maintenance costs and required skills of their workforce.

At the start of our project, Spark Structured Streaming was
marked experimental, therefore not yet production ready, hence
we decided against it. Moreover, our industry partner has a large
collection of alarm data stored in MongoDB which should be
leveraged. After analyzing the integration of Spark with Mon-
goDB, we decided for this design option since it allowed us to
re-use technology already existing at our industrial partner and
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to effectively combine it with state-of-the art stream process-
ing. Moreover, MongoDB is flexible to schema changes, which
makes it a better option for long-term storage than a traditional
Relational Database, given that in our use case the structure of
an alarm differs across sensor types and even across software
updates. Using MongoDB allowed our industry partner to easily
ingest data from new alarm installations, even when the structure
of the new alarm data did not match the structure from previous
installations. In our experiments we achieved satisfying scala-
bility results of MongoDB queries for large datasets. For more
details see Section 5.

Using Spark ML for machine learning was a natural choice
since it is readily integrated within the Spark technology stack.
However, since Spark ML did not provide deep learning algo-
rithms at the start of our project, we used various other deep
learning frameworks such as DeepLearning4] [15] as well as
Theano [41] and Lasagne [28].

5 EVALUATION

In this section we first describe the alarm datasets we used for our
experiments, namely from Sitasys, as well as from the cities of
London and San Francisco. Next, we describe the incidents dataset
we used for the hybrid approach to enrich the Sitasys alarm
dataset. This is followed by a description of our machine learning
experiments in order to classify false alarms and a description of
our experiments using the hybrid approach in order to improve
the machine learning pipeline. Finally, we present the end-to-
end evaluation of our system, which includes stream processing,
batch progressing, as well as machine learning. Our results show
that using production data we can process 30K alarms per second
with an accuracy of above 90%.

5.1 Alarm Datasets

In order to build and evaluate a model for false alarm verification,
we started by analyzing the alarm data provided by our industrial
partner, Sitasys. This data is presented in Section 5.1.1. First,
we selected the set of features best suited for verification. We
describe this in Section 5.3. Then, in order to evaluate how well
we can extrapolate using this set of features for similar use cases,
but also to see how well our algorithms scale, we looked for
larger datasets available online. We identified two candidates,
namely the London Fire Brigade Data and the San Francisco Fire
Department Data. The most relevant features from all 3 datasets
are shown in Table 1. In the next sections we describe each dataset
in more detail.

5.1.1 Sitasys Production Data. Real alarm data from October
2015 to April 2016 was collected and anonymized by our indus-
trial partner Sitasys, gathering a total of 350K alarms in roughly
equal proportions of true and false alarms. The main types of in-
formation provided are location (ZIP code), device address (MAC
and IP address), timestamp, alarm duration, type of incident (fire,
intrusion, etc.) and a few other sensor-specific information (type
of sensor, software version, etc). The ObjectType feature classifies
the type of supervised premise the alarm originates from: indus-
trial, residential etc. The location information was anonymized
(hashed) for privacy reasons. One important challenge we faced
when using this data is the lack of real labels (i.e. indications
about true and false alarms). These could not be provided to
us in due time from the Alarm Receiving Centers that register
them. However, in collaboration with Sitasys we have defined a
heuristic to infer the labels, which is to consider the duration of



Dataset Location Time | Type of Location Incident Type Label
Sitasys ZIP code Timestamp ObjectType Alarm Type Alarm Duration
London ZIP code | Date/TimeOfCall PropertyType | PropertyCategory Incident Group
San Francisco | Zip code Of Incident ReceivedDtTm - Call Type | Call Final Disposition

Table 1: Features of the three data sets
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Figure 6: London Fire Brigade Statistics

the alarm as a threshold - the more quickly the alarm was reset
after being triggered, the higher the likelihood that the alarm
was false, given that the customer was able to reset it in a short
period of time. We chose several different values for the alarm
reset duration threshold between 1 and 10 minutes. We used 50%
of the alarms for training (roughly equal amount of true and false
alarms) and the remaining 50% for testing. Moreover, we were
interested in the response time for an incoming alarm on a data
stream, therefore we also simulated a stream of new alarms from
the testing data and tested the performance of our verification
system. Details are given in Sections 5.3 and 5.5.

5.1.2  London Fire Brigade Data. The London Fire Brigade
(LFB) is the busiest fire and rescue service in the United Kingdom
and one of the largest firefighting and rescue organizations in the
world. We used the open data of every incident reported since
January 2009, available online!. The dataset provides information
about the location, time and type of incident for all records.

Figure 6 shows the high-level statistics of incident groups
between 2009 and 2016, as well as the ratio of false vs. true alarms
recorded. In total, 885K incidents were recorded, out of which
430K (48%) were false. This dataset is therefore very convenient
to use for our classification algorithms, because the true and false
classes are almost equally balanced, which makes it suitable even

for algorithms that are very sensitive to unbalanced data (e.g.

Random Forest).

This dataset is useful for two purposes: first, it allows us to
test hypotheses on a coarser time-scale, since the incidents are
recorded from 2009 until today, meaning that for example we
can try to draw statistics and make verifications based on the
days of the year with peaks of incidents. Second, it serves as a
scalability test as the number of incidents is twice as larger as
those provided by our industrial partner.

!https://data.london.gov.uk/dataset/london-fire-brigade-incident-records

5.1.3  San Francisco Fire Department Open Data. In an attempt
to extend our study, we also considered the San Francisco Fire De-
partment Dataset (available online?), which contains 4.3 million
incidents from the city of San Francisco from the year 2000 until
today. We found that, in contrast to the London Fire Brigade Data,
the quality of the San Francisco dataset is lower, given that more
than half of the records (2.5 million) are not properly labeled, the
Call Final Disposition - which denotes the final classification of
the incident - marked "other". Only 105K are explicitly labeled as
"No Merit" (false alarm), i.e. less than our production data from
Sitasys from 2015 and 2016 only. Moreover, as shown in Table 1,
there is no entry in the dataset that indicates the type of property,
which in our study of the Sitasys alarms proved to be an impor-
tant feature for the classifier. An added problem is the diversity
of the types of incidents recorded. For example, more than half
of the entries are medical incidents, which are not present at all
in the other two datasets. Around 1 million incidents are alarms
and fire incidents and only a small fraction of these are properly
labeled.

All in all, in our study we could only consider incidents of
type "alarm" and "fire" that have a proper label indicating either
true or false alarm. Unfortunately, this only results in around 12K
incidents, much less than we initially expected. We report results
from this small subset in the next section. Finally, we note that
we have tried our classification algorithms against all properly
labeled incidents (including medical, hazards etc) but for this
purpose we did not obtain meaningful results - only around 53%
accuracy.

5.2 Incidents Dataset

This dataset is a collection of reports about real fire and intru-
sion incidents, gathered from online resources, such as RSS feeds,
Twitter or relevant web pages (police, fire brigades etc.). This ex-
ternal data is used in order to enrich the knowledge base provided
by the Sitasys Production Data. In particular, we annotate alarms
with an a-priori risk factor, based on their location. Since the
Sitasys Production Data only consists of data from Switzerland,
we focus on collecting reports about Swiss incidents. For exam-
ple, we collected messages related to incidents from 50 different
Twitter accounts (cantonal police, fire brigade departments and
others) from January 2015 until end of October 2017. Our pipeline
checks, for each message, whether it contains information about
intrusions or fire (see Figure 5). Next, it identifies the language,
the date and the location of the incident, either from the meta-
data (if available) or directly from the textual data (the message).
However, since the metadata does not contain information about
ZIP codes, the granularity of each location is either a city or a
village. In turn, the granularity of our alarm data set is slightly
more detailed, namely, at the level of ZIP codes. For example,
some larger cities, such as Basel and Zurich, have multiple ZIP
codes for different districts of the city. Since the incidents dataset
does not have the same level of granularity as the alarms dataset,

Zhttps://data.sfgov.org/Public-Safety/Fire- Department-Calls-for-Service/
nuek-vuh3/data
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Figure 7: Discrepancy between the amount of incidents
and amount of true fire and intrusion alarms in the two

data sets.
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Figure 8: Screenshot of the security map with focus on
Zurich (Switzerland). Red areas imply a higher risk level.

we can only approximate an aggregated risk over all districts of
a large city with several ZIP codes (see Table 2).

The dataset contains 5,056 descriptions of incidents, out of
which 2,743 are in German, 1,516 in French and 797 in English.
The corresponding incidents are located in 1,027 distinct cities
and villages of Switzerland, covering around 1/4 of all cities and
villages in Switzerland. The discrepancy between the number
of incidents in the dataset and true fire and intrusion alarms in
the Sitasys Production Data is shown in Figure 7. For example,
the first entry in Figure 6 shows the number of true fire and
intrusion alarms for the location with ZIP code 3013 provided
from the Sitasys Production Data (lower bar shown in light gray).
However, the number of reports about fire and intrusion incidents
is significantly smaller (upper bar shown in black).

Finally, we use the incidents dataset to build and display a
security map of Switzerland, shown here in Figure 8. The fig-
ure shows the risk of different areas in the canton of Zurich,
Switzerland. Green areas indicate safe regions, whereas yellow
indicate medium-risk and finally, red implies higher risk. For a
detailed discussion on the calculations of the risk levels we refer
to Section 5.4.
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#-true-alarms #-incidents
ZIP codes Basel intrusion fire | intrusion fire
4001 43 3 [unknown]
4051 142 3 [unknown]
4057 304 0 [unknown]
4058 0 55 [unknown]
Total for city of Basel 489 61 10 464

Table 2: Divergence between the number of true alarms
in different districts in Basel (Switzerland) in the Sitasys
Production Data and the number of incidents collected in
the Incident Data. The Incidents Data only contains loca-
tion information at a coarser granularity (per city / village)
than the Sitasys alarm data (per ZIP code).

5.3 Machine Learning

We chose 4 of the most commonly used algorithms for ma-
chine learning: Random Forest, Support Vector Machine, Logistic
Regression and Deep Neural Networks (DNN). For the first 3
we used the readily available implementations from Spark ML,
whereas for DNNs we developed an application using DeepLearn-
ing4]J [15] as well as Theano [41] and Lasagne [28].

For feature selection we first evaluated which of the alarm
fields best separate true from false alarms. We used the Pear-
son correlation inspired by [36] to find dependencies between
features and labels as well as dependencies among features. In
addition, we ran a grid search for each algorithm, varying the
features used to train the models, and finally selected the follow-
ing most promising features: location (for privacy reasons we
only received hashed location information), day of week, hour
of day, alarm type and property type.

Although in our experimental evaluation we only take into
account accuracy in terms of number of correct verifications, we
note here that, given that our main use case is a decision support
system for human operators in the Alarm Receiving Centers,
not only is the verification important, but also the probability
(confidence) associated with it, as the human operator will likely
take a decision according to this metric rather than just the
verification.

For our experiments we used the following hardware setup:

e For initial experiments using a single Producer, single
Consumer workflow, described in Section 5.5, we used
two Intel Xeon E5-2620 machines at 2.4 GHz with 8 GB
RAM.

e For multi-node Spark experiments we used a cluster of 4
Intel Xeon E5-2640 CPUs at 2.5 GHz with 16 GB of RAM
each.

e For the DNN experiments we used 1 Intel Xeon E5-2650
with 1 Titan X GPU.

5.3.1 Accuracy. As our main use case is to verify false alarms
based on the alarm data from our industrial partner, we focused
on extracting the features that best separate true from false alarms
in the Sitasys dataset. We then investigated how well the equiva-
lent set of features in the open data sets from London and San
Francisco can be used to verify false alarms. We show in the next
subsections that our approach can be easily transfered to these 2
similar use cases with good accuracy results.

5.3.2  Parameter Tuning. The first important parameter we
investigated for the Sitasys alarm dataset was the threshold for
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the alarm duration. This parameter is used as a heuristic to deter-
mine whether the alarm is true or false. For example, when using
a threshold of 1 minute, all alarms with a duration smaller than
1 minute are considered false. The intuition is that an alarm that
was reset (turned off) within a very short time is likely false (the
owner immediately shut it off). In order to evaluate the effective-
ness of our machine learning approach, we experimented with
various values for delta t ranging between 1 and 10 minutes. The
goals of our evaluation were as follows: (1) Evaluate the accu-
racy of four different machine learning algorithms. (2) Study the
impact of various deltas t on the verification accuracy. The idea
was to show that the results are stable with respect to changes
in the choice of delta t. The results are shown in Figure 9. We
can see that on average the best classification quality among all
algorithms is achieved with the smallest threshold, of 1 minute,
and that moreover in all cases Random Forest and Deep Neural
Networks achieve the best performance, of over 90% accuracy,
independent of the choice of delta t, which means the accuracy
results are stable across changes in the choice of this parameter.

Next, the selection of hyper parameters for each of the learning
algorithms (e.g. architecture of neural network) was essential for
the verification accuracy. We used grid search to tune the hyper
parameters. Tables 3, 4, 5, 6 and 7 show the best ones for each of
the 4 algorithms we tested.

Parameter | Value
Maximum depth of a tree 30
Number of trees to train 50

Table 3: Parameters for Random Forest

Parameter Value

Maximum number of iterations 2,000
Step size 1.0

Mini batch fraction 0.2
Regularization parameter le-2
Kernel Linear

Update Function | Squared L2

Table 4: Parameters for Support Vector Machine

5.3.3  Training Time. One important factor we investigated
to ensure that our prototype is usable in practice is the train-
ing time. Essentially, this determines how fast we are able to
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Parameter | Value
Maximum number of iterations 500
Convergence tolerance of iterations | 1le-6

Table 5: Parameters for Logistic Regression

Parameter Value
Maximum number of epochs 10,000
Mini batch size 200

Loss function
Update function
Learning rate
Momentum

Cross Entropy
Nesterov Momentum
0.1

0.9

Table 6: Parameters for Deep Neural Network

Layer #Nodes Type | Activation
Function

Input | 803 Nodes
Hidden 1 | 50 Nodes | Fully connected ReLU
Hidden 2 2 Nodes | Fully connected ReLU
Output 2 Nodes | Fully connected Softmax

Table 7: Architecture of Deep Neural Network

rebuild our models, a step that is required periodically (ideally,
upon reception of a large enough number of new events, for
example once per day). Table 8 shows the training times for our
classification algorithms, using the 3 datasets: Sitasys, London
Fire Brigade (LFB) and San Francisco Fire Department (SF). The
short training time for the San Francisco dataset is explained
by the fact that we can only use around 12K incidents properly
labeled from the alarm and fire categories. Another observation
is that for all the datasets, the smallest training time is required
for Logistic Regression, while Deep Neural Networks take much
longer to train. Moreover, we use the One Hot Encoding for this
algorithm, which means we end up with twice as many input
features (around 800) for the Sitasys dataset than for the oth-
ers (around 300), given that we also use some sensor-specific
categorical features in the case of Sitasys (each of the values of
these attributes becomes a separate feature when using One Hot
Encoding).

Algorithm | Sitays | LFB | SF

Random Forest 600 | 1200 | 75

Support Vector Machine 200 | 480 | 20
Logistic Regression 100 60 | 10
Deep Neural Network | 5100 | 2460 | 60

Table 8: Training Time [sec] for Machine Learning Algo-
rithms

5.3.4  Accuracy Results. Figure 10 presents a comparison of
the accuracy obtained for the 3 datasets we tested. We can see
that the best results are obtained for the Sitasys dataset with
a classification accuracy of up to 92% for Random Forest. The
promising results can be explained by the fact that, apart from
the generic features (Location, Property Type, DayOf Week and
HourOfDay), the Sitasys dataset contains a few other features
that can identify technical faults more easily (sensor-specific in-
formation), which allows the algorithms to better classify false
alarms. By contrast, for the LFB and SF datasets we could only use
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Figure 10: Verification accuracy comparison using four
different machine learning algorithms for three Sitasys,
London Fire Brigade (LFB) and San Francisco Fire Depart-
ment (SF) Datasets. RF = Random Forest, LR = Logistic
Regression, SVM = Support Vector Machine, DNN = Deep
Neural Network

the generic features. However, it is interesting to note that this
still results in fairly good accuracy, of around 85%, for the LFB
dataset (best result is obtained for the Support Vector Machine)
and 80% for the SF dataset (Random Forest). As mentioned pre-
viously, the San Francisco dataset does not contain information
regarding the type of property an alarm originates from, which
could explain the lower accuracy. Furthermore, the volume of
the training data we could select from the SF dataset is generally
too low (only around 12K alarms).

Another interesting result is that, although there are some
differences among the accuracy results for the 4 algorithms we
tested, they are never higher than 5%. This is encouraging for
two reasons. First, because some algorithms require less training
time and less resources to run (Logistic Regression), therefore
they could be chosen over the others in case response time is
more crucial than accuracy. Second, because more generally this
validates our approach, given that the good accuracy is not an
artifact of a particular choice of machine learning algorithm, but
rather a consequence of the feature selection, which accurately
describes the problem we aim to solve. On the other hand, a
5% improvement in classification accuracy (from 85% to 90%)
effectively means reducing the error rate by 50%, which means
the best algorithms perform significantly better.

5.4 Hybrid Approach

For the hybrid approach we collected descriptions of fire and in-
trusion incidents from different online resources, such as Twitter,
RSS feeds, or web pages collected through a provider of web-
based data feeds, webhose.io. Each incident is annotated with the
time and location, extracted from the original message or web
page. We use this information to calculate an a-priori risk factor
for intrusion and fire alarms, based on the number of incidents
that happened in a certain location (village or city), normalized
by the population size. Next, we evaluate the impact of the in-
clusion of a-priori risk factors on the accuracy of the machine
learning model.

We chose three different ways to include the a-priori risk
factors into our machine learning pipeline:

(1) absolute risk factor
(2) normalized risk factor
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(3) binary risk factor

(1) The absolute risk factor is calculated by dividing the num-
ber of incidents found in various resources by the population in
the annotated location. (2) The normalized risk factor has a range

x — min(x)

of 0 to 1, and is calculated as x’ = where x is

max(x) — min(x)’
the absolute risk factor of a location. (3) The binary risk factors
are either 0 or 1. The risk factor is 1, if the incident is in the most
frequent 25% locations, otherwise the risk factor is 0.

Our efforts for the hybrid approach are still in the early stages,
and the data we have collected so far is limited. As a consequence,
for the evaluation we only use alarms with a ZIP code where
we have corresponding reports about incidents. This reduces the
number of alarms from about 350,000 to 130,958 (see Figure 7).
As mentioned previously, the granularity of the alarm data is on
ZIP code level, while the granularity of external reports about
incident data is on city or village level. To analyze the influence
of this discrepancy in granularity, we run additional experiments
where we only select alarms about small cites or villages that
have one ZIP code rather than multiple ones. This reduces the
number of alarms from around 130,958 to 37,241 and further the
number of incidents from 5,056 to 4,379 (see Table 9). Moreover,
the Sitasys Production Data provides more alarm types than fire
and intrusion. Hence, we needed to filter only those alarms that
are triggered due to fire or intrusion.

Table 9 shows the experimental results for alarm classification
of four different scenarios (a-d) and three different a-priori risk
factors, compared to a baseline approach. The baseline shows
the alarm classification accuracy without a-priori risk factors (as
reported in Section 5.3). The results are averaged over 10 runs for
each experiment. In the scenario (a), using all locations and all
alarms, we have around 130,958 alarms. This scenario only shows
a small increase of 0.04% of the classification accuracy using the
normalized risk factor. Scenario (b) uses all locations, but only
the fire and intrusion alarms, which reduces the training data to
24,934 alarms. In this scenario, the results show that the absolute
risk factor leads to an increase of 0.22% in accuracy compared to
the baseline.

The scenarios (c) and (d) use only locations with a single ZIP
code attached. Therefore we make sure that the a-priori risk fac-
tor does not contribute wrong information to larger cities with
multiple ZIP codes. Out of the total of 130,958 alarms, 37,241
refer to cities with single ZIP codes. This implies that around 2/3
of the alarms are located in larger cities. The results of scenario
(c) show an improvement of 0.4% for the absolute risk factor,
compared to the baseline. The normalized and binary risk factors
also have a slight positive impact. Finally, scenario (d) uses only
fire and intrusion alarms for cities with single ZIP codes. There-
fore, the number of alarms is reduced to about 10,000 alarms. In
this scenario, the impact of applying a-priori risk factors is the
strongest, with an increase of 1% compared to the baseline.

Overall, the results obtained by including the external, unstruc-
tured data are still preliminary. The scarcity of this data, coupled
with an uneven distribution of the reported incidents makes it
difficult to measure a significant impact. We still consider the re-
sults promising, as they show a) that adding in potentially noisy
textual information from third-party sources does not degrade
the results even though we are using a limited set of collection
and filtering approaches and b) that a small positive impact can al-
ready be seen when focusing the analysis on the subset of alarms
for which we have matching unstructured data.



all locations single ZIP code locations

all types F/Ialarms | all types F/I alarms
scenario (a) (b) (c) (d)
baseline 89.35 85.73 87.16 86.56
ARF 89.29 85.95 87.56 87.45
NRF 89.39 85.67 87.41 87.56
BRF 89.31 85.79 87.51 87.48
#-incidents 5,056 4,379
#-alarms 130,958 24,934 37,241 10,036

Table 9: Accuracy of alarm classification using three dif-
ferent a-priori risk factors and four scenarios: (a) all loca-
tions, all alarm types, (b) all locations, only fire & intru-
sion alarms, (c) single ZIP code locations, all alarm types
and (d) single ZIP code locations, only fire & intrusion
alarms. ARF = absolute risk factor, NRF = normalized risk
factor, BRF = binary risk factor.

5.5 End-to-End Data Processing

Once we have trained and tested the machine learning algorithms,
the next step was to build the end-to-end pipeline to integrate
machine learning into stream and batch processing. In particu-
lar, as soon as an alarm arrives, a machine learning algorithm
classifies in real-time whether the alarm is true or false. In ad-
dition, historical data analysis is performed on the sensors that
triggered the new alarms. The goal of our experiments was to
evaluate the maximum throughput of our system, identify poten-
tial bottlenecks and to derive lessons learned from building such
a production system.

5.5.1 Setup of Streaming System. In order to test the scal-
ability of our prototype, we handcrafted a Producer application,
which simulates a stream of new alarms. The stream is created
by randomly selecting alarms from the test set (alarms from our
production data, that have not been used for training the machine
learning model) and writing them into Kafka, at a controlled rate
(alarms per second). We aim to to evaluate the response time of
our system, which runs as a Consumer application.

First, we are interested in measuring the maximum through-
put (number of verified alarms per second) on the consumer side.
We assume that the training phase has already been completed
offline and the model is readily available for computing classfica-
tions. Second, we must take into account the maximum latency
(system response time) per alarm, as it is critical to ensure that a
human operator in the Alarm Receiving Center can get a timely
verification result. Currently we set the goal of responding in at
most 10 seconds since the reception of the alarm at the ARC.

5.5.2 Identifying Bottlenecks.
Throughput of Producer-Consumer. With a setup as simple
as just one producer and one consumer application (running
each on a separate machine connected through a 1 GB Ethernet
network), we were able to identify several bottlenecks in our
system. First, our tests showed that both the producer and the
consumer were processing events at an unexpectedly low rate
(about 12K alarms produced per second, where one alarm is less
than 1KB in size), even if Kafka benchmarks made us expect much
higher throughputs. After further investigation we found that
the bottleneck in both applications was in fact the serializer used
for writing alarms into, and reading them from, the Kafka stream.
At first, our implementation used the Jackson serializer, which
turned out to be a poor choice for small objects [18], where the
Gson serializer is more appropriate. We were surprised to find
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Figure 11: Scalability Jackson vs Gson serializer

that just replacing this led to a 2x speedup in both applications.
Figure 11 shows the results. We can see that by switching from
the Jackson serializer to the Gson serializer the throughput of
the producer more than doubled to about 25K alarms per second.
On the consumer side, the increase was slightly less than double.
This is due to the fact that the consumer has a higher computing
load than the producer.

Detailed Analysis of Consumer. Next we analyzed the com-
puting time of the consumer in more detail (Figure 12). In particu-
lar we were interested in the time contribution of stream process-
ing (Spark Streaming), batch processing (MongoDB query) and
machine learning (Spark ML). The breakdown of time per compo-
nent using a 10 second window of alarms shows that the majority
of time is spent in the machine learning part (around 80% of the
total time) to classify. We also notice that an insignificant fac-
tor goes to the historic component (retrieving the histogram of
alarms originating from the same addresses as those in the time
window). The remaining time goes to the streaming component:
first, for deserializing alarms into the native Spark data format,
RDDs (Resilient Distributed Datasets [43]), then for extracting
all distinct addresses from the RDD etc.

Kafka Optimization. After this step, we further noticed that
although our consumer machine has 8 cores, none of the compu-
tations were parallelized, although Spark was configured to use
all the cores on the local machine. After investigating this we
found that by default, Kafka streams are not partitioned, mean-
ing that all RDDs will be processed on a single execution thread.
To fix this, there are 2 options available: first, creating multiple
streams and reading from them in parallel - this would be useful
for the case where, for instance, different customers would be
registering alarms to different Kafka streams. However, since
for the moment we collect all alarms on the same stream and
aim to test per-stream scalability, we chose the second option,
which is to configure the repartition number of the Kafka stream,
when creating it from the Spark application. In order to test the
maximum throughput on the Consumer side, we created multiple
threads in the Producer application (to make sure that this does
not become the bottleneck) and were in this way able to reach a
maximum throughput per consumer of around 30K alarms per
second.

6 LESSONS LEARNED

In this paper we have presented an end-to-end system for veri-
fying false alarms in real-time based on a combined stream and
batch processing approach. Our results demonstrated that for
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the real production data our machine learning algorithms gained
an accuracy of more than 90%. However, even a 99% verification
accuracy might not be good enough and could potentially result
in missing a fire that burns down a building when no intervention
force is deployed. For our industry partner this was the major
issue about accepting our approach in a real-world setting. In
order to overcome this problem, we introduced the following
solutions: (1) The end user (property owner) is in the loop to
verify alarms. For instance, before an alarm is sent to the alarm
receiving center, the end user can verify it. As an example, let us
assume apartment X systematically triggers fire alarms after mid-
night. A closer inspection shows that the alarms were triggered
by the kids since the family has forgotten to de-activate the alarm
during the periods the kids went to the bathroom. In this case,
the property owner could verify the false alarm and hence no in-
tervention force would be sent. (2) Every alarm is prioritized and
evaluated by a human operator. This gives the human operator
more time to react to the most critical alarms first and has the
potential to drastically decrease human error due to information
overload within a short time interval. (3) We provide histograms
about historic alarms that help identify recurring problems.

In the next few sections we will report on further lessons
learned in the areas of machine learning and Spark processing.

6.1 Machine Learning

e Provide probability of verification
Although in our experimental evaluation we only take into
account accuracy in terms of number of correct classifica-
tions, given that our main use case is a decision support
system for human operators in the Alarm Receiving Cen-
ters, not only is the verification important, but also the
probability (confidence) associated with it. This allows hu-
man operators to take a decision according to this metric
rather than just the classification. Luckily, most imple-
mentations of machine learning (classification) algorithms
provide this confidence factor by default. We used the
probabilities associated with verifications for the Random
Forest or Logistic Regression classifiers from Spark ML as
well as for the Neural Networks implementation from the
Theano library. Moreover, we provide operators a way to
analyze the history of the sensors that triggered alarms
in order to get a better understanding about the nature of
the new incoming alarms.

e Keep it simple
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Our experience in testing different machine learning algo-
rithms proved that, while the accuracy was similar for all
4 algorithms we tested, there was a big difference in the
training time (from a couple of minutes for Logistic Regres-
sion to more than 1.5 hours for Deep Neural Networks). It
is therefore crucial to always try out the simplest hypothe-
ses first (even when new advances in the field make it
tempting to start with the latest, but much more complex
algorithms). This is even more so the case in time-critical
applications, where it could be desirable to trade off some
accuracy in order to gain in response time.
e Design for reusability

While evaluating our prototype we found it extremely use-
ful to have a generic data type that describes our problem,
e.g. LabeledAlarm, that would not be tied to our particular
use case (the data set from Sitasys). We therefore crafted
a generic class with categorical features like Location,
Property Type, HourOfDay, DayOf Week, which generally
describe alarms (and which can be enriched with other
features by extending the class if needed). This minimized
the efforts required to adapt and validate the algorithms
for new, similar, datasets such as the London Fire Brigade
or the San Francisco dataset. Moreover, even if you do not
foresee using the algorithms in a new context, it is very
likely that the structure of the input data from the initial
use case will change over time (in fact, this happened dur-
ing our project’s lifespan), either because of technology
changes, software updates or because new components
are added in the system (e.g. new types of sensors). There-
fore having code that describes the problem in a generic
way allows for reusability and adaptability whenever the
structure of the input data changes.

6.2

Although Spark can be very convenient to use, allowing for rapid
productivity thanks to its integration of different components
in a single platform, it may also lead to suboptimal performance
when misconfigured or improperly used. When using Spark we
found the following considerations useful:

Spark Processing

e Cache data that will be reused
Spark’s lazy evaluation leads to unnecessary re-computations
for data that is not explicitly cached. This side effect is not
apparent by just reading the code. We first noticed this
problem when evaluating the deserialization mechanism
on the consumer side - not only did we notice this step was
too slow, it was also executed twice, because we reused
the input streaming data for both machine learning and
for querying historic data, without explicitly caching it.

e Make use of the monitoring UI
Spark provides an extremely useful set of statistics, both
for batch and streaming, which makes it easy to monitor
the application while it is running. The most important
statistics we used were the level of parallelism for batch
computations and the average delays for stream process-
ing. Both offered insights into points in the application
that performed suboptimaly.

e Make sure the parallelism level is the expected one
One of the problems we noticed by examining the stats
in the Spark UI was that input data read from Kafka was
always processed serially instead of in parallel. After read-
ing through the documentation, we found that by default,



Kafka streams are not partitioned. Therefore, Spark will
not process incoming data in parallel, unless explicitly
configured in the code when setting up the Kafka stream.

6.3

The lessons we can draw from our experiments with the hybrid
approach are still limited. We believe there is great potential in
integrating information from third-party sources into the verifi-
cation, but to fully leverage this potential, substantial additional
research is needed. In this spirit, the following lessons should
be read more as suggestions on how to improve on our initial
approach:

Hybrid Approach

o Integrate as many external sources as possible
Thus making sure the sources cover the alarms as broadly
as possible. We have shown that the highest impact can
be measured when restricting analysis on the alarms that
have corresponding incidents in the external sources. More-
over, our preliminary results show that this has the poten-
tial to positively impact classification accuracy.

o Localize incidents with finer granularity
This will allow combining incidents and alarms more di-
rectly, which should be especially beneficial in heavily
populated (urban) areas, where a-priori risks for incidents
such as intrusions may vary significantly from one area
(neighborhood) to the next.

7 CONCLUSIONS

In this paper we presented the design and evaluation of an alarm
verification system using real data from an industry application.
The problem is very challenging since it requires a combination
of stream processing, batch processing and machine learning. We
have built the system using Spark Streaming (stream processing),
MongoDB (batch processing) and Spark ML (machine learning).
Our experiments with various machine learning algorithms show
that the system can classify alarms with an accuracy of more than
90% at a streaming rate of about 30K alarms per second, including
historical data analysis. To further extend our system, we also
presented preliminary results of an integration of unstructured
data to increase the classification accuracy. We concluded with
an extensive list of lessons learned that give insights for both
academics and practitioners who want to build a similar system.
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