
QUASII: QUery-Aware Spatial Incremental Index
Mirjana Pavlovic

EPFL
mirjana.pavlovic@epfl.ch

Darius Sidlauskas
EPFL

darius.sidlauskas@epfl.ch

Thomas Heinis
Imperial College

t.heinis@imperial.ac.uk

Anastasia Ailamaki
EPFL & RAW Labs SA

anastasia.ailamaki@epfl.ch

ABSTRACT
With large-scale simulations of increasingly detailed models and
improvement of data acquisition technologies, massive amounts
of data are easily and quickly created and collected. Traditional
systems require indexes to be built before analytic queries can be
executed efficiently. Such an indexing step requires substantial
computing resources and introduces a considerable and growing
data-to-insight gap where scientists need to wait before they
can perform any analysis. Moreover, scientists often only use
a small fraction of the data — the parts containing interesting
phenomena — and indexing it fully does not always pay off.

In this paper we develop a novel incremental index for the
exploration of spatial data. Our approach, QUASII, builds a data-
oriented index as a side-effect of query execution. QUASII dis-
tributes the cost of indexing across all queries, while building
the index structure only for the subset of data queried. It reduces
data-to-insight time and curbs the cost of incremental indexing
by gradually and partially sorting the data, while producing a
data-oriented hierarchical structure at the same time. As our
experiments show, QUASII reduces the data-to-insight time by
up to a factor of 11.4x, while its performance converges to that
of the state-of-the-art static indexes.

1 INTRODUCTION
The advances in data acquisition technologies and supercomput-
ing for large-scale simulations rapidly increase the amounts of
spatial data generated and collected. For instance, in the Human
Brain Project (HBP) [27], neuroscientists build spatial models
of the brain which will ultimately feature 1011 neurons [42],
each reconstructed with thousands of 3d cylinders. NASA re-
leased 500 TB of earth observation data generated through re-
mote sensing [30], while the Dutch government released point
cloud data with 640 billion points [31] acquired through airborne
scanning. Similarly, volunteers generate large amounts of spa-
tial data through services such as OpenStreetMap [33]. Given
these massive and growing amounts of spatial data, algorithms
to query them efficiently are crucial.

Previous research has proposed many techniques [11, 26, 42]
for the fast and scalable querying of spatial datasets. Existing ap-
proaches, however, have twomajor drawbacks. First, they require
a time-consuming step to build indexes before they can be used.
This pre-processing step significantly delays the analyses: index-
ing a model in the HBP, for example, can take several hours [42].
With increasing dataset size, the data-to-insight time grows as
well. Second, scientists frequently only analyse a small fraction
of the data [1, 8]. In the HBP, for example, a scientist builds a

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st
International Conference on Extending Database Technology (EDBT), March 26-29,
2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

model of the brain but after a few queries may determine that it is
not biorealistic (e.g., density in certain areas does not agree with
measurements) and stops the analysis. Given the small number
of queries executed, the overhead of indexing the entire model
cannot be fully amortized.

The problems of delayed analysis (due to prior indexing) and
the impossibility to amortize indexing cost (due to too few queries)
are not exclusive to spatial data management. Database research
has proposed incremental indexes for relational data (e.g., crack-
ing [18] and adaptive merging [14]) and for time-series [45].
The core idea is to incrementally index only the parts of the
data queried, spreading the cost of indexing over the first few
queries. The major data-to-insight bottleneck is thus eliminated,
i.e., queries are answered as soon as data is available (albeit the
first queries run slower, as no index is initially available).

In this paper, we develop an incremental indexing approach
for spatial data in main memory, with the aim of reducing data-
to-insight time, as well as achieving performance comparable to
traditional spatial indexes (after enough queries are executed).
As no current incremental indexing approach for main memory
exists, we demonstrate the limitations of applying current op-
tions to incrementally index spatial data. As we show, using the
concepts for incrementally indexing one-dimensional data [18]
to index three-dimensional data does not significantly reduce
data-to-insight time, as the major bulk of work still has to be done
for the first query. Adapting Space Odyssey [35], an incremental
index for exploratory analyses of multiple spatial datasets on
disk, to main memory leads to excessive reorganization of the
data. As a consequence, a static index (including pre-processing
cost) quickly outperforms the proposed incremental solution, in
terms of total execution time.

We thus develop a QUery-Aware Spatial Incremental Index -
QUASII: a novel data-oriented, query-driven incremental index-
ing approach. QUASII substantially reduces data-to-insight time
and keeps the cost of incremental strategy low, by gradually and
partially sorting the spatial objects considering all dimensions.
QUASII thus distributes the cost of indexing across all queries,
while preserving spatial proximity and producing a data-oriented
style partitioning — which typically entails an expensive pre-
processing step in the static setting. Finally, being data-oriented,
it executes queries efficiently, as it adjusts to the distribution of
the data, while avoiding data replication.

Our experiments show that QUASII substantially accelerates
the exploratory analysis of spatial data in main memory by re-
ducing the data-to-insight time by up 11.4×, while achieving the
query performance of current algorithms for spatial indexing.
Static algorithms are not able to amortize their building cost over
QUASII even after 10000 queries.

To our knowledge we are the first to develop and analyze
incremental indexing for spatial data. Our contributions are:

Series ISSN: 2367-2005 325 10.5441/002/edbt.2018.29

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2018.29

• We demonstrate the challenges of adapting and using
known incremental indexing [18, 35] to spatial data in
main memory. We use the resulting approaches as moti-
vation and baseline.
• We develop QUASII, an incremental approach that signifi-
cantly reduces the data-to-insight time, while achieving
the query performance of state-of-the-art spatial indexes.
• We experimentally analyse QUASII’s performance and the
number of queries it needs to reach the performance of its
static counterparts.

The remainder of the paper is structured as follows. We define
the problem in Section 2 and motivate it in Section 3. We then
describe QUASII in Sections 4 and 5 and experimentally evaluate
it in Section 6. Section 7 gives an overview of related work before
we conclude in Section 8.

2 PROBLEM DEFINITION
Our work is driven by the need for the exploratory analysis of
spatial datasets through querying. The queries executed are ad
hoc, i.e., the next query is only known after the results of the
first query are analyzed, and they thus cannot be batched and
executed with only one sequential read of the dataset.

Example Application. In the Human Brain Project, neuro-
scientists build spatial models of the brain [27]. Already now the
models are so detailed that to simulate a neocortical volume of
only 0.29 mm3 supercomputers are needed [28].

Once the part of a model is built, neuroscientists need to val-
idate it by choosing a subset of its regions at random and in-
specting them. Each region is queried with several spatially close
queries and the query results are used to verify the composition,
density and other metrics agree with the real brain. The results
of these analyses are crucial to determine whether or not the
model can be simulated or should be abandoned (subsequently
building a new one using a different configuration). Scientists
currently only have two fundamentally different options: index
all data a priori and execute queries with the index or scan all
data each time to answer a query. Not knowing a priori how
many queries will be executed (and if indexing can be amortized)
makes it difficult to decide.

Data. We consider spatially extended (volumetric) objects en-
closed by aminimumbounding box (MBB). In a three-dimensional
(3d) setting, each MBB b is defined by two 3d points lower (b) and
upper (b) corresponding to lower and upper coordinate at each di-
mension (lower (b) = (xl ,yl , zl) and upper (b) = (xu ,yu , zu)) [11].

Queries. We focus on range (window) queries as they are
broadly used in many applications and are also the building
block for many other spatial queries (e.g., k-nearest neighbor
queries [22]). Each query is a 3d box specified by two 3d points,
e.g., (ql ,qu). Given a query q, all objects with their bounding box
b intersecting with q, i.e., where b ∩ q , ∅, are in the result.

Setting. We assume that all data and necessary index struc-
tures fit in main memory. We consider a static setting, i.e., all raw
data is available before querying.

3 MOTIVATION
No current incremental indexing approach can index spatial data
in main memory. Research has developed incremental indexing
for relational, one-dimensional data in main memory, i.e., crack-
ing [18] and for spatial data on disk [35]. In the following we
extend the former [18] to the spatial domain and adapt the lat-
ter [35] to use in main memory — to demonstrate the limitations

of these ideas in reducing the data-to-insight time and tomotivate
the need for a new approach.

3.1 Cracking for Spatial Data
Relational Cracking. Database cracking [16, 18, 19] incremen-
tally builds an index as a byproduct of query execution in the
context of mainmemory column-stores. The proposed techniques
partially sort elements based on the query execution, essentially
performing an incremental quick sort. In its simplest form, crack-
ing [18] rearranges elements in an array according to the end
points of the query range (ql ,qu): all values < ql are moved to-
wards the beginning of the array, while values > qu are moved
towards the end. With each query, the index becomes more re-
fined until it is fully sorted and indexed.

SFCracker. Using this strategy to index spatial data is in-
herently challenging: spatial data has multiple dimensions and,
unlike 1d data, no total order can be directly imposed on it. There-
fore, to be able to use the strategy of cracking we transform data
from the multi- to the one-dimensional domain. We perform this
transformation using a space-filling curve (SFC) — a common
approach to impose a total, 1d order on spatial objects.

A SFC maps data to 1d domain by visiting all the points in a
d-dimensional grid exactly once; the order in which the objects
are visited defines their order in 1d space. When mapping spatial
data, it is crucial to consider SFCs that preserve proximity (such
as Z-order [34] or the Hilbert curve [21]), so that data points close
in multi-dimensional space remain close in 1d space [10, 29].

The resulting approach, SFCracker, incrementally sorts SFC
codes based on the queried region. Both, data and queries are
transformed to 1d space. The data transformation takes place in
the first query, which makes it the most expensive one. Once the
data is transformed, the queries perform cracking based on the
1d intervals obtained through the query transformation.

3

4
8

ll

ur

Figure 1: 1d transfor-
mation: overhead.

A naive query transformation to
1d space results in a substantial num-
ber of false positives (needed to be
tested for intersection) because the
transformed 1d range can be signifi-
cantly larger than the original multi-
dimensional range if only the lower
and upper coordinates of the range
query are considered. An example
is shown in Figure 1: the curve seg-
ments in blue belong to the trans-
formed range (SFCcodel , SFCcodeu),
but they are outside of the original query range (in red). To re-
duce the overhead of false positives, we use a technique that
partitions the curve into multiple sub-intervals each of which is
fully contained in the original range [43]. Consequently, a range
query is transformed into a number of intervals and the data is
thus cracked multiple times per query, once for every interval.

Limitations. Cracking in the relational domain decreases
data-to-insight time, distributing the cost of sorting over all
queries with fairly low overhead and initialization cost. These
benefits, however, decrease for datasets with a higher number of
dimensions. First, the initial query is expensive as it maps all the
objects from the multi- to the one-dimensional domain. Second,
as opposed to relational data, a single query has to perform mul-
tiple expensive cracks to avoid performance penalties introduced
with the transformation to 1D space. Consequently, spatial crack-
ing still has a considerable data-to-insight time, along with an

326

expensive incremental strategy.We demonstrate these limitations
experimentally in Section 6.3.

3.2 Disk-based Incremental Indexing
in Main Memory

Disk-based Incremental Indexing. Space Odyssey [35] is a
recently proposed incremental index for the exploration of spatial
data. However, it tackles a different problem: Space Odyssey is
designed for exploratory analyses of multiple spatial datasets.
Without prior information, it incrementally indexes the datasets
and adapts the physical layout of the data on disk for datasets
frequently queried together. Although Space Odyssey addresses a
different problem, we use its ideas related to incremental indexing
and adapt them for use in main memory in Mosaic.

q1

q2

q3

Figure 2: Mosaic:
incremental strategy.

Mosaic. Mosaic incrementally
builds an Octree [20] by dividing
the space uniformly into eight parti-
tions. Figure 2 depicts the indexing
process (in 2d for clarity). For ev-
ery query, Mosaic identifies the par-
titions that overlap with the query,
splits them into eight partitions
and reassigns their objects to the
newly created partitions. Frequently
queried areas in a dataset are in-
dexed fully, whereas less frequently queried areas are coarser
grained. The top-down strategy is thus beneficial for consecutive
queries, as they can reuse the previous partitioning, independent
of the workload pattern. However, data in frequently queried
areas is re-partitioned multiple times.

Limitations. Mosaic introduces significant overhead as the
data in frequently queried areas is re-partitioned multiple times
until it reaches its final configuration. Consequently, a static ap-
proach based on space-oriented partitioning, such as the uniform
grid, outperforms quickly Mosaic in terms of total execution time
(we provide more details in Section 6.3).

Mosaic additionally suffers from considering more objects
than strictly necessary — a problem inherent in space-oriented
partitioning and related to data assignment. For indexes based
on space-oriented partitioning, objects can be assigned to cells
with two strategies: replication and query extension. Replication
assigns an object to all partitions that it overlaps with. As a con-
sequence more objects need to be considered for intersection, the
memory footprint increases and an expensive de-duplication step
is needed. The alternative is to use query extension [40] which
assigns an object to a cell based only on its center. This technique
avoids object replication, however, it can considerably increase
the number of objects necessary to be tested for intersection.
More precisely, to ensure the correctness of the query result, it
extends the query range by the maximum object extent. As a
result, the area queried for is bigger than the initial query. Both
strategies, replication and query extension, slow down query ex-
ecution but, as we show in Section 6.2, replication is particularly
expensive when working with volumetric spatial objects and we
thus use query extension in Mosaic.

4 QUASII OVERVIEW
As discussed, an approach to incrementally index spatial data is
not as straightforward as adapting known approaches. Besides
the challenges, we also identify important design goals:

(i) minimal data-to-insight time: the main requirement
for incremental indexing is to enable instant access to
the data, i.e., the first queries must not introduce undue
overhead/processing;

(ii) efficient query performance: the performance of fre-
quently queried subsets of data should converge to that of
the fully indexed approach (or better);

(iii) low cost incremental indexing: indexing should intro-
duce as little overhead as possible, i.e., its cumulative exe-
cution time should only exceed the one of static indexes
after as many queries as possible (or not at all).

Given the design goals and our analyses, we develop QUery-
Aware Spatial, Incremental Index, QUASII. QUASII is a data-
oriented index, incrementally built as a side effect of query exe-
cution. It reduces data-to-insight time and curbs the cost of incre-
mental indexing by gradually and partially sorting the data, while
simultaneously producing a data-oriented hierarchical structure.
It is based on a nested reorganization strategy which incremen-
tally slices the space in each dimension and a hierarchical, data-
oriented structure designed to accommodate the incremental in-
dexing process and provide efficient query execution.

Overview. Figure 3a illustrates QUASII’s incremental strategy
on a high level. Given range queries of the form q = [ql = (xl ,
yl , zl), qu = (xu , yu , zu)], QUASII reorganizes the objects based
on each query’s lower (ql) and upper (qu) coordinate by slicing
each dimension and performing a nested reorganization. It first
reorganizes objects on the x dimension, producing three x slices
where the middle one contains the objects in the range [xl , xu]
given the query range in dimension x . Subsequently, it continues
reorganizing the middle x slice on the y dimension, producing
again three slices where the middle one contains objects in the
range [yl , yu]. Finally, QUASII reorganizes the y slice on the z
dimension producing the z slice which contains the query result.
QUASII never performs a complete sort but reorganizes data
locally, given the query’s boundaries.

The slices produced are organized in a hierarchical structure
that incrementally forms the index. Figure 3b illustrates the struc-
ture of QUASII after the very first query (left) and after an ar-
bitrary number of queries (right) are executed. QUASII forms
a hierarchical structure with one level per dimension, i.e., the
first (top), second, and third (bottom) levels correspond to slices
at x , y, and z dimensions, respectively. The top level has the
coarsest granularity as its objects are constrained with one di-
mension, while the bottom level is the most fine-grained since
it is constrained by all dimensions. When executing the queries,
QUASII traverses the structure depth-first, performing additional
refinements when necessary, as we discuss later in Algorithm 1.

Nested Reorganization Strategy. The incremental strategy
of QUASII is query-driven and data-oriented. Being query-driven,
it reorganizes theminimal amount of datawhile executing queries.
At the same time, being data-oriented, it achieves query efficiency
as it adjusts to the data distribution, while avoiding replication.
QUASII accomplishes both through its nested reorganization.

Data-oriented partitioning typically entails an expensive pre-
processing step in the static setting as it preserves spatial prox-
imity based on a strategy for ordering multi-dimensional ob-
jects. QUASII distributes the cost of this pre-processing across
all queries by performing nested and partial reorganization. It
reorganizes only a subset of data driven by queries, gradually
curbing the amount of data partially sorted with every dimen-
sion. This strategy is inspired by the Sort-Tile-Recursive (STR)

327

66

1. reorganize x 2. reorganize y 3. reorganize z

Universe

Query

slice x

slice y

Query

Query Query

(a) Incremental indexing strategy

68

X level

Y level

Z level

(b) Index structure after the first (left) and few more (right)
queries

Figure 3: QUASII incremental indexing strategy and data structure.

R-tree bulkloading algorithm [26]. STR produces tiles that form
leaf-level nodes for the R-Tree by recursively, fully sorting spatial
objects in each dimension. More precisely, STR for 3d objects
first sorts the spatial objects on the x-axis and partitions them
in vertical tiles of equal size (i.e., the same number of objects).
Then, within each x tile, it recursively applies the same strategy
first considering y and then z dimension. This tiling strategy is
particularly efficient as the resulting R-Tree has less overlap than
other approaches [26]. By only performing partial reorganiza-
tions for the parts of the data that is actually queried, QUASII
outputs partitions targeting these characteristics at lower cost
(as opposed to complete sorts in STR).

Index Structure. QUASII’s index structure is designed to sup-
port an efficient incremental strategy with as little performance
penalty as possible. Its hierarchical structure is designed to ac-
commodate the reorganization strategy: each level corresponds
to one (reorganization) dimension and each parent node is rep-
resented by its children in a nested form along the dimensions
QUASII reorganizes data.We discuss the data structure and how it
accommodates incremental indexing in more detail in Section 5.1.

Benefits. Ultimately, the design choices behind our approach
enable us to achieve the goals we outlined. To reduce data-to-
insight time (i), QUASII keeps data in the multi-dimensional,
spatial domain. This avoids transforming all data at the very be-
ginning which significantly hurts performance of the first query.
Next, to achieve query efficiency (ii), QUASII uses data-oriented
partitioning that preserves spatial proximity, adjusts to the distri-
bution of data, and avoids object replication. Finally, to keep the
cost of the incremental indexing low (iii), QUASII gradually and
partially sorts the data using a nested reorganization strategy.

5 DATA STRUCTURE & QUERY
PROCESSING

In the following, we explain the QUASII index structure and data
organization before we proceed with discussing querying and
incremental indexing algorithms.

Throughout this section, we refer to a 2d example given in
Figure 4. It depicts a dataset D = {o0, . . . ,o9} of ten (gray) rect-
angular spatial objects. All subfigures have three main parts: the
top part shows a 2d view of the dataset D and how the space
is conceptually “sliced” by QUASII, the middle (“Data array”)
depicts how (raw) data objects are re-organized in main memory,
and the bottom shows QUASII’s hierarchical data structure that
is incrementally built. All x- and y-axis related slicing is marked
in green and blue, respectively. Figure 4a) shows the initial state:
the “slice-less” view of the data space with D objects and the very
first query q1, the data array of spatial objects in an arbitrary
initial order, and the data structure containing the initial slice, s0
(capturing the entire dataset).

5.1 Data Structure
QUASII forms a d-level hierarchical structure, organized accord-
ing to the number d of dimensions. Each level l has a one-to-one
mapping to the corresponding dimension. That is, the first level
(l = 1) represents slicing of data at x , the second level (l = 2)
slices aty, and the third level (l = 3) slices at the z dimension. The
top level always slices data objects at the coarsest granularity,
while the bottom level is the most fine-grained. Each slice is de-
scribed with four attributes: (i) its level, (ii) a minimum bounding
box capturing all its objects, (iii) indices to the data array corre-
sponding to the first and last entry of the objects that belong to
the slice, and (iv) pointers to sub-slices refining the slice further
on the subsequent dimension. In Figure 4, this corresponds to
the four fields present in each node of the data structure (next
to slice label, e.g., s0): l , box , ids , and arrow pointers (when not
null). In our two-dimensional view of the dataset, we mark boxes
with a solid line (in the corresponding color), while the slice cuts
are marked as dashed lines.

Data-oriented Slicing. One of the main advantages of data-
oriented partitioning is that each spatial object is always assigned
to just one partition (slice). However, QUASII determines the
slices in each dimension based on query ranges. Given volu-
metric spatial objects, objects can be sliced through and thus
overlap with multiple slices. To overcome this problem, QUASII
represents each object using only one of its coordinates and
uses this coordinate to identify a slice where an object will be
assigned to. In particular, during indexing, it uses each object’s
lower coordinate (xl ,yl , zl). Being part of object’s MBB, this does
not require any additional computation or storage1. In Figure 4,
this coordinate is marked as a black dot for all objects. Figure 4b
illustrates slicing based on the very first query q1 and its range
[2, 4] on the x-axis. Slicing at x = 2 and x = 4 results in three
x-slices (s1, s2, and s3). While object o6 overlaps two slices (s2 and
s3), it is assigned to s2 based on its lower coordinate (xl). Note
how the objects are re-organized in the data array and correspond
to three partitions (slices) with coordinates x < 2, 2 ≤ x ≤ 4,
and 4 < x . Accordingly, the data structure is updated with three
new (more refined) slices replacing the initial (coarser) slice s0
(capturing the whole dataset).

While QUASII assigns objects to slices based on their single
(lower) coordinate, it records a minimum bounding box for each
slice taking into account the actual spatial extent of the objects
and thus ensures the correctness of the query result. This also
results in slice representations (their MBBs) that are often much
smaller but not necessarily within the originally sliced bounds.
For example, s1 contains only one object and thus has a very
small MBB (i.e., its box = o2), while the MBB of s2 is b2 and
exceeds the original cut at x = 4 (Figure 4b). As we show later,
this enables QUASII to discard many unnecessary slices during

1The upper coordinate (xu , yu , zu) or the object’s center (requires to be computed,
though) can equally be used.

328

x

y

o8
o2

o3

o7

o6 o1

o4

o5o9

o0
q1

X

sx1

x = 2
Data array:
o1 o2 o3 o4 o5 o6 o7 o8 o9 o0

Data structure:

l=1
box=inf
ids=0:9

s0

l=2
box=b22
ids=3:4

(a) Spatial data and query q1

x

y

o8
o2

o3

o7

o6 o1

o4

o5o9

o0
q1

x = 2 x = 4
Data array:
o2 o4 o6 o7 o9 o0 o1 o3 o5 o8

b2

b3

X

s1

X

s2

X

s3

Data structure:

l=1
box=o2
ids=0:0

s1 l=1
box=b2
ids=1:4

s2 l=1
box=b3
ids=5:9

s3

l=2
box=b22
ids=3:4

l=2
box=b21
ids=1:2

(b) After slicing based on x of q1

x

y

o8
o2

o3

o7

o6 o1

o4

o5o9

o0
q1

y
=
4

y
=
6

b3

b21

b22

Xs21

Xs22

Xs23

Data array:
o2 o7 o9 o4 o6 o0 o1 o3 o5 o8

Data structure:

l=1
box=o2
ids=0:0

s1 l=1
box=b2
ids=1:4

s2 l=1
box=b3
ids=5:9

s3

l=2
box=b22
ids=3:4

s22l=2
box=b21
ids=1:2

s21

(c) After slicing based on y of q1

x

y

o8
o2

o3

o7

o6 o1

o4

o5o9

o0

x = 5.5

q2
b′3

b4X

s′3
X

s4

Data array:
o2 o7 o9 o4 o6 o5 o8 o0 o1 o3

Data structure:

l=1
box=o2
ids=0:0

s1 l=1
box=b2
ids=1:4

s2 l=1
box=b′3
ids=5:6

s′3 l=1
box=b4
ids=7:9

s4

l=2
box=b22
ids=3:4

s22l=2
box=b21
ids=1:2

s21

(d) After processing q2

Figure 4: An example of query processing and incremental indexing in QUASII (configured with τx = 4 and τy = 2), given
ten spatial objects (o0–o9) and two range queries (q1 and q2).

query execution. To limit unnecessary computation (as a slice can
be reorganized multiple times until it is fully refined), QUASII
computes a full MBB only when a slice is completely refined.
Otherwise, a slice is represented with an open-ended MBB, i.e.,
the MBB has bounds only on the dimension it has been sliced on.

Configuration.QUASII has only one configuration parameter,
a size threshold τ , that determines the maximum number of ob-
jects in a slice at the finest level. That is, at the bottom level, when-
ever a slice s contains less or τ number of objects (i.e, |s | ≤ τ),
it is considered to be fully refined. Intuitively, this is similar to
setting a (leaf) node size in the R-Tree.

The sizes of the remaining d−1 levels are calculated as follows.
Since QUASII performs data-oriented slicing, the total number of
partitions required to satisfy threshold τ is ⌈n/τ ⌉, where n is the
total number of objects (i.e., n = |D |). Consequently, the number
of times QUASII has to slice the data space across each dimension
to produce ⌈n/τ ⌉ partitions is equal to:

r =
⌈
d
√
n/τ

⌉
(1)

If we use τd to denote the slice threshold at the bottom level
l = d (i.e., τd = τ), then the maximum number of objects per
slice for the remaining levels (up to the top) can be expressed
recursively as τd−1 = r × τd . Note that r corresponds to the
number of sub-slices (within a slice) at each index level.

Turning to our 2d example2, after x-based slicing in Figure 4b,
s1 contains one object and thus is considered fully refined (i.e.,
|s1 | = 1 ≤ τx), while s3 has five objects and may be refined in the
future. Also note that s3 stores an open-ended MBB (s3.box = b3).

The number of levels in QUASII is fixed and always equals
to the dimensionality of the queried dataset. That is, it does not
depend on the size of the dataset. Therefore, to accommodate the
index growth (the index grows in breadth) and enable efficient
query execution, QUASII keeps the children (within a slice) or-
ganized/sorted according to the level’s dimension. QUASII uses
this order and the minimum bounding boxes (box) of each node
2To minimize the required number of objects in Figure 4, we fix τx = 4 and τy = 2.

to prune the amount of objects necessary to be tested during the
query execution.

5.2 Query Processing and Index Refinement
Having defined QUASII’s data structure, we discuss how it is
incrementally built and maintained as a side effect of each query.

Query Processing. Algorithm 1 shows the pseudo-code for
query processing. Each query traverses the d-level structure
depth-first, starting from the first level (having x-slices). Because
the slices are sorted, QUASII performs a binary search (Line 3)
to find the starting slice. It then scans all the slices S[i] within
the query range on the current dimension (i.e., while the loop
conditions in Line 4 hold). The loop conditions guarantee that
each slice S[i] intersects q only in the current dimension. To
discard potential false positive slices early, Line 5 checks if its
actual boundaries (S[i].box) also intersect with the query range.

Next, QUASII potentially refines S[i] (Line 6), which may be
further sliced into multiple more fine-grained slices S ′′ if it is
larger than the maximum size threshold τ (discussed in the next
algorithm). In Lines 7—16, QUASII traverses (potentially refined)
slices S ′′. For each s ∈ S ′′, it either checks all s objects for intersec-
tion in case of the bottom level or recursively proceeds querying
its children based on the next level/dimension (a default child
is assigned to a not fully refined slice, Line 15). Finally, all the
newly created slices are accumulated in S ′ (Line 17), appended
to S (Line 19), and re-sorted (Line 20). The slices are sorted based
on their ids , i.e., the position (index) of the first slice’s object in
the data array.

Index Refinement. With each query, QUASII attempts to
refine all query intersecting slices (i.e., Line 6 in Algorithm 1).
Algorithm 2 provides the simplified pseudo-code for this refine-
ment process. Note that the processing within Algorithm 2 is
always based only on the current dimension/level of slice s (s .l).

The input slice s is considered for slicing only if it exceeds
the threshold τ . Given s is coarse enough, QUASII proceeds with
determining the type of slicing based on the intersection between

329

Algorithm 1: query(query q, data D, slices S, result R)
1: S ′ ← ∅ // to store newly created (refined) slices
2: dim ← S[0].l // current level/dimension of slices in S
3: i ← binarySearch(S, lower (q[dim]))
4: while i < |S | and lower (S[i].box[dim]) ≤ upper (q[dim])

do
5: if q ∩ S[i].box = ∅ then continue
6: S ′′ ← refine(S[i], D, q) // as per Algorithm 2
7: for each slice s ∈ S ′′ do
8: if q ∩ s .box , ∅ then
9: if s .l is the bottom level then
10: for each j ∈ {s .ids} do
11: if D[j] ∩ q , ∅ then
12: R ← R ∪ D[j]
13: else
14: if |s .children | = 0 then
15: createDefaultChild(s)
16: query(q, D, s.children, R)
17: S ′ ← S ′ ∪ S ′′

18: i ← i + 1
19: S ← S ∪ S ′

20: sort(S)

query q and slice s . It considers three types of slicing. If both q’s
lower and upper coordinates are within s , a three-way slicing is
performed splitting s into three sub-slices (Line 5). If only one
of q’s coordinates is within s , a two-way slicing is performed
splitting s into two sub-slices (Line 6). Finally, if q contains s (i.e.,
both q’s coordinates are outside of s’s bounds), QUASII performs
a two-way slicing based on an artificially introduced coordinate.

QUASII iterates through the generated slices and for the ones
that still exceed τ (and overlap with the query) it applies addi-
tional refinement according to artificially introduced boundaries
in Line 10 (it repeats the process recursively until a slice is fully
refined in the corresponding dimension). The three- and two-
way slicing algorithms (Line 5 and Line 6) reorganize the data
(D) following the incremental quick sort strategy introduced in
database cracking [18]. In the reorganization process, QUASII
also records the information about the boundaries (box) of newly
created or modified slices.

Example. Continuing with our example in Figure 4, after
refining s0 into three x sub-slices in Line 6 of Algorithm 1 (and
resulting in Figure 4b), QUASII recursively continues with the
intersecting (and just refined) slice s2 based on the y dimension
(Figure 4c). As such, s2 is further refined based on the queried y
range and results in three new slices (s21, s22, and s23). In this step,
only the objects within the s2 range (ids = [1..4]) are three-way
sliced and re-organized in the data array. The two new slices (s23
is empty) are appended to the data structure as children of s2.
They are fully refined (as |s21 | ≤ 2 and |s22 | ≤ 2) and have much
smaller MBBs (b21 and b22, respectively) than the initial slice cuts.
Finally, because it is the bottom level, the objects within s22 are
checked against the query range and the two qualifying objects
{o4,o6} are added to the result set (R).

The subsequent queryq2 benefits greatly from previous slicing,
as illustrated in Figure 4d. For example, x-slices s1 and s2 are
skipped completely because query q2 does not intersect with
their MBBs (i.e, test on Line 5 in Algorithm 1). Therefore, QUASII
proceeds with the only intersecting slice s3, which is not fully
refined and requires further slicing. As per Algorithm 2, this time
a two-way slicing is performed (at x = 5.5) resulting in two finer

Algorithm 2: refine(slice s, data D, query q) −→ slices S
1: if |s | ≤ τ [s .l] then

return {s}
2: S ← ∅ // to store refined slices
3: t ← determineSliceType(s, q)
4: switch (t)
5: case both: S ′ ← sliceThreeWay(s, q, D)
6: case one: S ′ ← sliceTwoWay(s, q, D)
7: default: S ′ ← sliceArtificial(s, q, D)
8: for each slice s ∈ S ′ do
9: if |s | > τ [s .l] and q[s .l] ∩ s .box[s .l] , ∅ then
10: S ′′ ← sliceArtificial(s, q, D)
11: S ← S ∪ S ′′

12: else
13: S ← S ∪ s
14: return S

slices (s ′3 and s4) replacing the previous slice s3. Next, QUASII
continues with y-based slicing of the fully q2-contained slice s ′3.
Since s ′3 reaches the size threshold τy , it is not refined further.
Finally, the actual data array objects within s ′3 range (ids = [5..6])
are checked for intersection with q2 and the qualifying o8 is
added to the result set.

Artificial Refinement. To produce a balanced hierarchical
structure QUASII has to conform with the defined thresholds
when forming the slices and using only query boundaries does
not meet these requirements. One query is usually not suffi-
cient and we cannot use the subsequent queries for this purpose,
as they may interfere with the existing order of the slices. For
instance, reorganizing a slice again (that has been organized ac-
cording to all dimensions) based on the x dimension, may disrupt
the previously established partitioning for y and z dimensions.

To address this problem, QUASII reorganizes a slice s (Lines 7
and 10 in Algorithm 2) until it meets a size threshold τ in the
corresponding dimension. It achieves this by forcing a two-way
slicing based on artificially introduced coordinate and thus split-
ting the slice into two sub-slices. Given the range (xl ,xu), the
new coordinate is c = ⌊(xl + xu)/2⌋. The two new slices are
recursively sliced further until the threshold τ is satisfied.

While more advanced approaches, e.g., based on the concepts
from R*-Tree node splitting algorithms [6], would minimize over-
lap in data structure, they would also significantly increase the
cost of incremental strategy. Therefore, QUASII employs the
above uniform and low-cost artificial slicing strategy to meet τ
thresholds at each of d levels.

o q

q’

x

y

Figure 5: Refinement
step: query extension.

Query & Refine. The outcome
of QUASII’s reorganization strat-
egy are the slices that are within
the query range and consequently
only the objects in these slices are
checked for intersection. However,
performing the reorganization fol-
lowing strictly the query’s bound-
aries would produce an incomplete
result, as illustrated in Figure 5. For
instance, the object o overlaps with the query range q, however,
its lower coordinate is outside the query’s boundaries and conse-
quently o would not be identified as a part of the result.

To ensure correct query execution while preforming refine-
ment, QUASII employs the query extension technique [40]. More

330

precisely, it extends the query for maximum object extent in
each dimension, considering lower coordinate. This extension is
done only when performing refinement and only within not fully
refined slice. Consequently, the query that performs refinement
potentially considers more objects for intersection as its range
is enlarged. However, this introduces a minimal overhead as the
only alternative is the expensive scan of the entire unrefined slice.
We apply the same logic for the binary search where, to avoid
missing any slices due to the overlap within them, we extend the
query range (while performing binary search) for the maximum
slice extent in the corresponding dimension.

6 EXPERIMENTAL EVALUATION
In this section, we first describe the experimental setup &method-
ology and then present a thorough experimental analyses that
illustrates the benefits of our incremental approach, both on a
real-world neuroscience and synthetic datasets. We start the anal-
yses by outlining the shortcomings of the approaches based on
space-oriented partitioning in Section 6.2. We then study the
incremental approaches by comparing them with their static
counterparts in Section 6.3 and cross-evaluating their perfor-
mance in Section 6.4. Finally, Section 6.5 describes the sensitivity
analyses of QUASII.

6.1 Experimental Setup & Methodology
Hardware. We run our experiments on a Red Hat Enterprise
Linux Server release 7.3 machine equipped with 2 Intel Xeon
CPU E5-2650L processors at 1.80GHz and 768GB of RAM. Each
processor has 12 cores (24 hardware threads) with private L1
(32KB) and L2 (256KB) caches and 30MB of shared L3 cache.
Implementations. All indexing techniques are implemented in
C++ and compiled with g++ 4.9.3 with the maximum optimiza-
tion level. The list below summarizes the implementations that
we study:
Scan: performs a full data scan to answer each query.
SFCracker: is our incremental variant of database cracking [18]
for spatial data, described in Section 3.1. We use the Z-order as
a SFC order. The average farthest distance of neighbours in the
Z-order is (slightly) higher than in the Hilbert order [10] (i.e., it
has better locality), however, we opt to use the Z-order due to its
simplicity and the huge body of work on its efficient range query
algorithms [5, 39, 43, 44]. We use 32-bit to represent zcodes (i.e.,
10 bits per dimension) as a trade-off between memory resources
and precision (the number of false positives to be filtered).
SFC: is a static counterpart of SFCracker. In the pre-processing
phase, SFC transforms data from multi- to one-dimensional do-
main and sorts it according to the produced SFCcodes. During
querying, a (3d) query range is also converted to a 1d range and
a binary search is used to locate the objects in the 1d interval. We
employ the same representation of zcodes and query optimization
as in SFCracker (described in Section 3.1).
QUASII: is our incremental approach discussed in Section 4. We
use 60 objects as a node capacity τz .
R-Tree: According to our setting, all data is available before query-
ing. Therefore, we use a bulk-loading approach to build the R-Tree
index as it reduces overlap and decreases pre-processing time
compared to the R-Tree built by inserting one object at a time [26].
For this purpose, we use an efficient STR [26] bulk-loading strat-
egy that balances well the overhead of partitioning the data and
query performance. It outperforms Hilbert R-Tree [23] in terms
of query performance [26], while its pre-processing cost is not

0
5
10
15
20
25
30
35
40
45

R-Tree GridQueryExt GridReplication

Q
ue
ry
	e
xe
cu
tio

n	
tim

e	
(s
)

(a) Query execution

0

5

10

15

20

25

30

100 220 100 220

Uniform NeuroQ
ue
ry
	e
xe
cu
tio

n	
tim

e	
(s
)

Datasets	&	Configurations

(b) Configuration

Figure 6: The impact of space-oriented partitioning.

significantly higher [42]. Similarly, TGS [12] and PR-Tree [4] can
outperform STR on datasets with extreme skew and aspect ratio,
however, they incur considerable overhead for data partition-
ing. We use the same configuration for node capacity (60) as in
QUASII.
Mosaic: corresponds to the space-oriented incremental approach
described in Section 3.2.
Grid: is a uniform grid-based index used as a static counterpart of
Mosaic. We use query extension [40] technique (as discussed in
Section 3.2) to assign an object to a grid cell. We use two config-
urations with 100 and 220 partitions per dimension for synthetic
and neuroscience datasets, respectively. Both configurations are
obtained through a parameter sweep.
Dataset and Queries. We use real-world neuroscience and syn-
thetic datasets.
Neuroscience: we use a small part of the rat brain model repre-
sented with 450 million cylinders as elements in a volume of 285
µm3. We approximate the cylinders with MBBs, resulting in the
total number of 450 million MBBs with a size of 21GB on disk.
Based on the previously described use cases, we synthetically
generate queries, each having a fixed volume qvol of 10−2% of
the queried brain volume and a clustered distribution. We gener-
ate 5 query clusters each with 100 queries, where query centers
are distributed around the cluster centers following a Gaussian
distribution (µ = 0, σ = qvol).
Synthetic: we create synthetic datasets by distributing spatial
boxes in a space of 10 000 units in each dimension of the 3d
space. The length of each side of each box is determined uniform
randomly between 1 and 10 for 99% of the objects, while 1% of
the objects has a side ranging from 10 - 1000 units. The spatial
elements are distributed according to a uniform distribution. The
datasets have 500 million and 1 billion elements (size on disk
22.5GB and 45GB). For completeness and to test non-skewed
cases, we generate uniform workload. The uniform workload
contains up to 10 000 uniformly distributed queries. To have
range queries of different selectivity, we vary qvol: 10−3%, 10−1%,
1%, and 10% of the universe.

6.2 Space-oriented Partitioning Challenges
Both, Mosaic and SFCracker (introduced in Section 3), use space-
oriented partitioning at their core — Mosaic partitions space,
while SFCracker assigns the SFCcodes using a uniform grid. Be-
fore we start the analysis of incremental approaches we experi-
mentally demonstrate the shortcoming of space-oriented parti-
tioning — the overhead introduced with data assignment strat-
egy — since it also affects incremental solutions. Further on, we
illustrate why a static approach based on space-oriented parti-
tioning, such as a uniform grid, is not a suitable replacement
for an incremental index despite having a comparatively cheap
pre-processing step (once properly configured).

331

0.01

0.1

1

10

100

0 100 200 300 400 500

Q
ue
ry
	e
xe
cu
tio

n	
tim

e	
(s
)

a)	Query	sequence

SFC SFCracker Scan

0.01

0.1

1

10

100

0 100 200 300 400 500

b)	Query	sequence

Grid Mosaic Scan

0.001

0.01

0.1

1

10

100

0 100 200 300 400 500
c)	Query	sequence

R-Tree QUASII Scan

Figure 7: Convergence of a) one-dimensional, b) space-oriented c) data-oriented based approaches.

1

10

100

1000

10000

0 100 200 300 400

Cu
m
ul
at
iv
e	
tim

e	
(s
)

a)	Query	sequence

SFC
SFCracker
Scan

1

10

100

1000

10000

0 100 200 300 400
b)	Query	sequence

Grid
Mosaic
Scan

1

10

100

1000

10000

0 100 200 300 400
c)	Query	sequence

R-Tree
QUASII
Scan

Figure 8: Cumulative time of a) one-dimensional, b) space-oriented c) data-oriented based approaches.

DataAssignment. In the first experiment we illustrate the im-
pact of data assignment strategies by comparing the performance
of Grid and R-Tree. We use two variants of the Grid approach:
GridQueryExt avoids the objects replication by using the query
extension technique — it assigns an object to the grid partition
based on its center, while GridReplication replicates the objects
— it assigns an object to all the overlapping partitions.

Figure 6a) shows the results of the experiments where we exe-
cute 500 clustered queries of selectivity 0.01% on the neuroscience
dataset. GridReplication is heavily affected by object replication
which increases the number of objects necessary to be checked
for intersection and introduces an expensive de-duplication step
(needed due to objects replication). GridQueryExt achieves better
performance, however, it still considers 3.1× more objects for
intersection than the R-Tree as it extends the initial query for the
maximum object extent. The R-Tree clearly outperforms both
GridReplication and GridQueryExt with a speedup of 19.4× and
3.7× respectively.

Configuration. In the second experiment we demonstrate
the difficulty to configure the grid-based approaches. We use
two datasets with identical extent and number of elements but
different data distributions: Uniform (uniform distribution, syn-
thetic dataset) and Neuro (skewed distribution, the neuroscience
dataset). We use the same experimental setup as for the previous
experiment. The best configuration (number of partitions per
dimension) is 100 for Uniform and 220 for the Neuro dataset
and is determined in a parameter sweep. We measure the execu-
tion time when using both configurations for each dataset and
illustrate the results in Figure 6b).

Although both datasets have the same number of elements and
extent, the best configuration significantly depends on the data
distribution — the neuroscience dataset requires more partitions
compared to the Uniform dataset since it has the very dense
regions that require fine grained partitioning. Furthermore, the
grid configuration significantly affects performance — the grid
performance on the Uniform dataset deteriorates notably when
using the Neuro dataset configuration and vice versa.

Summary. Space-oriented partitioning introduces performance
penalties. Depending of data assignment strategy, we either con-
sider more elements or suffer from replication. Additionally, the
grid configuration is non-trivial and using the wrong one has a
detrimental impact on the execution time. In practice we have
to use a parameter sweep to find the configuration for a given
workload. Consequently, grid configuration turns into a time-
consuming process, increasing data-to-insight time.

6.3 Incremental versus Static
We first analyze the incremental approaches by comparing their
performance with the performance of their static counterparts
(introduced in Section 6.1). Each static approach has similar prop-
erties as its incremental counterpart, however, it involves nec-
essary pre-processing. We categorize the approaches according
to these properties as a) one-dimensional, b) space-oriented and
c) data-oriented approaches. For each category we present the
performance of the incremental approach, its static counterpart
and Scan. We first evaluate if and when the approaches converge
to the performance of their static counterparts and then analyze
the overhead of the incremental strategy. For this purpose we ex-
ecute the clustered query workload with 500 queries of selectivity
0.01% on the neuroscience dataset.

Convergence. In the first experiment we evaluate the conver-
gence of the incremental approaches — how fast an approach con-
verges to the execution time of a fully indexed dataset. Figure 7
measures the execution time of each query for all approaches.

The results show five peaks in execution time, one for each
query cluster. The execution of the first cluster of queries (and
the associated processing of the data) takes the longest as no
index structure exists at the beginning. The first queries therefore
exceed the cost of Scan, because at this point, the entire dataset
has to be scanned along with building partial index structures.
Subsequent queries within a cluster use a partial index and thus
execute in less time than a full scan, but take longer than queries
on the static approach. This process continues as queries in the

332

0.001

0.01

0.1

1

10

100

0 100 200 300 400 500

Q
ue
ry
	e
xe
cu
tio

n	
tim

e	
(s
)

Query	sequence

Scan R-Tree QUASII
Mosaic SFCracker

(a) Convergence

0

100

200

300

400

0 100 200 300 400

Cu
m
ul
at
iv
e	
tim

e	
(s
)

Query	sequence

QUASII
Mosaic
SFCracker
Grid

(b) Cumulative time

Figure 9: Comparative analysis of incremental approaches.

same cluster further refine the index. Queries in one cluster not
only refine the index locally but also carry out limited, global
refinement. The queries in a subsequent cluster thus benefit from
previous clusters and execute faster. As the index converges to
its full structure, the query execution time approaches that of the
to static approach.

CumulativeResponse Time.While in the previous set of ex-
periments we measure the individual query performance, in this
analysis we measure the cumulative execution time (including
index building step for the static approaches). Figure 8 illustrates
the experimental results.

Similar to the convergence experiment, the query clusters are
visible: the cumulative response time jumps each time the experi-
ment moves to a new cluster. The most expensive is the transition
from the first to the second cluster while subsequent transitions
become less evident as the index becomes more refined.

The cumulative cost of SFCracker is comparatively high and,
crucially, with a very expensive first query. One reason is that
the first query takes 12.9% of the total pre-processing by assign-
ing the objects to the grid cells and calculating the zcode values
for the entire dataset. Adding to this the cost of cracking, the
total execution time of the first query grows to 43% of the total
pre-processing time. More precisely, in order to minimize the
overhead introduced by the transformation to 1d space, we par-
tition the 1d query range into sub-intervals that tightly cover
its original 3d range. This optimization [43] results in a high
number of small intervals per query — on average 197. As a
consequence, the first queries crack the previously uncracked
area into a number of small adjacent intervals and therefore
reorganize significant amounts of data.

The static (SFC) index, on the other hand, is not substantially
slower for the first queries or, put differently, the building cost
of SFC is not much higher than the first query of SFCracker. In
fact, the cumulative execution time of SFCracker exceeds the
one of SFC after 23 queries already. The incremental approach
SFCracker thus does not offer a considerable benefit over SFC.

The incremental strategy of Mosaic is less expensive compared
to SFCracker — the objects within the partition queried are poten-
tially reassigned to the eight newly created partitions based on
their location. Therefore, it takes Mosaic longer, i.e., 100 queries,
before it exceeds the cumulative time of the static Grid. However,
its cumulative execution time is still considerable with the biggest
overhead being its top-down incremental strategy. The top-down
strategy ensures fast convergence but it also introduces overhead

as the data in frequently queried areas is re-partitioned multiple
times until Mosaic reaches its final level of refinement.

QUASII, at the same time, does not exceed the cumulative exe-
cution of the R-Tree in our experiments. Even after 500 executed
queries, the cumulative execution time for QUASII is 39.4% of
that of the R-Tree. The main benefit comes from its partial reor-
ganization strategy where the objects are gradually reorganized
within the query boundaries, as opposed to the complete sort.

Summary. While all the incremental approaches reach the
performance of their static counterparts, the incremental strate-
gies of SFCracker and Mosaic are comparatively expensive. As
we show for SFCracker, the major bulk of work has to be done
when executing the first query — as the data needs to be trans-
formed to 1d space and a single query has to perform multiple
cracking operations to avoid performance penalties due to the
transformation to 1d space. Mosaic increases its cumulative time
considerably due to its top-down partitioning strategy — it reor-
ganizes data in frequently queried areas multiple times until it
reaches its final level of refinement. Only the cumulative execu-
tion time of QUASII does not exceed the one of its static counter
part, the R-Tree, in our experiments.

6.4 Comparative Analysis
We now compare the performance of incremental approaches.We
use the same setup as previously and measure the convergence
of execution time as well as the cumulative execution time.

Convergence. Figure 9a) depicts the single query execution
time for all the incremental approaches compared with the R-Tree
and Scan. We use the R-Tree approach as a reference because it is
the fastest approach among the static indexes for the workloads
tested. We analyze the execution time of the first query and then
focus on the performance of the converged data structure.

The execution time of the first query determines data-to-
insight time and thus has to be as small as possible. Among the
incremental approaches, SFCracker has the most expensive first
query due to the transformation of data to the 1d space. Mosaic’s
first query is faster, but still expensive as it has to reassign all the
objects to new partitions, examining all three coordinates. Finally,
QUASII has the least expensive first query due to the nested data
reorganization — the number of objects necessary to be examined
and reorganized becomes smaller as more dimensions are taken
into account: all objects are scanned on the x-dimension, but on
the y-dimension only the objects with a x-value satisfying the

333

0.01

0.1

1

10

100

0 100 200 300 400 500

Q
ue
ry
	e
xe
cu
tio

n	
tim

e	
(s
)

a)	Query	sequence

R-Tree QUASII Scan

0.01

0.1

1

10

0 20 40 60 80 100Q
ue
ry
	e
xe
cu
tio

n	
tim

e	
(s
)

b)	Query	sequence

R-Tree QUASII Scan

1

10

100

1000

10000

0 100 200 300 400

Cu
m
ul
at
iv
e	
tim

e	
(s
)

c)	Query	sequence

R-Tree
QUASII
Grid
Scan

1

10

100

1000

10000

0 20 40 60 80

Cu
m
ul
at
iv
e	
tim

e	
(s
)

d)	Query	sequence

R-Tree
QUASII
GRID
Scan

Figure 10: Convergence and cumulative time: the first 500 (a & c) and last 100 (b & d) queries.

query will be scanned (accordingly for the z-dimension). Over-
all, Scan is 13.7, 9.2 and 4.6 times faster compared to SFCracker,
Mosaic and QUASII respectively, when executing the first query.

Among the incremental approaches, only QUASII attains the
query execution time of R-Tree on a fully converged index. Mo-
saic and SFCracker have at their core space-oriented partitioning
and therefore, their performance is affected by the data assign-
ment strategy as well as the skew in distribution, as Section 6.2
shows. SFCracker additionally transforms data to 1d domain and
thus cannot preserve spatial proximity to the same extent as the
other approaches. Consequently, QUASII outperforms Mosaic
and SFCracker with a speedup of 3.68x and 4.9x respectively for
the average execution time of a query in a fully refined area.

Cumulative Execution Time.We use the cumulative execu-
tion time as metric to evaluate the decrease in the data-to-insight
time as well as the "break-even" point — the point when the cu-
mulative cost of incremental exceeds that of static indexing — to
assess the quality of an incremental index. Figure 9b) shows the
experimental results. We use Grid as a reference since it has the
smallest cumulative execution time among the static approaches
— its pre-processing step is comparatively cheap (once its optimal
configuration is determined).

As discussed in Section 6.3, SFCracker and Mosaic have com-
paratively expensive strategies and thus reach the performance of
Grid after 13 and 100 queries respectively. Grid, on the other hand,
compared to QUASI, has not amortized its building cost after 500
queries. More precisely, QUASII reaches 84% of the Grid cumu-
lative execution time and, more importantly, it achieves 3.66x
faster query performance for completely refined areas. QUASII
executes the first query the fastest and consequently achieves
the highest decrease in data-to-insight time — 5.1x and 11.4x
compared to Grid and R-Tree.

For single query execution, the major benefit of QUASII comes
from its data-oriented partitioning. Similar the to R-Tree, it ad-
justs to the distribution of the data and, as opposed to Grid and
SFC, it does not replicate the objects or extend the query. It ad-
ditionally keeps the data in multidimensional space and does
consequently not suffer from decrease in dimensionality. Its low
cumulative cost is mostly attributed to its incremental strategy.
QUASII does not sort all objects, but rather reorganizes them
within the specific bounds, gradually curbing the amount of data
necessary to be reorganized.

Summary.QUASII outperforms other incremental approaches
with respect to the convergence of execution time and cumula-
tive time. It achieves performance comparable to the R-Tree (the
fastest static approach) in the areas of the dataset where enough
queries have been executed, while not exceeding the cumula-
tive time of Grid (the static approach with the least expensive
pre-processing) or the R-Tree. Its major benefits come from the
data-oriented partitioning and the nested reorganization strategy
which reorganizes precisely the data touched and used.

0

200

400

600

800

1000

1200

R-Tree QUASII R-Tree QUASII

500 1000

Cu
m
ul
at
iv
e	
	ti
m
e	
(s
)

Objects	in	datasets	(millions)

Building	
Querying

Figure 11: Analysis of QUASII: scalability.

6.5 Analysis of QUASII
In this section we focus on QUASII. We evaluate its performance
on the workloads other than neuroscience, analyze its scalability
and the impact of query selectivity.

6.6 UniformWorkload
In the previous analyses we used workloads with query clus-
ters that show the benefit of incremental approaches: the index
quickly converges to the final performance as the queries are
targeting the same areas. In this experiment we evaluate the per-
formance of QUASII for a uniform workload. We execute 10000
uniformly distributed queries of selectivity 0.1% on the dataset
with uniform distribution and 500M elements. We compare the
performance of QUASII with Scan and R-Tree and additionally
consider Grid for the cumulative execution time. Figure 10 illus-
trates both convergence and cumulative time for the first 500 and
last 100 queries of the workload.

None of the first 500 queries is executed on a completely re-
fined index. Starting with the 300th query, however, the single
query execution is close to the final performance. Among the
last 100 queries, 64 are executed on a completely refined index.
The performance of queries on the refined structure is equal or
very close to the performance of the R-Tree, i.e., on average 7.5%
slower than the R-Tree.

After 10000 executed queries QUASII reaches 75% and 63.8%
of the cumulative time of the R-Tree and Grid approaches respec-
tively (y axis is in log scale). Likewise, it decreases data-to-insight
time by 10.3x and 5.6x compared to R-Tree and Grid. Although
the pre-processing step of Grid is significantly cheaper compared
to the R-Tree, its cumulative time deteriorates with more queries
executed due to the expensive single query performance.

6.7 Performance Trends
In the following experiment we evaluate the scalability of QUASII
by executing 10000 queries of selectivity 0.1% on datasets with

334

0

1000

2000

3000

4000

R-Tree QUASII R-Tree QUASII R-Tree QUASII

0.001 1 10

Cu
m
ul
at
iv
e	
tim

e	
(s
)

Query	selectivity	(%)

Building	
Querying

Figure 12: Analysis of QUASII: impact of selectivity.

500 million and 1 billion elements. In Figure 11 we compare the
cumulative time of QUASII with R-Tree, where we additionally
split the execution time of R-Tree into Building and Querying.

After 10000 executed queries QUASII reaches 75% and 73.7% of
the cumulative time of the R-Tree with datasets of 500M and 1B
elements respectively. By the time the R-Tree finishes its building
process QUASII has executed around 8000 queries in both cases.
QUASII also decreases data-to-insight time by 10.3x (on the 500M
dataset) and 10.6x (on the 1B dataset) compared to the R-Tree. As
illustrated in this experiment, QUASII maintains the performance
trends as the dataset size increases.

6.8 Impact of Selectivity
In this set of experiments we evaluate the impact of query selec-
tivity on the performance of QUASII. We measure the cumulative
time for a uniform workload: 500M dataset and 5000 queries of
0.001%, 1%, and 10% selectivity. Figure 12 illustrates the results
where we consider both the R-Tree and QUASII.

Intuitively, a static index (R-Tree) takes more time to amortize
its building cost when executing 0.001% selectivity queries. On
the other hand, the lower selectivity queries (10%) touch and
reorganize a significant amount of data and QUASII thus reaches
the break-even point with the R-Tree faster. Overall, after 5000
executed queries, QUASII reaches 68.8%, 79.8% and 85.6% of the
cumulative time of the R-Tree for queries with 0.001%, 1%, and
10% selectivity.

7 RELATEDWORK
To the best of our knowledge, no incremental strategy has been
proposed to spatial indexing in main memory. While recently
an incremental indexing technique has been proposed for ex-
ploration of multiple spatial datasets [35], the addressed prob-
lem is different (spatial search within multiple datasets) and the
proposed solution focuses solely on disk-based efficiency, i.e.,
reducing the number of expensive disk I/O operations. Never-
theless, there has been considerable interest in incremental data
processing within relational databases. Therefore, before giving
an overview of related (but not incremental) spatial indexing
techniques, we briefly describe incremental approaches used by
relational database systems.

7.1 Relational Incremental Indexing
Incremental (one-dimensional) indexing techniques are exten-
sively studied in database cracking [16, 18, 19] and adaptive merg-
ing [13, 14]. The former partially sorts keys in an in-memory

relation, essentially performing quicksort. The latter, adaptive
merging, takes the idea further and devises an incremental, ex-
ternal sort to make use of external memory as well.

Driven by the same goal (minimize data-to-insight time), novel
systems have been proposed that bypass data pre-processing
step and execute queries on raw data files. Instead, auxiliary data
structures are built incrementally so that the most popular data
subsets are serviced at the speeds of fully loaded/indexed data. For
example, NoDB [2], RAW [25], and ViDa [24] incrementally build
positional maps to track the position of frequently accessed data
fields. This enables the systems to “jump” to previously queried
data regions and potentially reduce the costs of tokenizing and
parsing raw data sources.

7.2 Spatial Indexing
Research in indexing spatial data has produced numerous ap-
proaches in past decades [11]. In the following we briefly review
spatial indexing approaches that we group into three classes
depending on how amenable they are to incremental indexing.

One-dimensional Indexing. One way to address the curse
of dimensionality in the context of spatial data is to transform
it from multi- to one-dimensional domain. Typical methods to
perform this transformation are space-filling curves like the Z-
order [34], the Hilbert curve [21], and the Gray-code curve [9].
They impose a total order and preserve spatial proximity between
objects - if the objects are close in higher-dimensional space, they
are also close on the space-filling curve - reasonably well. Given
such a mapping of spatial data, the existing 1d access methods,
such as B-Tree [5], can be used for querying.

Data-oriented Indexing. The data-oriented partitioning ap-
proaches create an index structure taking into consideration
the data distribution, where the prominent representatives are
the KD-Tree [7], the R-Tree [15], and its variants. The R-Tree,
arguably the most important data-oriented spatial index, is multi-
dimensional generalization of the B-Tree which recursively en-
closes objects inminimum bounding rectangles (MBRs). The basic
R-Tree definition faces the problems of overlap and dead space,
both detrimental to query execution performance [15, 42]. Multi-
ple approaches have been devised to address the issue. The R*-
Tree [6], for example, uses an improved version of the node split
algorithm and reinsertion of objects while the R+-Tree [37] tries
to avoid overlap through the duplication ofMBRs (leading to a big-
ger index). A priori knowledge of the entire dataset may help to re-
duce the above problems of the R-Tree by packing spatially close
objects on the same disk page. The Hilbert R-Tree [23] achieves
this using the Hilbert curve, Sort-Tile-Recursive (STR) [26] recur-
sively sorts objects in all dimensions to do so, while Top-down
Greedy Split (TGS) [12] recursively splits the data set into parti-
tions minimizing the area on each level.

Adaptive index structures [41] rearrange the nodes of data-
oriented hierarchical indexes (including the R-Tree index) in
response to queries so that they can be accessed sequentially
on disk. However, this reorganization is performed to improve
query performance by optimizing disk-access without taking into
consideration data-to-insight time.

A recently proposed partitioning mechanism for large-scale
spatial data also adapts to an incoming query workload [3]. In
contrast to QUASII, however, its primary goal is not to minimize
data-to-insight time (as all necessary data structures are still built
during pr-eprocessing), but to efficiently accommodate changes
in data and workload. Also, it considers a distributed setting.

335

Space-oriented Indexing. The space-oriented partitioning
approaches assign the data to the partitions based on space, re-
gardless of data distribution. A typical representative is the uni-
form grid that partitions the space uniformly into partitions of
equal size [38]. Similarly, the Quadtree [36] and its variant for 3d
space, the Octree [20], recursively divide space into four/eight
partitions of equal size to build a hierarchy of partitions. Further
approaches, for example the grid file [32], use a non-uniform grid
to better accommodate skew in the data (and to also optimize for
disk access). The downside, is a more complex query execution
due to the cells of different size and location. The two level grid
file [17] addresses the issue by introducing an additional level
with a coarser grid. Still, the overhead of testing the query against
multiple cells can be substantial.

8 CONCLUSIONS
The advances in data acquisition technologies and supercomput-
ing for large-scale simulations rapidly increase the amounts of
spatial data generated and collected. This data helps the scientist
tremendously to gain insights and understand natural phenom-
ena, however, at the same time, it leaves them with the chal-
lenge of analyzing it. Known approaches to spatial indexing have
two major drawbacks with respect to exploratory analyses. First,
they require a time-consuming pre-processing step that delays
analyses. Second, given the massive amounts of data, a scientist
frequently only analyzes a small fraction of it and consequently
indexing the entirety of the data does not always pay off.

In this paper we propose a novel incremental index for the
exploration of spatial data, where the ultimate goal is to let the
scientists perform exploratory analyses as soon as the data is
available, while using their queries to incrementally index the
data. Our approach, QUASII, reduces data-to-insight time and
curbs the cost of incremental indexing, by gradually and partially
sorting the data, while producing a data-oriented hierarchical
structure. As our experiments show, QUASII reduces the data-
to-insight time by up to a factor of 11.4x, while its performance
converges to that of the fastest state-of-the-art static indexes.

ACKNOWLEDGEMENTS
We would like to thank the reviewers, the DIAS laboratory mem-
bers, and Georgios Chatzopoulos for their comments and sugges-
tions on how to improve the paper. This work is partially funded
by the EU FP7 programme (ERC-2013-CoG), Grant No 617508
(ViDa) and EU Horizon 2020, GA No 720270 (HBP SGA1).

REFERENCES
[1] C.L. Abad, N. Roberts, Yi Lu, and R.H. Campbell. 2012. A storage-centric anal-

ysis of MapReduce workloads: File popularity, temporal locality and arrival
patterns. In IISWC. 100–109.

[2] Ioannis Alagiannis, Renata Borovica, Miguel Branco, Stratos Idreos, and Anas-
tasia Ailamaki. 2012. NoDB: efficient query execution on raw data files. In
SIGMOD. 241–252.

[3] Ahmed M. Aly, Ahmed R. Mahmood, Mohamed S. Hassan, Walid G. Aref,
Mourad Ouzzani, Hazem Elmeleegy, and Thamir Qadah. 2015. AQWA: Adap-
tive Query-Workload-Aware Partitioning of Big Spatial Data. PVLDB 8, 13
(2015), 2062–2073.

[4] Lars Arge, Mark de Berg, Herman J. Haverkort, and Ke Yi. The Priority R-tree:
a practically efficient and worst-case optimal R-tree. In SIGMOD ’04.

[5] Rudolf Bayer. 1997. The Universal B-Tree for Multidimensional Indexing:
General Concepts. In WWCA. 198–209.

[6] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger.
1990. The R*-tree: An Efficient and Robust Access Method for Points and
Rectangles. In SIGMOD.

[7] Jon Louis Bentley. 1975. Multidimensional binary search trees used for asso-
ciative searching. CACM 18, 9 (1975), 509–517.

[8] Yanpei Chen, Sara Alspaugh, and Randy Katz. 2012. Interactive analytical pro-
cessing in big data systems: A cross-industry study of MapReduce workloads.
PVLDB 5, 12 (2012), 1802–1813.

[9] Christos Faloutsos. 1988. Gray codes for partial match and range queries. TSE
14, 10 (1988), 1381–1393.

[10] Christos Faloutsos and Shari Roseman. 1989. Fractals for secondary key
retrieval. In PODS. 247–252.

[11] Volker Gaede and Oliver Guenther. 1998. Multidimensional Access Methods.
CSUR 30, 2 (1998).

[12] Yván J. García, Mario A. López, and Scott T. Leutenegger. 1996. A Greedy
Algorithm for Bulk Loading R-trees. In GIS.

[13] G. Graefe and H. Kuno. 2010. Adaptive Indexing for Relational Keys. In
ICDEW.

[14] Goetz Graefe and Harumi Kuno. 2010. Self-selecting, Self-tuning, Incremen-
tally Optimized Indexes. In EDBT.

[15] Antonin Guttman. 1984. R-trees: a dynamic index structure for spatial search-
ing. In SIGMOD. 47–57.

[16] Felix Halim, Stratos Idreos, Panagiotis Karras, and Roland H. C. Yap. 2012.
Stochastic database cracking: Towards robust adaptive indexing in main-
memory column-stores.. In VLDB.

[17] Klaus Hinrichs. 1985. Implementation of the Grid File: Design Concepts and
Experience. BIT 25, 4 (1985).

[18] Stratos Idreos, Martin L Kersten, and Stefan Manegold. Database Cracking..
In CIDR.

[19] Stratos Idreos, Stefan Manegold, Harumi Kuno, and Graefe Goetz. 2011. Merg-
ing what’s cracked, cracking what’s merged: adaptive indexing in main-
memory column-stores.. In VLDB.

[20] Chris L Jackins and Steven L Tanimoto. 1980. Oct-trees and their use in
representing three-dimensional objects. Comp. Graphics and Image Proc. 14, 3
(1980), 249–270.

[21] Hosagrahar V Jagadish. 1990. Linear clustering of objects with multiple
attributes. SIGMOD Rec. 19, 2 (1990), 332–342.

[22] Christian S Jensen, Dan Lin, and Beng Chin Ooi. 2004. Query and update
efficient B+-tree based indexing of moving objects. In VLDB. 768–779.

[23] Ibrahim Kamel and Christos Faloutsos. 1993. Hilbert R-tree: An improved
R-tree using fractals. In VLDB. 500–509.

[24] Manos Karpathiotakis, Ioannis Alagiannis, Thomas Heinis, Miguel Branco,
and Anastasia Ailamaki. Just-in-time data virtualization: Lightweight data
management with ViDa. In CIDR’15.

[25] Manos Karpathiotakis, Miguel Branco, Ioannis Alagiannis, and Anastasia
Ailamaki. 2014. Adaptive query processing on RAW data. PVLDB 7, 12 (2014),
1119–1130.

[26] Scott T Leutenegger, Mario Lopez, Jeffrey Edgington, et al. 1997. STR: A simple
and efficient algorithm for R-tree packing. In ICDE. 497–506.

[27] Henry Markram et al. 2011. Introducing the Human Brain Project. Procedia
Computer Science 7, 1. FET ’11.

[28] Henry Markram et al. 2015. Reconstruction and simulation of neocortical
microcircuitry. Cell 163, 2 (2015), 456–492.

[29] Bongki Moon, Hosagrahar V Jagadish, Christos Faloutsos, and Joel H Saltz.
2001. Analysis of the clustering properties of the Hilbert space-filling curve.
TKDE 13, 1 (2001), 124–141.

[30] EarthData NASA. https://earthdata.nasa.gov/.
[31] Actueel Hoogte Bestand Nederland. 2017. AHN datasets. http://www.ahn.nl.
[32] J. Nievergelt, Hans Hinterberger, and Kenneth C. Sevcik. 1984. The Grid File:

An Adaptable, Symmetric Multikey File Structure. TODS 9, 1 (1984).
[33] OpenStreetMap. https://www.openstreetmap.org.
[34] Jack A Orenstein and Tim H Merrett. 1984. A class of data structures for

associative searching. In PODS. 181–190.
[35] Mirjana Pavlovic, Eleni Tzirita Zacharatou, Darius Sidlauskas, Thomas Hei-

nis, and Anastasia Ailamaki. 2016. Space Odyssey: Efficient Exploration of
Scientific Data. In ExploreDB. 12–18.

[36] Hanan Samet. 1984. The quadtree and related hierarchical data structures.
CSUR 16, 2 (1984), 187–260.

[37] Timos Sellis, Nick Roussopoulos, and Christos Faloutsos. 1987. The R+-tree:
A dynamic index for multi-dimensional objects. In VLDB.

[38] Darius Šidlauskas, Simonas Šaltenis, et al. 2009. Trees or grids? Indexing
moving objects in main memory. In SIGSPATIAL. 236–245.

[39] Tomáš Skopal, Michal Krátkỳ, Jaroslav Pokornỳ, and Václav Snášel. 2006. A
new range query algorithm for Universal B-trees. Information Systems 31, 6
(2006), 489–511.

[40] Emmanuel Stefanakis, Yannis Theodoridis, Timos Sellis, and Yuk-Cheung Lee.
1997. Point representation of spatial objects and query window extension: A
new technique for spatial access methods. GIScience 11, 6 (1997), 529–554.

[41] Yufei Tao and Dimitris Papadias. 2002. Adaptive Index Structures. In VLDB.
[42] Farhan Tauheed, Laurynas Biveinis, Thomas Heinis, Felix Schürmann, Henry

Markram, and Anastasia Ailamaki. 2012. Accelerating Range Queries For
Brain Simulations. In ICDE. 941–952.

[43] Hermann Tropf and H. Herzog. 1981. Multimensional Range Search in Dy-
namically Balanced Trees. Angewandte Informatik 23, 2 (1981), 71–77.

[44] Peter van Oosterom, Oscar Martinez-Rubi, Milena Ivanova, Mike Hörham-
mer, Daniel Geringer, Siva Ravada, Theo Tijssen, Martin Kodde, and Romulo
Goncalves. 2015. Massive point cloud data management: Design, implemen-
tation and execution of a point cloud benchmark. Computers & Graphics 49
(2015), 92–125.

[45] Kostas Zoumpatianos, Stratos Idreos, and Themis Palpanas. 2014. Indexing
for interactive exploration of big data series. In SIGMOD. 1555–1566.

336

	QUASII: QUery-Aware Spatial Incremental IndexMirjana Pavlovic, Darius Sidlauskas, Thomas Heinis, Anastasia Ailamaki

