
Privacy Preserving Group Nearest Neighbor Search
Yuncheng Wu

∗

Renmin University of China

Beijing, China

yunchengwu@ruc.edu.cn

Ke Wang

Simon Fraser University

Burnaby, Canada

wangk@cs.sfu.ca

Zhilin Zhang

Simon Fraser University

Burnaby, Canada

zhilinz@sfu.ca

Weipeng Lin

Simon Fraser University

Burnaby, Canada

weipengl@sfu.ca

Hong Chen
†

Renmin University of China

Beijing, China

chong@ruc.edu.cn

Cuiping Li

Renmin University of China

Beijing, China

cuipingli@ruc.edu.cn

ABSTRACT
Group k-nearest neighbor (kGNN) search allows a group of n mo-

bile users to jointly retrievek points from a location-based service

provider (LSP) that minimizes the aggregate distance to them.

We identify four protection objectives in the privacy preserv-

ing kGNN search: (i) every user’s location should be protected

from LSP; (ii) the group’s query and the query answer should

be protected from LSP; (iii) LSP’s private database information

should be protected from users, i.e., the users cannot learn more

information beyond the answer they requested; (iv) every user’s

location should be protected from the other users in the group.

We propose the first approach to meet the four privacy goals

in the kGNN query. Our approach provides an accurate query

answer and does not rely on heavy pre-computation on LSP like

previous works. Our approach considers the most hostile envi-

ronment that any n − 1 users in the query group may collude

to infer the location of the remaining user. Though we consider

kGNN, the proposed privacy preserving approach can be easily

adopted to any group query because it treats the query answering

(i.e., kGNN) as a black box. Theoretical and experimental analysis

suggest that our approach is highly efficient in both user com-

putation and communication while incurring some reasonable

overhead on LSP.

1 INTRODUCTION
The embedding of positioning capabilities (e.g., GPS) in mobile

devices facilitates the emergence of location-based services (LBS),

which allows the users to publish their location data for retrieving

desired information from a database maintained by a location-

based service provider (LSP). One typical application is the group
k-nearest neighbor query (kGNN) proposed in [24], also known

as aggregate nearest neighbor query [25] or aggregate similarity

search [18, 19, 28]. The kGNN query allows a group of n users

to retrieve top-k locations from the LSP’s database to minimize

some aggregate cost function F over all n users. Figure 1 shows

that users u1,u2,u3 (n = 3) jointly retrieve the top-2 meeting

places {p1,p2} (k = 2), where p1 has the shortest total distance

to the users, and p2 has the second shortest total distance to the

users. By generalizing the classic k-nearest neighbor (kNN) query
from a single user in a query to multiple users in a query, the

∗
This work was done when this author visited Simon Fraser University.

†
Corresponding author.

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st

International Conference on Extending Database Technology (EDBT), March 26-29,

2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons

license CC-by-nc-nd 4.0.

Group LSP

u3

u2

p2

p6

p3
p4

p5

2GNN query

p1, p2

u3

u2

p2

u1p1u1p1

Figure 1: A kGNN query (k = 2): {u1,u2,u3} retrieves p1,p2

as top-2 locations

kGNN query offers richer semantics with broader applications

in spatial databases [18, 19, 24, 25, 28].

We consider four privacy concerns that arise in the kGNN
query scenario. Privacy I: every user’s location privacy against
LSP since location can reveal the private information of users.

Privacy II: query privacy and answer privacy against LSP be-

cause the query discloses the combination of users’ locations and

the relationship between users, and the query answer such as a

meeting place may disclose the nature of the meeting or event.

Privacy III: LSP’s data privacy against users. LSP’s database is
the valuable and protected business asset [8, 12, 33] and the prin-

ciple of least privilege [29] applies where no more information

than the requested query answer should be returned to the users.

Another reason for this privacy is the pay-per-result model [8, 33]

where the users who pay for k results should not receive more

than k results. Privacy IV: every user’s location privacy against
other users because users might not trust other users. For exam-

ple, two business competitors like to query some meeting places

but want to hide their own locations from each other. The most

hostile environment is the full user collusion where n − 1 users in

the query collude to infer the location of the remaining user. In

Figure 1, for example, colluding u2,u3 can infer that u1 is located

in the shaded area based on their own locations and the query

answer {p1,p2} received. If the shaded area is too small, u1’s

location privacy may be compromised. Privacy IV is required

only in the case of n > 1.

Although many solutions, such as [1, 3, 12, 13, 17, 21, 26, 27,

30, 34, 36, 37], are proposed for the single user query (i.e., n =
1), only a few works addressed the group query (i.e., n > 1)

[2, 14] but none of them achieves all four privacy concerns. Most

existing work achieved Privacy I through returning candidate

answers (e.g., [3, 13, 14, 17, 21, 26, 30]) or approximate answers

(e.g., [1, 2, 34, 37]). However, returning candidate answers not

only increases the communication cost but also violates Privacy
III, while returning approximate answers degrades the answer

utility as well as violates Privacy II since LSP knows the query

answer that users obtained. [12, 27, 36] achieve Privacy I-III in

Series ISSN: 2367-2005 277 10.5441/002/edbt.2018.25

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2018.25

the single user query case by heavily relying on pre-computing

the query answers for all queries. These approaches are not

applicable to the group query where the number of possible

queries is large. A more detailed discussion of related work is

presented in Section 9.

In this paper, we design a privacy preserving approach to

the kGNN query for the general case of n ≥ 1 while protecting

Privacy I-IV. Our approach has the following novelties. First, it
eliminates the need for pre-computing all query answers in order

to address the privacy issues, while producing the exact answer.

Hence, our approach can easily handle a dynamic database on

LSP. Second, for Privacy IVwe consider the most hostile environ-

ment, called full user collusion, where n − 1 users may collude to

infer the location of the remaining user. Third, we aim to reduce

user computational cost and communication cost at a reasonable

overhead on LSP, which particularly makes sense in the mobile

user scenario. Fourth, though we consider kGNN, the proposed
privacy preserving approach can be easily adopted to any group

query because it treats the query answering (i.e., kGNN) as a
black box. For example, our approach works with any choice of

aggregate cost function F and other location based group queries;

to solve the privacy preserving meeting location determination

(PPMLD) [5, 16, 31], we can replace the black box for kGNN in

our approach with any existing (non-privacy preserving) meeting

location determination algorithm.

The rest of the paper is structured as follows.

• Section 2 formulates the privacy preserving kGNN query

problem, called PPGNN, where n users jointly retrieve

k-nearest neighbors from LSP while meeting the require-

ments of Privacy I-IV.
• Section 3 proposes a solution to PPGNN with n = 1. To

our knowledge, this is the first work that eliminates the

need for pre-computing all the query answers to achieve

Privacy I-III.
• Section 4 proposes a solution to PPGNN with n ≥ 1 while

achieving Privacy I-III.
• Section 5 extends the solution to PPGNN with n ≥ 1

to achieve Privacy I-IV under the full user collusion as-

sumption. As far as we know, this is the first solution that

achieves Privacy I-IV.
• Section 6 presents an optimization of the PPGNN solution,

denoted PPGNN-OPT, to further reduce the communica-

tion cost and user computational cost.

• Section 7 theoretically analyzes the performance of the

PPGNN solution and PPGNN-OPT solution.

• Section 8 presents empirical results on a real-world dataset,

showing that the proposed approaches are highly commu-

nication efficient for the privacy guarantees achieved.

• Section 9 reviews the related work.

2 PROBLEM STATEMENT
We formally define the problem studied in this paper. Table 1

summarizes the frequently used notations. We assume that LSP

owns a database of Points of Interest (POIs) where each POI has

a location (e.g., latitude and longitude) and other associated in-

formation, and each user has a location. Both users and LSP are

semi-honest: they follow the protocol exactly as specified, but

may try to infer others’ private information. Users can acquire

their locations from satellites anonymously. A base station is re-

sponsible for the communication within users and between users

and LSP (e.g., mobile communication provider). The base station

Table 1: Summary of notations

Notation Description

n the number of users in the group

d anonymity parameter for Privacy I
δ anonymity parameter for Privacy II
θ0 privacy parameter for Privacy IV
li,∗ real location of ui
C∗ real query {l1,∗, · · · , ln,∗} of the group
Li ui ’s location set

li, j j-th location in Li
n̄, ¯d partition parameters

[v] encrypted indicator vector for C∗
A answer matrix for all candidate queries

N the product of two large primes determined by pk

will not collude with LSP, and there is a secure communication

channel (e.g., Tor
1
) so that LSP cannot infer users’ locations by IP

addresses. We also assume that LSP does not collude with users.

This assumption is reasonable because the penalty of collusion

involving LSP is very high, including losing the trust of users

and being prosecuted.

2.1 kGNN Query
Let D = {p1, · · · ,pD } be a database (owned by LSP) of D POIs,

and C∗ = {l1,∗, · · · , ln,∗} be the locations of n users. Both D and

C∗ are in a metric space where a spatial distance function dis is
defined for any two locations, e.g., Euclidean distance [24, 25],

road-network distance [38]. Let F be a monotonically increasing

aggregate function,

F (p,C∗) = F (dis(p, l1,∗), · · · ,dis(p, ln,∗)) (1)

where p can be any POI in D. Commonly used F includes sum,

max andmin. For example, with sum the query retrieves a meet-

ing place with the minimum total distance to the users, and with

max the query retrieves a collection place for the troops that

leads to the earliest meet time (by minimizing the maximum dis-

tance for every troop to reach that place [25]), and withmin the

query retrieves a place that leads to the earliest time for any user

to reach that place. In general, the query finds the k best POIs p
from D in an ascending order of F (p,C∗), as defined below.

Definition 2.1 (kGNN query [28]). Given a spatial databaseD, n
query locations C∗, distance function dis , and aggregate function
F , a kGNN query (k ≤ D) retrieves a subset P = {p1, · · · ,pk }
from D, such that ∀pi ∈ P and ∀p ∈ D − P, F (pi ,C∗) ≤ F (p,C∗),
and for 1 ≤ i < j ≤ k , F (pi ,C∗) ≤ F (pj ,C∗).□

2.2 Privacy Preserving kGNN Query
Definition 2.2 (Privacy preserving kGNN query, or PPGNN). Let

D and C∗ be those in Definition 2.1. A kGNN query is privacy

preserving if the following conditions are satisfied:

(1) Privacy I: ∀i ∈ [1,n], each user ui ’s location li,∗ is indis-
tinguishable from d equally likely locations by LSP, d > 1;

(2) Privacy II: the query location C∗ and its answer are indis-

tinguishable from δ equally likely candidates by LSP, δ ≥ d ;
(3) Privacy III: the users can learn nothing more than the

requested answer to the query C∗.
(4) Privacy IV: ∀i ∈ [1,n], ui ’s location li,∗ is hidden in a

region from other users, where the size of the region is no less

1
https://www.torproject.org/

278

than θ0 fraction of the size of the whole location space, θ0 ∈ (0, 1].

Under the full user collusion assumption, this property should hold
even if any n− 1 users collude, by sharing their locations, to infer

the remaining user’s location with the help of the query answer

received. □

Condition (1) guarantees that the probability for LSP to infer a

user’s location is
1

d . Condition (2) guarantees that the probability

for LSP to infer the group’s query, i.e., all users’ locations, as well

as the query answer, is
1

δ , where δ ≥ d . Condition (3) guarantees

that the users learn only the query answer as defined by the

query, in order to protect the LSP’s private database. Condition

(4) guarantees that any user’s location can not be inferred by

other users. The strength of these privacy guarantees depends

on the setting of the privacy parameters (d,δ ,θ0), which are

specified by the users.

3 SINGLE USER QUERY
In this section, we consider PPGNN with single user, i.e., n = 1.

In this case, there is no Privacy IV, and δ = d . Section 3.1

gives some background knowledge about the generalized Paillier

cryptosystem [10]. Section 3.2 presents our solution.

3.1 Generalized Paillier Cryptosystem
Generalized Paillier cryptosystem εs (s ≥ 1) [10] is a probabilistic

asymmetric encryption scheme that provides semantic security.

Let ZN s and Z∗N s be the residue class ring module N s
and the

prime residue class group module N s
, respectively.

Generalized Paillier cryptosystem is composed of three algo-

rithms (Gen, Enc, Dec): (1) given a security parameter keysize,
the key generation algorithm (sk,pk) = Gen(keysize) returns se-
cret key sk and public keypk .N is the product of two large primes

determined by pk . (2) The encryption algorithm c = Enc(x ,pk)
maps a plaintext x ∈ ZN s to a ciphertext c ∈ Z∗N s+1

using pk .

(3) The decryption algorithm x = Dec(c, sk) executes reverse
operation of encryption by sk , obtaining plaintext x . The exact
construction of Enc and Dec, which can be found in [10], is

not important for this work, but the following homomorphism

properties of the generalized Paillier cryptosystem are used by

our solutions. For simplicity, we omit the public key pk in the

Enc algorithm. Let x1,x2 denote the plaintexts in ZN s .

Homomorphic addition ⊕: given two ciphertexts Enc(x1),

Enc(x2), the ciphertext of the sum x1 + x2 can be obtained by

multiplying the ciphertexts, i.e.,

Enc(x1) ⊕ Enc(x2) : Enc(x1) · Enc(x2) = Enc(x1 + x2) (2)

Homomorphic multiplication ⊗: given a plaintext x1 and

a ciphertext Enc(x2), the ciphertext of the product x1x2 can be

obtained by raising Enc(x2) to the power x1:

x1 ⊗ Enc(x2) : Enc(x2)
x1 = Enc(x1x2) (3)

Homomorphic dot product ⊙: given a ciphertext vector

Enc(v) = (Enc(v1), · · · ,Enc(vm))T and a plaintext vector x =
(x1, · · · ,xm), the ciphertext of the dot product v · x can be ob-

tained by:

x ⊙ Enc(v) : (x1 ⊗ Enc(v1)) ⊕ · · · ⊕ (xm ⊗ Enc(vm))
= Enc(x1v1 + · · · + xmvm) (4)

= Enc(x ·v)

For simplicity, we write Enc(x) with ε1 as [x]. One applica-
tion of Eqn (4) is privately selecting the i-th element in a vec-

tor x without disclosing the value of i . Specifically, let [v] =

! = ($%, $'� $(, $))

�+(�

execute queries:

User LSP

private selection:

, = 0 , 0 , 1 , 0 / 0 $% 0($') 0 $(0($))

+% +' +(+)

(+%, +', +(, +)) , = [+(]⨀

Figure 2: Single user query example (l3 is real)

([v1], · · · , [vm])
T
where vi = 1 and vj = 0 for all j , i . Eqn (4)

becomes x ⊙ [v] = [x ·v] = [xi], which returns xi in ciphertext.

We will use this private selection to design our solution.

3.2 Proposed Solution
Figure 2 shows the idea of our solution through a running ex-

ample. The user sends a location set {l1, l2, l3, l4} to LSP, where

d = 4, as well as an encrypted indicator vector ([0], [0], [1], [0])

that implicitly specifies that l3 is the real user location. LSP calcu-

lates the query for every location in the location set, producing

the answers a1,a2,a3,a4, and privately selects a3 through the

result [a3] according to the homomorphism properties. This so-

lution has three stages: query generation, query processing, and

answer decryption. We discuss each stage in details. We denote

the user’s real location by l∗.
Query Generation. At first, the user randomly selects d −

1 dummy locations from the location space and constructs a

location set L = {l1, · · · , ld } containing the real location l∗. Then
the user creates an indicator vectorv = (v1, · · · ,vd)

T
:

vi =

{
1, li = l∗

0, otherwise
(5)

After that, the user generates (sk,pk) by calling the key gener-

ation algorithm with the security parameter keysize (e.g., the

most commonly used is 1024 bits [23]), and executes element-

wise encryption algorithm on v , obtaining an encrypted [v] =

([v1], · · · , [vd]). Finally, the user sends {k,L,pk, [v]} to LSP,

where k is the number of POIs to retrieve.

Query Processing.After receiving the user’s query, LSP com-

putes the kNN query for each location in the location set, result-

ing in d query answers, a1, · · · ,ad , where each query answer is

a list of k POIs. The kNN query is computed on plaintext, so any

plaintext solution for kNN query, such as [24], can be applied. We

assume that each query answer ai is represented by a vector of

integers, ai = (ai,1, · · · ,ai,m)T , such that every element is less

than N , wherem is the maximum number of integers required

for any of the d answers. If the number of integers encoded for a

query answer is less thanm, 0’s are padded as placeholders.

Let Am×d = (a1, · · · ,ad) be the query answer matrix. The

next theorem suggests that LSP can obtain the encrypted query

answer for the real location l∗ by a private selection using A and

[v]. The encrypted query answer is returned to the user.

Theorem 3.1 (Private Selection). Given an encrypted indica-
tor vector [v] = ([v1], · · · , [vd])

T such that [vi] = [1] and [vj] =
[0] for all j , i , and the answer matrixAm×d = (a1, · · · ,ad), then

279

[ai] is computed by A
⊗
[v] defined as follows:

A
⊗
[v] =

©«
a1,1 · · · ad,1
...

. . .
...

a1,m · · · ad,m

ª®®¬
⊗©«
[v1]

...

[vd]

ª®®¬
=
©«
[a1,1v1 + · · · + ad,1vd]

...

[a1,mv1 + · · · + ad,mvd]

ª®®¬
=
©«
[0 + · · · + ai,1 + · · · + 0]

...

[0 + · · · + ai,m + · · · + 0]

ª®®¬ =
©«
[ai,1]
...

[ai,m]

ª®®¬ = [ai].□
The notation

⊗
represents the homomorphic matrix multi-

plication, which executes homomorphic dot product operations

in Eqn (4) between each row in A and [v].

Answer Decryption. After receiving [ai], the user can exe-

cute the decryption algorithm on the ciphertext to get the exact

query answer ai for l∗.

In this solution, Privacy I is satisfied by anonymizing the

user’s real location among d locations. Privacy II is satisfied
because the real query answer is anonymized in d query answers

(note δ = d when n = 1) and the selection process is private.

Also, LSP returns only the query answer for l∗, so Privacy III is
satisfied.

4 GROUP QUERY
We now present the PPGNN solution for the group query where

n ≥ 1, which subsumes the solution in Section 3 as a special

case. Section 4.1 presents a candidate query generation method

that helps satisfy Privacy II. Section 4.2 describes the PPGNN

solution. Section 4.3 proves the protection of Privacy I-III. The
protection of Privacy IV is addressed in Section 5.

Recall that the real location of each user ui is denoted as

li,∗, 1 ≤ i ≤ n, and li,∗ is hidden in the location set Li =
{li,1, · · · , li,d }. From Li , 1 ≤ i ≤ n, LSP can obtain a set of can-
didate queries, where each candidate query is a set of n locations

that contains exactly one location from every Li . One candidate
query is the real query, denoted by C∗ = {l1,∗, · · · , ln,∗}.

Naive Solution. With δ ≥ d , one straightforward method

to satisfy both Privacy I and Privacy II is that every user ui
generates a length δ , instead of length d , location set Li , and
all users arrange their real locations on the same position in

Li , 1 ≤ i ≤ n. Then LSP can extract one candidate query from

the same position in the n location sets, resulting in δ candidate

queries. One of these candidate queries is the real query. How-

ever, this solution incurs the additional computational cost to

generate δ − d extra dummy locations (e.g., using the dummy

generation algorithm [20, 22]) for every user, and the additional

communication cost to send the extra dummy locations to LSP.

With users’ computational power being limited (e.g., mobile de-

vices) and the communication bandwidth being precious, this

approach is not practical. To address this special requirement

in the mobile user scenario, we propose a solution that aims to

reduce the user computational cost and the communication cost

at some overhead of the LSP computational cost.

4.1 Candidate Query Generation
Our solution keeps the location set Li at the size d but defines a

novel protocol for LSP to generate at least δ candidate queries

from the location sets Li , 1 ≤ i ≤ n. With each Li having d
elements, dn candidate queries can be generated by the cartesian

product

>n
i=1
Li . We assume δ ≤ dn , otherwise, a largerd should

be specified by the users.

Clearly, generating the maximum number of candidate queries,

dn , will satisfy Privacy II, but if δ ≪ dn , this means that LSP will

compute many unnecessary queries. Our method will generate

a minimum number δ ′ of candidate queries such that δ ′ ≥ δ ,
thus, satisfying Privacy II. To this end, we partition the user

group into α subgroups of the size n̄ = (n̄1, · · · , n̄α), and partition
every location set Li into β segments of the size ¯d = (¯d1, · · · , ¯dβ).

{n̄, ¯d} is called partition parameters and is known to both users

and LSP. We will determine these parameters shortly. To ensure

that the real query will be generated as one of the candidate

queries, the following constraint must be satisfied by subgroups

and segments: all users arrange their real locations in the same
segment, and all users from the same subgroup arrange their

real locations on the same position of that segment. Our query

generation in Section 4.2 will enforce this constraint.

Example 4.1. In Figure 4a, the user group is partitioned into 2

subgroups by n̄ = (2, 2), and the location sets are partitioned into

2 segments by
¯d = (2, 2). All users arrange their real locations in

seдment2, highlight in red. Also, the users in subдroup1 arrange

the real locations on the 2-nd position of seдment2, and the users
in subдroup2 arrange the real locations on the 1-st position of

seдment2.□

Given the location sets and the partition parameters, LSP gen-

erates the candidate queries as follows. Let Gi, j,t be the subset

of locations from the t-th position of the i-th segment and the

j-th subgroup, and let Gi, j, : be the subset of locations from the

i-th segment and the j-th subgroup. Note that Gi, j, : contains
¯di locations. See Figure 4b for some examples. For 1 ≤ i ≤ β ,
LSP computes the candidate queries for the i-th segment by the

cartesian product

α?
j=1

Gi, j, : (6)

This gives a total number of

∑β
i=1
(¯di)

α
candidate queries since

there are (¯di)
α
combinations for the i-th segment. Each candidate

query is uniquely identified by a sequence of the indexes (i, j, t)
forGi, j,t , and all candidate queries are listed in the lexicographic

order of such indexes. We call this list the candidate query list.
Figure 3c illustrates the cartesian product for each segment,

generating a total of 8 candidate queries. Figure 3d shows the

candidate query list, in which the real query C∗ is at the position
7. This position of the real query can be calculated by the users

based on the segment and the positions where the real locations

are placed in all location sets. However, LSP does not know this

position of the real query because the segment and positions for

the real locations are confidentially chosen by the users.

Determining the partition parameters {n̄, ¯d}. The parti-
tion parameters are determined by solving the problem

minimize

α,β, ¯d
δ ′ =

∑β

i=1

(¯di)
α

(7)

subject to δ ′ ≥ δ (8)∑β

i=1

¯di = d (9)

α ∈ N≤n , β ∈ N≤d , { ¯di }
β
i=1
∈ N≤d (10)

280

𝕃1: 𝑙1,1 𝑙1,2 𝑙1,3 𝑙1,4
𝕃2: 𝑙2,1 𝑙2,2 𝑙2,3 𝑙2,4
𝕃𝟑: 𝑙3,1 𝑙3,2 𝑙3,3 𝑙3,4
𝕃4: 𝑙4,1 𝑙4,2 𝑙4,3 𝑙4,4

subgroup1

subgroup2

segment1 segment2

(a)

𝐺1,1,1 𝐺1,1,2 𝐺2,1,1 𝐺2,1,2subgroup1

subgroup2

segment1 segment2

𝐺1,2,1 𝐺1,2,2 𝐺2,2,1 𝐺2,2,2

(b)

ℂ1: 𝐺1,1,1 𝐺1,2,1
ℂ2: 𝐺1,1,1 𝐺1,2,2
ℂ3: 𝐺1,1,2 𝐺1,2,1
ℂ4: 𝐺1,1,2 𝐺1,2,2

segment1

ℂ5: 𝐺2,1,1 𝐺2,2,1
ℂ6: 𝐺2,1,1 𝐺2,2,2
ℂ7: 𝐺2,1,2 𝐺2,2,1
ℂ8: 𝐺2,1,2 𝐺2,2,2

segment2

(c)

segment1

ℂ1: 𝑙1,1 𝑙2,1 𝑙3,1 𝑙4,1
ℂ2: 𝑙1,1 𝑙2,1 𝑙3,2 𝑙4,2
ℂ3: 𝑙1,2 𝑙2,2 𝑙3,1 𝑙4,1
ℂ4: 𝑙1,2 𝑙2,2 𝑙3,2 𝑙4,2
ℂ5: 𝑙1,3 𝑙2,3 𝑙3,3 𝑙4,3
ℂ6: 𝑙1,3 𝑙2,3 𝑙3,4 𝑙4,4
ℂ7: 𝑙1,4 𝑙2,4 𝑙3,3 𝑙4,3
ℂ8: 𝑙1,4 𝑙2,4 𝑙3,4 𝑙4,4

segment2

(d)

Figure 3: Candidate query generation, where n = 4, d = 4, and δ = 8: (a) the partition parameters are n̄ = (2, 2) and ¯d = (2, 2);
(b)G2,1,1 represents the set {l1,3, l2,3} for seдment2, subдroup1, and the first position in seдment2, whileG2,1, : = {G2,1,1,G2,1,2};
(c) candidate queries C1 − C4 are generated for seдment1, and candidate queries C5 − C8 are generated for seдment2; (d) the
candidate query list contains the real query (in red).

δ ′ in Eqn (7) is the total number of candidate queries generated

above. Eqn (9) requires that the sum of all segment sizes should

be d , and Eqn (10) requires that the parameters should be integers.

The sizes of subgroups are not included in Eqn (7) because they

are irrelevant. d,δ ,n are constants and the rest are unknown

variables. For the single user query, n = 1 and δ = d , we can
choose β = d with each segment size equal to 1. The above is

a nonlinear integer programming problem, which is NP-hard

[4]. However, the results for frequently used (n,d,δ) can be pre-

computed off line (e.g., using open-source solvers [6], Bonmin
2
).

This only needs to be done once.

4.2 PPGNN Solution
The PPGNN solution has three stages: query generation, query

processing, and answer decryption. Following [14], we assume

that a coordinator user uc is selected randomly from the query

group to assist query generation and answer decryption. Like

any other user, no additional trust is assumed of uc .
Query Generation. Algorithm 1 presents the query gener-

ation stage. uc first determines the partition parameters {n̄, ¯d}
based on {n,d,δ } and calculates the number of candidate queries

δ ′. As discussed above, the partition parameters could be pre-

computed for frequently used {n,d,δ }. uc randomly selects a

segment seg from [1, β] according to the probability distribution

based on the segment sizes, i.e.,

P = (
¯d1

d
, · · · ,

¯dβ

d
) (11)

and uc randomly and uniformly selects a relative position x j
of that segment for the j-th subgroup, and broadcasts posj to
all users in the j-th subgroup, 1 ≤ j ≤ α , where posj is the
absolute position (over all segments) corresponding to x j . Then
uc computes the position of the real query C∗ in the candidate

query list, called query index, denoted by QIC∗ as follows. Note
that the candidate query list is arranged by the lexicographic

order of the triples (segment index, subgroup index, position in

the segment).

QIC∗ =
∑seg−1

i=1

(¯di)
α +

∑α

j=1

(x j − 1)(¯dseg)
α−j + 1 (12)

where the first term is the number of candidate queries before

reaching the seg-th segment, and the second term is the number

of candidate queries before reaching C∗ in the seg-th segment.

Example 4.2. In Figure 4a, with seg = 2, α = 2, and
¯d1 = 2, the

first term in Eqn (12) is 4, and with x1 = 2 and x2 = 1, the second

term is (2 − 1) ∗ 2
1 + (1 − 1) ∗ 2

0 = 2, thus QIC∗ = 7. □

2
https://neos-server.org/neos/solvers/

Algorithm 1: Query Generation

Input: n, d , δ , k , keysize, {li,∗ }ni=1
, θ0;

Output: Query {k, pk, n̄, ¯d , [v], θ0, {(i, Li)}ni=1
};

1 Coordinator uc :
2 {n̄, ¯d } ← find the partition parameters; // Eqn (7)-(10);

3 seg← randomly select a segment by Eqn (11);

4 for j ∈ [1, |n̄ |] do
5 x j ← randomly and uniformly select from [1, ¯dseg];

6 posj ←
∑seg−1

i=1

¯di + x j ;
7 Send posj to all users in subgroupj ;

8 {sk, pk } ← Gen(keysize); // key generation

9 v ← construct indicator vector by the query index; // Eqn (12)

10 [v] ← element-wise encryption Enc(v , pk);
11 Send {k, pk, n̄, ¯d , [v], θ0 } to LSP;

12 Every user ui in subgroupj :
13 receive posj from uc ;
14 Li ← generate location set, arranging li,∗ on the posj -th position;

15 Send (i, Li) to LSP;

Algorithm 2: Query Processing

Input: Query {k, pk, n̄, ¯d , [v], θ0, {(i, Li)}ni=1
}, D;

Output: [a∗];
1 {Ct }

δ ′
t=1
← generate the candidate query list by

{n̄, ¯d , {(i, Li)}ni=1
}}; // Section 4.1

2 for t ∈ [1, δ ′] do
3 Pt ← compute kGNN query by (k , Ct , D);
4 P′t ← answerSanitation(θ0, Pt , Ct); // Section 5.2

5 at ← encode P′t into integer vector by N stated in pk ;

6 A = (a1, · · · , aδ ′);

7 [a∗] = A
⊗
[v]; // Theorem 3.1

8 Send [a∗] to uc

Then, uc constructs the encrypted indicator vector [v] of

length δ ′, wherev has 1 at the position QIC∗ and 0 everywhere

else. Finally, uc sends the query {k,pk, n̄, ¯d, [v],θ0} to LSP.

Meanwhile, every user ui (i ∈ [1,n]) in the j-th subgroup

arranges its real location li,∗ at the received position posj in Li
and dummy locations at the remaining positions, and sends (i,Li)
to LSP independently. With the user ID i , LSP can reconstruct

subдroup1 as the first n̄1 users, subдroup2 as the next n̄2 users,

and so on. Note that no user, including uc , knows other users’
real locations, because each user sends the location set to LSP

directly.

281

Query Processing. Algorithm 2 presents the query process-

ing stage. After receiving the query from users, LSP generates the

candidate query list containing δ ′ candidate queries as described
in Section 4.1, and executes the kGNN query for each candidate

query. Line 4 calls the answerSanitation method to ensure that

the query answer satisfies Privacy IV, which will be presented

in Section 5.2. Let Am×δ
′

be the answer matrix for the query

answers (a1, · · · ,aδ ′). LSP privately selects the query answer

[a∗] for C∗ following Theorem 3.1, and sends [a∗] to uc .
The answer decryption stage is the same as that in Section 3,

except that uc will broadcast the answer a∗ to all other users.

4.3 Privacy Guarantees
Theorem 4.3. The PPGNN solution satisfies Privacy I-III. .

Proof. Privacy I: The segment seд containing the real loca-

tions is selected following the probability distribution correspond-

ing to the segment sizes, Eqn (11), thus, the probability that LSP

infers this segment is
¯dseд/d . The position for the real locations

in the seд-th segment for each subgroup is selected randomly

and uniformly, so given the segment seд, the probability that LSP
can infer this position is 1/ ¯dseд . Overall, the probability for LSP

to identify each user’s real location is (¯di/d) · (1/ ¯di) = 1/d .
Privacy II: LSP generates δ ′(≥ δ) candidate queries and ob-

tain δ ′ query answers before the private selection. So the proba-

bility for LSP to identify group’s query C∗ and the query answer

is 1/δ ′, which is no larger than 1/δ .
Privacy III: The private selection ensures that only the answer

for C∗ is returned, so the users learn no extra POI information

beyond the query answer requested. □

5 FULL USER COLLUSION
So far, the PPGNN solution satisfies only Privacy I-III. We now

consider answerSanitation on line 4 in Algorithm 2 to enforce

Privacy IV under the full user collusion assumption. Our first

observation is that the only communicationwithin the user group

is {posj }
α
j=1

that are broadcast from uc to let all users arrange

their real locations in their location sets. This information alone

does not allow any n− 1 colluding users to learn the real location

of the remaining user. However, after receiving the query answer,

n− 1 colluding users can infer some possible region that contains

the remaining user’s real location, with the help of the ranking

and location information of the POIs in the query answer.We first

present this attack in Section 5.1, and devise a method to prevent

this attack and satisfy Privacy IV in the rest of the section.

5.1 Inequality Attack
Suppose the users {u1, · · · ,un } located at the locations C∗ =
{l1,∗, · · · , ln,∗} respectively obtain the query answer in the form

of k ranked POIs P = {p1, · · · ,pk } such that

F (pi ,C∗) ≤ F (pj ,C∗),∀1 ≤ i < j ≤ k (13)

Without loss of generality, let us assume that u1 is the attack

target and {ui }
n
i=2

collude together to infer u1’s location. There-

fore, there is only one unknown variable l1,∗ in Eqn (13) because

l2,∗, · · · , ln,∗ as well as the query answer P are known to the

colluding users. Consequently, the colluding users can construct

k − 1 independent inequalities to infer the possible region of l1,∗:

F (pi ,C∗) ≤ F (pi+1,C∗),∀1 ≤ i ≤ k − 1 (14)

We refer this inference as the inequality attack. Suppose that the
area of the solution region for Eqn (14) is θ (in percentage) of

the area of the whole data space, Privacy IV is satisfied if and

only if θ > θ0 for every target user u1; otherwise, i.e., θ ≤ θ0

for some target user u1, Privacy IV is not satisfied, and we say

the inequality attack succeeds. For instance, Privacy IV is not

satisfied in Figure 1 if θ0 = 0.5, because the possible region for

u1’s location (in shaded) is less than half of the whole location

space.

5.2 Answer Sanitation
One solution to prevent the inequality attack is that LSP randomly

perturbs the order of POIs in P such that the inequalities in Eqn

(14) cannot be correctly constructed. This solution will degrade

the utility of the query answer because the users need to know

the rank of returned locations. In addition, it is unclear how to

ensure that the colluding users cannot reconstruct the original

order or a partial order.

Instead, we design a sanitation method for LSP to return the

longest prefix P′ = {p1, · · · ,pt } of P while satisfying Privacy
IV. In fact, LSP can simulate the inequality attack for every user

using a prefix P′ of P in Eqn (14). If θ > θ0 holds on P′ for every
target user, where θ is the relative size of the solution region of

Eqn (14), P′ is safe of satisfying Privacy IV. We will consider

how to test θ > θ0 shortly. LSP can start with the shortest prefix

P′ = {p1}, which is always safe, and examine the length t prefix
only if the length t − 1 prefix is safe. The query answer for a

candidate query then is the prefix P′ = {p1, · · · ,pt } that is safe,
and if t < k , the next prefix {p1, · · · ,pt+1} is not safe. Note that

if the query answer for every candidate query is safe of satisfying

Privacy IV, the returned answer for C∗ after private selection
satisfies Privacy IV.

5.3 Testing θ > θ0

We now present how to test whether θ > θ0 for a target user,

where θ is the relative size of the solution region of Eqn (14).

One approach is finding the exact solution region of Eqn (14).

Unfortunately, finding this solution region is not straightforward,

especially for any choice of the aggregation function F and an

arbitrary shape of the data space. On the other hand, it is easy

to test whether a point l1,∗ satisfies all inequalities in Eqn (14),

that is, falls into the solution region, without explicitly finding

the solution region. This observation motivates the following

statistic test.

Consider two hypothesis H0 and H1:

H0 : θ ≤ θ0, H1 : θ > θ0 (15)

There are two types of errors:

• Type I Error: Pr(reject H0 |H0 is true) is the probability

that a successful attack is not identified for a target user.

• Type II Error: Pr(not reject H0 |H1 is true) is the proba-

bility that a non-attack is identified as a successful attack

for a target user.

A small probability for Type I Error provides more confidence

on privacy protection and a small probability for Type II Error

provides more confidence on better utility of the returned answer.

We want to bound these probabilities.

To test whether H0 should be rejected, LSP can uniformly and

independently sample NH points X1, · · · ,XNH from the data

space. The outcome of each sample is a Bernoulli random variable

B =

{
1, if Xi satisfies the inequalities in Eqn (14)

0, otherwise

282

The probability of B = 1 is equal to the relative size θ of the

solution region of Eqn (14).X = X1+· · ·+XNH follows a Binomial

distribution. For a large NH , this Binomial distribution can be

approximated by the normal distribution. In this case, LSP can

reject H0 through the Z -test statistic [7]: reject H0 if

X > NHθ0 + zγ
√
NHθ0(1 − θ0) (16)

where zγ is the critical value of the normal distribution and γ
is a desired upper bound for the Type I Error probability, i.e.,

Pr(reject H0 |H0 is true) ≤ γ .
To test if θ > θ0 in the answer sanitation, LSP tests the inequal-

ity in Eqn (16) instead. From the above discussion, the probability

of capturing a successful attack, i.e., Pr(not reject H0 |H0 is true),

is at least 1 − γ . Since this approach only requires testing if a

point satisfies the inequalities in Eqn (14) (for computing X), it is

applicable to any choice of the aggregation function F and any

shape of the data space.

To determine the sample sizeNH , we need to take the probabil-

ity of Type II Error, i.e., Pr(not reject H0 |H1 is true), into consid-

eration. Let θ1 denote the minimum θ value in H1 that we want

to significantly differentiate from θ0. [15] suggests
θ1

θ0

= (1 + ϕ),

where ϕ is the ratio difference between θ1 and θ0. The two types

of errors can be bounded given enough samples, as stated below.

Theorem 5.1 (Sample Size [11]). In the one-tailed hypothesis
testing, the sample size NH required for Pr(Type I Error) ≤ γ and
Pr(Type II Error) ≤ η is given by

NH ≥
[zγ√θ0(1 − θ0) + zη

√
θ1(1 − θ1)

θ1 − θ0

]
2

.□ (17)

The commonly used γ ,η,ϕ are γ = 0.05, η = 0.2, and ϕ = 0.1.

Once the users specify θ0, LSP can determine the sample size NH
using Eqn (17).

5.4 Privacy Guarantees
Theorem 5.2. The PPGNN solution with the answer sanitation

satisfies Privacy I-IV under the full user collusion assumption.

Proof. Privacy I-III follows from Theorem 4.3. Suppose the

returned query answer for C∗ is P∗, which passes the answer

sanitation. Therefore, for every target user ui in the group query,

the Type I Error probability, Pr(reject H0 |H0 is true), is bounded

by γ . In other words, ui ’s real location is guaranteed to hide in a

region that is at least θ0 (in percentage) of the whole space with

the confidence 1 − γ , i.e., Privacy IV is satisfied.

A noteworthy point is that the answer sanitation does not

affect the protection for Privacy I-III because it only reduces

the number of POIs in the query answer returned to the users

(by returning a prefix of the original top-k answer). The users

learn from the reduced list of POIs that the remaining POIs in

the answer are not returned because there is an inequality at-

tack. However, without these remaining POIs, the users cannot

perform such attacks. □

6 OPTIMIZED PPGNN
The indicator vectorv with length δ ′ has only a single 1 (specify-
ingC∗) and (δ

′−1) 0’s. If δ ′ is large, additional user computational

cost and communication cost are spent on encrypting and trans-

mitting many 0’s. In this section, we present an optimization of

PPGNN solution, called PPGNN-OPT, to reduce these costs. Let

⟦·⟧ denote the ciphertext generated by the generalized Paillier

cryptosystem εs with s = 2 (see Section 3.1), and as before, let [·]

0
0
0
0
0
0
1
0

0
0
1
0

0
1

𝒗
𝒗1

𝒗2

(a)

𝒂1 𝒂2 𝒂3 𝒂4 𝒂5 𝒂6 𝒂7 𝒂8
𝑨1 𝑨2

[𝒂3] [𝒂7]
[𝒗1] [𝒗1]

[𝒂7]

𝒗2

(b)

Figure 4: Optimization example: (a) changes on the user
side; (b) two phases private selection on the LSP side

denote the ciphertext generated by εs with s = 1. The encryption

and decryption with ε2 can use the same public key and secret

key as those with ε1 [10].

To explain our optimization, Figure 4 illustrates the changes

made on the user side and the LSP side for the example in Figure

3 where δ ′ = δ = 8. Instead of using the original indicator vector

v = (0, 0, 0, 0, 0, 0, 1, 0)T to indicate the position of the real query,

uc uses two small vectorsv1 = (0, 0, 1, 0)
T
andv2 = (0, 1)

T
. On

the user side, uc executes element-wise encryption onv1 with ε1

and executes element-wise encryption onv2 with ε2, obtaining

[v1] = ([0], [0], [1], [0])
T
, ⟦v2⟧ = (⟦0⟧, ⟦1⟧)T . These vectors are

sent to LSP. In this case, the user computational cost and the

communication cost are that for computing and transmitting

[v1] and ⟦v2⟧, instead of that for [v].

On the LSP side, after obtaining the answer matrix A, LSP
privately selects the desired answer in two phases. Firstly, LSP

partitionsA into two sub-matrices (A1,A2). For each sub-matrix,

LSP executes a private selection using [v1] (Theorem 3.1), re-

sulting in the vector ([a3], [a7]). Secondly, LSP selects the final

answer ⟦[a7]⟧ from ([a3], [a7]) using ⟦v2⟧, by treating the ci-

phertext of ε1 as a plaintext of ε2 in Theorem 3.1. uc can decrypt

⟦[a7]⟧ two times to obtain the plaintext query answer a7.

In general, if the length ofv2 isω, the length ofv1 is δ
′/ω. We

assume that δ ′/ω is an integer by padding 0’s at the end ofv if

necessary. We want to choose ω that minimizes the total commu-

nication cost between users and LSP. We focus on the ciphertexts

transmitted between uc and LSP because the plaintext location

sets transmitted between users and LSP remain unchanged. The

length of a ciphertext of ε2, which is in ZN 3 , is about twice the

length of a ciphertext of ε1, which is in ZN 2 . Let Le denote the
length of a ciphertext with ε1. We want the integer ω such that

minimize

ω ∈N≤d
cost(ω) = (2ω + δ ′/ω + 2m) · Le (18)

where the first term accounts for the length of ⟦v2⟧, the sec-

ond term accounts for the length of [v1], and the third term

accounts for the length of the returned answer (m is the number

of ciphertexts required for storing an answer). The optimal ω

for Eqn (18) is the nearest integer to

√
δ ′/2, with the minimum

communication cost cost ≈ 2(
√

2δ ′ +m) · Le .
In comparison, the communication cost of using the original

encrypted indicator vector [v] is cost ′ = (δ ′ +m) · Le , where δ
′

accounts for the length of [v] andm accounts for the length of

the returned answer. The above optimization reduces the cost

when cost < cost ′, or 2

√
2δ ′ < δ ′ −m. Since 2

√
2δ ′ is positive,

2

√
2δ ′ < δ ′ − m holds only if δ ′ > m, and in this case, we

have δ ′2 + bδ ′ + c > 0, where b = −(2m + 8) and c = m2
. The

solutions for δ ′2 + bδ ′ + c > 0 are δ ′ > r1 or δ ′ < r2, where

283

Table 2: Performance analysis

PPGNN PPGNN-OPT

Total Communication Cost O(nd)Ll +O(δ
′)Le +O(k)Le O(nd)Ll +O(

√
δ ′)Le +O(k)Le

User Computational Cost O(nd)Cl +O(δ
′)Ce +O(k)Ce O(nd)Cl +O(

√
δ ′)Ce +O(k)Ce

LSP Computational Cost O(δ ′)(Cq +Cs) +O(δ
′k)Ce O(δ ′)(Cq +Cs) +O(δ

′k)Ce +O(
√
δ ′k)Ce

r1 = m + 4 + 2

√
2m + 4 and r2 = m + 4 − 2

√
2m + 4. However,

since δ ′ > m and r2 < m, only δ ′ > r1 can be the solution.

In conclusion, on the communication cost, PPGNN-OPT out-

performs PPGNN if and only if δ ′ > r1 holds. Usually k is not

very large and several POIs’ information can be encoded into one

big integer, thereforem is small and PPGNN-OPT can reduce the

cost.

7 PERFORMANCE ANALYSIS
Table 2 summarizes the performance analysis of the PPGNN and

PPGNN-OPT solutions in terms of communication cost, user

computational cost, and LSP computational cost.

Communication cost. Let Ll and Le denote the length of a

location and the length of a ciphertext of ε1, respectively. The

communication cost of PPGNN includes: n location sets with size

d each, i.e., O(nd)Ll , [v] with size δ ′, i.e., O(δ ′)Le , the returned
answer with m encrypted integers that is proportional to the

number of POI to be retrieved k , i.e., O(k)Le . The total cost is
O(nd)Ll + O(δ ′)Le + O(k)Le . With PPGNN-OPT, the cost for

location sets does not change, but the cost for ciphertexts is

O(
√
δ ′)Le + O(k)Le (see Section 6). Therefore, the total cost is

O(nd)Ll +O(
√
δ ′)Le +O(k)Le .

User computational cost. LetCl denote the cost for generat-
ing a dummy location, and Ce denote the cost for execution on a

ciphertext of ε1 (e.g., encryption, decryption). The user computa-

tional cost of PPGNN includes: location sets with sized generated

by all the users, i.e.,O(nd)Cl , encryption of [v] with size δ ′ com-

puted by uc , i.e.,O(δ
′)Ce , and decryption of the returned answer,

i.e.,O(k)Ce . The total cost isO(nd)Cl +O(δ
′)Ce +O(k)Ce . Similar

to the analysis of communication cost, for PPGNN-OPT, the total

cost is O(nd)Cl +O(
√
δ ′)Ce +O(k)Ce .

LSP computational cost. Let Cq denote the cost for execut-

ing a kGNN query (e.g., MBM algorithm [24]), andCs denote the
cost for answer sanitation for one candidate query. The LSP com-

putational cost of PPGNN includes: kGNN queries and answer

sanitation forO(δ ′) candidate queries, i.e.,O(δ ′)(Cq+Cs), and the
private selection on δ ′ answers with sizem, i.e.,O(δ ′k)Ce . Hence,
the total cost isO(δ ′)(Cq +Cs)+O(δ

′k)Ce . For PPGNN-OPT, the
costs for kGNN query and answer sanitation remain unchanged,

but the cost for private selection is O(δ ′k)Ce + O(
√
δ ′k)Ce be-

cause of the two phases private selection, where the first phase

operates on O(δ ′) answers and the second phase on O(
√
δ ′) an-

swers. The total cost isO(δ ′)(Cq +Cs)+O(δ
′k)Ce +O(

√
δ ′k)Ce .

In summary, the communication cost of PPGNN-OPT is asymp-

totically better than that of PPGNN. However, since the above

analysis ignores constant coefficients, in practice, whether PPGNN-

OPT is better depends on δ ′ andm, as discussed at the end of

Section 6 (note thatm = xk , where x is the number of big integers

needed to encode one POI). The comparison on user computa-

tional cost is similar. The LSP computational cost of PPGNN-OPT

is always larger than PPGNN because the second private selection

is an extra cost comparing to PPGNN. We will experimentally

compare the two solutions in Section 8.

8 EXPERIMENTS
We evaluated the performance of PPGNN (Section 4.2), PPGNN-

OPT (Section 6), and the Naive solution (the beginning of Section

4). Since the baseline methods for n = 1 and n > 1 are different,

we consider the single user query scenario (n = 1) in Section 8.2,

and the group query scenario (n > 1) in Section 8.3.

8.1 Experimental Setup
We conducted experiments on a machine with Intel (R) Core (TM)

i7-3770 CPU@ 3.40 GHz×8 machine with 15.6G of RAM, running

Ubuntu 16.04.1 LTS. All algorithms were implemented in C++.

The classic Minimum Bounding Method (MBM) [24] is applied

as our plaintext kGNN algorithm in PPGNN, PPGNN-OPT, and

the Naive solution, and the aggregation function F is sum. We

employed the GMP3 library for big integer computation and

libhcs4 library for operations of the generalized Paillier scheme.

The keysize for ε1 is 1024 bits and the keysize for ε2 is 2048. Table

3 summarizes all parameters and their ranges.

Dataset. We used a real-world dataset Sequoia
5
, which is

widely used in previous studies [12–14, 27, 36]. The dataset con-

tains 62556 POIs from California, including the coordinate and

name. As in these previous works, the location space is normal-

ized into a square space, and the real location for every user in

a group query was randomly generated as a point in this space.

The coordinates of POIs (8 bytes per POI) are returned as the

query answer.

Baselines. For n = 1, we choose the approximate private

kNN query approach, APNN, in [36] as the baseline. In APNN,

LSP partitions the data space into grid cells and pre-computes

kNN results with respect to the center of each cell and encrypts

them. At the query time, the user chooses a square cloak-region

containing her location which consists of b2
cells, and initiates a

two-stages cryptographic protocol to retrieve the desired answer.

The protocol ensures that LSP does not know which cell the

user is located in, nor which answer is retrieved, which ensures

Privacy I-II with the privacy level b2
, and the user can only

decrypt the requested answer, which ensures Privacy III. In our

experiments, APNN has a query cloak-region consisting of 5
2

grid cells, which is equivalent to our default setting d = 25 for

Privacy I. Note that APNN produces only approximate answers

and relies on pre-computation of kNN results with respect to

the center of every cell. This method is not suitable if the exact

answer is required or if the database is dynamic. Also, it cannot

be extended to the group query scenario because the number of

possible queries is significantly large. We did not consider other

approaches such as [12, 27] because they are less efficient than

APNN according to [36].

For n > 1, the first baseline is the incremental pruning private

filter (IPPF) algorithm in [14], which is the first work considering

users’ location privacy in the kGNN query. With the cloak-region

technique, IPPF ensuresPrivacy I-II but notPrivacy III-IV. The

3
http://gmplib.org

4
https://github.com/tiehuis/libhcs

5
http://chorochronos.datastories.org/?q=node/58

284

second baseline is the group location privacy (GLP) algorithm

in [2], which applies a secure multiparty computation technique

for the users to compute their centroid, and LSP returns the kNN
query answer with respect to the centroid. GLP ensures Privacy
I and III, but not Privacy II and IV. A more detailed discussion

for IPPF and GLP solutions can be found in Section 9.

Metrics.We measured three dominating costs for the queries:

the total communication cost (including communications between

the user group and LSP, as well as the communications within the

user group), the total user cost (the sum of all users’ computational

cost), and the LSP cost (all the computations execute on LSP

during the query process). In the group query scenario, we also

evaluated the number of POIs returned to the users, an indicator

of the quality of the answer while resisting the full user collusion

inequality attack. We executed 500 queries and reported the

average cost.

For the discussion below, the reader is referred to Table 3 for

the ranges and default settings of all parameters.

Table 3: Parameters evaluated

Parameter Range Default

n = 1

Privacy I parameter (d) [5, 50] 25

POI to be retrieved (k) [2, 32] 8

n > 1

Privacy II parameter (δ) [25, 200] 100

POI to be retrieved (k) [2, 32] 8

user number (n) [2, 32] 8

Privacy IV parameter (θ0) [0.01, 0.1] 0.05

8.2 Evaluation for Single User Query (n = 1)
For n = 1, we evaluated PPGNN and PPGNN-OPT by varying d
and k . We did not evaluate Naive that is designed for n > 1.

Varing d: Figure 5a-5c compares the three costs of PPGNN

and PPGNN-OPT for varying d . Note that APNN does not depend

on d and is not included. All three costs increase as d increases

because each user needs to generate more dummy locations and

executes more encryption on the indicator vector, and LSP needs

to compute more candidate queries and select the final answer

from more query answers. Figure 5a shows that d = 15 is the

threshold for PPGNN-OPT to outperform PPGNN regarding the

communication cost. When d ≥ 15 (note that δ ′ = d when n = 1),

the communication cost reduction of PPGNN-OPT starts to take

effect, which is consistent with the analysis in Section 7. Figure

5b shows a similar trend for the user cost, but with a different

threshold d = 25 for PPGNN-OPT to beat PPGNN, since the

coefficients in Eqn (18) are different with respect to user cost.

Usually the cost of operation using ε2 consumes more than 2

times (≈3 times in our experiments) than that using ε1, leading to

a larger threshold required. For the LSP cost (Figure 5c), PPGNN

always performs better because LSP needs to execute two-phases

private selection in PPGNN-OPT. In the mobile user scenario,

reducing the communication cost and the user cost has a priority

over reducing the LSP cost.

Varying k: Figure 5d-5f reports the performance of PPGNN,

PPGNN-OPT, and APNN for varying k . The communication costs

(Figure 5d) of the three solutions have a staged growth when k
goes up because 15 POIs information can be encoded by a big

integer in our settings. Figure 5e shows a similar trend on the user

cost for the three solutions. For PPGNN and PPGNN-OPT, the

LSP cost (Figure 5f) increases when k becomes larger because the

kNN query time and private selection time increase. APNN has

4 8 16 32
(a)

0

5000

10000

C
om

m
. C

os
t (

by
te

)

4 8 16 32
(b)

0

0.1

U
se

r C
os

t (
se

c)

4 8 16 32
(c)

0

0.05

0.15

0.25

LS
P

C
os

t (
se

c)

 PPGNN PPGNN-OPT APNN

10 20 30 40 50
d

0

2

4

6

8

C
om

m
. C

os
t (

by
te

) x103

(a) Comm. cost vs. d

10 20 30 40 50
d

0

0.1

0.2

U
se

r C
os

t (
se

c)

(b) User cost vs. d

10 20 30 40 50
d

0

0.1

0.2

LS
P

C
os

t (
se

c)

(c) LSP cost vs. d

4 8 16 32
k

0

2

4

6

8

C
om

m
. C

os
t (

by
te

) x103

(d) Comm. cost vs. k

4 8 16 32
k

0

0.1

0.2

U
se

r C
os

t (
se

c)

(e) User cost vs. k

4 8 16 32
k

0

0.1

0.2

0.3

LS
P

C
os

t (
se

c)

(f) LSP cost vs. k

Figure 5: Effect of parameters when n = 1

the lowest LSP computational cost because of pre-computed kNN
query answers for all grid cells. This computational gain is paid

by returning only approximate kNN answers and the potentially

expensive update cost for recomputing all kNN answers for a

dynamic database.

8.3 Evaluation for Group Query (n > 1)
When n > 1, we evaluated PPGNN, PPGNN-OPT and Naive

in Section 8.3.1 by varying δ , k , n, and θ0. We set d = 25 by

default and did not show its effect because of the relatively stable

performance. We experimentally tested for every (n,d,δ) where
n ∈ [2, 32], d ∈ [5, 50], δ ∈ [50, 200] and the average difference

between δ ′ and δ is approximately 1, i.e., δ ′ ≈ δ . We used the

commonly used confidence levels γ = 0.05, η = 0.2 and ϕ = 0.1

in all experiments in the hypothesis testing. The comparison with

the baselines IPPF and GLP, which have only two parameters

same as ours, k and n, is reported in Section 8.3.2.

8.3.1 Evaluation of Our Approaches. Varying δ : Figure 6a-6c
shows the comparison for varying δ . Unlike the comparison for

n = 1 in Section 8.2, the communication cost and user cost of

PPGNN-OPT are much smaller than those of PPGNN and this ad-

vantage increases as δ increases. In fact, the size of the encrypted

indicator vectors ([v1], ⟦v2⟧) in PPGNN-OPT is proportional to

O(
√
δ ′), whereas the size of the encrypted indicator vector ([v])

in PPGNN is proportional toO(δ ′). Therefore, for a large enough
δ , although the encryption using ε2 in PPGNN-OPT consumes

about three times the cost of the encryption using ε1, the user

cost is still much lower.

The Naive solution incurs the most communication cost be-

cause every user in the group needs to send extra δ − d dummy

locations. The LSP costs are almost the same for the three solu-

tions, and are much larger than that for the single user query.

Because when n > 1, the answer sanitation in Section 5.1 is ac-

tivated to ensure Privacy IV, and this operation dominates the

LSP cost. We will discuss more about the LSP cost for answer

sanitation in Section 8.3.2.

Varing k: 6d-6f shows the comparison for varying k . The
relative comparison of the three solutions is similar to Figure 6a-

6c, except that the communication cost and user cost are relatively

stable as k increases, with PPGNN-OPT being the best performer.

Figure 6f shows that, when k increases, the LSP costs for the

285

50 100 150 200
(a)

1

2

3

4

C
om

m
. C

os
t (

by
te

)

104

50 100 150 200
(b)

0.1

0.2

0.3

0.4

0.5

U
se

r C
os

t (
se

c)
50 100 150 200

(c)

0

1

2

LS
P

C
os

t (
se

c)

 PPGNN PPGNN-OPT Naive

50 100 150 200
0

1

2

3

4

C
om

m
. C

os
t (

by
te

) 104

(a) Comm. cost vs. δ

50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

U
se

r C
os

t (
se

c)

(b) User cost vs. δ

50 100 150 200
0

1

2

3

LS
P

C
os

t (
se

c)

(c) LSP cost vs. δ

4 8 16 32
k

0

1

2

3

C
om

m
. C

os
t (

by
te

) 104

(d) Comm. cost vs. k

4 8 16 32
k

0

0.1

0.2

0.3

U
se

r C
os

t (
se

c)

(e) User cost vs. k

4 8 16 32
k

0

1

2

LS
P

C
os

t (
se

c)

(f) LSP cost vs. k

4 8 16 32
n

0

1

2

3

4

5

C
om

m
. C

os
t (

by
te

) 104

(g) Comm. cost vs. n

4 8 16 32
n

0

0.1

0.2

0.3

U
se

r C
os

t (
se

c)

(h) User cost vs. n

4 8 16 32
n

0

1

2

3

4

LS
P

C
os

t (
se

c)

(i) LSP cost vs. n

0.01 0.05 0.1

0

0

1

2

3

C
om

m
. C

os
t (

by
te

) 104

(j) Comm. cost vs. θ0

0.01 0.05 0.1

0

0

0.1

0.2

0.3

U
se

r C
os

t (
se

c)

(k) User cost vs. θ0

0.01 0.05 0.1

0

0

2

4

6

LS
P

C
os

t (
se

c)

(l) LSP cost vs. θ0

Figure 6: Effect of parameters when n > 1

three solutions first go up because the number of inequalities in

answer sanitation increases, and become stable when k reaches

a number since the number of safe POIs becomes stable as k
increases (see Figure 7a).

Varing n: Figure 6g-6i shows the comparison for varying n.
The trend is similar to Figure 6a-6c, with PPGNN-OPT being the

best performer for the communication cost and user cost. For

PPGNN and PPGNN-OPT, n does not affect the size of encrypted

indicator vector(s), but for the Naive solution, every user needs

to generate and send extra δ − d dummy locations, which leads

to the faster increase in the communication cost and user cost.

The LSP cost of three solutions increases linearly because the

total number of inequalities considered in the answer sanitation

grows linearly with n.
Varying θ0: Figure 6j-6l shows the comparison for varying

θ0. The communication cost and user cost are stable since θ0

only affects the computation on LSP through the sample size

NH required as in Eqn (17). The LSP cost first decreases greatly

and becomes stable as θ0 increases because the sample size in

Eqn (17) behaves this way. In other words, a stronger Privacy IV

level means a faster answer sanitation because fewer samples are

required in the hypothesis testing.

Number of POIs returned: Recall that the answer sanitation
will remove some lower ranked POIs in the top-k answer to

ensure Privacy IV under the full user collusion assumption.

Thus, the number of POIs actually returned to the users could

4 8 16 32
k

0

2

4

6

PO
I #

 R
et

ur
ne

d PPGNN

(a) POI number vs. k

4 8 16 32
n

0

2

4

6

PO
I #

 R
et

ur
ne

d PPGNN

(b) POI number vs. n

0.01 0.05 0.1

0

0

2

4

6

PO
I #

 R
et

ur
ne

d PPGNN

(c) POI number vs. θ0

Figure 7: The number of POIs returned per answer

4 8 16 32
k

0

1

2

LS
P

C
os

t (
se

c)

 PPGNN IPPF GLP PPGNN-NAS

4 8 16 32
k

0

5

10

C
om

m
. C

os
t (

by
te

)

104

(a) Comm. cost vs. k

4 8 16 32
k

0

0.5

1

U
se

r C
os

t (
se

c)

(b) User cost vs. k

4 8 16 32
k

0

1

2

LS
P

C
os

t (
se

c)

(c) LSP cost vs. k

4 8 16 32
n

0

1

2

3

C
om

m
. C

os
t (

by
te

)

105

(d) Comm. cost vs. n

4 8 16 32
n

0

2

4

6

U
se

r C
os

t (
se

c)

(e) User cost vs. n

4 8 16 32
n

0

1

2

3

4

LS
P

C
os

t (
se

c)

(f) LSP cost vs. n

Figure 8: Comparison with other approaches.

be smaller than k . This experiment will study how the answer

sanitation affects this number. We only consider PPGNN because

PPGNN-OPT and Naive will return the same answer as PPGNN.

Note that k , n, and θ0 can affect this number, but δ cannot.

Figure 7a-7c shows the number of POIs returned per answer

for varying k , n, and θ0. The default settings of k , n, and θ0

are 8, 8, and 0.01, respectively. In Figure 7a, as k increases, the

number of POIs returned first increases and then becomes stable

around 4. This is because, with n = 8 and θ0 = 0.01, 4 inequalities

usually lead to a successful inequality attack and a larger k has no

additional impact. In Figure 7b, the number of returned POIs rises

slightly asn increases. At first glance, this seems counter-intuitive

because ensuring no attack on more users is more restrictive. At

a closer look, with more users involved in a query, the target

user’s location l1,∗ weights less in determining if the inequalities

in Eqn (14) hold or not, therefore, there are more choices for

l1,∗, thus, a larger solution region for l1,∗ and it is easier to add

the next POI in the answer. The trend in Figure 7c is expected

because a larger θ0 leads to a stronger Privacy IV, consequently,
fewer POIs can be returned.

To conclude, the top 2 to 5 POIs are still returned for a query

even after the answer sanitation. In practice, such numbers are

usually sufficient because the users might only need to select one

from them.

8.3.2 Comparison with Baseline Approaches. We compared

PPGNNwith the baselines IPPF and GLP for varying k and n. d , δ ,
and θ0 specific to PPGNN are set to their default values. We only

consider PPGNN because the experiments above have shown

that PPGNN-OPT is better than PPGNN. While PPGNN satisfies

Privacy IV assuming full user collusion, let PPGNN-NAS denote

286

Table 4: Comparison with existing work

Group Size Approaches Technique Privacy I Privacy II Privacy III Privacy IV

n = 1

[3, 9, 21] Cloak-Region ✓ ✓ × -

[17, 30] Dummy ✓ ✓ × -

[13, 26] Private Information Retrieval ✓ ✓ × -

[1, 34, 37] Perturbation ✓ × ✓ -

[12, 27, 36] Hybrid Techniques ✓ ✓ ✓ -

Our approach Dummy+Paillier ✓ ✓ ✓ -

n > 1

[14] Cloak-Region ✓ ✓ × ×

[2] Secure Multiparty Computation ✓ × ✓ ×

Our approach Dummy+Paillier ✓ ✓ ✓ ✓

the relaxed PPGNN that satisfies Privacy IV assuming no user

collusion. So PPGNN-NAS does not run the answer sanitation.

For IPPF, we chose the query rectangle area (for each user) to

be 0.0005% of the data space, which is comparable to choosing

d = 25 locations (our default setting) as the location set from

5000,000 addresses in California
6
. For GLP, we chose the same

keysize as PPGNN.
Varying k: Figure 8a-8c shows the comparison for varying

k . The communication cost of IPPF is much larger than PPGNN

and GLP. In fact, IPPF returns all the candidate POIs, which can

be several thousands per query on average, to the users, and

the users have to filter the candidate POIs. GLP consumes more

user cost than PPGNN and IPPF because there are O(n2) cryp-

tographic operations and every user has to transmit encrypted

values to all other users. In Figure 8c, the gap between PPGNN

and PPGNN-NAS is the LSP time spent on the answer sanitation,

which dominates the LSP cost. IPPF and GLP consume less LSP

cost, however, IPPF cannot satisfy Privacy III and IV, and GLP

cannot satisfy Privacy II and IV and provide only an approxi-

mate answer.

Varying n: Figure 8d-8f shows the comparison for varying n.
PPGNN is significantly communication efficient than IPPF and

GLP. The communication cost for GLP increases quickly with

n because the number of transmitted encrypted values is O(n2).

There is a similar trend on the user cost. Again, Figure 8f shows

that PPGNN spent significant LSP time on the answer sanitation

to deal with the full user collusion, whereas PPGNN-NAS has

almost the same LSP time as IPPF and GLP.

8.4 Summary
For n = 1, our solutions, PPGNN and PPGNN-OPT, are compara-

ble with or better than the existing solution APNN that heavily

relies on pre-computing the answers for all possible queries to

reduce the run-time cost. However, APNN produces only ap-

proximate answers and the pre-computation means an expensive

update cost. For n > 1, which is the main focus of this paper,

PPGNN and PPGNN-OPT, have significantly smaller communi-

cation cost and user cost than existing solutions IPPF and GLP

while providing stronger privacy guarantees, i.e., Privacy I-IV,
and PPGNN-OPT performs better than PPGNN in most cases.

We believe that reducing the communication cost and user com-

munication cost is the priority in the mobile user scenario as

considered here. The pay for achieving the stronger privacy guar-

antee is some increase in the LSP cost, especially when dealing

with the full user collusion assumption for Privacy IV. To our
knowledge, this is the first work considering this assumption.

6
https://openaddresses.io/

9 RELATEDWORK
Most existing work focus on the single user query case, i.e., n = 1.

To protect Privacy I, some techniques obfuscate user’s exact

location in a cloak-region (CR) [3, 9, 21] or use dummy query

locations [17, 30]. Another technique [13, 26] is based on pri-

vate information retrieval (PIR), allowing the user to retrieve a

particular record from LSP without revealing which record is

retrieving. In these techniques, LSP needs to return a super-set

of the exact query answer, which not only increases the commu-

nication cost but also sacrifices Privacy III. Data transformation

[37] and differential privacy approach [1, 34] perturb user’s exact

location to a false location, so the query answer is approximate,

and meanwhile, Privacy II is sacrificed because LSP knows the

query answer. The approaches [12, 27, 36] that based on a hybrid

of PIR and cryptography technique can protect Privacy I-III,
but LSP needs to pre-compute the answers to all possible queries.

This technique does not work for n > 1 because of too many

group queries. Also, if a POI information is updated, LSP needs

to re-compute all answers, which is too expensive.

For the group query scenario, i.e., n > 1, Hashem et al. [14]
obfuscates each user’s exact location into a region, and LSP exe-

cutes the kGNN query w.r.t. these regions, returning a super-set

of the query answer. Beside the extra work of filtering the an-

swer set by the users, this approach sacrifices Privacy III since
extra POI information is returned to the users. Privacy IV is

also violated because a user’s exact location is compromised if

its predecessor and successor collude in the filtering phase [2].

In the work by Talouki et al. [2], users compute their centroid

by secure multiparty computation (SMC) [35] and LSP returns

the kNN answer for that centroid. This approach cannot protect

Privacy II and Privacy IV because LSP knows the query answer

and n − 1 users can recover the last user’s exact location by their

own locations and the centroid.

Table 4 summarizes and compares the above works with our

work.

In the privacy preserving meeting location determination

(PPMLD) [5, 16, 31], a group of users each chooses a preferred

meeting location and send the encrypted locations to the server,

who then selects the one to minimize the aggregate distance to

all preferred locations. In our work, the query answer is selected

from the POI database of LSP and the users specify their current

locations, instead of preferred meeting locations. The PPMLD

method cannot be adopted to our privacy preserving kGNN prob-

lem because their cryptographic selection is specific to PPMLD.

On the other hand, our approach can be adopted to PPMLD by

replacing the kGNN building block with any existing non-privacy

preserving meeting location determination solution.

287

The data ownership and privacy implication in our problem

are different from most works on secure query processing in the

outsourcing database (ODB) model [32]. In ODB, the users and

the data owner are trusted and the server is not trusted. The

data owner outsources the encrypted database to the server and

the user retrieves the query answer from the server. The privacy

objective is to prevent the server from learning anything about

the database and the user query. In our problem, LSP owns the

data and multiple users jointly specify a query, and no party

trusts anyone except herself.

10 CONCLUSION
This work identifies four privacy objectives for the group k-
nearest neighbor query, kGNN, and designs a privacy preserving

kGNN solution, PPGNN. To our knowledge, this is the first work

that address all of these privacy objectives. Though we consider

kGNN, the proposed privacy preserving approach can be easily

adopted to any group query because it treats the query answering

(i.e., kGNN) as a black box.

ACKNOWLEDGMENT
This work is supported by National Science Foundation of China

(No.61532021, 61772537), National High Technology Research

and Development Program of China (863) (No.2014AA015204),

National Key R & D program of China (No.2016YFB1000702), Na-

tional Basic Research Program of China (973) (No.2014CB340403).

Ke Wang’s work was partially supported by a discovery grant

from The Natural Sciences and Engineering Research Council

of Canada (NSERC). This work was partially done when some

authors worked in SA Center for Big Data Research in Renmin

University of China. The SACenter is funded by Chinese National

111 Project Attracting International Talents in Data Engineering

and Knowledge Engineering Research.

REFERENCES
[1] Miguel E. Andrés, Nicolás Emilio Bordenabe, Konstantinos Chatzikokolakis,

and Catuscia Palamidessi. 2013. Geo-indistinguishability: differential privacy

for location-based systems. In CCS. 901–914.
[2] Maede Ashouri-Talouki, Ahmad Baraani-Dastjerdi, and Ali Aydin Selçuk.

2012. GLP: A cryptographic approach for group location privacy. Computer
Communications 35, 12 (2012), 1527–1533.

[3] Bhuvan Bamba, Ling Liu, Péter Pesti, and Ting Wang. 2008. Supporting

anonymous location queries in mobile environments with privacygrid. In

WWW. 237–246.

[4] Pietro Belotti, Christian Kirches, Sven Leyffer, Jeff Linderoth, James Luedtke,

and Ashutosh Mahajan. 2013. Mixed-integer nonlinear optimization. Acta
Numerica 22, 1–131.

[5] Igor Bilogrevic, Murtuza Jadliwala, Vishal Joneja, Kübra Kalkan, Jean-Pierre

Hubaux, and Imad Aad. 2014. Privacy-Preserving Optimal Meeting Location

Determination on Mobile Devices. IEEE Trans. Information Forensics and
Security 9, 7 (2014), 1141–1156.

[6] Pierre Bonami, Mustafa Kilinç, and Jeff Linderoth. 2012. Algorithms and
Software for Convex Mixed Integer Nonlinear Programs. Springer New York,

1–39.

[7] Sprinthall R. C. Basic Statistical Analysis (9th ed.). Pearson Education.

[8] Sunoh Choi, Gabriel Ghinita, Hyo-Sang Lim, and Elisa Bertino. 2014. Secure

kNN Query Processing in Untrusted Cloud Environments. TKDE 26, 11 (2014),

2818–2831.

[9] Chi-Yin Chow, Mohamed F. Mokbel, and Xuan Liu. 2006. A peer-to-peer

spatial cloaking algorithm for anonymous location-based service. In ACM-GIS.
171–178.

[10] Ivan Damgård and Mads Jurik. 2001. A Generalisation, a Simplification and

Some Applications of Paillier’s Probabilistic Public-Key System. In Public Key
Cryptography. 119–136.

[11] Joseph L Fleiss, Bruce Levin, andMyunghee Cho Paik. 2003. Statistical methods
for rates and proportions; 3rd ed. Wiley, Hoboken, NJ.

[12] Gabriel Ghinita, Panos Kalnis, Murat Kantarcioglu, and Elisa Bertino. 2011.

Approximate and exact hybrid algorithms for private nearest-neighbor queries

with database protection. GeoInformatica 15, 4 (2011), 699–726.

[13] Gabriel Ghinita, Panos Kalnis, Ali Khoshgozaran, Cyrus Shahabi, and Kian-Lee

Tan. 2008. Private queries in location based services: anonymizers are not

necessary. In SIGMOD. 121–132.
[14] Tanzima Hashem, Lars Kulik, and Rui Zhang. 2010. Privacy preserving group

nearest neighbor queries. In EDBT. 489–500.
[15] D.C. Howell. 2013. Statistical Methods for Psychology. Wadsworth Cengage

Learning.

[16] Yan Huang and Roopa Vishwanathan. 2010. Privacy Preserving Group Nearest

Neighbour Queries in Location-Based Services Using Cryptographic Tech-

niques. In GLOBECOM. 1–5.

[17] Hidetoshi Kido, Yutaka Yanagisawa, and Tetsuji Satoh. 2005. An anonymous

communication technique using dummies for location-based services. In ICPS.
88–97.

[18] Feifei Li, Ke Yi, Yufei Tao, Bin Yao, Yang Li, Dong Xie, and Min Wang. 2016.

Exact and approximate flexible aggregate similarity search. VLDB J. 25, 3
(2016), 317–338.

[19] Yang Li, Feifei Li, Ke Yi, Bin Yao, and Min Wang. 2011. Flexible aggregate

similarity search. In SIGMOD. 1009–1020.
[20] Hua Lu, Christian S. Jensen, and Man Lung Yiu. 2008. PAD: privacy-area

aware, dummy-based location privacy in mobile services. In Seventh ACM
International Workshop on Data Engineering for Wireless and Mobile Access.
16–23.

[21] Mohamed F. Mokbel, Chi-Yin Chow, andWalid G. Aref. 2006. The New Casper:

Query Processing for Location Services without Compromising Privacy. In

PVLDB. 763–774.
[22] Ben Niu, Qinghua Li, Xiaoyan Zhu, Guohong Cao, and Hui Li. 2014. Achieving

k-anonymity in privacy-aware location-based services. In INFOCOM. 754–762.

[23] Pascal Paillier. 1999. Public-Key Cryptosystems Based on Composite Degree

Residuosity Classes. In EUROCRYPT. 223–238.
[24] Dimitris Papadias, Qiongmao Shen, Yufei Tao, and Kyriakos Mouratidis. 2004.

Group Nearest Neighbor Queries. In ICDE. 301–312.
[25] Dimitris Papadias, Yufei Tao, Kyriakos Mouratidis, and Chun Kit Hui. 2005.

Aggregate nearest neighbor queries in spatial databases. ACM Trans. Database
Syst. 30, 2 (2005), 529–576.

[26] Stavros Papadopoulos, Spiridon Bakiras, and Dimitris Papadias. 2010. Nearest

Neighbor Search with Strong Location Privacy. PVLDB 3, 1 (2010), 619–629.

[27] Russell Paulet, Md. Golam Kaosar, Xun Yi, and Elisa Bertino. 2014. Privacy-

Preserving and Content-Protecting Location Based Queries. TKDE 26, 5 (2014),

1200–1210.

[28] Humberto Luiz Razente, Maria Camila Nardini Barioni, Agma J. M. Traina,

Christos Faloutsos, and Caetano Traina Jr. 2008. A novel optimization approach

to efficiently process aggregate similarity queries in metric access methods.

In CIKM. 193–202.

[29] Jerome H. Saltzer and Michael D. Schroeder. 1975. The protection of informa-

tion in computer systems. Proc. IEEE 63, 9 (1975), 1278–1308.

[30] Pravin Shankar, Vinod Ganapathy, and Liviu Iftode. 2009. Privately querying

location-based services with SybilQuery. In UbiComp. 31–40.
[31] Xiaofen Wang, Yi Mu, and Rongmao Chen. 2016. One-Round Privacy-

Preserving Meeting Location Determination for Smartphone Applications.

IEEE Trans. Information Forensics and Security 11, 8 (2016), 1712–1721.

[32] Wai Kit Wong, David Wai-Lok Cheung, Ben Kao, and Nikos Mamoulis. 2009.

Secure kNN computation on encrypted databases. In SIGMOD. 139–152.
[33] David J. Wu, Joe Zimmerman, Jérémy Planul, and John C. Mitchell. 2016.

Privacy-Preserving Shortest Path Computation. In NDSS.
[34] Yonghui Xiao and Li Xiong. 2015. Protecting Locations with Differential

Privacy under Temporal Correlations. In CCS. 1298–1309.
[35] Andrew Chi-Chih Yao. 1982. Protocols for Secure Computations (Extended

Abstract). In 23rd Annual Symposium on Foundations of Computer Science.
160–164.

[36] Xun Yi, Russell Paulet, Elisa Bertino, and Vijay Varadharajan. 2016. Practical

Approximate k Nearest Neighbor Queries with Location and Query Privacy.

TKDE 28, 6 (2016), 1546–1559.

[37] Man Lung Yiu, Christian S. Jensen, Xuegang Huang, and Hua Lu. 2008.

SpaceTwist: Managing the Trade-Offs Among Location Privacy, Query Perfor-

mance, and Query Accuracy in Mobile Services. In ICDE. 366–375.
[38] Man Lung Yiu, Nikos Mamoulis, and Dimitris Papadias. 2005. Aggregate

Nearest Neighbor Queries in Road Networks. TKDE 17, 6 (2005), 820–833.

288

	Privacy Preserving Group Nearest Neighbor SearchYuncheng Wu, Ke Wang, Zhilin Zhang, weipeng lin, Hong Chen, Cuiping Li

