
DeepEye: Visualizing Your Data by Keyword Search
[Visionary Paper]

Xuedi Qin
Department of Computer Science, Tsinghua University

qxd17@mails.tsinghua.edu.cn

Yuyu Luo
Department of Computer Science, Tsinghua University

luoyuyu@mail.tsinghua.edu.cn

Nan Tang
Qatar Computing Research Institute, HBKU

ntang@hbku.edu.qa

Guoliang Li
Department of Computer Science, Tsinghua University

liguoliang@tsinghua.edu.cn

ABSTRACT
Do you dream to create good visualizations for your dataset
simply like a Google search? If yes, our visionary systemDeepEye
is committed to fulfill this task. Given a dataset and a keyword
query, DeepEye understands the query intent, generates and
ranks good visualizations. The user can pick the one he likes and
do a further faceted search to easily navigate the visualizations.
We detail the architecture of DeepEye, key components, as well
as research challenges and opportunities.

1 INTRODUCTION
Nowadays, the ability to create good visualizations has shifted
from a nice-to-have skill to a must-have skill for all data analysts.
However, the overwhelming choices of interactive data visualiza-
tion tools (e.g., Tableau, Microsoft Excel and D3 [5]) only allow
experts to create good visualizations, assuming that the experts
know many details: the meaning and the distribution of the data,
the right combination of attributes, and the right type of charts –
these requirements are apparently not easy, even for experts.

Unfortunately, creating good data visualization is hard. From
the user perspective, there are many possible ways of visualiza-
tions for a given dataset (for example, different attribute combi-
nations and visualization types), and many ways of transforming
data (for example, grouping, binning, sorting, and a combination
thereof) – these make it infeasible for the user to enumerate
all possible visualizations and select the ones he needs. From
the system perspective, among numerous problems, no consen-
sus has emerged to quantify the “goodness” of a visualization.
What makes it harder is when the system does not even know
what the user wants. Recently, there have been proposals for
visualization recommendation systems [15, 18], which focus on
automatically recommending “interesting” visualizations from a
diversified criteria, such as relevance, surprise, non-obviousness,
diversity and coverage. However, as pointed out by [3], these
systems may mislead the user, by generating visualizations that
might be worse than nothing, since it is basically impossible to
guess a user’s query intent from nothing.

The natural problem arises:What is the most feasible way to
(automatically) create good visualizations even for dummies?

We have three key intuitions for handling the above problem.

(1) What is the ideal language for the user to specify his intent? Of
course, the mother tongue – Google-like natural language search
interface is friendly to everyone. Note that (i) most visualizations

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st
International Conference on Extending Database Technology (EDBT), March 26-29,
2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

are generated using declarative languages like Vega-Lite [12];
and (ii) using machine learning to convert text to SQL queries
for relational databases has been proved effective [11]. Hence,
we can allow users to pose keyword queries and our system
automatically converts them to declarative visualization queries.

Keyword-to-Visualizations is hard: keywords are typically am-
biguous and underspecified; and good visualizations concern sta-
tistical properties such as trends, comparisons, which are rather
hard to grasp even for human.

(2) How can we solve the fundamental cognitive science problem for
quantifying good visualizations? Evidently, good visualizations
exist, which can be collected frommany sources that take experts
hours or even days to produce such valuable visualizations. Natu-
rally, the research problem is how to transfer the knowledge from
these known good visualizations to judge a new visualization.

Transferring good visualizations. The basic intuition is: a new
visualization is good, if itmatches some known good visualization
(see Section 2.2 for a further discussion).

(3) How can we rank visualizations? Ranking is the secret sauce
to any search engine. Note, however, that it is almost impossible
to rank visualizations, if they are independent of each other.

Visualization link graph. We propose a novel graphical model
to link good visualizations. Informally speaking, two visualiza-
tions are linked if they are relevant, which are further classified
into different types (or facets), e.g., similar or diverse that are
captured by different facet functions (or criteria [15]).

The main benefit of having the above graph is twofold. (i) We
can devise PageRank [6] like algorithms to rank visualizations. (ii)
We can leverage the edge types to provide faceted search (a.k.a.
faceted browsing) such that the user can easily set the compass
to navigate the ocean of visualizations by simple clicks.

DeepEye is our visionary system to create good visualizations
by keyword search and simple clicks.

DeepEyeWorkflow. A user can pose a keyword query K . Deep-
Eye translates this keyword query to multiple candidate visual-
izations V, discovers good visualizations V′ in V, ranks V′, and
returns the top ones V′′. When the user selects a visualization
V in V′′ and further explores by clicking a facet of V , DeepEye
discovers more visualizations and helps the user to easily explore
his desired visualizations. The user may iterate over the above
processes until he finds all visualizations that he wants.
Remarks. (1) Different from visualization recommendation sys-
tems [15, 18], (i) DeepEye is a visualization search engine that
the user needs to provide his intent – we do not believe in the
magic that one can guess something from nothing; and (ii) Deep-
Eye decides and ranks good visualizations by comparing with

∗Guoliang Li is the Corresponding Author.

Short Paper

Series ISSN: 2367-2005 441 10.5441/002/edbt.2018.42

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2018.42

DeepEye
Flight delay in

User Makes a Search

Extract Tables
and Visualizations

I

Index

A Faceted Search

Stacked bar chart
The delays of …

Pie chart
The number of …

Line chart
The delays of in …

Map
The number of delays …

Similar

Different

Magic

VSE
Keyword-

to-Visualizations

Visualization
Transformation

Visualization
Ranking

Faceted Navigation

D

Figure 1: The Architecture of DeepEye

known good visualizations. (2) After finding good visualizations,
DeepEye will support to export them to a designated interactive
data visualization tool (e.g., Tableau) for more customized manip-
ulations. (3) Although intuitively, DeepEye, as a search engine,
shares a similar architecture with well known search engines
such as Google and Bing, there are many new challenges for
designing visualization search algorithms (see Section 3).

2 THE DEEPEYE ARCHITECTURE
The architecture of DeepEye is given in Figure 1. DeepEye crawls,
stores and indexes good visualizations from multiple sources.

The user starts by posing a keyword search and provides a
dataset. The visualization search engine (VSE) will first generate
a set of visualizations V by the Keyword-to-Visualizationsmodule.
These candidate visualizations V will be matched with known
good visualizations by the Visualization Transformation module
that produces V′ ⊆ V, which will then be ranked by the Visual-
ization Rankingmodule and the top ones V′′ ⊆ V′ are returned to
the user. The user may pick the one he likes and discovers more
visualizations by the Faceted Navigation module. This module
aims to reduce the number of user interactions and helps users
to find the target visualizations as soon as possible.

2.1 Preliminary

Datasets.We crawl visualizations with data and visualizations
charts (e.g., pie/line/bar charts) from multiple sources. Then we
use them to visualize a user-given dataset D. For simplicity, we
consider D as only one table, which can be easily extended to
support multiple tables by relational joins (see SeeDB [16]).

Data Features. Typically, what will decide whether a visualiza-
tion of a dataset is good or not depends more on its features (or
representations [2]), not its data values. More specifically, we
consider the following features of a dataset D: the data type of a
column (e.g., categorical, numerical, and temporal), the number
of distinct values of a column, the number of tuples in a column,
the ratio of unique values in a column, the max() and min() val-
ues of a column, and statistical correlation between two columns
(e.g., linear, polynomial, power, and log).

Visualization Queries. For declarative visualization language,
we use Vega-Lite [12], a high-level grammar that enables rapid
specification of interactive data visualizations. (Note that our sys-
tem can support any declarative visualization query language.)
Each query Q , specified in the Vega-Lite JSON format over the
dataset D, denoted by Q (D), will produce a visualization. A sam-
ple Vega-Lite query is as follows:

C
40.4%

B
5.4%

E
36.2%

F
1.6%

G
1.6%

A
3.2%

s

I
1.6%

H
1.6%

D
8.4%

Edge labels: s (similar), d(diverse), c(coverage)

s

c
c c

c
c

s s
s

s

d

d

Figure 2: A Sample Visualization Link Graph

“data”: {“url”: “flights.json”},
“mark”: “bar”,
“encoding”: {

“x”: {
“bin”: true,
“field”: “carriers”,
“type”: “qualitative” },

“y”: {
“aggregate”: “count”,
“type”: “quantitative” },

}

Visualization Crawler. The DeepEye crawlerwill extract tables
and their associated visualizations from multiple sources, where
both the table and the visualization specifications (or equivalently,
queries) need to be explicitly given. For example, there are hun-
dreds of visualization examples in https://www.highcharts.com,
with both data values and visualization specifications. Note that
we do not require these sources to use Vega-lite – most visualiza-
tion specifications can be easily converted to Vega-lite queries,
for which we need to implement corresponding tools for query
rewriting. When only the data and visualizations are given but
the visualization queries are absent, an interesting open problem
is to automatically infer the declarative visualization queries.

Visualization Link Graph. A visualization link graph is a di-
rected graph G(N,E) with nodes N and directed edges E. Each
node v ∈ N is a visualization (i.e., Q (D)). Each directed edge
e : (u,v) ∈ E can have multiple labels, denoted by L(e), where
each label L(e) ∈ L(e) is a facet, such as similar, diverse, coverage.

In order to decide the edges and their labels, we have defined
a set of facet functions. For example, there is a “similar”-edge
from node u to node v , if the corresponding similar-function
fs (u,v) returns true, denoting that u is similar to v . There can
have another “similar”-edge from v to u if fs (v,u) also returns
true. Note that any facet function does not have to be symmetric
– f (u,v) is true does not imply that f (v,u) is true as well. The
other edges and labels are generated similarly using different
facet functions. Please find more details in the Faceted Navigation
module in Section 2.2.

A sample visualization link graph is given in Figure 2. The
number associated with each node denotes the importance of the
node, which will be further discussed in Section 3.

2.2 Visualization Search Engine Modules
In this section, we will discuss the functionalities and our basic
designs for the modules of DeepEye visualization search engine.

442

Keyword-to-Visualizations. Given a keyword query K and a
dataset D, this module generates all candidate visualizations.

As mentioned earlier, this problem is hard because keyword
queries are always ambiguous and underspecified – there might
have a large number of candidate visualizations due to different
attribute combinations and multiple data transformation oper-
ations (e.g., grouping, binning, sorting). Fortunately, there are
simple observations about good/bad visualizations, e.g., pie charts
are best to use when comparing parts of a whole, and they do
not show changes over time; and bar graphs are used to compare
things between different groups or to track changes over time,
and too many bars (e.g., > 50) are hard for human to interpret.
The traditional wisdom from visualization experts can be en-
coded into rules to prune many apparently bad charts (see e.g.,
https://www.pinterest.com/pin/20125529565819990/ for a chart
type cheat sheet that can be easily leveraged).

Visualization Transformation. The broad intuition is that, if a
visualizationV can “match” a known (crawled) good visualization,
thenV is probably good. Asmentioned earlier in the data features,
visualization matching focuses more on feature matching (e.g.,
similar domains and similar trends), in contrast to traditional
value matching of strings.

Given a visualization V and another visualization N , it is to
compute the similarity between their features, which typically
falls in the range [0, 1]; and we say that V matches N if their
similarity is above a threshold σ .

Given a set of visualizations V, the module of Visualization
Transformation will find a set of existing good visualizations N
thatmatch these candidate visualizations. Note that one candidate
query can match multiple good visualizations, and vice versa.
Also, a candidate visualization that cannot match any existing
good one will be removed, which will result in a subset V′ of V.

Visualization Ranking. Given a set of visualizations V′ and
their matched good visualizations N, the Visualization Ranking
module will rank V′ based on N (i.e., a subgraph of the visualiza-
tion linkage graph) and return to the user. We can either use the
learning-to-rank [7] techniques to learn the features from known
good visualizations or design new ranking functions. We can also
use the user click-through data to rank the visualizations.

Faceted Navigation. When a user picks a visualization V he
likes, he can further explore other visualizations by facets. The
Faceted Navigation module will discover another set of visualiza-
tions based on V , which will also be ranked and returned to the
user, in order to help users navigate the visualizations.

We plan to implement this module by providing each facet a
programming interface (i.e., an API) that implements a facet func-
tion, e.g., similar, diverse, coverage. Also, we make it extensible by
allowing domain experts to plug in other APIs for different facets.
The main reason to allow this flexibility is that till now, there is
no consensus about criteria of finding interesting visualizations,
which remains an open problem. Note that these facet-functions
do not need to be mutually exclusive.

3 RESEARCH OPPORTUNITIES
3.1 Visualization Data
An effective visualization system replies on high-quality and
high-coverage visualization data. Although there are some open
websites that we can crawl some data, the coverage is limited
and we need to construct a visualization benchmark.

Opportunity. First, our system requires visualizations with data,
visualization queries and visualization charts. Many websites,
however, do not contain such data, and we need to infer one
dimension based on the others, e.g., inferring a query based on
the data and a visualization. Second, we also need some well-
ranked visualizations to help us rank the visualizations for a new
dataset. However many websites do not contain rankings, and it
is challenging to infer rankings. Third, we can use crowdsourcing
to collect more visualization data and rank the visualizations, and
the challenge is to reduce the crowdsourcing cost, improve the
quality, and avoid the redundancy with existing data.

3.2 Visualization Search Engine
3.2.1 Keyword-to-Visuliazations. The essential problem is to

understand natural language and generate visualization queries.
Fortunately, the recent machine learning and deep learning tech-
niques have made it easy to understand natural language (see e.g.,
the OpenNLP toolkit: https://opennlp.apache.org). Furthermore,
several approaches have studied the problem of translating natu-
ral language to SQL queries, such as NLIDBs [1] and NaLIR [11].

Opportunity. Although the above approaches shed some light
on our problem, translating natural languages to visualization
queries remains a hard problem. The main reason is that when
searching visualizations, the user cares more about the statistical
properties such as trends, comparisons, fast increase, which are
more ambiguous than querying a DBMS such as “return the
average number of publications by Bob in each year”. In other
words, even if an expert knows precisely what is the meaning
of the natural language query of the user, it is still hard for the
expert to formulate using the declarative visualization language,
since good visualizations are also data dependent.

The research problem is: Given a keyword query K and a
dataset D, discovers candidate visualizations Q(D ′) that the user
wants, whereD ′ could be transformed fromD (e.g., by operations
like binning, grouping, sorting, and a combination thereof).

3.2.2 Visualization Transformation. The fundamental prob-
lem of visualization transformation is to transform the knowl-
edge (or features) from known good visualizations to deciding
the goodness of unknown visualizations. A possible way is to
compute the similarity between two visualizations Q1 (D1) and
Q2 (D2) (i.e., the known good one). If Q1 (D1) is very similar to
Q2 (D2) and Q2 (D2) is good, then by inference, Q1 (D1) is also
good: showing an interesting trend, using the same chart as em-
ployed in Q2, etc.

Opportunity. The open problem is how to define the similarity
function sim(Q1 (D1),Q2 (D2)), which relates to many factors.

(1) The statistical correlation between the two visualizations
Q1 (D1) and Q2 (D2), such as the same trend.

(2) The domain similarity, i.e., whether the attributes used for
Q1 (D1) and Q2 (D2) come from the same domain.

(3) The type similarity, e.g., whether the data types used in
Q1 (D1) and Q2 (D2) are both temporal data.

3.2.3 Visualization Ranking. As mentioned earlier, there is
still no consensus to quantify the “goodness” of a visualization.
Intuitively, it is harder to quantify “better” visualizations.

Opportunity. The great success of search engines has shown us
multiple ways of doing link analysis, with the purpose of “mea-
suring” the relative importance within a set of linked webpages.
Maybe themost successful story is PageRank [6].We have defined

443

our visualization link graph (see Figure 2) in a way that we can
use a similar idea of PageRank, which is referred to as VisualRank.
However, implementing VisualRank faces four challenges:

(1) The edges in the visualization link graph and the edges in
the Webgraph have different meanings. In the Webgraph,
an edge from a page X to a page Y if there exists a hyper-
link on pageX referring to pageY . In the visualization link
graph, the edges have diversified semantics (or facets).

(2) The search behaviors between a normal search engine and
a visualization search engine are quite different.

(3) We also want to use the graph in faceted navigation to
reduce the number of interactions with the user. It is chal-
lenging to design multi-goal optimization algorithms.

(4) Our end goal is not to rank nodes in the visualization link
graph, but the unlinked visualizations for an input dataset,
for which we need to infer from the “importance values”
of their matched good visualizations to rank.

Hence, a good research opportunity is how to design a Visual-
Rank algorithm, which shares the basic intuition of PageRank,
but serves the purpose of ranking visualizations.

3.2.4 Faceted Navigation. The recent proposal towards visual-
ization recommendation systems [15] made an attempt to define
the criteria of recommending good visualizations: relevance, sur-
prise, non-obviousness, diversity and coverage. Another recent
work proposes a general-purpose query language for visualiza-
tion recommendation [18].

Opportunity. We can certainly use these criteria to create
our facets. Unfortunately, these are just research hypothesis –
whether they can lead to good visualizations is still not well
justified. Besides, there is no well accepted implementation for
each of them. Hence, it remains open that which facets should
be considered and how to implement them.

3.3 Optimization
Response time is critical to real-time applications – response
times under one second are usually considered to be good for
search engines. Naturally, this requires us to carefully design
DeepEye, from storage, indexes, to algorithms.

Opportunity. The first opportunity is about storage: What is
the best physical representation of the data and the existing visu-
alizations, assuming that they are stored in tables and JSON files?
The work RodenStore [8] proposed an adaptive and declarative
storage system providing a high-level interface for describing the
physical representation of data. The similar idea can be adopted
in the problem of storing datasets and visualizations. The second
opportunity is how to store the visualization link graph – this
will be tightly coupled with all (ranking) algorithms that use
this graph. We can also group the visualizations effectively, e.g.,
in a hierarchy or using partial orders, to help users to quickly
find target visualizations. The third challenge is how to design
effective index, especially for large datasets. We can borrow the
idea from the search engine, e.g., inverted index and forward
index. However, it is rather challenging to design indexes for
visualization search and ranking, because they involve more data
features and more visualization operations.

4 RELATEDWORK
Visualization Recommendation Systems. One important
line of work is visualization recommendation systems [14–16].
Roughly speaking, given a dataset, they want to automatically

recommend visualizations to the user under different criteria.
DeepEye differs from them in the following two key aspects:
(1) instead of guessing the user’s intent, DeepEye accepts key-
word search; and (2) DeepEye uses existing good visualizations
to reason about the input dataset.
Interactive Data Visualization. There are some interactive
data visualization systems, such as D3 [5], protovis [4], mat-
plotlib [10], Tableau [17]. We do not plan to reinvent the wheel –
DeepEye will export the user selected visualizations to the above
toolkits for more complicated manipulations.
Visualization Languages. There are many visualization lan-
guages, e.g., Vega [13], Vega-Lite [12], VizQL [9], Ermac [19], and
DeVIL [20]. We use Vega-Lite as it is simple yet general enough.

5 CONCLUDING REMARKS
With increasing interest and importance of data visualization for
data science applications, there is an emerging need for a tool
to easily create good visualizations. We believe that DeepEye,
the first visualization search engine, will lead to interesting and
impactful problems for many communities, including: database,
information retrieval, machine learning, and visualization.
Acknowledgement. This work was supported by 973 Program
of China (2015CB358700), NSF of China (61632016, 61472198,
61521002, 61661166012), and TAL education.

REFERENCES
[1] I. Androutsopoulos, G. Ritchie, and P. Thanisch. Natural language interfaces to

databases âĂŞ an introduction. Natural Language Engineering, 1(1):29âĂŞ81,
1995.

[2] Y. Bengio, A. C. Courville, and P. Vincent. Representation learning: A review
and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell., 35(8):1798–1828,
2013.

[3] C. Binnig, L. D. Stefani, T. Kraska, E. Upfal, E. Zgraggen, and Z. Zhao. Toward
sustainable insights, or why polygamy is bad for you. In CIDR, 2017.

[4] M. Bostock and J. Heer. Protovis: A graphical toolkit for visualization. IEEE
Trans. Vis. Comput. Graph., 15(6):1121–1128, 2009.

[5] M. Bostock, V. Ogievetsky, and J. Heer. D3 data-driven documents. IEEE Trans.
Vis. Comput. Graph., 17(12):2301–2309, 2011.

[6] S. Brin and L. Page. The anatomy of a large-scale hypertextual web search
engine. In Seventh International World-Wide Web Conference (WWW 1998),
1998.

[7] C. J. C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, and
G. N. Hullender. Learning to rank using gradient descent. In ICML, pages
89–96, 2005.

[8] P. Cudré-Mauroux, E. Wu, and S. Madden. The case for rodentstore: An
adaptive, declarative storage system. In CIDR, 2009.

[9] P. Hanrahan. Vizql: a language for query, analysis and visualization. In
SIGMOD, page 721, 2006.

[10] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in Science
and Engineering, 9(3):90–95, 2007.

[11] F. Li andH. V. Jagadish. Understanding natural language queries over relational
databases. SIGMOD Record, 45(1):6–13, 2016.

[12] A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer. Vega-lite: A
grammar of interactive graphics. IEEE Trans. Vis. Comput. Graph., 23(1):341–
350, 2017.

[13] A. Satyanarayan, R. Russell, J. Hoffswell, and J. Heer. Reactive vega: A stream-
ing dataflow architecture for declarative interactive visualization. IEEE Trans.
Vis. Comput. Graph., 22(1):659–668, 2016.

[14] T. Siddiqui, A. Kim, J. Lee, K. Karahalios, and A. G. Parameswaran. Effortless
data exploration with zenvisage: An expressive and interactive visual analytics
system. PVLDB, 10(4):457–468, 2016.

[15] M. Vartak, S. Huang, T. Siddiqui, S. Madden, and A. G. Parameswaran. Towards
visualization recommendation systems. SIGMOD Record, 45(4):34–39, 2016.

[16] M. Vartak, S. Rahman, S. Madden, A. G. Parameswaran, and N. Polyzotis.
SEEDB: efficient data-driven visualization recommendations to support visual
analytics. PVLDB, 8(13):2182–2193, 2015.

[17] R. M. G. Wesley, M. Eldridge, and P. Terlecki. An analytic data engine for
visualization in tableau. In SIGMOD, pages 1185–1194, 2011.

[18] K.Wongsuphasawat, D.Moritz, A. Anand, J. D.Mackinlay, B. Howe, and J. Heer.
Towards a general-purpose query language for visualization recommendation.
In HILDA@SIGMOD, page 4, 2016.

[19] E. Wu, L. Battle, and S. R. Madden. The case for data visualization management
systems. PVLDB, 7(10):903–906, 2014.

[20] E. Wu, F. Psallidas, Z. Miao, H. Zhang, and L. Rettig. Combining design and
performance in a data visualization management system. In CIDR, 2017.

444

	DeepEye: Visualizing Your Data by Keyword Searchxuedi qin, Yuyu Luo, Nan Tang, Guoliang Li

