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Foreword

The International Conference on Extending Database Technology (EDBT) is a leading international forum
for database researchers, practitioners, developers, and users to discuss cutting-edge ideas, and to exchange
techniques, tools, and experiences related to data management. Data management is an essential enabling
technology for scientific, engineering, business, and social communities. Data management technology is
driven by the requirements of applications across many scientific and business communities, and runs on
diverse technical platforms associated with the web, enterprises, clouds and mobile devices. The database
community has a continuing tradition of contributing with models, algorithms, and architectures, to the set
of tools and applications enabling day-to-day functioning of our societies. Faced with the broad challenges
of today’s applications, data management technology constantly broadens its reach, exploiting new hardware
and software to achieve innovative results.
EDBT 2017 solicited submissions of original research contributions, as well as descriptions of industrial
and application achievements, and proposals for tutorials and software demonstrations. We encouraged
submissions of research papers related to all aspects of data management defined broadly, and particularly
encouraged work on topics of emerging interest in the research and development communities.
In addition to regular research paper submissions, EDBT 2017 solicited the submission of research papers
that come within special topics of interest: “Vision”, “Experiments and Analyses” and “Database Technology
and Behavior, Security, Ethics, Rights and Duties of Citizens”. These papers were reviewed by the same
program committee as regular research papers. However, a dedicated co-chair for each special topic provided
specific instructions to the reviewers of these papers and coordinated discussions, decisions, and meta-review
formulation.
One innovation of EDBT 2017 is the solicitation of short papers, which are presented as posters at the plenary
poster session of the conference. These short papers provide an opportunity to describe significant work in
progress or research that is best communicated in an interactive or graphical format. In particular, these
works contain smaller or more speculative ideas, controversial research topics, and new applications of old
ideas or the reworking of previous studies. Short papers were reviewed by the research program committee
in a second, independent call after the regular research paper submissions had been reviewed and decided.
The program committees of EDBT accepted 37 out of 168 submitted regular research papers, resulting in an
acceptance rate of 22% for the research track; 22 out of 93 submitted short papers, resulting in an acceptance
rate of 23.6% for short research papers; 18 out of 45 demos, resulting in an acceptance rate of 40% for the
demonstration track; 9 out of 24 industrial and application papers, resulting in an acceptance rate of 37.5%,
as well as 3 out of 8 tutorials, again resulting in an acceptance rate of 37.5%.
The papers will be presented in nine research paper sessions, four industrial and application sessions (one
invited), two plenary poster sessions, and two demo sessions. In addition, the program features six workshops,
one of which is dedicated to European Research projects with a focus on the Horizon 2020 program, four joint
keynotes with the ICDT conference, three tutorials, and one panel on the special topic “Database Technology
and Behavior, Security, Ethics, Rights and Duties of Citizens”. I would like to thank all authors for their
contributions, as a successful conference crucially relies on high-quality submissions. The submission numbers
indicate a healthy EDBT community. I also would like to thank all co-chairs and reviewers for serving on the
EDBT program committee, in particular for the timely handling of all reviews and discussions with a high
degree of professionalism and very high review and discussion quality. This enabled us to notify authors with
no or only very little delay despite several reviewing cycles and only one month of reviewing and discussion
time. Even though these community service contributions require a lot of work on a tight schedule, they are
what make our research community function and ensure the overall impact of research in our field.
I firmly believe that we can look forward to an interesting program and exciting conference on March 21–24,
2017, in Venice.

Volker Markl
EDBT 2017 Program Chair
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Test-of-Time Award

In 2014, the Extended Database Technology conference (EDBT) began awarding the EDBT
test-of-time (ToT) award, with the goal of recognising papers presented at EDBT Conferences
that have had the most impact in terms of research, methodology, conceptual contribution,
or transfer to practice.
This year, covering the conferences from 1996 to 2002, the award has been given to:

Mining Sequential Patterns:
Generalizations and Performance Improvements.

by Ramakrishnan Srikant, Rakesh Agrawal
published in the EDBT 1996 proceedings, 3–17.

This paper has made substantial contributions to data mining, and has had great influence
on the work of others, as reflected by over 2900 citations on Google Scholar.
The paper formalizes a new variant of the problem of mining sequential patterns and develops
and implements GSP, an algorithm to solve this problem. This paper extends the definition
of sequence mining that was introduced by the same authors in a previous publication:
Mining Sequential Patterns. ICDE 1995. The goal is to discover all sequential patterns with
a user-specified minimum support from a database of sequences, where each sequence is a
list of transactions ordered by transaction-time, and each transaction is a set of items. The
proposed extensions are:

1. Time constraints: the authors generalised their previous definition of sequential pat-
terns to admit max-gap and min-gap time constraints between adjacent elements of a
sequential pattern.

2. Sliding windows: the authors relaxed the restriction that all the items in an element of
a sequential pattern must come from the same transaction, and allowed a user-specified
window-size within which the items can be present.

3. Taxonomies: the sequential patterns may include items across different levels of a
taxonomy.

GSP guarantees that all rules that have a user-specified minimum support. It is shown to
be much faster than the AprioriAll algorithm in the previous publication (on both synthetic
and real data). GSP has been implemented as part of the Quest data mining prototype at
IBM Research, and is incorporated in the IBM data mining product.
The EDBT 2017 Test of Time Award Committee consisted of Peter Triantafillou, Gustavo
Alonso, Sihem Amer-Yahia, Ralf Hartmut Güting and Volker Markl.
The EDBT ToT award for 2017 will be presented during the EDBT/ICDT 2017 Joint Con-
ference, March 21–24, in Venice, Italy (http://edbticdt2017.unive.it/).
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ABSTRACT

One of the fundamental algorithms in analytical graph data-
bases is breadth-first search (BFS). It is the basis of reach-
ability queries, centrality computations, neighborhood enu-
meration, and many other commonly-used algorithms.

We take the idea of purely array-based BFSs introduced
in the sequential multi-source MS-BFS algorithm and extend
this approach to multi-threaded single- and multi-source BFSs.
Replacing the typically used queues with fixed-sized arrays,
we eliminate major points of contention which other BFS
algorithms experience. To ensure equal work distribution
between threads, we co-optimize work stealing paralleliza-
tion with a novel vertex labeling. Our BFS algorithms have
excellent scaling behavior and take advantage of multi-core
NUMA architectures.

We evaluate our proposed algorithms using real-world and
synthetic graphs with up to 68 billion edges. Our evaluation
shows that the proposed multi-threaded single- and multi-
source algorithms scale well and provide significantly better
performance than other state-of-the-art BFS algorithms.

1. INTRODUCTION
Graphs are a natural abstraction for various common con-

cepts like communication, interactions as well as friendships.
Thus, graphs are a good way of representing social networks,
web graphs, and communication networks. To extract struc-
tural information and business insights, a plethora of graph
algorithms have been developed in multiple research commu-
nities.

At the core of many analytical graph algorithms are breadth
first searches (BFSs). During a BFS, the vertices of a graph
are traversed in order of their distance—measured in hops—
from a source vertex. This traversal pattern can for example
be used to do shortest path computations, pattern match-
ings, neighborhood enumerations, and centrality calculations.
While all these algorithms are BFS-based, many different
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BFS variants have been published. Important aspects that
differentiate BFS variants are their degree of parallelism, the
number of sources they consider, and the type of graph they
are suited for.

Possible degrees of parallelism include single-threaded and
multi-threaded execution as well as distributed processing.
Many emerging systems, e.g., Pregel [16], Spark [21], and
GraphLab [15], focus heavily on distributed processing, but
often neglect to optimize for the single-machine use case.
However, especially for graph analytics, distributed process-
ing is a very hard problem. The main reason for this is the
high communication cost between compute nodes which is
directly influenced by the inherent complexity of graph parti-
tioning [4]. While there are cases in which distribution cannot
be avoided, we argue that in graph analytics it is often done
unnecessarily, leading to diminished performance. Actually,
most—even large-scale—real-world graphs easily fit into the
main memory of modern server-class machines [11]. Thus,
we only consider the single-node scenario but differentiate
between single and multi-threaded processing.

In Figure 1 we give an overview of the multi-threaded
single-node state-of-the-art BFS algorithms.

The figure also includes the second important aspect of a
BFS variant: its number of sources. Traditionally, the BFS
problem is stated as traversing the graph from a single source
vertex. While this single-source model can be applied to any
BFS-based algorithm, it hampers inter-BFS optimizations.
Specialized multi-source BFS algorithms like MS-BFS [18]
and the GPU based iBFS [14] concurrently traverse the
graph from multiple source vertices and try to share common
work between the BFSs. This is, for example beneficial when
the all pairs shortest path (APSP) problem needs to be
solved as it is the case for the closeness centrality metric.
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For this computation, a full BFS is necessary from every
vertex in the graph. Considering that small-world networks
often consist of a single large connected component, a single-
source BFS would visit every vertex in each traversal while
a multi-source-optimized BFS batches visits where possible.

One central limitation of current multi-source BFS algo-
rithms is their limited ability to analyze large graphs ef-
ficiently. The GPU-based iBFS is limited to the memory
available on GPU cards which is over an order of magnitude
less than what is available in modern servers. The CPU-based
MS-BFS on the other hand is sequential; utilizing all cores
would require an separate BFS instance for each CPU core.
It can only speed up analysis when a huge number of sources
is analyzed and it requires much more memory due to the
separate BFS states.

In this paper we propose two breadth-first search algo-
rithms that are optimized for modern massively-parallel
multi-socket machines: SMS-PBFS and MS-PBFS. SMS-
PBFS is a parallelized single-source BFS, while MS-PBFS is
a parallelized multi-source BFS. Both algorithms are based
on the approaches introduced by the sequential MS-BFS. By
adding scalable parallelization we enable massive speedups
especially when working with a limited number of sources.
Our approach also significantly reduces memory requirements
for parallelized multi-source BFSs.

Our evaluation using real-world graphs as well as arti-
ficial graphs, including the industry-standard benchmark
Graph500 [1], shows that SMS-PBFS and MS-PBFS greatly
outperform the existing state-of-the-art BFS algorithms. Be-
cause the overhead for parallelization is negligible, our paral-
lelized algorithms can be efficiently used for sequential BFS
traversals without modifications.

Specifically, the contributions of this paper are as follows:

• We present the MS-PBFS algorithm, a multi-core NUMA-
aware multi-source BFS that ensures full machine uti-
lization even for a limited number of sources. We also in-
troduce SMS-PBFS, a multi-core NUMA-aware single-
source BFS based on MS-PBFS that shows better per-
formance than existing single-source BFS algorithms.

• We introduce a new vertex labeling scheme that is both
cache-friendly as well as skew-avoiding.

• We propose a parallel low-overhead work stealing schedul-
ing scheme that preserves NUMA locality in BFS work-
loads.

The latter two contributions can also boost the perfor-
mance of existing BFS algorithms as well as other graph
algorithms.

The paper is structured as follows. In Section 2 we describe
the state-of-the-art BFS algorithms for the sequential and
parallel single-source case as well as for the sequential multi-
source case and summarize their limitations. Afterward, in
Section 3 we present our novel algorithms MS-PBFS and
SMS-PBFS. In Section 4 we describe our optimized schedul-
ing algorithm, vertex labeling scheme, and memory-layout for
modern NUMA architectures. Section 5 contains the evalua-
tion of our algorithms. We give an overview over the related
work in Section 6. Section 7 summarizes our findings.

2. BACKGROUND
In this section we describe the current state-of-the-art BFS

algorithm variants. We focus on algorithms that operate on

undirected, unweighted graphs. Such a graph is represented
by a tuple G = {V, E}, where V is the set of vertices and E =
{neighborsv|v ∈ V } where neighborsv is the set of neighbors
of v. Additionally, we assume that the graphs of interest
are small-world networks [3], i.e., that they are strongly
connected and their number of neighbors per vertex follows
a power law distribution. This is the case for most real-world
graphs; examples include social networks, communication
graphs and web graphs.

Given a graph G and a source vertex s, a BFS traverses
the graph from s until all reachable vertices have been visited.
During this process, vertices with a one-hop distance from
s are visited first, then all vertices with distance two and
so on. Each distance corresponds to one iteration. While
executing an iteration the neighbors of vertices that were
newly discovered in the previous iteration are checked to see
if they have not yet been discovered. If so, they are marked as
newly seen and enqueued for the next iteration. Consequently,
the basic data structures during execution are a queue of
vertices that were discovered in the previous iteration and
must be processed in the current iteration, called frontier ,
a mapping seen that allows checking if a vertex has already
been visited, and a queue next of vertices that were newly
discovered in the current iteration. The latter queue is used
as input for the next iteration. The number of BFS iterations
corresponds to the maximum distance of any vertex from
the source. It is bound by the diameter of the graph, i.e., the
greatest shortest distance between any two vertices.

Our novel MS-PBFS and SMS-PBFS algorithms build
on multiple existing techniques which we introduce in the
following. We categorize the presented algorithms as either
parallel or sequential, and as either single-source or multi-
source as shown in Figure 1. To the best of our knowledge,
each of the presented algorithms in this chapter is the current
single-server state-of-the art in its category.

2.1 Sequential and Parallel Single-Source BFS
The fastest sequential single source BFS algorithm for

dense graphs was presented by Beamer et al. [5]. It breaks up
the algorithmic structure of the traditional BFS to especially
reduce the amount of work required to analyze small-world
networks. In such graphs most vertices are reached within few
iterations [18]. This has the effect that at the end of this “hot
phase” the frontier for the next iteration contains many more
vertices than there are unseen vertices in the graph, as most
were already discovered. At this point the classical top-down
approach — trying to find unseen vertices by processing the
frontier — becomes inefficient. Most vertices’ neighbors will
already have been seen but would still need to be checked.
The ratio of vertices discovered per traversed edge becomes
very low. For these cases Beamer et al. propose to use a
bottom-up approach and iterate over the vertices that were
not yet seen in order to try to find an already seen vertex
in their neighbor lists. Even though the result of the BFS is
not changed, this approach significantly reduces the number
of neighbors that have to be checked. This translates into
better traversal performance, thus, this approach is often
used in more specialized BFS algorithms [2, 18, 20].

Those algorithmic changes also have implications on the
BFS data structures that can be used. Typically, the queues
in a BFS are implemented using either a dense bitset or a
sparse vector. The bottom-up phase, though, requires efficient
lookups of vertices in the queue, thus, it can not be used

2



efficiently with a sparse vector. The original authors solve
this by converting the data structures from bitset to sparse
vector when switching from top-down to bottom-up or vice
versa.

For parallelization, this approach can be combined with
existing work on scalable queues for BFSs [2, 12, 8, 5, 20]
and on scalability on multi-socket NUMA architectures [19,
8] through static partitioning of vertices and data across
NUMA nodes. Many of these techniques are combined in the
BFS algorithm proposed by Yasui et al. [20, 19] which is the
fastest multi-threaded single-source BFS.

2.2 Sequential Multi-Source BFS
The MS-BFS algorithm [18] is targeted towards multi-

source traversal and further reduces the total number of
neighbor lookups across all sources compared to Beamer et
al. It is based on two important observations about BFS
algorithms. Firstly, regardless the data structure used, for
sufficiently large graphs it is expensive to check whether a
vertex is already contained in seen as CPU cache hit rates
decrease. For this very frequent operation even arrays with
their containment check bound of O(1) are bound by memory
latency. This problem is further exacerbated on non-uniform
memory access (NUMA) architectures that are common in
modern server-class machines. Secondly, when multiple BFSs
are run in the same connected component, every vertex of
this component is visited separately in each BFS. This leads
to redundant computations, because whenever two or more
BFS traversals in the same component find a vertex v in
the same distance d from their respective source vertices,
the remainder of those BFS traversals from v will likely be
very similar, i.e., visit most remaining vertices in the same
distance.

MS-BFS alleviates some of these issues by optimizing
for the case of executing multiple independent BFSs from
different sources in the same graph. It uses three k-wide
bitsets to encode the state of each vertex during k concurrent
BFSs:

1. seen[v], where the bit at position i indicates whether v

was already seen during the BFS i,

2. frontier [v], determining if v must be visited in the
current iteration for the BFSs, and

3. next[v], with each set bit marking that the vertex v

needs to be visited in the following iteration for the
respective BFS.

For example given k = 4 concurrent BFSs, the bitset
seen[v] = (1, 0, 0, 1) indicates that vertex v is already discov-
ered in BFSs 0 and 3 but not in BFSs 1 and 2. Using this
information, a BFS step to determine seen and next for all
neighbors n of v can be executed using the bitwise operations
and ( & ), or ( | ), and negation (∼):

for each n ∈ neighbors[v]
next[n]← next[n] | (frontier [v] & ∼seen[n])
seen[n]← seen[n] | frontier [v]

Here, if n is not yet marked seen for a BFS and this
BFS’s respective bit is set in frontier [v], then the vertex n

is marked as seen and must be visited in the next iteration.
The bitwise operations calculate seen and next for k BFSs at
the same time and can be computed efficiently by leveraging
the wide registers of modern CPUs. A full MS-BFS iteration
consists of executing these operations for all vertices v in the
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graph. Note that all k BFSs are run concurrently on a single
CPU core with their traversals implicitly merged whenever
possible.

MS-BFS works for any number of concurrent BFSs using
bitset sizes chosen accordingly. However, it is especially ef-
ficient when the vertex bitsets have a width for which the
target machine natively supports bit operations. Modern
64-bit x86 CPUs do not only have registers and instructions
that support 64 bit wide values, but also ones for 128 bit and
256 bit using the SSE and AVX-2 extensions, respectively.
The original publication elaborates on the trade-offs of var-
ious bitset widths and how they influence the algorithm’s
performance.

In Section 3 we show how MS-BFS can be efficiently par-
allelized and present an optimized variant that is highly
efficient for single source traversals.

2.3 Limitations of Existing Algorithms
The MS-BFS algorithm is limited to sequential execution.

The only way to saturate a multi-core system is to run a
separate MS-BFS instance on each core. However, if the
number of BFS sources is limited, e.g., to only 64 as in the
Graph500 benchmark, MS-BFS can only run single-threaded
or, at best, on few cores. In such cases, the capabilities of a
multi-core system cannot be fully utilized. Figure 2 analyzes
this problem using a 60-core machine and 64 concurrent
BFSs per MS-BFS. Every 64 sources one more thread can
be used. Hence, only with 3840 or more sources all cores
are utilized. Also, by running multiple sequential instances
simultaneously, the memory requirements rise drastically to
the point that the dynamic state of the BFSs require much
more memory than the graph itself. This is demonstrated in
Figure 3. It compares the memory required for the MS-BFS
and our proposed MS-PBFS data structures to the size of
the analyzed graph. We calculated the memory requirement
based on 16 edges per vertex like the Kronecker graphs in the
Graph500 benchmark. While traditional BFSs only require a
fraction of the graph memory for their working set, MS-BFS
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Listing 1: Top-down MS-BFS algorithm from [18].
1 for each v ∈ V
2 if frontier [v] = ∅, skip

3 for each n ∈ neighborsv
4 next[n]← next[n] | frontier [v]
5
6 for each v ∈ V
7 if next[v] = ∅, skip

8 next[v]← next[v] & ∼seen[v]
9 seen[v]← seen[v] | next[v]

10 if next[v] 6= B∅

11 v is found by BFSs in next[v]

already requires more memory than the graph using only
6 threads. With 60 threads it requires over 10 times more
memory! Hence, more than one terabyte of main memory
would be needed to analyze a 100GB graph using all cores. An
alternative could be to use smaller batch sizes, thus, requiring
fewer sources and memory to take advantage of all cores.
However, that would decrease the traversal performance as
less work can be shared between the BFSs. In contrast, the
parallel multi-source algorithm MS-PBFS proposed in this
paper can use all cores at 64 BFSs and only consumes as
much memory as a single MS-BFS.

State-of-the-art parallel single-source algorithms are lim-
ited by either locality and scalability issues associated with
the sparse queues. Even if partitioned at NUMA socket gran-
ularity there can be a lot of contention and the trend of
having more cores per CPU socket does not work in such
approaches favor.

3. PARALLEL SINGLE- AND

MULTI-SOURCE BFS
In this section we present our parallelized multi-source

BFS algorithm as well as a single-source BFS variant, both
designed to avoid those problems.

3.1 MS-PBFS
In the following we introduce MS-PBFS, a parallel multi-

source BFS algorithm that ensures full machine utilization
even for a single multi-source BFS.

MS-PBFS is based on MS-BFS and parallelizes both its
top-down (Section 3.1.1) and its bottom-up (Section 3.1.2)
variant. Our basic strategy is to parallelize all loops over the
vertices by partitioning them into disjunct subsets and pro-
cessing those in parallel. State that is modified and accessed
in parallel then has to be synchronized to ensure correctness.

3.1.1 Top-down MS-PBFS

MS-BFS uses a two-phase top-down variant, shown in
Listing 1. As described in the Section 2, each value in seen,
frontier and next is not a single boolean value but a bitset.
The first phase, lines 1 through 4, aggregates information
about which vertices are reachable in the current iteration. Af-
ter it finishes, the second phase, the loop in lines 6 through 11,
identifies which of the reachable vertices are newly discovered
and processes them.

Our strategy is to parallelize both of these loops and
separate them using a barrier. During this parallel processing,
the first loop accesses the fixed-size frontier , neighbors and
next data structures. As the former two are constant during

First phase Second phase

frontier next next seen

writes to

neighbors

writes

Figure 4: Concurrent top-down memory accesses

the loop accesses, they do not require any synchronization.
The next data structure on the other hand is updated for each
neighbor n by combining n’s next bitset with the currently
visited v’s frontier . As vertices in general can be reached via
multiple edges from different vertices, different threads might
update next simultaneously for a vertex. To avoid losing
information in this situation, we use an atomic compare and
swap (CAS) instruction, replacing line 4 with the following:

do

oldNext ← next[n]
newNext ← oldNext | frontier [v]

while atomic_cas(next[n], oldNext, newNext)

Bitsets wider than the CPU’s largest atomic operation
value type can be supported by implementing the update
operation as a series of independent atomic CAS updates of
each sub-part of the bitset. For example a 512-bit bitset could
be updated using eight 64-bit CAS as described above. This
retains the desired semantics as the operation can only add
bits but never unset them. It is also not required to track
which thread first added which bit as the updates of the
newly discovered vertices is only done in the second phase.

The second phase iterates over all vertices in the graph
and updates next and seen. In contrast to the first phase,
no two worker threads can access the same entry in the
data structures. Regardless of how the vertex ranges are
partitioned, there is a bijective mapping between a vertex,
the accessed data entries, and the worker that processes
it. Consequently, there cannot be any conflicts, thus, no
synchronization is necessary.

Figure 4 visualizes the memory access patterns for all
writes in the first and second phase of the top-down MS-
PBFS algorithm. The example shows a configuration with
two parallel workers and a task size of two. Squares show the
currently active vertices and arrows point to entries that are
modified. The linestyle of the square shows the association
to the different workers. We come back to this figure in
Section 4.4 to further explain the linestyles.

To reduce the time spent between iterations, we directly
clear each frontier entry inside the second parallelized loop.
This allows MS-PBFS to re-use the memory of the current
frontier for next in the subsequent iteration without hav-
ing to clear the memory separately. Thus, we reduce the
algorithm’s memory bandwidth consumption.

Furthermore, we only update next entries if the computa-
tion results in changes to the bitset. This avoids unnecessary
writes and cache line invalidations on other CPUs [2].
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Listing 2: Bottom-up MS-BFS traversal from [18].
1 for each u ∈ V
2 if |seen[u]| = |S|, skip

3 for each v ∈ neighborsu
4 next[u]← next[u] | frontier [v]
5 next[u]← next[u] & ∼seen[u]
6 seen[u]← seen[u] | next[u]
7 if |next[u]| 6= 0
8 u is found by BFSs in next[u]

frontier seen next

reads from

neighbors

writes

Figure 5: Concurrent bottom-up memory accesses

3.1.2 Bottom-up MS-PBFS

As explained in Section 2.1, a BFS’s bottom-up variant
linearly traverses the seen data structure to find vertices that
have not been marked yet. For every vertex v that is not yet
seen in all concurrent BFSs, MS-BFS’s bottom-up variant
checks whether any of its neighbors was already seen in the
respective BFS. If so, v is marked as seen and is visited in the
next iteration. We show the full bottom-up loop in Listing 2.

MS-PBFS parallelizes this loop by splitting the graph into
distinct vertex ranges which are then processed by worker
threads. Inside the loop, the current iteration’s frontier is
only read. Both seen and next are read as well as updated.
Similar to the second phase described in the previous sec-
tion, there is a bijective mapping between each updated
entry and the worker that processes the respective vertex.
Consequently, there cannot be any read-write or write-write
conflicts and, thus, no synchronization is required within the
ranges. Figure 5 depicts the bottom-up variant’s memory
access pattern, again for two parallel workers.

Once all active BFSs bits are set in next we stop checking
further neighbors to avoid unnecessary read operations. This
check is also used in the original bottom-up algorithm by
Beamer et al.

3.2 Parallel Single-Source: SMS-PBFS
In order to also apply our novel algorithm to BFS that

traverse the graph from only a single source, we derive a
single-source variant: SMS-PBFS. SMS-PBFS contains two
main changes: the values in each array are represented by
boolean values instead of bitsets, and checks that are only
required when multiple BFS are bundled can be replaced by
constants. This allows us to simplify the atomic update in
the top-down algorithm, as a single atomic write is sufficient,
instead of a compare and swap loop. The SMS-PBFS top-
down and bottom-up algorithms are shown in Listing 3 and
4, respectively. Parallel coordination is only required when
scheduling the vertex-parallel loops and during the single

Listing 3: Single-source parallel top-down algorithm
1 parallel for each v ∈ V
2 if not(frontier [v]), skip

3 for each n ∈ neighborsv
4 if not(next[n]), atomic(next[n]← true)
5 frontier [v]← false
6
7 parallel for each v ∈ V
8 if not(next[v]), skip

9 next[v]← not(seen[v])
10 if not(seen[v])
11 seen[v]← true
12 v is found

Listing 4: Single-source parallel bottom-up algo-
rithm
1 parallel for each u ∈ V
2 if seen[u]
3 next[u]← false
4 else

5 for each v ∈ neighborsu
6 if frontier [v]
7 next[u]← true
8 break

9 if next[v]
10 seen[u]← true
11 u is found

atomic update in the first top-down loop.
While MS-PBFS always has to use an array of bitsets to

implement next, frontier and seen, there is more freedom
when implementing SMS-PBFS. It is still restricted to using
dense arrays, but each entry can either be a bit, a byte
or a wider data type. In the parallel case, where the state
of 512 vertices fits into one 64-byte CPU cache line using
bit representation, the chance of concurrent modification is
very high. Choosing a larger data type allows to balance
cache efficiency and reduced contention between workers. We
demonstrate these effects in our evaluation. To reduce the
number of branches, we try to detect when a consecutive
range of vertices is not active in the current iteration and
skip it. Instead of checking each vertex individually we check
ranges of size 8 bytes, which can efficiently be implemented
on 64-bit CPUs. Using a bit representation, each such range
contains the status of 64 vertices. If no bit is set, we directly
jump to the next chunk and save a large number of individual
bit checks. Otherwise, each vertex is processed individually.
This is similar to the Bitsets-and-summary optimization [19]
but does not require an explicit summary bit.

4. SCHEDULING AND PARALLEL GRAPH

DATA STRUCTURES
The parallelized algorithms’ descriptions in Section 3 focus

on how to provide semantical correctness. It leaves out the
implementation details of how to actually partition the work
to workers and how to store the BFS data structures as well
as the graph. As shown by existing work on parallel single-
source BFSs, these implementation choices can have a huge
influence on the performance of algorithms that are intended
to run on multi-socket machines with a large number of cores.
In this section we describe the data structures and memory
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Figure 7: Updated BFS vertex states per worker per
iteration during a BFS using static partitioning on
a social network graph with ordered vertex labeling

organization to efficiently scale MS-PBFS and SMS-PBFS
(together abbreviated as (S)MS-BFS) on such machines.

4.1 Parallelization Strategies
The initial version of our parallelized algorithms used pop-

ular techniques from state-of-the-art parallel single-source
implementations. Specifically, it used static partitioning of
vertices to workers, and degree-ordered vertex labeling[19].
With this labeling scheme, we re-labeled the graph’s ver-
tices and assigned dense ids in the order of the vertices’
degrees, with the highest-degree vertex getting the smallest
id. That way, the states of high degree vertices are located
close together which improves cache hit rates. This first
implementation showed very good performance for a small
number of workers. However, at higher thread counts, the
overall scalability was severely limited.

Together with static partitioning, degree based labeling
has the effect that due to the power-law distribution of vertex
degrees in many real world graphs, the vertices in the first
partitions have orders of magnitude more neighbors than
those in later partitions. We visualize this effect in Figure 6.
In that experiment, the first worker processes the first 1

8
th of

the vertices in the graph, the second worker the second 1

8
th,

and so on. As the amount of work per partition increases
with the number of neighbors that need to be visited, the
described skew directly affects the workers’ runtime, as it is
one of the most costly operations besides updating the BFS
vertex state. While it may be possible to create balanced
static partitions such that each worker has to do the same
amount of work across all BFS iterations, it is not enough
to significantly increase utilization. The problem would then
be that in different iterations different parts of the graph
are active, thus, there would still be a large runtime skew

in each iteration. The different workload for workers across
iterations is shown in Figure 7 using the number of updated
BFS vertex states as an indicator for the actual amount of
work.

Additionally, this figure gives an indication why dynamic
work assignment does not ensure full utilization on its own.
Intuitively, in a small-world network an average BFS traverses
the graph starting from the source vertex to the vertices with
the highest degrees, because these are well-connected, and
from there to the remainder of the graph. For such a BFS,
the high-degree vertices are typically discovered after two to
three iterations as shown in Figure 7. There in iteration two
only a tiny fraction of vertices is updated. On the other hand
as these are the high-degree vertices a lot of undiscovered
vertices are reachable from them, resulting in a huge number
of updates in iteration three. The updates themselves, which
are processed in the second phase of the top-down algorithm
could be well distributed across workers. Identifying the
newly reachable vertices, which is done in the first phase, by
searching the neighbors of the high-degree vertices is more
challenging to schedule because there are only few and due to
the labeling they are all clustered together. In combination,
this iteration is very expensive but a large part of the work
is spent when processing very few high-degree vertices. To
achieve even utilization, tiny task sizes would be required.
Such tiny tasks mean, however, that the scheduling overhead
would become so significant that the overall performance
would not improve.

Instead, our design relies on two strategies. We use fine-
granular tasks together with work-stealing to significantly
reduce the number of vertices that are assigned at once
and enable load-balancing between the cores. We also use a
novel vertex labeling scheme that is scheduling-aware and
distributes high-degree vertices in such a way that they are
both clustered but also spread across multiple tasks. This
allows us to avoid the use of tiny task ranges.

4.2 Parallel Vertex Processing
In this section we focus on providing a parallelization

scheme that minimizes synchronization between threads and
balances work between nodes to achieve full utilization of all
cores during the whole algorithm.

Our concept allows load balancing through work stealing
with negligible synchronization overhead.

4.2.1 Task creation and assignment

Efficient load balancing requires tasks to have two related
properties: there need to be many tasks and their runtime
needs to be relatively short compared to the overall runtime.
If there were only two tasks on average per thread, a scenario
is very probable where a slow thread only starts its last task
when all other threads are already close to being finished
with their work. This creates potential to have all other
threads idling until this last thread is finished. Given a fixed
overall runtime, the shorter the runtime of each work unit
and the more tasks are available, the easier it becomes to get
all threads to finish at approximately the same time. On the
other hand, if the ranges are very small, the threads have to
request tasks more often from the task pool. This can lead
to contention and, thus, decrease efficiency because more
processing time is spent in scheduling instead of doing actual
work.

Due to the fixed-size frontier and next arrays which span
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Listing 5: Task creation algorithm: create_tasks
1 Input: queueSize, splitSize, numThreads
2 workerTasks ← ∅

3 curWorker ← 0
4 for(offset = 0; offset < queueSize; offset+ = splitSize)
5 wId ← curWorker mod numThreads
6 range ← {offset, min(offset + splitSize, queueSize)}
7 workerTasks[wId]← workerTasks[wId] ∪ range
8 curWorker ← curWorker + 1
9 taskQueues ← ∅

10 for i = 1, . . . , num_threads
11 taskQueues[i]← {|workerTasks[i]|, workerTasks[i]}
12 return taskQueues

all the vertices no matter how many of them are actually
enqueued, all parallel loops of (S)MS-PBFS can follow the
same pattern: a given operation has to be executed for all
vertices in the graph. To create the tasks we divide the list
of vertices into small ranges. In our experiments we found
that task range sizes of 256 or more vertices do not have any
significant scheduling overhead (below 1% of total runtime)
for a graph with more than one million vertices. With about
3900 tasks in such a graph there are enough tasks to load
balance even machines with hundreds of cores.

For work assignment we do not use one central task queue,
but similar to static partitioning give each worker its own
queue. When a parallelized loop over the vertices of the graph
is executed, the queues are initialized using the create_tasks
function shown in Listing 5. Each task queue taskQueues[i] =
{curTaskIx, queuedTasks} belonging to worker i consists of
an index curTaskIx pointing to the next task and a list
of tasks queuedTasks. The number of vertices per task is
controlled by the parameter splitSize. We use a round-robin
distribution scheme, so the difference in queue sizes can be
at most one task.

4.2.2 Work stealing scheduling

The coordination of workers during task execution is han-
dled by the lock-free function fetch_task, which is shown in
Listing 6. The function can be kept simple due to the fact
that during a phase of parallel processing no new tasks need
to be added. Only after all tasks have been completed the
next round of tasks is processed—e.g., a new iteration or the
second phase of the top-down algorithm.

Initially, each worker fetches tasks from its own, local queue
which is identified using the workerId parameter. It atomi-
cally fetches and increments the current value of curTaskIx
as shown in line 5. Using modern CPU instructions, this can
be done without explicit locking. If the task id is within the
bounds of the current task queue (line 7), the corresponding
task range is processed by the worker. Otherwise, it switches
to the next worker’s task queue by incrementing the task
queue offset, and tries again to fetch a task. This is repeated
until either a task is found or, alternatively, after all queues
have been checked, an empty task range is returned to the
worker to signal that no task is available anymore. Further
optimizations like remembering the task queue index where
the current task was found and resuming from that offset
when the next task is fetched, guarantee that every worker
skips each queue exactly once. Incrementing the curTaskIx
only if the queue is not empty avoids atomic writes which
could lead to cache misses when other workers are visiting

Listing 6: Task retrieval algorithm: fetch_task
1 Input: taskQueues, workerId
2 offset ← 0
3 do

4 i← (threadId + offset )mod |taskQueues|
5 taskId ← fetch_add_task_ix(taskQueues[i], 1)
6 if taskId < num_tasks(taskQueues[i])
7 return get_task(taskQueues)[i]
8 else

9 offset ← offset + 1
10 while offset < |taskQueues|
11 return empty_range()

Listing 7: Parallelized for loop
1 tasks ← create_tasks(|V |, splitSize, |workers|)
2 run on each w ∈ workers
3 workerId ← getWorkerId()
4 while((range ← fetch_task(tasks, workerId)) 6= ∅)
5 for each v ∈ range
6 {Loop body}
7 wait_until_all_finished(workers)

that queue.
Listing 7 shows how the task creation and fetching algo-

rithms can be combined to implement the parallel for loop
which is used to replace the original sequential loops in the
top-down and bottom-up traversals. Here, workers is the set
of parallel processors. In line 2 all workers are notified that
new work is available and given the current task queues. Each
worker fetches tasks and loops over the contained vertices
until all tasks are finished. Once a worker can not retrieve
further tasks it signals the main thread, which waits until
all workers are finished.

As long as a worker only fetches from its own queue, the
task retrieval cost is minimal—mostly only an atomic in-
crement which is barely more expensive than a non-atomic
increment on the x86 architecture[17]. Even when reading
from remote queues, our scheduling has only minimal cost
that mostly results from reading one value if the respective
queue is already finished, and one write when fetching a task.
This is negligible compared to the normal BFS workload of at
least one atomic write per vertex in the graph. The construc-
tion cost of the initial queues in the create_tasks function
is also barely measurable and could be easily parallelized if
required.

4.3 Striped vertex order
In the introduction of Section 4.1, we discussed that the

combination of multi-threading, degree ordered labeling and
array-based BFS processing leads to large skew between
worker runtimes. As (S)MS-PBFS’s top-down algorithms is
designed for multi-threading and requires efficient random-
access to the frontier, neither the threading model, nor the
backing data structure must be changed. Thus, though our
single-threaded benchmarks confirmed that the increased
cache locality achieved through degree-ordered labeling leads
to significantly shorter runtimes compared to random vertex
labeling, we cannot use degree-ordered labeling.

Instead, we propose a cache-friendly semi-ordered ap-
proach: We distribute degree-ordered vertices in a round
robin fashion across the workers’ task ranges. The highest-
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degree vertex is labeled such that it comes at the start of
the first task of worker one. The second-highest degree ver-
tex is labeled such that it comes at the start of the first
task of worker two, etc. This round robin distribution is
continued until all the first tasks for the workers are filled.
Then, all the second tasks, and so on, until all vertices are
assigned to the workers. Using this approach we still cannot
guarantee that all task ranges have the same cost, but we
can control that the cost of the ranges in each task queue
are approximately the same per worker. Also, because the
highest degree vertices are assigned first, the most expensive
tasks will be executed first. Having small task sizes at the
end has the advantage of reducing wait times towards the
end of processing when no tasks are available for stealing
anymore. The pre-computation cost of this striped vertex
labeling is similar to that of degree-ordered labeling.

4.4 NUMA Optimizations
Our (S)MS-PBFS algorithms, as described above, scale

well on single-socket machines. When running on multi-socket
machines, however, the performance does only improve in-
significantly, even though the additional CPUs’ processing
power is used. The main problems causing this are twofold.
First, if all data is located in a single socket’s local mem-
ory, i.e., in a single NUMA region, reading it from other
sockets can expose memory bandwidth limitations. Second,
writing data in a remote NUMA region can be very expen-
sive [8]. This leads to a situation where the scalability of
seemingly perfectly parallelizable algorithms is limited to a
single socket. In the following, we describe (S)MS-PBFS opti-
mizations that substantially improve the algorithms’ scaling
on NUMA architectures.

In our (S)MS-PBFS algorithms it is very predictable which
data is read, particularly within a task range. Consider a
bottom-up iteration as described in Section 3.1.2. When
processing a task, it updates only the information of vertices
inside that task. We designed our algorithm with the goals of
not only providing NUMA scalability but also of avoiding any
overhead from providing this scalability. We deterministically
place memory pages for all BFS data structures, e.g., for
seen, in the NUMA region of the worker that is assigned
to vertices contained in the memory page. Further, we pin
each worker thread to a specific CPU core so that it is not
migrated during traversals. The desired result of this pinning
is visualized in Figures 4 and 5. In addition to the figures’
already discussed elements, we use the linestyle to encode the
NUMA region of both the data and the workers. The memory
pages backing the arrays are interleaved across the NUMA
nodes at exactly the task range borders—for the example
shown in the figures there are two vertices per task—and the
workers only process vertices with data on the same NUMA
node except for stolen tasks.

We calculate the mapping of vertices to memory pages
and the size of task ranges as follows. Consider that a 64 bit
wide bitset is used per seen entry, and memory pages have a
common size of 4096 bytes. In this example, the task range
size should be a multiple of pageSize

bitsetSize/8
= 512 vertices. Given

a task range, it is straightforward to calculate the memory
range of the data belonging to the associated vertices.

Because we initialize large data structures like seen, frontier ,
and next only once at the beginning of the BFS and use
them across iterations, we need to make sure that the data is
placed deterministically, and that tasks accessing the same

vertices are scheduled accordingly in all iterations. Thus,
work stealing must not occur during the parallel initializa-
tion of the data structures to ensure proper initial NUMA
region assignments of the memory pages.

When the BFS tasks only update memory regions that
were initialized by themselves, we achieve NUMA locality.
Note that even though our work stealing scheduling approach
results in additional flexibility regarding task assignment,
most tasks are still executed by their originally assigned
workers when the total runtime for the tasks in each queue
is balanced.

While this goal is perfectly attainable for the bottom-
up variant and the second loop of top-down processing, we
cannot efficiently predict which vertex information is updated
in the first top-down loop. Besides processing stolen tasks,
this is the only part of our algorithm in which non-local
writes can happen.

In summary, given that each worker thread initializes the
memory pages that correspond to the vertex ranges it is
assigned to, nearly all write accesses, except for the first
top-down loop and the work stolen from other threads, are
NUMA-local. (S)MS-PBFS further guarantee that the share
of memory located in each NUMA region is proportional to
the share of threads that belong to that NUMA region. If,
for example, 8 threads are located in NUMA region 0 and
2 threads are located in NUMA region 1, 80% of the memory
required for the BFS data structures are located in region 0
and 20% will be in region 1.

Similar to the NUMA optimizations of the BFS data struc-
tures, also the graph storage can be optimized. We minimize
cross-NUMA accesses by allocating the neighbor lists of the
vertices processed in each task range on the same NUMA
node as the worker which the task is assigned to. By using
the same vertex range assignment while loading the neigh-
bor lists and during BFS traversal, we ensure that all the
data entries for each vertex are co-located. This principle is
similar to the GB partitioning described by Yasui et al. [19],
which, however, uses static partitioning with one partition
per NUMA node.

5. EVALUATION
In our evaluation we analyze four key aspects:

• What influence do the different labeling schemes have?

• How does the sequential performance of SMS-PBFS’s
algorithmic approach compare to Beamer’s direction-
optimizing BFS?

• How effectively does it scale both in terms of number
of cores and dataset size?

• How does it compare to MS-BFS and the parallel single-
source BFS by Yasui et al.?

In addition to the MS-PBFS and SMS-PBFS algorithms
described before, we test two more variants. MS-PBFS (se-
quential) is our novel MS-PBFS algorithm run the same way
as MS-BFS: a single instance per core requiring multiple
batches to be evaluated in parallel. This tests the impact of
the early exit optimization in the bottom-up phase, as well as
our optimized data-structures. Another variant, MS-PBFS
(one per socket) runs one parallel multi-source BFS per CPU
socket using MS-PBFS. We use the performance of this vari-
ant to determine the cost of parallelization across all NUMA
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nodes when using MS-PBFS. Furthermore, SMS-PBFS is
run in two variants: SMS-PBFS (byte) uses an array of bytes
for seen, frontier , and next, and SMS-PBFS (bit) uses an
array of bits.

Our test machine is a 4-socket NUMA system with 4x Intel
Xeon E7-4870 v2 CPUs @ 2.3 GHz with one terabyte of main
memory. Across all four CPUs, the system has 60 hardware
threads. In the experiments we also used all Hyper-Threads.

We used both synthetic as well as real-world graphs. The
synthetic graphs are Kronecker graphs [13] with the same
parameters that are used in the Graph500 benchmark. They
exhibit a structure similar to many large social networks.
Additionally, for validation we also use artificial graphs gener-
ated by the LDBC data generator [9]. The generated LDBC
graphs are designed to match the characteristics of real social
networks very closely. Our used real-world graphs are chosen
to cover different domains with various characteristic: the
twitter follower graph, the uk-2005 web crawl graph and
the hollywood-2011 graph describing who acted together
in movies. The uk-2005 and hollywood-2011 graph were
provided by the WebGraph project [7]. Table 1 lists the
properties of all graphs used in our experiments. For the
Kronecker graph we omit some of the in-between sizes as
they always grow by a factor of 2. The vertex counts only
consider vertices that have at least one neighbor. KG0 is
a special variation of the Kronecker graph that was used
in the evaluation of [14]; it was generated using an average
out-degree of 1024.

The listed memory size is based on using 32-bit vertex
identifiers and requiring 2 ∗ vertex_size = 8 bytes per edge.
To measure the performance of MS-BFS we use the source
code published on github1. For comparison with Beamer,
we used their implementation provided as part of the GAP
Benchmark Suite (GAPBS) [6]. We did not have access to an
implementation of Yasui et al. or iBFS; instead, we compare
to published numbers on a similar machine using the same
graph.

Our basic metric for comparison is the edge traversal rate
(GTEPS). The Graph500 specification defines the number
of traversed edges per source as number of input edges con-
tained in the connected component which the source belongs
to. Compared to the runtime which increases linearly with
the graph size, this metric it is more suitable to compare
performance across different graphs. In the MS-BFS paper,
the number of edges was calculated by summing up the
degrees of all vertices in the connected component. In the
official benchmark, however, each undirected edge is only
counted once. We use this method in our new measurements.
To compare the numbers in this paper with the number of
the MS-BFS paper, the other numbers have to be divided by
two. In order to give an intuition about the effort required
to analyze a specific graph we also show the time MS-PBFS
requires for processing 64 sources in Table 1.

5.1 Labeling Comparison
To evaluate the different labeling approaches, we ran both

MS-PBFS and SMS-PBFS using 120 threads on a scale 27
Kronecker graph with work stealing scheduling. The three
tested variants are random vertex labeling (random), degree-
ordered labeling (ordered), and our proposed striped vertex
labeling (striped). The average runtime per BFS iteration
for each scheme and algorithm is shown in Figure 8. Our re-

1https://github.com/mtodat/ms-bfs
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Figure 9: Skew in worker runtimes per iteration
when running MS-PBFS and SMS-PBFS with dif-
ferent vertex labelings.

sults show that degree-ordered labeling exhibits significantly
better runtimes that random labeling for the MS-PBFS al-
gorithm. Especially in the most expensive third iteration,
the difference between the approaches is close to a factor of
two. This supports the results of existing work about graph
re-labeling[19].

In contrast, for our array-based parallel single-source SMS-
PBFS, random ordering exhibits better runtimes. Here, the
skew, described in Section 4, and its related problems show
their full impact. We evaluated this further in Figure 9 which
shows the runtime difference between the longest to the
shortest worker per iteration for all three labeling approaches.
We see that skew is a much larger problem for SMS-PBFS
than for MS-PBFS. Especially in the costly third iteration,
there is a significant difference—more than factor 15 for
degree-ordered—between worker runtimes per iteration. In
MS-PBFS skew is a smaller problem as a much larger number
of vertices is active in each iteration as there are so many
BFSs active at once. Our novel striped vertex ordering shows
the best overall runtimes and also balances the workload
well. It combines the benefits of degree-based and random
ordering in SMS-PBFS and MS-PBFS, while avoiding the
other labelings’ disadvantages. Similar to random labeling,
striped vertex ordering provides good skew resilience, and
like degree-ordering, it achieves very good cache locality.
Using SMS-BFS the overall runtimes per BFS were: 42ms
(striped), 86ms (ordered), 68ms (random).

5.2 Sequential Comparison
In this section, we analyze SMS-PBFS in a sequential

setting and compare it against Beamer et al.’s state-of-the-
art in sequential single-source BFSs. In addition to Beamer’s
GAPBS implementation, we also implemented two variants
of their BFS that use the same graph, data structure and
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Name Nodes Edges Memory size MS-PBFS MS-PBFS MS-BFS MS-BFS 64 SMS-PBFS
(x106) (x106) (GB) (runtime per 64) (GTEPS) (GTEPS) (GTEPS) (GTEPS)

Kronecker 20 220 15.7 0.119 3.27 ms 307 160 4.44 56.2 (bit)
Kronecker 26 226 1,050 7.96 246 ms 274 65.8 2.23 58.9 (bit)
Kronecker 32 232 68,300 5q5 39,700 ms 110 failed (OOM) 0.845 76.7 (bit)
KG0 0.982 364 2.72 12.5ms 1860 241 11.2 110 (bit)
LDBC 100 1.61 102 0.764 24.4 ms 267 76.6 3.01 39.2 (byte)
LDBC 1000 12.4 1010 7.61 551 ms 118 45.5 1.30 83.2 (byte)
Hollywood-2011 1.99 114 0.860 49.8 ms 147 59.6 2.19 26.5 (byte)
UK-2005 39.5 783 5.98 2220 ms 22.6 13.2 0.773 4.96 (bit)
Twitter 41.7 1,200 9.11 934 ms 82.4 32.5 1.13 21.0 (bit)

Table 1: Graphs description and algorithm performance in GTEPS using 60 threads.
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Figure 10: Performance of single-threaded BFS runs
over varying graph sizes

chunk skipping optimizations which we use for SMS-PBFS
(bit). In the first variant, the queues in the top-down phase
are backed by a sparse vector, and in the second variant we
used a dense bit array. Both variants use the same bottom-up
implementation.

Figure 10 shows the single-source BFSs throughput on a
range of Kronecker graphs. The measurements show that
for graphs with as few as 220 vertices, our SMS-PBFS is
already faster than Beamer et al.’s BFS. As the graph size
increases, the probability that the data associated with a
vertex is in the CPU cache decreases. There, our top-down
approach benefits from having fewer non-sequential data
accesses. On the other hand, our BFS has to iterate over all
vertices twice. At small graph sizes this overhead can not be
recouped as the reduction of random writes does not pay off
when the write locations are in the CPU cache. For larger
graph sizes, the improvement of SMS-PBFS over our Beamer
implementation is limited, as the algorithms only differ in
the top-down algorithms but a majority of the runtime in
each BFS is spent in the bottom-up phase.

5.3 Parallel Comparison
In this section we compare our (S)MS-PBFS algorithms

against the MS-BFS algorithm in a multi-threaded scenario.
Inspired by the Graph500 benchmark, we fix the size of a
batch for all algorithms to at most 64 sources. The MS-
BFS algorithm is sequential and can only utilize all cores by
running one algorithm instance per core. Thus, it requires
at least batch_size ∗ num_threads = 7, 680 sources to fully
utilize the machine. To minimize the influence of straggling
threads when executing MS-BFS we used three times as many
sources for all measurements. All algorithms have to analyze
the same set of source vertices that were randomly selected
from the graph. For MS-BFS, the sources are processed one
64-vertex batch at a time per CPU core. MS-PBFS can
saturate all compute resources with a single 64-vertex batch;
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Figure 11: Relative speedup as number of threads
increase in a 226 vertices Kronecker graph

it, thus, analyzes one batch at a time. SMS-PBFS analyzes
all sources one single source at a time, utilizing all cores.

5.3.1 Thread Count Scaling

To ensure that the amount of work is constant in the CPU
scaling experiments, we kept the number of sources fixed
even when running with fewer cores. The first 15 cores are
located on the first CPU socket, 16–30 on the second socket,
31–45 on the third and 46–60 on the fourth. Figure 11 shows
that MS-PBFS scales better than MS-BFS even though
the latter has no synchronization between the threads. MS-
PBFS (sequential) which uses the same optimizations as
MS-PBFS but is executed like MS-BFS with one BFS batch
per core exhibits the same limited scaling behavior for large
graphs. This contradicts the MS-BFS paper’s hypothesis that
multiple sequential instances always beat a parallel algorithm
as no synchronization is required. The explanation for this
can be found when analyzing the cache hit rates. With our
(S)MS-PBFS algorithms, the different CPU cores share large
portions of their working set, and, thus, can take advantage
of the sockets’ shared last level caches. In contrast, each
sequential MS-BFS mostly uses local data structures; only
the graph is shared. This diminishes CPU caches’ efficiency.

The scalability of around factor 45 for MS-PBFS and
factor 35 for SMS-PBFS using 60 threads is comparable
to the results reported by Yasui et al. [20] for their parallel
single-source BFS. This is a very good result especially as our
multi-source algorithm operates at a much higher throughput
of 274 GTEPS compared to their best reported result of
around 60 GTEPS on a similar machine in the Graph500
benchmark. The close results between the MS-PBFS (one
per socket) variant, where all data except for the graph is
completely local, and MS-PBFS show that our algorithm
is mostly resilient to NUMA effects and is not limited by
contention.

When analyzing the performance gains achieved by the
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Figure 12: Throughput using 60 cores as graph size
increases

additional 60 Hyper-Threads, the difference between multi-
source and single-source processing is clearly visible. SMS-
PBFS is memory latency-bound and does not saturate the
memory bandwidth; thus, it can gain additional performance
by having more threads. The multi-source algorithms on the
other hand are already mostly memory-bound, and, thus,
they do not benefit from the additional threads.

5.3.2 Graph Size Scaling

Orthogonal to the thread count scaling experiment, we
also measured how the algorithms behave for various graph
sizes using Kronecker graphs. We use graph sizes from ap-
proximately 216 to 232 vertices and 1 million to 68 billion
edges, respectively. As the traversal speed should be indepen-
dent of the graph size, an ideal result would have constant
throughput. Our measured results are shown in Figure 12.
MS-BFS as well as the sequential MS-PBFS variant show a
continuous decline in performance as the graph size increases.
This can be explained with memory bottlenecks, as for larger
graph sizes a smaller faction of the graph resides in the CPU
cache, and more data has to be fetched from main memory.

In contrast, the parallel BFSs struggle at small graph
sizes. Their two biggest problems are contention and that
there is only very little work per iteration (on average less
than 1 ms runtime). The reason for the contention in very
small graphs is the high probability that in the top-down
phase multiple threads will try to update the same entry.
Furthermore, for small graphs, the constant overheads for
task creation, memory allocation, etc., have a relatively high
impact on the overall result.

Parallelization is much more important for large graph
sizes. Starting at 220 (around 1 million) vertices, MS-PBFS
manages to beat the MS-PBFS (sequential) implementation.
At this size, MS-PBFS requires 3.27ms for one batch of 64
sources. At larger sizes a decline in performance can be mea-
sured again, caused by a reduction in cache hit rates resulting
in memory bandwidth bottlenecks. SMS-PBFS maintains its
peak performance for a larger range of graph sizes, though
at a lower level. As it only operates on a single BFS, it
is more bound by memory latency in case of a cache miss
than by memory bandwidth. Other BFS approaches [2, 20]
also exhibit a similar drop in performance at larger scales.
The measurement for MS-BFS and MS-PBFS (sequential)
only include graphs up to scale 29, as at larger graph sizes
the available one terabyte of memory did not suffice to run
120 instances of the algorithms, demonstrating the severe
limitations of MS-BFS in a multi-threaded scenario.

In Table 1 we summarize the algorithms’ performance for
real world datasets. Additionally, we show the performance
when MS-BFS is only limited to processing 64 sources at a
time (MS-BFS 64) like MS-PBFS. The results show that in
this kind of use case the performance of MS-BFS is very low
as it can only utilize one CPU. Overall, our measurements
show that even if MS-BFS is given enough sources to utilize
all cores, MS-PBFS performs significantly better on large
graphs.

We also wanted to compare to the currently fastest parallel
single-source BFS by Yasui and fastest parallel multi-source
iBFS but did not have access to their implementations. As we
could evaluate our algorithms on the same synthetic graphs,
we instead compare to their published numbers. For Yasui et
al. we compare our SMS-PBFS to their most recent numbers
published on the Graph500 ranking. Their results in the
Graph500 ranking are based on a CPU that is about 20%
faster than ours but from the same CPU generation so they
should be comparable. Their result places them 67st overall,
1st single-machine (CPU-only), on the June 2016 ranking and
they achieve a throughput of 59.9 GTEPS compared to the
76.7 GTEPS demonstrated by our single-source SMS-PBFS
on the same scale 32 graph. For iBFS we use the numbers
from their paper, they do not use the default kronecker graph
generator settings but test on graphs with larger degrees. We
compare MS-PBFS against their algorithm on the KG0 graph
where they report their best performance. Using 64 threads,
the iBFS CPU implementation reaches 397 GTEPS, and their
GPU implementation 729 GTEPS. MS-PBFS reaches 1860
GTEPS on 120 threads showing a significant improvements
even when accounting for number of threads.

6. RELATED WORK
The closest work in the area of multi-source BFS algo-

rithms are MS-BFS [18] and the iBFS[14] which is designed
for GPUs. Compared to the first algorithm, our parallelized
approach using striped labeling significantly improves the
performance, and reduces the memory requirements. Fur-
thermore, MS-PBFS enables the use of multi-source BFS
in a wider setting by providing full performance also with
a limited number of sources. iBFS describes a parallelized
approach for GPUs which uses a sparse joint frontier queue
(JFQ) containing the active vertices for a iteration. By us-
ing special GPU voting instructions, it manages to avoid
queue contention on the GPU. However, those instructions
don’t have equivalents on mainstream CPU architectures.
Consequently, the CPU adaption of their algorithm exhibits
significantly lower performance than ours.

The work on parallel single-source algorithms primarily fo-
cuses on how to reduce the cost of insertion into the frontier
and next queues. Existing approaches span from using multi-
socket-optimized queues like FastForward [10], to batch inser-
tions and deletions [2], as well as to having a single queue per
NUMA node as it is used by the parallel Yasui BFS [20]. Yet,
all of these approaches have in common that they share a
single insertion point either at the global level or per NUMA
node. Even if organized at NUMA socket granularity there is
potentially a lot of contention, and the trend of having more
cores per CPU does not work in such approaches’ favor. The
work of Chhugani et al. [8] which also focuses on dynamic
load balancing has similar limitations as it only focuses on
distributing work inside each NUMA socket. Our analysis
shows that while this may be sufficient for sparse queue-based
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algorithms, it would not provide scalability in array-based
algorithms.

7. CONCLUSION
In our work we presented the MS-PBFS and SMS-PBFS al-

gorithms that improve on the state-of-the art BFS algorithms
in several dimensions.

MS-PBFS is a parallel multi-source breadth-first search
that builds on MS-BFS’s principles of sharing redundant
traversals in concurrent BFSs in the same graph. In con-
trast to MS-BFS, our novel algorithm provides CPU scal-
ability even for a limited number of source vertices, fully
utilizing large NUMA systems with many CPU cores, while
consuming significantly less memory, and providing better
single-threaded performance. Our parallelization and NUMA
optimizations come at minimal runtime costs so that no
separate algorithms are necessary for sequential and parallel
processing, neither for NUMA and non-NUMA systems.

SMS-PBFS is a parallel single-source BFS that builds on
the ideas of MS-PBFS. Compared to existing state-of-the-
art single-source BFSs, our proposed SMS-PBFS algorithm
provides comparable scalability at much higher absolute
performance. Unlike other BFS algorithms, SMS-PBFS has
a simple algorithmic structure, requiring very few atomic
instructions and no complex lock or queue implementations.
Our novel striped vertex labeling allows more coarse-grained
task sizes while limiting the skew between task runtimes.
Striped vertex labeling can also be used to improve the
performance of other BFS algorithms.
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ABSTRACT
Graph query processing is essential for graph analytics, but
can be very time-consuming as it entails the NP-Complete
problem of subgraph isomorphism. Traditionally, caching
plays a key role in expediting query processing. We thus
put forth GraphCache (GC), the first full-fledged caching
system for general subgraph/supergraph queries. We con-
tribute the overall system architecture and implementation
of GC. We study a number of novel graph cache replace-
ment policies and show that different policies win over dif-
ferent graph datasets and/or queries; we therefore contribute
a novel hybrid graph replacement policy that is always the
best or near-best performer. Moreover, we discover the re-
lated problem of cache pollution and propose a novel cache
admission control mechanism to avoid cache pollution. Fur-
thermore, we show that GC can be used as a front end, com-
plementing any graph query processing method as a plug-
gable component. Currently, GC comes bundled with 3 top-
performing filter-then-verify (FTV) subgraph query meth-
ods and 3 well-established direct subgraph-isomorphism (SI)
algorithms – representing different categories of graph query
processing research. Finally, we contribute a comprehensive
performance evaluation of GC. We employ more than 6 mil-
lion queries, generated using different workload generators,
and executed against both real-world and synthetic graph
datasets of different characteristics, quantifying the benefits
and overheads, emphasizing the non-trivial lessons learned.

CCS Concepts
•Information systems→ Database query processing;

Keywords
Graph analytics; Graph queries, Caching system

1. INTRODUCTION
Graph datasets are proliferating nowadays, due to their

ability to capture and allow for the analysis of complex re-

©2017, Copyright is with the authors. Published in Proc. 20th Inter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

lations among objects, by modelling entities with nodes and
their relations/interactions with edges. Graphs have thus
been used, with great success, in a wide variety of appli-
cation areas, from chemical and bioinformatics datasets to
social networks. Central to graph analytics is the ability to
locate patterns in dataset graphs. Informally, given a query
(pattern) graph g, the system is called to return the set of
dataset graphs that contain g (subgraph query) or are con-
tained in g (supergraph query), aptly named the answer set
of g. Unfortunately, these operations can be very costly,
as they entail the NP-Complete problem of subgraph iso-
morphism[5] and even the popular algorithms [4, 18, 31] are
known to be computationally expensive. To this end, the
research community has contributed a number of innovative
solutions over the last few years. A large number of these fol-
low the “filter-then-verify” (FTV) paradigm: dataset graphs
are indexed so as to allow for the exclusion (filtering) of a
number of those that are definitely not in the query’s answer
set; the remaining graphs, called the candidate set of g, need
then to undergo testing (verification) for subgraph isomor-
phism (abbreviated as sub-iso or SI in the rest of this work).
However, recently extensive evaluations of FTV methods [9,
12] show significant performance limitations.

Although FTV solutions can produce candidate sets that
are much smaller than the original dataset, they still end
up executing unnecessary sub-iso tests: in the simplest of
cases, if the same query is submitted twice to the system,
it will also be sub-iso tested twice against its candidate set.
Furthermore, a key observation we can make is that in many
real-world applications, graph queries submitted in the past
bear subgraph or supergraph relations with future queries.
These relationships arise naturally. Queries against a bio-
chemical dataset range from queries for simple molecules
and aminoacids, all the way to queries for proteins of multi-
cell organisms. In exploratory smart-city analytics, queries
referring to road networks may pertain to neighbourhoods,
towns, metro areas, etc. In social networking queries, ex-
ploratory queries may start off broad (e.g., all people in a
geographic location) and become increasingly narrower (e.g.,
by homing in on specific demographics). In time-series graph
analytics, queries are typically associated with time inter-
vals, which contain (or are contained within) other intervals.

Based on these observations, we proposed in [34] a new
graph query processing method, in which queries (and their
answers) are indexed and used to expedite future query pro-
cessing with FTV methods. Underpinned by our method in
[34], this work presents a novel full-fledged caching system,
where any general subgraph/supergraph query method in
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the literature could be plugged in, and overall contributes:
• GraphCache (GC), a full-fledged caching system for

sub-/supergraph queries, with detailed discussions of
design issues, its architecture and implementation, deal-
ing with resource management (memory and threads)
and dynamic management of the cache index;
• A fresh perspective to expedite state-of-the-art solu-

tions for the general subgraph isomorphism problems
(SI methods) by GC (in addition to FTV methods);
• A semantic graph cache which harness sub/supergraph

cache hits, extending the traditional exact-match-only
hit and leading to significant speedup for GC;
• A number of graph cache replacement strategies with

different trade-offs, including a novel hybrid graph cache
replacement policy with performance always better or
on par with the best alternative;
• A novel cache admission control mechanism enhancing

the performance gains of GC;
• Comprehensive evaluations (with millions of queries)

utilising well-established FTV and SI methods, against
real-world and synthetic datasets with different charac-
teristics and different workload generators, quantifying
benefits/overheads and uncovering key insights.

To the best of our knowledge, GC is the first caching system
in the literature for general subgraph/supergraph queries.

2. RELATED WORK
Subgraph/supergraph queries entail the subgraph isomor-

phism problem, which has two versions. The decision prob-
lem answers Y/N as to whether the query is contained in
each graph in the dataset. The matching problem locates
all occurrences of the query graph within a large graph (or
a dataset of graphs). For both the decision and match-
ing problems, the brute-force approach is to execute sub-iso
tests of the query against all dataset graphs. However, sub-
iso tests are costly, being NP-Complete[5]. Several heuristic
algorithms have been proposed over the years. [9] provides
an insightful presentation and comparison of several such
(SI) algorithms (which could be integrated within GC).

SI algorithms deteriorate when the dataset is comprised
of a large number of graphs, as each graph has to be tested.
Thus appeared the“filter-then-verify”(FTV) paradigm. FTV
methods try to reduce the set of graphs against which to run
the sub-iso test, by filtering out graphs which definitely do
not belong to the query answer set. At the heart of these
methods lies an index on the dataset graphs. Briefly, dataset
graphs are decomposed into features (i.e., paths, trees, cy-
cles or arbitrary subgraphs), which are then recorded in an
indexing structure (e.g., trie [2, 6], hash-based bitmap [14],
etc.). Query processing then proceeds in two stages. First,
in the filtering stage, the query graph g is decomposed to its
features, which are then used to retrieve from the dataset
index the IDs of those graphs containing all of them; the re-
sult is a subset of the dataset graphs, named the candidate
set of g. Then, in the verification stage, g undergoes sub-iso
testing against each graph in the candidate set.

Similarly, [29] presents a solution for subgraph queries
against historical (i.e., snapshotted) graphs – a variation of
typical graph queries where snapshots can be viewed as dif-
ferent graphs; the main focus of this work is on reconstruct-
ing minimal snapshots around candidate matching nodes,
by using a set of indices allowing for the retrieval of nodes
with specific labels/neighbourhoods at given time points.

[9] presents an insightful performance evaluation and [12]
provides a systematic performance and scalability study of
subgraph FTV methods. Though we are not aware of similar
in-depth studies on supergraph FTV solutions, [36] provides
a concise overview for studies published prior to 2013 and
recently [20] proposes an efficient solution for supergraph
queries. GC is capable of expediting query processing for
both subgraph and supergraph FTV methods.

The community has also looked into subgraph queries
against a single, very large graph (consisting of possibly bil-
lions of nodes). [16] and [30] employ scale-out architectures
and large memory clusters with massive parallelism respec-
tively. [8] and [28] provide a centralised solution to the same
problem, via advanced pruning approaches addressing the
matching order issues faced by most other SI algorithms.
GC does not target such use cases for the time being and
extending our system to queries against a single massive
graph or distributed operation is left for future work.

Caching of query results has long been a mainstay in data
management systems, from filesystem block caching to web
proxy caching and the cache of query result sets in rela-
tional databases. In the realm of graph-structured queries,
however, little work has been done. For XML datasets,
views have been used to accelerate path/tree queries [1,
19, 21]; Besides, [17] firstly proposed the MCR (maximally
contained rewriting) approach for tree pattern queries and
[33] revisited it by providing alternatives; both exhibit false
negatives for the query answer. Our GC does not produce
any false negative or false positive (formal proof of correct-
ness in [34]). Also, GC is capable of dealing with much
more complex graph-structured queries, which entail the
NP-Complete problem of subgraph isomorphism.

More recently, caching has also been utilized to optimize
SPARQL query processing for RDF graphs. [22] introduced
the first SPARQL cache, where a relational DB was em-
ployed to store the metadata. [27] contributed a cache for
SPARQL queries based on a novel canonical labelling scheme
(to identify cache hits) and on a popular dynamic program-
ming planner [23]. Similar to GC, query optimization in
[27] does not require any a priori knowledge on datasets/-
workloads and is workload adaptive. However, like XML
queries, SPARQL queries are less expressive than general
graph queries and thus less challenging [13, 30]; SPARQL
query processing consists of solving the subgraph homomor-
phism problem, which is different from the subgraph isomor-
phism problem, as the former drops the injective property of
the latter. Moreover, GC discovers subgraph, supergraph,
and exact-match relationships between a new query and the
queries in the cache, something that the canonical labelling
scheme in [27] fails to achieve. SPARQL query processing
also aims at optimizing join execution plans [7] (based on
join selectivity estimator statistics and related cost func-
tions), and the cache in [27] is focusing on this goal, whereas
GC aims to avoid/reduce costs associated with executing SI
heuristics whose execution time can be highly unpredictable
and much higher. As such, the overall rationale of GC and
the way cache contents are exploited differs from that in [27]
and in related SPARQL result caching solutions.

Finally, [15] presents a cache for historical queries against
a large social graph, in which each query is centered around
a node in the social graph, and where the aim is to avoid
maintaining/reconstructing complete snapshots of the social
graph but to instead use a set of static “views” (snapshots
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of neighborhoods of nodes) to rewrite incoming queries. [15]
does not deal with subgraph/supergraph queries per se; rather,
the nature of the queries means that containment can be
decided by just measuring the distance of the central query
node to the centre of each view. Moreover, [15] does not
deal with central issues of a cache system (cache replace-
ment, admission control, overall architecture/design, etc.).

3. DESIGN ISSUES AND GOALS
GraphCache is implemented for undirected labelled graphs,

as is typical in the literature (e.g., [2, 10, 14]). For simplic-
ity, we assume that only vertices have labels; all our re-
sults straightforwardly generalize to directed graphs and/or
graphs with edge labels.

Formally, a labelled graph G = (V,E, l) consists of a set of
vertices V and edges E = {(u, v), u, v ∈ V }, and a function
l : V → U , where U is the domain of labels. A graph
Gi = (Vi, Ei, li) is subgraph-isomorphic to a graph Gj =
(Vj , Ej , lj), by abuse of notation denoted by Gi ⊆ Gj , when
there exists an injection φ : Vi → Vj , such that ∀(u, v) ∈
Ei, u, v ∈ Vi,⇒ (φ(u), φ(v)) ∈ Ej and ∀u ∈ Vi, li(u) =
lj(φ(u)). Informally, there is a subgraph isomorphism Gi ⊆
Gj if Gj contains a subgraph that is isomorphic to Gi, and
we say that Gi is a subgraph of (contained in) Gj , or that Gj
is a supergraph of (contains) Gi denoted by Gj ⊇ Gi. As is
common in the relevant literature, we focus on non-induced
subgraph isomorphism. Last, the subgraph (supergraph)
querying problem entails a set D = {G1, . . . , Gn} containing
n graphs, and a query graph g, and determines all graphs
Gi ∈ D such that g ⊆ Gi (g ⊇ Gi, respectively).

In designing GraphCache, we identified a set of design is-
sues and goals, pertaining to the characteristics of (i) the
query workloads, (ii) the underlying graph datasets, and
(iii) the algorithmic and system context within which GC
will operate (e.g., categories of research methods GC will
complement). Overall, GC is intended to expedite graph
queries whatever the algorithm of choice may be and across
a wide variety of query workloads and graph datasets.

Query Workloads. As with any caching system, the as-
sumption is that previous queries can help expedite future
queries. This is reasonable, given the example applications
mentioned in §1. Most works [2, 6, 9, 14, 35] test algorithms
for queries directly generated from dataset graphs. Though
this is of particular interest, workloads should also include
queries that are not guaranteed to have any answer. Further-
more, in general, of particular interest to any caching system
is the probability distribution of possible queries. For GC
this in effect refers to the popularity of query graphs or of re-
gions of the dataset graphs. GC should thus be able to deal
effectively with various skewness levels of this distribution
(e.g., from uniform to highly skewed Zipf distributions). Fi-
nally, a practical problem emerges: workloads must contain
a large number of queries so as to obtain reliable results on
the performance of any method but subgraph isomorphism is
NP-Complete. This leads to queries with possibly very long
execution times, regardless of the heuristic used, making the
experiments very time consuming. Nevertheless, we utilized
well over 6 million queries for our performance evaluation.

Graph Datasets. Fortunately there exist a number of real-
world graph datasets commonly used in related research.

Figure 1: GraphCache System Architecture

These help concretize the effects of any solution on real-
world data and allow direct comparison of methods and re-
sult repeatability. For this reason we will report evaluations
conducted over three popular graph datasets: AIDS[24],
PDBS[11], and PCM[32]. However, it is worth creating ad-
ditional synthetic datasets so to perform evaluations under
characteristics unseen in the real-world datasets. Specif-
ically, we created a synthetic dataset presenting interest-
ing characteristics regarding the number, size and node de-
grees of graphs in the dataset. Interestingly, with respect to
dataset with graphs having a high average node degree, we
found that GC needs special mechanisms without which its
performance benefits degrade.

Algorithmic Context. GraphCache is intended to be a ge-
neral-purpose front-end for graph query processing. GC en-
tails a query indexing strategy that, as explained in [34], can
accommodate both subgraph and supergraph queries. In
addition, the design of GraphCache must be able to accom-
modate both FTV methods and SI algorithms; its current
implementation comes bundled with well-established FTV
methods and SI algorithms. In fact, any such algorithm is
viewed as a pluggable component into the architecture, al-
lowing any future algorithm to be incorporated.

4. SYSTEM ARCHITECTURE
GraphCache is designed from the ground up as a scal-

able semantic cache for subgraph/supergraph queries, ca-
pable of expediting any SI or FTV method (henceforth de-
noted Method M). Figure 1 shows its main architectural com-
ponents, comprising three major subsystems: Method M,
Query Processing Runtime, and Cache Manager. The last
two are internal subsystems of GC; the first is the method
that GC is called to expedite and hence external to GC.

The Method M subsystem includes, at a minimum, the
base graph dataset and a sub-iso test implementation, de-
noted Mverifier. Additionally, if M is a FTV method, then
it also features its index, denoted Mindex, and a filtering
component, Mfilter. The index is built in a pre-processing
step, by using Method M’s indexing component (not shown
in Figure 1 for simplicity). When GC is not used, sub-
/supergraph query processing proceeds by first using Mindex

through Mfilter to prune away dataset graphs definitely not
containing (or contained in) the query, thus forming its can-
didate set, MCS . Then Mverifier executes a sub-iso test
against all graphs in MCS , reading their structure directly
from the graph dataset store. For SI methods, MCS contains
all graphs in dataset.
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Figure 2: GraphCache System Data and Control Flow

Within GC, the Query Processing Runtime is responsi-
ble for the execution of queries and the monitoring of key
operational metrics. It comprises: a resource/thread man-
ager dispatching queries to the various filtering/verification
modules, the internal subgraph/supergraph query proces-
sors, the logic for GC’s candidate set pruning, and a statis-
tics monitor. These components communicate with Method
M and the Cache Manager via well-defined APIs.

In turn, the Cache Manager deals with the management
of data and metadata stored in the cache. It comprises the
cache replacement mechanisms, a Window Manager respon-
sible for cache admission control and maintenance of the
cache contents, a Statistics Manager responsible for meta-
data pertaining to past or current queries, as well as the
stores for all GC-related data including cached queries and
their answer sets, currently executing (not cached) queries,
and metadata/statistics for both past and current queries.

Figure 2 depicts the flow of control and data in GC dur-
ing processing of a query. The query first arrives at the
Resource Manager (1) and is then dispatched to Mfilter and
GC’s filtering processors in parallel (2). At the same time, a
copy of the query is added to the set of currently processed
queries, called the Window (discussed shortly). The filtering
components use their respective indexes to produce inter-
mediate candidate sets (3). More specifically, Mfilter uses
Mindex, while the two GraphCache processors use GCindex,
the set of cached graph queries and their answer sets. The re-
sults of this stage are then fed to the Candidate Set Pruner
which produces the final candidate set GCCS (4); at the
same time, statistics regarding GCCS and the contribution
of cached graphs are gathered by the Statistics Monitor and
forwarded to the Statistics Manager. The final candidate
set then undergoes sub-iso testing using Mverifier(5); meta-
data pertaining to the verification time are also gathered by
the Statistics Monitor and sent to the Statistics Manager.
When the Window is full, the Window Manager selects the
set of current queries to be considered for admission in the

cache (6) and invokes the cache replacement algorithm (7);
i.e., updates to the Cache are batched through the Window.

5. QUERY PROCESSING
This section discusses the design and implementation of

GraphCache’s Query Processing subsystem, responsible for
the execution of queries and the monitoring of key opera-
tional metrics. For the sake of clarity we first describe GC’s
operation when caching subgraph queries; we shall then dis-
cuss how GC can be used for supergraph queries as well.

5.1 Candidate Set Pruning
This subsection overviews the essence of [34]. For more

details and formal proofs of correctness, please refer to [34].
Initially, if Method M is a FTV method, its indexing subsys-
tem is used to build its graph dataset index as per usual. The
GraphCache’s data stores are initially all empty and are then
populated as queries arrive and are processed. When a query
g arrives at the system, Mfilter is used to produce a first can-
didate set. Concurrently, GraphCache checks whether the
query graph is a subgraph or supergraph of previous query
graphs, through its GCsub/GCsuper Processors.

GraphCachesub Processor. The GraphCachesub Proces-
sor is responsible for identifying when a new query g is a
subgraph of a previous query g′. When g′ was executed ,
GC indexed g′’s features in GCindex and stored its result set
and relevant statistics in the cache data stores.

Figure 3(a) depicts an example flowchart for this case.
The new query g is processed through Mfilter, producing
candidate set CSM (g) (with four graphs {G1, G2, G3, G4}).
Similarly, g is processed by the GCsub Processor, determin-
ing that there exists a previous query g′, such that g ⊆ g′.
GC then retrieves g′’s cached answer set, {G1, G2}. Now,
consider graph G1 ∈ CSM (g). Since g ⊆ g′ and from the
answer set of g′ we know that g′ ⊆ G1, it necessarily fol-
lows that g ⊆ G1 (and, similarly, g ⊆ G2). Therefore, we
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Figure 3: GraphCache Processing of a Subgraph Query g

can safely remove G1 and G2 from CSM (g) and add them
directly to the final answer set. In the general case, g may
be a subgraph of multiple previous query graphs g′i. Then,
the set of graphs that need be sub-iso tested is given by:

CSGCsub(g) = CSM (g) \
⋃

g′i∈Resultsub(g)

Answer(g′i) (1)

where Resultsub(g) contains all query graphs currently in
GCindex of which g is a subgraph.

GraphCachesuper Processor. In turn, the GCsuper Pro-
cessor is responsible for identifying when a new query g
is a supergraph of a previous query g′′. Figure 3(b) de-
picts an example flowchart for this case. Again, Method M
produces its candidate set, CSM (g) (e.g., {G1, G2, G3, G4}).
GCsuper then determines that there exists a previous query
graph g′′ such that g′′ ⊆ g and whose cached answer set is
{G1, G5}. The reasoning then proceeds as follows. Consider
graph G2 ∈ CSM (g). We know from the cached answer set
above that G2 is not in the answer set of g′′. Since g′′ ⊆ g, if
g ⊆ G2 were to be true then it should also hold that g′′ ⊆ G2;
i.e., the answer set of g′′ would contain G2, which is a con-
tradiction. Therefore, it is safe to conclude that g * G2 and
thus G2 can be removed from CSM (g). In the general case,
g may be a supergraph of multiple previous query graphs
g′′j . Then, the set of graphs tested for sub-iso by GC is:

CSGCsuper (g) = CSM (g) ∩
⋂

g′′j ∈Resultsuper(g)

Answer(g′′j )

(2)
where Resultsuper(g) contains all query graphs currently con-
tained in GCindex of which g is a supergraph.

Putting It All Together. The Candidate Set Pruner collects
CSM and the results of the above two Processors; it then
first applies equation (1) on CSM , then applies (2) on the
result of the previous operation. The end result is a reduced
candidate set, which is then sub-iso tested by Mverifier.

Two Special Cases. Additionally, there are two cases that
warrant attention since they yield the greatest possible gains.

First, note that GC can easily recognize the case where a
new query, g, is isomorphic to a previous cached query. For
connected query graphs, this holds when ∃g′ ∈ GCindex such
that g ⊆ g′ or g ⊇ g′, and g and g′ have the same number
of nodes and edges. Thus, GC can return the cached result
of g′ directly and completely avoid any further processing.

Second, consider that ∃g′ ∈ Resultsuper(g) (i.e., g′ ⊆ g)
and Answer(g′) = ∅; then GC can directly return with an
empty result set. The reason is that if there were a dataset
graph g′′ such that g ⊆ g′′, since g′ ⊆ g we would conclude
that g′ ⊆ g′′, which implies that g′′ ∈ Answer(g′), contra-

dicting the fact that Answer(g′) = ∅; thus, no such graph
g′′ can exist and the final result set is necessarily empty.

Supergraph Query Processing. As mentioned earlier, GC
can expedite both subgraph and supergraph query process-
ing. In the latter case, the filtering components of GC re-
main unchanged, but the handling of the return answer sets
is the exact inverse of what happens for subgraph queries.
Briefly, given a supergraph query processing Method M and
a supergraph query g, the union of the answer sets of graphs
in Resultsuper(g) are removed from CSM (g) and added to
AnswerGCsuper (g), and the graphs not appearing in the in-
tersection of the answer sets of graphs in Resultsub(g) are
completely subtracted from CSM (g). Also, the first special
case still holds, but for the second special case processing ter-
minates when ∃g′ ∈ Resultsub(g) such that Answer(g′) = ∅.

5.2 Statistics Monitoring
The final component of this subsystem is the Statistics

Monitor. This is a lightweight layer, implemented as a wrap-
per library allowing components of this subsystem to record
various statistics (see §6.1) and to communicate them to the
Statistics Manager component of the Cache Manager sub-
system. Currently the following quantities are monitored:
• Static query metrics such as the number of nodes,

edges and distinct labels in the query.
• Total filtering and verification time of the query when

first executed.
• Break-down of total filtering times of the query to the

three filtering components.
• Number of times the query was matched by either GC

Processors and number of special-case matches.
• Most recent time a cached query was hit, expressed as

the serial no. of last benefited query.
• Total reduction in the candidate set size of new queries.

This statistic is easily monitored, as the Candidate Set
Pruner knows exactly which graphs from the answer
set of each matched cached query where removed from
the candidate set of any given new query (through ap-
plication of equations (1) and (2)).
• Total time saving due to the cached query. This statis-

tic is computed as the sum of the estimated costs of
all sub-iso tests alleviated, as mentioned above. The
estimation of the individual sub-iso test time c(g,G)
for a query graph g against a dataset graph G, is per-
formed using the formula[34]: c(g,G) = N×N !

Ln+1×(N−n)! ,

where L is the number of distinct labels, n the number
of nodes in g, and N ≥ n the number of nodes in G.

6. CACHE MANAGEMENT
GC’s Cache Manager subsystem, running in parallel with

the Query Processing Runtime subsystem, deals with the
management of the data and metadata stored in the cache.
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We first discuss the various data stores handled by this sub-
system, then dive into the design of its various components.

6.1 Data Layer
GraphCache’s Cache Manger maintains a number of com-

plementary data stores, conceptually bundled together into
two groups: the Cache stores and the Window stores.

The Cache stores include three components: First, a com-
ponent storing copies of cached queries (i.e., the actual graph
submitted as a query to GC) alongside their result sets
(i.e., the sets of dataset graph IDs containing (for subgraph
queries) or being contained in (for supergraph-queries) the
query graph). This component is implemented as an in-
memory hash table, loaded from disk on startup and writ-
ten back to disk on shutdown of the Cache Manager sub-
system. In said hash table, the serial number of the query
is used as the key and the query graph and result set as
the value. At startup, an upper limit is set on the size of
this hash table (expressed in number of records); the Cache
is deemed full when this upper limit is reached. Second, a
combined subgraph/supergraph index, indexing the afore-
mentioned query graphs to expedite subgraph/supergraph
matching of future queries against past queries. We have
loosely based our query index design on the GraphGrepSX
subgraph query index[2], augmented with additional meta-
data to allow for the processing of supergraph queries. This
index is loaded on startup and written back on shutdown
of the Cache Manager subsystem. Our index design allows
us to have a single index for both subgraph and supergraph
queries, thus providing for lower disk space and I/O over-
head, and a memory footprint low enough to allow for the
index to be easily resident in main memory throughout the
lifetime of the Cache Manager process. Third, a component
storing statistics for each cached query, implemented as an
in-memory key-value store, loaded from disk on startup and
written back on shutdown of GC. The query serial number
is again used as the key, pointing to a variable size array
of columns, sorted by column name. Columns in this store
include, but are not limited to: static query such as the
number of nodes, edges and distinct labels in the query; to-
tal filtering and verification time of the query when first exe-
cuted; count of times the query was matched by either of the
GCsub/GCsuper Processors plus number of optimal matches
(see §5.1); last (most recent) time a query contributes, ex-
pressed as the serial number of the benefited query; total
contribution of the cached query in reducing the candidate
sets and processing times of future queries, expressed as the
number of dataset graphs removed from the candidate set of
queries due to their being in the cached query’s answer set
and the cumulative sub-iso test time alleviated; etc.

On the other hand, the Window stores include two com-
ponents: First, a component storing new graph queries and
their result sets, implemented in the same manner as the first
component of the Cache stores above. An upper limit on the
size of this store is also configured at startup; the Window is
deemed full when said limit is reached. Second, a component
storing statistics for each query in the previous component,
also implemented as an in-memory key-value store like the
statistics component of the Cache stores. In this case, the
statistics include only static information regarding the new
queries, including the number of nodes, edges and distinct
labels in the query, as well as the total filtering and verifica-
tion time of the query.New queries are sent to the Window

Manager directly from the Query Dispatcher to be added to
the appropriate store, while their answer sets are added at
the end of their processing.

All updates to the query statistics stores are performed
through the Statistics Manager using values supplied by the
Statistics Monitor. The Statistics Manager is currently im-
plemented as a lightweight wrapper library, encapsulating
accesses to the statistics stores. The design of this sub-
system has explicitly been abstract enough to allow for an
easy replacement of the data stores with other in-memory,
on-disk or even remote/distributed stores without requiring
changes to the rest of our code. The Statistics Manager ex-
poses an interface akin to that of contemporary key-value
stores; i.e., it stores triplets of the form {key, column name,
column value}, accessible either by key (returns a“row”with
all triplets with the given key), or by column name alone
(returns a “column” with all triplets with the given column
name), or by key and column name (returns a single triplet).

6.2 Window Manager with Admission Control
The Window Manager, implemented as a separate thread,

is the brain of the Cache Manager subsystem. It keeps track
of the queries in the current Window and invokes the Cache
Admission Control algorithm to decide whether each new
query should be considered as a candidate for addition to the
cache. It also executes the Cache Replacement algorithms
when the Window is full, and rebuilds GCindex to reflect
any changes in the cached queries store. In the latter case,
the Window Manager first computes the new contents of
the cache (by replacing evicted queries with admitted Win-
dow queries) and invokes the indexing mechanism; queries
arriving at the system while this procedure is taking place,
continue being served by the old index and update the old
statistics. Once the re-indexing is over, the new cache con-
tents and index are swapped in place of the old ones, and
any statistics entries corresponding to evicted queries are re-
moved lazily from the statistics store. The driving force be-
hind this design was the fact that, much like all index-based
graph-matching methods, our current version of GCindex
does not support dynamic concurrent updates. Neverthe-
less, our design allows for low-latency/high-throughput pro-
cessing of new queries, even while the index is rebuilt, and
incurs minimal locking overhead (i.e., only for the swapping
of old and new cache contents/index structures, actually im-
plemented as simple in-memory reference (pointer) swaps),
trading off some possible cache hits against window queries.

Cache Admission Control. While experimenting with dif-
ferent workloads and datasets we observed that often the
performance of GraphCache would be lower than expected;
that is, although GraphCache benefited the majority of que-
ries, the overall speedup achieved was very low (close to
1). The reason behind this proved to be that the cache
was polluted, storing and improving the performance pri-
marily of inexpensive graph queries. To alleviate this situ-
ation, we make the natural conjecture that past expensive
(time-wise) queries are more likely to benefit later coming
expensive queries as they will help in alleviating more ex-
pensive sub-iso tests (and vice-versa for inexpensive queries).
We therefore propose a novel admission control mechanism,
part of the Window Manager component, which optimises
the graph cache by preventing inexpensive queries from be-
ing added to the cache. To quantify the expensiveness of a
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Table 1: Running Example: Cached Query Statistics

SerialNo / Last Hit Number CSM SI Cost
Query ID of Hits Reduction Reduction

11 91 23 170 2600
13 51 32 80 1200
37 69 26 376 780
53 78 13 210 360
82 90 5 120 150
91 95 4 10 270

query graph, we use the ratio of its verification time over its
filtering time. Each executed query is thus assigned an “ex-
pensiveness” score and only queries with such a score above
a threshold are considered as candidates for entering the
graph cache (a threshold value of 0 disables this compo-
nent). To compute said threshold, our mechanism examines
the queries in the first few windows and computes an expen-
siveness value which would result in a predefined percentage
of queries being classified as expensive. We have also experi-
mented with more dynamic approaches (e.g., greedily adapt-
ing the threshold using an exponential back-off approach
until the achieved time speedup reaches a local maximum);
without loss of generality and due to lack of space, we omit
further discussion of these techniques. The reasoning be-
hind the above lies in the fact that, given a graph query
processing framework, the filtering time is relatively con-
stant across queries, in contrast to the dramatic variance of
verification times. Moreover, the verification stage is known
to dominate the query time[9, 12], and the larger the verifi-
cation time the more overwhelming this dominance. Thus,
the above mechanism is a simple yet effective technique to
guarantee that more complex queries are prioritised.

6.3 Cache Replacement Policies
[34] used a specific graph replacement policy (PINC). We

have developed and tested a number of new different cache
replacement strategies (POP, PIN and HD), each offering
different trade-offs and performance characteristics for dif-
ferent datasets and query workloads. We describe the vari-
ous strategies here and report on their relative performance
in §7. In all cases, the replacement strategies access query
statistics through the Statistics Manager’s key-value store
interface, and return the IDs of queries to be cached out.
In order to compute this set, queries are assigned a “utility”
value and those with the lowest such values are cached out.

Below we present all cache replacement algorithms con-
sidered in this work. We use Table 1, presenting a snapshot
of GCstats for a number of hypothetical cached queries, as
our running example. In all cases, assume that the replace-
ment algorithm is invoked at time point 99 (i.e., right after
the query with serial number 99 was executed) and needs to
remove two entries from the cache, thus has to find the two
entries with the lowest utility value.

Least Recently Used (LRU). LRU discards the least re-
cently used items from the cache. The utility of each cached
graph is its last hit time, i.e., the serial no. of the last query
that is expedited by said cached graph. In our running ex-
ample, cached queries with serial number 13 and 37 would
be cached out. LRU is a simple and very popular policy
in several traditional caches. However, it builds on the as-
sumption of temporal locality of reference and thus fails to

identify cases of queries which have contributed huge sav-
ings to query processing although not having been used in
a while. In our example, we can see that query 13 has con-
tributed the most times, but still is evicted.

Popularity-based Ranking (POP). Ideally we would pre-
fer a replacement policy that would take into account the
popularity of queries. This leads to the second policy con-
sidered here: POP (short for Popularity-based Ranking).
This policy assigns each cached graph a utility value equal
to H/A, where H is the number of times a query has con-
tributed and A is its age in the cache, computed as the num-
ber of processed queries since the said graph enters cache;
this function manages to combine query popularity and age.
In our example, this policy would evict queries 11 and 53.

POP + Number of Sub-Iso Tests (PIN). As mentioned,
unlike traditional exact-match caches in which a cache hit
saves a disk/network IO, cache hits in GraphCache may
result into vastly different reductions in query processing
times. One of the reasons why this is so, is that cache hits
reduce the candidate set of the coming query by possibly
vastly different amounts. However, neither LRU nor POP
(actually, none of the known replacement policies) take this
into account. This gives rise to the next, exclusive to Graph-
Cache, replacement policy: PIN (short for Popularity and
sub-Iso test Number) Instead of looking just at the number
of hits H of a cached query, PIN assigns each cached graph
a utility value equal to R/A, where R is the total number of
subgraph isomorphism tests alleviated by said cached query,
and A is the same aging factor as above. The utility formula
of PIN can also be rewritten as: R

A
= H

A
· R
H

, which can be
interpreted as the probability of the query being a hit (i.e.,
its popularity), times the average savings in number of sub-
graph isomorphism test per hit. In our running example,
this policy would evict queries 13 and 91.

PIN + Sub-Iso Tests Costs (PINC). PIN takes into ac-
count the number of sub-iso tests alleviated. Another Graph-
Cache-exclusive replacement policy PINC further considers
the possibly vast differences in query execution times. PINC
assigns each cached query a utility value equal to C/A, where
A is the same aging factor as above, and C is the total de-
crease in query processing time due to the cached query.
Alas, this figure cannot be computed unless the relevant
sub-iso tests are actually performed, which is a moot point
in our case; instead, as mentioned (§5.2), we use a heuristic
to estimate this cost. PINC may improve upon PIN’s util-
ity value computation by considering the actual (estimated)
time cost of alleviated sub-iso tests instead of deeming them
all equivalent. PINC’s utility formula can be rewritten as:
C
A

= H
A
· R
H
· C
R

, interpreted as the probability of a cached
graph being hit, times the average savings in number of sub-
iso tests per hit, times the average estimated time cost per
saved sub-iso test. In our running example, PINC would
evict queries 53 and 82.

The Hybrid Dynamic Policy (HD). As the cost compo-
nent in PINC is only an estimation, using it does not always
lead to improvements in GC’s net query processing time. As
a matter of fact, we have observed through a large number
of experiments, that when the values of the R utility com-
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ponent exhibit a high variability, they are discriminative
enough on their own. In such cases, taking the estimated
cost into account can actually lead to lower time gains (i.e.,
PIN performing better than PINC). However, when the val-
ues of R exhibit a low variability, adding in the C component
leads to considerable query processing time improvements.

Thus, the last replacement policy considered in this work
(also exclusive to GraphCache), coined the hybrid policy
(HD), coalesces both PIN and PINC. More specifically, when
the HD policy is invoked, it first retrieves the R compo-
nent from GCstats and computes its variability[25] by using
the (squared) coefficient of variation (CoV ). CoV is de-
fined as the ratio of the (square of the) standard deviation
over the (square of the) mean of the distribution. When
CoV > 1, the associated distribution is deemed of high vari-
ability, as exponential distributions have CoV = 1 and typ-
ically hyper-exponential distributions (which capture many
high-variance, heavy tailed distributions) have CoV > 1. In
this case, HD performs cache eviction using PIN’s scoring
scheme; otherwise, it uses PINC’s scoring scheme.

In our running example, the mean R value is µ = 161 and
its standard deviation σ ≈ 126; then CoV = σ/µ ≈ 0.78 < 1
and thus HD will use PINC and evict queries 53 and 82.

7. PERFORMANCE EVALUATION

7.1 System Setup
We have implemented all aforementioned components and

subsystems of GraphCache in Java over ≈6,000 lines of code.
Experiments were performed on a Dell R920 host (4 Intel
Xeon E7-4870 CPUs (15 cores each), with 320GB of RAM
and 4×1TB disks, running Ubuntu Linux 14.04.4LTS.

We used GraphCache on top of three subgraph FTV and
three SI methods (due to space limitations, we only present
results for subgraph queries). The default value for the up-
per limit on the sizes C of the Cache and W of the Window
stores were C = 100 and W = 20 respectively; we also ex-
perimented with other values for both C (200, 300) and W
(50, 100, 200) to test their impact on GC’s performance.
Last, the sizes of the various thread pools are all set to 1 so
as to show just the benefits of using a graph query cache.
For the FTV methods we chose GraphGrepSX [2] (GGSX),
Grapes [6], and CT-Index [14], specifically because they are
proven to be top performers in their class[12]. Grapes and
GGSX were configured to index paths up to length 4, and
CT-Index to index trees up to size 6 and cycles up to size 8
using 4,096-bit-wide bitmaps. For Grapes, we examine two
alternatives, Grapes1 and Grapes6, with 1 and 6 threads re-
spectively. To be fair, we altered the code of Grapes so to
stop query processing after the first match in each dataset
graph. Please note that all mentioned values match their
default configurations in [2, 6, 14]. For the SI methods we
used GraphQL[10] as provided by [18] and a modified ver-
sion of VF2[4] (denoted VF2+) provided by [14], again for
being well-established and good performers[9, 12]; we also
used vanilla VF2[4] since it has been used by several FTV
implementations [2, 6, 9]. GC uses the Java Native Inter-
face to directly execute the native C++ implementations of
Grapes, GGSX, GraphQL and VF2, while CT-Index and
VF2+ are implemented in Java and thus invoked directly
from GC. This diversity in the implementation languages of
the incorporated methods attests to GC’s flexibility.

7.2 Datasets and Query Workloads
We employ three real-world (AIDS, PDBS, PCM) and one

synthetic graph datasets with different characteristics. More
specifically, AIDS[24] – the Antiviral Screen Dataset of the
National Cancer Institute – contains topological structures
of 40,000 molecules. Graphs in AIDS contain on average≈45
vertices (std.dev.: 22, max: 245) and ≈47 edges (std.dev.:
23, max: 250) each, whereby the few largest graphs have
an order of magnitude more vertices and edges. PDBS[11]
is a dataset of graphs representing DNA, RNA and pro-
teins, consisting of fewer (600) but larger graphs compared
to AIDS, with on average ≈2,939 vertices (std.dev.: 3,215,
max: 16,341) and≈3,064 edges (std.dev.: 3,261, max: 16,781)
per graph. PCM[32] consists of 200 graphs representing pro-
tein interaction maps, with on average ≈377 nodes (std.dev.:
187, max: 883) and ≈4,340 edges (std.dev.: 1,912, max:
9,416) per graph. Last, the Synthetic dataset was created
using [3] and contained 1,000 graphs with on average ≈892
nodes (std.dev.: 417, max: 7,135) and≈7,991 edges (std.dev.:
5.09, max: 8,007) per graph. We created this dataset as a
larger counterpart to the PCM dataset, consisting of 5×
more graphs, each being 2-3× larger on average than the
average PCM graph. Graphs in AIDS and PDBS have low
average node degree (AIDS ≈2.09, PDBS ≈2.13), whereas
graphs of PCM and Synthetic have much higher average
node degrees (PCM ≈22.39, Synthetic ≈19.52).

We follow the established principle for the generation of
our workloads, using two different algorithms to synthesize
queries from the dataset graphs, outlined below.

Type A Workloads. Queries in these workloads are gener-
ated in the following manner: first, a source graph is selected
randomly from the dataset graphs; then, a node is selected
randomly in said graph; finally, a query size is selected uni-
formly at randomly from several pre-defined sizes and a BFS
is performed starting from the selected node. For each new
node, all its edges connecting it to already visited nodes are
added to the generated query, until the desired query size is
reached. For the first two random selections above, we have
used two different distributions; namely, Uniform (U) and
Zipf (Z), with the probability density function of the latter
given by p(x) = x−α/ζ(α), where ζ is the Riemann Zeta
function[26]. Ultimately, we had three categories of Type
A workloads: “UU”, “ZU” and “ZZ”, where the first letter
in each pair denotes the distribution used for selecting the
starting graph, and the second for the starting node.

Type B Workloads (with no-answer queries). These work-
loads are generated as follows. For each of the query sizes,
we first create two query pools: a 10,000-query pool with
queries with non-empty answer sets against the dataset, and
a second 3,000-query pool with no match in any dataset
graph (i.e., empty result set). Queries for the first pool are
extracted from dataset graphs by uniformly selecting a start
node across all nodes in all dataset graphs, and then per-
forming a random walk till the required query graph size
is reached. Generation of no-answer queries has one extra
step: we continuously relabel the nodes in the query with
randomly selected labels from the dataset, until the resulting
query has a non-empty candidate set but an empty answer
set against the dataset graphs. Once the query pools are
filled up, we generate workloads by first flipping a biased
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coin to choose between the two pools (with the “no-answer”
pool selected with probability 0%, 20% or 50%), then ran-
domly (Zipf) selecting a query from the chosen pool. We
thus have three categories of Type B workloads: “0%”,“20%”
and “50%”, denoting the above probability used.

We use Zipf α = 1.4 by default; we also use α = 1.1
representing a smaller skewness and α = 1.7 for a higher
skewness. As a reference point, web page popularities fol-
low a Zipf distribution with α = 2.4 [26]. Query graphs are
generated in different sizes: 4, 8, 12, 16 and 20-edge graphs
for the smaller AIDS and PDBS datasets; 20, 25, 30, 35 and
40-edge queries for the larger PCM and Synthetic datasets
(as almost half of the dataset graphs in AIDS contain no
more than 40 edges, larger queries are not usable). Such
sizes are typical in the literature [6, 14, 35]. Workloads for
AIDS and PDBS consist of 10,000 queries, while workloads
for PCM and Synthetic contain 5,000 queries for practical
reasons, as PCM/Synthetic queries take much longer to ex-
ecute. We only allow one for one Window (i.e., 20 queries)
before starting measuring GC’s performance.

We report on both the benefits and the overheads of GC.
Reported metrics include query time and number of sub-iso
tests per query, along with the speedups introduced by GC.
Speedup is defined as the ratio of the average performance
(query time or number of sub-iso tests) of the base Method
M over the average performance of GC when deployed over
Method M (i.e., speedups >1 indicate improvements). The
results were produced over more than 6 million queries! As a
yardstick, [21] (also a cache but for XML databases) report
a query time speedup of 2.6× with 10,000-query workloads
generated using Zipf α = 1.5, and a 1,500-query warm-up.

7.3 Results and Takeaways
Figure 4 depicts the speedups attained by GraphCache

when CT-Index and GGSX where used as Method M (re-
sults for other FTV and SI methods showed similar trends
and are thus omitted for space reasons). We can see that
GraphCache attains significant speedups (up to 10× lower
query processing times in this case), and that it is always
one of the GC-exclusive policies (PIN, PINC) that produces
the best results. A more subtle observation, though, is that
there are cases where PIN wins over PINC and vice-versa;
for example, PIN dominates the scene for queries against
the AIDS dataset but it is PINC that takes the lead when
querying the PDBS dataset. Ultimately, different cache re-
placement policies exhibit different performance depending
on the workload and dataset characteristics. The question
then is how to choose a replacement policy when said charac-
teristics are unknown a-priori. Our answer to this question
then, and the first takeaway message, is: When in doubt,
use the HD replacement policy, as it always manages to
do better or on par with the best of the alternatives. For
the remainder of this section we will be using HD as the
replacement policy; results for other caching policies show
similar trends and are thus omitted for space reasons.

Figure 5 depicts speedups in query processing time against
all FTV methods for queries on the PDBS dataset (results
for other datasets are similar). Query processing time speed-
ups range from 1.60× (i.e., 37.5% lower processing time) to
more than 42×. A similar picture is drawn in Figure 6 for
speedups in the number of sub-iso tests performed. Jux-
taposing Figure 5 and 6 leads to the following interesting
insight: Reductions in the number of sub-iso tests do
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ZZ ZU UU 0% 20% 50%
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Figure 4: Query Processing Time Speedups over CT-Index
Across Replacement Policies

not translate directly into reductions in query time;
this validates our claim that cache hits in GraphCache ren-
der different benefits. In all cases, though, GraphCache
achieves significant improvements in both query pro-
cessing time and number of sub-iso tests performed.

Figure 7 shows the speedups achieved by GraphCache for
Type B workloads against the AIDS dataset, for various val-
ues of the Zipf α skewness parameter (results for number of
sub-iso tests and other workloads show similar trends and
are omitted for space reasons). We can see that the more
skewed the query distribution, the higher the gains
from caching. This is, of course, expected and has been
shown times and again in related work on traditional caches,
as caches are built on the premise of (temporal) locality of
reference and thus more skewed query distributions have the
potential to translate to higher hit ratios. A subtler, but
equally important observation here, reached by examining
Figure 5 in the light of the above result, is that Graph-
Cache leads to significant performance gains even for
query workloads with uniform query popularity distri-
butions. These distributions represent worst-case scenarios
for caching schemes, but we can see speedups from 1.29×
(≈20% lower times) up to ≈11× for the UU workloads, em-
phasizing a significant characteristic of GraphCache where
the realm of “locality” is extended by subgraph/supergraph
matches among queries, in addition to the traditional exact-
match of isomorphic queries.

Figure 8 shows the performance of GC against GGSX for
queries on AIDS and PDBS, for varying cache sizes (results
for other methods and datasets show similar trends). We can
see that increasing the cache size improves the perfor-
mance of the cache. However, this does not mean that
one can increase the size of the cache indefinitely; the size
of the cache is first limited by the amount of main mem-
ory available for GC, then by the overhead associated with
updating the cache contents (more on this shortly).

Figure 9 shows the speedups in query time (9(a)) and
number of sub-iso tests (9(b)) against Grapes6 for the PCM
and Synthetic datasets, attained when the cache admission
control is disabled (C) and enabled (C + AC). For clarity,
performance without specific notes refer to turning off the
cache admission control (C) by default. We can see that
cache admission control leads to even higher speed-
ups, thus validating our observation regarding cache pollu-
tion and the appropriateness of our “expensiveness”-based
mechanism. A subtler observation is that the correspond-
ing speedup in the number of sub-iso tests is reduced when
cache admission control is enabled, as shown in Figure 9(b).
For better understanding of this trend, let us concentrate on
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the Synthetic-50% workload: GC without admission control
yields a speedup as high as ≈4× in the number of sub-iso
tests, but the resulting query time speedup is only ≈1.5×.
The reason is that top expensive queries do not benefit as
much when the cache is polluted: more specifically, the av-
erage time for the top-1% most time-consuming queries is
≈16.5 seconds with Grapes6, going down to ≈15 seconds for
GraphCache without admission control – a 1.1× speedup;
the remaining 99% “inexpensive” queries enjoy speedups of
2×, going from ≈0.200 seconds down to ≈0.100 seconds, but
they account for a much smaller percentage of the overall
query processing time compared to the top-1% ones. When
we enable the admission control mechanism, these top-1%
expensive queries are prioritized, with their average query
processing time going down considerably to ≈10 seconds – a
much improved 1.65× speedup. Hence, despite the lower
speedup in number of sub-iso tests, the overall query
processing time benefits greatly.

We have shown so far that GraphCache leads to significant
decreases in the query processing time and number of sub-
iso tests of FTV (and SI) methods. We know that sub-iso
tests take up the majority of the query processing time for
FTV methods. A logical consideration, then, would be to
try and increase the filtering power of these methods so as to
further decrease the size of the resulting candidate set. This
can be accomplished by increasing the size of the features
recorded by FTV methods; larger features bear higher dis-
criminative power as, obviously, the larger a feature the less
its occurrences in dataset graphs. To this end, we reconfig-
ured all FTV methods increasing their feature sizes by just
one (i.e., max path length of 5 for Grapes and GGSX; trees
of size 7, cycles of size 9, and 8192 bits per bitmap for CT-
Index). This minimal increase in feature size indeed led to
better performance, with the average query processing time
going down by approximately 10%; however, it also led to an
almost doubling of the space required for the FTV indexes
across all methods. At the same time, GC accomplishes its
speedup for a negligible space overhead ; for example, for
the AIDS dataset the memory and disk space required by
GraphCache was just over 1% of the space required for the
indexes of the various FTV methods, but leading to time
speedups of up to 40× (figure omitted for space reasons).

Figure 10 depicts a break-down of query processing time
for FTV methods and GraphCache, showing how much of
GC time is spent (on average) to update the Window and
Cache data stores (including executing the cache replace-
ment algorithms and re-indexing the cached query graphs),
for various cache sizes. As we can see, the time overhead
for cache maintenance chores is trivial. Another inter-
esting observation is that, although increasing the size of the
cache improves query processing time (as also shown in Fig-

ure 8), it also leads to an increase in the overhead associated
with the maintenance of the cache contents. For the cache
sizes considered in this work we can see that what we lose in
maintenance overhead, we gain in query time. That means
that, if we had designed our architecture to update the cache
contents in-line (i.e., not in parallel) with query processing,
we would see diminishing returns with larger cache sizes.
Our current design does not suffer from this problem; how-
ever, we expect that, for considerably larger cache sizes, this
overhead may outgrow the time required for the Window to
fill (and thus for a new replacement/re-indexing round to
begin). The upside is, though, that even with the meagre
cache sizes used in this work, the performance gains
are enough to not warrant a much larger cache.

Figure 11 depicts the query processing speedups of GC
over the two well-established SI methods considered in this
work – GQL and VF2+ (vanilla VF2 results where simi-
lar and are omitted for space and readability reasons). We
can see that GC improves the performance of well-
established SI methods, with the same meagre 100-query
cache configuration as above. This is significant in that
GC provides a new way to expedite sub-iso tests (as
opposed to developing yet another SI heuristic) which
is usable with any mainstream SI method. Note the
interesting finding that VF2+ speedup for AIDS UU work-
load is close to that of AIDS ZU (7.18 vs 6.49), whereas one
might have expected a different outcome. Intuitively, the ZU
workload bears more exact-match hits than UU, due to the
skewness of selecting source graphs during query generation
(see §7.2). And it does: we measured circa 2.5X the number
of exact-match cache hits in ZU vs UU. However, recall that
GC exploits also sub/supergraph hits. When exact-matches
are not frequent, GC loads graphs in the cache that can help
with their sub/supergraph relationships. Indeed, we mea-
sured circa 2X such matches for the UU workload vs ZU.
Of course, the overall performance result is a very complex
picture and depends on how big benefit is each saved exact-
match vs each saved sub/supergraph match. But the key in-
sight here is that by utilizing exact-matches and sub/su-
pergraph matches, GC can introduce significant ben-
efits in both skewed and non-skewed workloads.

Let us now take a step back and look at how FTV meth-
ods and GC operate: they both expedite queries by filter-
ing out dataset graphs, thus producing a reduced candi-
date set. The logical question then is: what happens if
we pitch a full-blown FTV method against GC operating
on top of a simple SI method? Figure 12 shows the re-
sults when comparing GC on top of VF2+ against CT-Index
(also using VF2+ for its verification chores), across several
datasets and Type-A workloads (results for Type-B work-
loads omitted for space reasons). For the small 100-query
cache, GC performs on par or better than CT-Index in six
out of nine cases, slightly worse in two other cases, and takes
up to double the time of CT-Index in the remaining worst
case. Note, though, that GC’s space requirements are un-
der ≈15% of the space requirements of CT-Index’s index for
PDBS and under 0.2% for AIDS, and that CT-Index has the
fastest verification algorithm and by far the smallest index
among all FTV methods considered in this work. The situ-
ation is more impressive when using the larger (500-query)
cache, where GC matches or outperforms CT-Index across
the board (by a factor of 1.8× on average). Note that even
for this“larger”cache, GC’s space requirements are less than
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≈70% of CT-Index’s index size for PDBS and less than 1%
for AIDS (and comparable to the latter against GGSX and
Grapes). The conclusion is then that GC can replace the
best-performing FTV methods, achieving comparable
or better performance for a fraction of the space and
no pre-processing cost as no indexing is needed.

8. CONCLUSIONS
We presented GraphCache, to the best of our knowledge

the first full-fledged caching system for general subgraph/su-
pergraph query processing, including its architecture meet-
ing demanding design goals, a number of GC-exclusive graph-
query-aware cache replacement policies, and an accompa-
nying cache admission control mechanism. The proposed
system can be used to expedite all current FTV and SI
methods (bridging these two, alas, separate threads of re-
search so far), and is applicable for both subgraph and su-
pergraph queries. Our extensive performance evaluation
has proven the applicability and appropriateness of our ap-
proach. GC achieves considerable improvements in query
processing time for meagre space overheads. Our work also
revealed a number of key lessons, pertaining to graph caching
and query processing. Future work currently focuses on two
big ticket items: first, to develop a distributed/decentral-
ized version of GraphCache; second, to extend GraphCache
to benefit subgraph queries when finding all occurrences of
a query graph against a single massive stored graph.
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ABSTRACT
Subgraph queries are central to graph analytics and graph
DBs. We analyze this problem and present key novel discov-
eries and observations on the nature of the problem which
hold across query sizes, datasets, and top-performing algo-
rithms. Firstly, we show that algorithms (for both the de-
cision and matching versions of the problem) suffer from
straggler queries, which dominate query workload times. As
related research caps query times not reporting results for
queries exceeding the cap, this can lead to erroneous con-
clusions of the methods’ relative performance. Secondly, we
study and show the dramatic effect that isomorphic graph
queries can have on query times. Thirdly, we show that
for each query, isomorphic queries based on proposed query
rewritings can introduce large performance benefits. Fourthly,
that straggler queries are largely algorithm-specific: many
challenging queries to one algorithm can be executed effi-
ciently by another. Finally, the above discoveries naturally
lead to the derivation of a novel framework for subgraph
query processing. The central idea is to employ parallelism
in a novel way, whereby parallel matching/decision attempts
are initiated, each using a query rewriting and/or an alter-
nate algorithm. The framework is shown to be highly ben-
eficial across algorithms and datasets.

CCS Concepts
•Information systems→ Database query processing;
•Mathematics of computing → Graph algorithms;

Keywords
Graph databases, graph query processing, subgraph isomor-
phism

1. INTRODUCTION
Graphs are ideal for representing complex entities and

their relationships/interactions and subgraph querying is es-
sential to graph analytics. In subgraph querying, given a

c©2017, Copyright is with the authors. Published in Proc. 20th Inter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

pattern graph (query) and a graph DB, we want to know
whether it is contained in each DB graph (the decision prob-
lem) and/or find all its occurrences within it (the match-
ing problem). Subgraph querying entails the subgraph iso-
morphism problem (abbreviated as sub-iso), which is NP-
complete. Subgraph querying has received a lot of atten-
tion. Related work is categorized in two major categories:
the filter-then-verify (FTV) and the no-filter, verify (NFV)
methods. Numerous methods have been proposed for the
problem and three recent experimental analysis papers ([7,
9, 12]) compare and stress-test proposed methods.

In this work, we conduct a comprehensive analysis of this
problem. Our analysis aims to (i) lead to interesting novel
findings about the nature of the problem and existing solu-
tions, (ii) analyse and quantify said discoveries and their ef-
fect on well-established existing solutions, and (iii) show that
the findings can be used to develop a framework that can
offer large performance gains. Specifically, we first recognize
the existence of“straggler”queries; i.e., queries whose execu-
tion time is dramatically higher than the rest. This holds for
all query workloads and all datasets examined and across all
tested FTV and NFV algorithms. Subsequently, we reveal
and quantify the interesting fact that isomorphic instances
of queries can have a wild variation in querying times. Then
we generate isomorphic instances of the original query using
statistics on vertex-label frequencies and/or vertex degrees
and we investigate their performance. Moreover, for NFV
methods in particular, we additionally show that challeng-
ing queries are algorithm-specific, with a straggler query for
one algorithm possibly being easy for others. Finally, we
incorporate these findings in a novel framework, coined the
Ψ-framework, that exploits parallelism for both FTV and
NFV methods, achieving large performance gains. Specifi-
cally, instead of trying to come up with new algorithms for
sub-iso testing, we utilize isomorphic query rewritings and
existing alternative algorithms in parallel. Extensive experi-
mentation shows that our framework can be highly beneficial
across datasets and workloads, and for both FTV and NFV
methods.

2. BACKGROUND

2.1 Related work
Related work is categorized in two major categories. In

the first category, proposed methods typically address a de-
cision problem, where given a dataset of many (typically
small) graphs and a query/pattern graph q, the method de-
cides whether q is contained in any graph in the dataset.
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Most of the so-called filter-then-verify (FTV) or indexed sub-
graph query processing methods solve this decision problem,
and work in 2 stages. In the index construction phase, stored
graphs are decomposed into features which are then indexed,
along with graph-id lists; i.e., lists of graphs that contain the
feature. During query processing, query graphs are similarly
decomposed into features; graphs from the dataset that do
not contain one or more of these features definitely do not
contain the query and are thus pruned away. The remaining
graphs form the candidate set. At the verification stage, the
query graph is tested for subgraph isomorphism against each
graph in the candidate set to produce the final answer. The
target of all these methods is to prune the candidate set and
thus to reduce the number of sub-iso tests performed. Re-
lated works can be classified along 4 major dimensions: (i)
type of indexed features (where “feature” refers to substruc-
tures of indexed graphs used to produce the index, indepen-
dently of whether these are actually stored in the index or
not): paths [1, 5, 30], trees [15, 25], simple cycles, or graphs
[3, 20, 21, 22, 24, 29]; (ii) approach for extracting said fea-
tures from indexed graphs: i.e., exhaustive enumeration [1,
10, 20, 30] or frequent subgraph mining techniques [3, 21,
22, 24, 25, 29]; (iii) index data structure: hash table, tree,
trie; and (iv) whether the index stores location information
or not. FTV methods are extensively discussed in [7, 9]. In
[9] we concluded that Grapes[5] and GGSX[1] are the best
solutions in terms of index construction and query process-
ing time, and scalability limitations.

In the second category, proposed methods address a match-
ing problem, whereby sub-iso testing is performed to find all
the embeddings of the query graph q in a given large, stored
graph g without performing any graph filtering in advance.
We will call them the no-filter, verify (NFV) methods. Pro-
posed methods, apart from the sub-iso test, additionally
comprise of a pre-processing step where they maintain a
feature-based index consisting of: (i) vertices and edges [15,
18], (ii) shortest paths [28] or (iii) subgraphs [8, 26] up to
a certain size. The algorithms store vertex label lists along
with additional information to facilitate the sub-iso test. A
number of such methods were presented and compared in
[12], concluding that (i) although there was no single algo-
rithm to outperform all others in all occasions, GraphQL[8]
was the only one that managed to complete all the tested
query workloads; (ii) all three of GraphQL, sPath[28] and
QuickSI[15] showed very good performance; but also that
(iii) all existing algorithms have weaknesses in the way they
apply their join selection and pruning heuristics, leading to
the need for new graph matching algorithms.

There is nothing obstructing the NFV methods being ap-
plied for the decision problem and the FTV methods for
the matching problem. FTV methods were originally pro-
posed to work with datasets consisting of numerous, rela-
tively small graphs, and their effectiveness relies on their
achieved filtering, whereas NFV methods construct an in-
dex primarily to locate candidate vertices of the query in a
large stored graph. For the current work, we opt to utilize
all proposed methods for the originally proposed problems.

TwinTwig[11] and sTwig[16] deal with very large graphs,
stored in a distributed infrastructure, and rely on parallel
computing to perform sub-iso testing. Within FTV meth-
ods, iGQ[19] is a recent approach that employs caching on
top of any proposed FTV method to improve performance.
Semertzidis et al. [14] considered pattern queries over time-

evolving graphs, which are beyond the scope of this study.
Finally, there has been considerable work on the subject
of approximate graph pattern matching. Related techniques
(e.g. [10, 17, 20, 23, 27]) perform subgraph matching, but
with the support for wildcards and/or approximate matches.
All of these algorithms are not directly related to our work
as we focus on exact subgraph matching.

As subgraph querying is an important problem, we expect
that many researchers will keep focusing on trying to im-
prove upon existing algorithms in the future. Indeed, since
the publication just a few years ago of [12], comprehensively
comparing the then state of art, newer algorithms have been
proposed [6] with better performance. Nonetheless all al-
gorithms show exponential execution times even at small
query sizes (up to 10 edges)[13]. Our contributions aim to
help this process in two ways. First, by revealing key in-
sights, based on comprehensive experimentation, about the
problem itself and how they affect well-known algorithms.
Second, by shedding light onto a novel overall approach to
the problem and its benefits. Namely, instead of focusing
solely on developing new solutions by improving earlier al-
gorithms, try to benefit from the wealth of ideas already
existing within previous algorithms! Specifically, our find-
ings show that different algorithms are appropriate for dif-
ferent queries. Furthermore, they show that different query
rewritings are appropriate for different queries and for dif-
ferent algorithms! Finally, the existence of straggler queries
poses new challenges for the performance comparison of dif-
ferent algorithms, needing more detailed performance met-
rics and experimenting with more challenging queries. All
current works miss the above points: (i) they only consider
one query rewriting, if at all, for all queries, (ii) they use only
one algorithm for all workload queries, and (iii) they do not
stress-test their algorithms with more challenging queries
(e.g., larger sizes). Our framework shows that such misses
also lead to misses of dramatic performance improvements.

2.2 Definitions

Definition 1 (Graph). A graph G = (V,E, L) is de-
fined as the triplet consisting of the set V = {vi}, i = 1, ..., n
of vertices of the graph, the set E ⊆ {(v, u) : v, u ∈ V }
of edges between vertices in the graph, and a function L :
V |E → L assigning a label l ∈ L (L being the set of all
possible labels) to each vertex v ∈ V and each edge e ∈ E.

We assume that each node in a graph is assigned an integer
in the interval [1, n], so that no two nodes in a graph have
the same number; we call this the node ID.

Definition 2 (Graph Isomorphism). Two graphs G
= (V,E, L) and G′ = (V ′, E′, L′) are isomorphic iff there
exists a bijection I : V → V ′ that maps each vertex of G to
a vertex of G′, such that if (u, v) ∈ E then (I(u), I(v)) ∈ E′,
L(u) = L′(I(u)), L(v) = L′(I(v)), and vice versa.

Note that, given a graph G, a graph G′ isomorphic to G
can be trivially produced by permuting the node IDs in G.

Definition 3 (Subgraph Isomorphism). A graph G
= (V,E, L) is subgraph isomorphic to a graph G′ = (V ′, E′,
L′), denoted by G ⊆ G′, iff there exists an injective function
I : V → V ′ such that if (u, v) ∈ E then (I(u), I(v)) ∈ E′

and L(u) = L′(I(u)) and L(v) = L′(I(v)). Graph G is then
called a subgraph of G′.
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Much like all of the works mentioned earlier, we focus on
non-induced subgraph isomorphism.

3. EXPERIMENTAL SETUP

3.1 Short description of used Algorithms

3.1.1 FTV methods
Both Grapes[5] and GGSX[1] index the simplest form of

features – i.e., paths – up to a maximum length. Paths
are searched in a DFS manner and indexed in a trie or suf-
fix tree respectively. Compared to GGSX, Grapes takes an
additional step and maintains location information. Also,
Grapes features multi-threaded design for both indexing and
query processing. In query processing, maximal paths of
the query are extracted to form the query index which is
matched with the dataset index, pruning away unmatched
branches. Subsequently, the search space is further pruned
by the frequencies of indexed features. After this step, GGSX
forms its candidate set of graphs that will undergo sub-iso
testing. Grapes further exploits the maintained location in-
formation to extract relevant connected components of the
dataset graphs, against which sub-iso testing is performed.

The underlying isomorphism algorithm for both Grapes
and GGSX is VF2[4]. VF2 does not define any order in
which query vertices are selected. Given a query graph q
and a dataset graph g, the algorithm chooses a vertex from
q to match to vertices in g, and proceeds by then trying
to match still unmatched vertices adjacent to the matched
ones in q. Given an unmatched vertex in q, the set of can-
didate vertices of g is defined as the set of all vertices in
g with the same label as the unmatched vertex in q. VF2
then employs 3 pruning rules to reduce the number of can-
didate vertices. The first rule removes candidates that are
not directly connected to the already matched vertices of g.
The second rule removes all candidates for which the num-
ber of adjacent unmatched nodes which are also adjacent to
matched nodes of g, is smaller than the corresponding fig-
ure for the matched vertex of q. The final rule removes all
g candidates with less adjacent (matched/candidate) nodes
than the corresponding figure in q.

3.1.2 NFV methods
In the sub-iso test of QuickSI[15] (QSI for short), priority

is given to the vertices with infrequent labels and infrequent
adjacent edge labels. In the indexing phase, QuickSI pre-
computes the frequencies of labels and edges and uses them
to compute the “average inner support” of a vertex or an
edge; i.e., the average number of possible mappings of the
vertex or edge in the graph. The inner support is later used
in the graph matching process to assign weights on the edges
of the query graph and construct a rooted minimum span-
ning tree (MST). In case of symmetries, edges are added in
such a way that will make the MST denser. The order in
which vertices are inserted to the MST defines the order in
which they are then matched in the sub-iso test.

In the indexing phase of GraphQL[8] (GQL for short),
the labels of all vertices along with the neighbourhood sig-
natures, which capture the labels of neighbouring nodes in
a radius i in lexicographical order, are indexed. In the sub-
graph matching phase, the algorithm starts by retrieving all
possible matches for each node in the pattern. Subsequently,
3 rules are applied in order to prune the search space. First,

the indexed vertex labels and neighbourhood signatures are
used to infeasible matches. Then a pseudo subgraph iso-
morphism algorithm is applied to the problem iteratively
up to level l; i.e., for every pair of possible graph-query ver-
tex matches, the nodes adjacent to the query node should
be matched to the corresponding neighbours of the graph.
Finally, the algorithm needs to optimize the search order
in the query before proceeding with the actual sub-iso test,
which in turn consists of a number of joins of the candidate
node lists. This optimization is based on an estimation of
the result-set size of intermediate joins, and as it would be
very expensive to enumerate all possible search orders, only
left-deep query plans are considered.

sPath[28] (SPA for short), similarly to GraphQL, also
maintains a neighbourhood signature comprised of shortest
paths organized in a compact indexing structure. Specifi-
cally, in order to reduce the storing space, shortest paths
are not really maintained, but they are decomposed in a
distance-wise structure. In the query processing, the query is
initially decomposed in shortest paths that are then matched
to the candidate shortest paths from the stored graph. From
all possible candidate shortest paths, those that (i) can cover
the query and (ii) provide good selectivity, i.e. minimize the
estimated result-set size of each join operation, are selected
as candidates. For each one of the selected paths, an edge-
by-edge verification is then used to perform the sub-iso test.

3.2 Setup
Experiments with Grapes and GGSX were conducted on

a small cluster consisting of 5 nodes, each featuring an Intel
Core i5-3570 CPU (3.4GHz, 4 physical cores, 6MB cache),
16GB of RAM, 500GB disk per node, and running Ubuntu
Linux 14.04. Experiments with QuickSI, GraphQL and sPath
(i.e., the NFV methods) were conducted on a Windows 7
SP1 host, with 2 Intel Xeon E5-2660 CPUs (2.20GHz, 20MB
cache) with 8 cores/16 vcores per CPU, 128GB of RAM, and
3.5TB disk. For practical purposes, we allowed a maximum
limit of 10 mins for each query to be processed. Beyond that
time, the execution is terminated and we proceed with the
next query in the workload. Please note that this 10’ limit
does not apply in the indexing phases of the algorithms.

For Grapes and GGSX we used the implementations pro-
vided by their respective authors. However, in the case of
Grapes, we had to alter the source code so that the VF2
verification step returns after the first match of the query
graph, as opposed to the original implementation which was
returning all possible matches. The reason for this is that
FTV methods are mainly designed to retrieve the graphs
that contain the query as an answer. For QuickSI, GraphQL
and sPath, we used the implementation provided by [12].

We used the default values for the input parameters of
the compared algorithms, as they were defined by their re-
spective authors in the relevant publications and/or in their
implementation code. More specifically:
• For GGSX and Grapes, we enumerated paths of up to

size of 4.
• We ran Grapes with 1 and 4 threads; results for execu-

tions with 1 (resp. 4) threads are denoted by Grapes/1
(resp. Grapes/4).
• For GraphQL, we used a refined level of iterations of

pseudo-subgraph isomorphism r = 4.
• For sPath, we used a neighbourhood radius of 4 and

maximum path length 4.
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D

a
ta

se
t # graphs 20 1000

#disconnected graphs 20 0
#labels 46 20

P
er

G
ra

p
h

Avg #nodes 4942 1100
StdDev #nodes 2648 483
Avg #edges 26667 12487
Avg density 0.0022 0.020
Avg degree 10.87 24.5
Avg #labels 28.5 20

Table 1: Dataset characteristics for FTV methods

yeast human wordnet

#nodes 3112 4674 82670
#edges 12519 86282 120399
Avg degree 8.04 36.91 2.912
StdDev degree #nodes 14.50 54.16 7.74
Density 0.00258 0.0079 0.000035
#labels 184 90 5
Avg frequency labels 127 240 16534
StdDev frequency labels 322.5 430 152

Table 2: Dataset characteristics for NFV methods

• For QuickSI, GraphQL and sPath the number of searched
embeddings of the pattern graph on the stored graph
is capped at 1000; i.e., after finding the first 1000
matches, the algorithms terminate.

3.3 Datasets
We have chosen datasets which (a) have also been used by

other studies, so as to enable possible direct comparisons,
and (b) have key characteristics covering a large part of the
design space (e.g., regarding graph size and density).

Table 1 summarizes the characteristics of the datasets that
we used for the FTV methods. PPI (used in [5, 9]) is a real
dataset representing 20 different protein-protein interaction
networks. The majority of existing real datasets that were
used for the FTV methods comprise of relatively small and
sparse graphs. In [9] we showed that, for such datasets,
both Grapes and GGSX perform adequately well. For our
current study we are further interested in more challenging
datasets and we thus employ an additional synthetic dataset
generated with GraphGen[2], allowing various parameters of
interest to be specified; namely, number of graphs, average
number of nodes and density per graph, number of labels in
the dataset). A more detailed description of how GraphGen
constructs the dataset can be found in [9].

Datasets used for the NFV methods consist of only one
graph as the primary task of these methods is to find all oc-
currences of the pattern graph in the large stored graph. Ta-
ble 2 summarizes the characteristics of the three real datasets
– namely yeast, human and wordnet — that we have used
for the NFV methods. Yeast and human were previously
used in [12], while Wordnet1 was used in [16].

3.4 Query Workloads
To generate each of the queries, first we select a graph

from the dataset uniformly and at random, and from that

1http://vlado.fmf.uni-lj.si/pub/networks/data/dic/Wordnet/
Wordnet.htm

graph we select a node uniformly and at random. Starting
from said node, we generate a query graph by incremen-
tally adding edges chosen uniformly at random from the
set of all edges adjacent to the resulting query graph, until
it reaches the desired size. For the synthetic dataset, we
used 100 queries of size 24, 32 and 40 edges for Grapes/1
and Grapes/4. We did not run GGSX against the synthetic
dataset, because of excessive amount of time required for
the experiments to complete. For the PPI dataset, we used
100 queries of size 16, 20, 24, and 32 edges. For the NFV
methods, we used 200 queries of 10, 16, 20, 24 and 32 edges.
Last, for QuickSI we only report results against the yeast
dataset, as (i) it was the easiest NFV dataset to process,
and (ii) QuickSI always had many more cases, compared to
GraphQL and sPath, where query processing exceeded the
10’ cap. For all used methods, the majority of the queries
completed in under 2”. We call them easy queries. Another
portion of queries had processing times in the 2” to 600”
range; we denote these 2”-600” queries. We use the term
completed to refer to all queries that finished within the 10’
limit; those that did not are called hard or killed.

3.5 Performance Metrics
For every query against a stored graph, we measure the

Execution Time, denoted exec time, for both FTV and NFV
methods, while avg exec time denotes the average execution
time. Specifically for FTV methods, this is the pure sub-iso
time; i.e., excluding the index loading and filtering times,
which add only a trivial overhead. For FTV methods re-
ported times are in seconds, while for NFV methods times
are in milliseconds, unless stated otherwise.

Let qi be a given query and tMi the exec time of qi over
methodM . Let also qi,j be the j-th isomorphic instance of qi
and tMi,j the exec time of qi,j over method M . Finally, let tΨi,j
be the exec time of qi,j over our proposed Ψ-framework. We

define the (max/min) metric as:
maxj(tMi,j)

minj(tMi,j)
. The minimum

value of this metric is 1, indicating that there are no varia-
tions between the min and max exec time. The higher the
value of this metric, the higher the differences between the
min and max exec time achieved by the isomorphic query in-

stances. We also define the speedup∗ metric as:
tMi
T

, where T

is set to: (i) minj(t
M
i,j), when comparing against the various

isomorphic instances of qi, (ii) minM (tMi,j), when compar-

ing against different methods, and (iii) tΨi , when comparing
against our Ψ-framework. speedup∗ represents what we lose
in performance if we choose the original method over the
various alternatives; i.e., speedup∗ equals the maximum at-
tainable speedup over the original method, if we chose the
best of the examined alternatives. For comparison purposes,
for queries that were killed at the 10’ limit we use this time
(i.e., 600”) as their minimum execution time.

When comparing two sets of measurements A = {Ai} and
B = {Bi}, we can compute their average ratio in two ways:

• Workload-Level Aggregation (WLA), given by avgi(Bi)
avgi(Ai)

.

WhenA andB contain query response times, the WLA
computation would give the improvement in the overall
average execution time. This metric is important from
the system perspective as it encapsulates the overall
performance change.

• Query-Level Average (QLA), computed as avgi
(

Bi
Ai

)
.

When applied to query processing times, the QLA
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Figure 1: Stragglers in FTV methods

computation would give the average of per-query im-
provements. This metric is user-centric in the sense
that each user cares what the performance improve-
ment for his query is using different methods.

In both cases, avgi(Xi) is the average over all items Xi in
the set X. Based on this distinction, the aforementioned
(max/min) and speedup∗ metrics can have a QLA or WLA
version, denoted with a matching subscript; e.g., speedup∗QLA.
These two variants also carry over to other computations;
for example, the standard deviation of the ratio of A and

B would be computed as stdDevi(Bi)
stdDevi(Ai)

under WLA, and as

stdDevi(Bi/Ai) under QLA. However, unless stated other-
wise, we shall use QLA and WLA to denote averages.

4. STRAGGLER QUERIES
We know that as the dataset grows in terms of the size of

graphs, query processing becomes harder; ditto as the size
of the query graph increases [9]. But do these statements
hold across all queries-dataset graph combinations? Run-
ning many queries against the whole dataset can hide the
details of how much time is required per individual query-
graph pair. In the case that a small portion of such pairs
dominates the whole execution time, then by just looking
at the whole query workload execution times it is easy to
draw wrong conclusions about the algorithms’ performance.
Also, several related works choose to ignore queries whose
execution is much higher compared to the rest. To inves-
tigate the above, in this study we execute each individual
query against a single stored graph at a time.
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Figure 2: Stragglers in NFV methods

Observation 1: In all of workloads generated by us or
found in other papers, our experiments show “stragglers”;
i.e., queries whose processing time is many orders of mag-
nitude higher compared to the rest.

In order to back our observation, we present our results
from the experiments on the aforementioned datasets against
both FTV and NFV methods (fig. 1 and 2).

4.1 FTV methods
Fig. 1 presents the results from the query workloads on the

FTV methods. Specifically, 1(a) and 1(b) show the average
execution times for the corresponding algorithms for the syn-
thetic and the PPI dataset respectively (GGSX/synthetic
results omitted; see §3.4). 1(c) presents the percentage of
the sub-iso tests that were easy, 2”-600”, and hard for both
the synthetic and PPI datasets. As expected, Grapes/4 has
a much smaller percentage of killed queries compared to
Grapes/1 and GGSX. A notable thing here is that although
for both Grapes/1 and Grapes/4 the percentage of 2”-600”
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GraphQL sPath QuickSI

1
0
-e

d
g
e
q AET easy (ms) 66.84 134.78 131.67

% of easy 100 99.5 99
AET 2”-600” (ms) - 2871.44 50367.40

% of 2”-600” 0 0.5 1
% of hard 0 0 0

3
2
-e

d
g
e
q AET easy (ms) 130.66 120.71 96.62

% of easy 80 91 67.5
AET 2”-600” (ms) 140812 140781 78917.2

% of 2”-600” 6.5 3 6
% of hard 13.5 6 26.5

Table 3: Results for NFV methods on the yeast
dataset (AET: avg exec time)

GraphQL sPath

1
0
-e

d
g
e
q AET easy (ms) 179.49 209.91

% of easy 100 98
AET 2”-600” (ms) - 182392

% of 2”-600” 0 1
% of hard 0 0

3
2
-e

d
g
e
q AET easy (ms) 246.31 277.13

% of easy 71.5 84.5
AET 2”-600” (ms) 93523.7 31817

% of 2”-600” 4.5 4.5
% of hard 24 11

Table 4: Results for NFV methods on the human
dataset (AET: avg exec time)

queries is < 5% in the synthetic dataset and < 10% in PPI,
the avg exec time across all completed queries is significantly
affected; that is, the most expensive queries dominate the
execution time.

4.2 NFV methods
Fig. 2 presents the results from the query workloads on

the NFV methods (QuickSI human/wordnet results omitted;
see §3.4), while tables 3 and 4 give results for 10- and 32-
edge queries for the yeast and human datasets. We can use
the 10-edge query results to compare our findings with those
presented in [12]. [12] used small query sizes (up to 10 edges)
and showed that the best performing algorithm is GraphQL,
because it managed to complete all tested query workloads.
With our experiments, we confirm this for both the yeast and
human datasets and for queries of size 10 edges. GraphQL
performs better compared to sPath, having also 0% of hard
queries. The same holds for the easy queries of 32 edges.
However, the picture is reversed when looking at the rest of
the queries. In this case, the percentage of killed queries is
double for GraphQL compared to sPath.

We note that unlike yeast and human where sPath per-
forms overall better than GraphQL having (i) smaller avg
exec times on the completed queries and (ii) smaller percent-
ages of hard queries, in wordnet this behavior is reversed.
Based on our analysis, it’s very difficult to claim that one
algorithm is better than the other. In fact, in order to claim
that, we need to define a performance metric of interest.
Such a metric could be the percentage of killed queries, but
note that it depends on the time limit imposed on query
processing. For example, in wordnet, if the threshold was
2”, then sPath would be better than GraphQL, but if we
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Figure 4: Avg (max/min)QLA for NFV methods

change this threshold the picture changes.
We summarize our results to the following 3 conclusions:

(1) Some queries are hard. (2) Different algorithms have dif-
ferent percentages of completed queries; thus, different algo-
rithms find different queries hard. (3) As the most expensive
queries dominate the avg exec time, one must include a suf-
ficient number of hard queries in order to draw conclusions
about the relative performance of the algorithms.

5. ISOMORPHIC QUERIES
The proposed sub-iso methods ([8, 28, 15]), as well as

[12] that compares them, claim that the search order on the
query can have a huge impact on query processing time.
We agree with this claim. In the current study, we take
a further step and instead of relying on the order that the
individual method imposes, we generated our own isomor-
phic query rewritings. To achieve this, we keep the structure
of the query graph and the labels on the nodes unchanged,
and permute the node IDs. Subsequently, we transform the
query graph to an input format compatible with each in-
dividual method and perform the query processing. In the
following experiments, we used a total of 6 different rewrit-
ings per query, leading to the following observation.

Observation 2: Queries which are isomorphic to the orig-
inal query have widely and wildly different execution times.

We attribute this behavior to the fact that all proposed
methods do not define a strict order in which the nodes
of the query are matched, as computing a globally optimal
join plan would be too computationally expensive. Thus, all
methods rely on heuristics (see §3.1) in order to minimize
the search space for the join plan.

5.1 FTV methods
Fig. 3 depicts the QLA average value of the (max/min)

metric for the synthetic and PPI datasets, for the FTV
methods (GGSX results omitted for the synthetic dataset;
see §3.4). Table 5 additionally reports the stdDev, min, max
and median values of (max/min)QLA. In the calculations,
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Grapes/1 Grapes/4 GGSX

sy
n
th

et
ic stdDev 86,700.40 65,988.40 -

min 1.06 1.02 -
max 3,820,000.00 3,490,000.00 -

median 3.90 4.45 -

P
P

I

stdDev 469,934 395,285 1,020,000
min 1.03 1.02 1.01
max 3,680,000 3,160,000 12,000,000

median 1,186.51 11.19 109,086.00

Table 5: (max/min)QLA statistics for FTV methods

GraphQL sPath QuickSI

y
ea

st

stdDev 287.54 533.86 1685.71
min 1.01 1.01 1.00
max 7286.33 6695.85 15021.60

median 1.40 1.36 1.61

h
u
m

a
n

stdDev 440.18 662.78 -
min 1.00 1.04 -
max 4115.06 4087.81 -

median 1.82 1.96 -

w
o
rd

n
et

stdDev 20.55 396.87 -
min 1.01 1.01 -
max 646.44 3081.14 -

median 1.21 1.34 -

Table 6: (max/min)QLA statistics for NFV methods

we did not include queries that were not helped by any of
the isomorphic instances tried; i.e., queries that were hard
on all tested isomorphic instances of the query. This behav-
ior occurred in 0.0036% and 1.4% of queries for Grapes/1
on the synthetic and PPI datasets respectively, and 0.37%
of queries for Grapes/4 and 1.96% of queries for GGSX for
the PPI dataset. We note that the “max” and “average”
values of (max/min)QLA are only lower-bound estimations,
because of the 10’ limit that we used instead of the actual
verification time. In these results, we observe that there
is an at least 6 orders of magnitude difference between the
min and the max value of (max/min)QLA, with the median
(apart from GGSX) being closer to the min value. Along
with the high stdDev, we can see that isomorphic instances
of the same query can indeed have widely and wildly differ-
ent verification times.

5.2 NFV methods
Fig. 4 reports the QLA-average values of the (max/min)

metric for the yeast, human and wordnet datasets, for the
tested NFV methods (QuickSI results omitted for the hu-
man and wordnet datasets; see §3.4). Table 6 reports the
stdDev, min, max and median value of (max/min)QLA. We
report that 4.2%, 8.2% and 1.5% of queries were not helped
by any tested isomorphic query instances for GraphQL and
for yeast, human and wordnet respectively. For sPath the
corresponding values are 2.1%, 1.4% and 11.8%. Finally, for
QuickSI 8.6% of the queries were not helped for yeast.

The QLA-average (max/min) for the NFV methods is
up to 3 orders of magnitude lower than that of the FTV
methods. This is somewhat expected as the NFV methods
define a more strict order in which the nodes of the query
are matched and thus leave less space for wild variations.
However, this order is still significantly affected by the ini-

Grapes/1 Grapes/4 GGSX

sy
n
th

et
ic stdDev 53,785.70 24,267.60 -

min 1.00 1.00 -
max 3,820,000 2,110,000 -

median 1.36 1.24 -

P
P

I

stdDev 302,250 237,573 758,668
min 1.00 1.00 1.00
max 3,370,000 2,910,000 9,390,000

median 3.71 1.67 1,751.22

Table 7: speedup∗QLA statistics for FTV methods
across rewritings

GraphQL sPath QuickSI

y
ea

st

stdDev 235.61 422.56 1193.03
min 1.00 1.00 1.00
max 7286.33 6695.85 15021.60

median 1.10 1.08 1.30

h
u
m

a
n

stdDev 259.93 492.45 -
min 1.00 1.00 -
max 4115.06 4087.81 -

median 1.09 1.08 -

w
o
rd

n
et

stdDev 20.55 244.66 -
min 1.00 1.00 -
max 646.44 3081.14 -

median 1.13 1.08 -

Table 8: speedup∗QLA statistics for NFV methods
across rewritings

tial node ids of the query, and thus we still see per-query
(max/min) values of up to 2 orders of magnitude.

We summarize our overall results to the following conclu-
sions: (1) For every isomorphic test to be executed, given
a query graph q and a stored graph, there is an isomor-
phic version of q that can take anywhere from 2 to 6 orders
of magnitude more time to execute compared to the least
expensive version of the query. This holds across all algo-
rithms and datasets tested. (2) Although the presented fig-
ures hide the details of the individual query sizes, we report
that the harder the queries (higher query sizes), the higher
these number are.
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Figure 5: Isomorphic queries generated with differ-
ent rewritings (assuming the label frequencies in the
stored graph are: “A”=20, “B”=15, “C”=10)

6. GRAPH QUERY REWRITING
Having established that isomorphic versions of a query

can have dramatically different execution times, we set out

31



 0

 50

 100

 150

 200

 250

 300

Grapes/1 Grapes/4 GGSX

W
L

A
-A

v
g
 e

x
ec

 t
im

e 
(s

)

Orig
ILF

IND
DND

ILF+IND
ILF+DND

(a) PPI dataset, WLA-Avg exec time (s)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

Grapes/1 Grapes/4 GGSX

%
 o

f 
h

ar
d
 q

u
er

ie
s

Orig
ILF

IND
DND

ILF+IND
ILF+DND

(b) PPI dataset, percentage of hard queries

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

GQL SPA QSI

W
L

A
-A

v
g
 e

x
ec

 t
im

e 
(m

s)

Orig
ILF

IND
DND

ILF+IND
ILF+DND

(c) yeast dataset, WLA-Avg exec time (ms)

 0

 2

 4

 6

 8

 10

 12

GQL SPA QSI

%
 o

f 
h
ar

d
 q

u
er

ie
s

Orig
ILF

IND
DND

ILF+IND
ILF+DND

(d) yeast dataset, percentage of hard queries

Figure 6: Results for individual query rewrtings for both FTV and NFV methods
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Figure 7: Avg speedup∗QLA for FTV methods across
rewritings
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Figure 8: Avg speedup∗QLA for NFV methods across
rewritings

to construct specific rewritings, constructing graphs isomor-
phic to the original queries, with the aim to capture these
benefits. We have developed and experimented with several
such query rewritings. We outline below five such rewrit-
ings, all performed by carefully permuting the node IDs in
the query graph:
• Query Rewriting ILF (Increasing Label Frequency):

In a preprocessing step, we compute the frequencies
of node labels in the stored graph, sorted in increas-
ing frequency order. Given this order, we produce a
rewriting of the query graph so if i, j are the node IDs
of query graph nodes ni, nj , L(ni), L(nj) are their la-
bels, and f(L(·)) is the frequency of a label L(·) in the
stored graph, then f(L(ni)) < f(L(nj))⇒ i < j. Ties

can appear in 2 cases: (i) two or more query nodes have
the same label, or (ii) two or more query nodes have
different labels but with the same frequency. These
ties are broken arbitrarily.
• Query Rewriting IND (Increasing Node Degree):

The nodes of the query are sorted in increasing node
degree order; i.e., if ni, nj are two query graph nodes,
and d(·) is the degree (number of edges) of a node,
then d(ni) < d(nj)⇒ i < j. In the case of nodes with
the same number of edges, ties are broken arbitrarily.
• Query Rewriting DND (Decreasing Node Degree):

This rewriting is similar to the IND but the nodes of
the query are sorted in decreasing node degree and the
nodes ids are assigned accordingly.
• Query Rewriting ILF+IND: This rewriting is the same

as ILF above, with ties being broken in an IND man-
ner: i.e., nodes with smaller outgoing degree get a
lower node id.
• Query Rewriting ILF+DND: This rewriting is the same

as ILF+IND, with ties being broken in a DND manner.
Fig. 5 presents an example of the above rewritings. Note

that the ILF+IND rewriting in 5(d) is also a valid ILF
rewriting. As we already mentioned, ties are (utterly) bro-
ken in an arbitrary way, and thus one may compute several
different isomorphic graphs for the same rewriting.

Indicatively2 and because of space restrictions, in fig. 6
we report the WLA average processing times of the original
query and the 5 proposed query rewritings for the PPI and
yeast datasets, as well as the corresponding percentages of
the hard queries. For the FTV methods, the best perform-
ing rewritings are ILF and ILF+DND, with the percentage
of hard queries being significantly improved. For the NFV
methods, the picture is slightly different. GraphQL shows
no considerable improvement with any individual rewriting;
as a matter of fact, there are rewritings leading to higher

2We obtained similar results for the synthetic dataset for the
FTV methods and the human dataset for the NFV meth-
ods. The sole exception was sPath, whose percentage of hard
queries increased slightly for the wordnet dataset.
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avg exec times than the original query. For sPath, the DND
and ILF+DND rewritings reduced the percentage of killed
queries from 2.8% to 2.4%. For QuickSI, ILF+DND reduced
the percentage of killed queries from 11.3% to 10.2%, but
DND only brought it down to 10.9%. More importantly,
note that there is no single rewriting that manages to im-
prove all algorithms across all datasets and workloads.

Observation 4: “Stragglers” can have isomorphic coun-
terparts which are not stragglers.

Please note that the max and average reported speedup∗

represent a lower-bound estimation because of the value 600”
that we use for the hard queries that were killed. Addition-
ally, in our calculations we do not include the few queries
that were killed for both the original instance and with all
the rewritings of the query (see §5.1 and §5.2).

6.1 FTV methods
Fig. 7 presents the average speedup∗QLA for the FTV

methods for the synthetic and PPI datasets (GGSX/synthetic
results omitted; see §3.4). Additionally, table 7 reports the
QLA stdDev, min, max and median of speedup∗QLA. More-
over, as we increased the size of the queries, speedup∗QLA

increased by up to 3 orders of magnitude (not visible in the
figure as results are aggregated). For the presented results,
median speedup∗QLA is close to min speedup∗QLA, evidenc-
ing again a wide variation in the benefits of the isomorphic
query rewritings. Keeping in mind that the majority of the
queries are easy (fig. 1), we conclude that large performance
gains can come from improving the hard queries.

6.2 NFV methods
Fig. 8 presents the average speedup∗QLA for the NFV

methods for the yeast, human and wordnet datasets (QuickSI
human/wordnet results omitted; see §3.4). Table 8 reports
the stdDev, min, max and median of the speedup∗QLA. The
performance of sPath could seemingly be improved by one
to two orders of magnitude across all datasets. The same
holds for QuickSI on yeast. GraphQL could also be im-
proved by more than a factor of 10× on the yeast and human
datasets. However, no significant improvement was possi-
ble for GraphQL on wordnet. The reason why this is so,
is somewhat subtle. Apart from what the algorithms are
doing internally to match the query, other culprits are the
characteristics of the actual stored graphs and the gener-
ated queries. Looking at the statistics of the graphs (table
2), yeast and especially wordnet are very sparse graphs with
small average node degree. Thus, the majority of the gen-
erated queries are paths and the rewritings based on node
degrees are not effective in this case. Additionally for word-
net, the small number of labels (only 5) and distribution of
the frequencies of the labels being highly skewed leads to
the generation of queries that in their majority contain only
1 or 2 labels, with the second label appearing only once. As
a result, the rewritings are of little use in these cases.

7. ALGORITHM-SPECIFIC STRAGGLERS
As we already mentioned in section 4, we notice that for

the NFV methods, different algorithms have different per-
centages of hard queries, leading to the conclusion that dif-
ferent algorithms find different queries hard. In this section
we elaborate on this observation.
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Figure 9: Avg speedup∗QLA when utilising different
algorithms on NFV methods

GraphQL sPath QuickSI

y
ea

st
2
a
lg stdDev 1094.57 1051.65 -

min 1.00 1.00 -
max 9189.36 9129.60 -

median 1.00 1.80 -

y
ea

st
3
a
lg stdDev 1596.47 1255.34 2162.97

min 1.00 1.00 1.00
max 13060.10 12403.70 12312.70

median 1.00 1.88 1.32

h
u
m

a
n

stdDev 1394.34 570.83 -
min 1.00 1.00 -
max 30873.80 4341.44 -

median 1.00 1.04 -
w

o
rd

n
et

stdDev 253.56 104.42 -
min 1.00 1.00 -
max 3733.78 932.58 -

median 2.47 1.00 -

Table 9: speedup∗QLA statistics when utilizing differ-
ent algorithms on NFV methods

Observation 5: “Stragglers” are algorithm-specific; i.e.,
by evaluating the same query workloads with various algo-
rithms, we have seen that a “straggler”-query for one algo-
rithm can be a typical query for the other algorithms.

Fig. 9 presents the average speedup∗QLA for the yeast,
human and wordnet datasets and for the tested algorithms.
In table 9, we additionally report the stdDev, min, max
and median of speedup∗QLA. For the yeast dataset, we
present the results with utilizing all 3 algorithms (noted as
yeast3alg), as well as with the pair of algorithms (GraphQL
and sPath) that we utilize for the remaining datasets (noted
as yeast2alg). For the yeast dataset, all tested queries were
helped by the use of different algorithms. In the human and
wordnet datasets, only 0.8% and 0.1% of the queries were
not helped by this scheme. Note that the speedup∗QLA val-
ues for using multiple algorithms are higher compared to the
speedup∗QLA values achievable with multiple query rewrit-
ings (see §6.2). This leads to the conclusion that the use of
multiple algorithms could be way more beneficial compared
to the rewritings, which are not always effective (§6.2).

8. THE Ψ-FRAMEWORK
In this section we present how we incorporate our findings

in a novel framework that exploits parallelism. The pro-
posed framework is called Ψ-framework (Parallel Subgraph
Isomorphism framework). Unlike recent related work [11,
16], by having different threads/machines working on differ-
ent versions of the problem our Ψ-framework exploits par-
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allelism in a novel way. We utilize Grapes and GGSX (as
well as GraphQL and sPath) as well-established FTV (resp.
NFV) methods. Within our Ψ-framework we have incorpo-
rated the original implementations of Grapes and GGSX as
provided by their authors, and of GraphQL and sPath as
found in [12].

In the FTV methods we leave intact the index construc-
tion and the filtering stages during query processing. In the
verification stage, for every graph in the candidate set, we
instantiate a number of threads equal to the number of the
isomorphic-query rewritings we utilize. These threads run
in parallel with each being assigned one rewriting of the ini-
tial query, and the first thread to finish is the “winner”; i.e.,
the rest of the threads are killed and the algorithm proceeds
with the verification of the next graph in the candidate set.

Ψ-framework for the NFV methods works similarly to the
verification stage of the FTV methods. However, we men-
tioned in observation 5 that stragglers disappear when us-
ing an alternative matching algorithm. We incorporate this
finding in our Ψ-framework by running simultaneously two
threads: one for sPath and one for GraphQL with the origi-
nal query. Again after the completion of the fastest thread,
the rest of them are killed.

On one hand we have seen that the more the isomorphic
instances we use, the better the speedup we gain in the graph
matching process. On the other hand, the instantiation and
synchronization of many threads come with a non-trivial
overhead, impacting the overall speedup. To this end, in our
performance evaluation we report on the speedup achieved
by several beneficial combinations of rewritings. We note
that our Ψ-framework is of course not the only solution
to the straggler-queries’ problem. Undoubtedly, it would
be preferable to choose the right isomorphic query instance
and/or algorithm to use to minimize the query execution
time. However, given the complex nature of the sub-iso
problem, we leave such design decisions for future work.

The cost of producing the query rewritings was measured
from a few tens (for smaller query sizes) to a few hundreds
(for the biggest query sizes) of µsecs; being a negligible over-
head to the overall query processing time, we ignore it in the
figures and omit any further discussion of this cost factor.

8.1 FTV methods
Fig. 10 and 11 present the avg speedup∗QLA and avg

speedup∗WLA respectively for utilizing different versions of
Ψ-framework on the FTV methods. Specifically, we present
the avg speedup∗QLA and avg speedup∗WLA of the following
versions of Ψ-framework: (a) ILF/ ILF+IND (2 threads),
(b) ILF/ ILF+DND (2 threads), (c) ILF/ IND/ DND (3
threads), (d) ILF/ IND/ DND/ ILF+IND (4 threads) and
(e) all 5 possible rewritings (5 threads). Our framework
proves highly beneficial for all algorithms and datasets. Al-
though not depicted in the figure, but as it was expected, by
increasing the number of threads running multiple rewritings
on the Ψ-framework, not only the avg execution time is sig-
nificantly improved but also the percentage of hard queries
is decreased, even leading to straggler-free executions. How-
ever, note that the Ψ-framework(ILF/ IND/ DND) (3 threads)
is only 3-8% worse compared to Ψ-framework(ILF/ IND/
DND/ ILF+IND) (4 threads) for Grapes/1 and Grapes/4.

As Grapes is designed as a multi-threaded application,
we additionally compare Grapes/4 against our Ψ-framework
running Grapes/1 with the following four rewritings (for to-
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Figure 10: Avg speedup∗QLA across different versions
of our framework on the FTV methods
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Figure 11: Avg speedup∗WLA across different versions
of our framework on the FTV methods
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Figure 12: Comparison of avg exec time over the
PPI dataset, for Grapes/4 against the Ψ-framework
with 4 rewritings over Grapes/1
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Figure 13: Avg speedup∗QLA across different versions
of Ψ-framework on the NFV methods

PPI yeast human wordnet

Grapes/4 6.29% - - -
GraphQL - 4.3% 10% 1.6%

sPath - 2.8% 4.4% 13%
Ψ-fram 2.06% 0% 0.7% 0%

Table 10: Percentage of killed queries of FTV meth-
ods and our Ψ-framework

tal of 4 threads as well): ILF, IND, DND, ILF+IND. The
results are presented in fig. 12 for the PPI dataset (results
for the synthetic dataset were similar). Table 10 reports the
percentage of killed queries for Grapes/4 and Ψ-framework
on PPI. As is obvious, although both contenders have the
same level of parallelism, Ψ-framework makes better use of
its threads and leads to lower query processing times.

8.2 NFV methods
Fig. 13 presents the avg speedup∗QLA for utilizing differ-

ent versions of Ψ-framework on the NFV methods (we omit
the figures for avg speedup∗WLA due to space constraints).
We utilize the following versions of Ψ-framework and the
corresponding number of threads: (a) Orig/ ILF/ ILF+IND
(3 threads) (b) Orig/ ILF/ IND/ DND (4 threads), (c)
Orig/ ILF/ IND/ DND/ ILF+IND (5 threads), and (d) Orig
+ all-rewritings (titled as all) (6 threads). For all tested
datasets and workloads, GraphQL benefited the least by the
rewritings. The biggest improvements appear in the human
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Figure 14: Avg speedup∗QLA for running multiple al-
gorithms against NFV methods on Ψ-framework
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Figure 15: Avg speedup∗WLA for running multiple
algorithms against NFV methods on Ψ-framework

dataset. We attribute this to the fact that this dataset com-
prises a denser graph with more labels, thus a larger portion
of “hard”queries benefited by our rewritings and framework.

Finally, fig. 14 and 15 depict the avg speedup∗QLA and the
avg speedup∗WLA for utilizing different algorithms and dif-
ferent versions of Ψ-framework on the NFV methods and
on yeast, human and wordnet, against vanilla GraphQL
and sPath respectively. We instantiated the following ver-
sions of our Ψ-framework with the corresponding number
of threads: (a) GraphQL-Orig/ sPath-Orig (2 threads), (b)
GraphQL-ILF/ sPath-ILF (2 threads), (c) GraphQL-IND/
sPath-IND (2 threads), (d) GraphQL-DND/ sPath-DND (2
threads). (e) GraphQL-Orig /sPath-Orig/ GraphQL-DND/
sPath-DND (4 threads). For both GraphQL and sPath, we
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were able to achieve up to 3 orders of magnitude improve-
ment with our Ψ-framework on both per-query and per-
workload metrics. Also, with the Ψ-framework, the percent-
age of hard queries was reduced and, for yeast and wordnet,
hard queries became extinct – see Table 10.

9. CONCLUSIONS
We have studied the subgraph isomorphism problem, in

both its decision and matching versions, using well-established
FTV and NFV methods respectively, and against several
different real and synthetic datasets of various characteris-
tics. Our research has revealed and quantified a number of
insights, concerning (i) the existence and role of straggler
queries in a method’s overall performance, (ii) the dramat-
ically varying performance of isomorphic queries, (iii) the
impressive impact that query rewriting can have when used
before executing the query with several algorithms, and (iv)
the fact that straggler queries are algorithm-specific. We
suggested and used both WLA and QLA metrics to fully
appreciate the performance of algorithms in the presence
of stragglers. A number of query rewritings were proposed
and our results showed that in many cases there existed one
rewriting that could offer great performance advantages –
with different rewritings being best for different queries. We
showcased that, for the NFV algorithms, when a query was
proved to be very expensive with one algorithm, another al-
gorithm would actually manage to compute its answer very
efficiently. These findings then naturally culminated into a
novel framework, which employs in parallel different threads,
each using a different well-known algorithm and/or a spe-
cific query rewriting, per query. This introduced dramatic
improvements (up to several orders of magnitude) to FTV
and NFV algorithms. We hope that our findings will open
up new research directions, striving to find appropriate, per-
query, isomorphic rewritings, in combination with alternate
per-query sub-iso algorithms that can yield large improve-
ments. Using machine learning models to predict which ver-
sion of our framework (algorithms, rewritings) to employ per
query is of high interest.
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ABSTRACT

Given a collection of objects, the reverse k-ranks query takes as
input a query object q in the set and returns the top-k objects that
rank q higher compared to where other objects rank q. This query
has been studied in the vector space, however, there is no previous
work in the context of graphs. In this paper, we propose a filter-
and-refinement framework, which prunes the search space while
traversing the graph in search for the reverse k-ranks query results.
We present an optimized algorithm and an index that apply on this
framework and boost its performance. The proposed techniques
are evaluated on real data; the experimental results show that our
solutions scale well, rendering the query applicable for searching
large graphs.

1. INTRODUCTION
Ranking queries (e.g., k-NN query [10], reverse k-NN query

[13], reverse top-k query [21], reverse k-ranks query [27]) have be-
come very popular in database management systems. Among them,
the reverse k-ranks query has been recently proposed as an en-
hancement of the reverse top-k query, which ensures the same num-
ber of results for any query input. Specifically, given a customer-

product vector space, where customers rank products, the reverse
top-k query takes as input a product and an integer k, and pro-
duces as output the k customers that rank the product higher com-
pared to its ranking by other customers. However, there is no prior
work on how to evaluate reverse k-ranks queries on graphs, where
graph proximity measures can be used to define the distance be-
tween nodes (and their ranking with respect to a query node).

Motivation. The reverse top-k query was extended to apply on
large graphs in [26, 25]. Given a query node and an integer k, this
query retrieves all other nodes that have the query node in the set of
their k nearest nodes, based on a proximity measure. We conducted
an experiment, where we apply reverse top-k queries (using short-
est weighted path as the proximity measure) on the DBLP author
collaboration graph [12]. Each node in the graph corresponds to an
author and two authors are connected by an edge if they have pub-
lished at least one paper together. Edges are weighted to reflect the
strength of the collaboration [17, 11]. The application of a reverse

c©2017, Copyright is with the authors. Published in Proc. 20th Inter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

top-k query is to let the query author know what other authors are
keen to collaborate with him/her. According to our experiments in
Section 6.2, for a large percentage of query nodes, the reverse top-
k query returns either very few or too many results. The fact that
reverse top-k queries do not have a fixed number of results limits
their utility, especially in applications such as graph based recom-
mender systems (e.g., tag recommendation [7], friendship recom-
mendation [14], product recommendation [19] and paper recom-
mendation [16]), where making recommendations to “cold-start”
users who are weakly connected to the rest of the data is an impor-
tant issue. On the other hand, the reverse k-ranks query returns a
result of fixed size (k) for any query node; hence, it is particularly
useful for new nodes of the graph (e.g., new social network users)
who have little influence to other nodes and for “hot” nodes, which
have very high influence but still want to shortlist the nodes that
they are most attracted to them.

Frank

George Sid Caroline

Bob AliceEric

1
.1

1

2.2

Figure 1: A Toy Example

EXAMPLE 1. Figure 1 illustrates a toy example. Seven researchers

form a weighted undirected graph. Alice is a new researcher and

she only has a weak connection with Bob. If we use shortest path

to measure proximity, we can get the rank matrix shown in Table

1. For example, Rank(Alice, Eric) is Eric’s position in the list of

nodes ordered by shortest path distance from Alice. Indeed, Eric

is the 2nd closest node (after Bob) to Alice with a shortest path

distance 1.2.

A reverse top-k query having Alice as the query node with k = 2
returns no results since Alice does not fall into any researchers’

top-2 list (See first column of Table 1). This means that this query

is not useful to Alice for recommending her researchers to collab-

orate with. On the other hand, a reverse 2-ranks query for Alice

returns a nonempty result {Bob, Caroline}, since both Bob and Car-

oline rank Alice higher compared to her rank by other researchers,

which means that these are the two researchers who are most likely

to collaborate with her. If the query node is Eric and we use a re-
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verse top-2 query, we will recommend all other six researchers to

him because of his close relationship to all of them; this result is

overwhelming and would not be useful to Eric. On the other hand,

a reverse 2-ranks query returns {Bob, Sid} (since Bob and Sid rank

Eric as 1st while others rank him as 2nd).

Table 1: Rank Matrix
Alice Bob Caroline Sid Eric Frank George

Alice - 1 3 5 2 4 6

Bob 3 - 2 5 1 4 6

Caroline 4 1 - 3 2 5 6

Sid 6 2 2 - 1 4 5

Eric 6 1 2 4 - 3 5

Frank 6 3 4 5 2 - 1

George 6 3 4 5 2 1 -

Applications. In the era of big data, large volumes of graph data
are becoming available. Reverse k-ranks queries over large-scale
graphs can find application in spatial network data analysis, col-
laboration recommendation, dating, etc. For example, the manage-
ment of a supermarket chain may want to investigate the space of
potential customers. Given a road network which includes com-
munities (i.e., estates) and supermarkets, a reverse k-ranks query
will return a list of k communities which rank a given supermar-
ket higher compared to where it is ranked by other communities,
based on its network distance. The result can be used by the man-
agement to conduct targeted advertisement and promotion. As dis-
cussed, reverse k-ranks queries can also be used for collaboration
and friendship recommendation in collaboration networks or social
networks.

Contribution. In this paper, we study the evaluation of reverse k-
ranks queries on large graphs, using shortest weighted path as the
measure of proximity between nodes. To the best of our knowl-
edge, there is no previous work on this problem. The special na-
ture of graph data does not allow the application of the approaches
proposed for reverse k-ranks queries in the vector space [27]. In
addition, extending existing solutions for top-k search and reverse
top-k search on graphs to compute reverse k-ranks queries is not
trivial. Specifically, for a top-k search we only have to find the top-
k proximity set of a single node q and for the reverse top-k search
we need to compute the top-k sets of all nodes in the graph and
check whether q appears in each of them. For the reverse k-ranks
query, we must calculate all rank sets of all nodes in the graph and
find the top-k ranks of q in them; therefore, a reverse k-ranks query
is substantially more expensive than top-k search and reverse top-k
search.

Our contributions can be summarized as follows:

• We study for the first time reverse k-ranks queries on large
graphs and propose a filter-and-refine graph browsing frame-
work to evaluate it. We propose effective bounds for the
ranks of the examined nodes that limit the set of nodes which
need to be accessed during query evaluation.

• We propose a dynamically refined, space-efficient index struc-
ture, which supports reverse k-ranks query evaluation. The
index is paired with an efficient online query algorithm, which
prunes a large number of nodes that are definitely in or not
in the reverse k-ranks result and reduces the required refine-
ments for the remaining candidates.

• We conduct an experimental study demonstrating the effi-
ciency of our framework, as well as the effectiveness of the
reverse k-ranks query in real graph applications.

The remainder of this paper is organized as follows. Section 2
provides a formal definition of reverse k-ranks search and discusses
a baseline brute-force solution. In Section 3, we present a funda-
mental theorem and our basic two-step framework. Two efficient
algorithms, Dynamic Bounded SDS-tree and Dynamic Bounded
SDS-tree with index, are proposed in Section 4 and Section 5 re-
spectively. Section 6 evaluates the effectiveness of reverse k-ranks
queries and the efficiency of the proposed framework. In Section 7,
we briefly discuss previous work related to reverse k-ranks queries.
Finally, Section 8 concludes the paper.

2. PROBLEM DEFINITION
A formal definition of the reverse k-ranks query is given below:

DEFINITION 1. (Rank(s,t)) Consider a weighted graph G =
(V,E), consisting of a set of nodes V and a set of edges E. Each

edge in E carries a non-negative weight. For any two nodes s, t ∈
V , let d(s, t) denote the shortest path distance from s to t, which

is defined by summing up the weights of the edges along the short-

est path from s to t. Let S be the set of nodes that satisfy ∀pi ∈
S, d(s, pi) < d(s, t) and ∀pj ∈ (V −S−{t}), d(s, pj) ≥ d(s, t).
Then, Rank(s, t) = |S|+1 where S ⊂ V and |S| is the cardinal-

ity of S.

DEFINITION 2. (Reverse k-Ranks Query on a Graph) Given a

weighted graph G = (V,E), a query node q and a positive integer

k, the reverse k-ranks query returns a subset T of V , such that

|T | = k and ∀pi ∈ T , ∀pj ∈ (V − T − {q}), Rank(pi, q) ≤
Rank(pj , q).

Computing the reverse k-ranks set of a query node q is not trivial.
A naive method, for each node pi ∈ V , traverses the graph to
find the distances to all other nodes from pi in increasing order
(i.e., using Dijkstra’s algorithm) until q is encountered; this can
give us Rank(pi,q). During this process, the top-k of these ranks are
maintained in a heap and eventually returned as results. Obviously,
this method is very expensive. Another possible solution is to apply
multiple reverse top-k′ queries with an increasing k′ value, until the
number of results is similar to the k value of the reverse k-ranks
query. This solution, apart from only giving an approximate result,
is also expensive because the number of required reverse top-k′

queries could be large and there is no straightforward method for
evaluating them incrementally.

3. GENERAL TWO-STEP FRAMEWORK
To process reverse k-ranks queries efficiently, we design a two-

step framework. First, we build a Shortest Distance Search tree
based on the given query node and use it to prune the space of can-
didate nodes. Second, in a refinement step, we compute Rank(pi,q)
for each surviving candidate node pi; during this process, the top-k
nodes are maintained in a priority queue and they are finally output.
Although our examples and illustrations are on undirected graphs,
our solutions can directly be applied to directed graphs.

3.1 Filter step: SDS-Tree
Given a graph G = (V,E), the Shortest Distance Search tree

(SDS-tree) rooted at vertex q is a spanning tree Tq of graph G, such
that the path distance from any other vertex p to q is the shortest
path distance from p to q in G. SDS-Tree is similar to the Dijkstra
tree [4], but on the transpose graph GT , which can be different to G
if G is directed. GT is a directed graph on the same set of vertices
as G, but with all of the edges of G reversed. That is, if G contains
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Algorithm 1 Basic SDS-tree Construction

1: procedure REVERSEKRANK(q,G)
2: Priority Queue Q← {q : 0} ⊲ nodes to visit
3: R← ∅ ⊲ reverse k-ranks result
4: D ← ∅ ⊲ nodes visited
5: kRank ← Inf ⊲ k-th top rank in R
6: while Q do

7: top← Q.pop()
8: D ← D

⋃

{top}
9: top.rank ← GetRank(top, kRank)

10: if top.rank 6= −1 then ⊲ Theorem 1
11: Update R
12: kRank ← new k-th rank in R
13: for t in top.neighbors() do

14: if t /∈ D then

15: dis← top.dis+ d[top][t]
16: if t ∈ Q and t.dis > dis then

17: t.dis← dis
18: else

19: t.dis← dis
20: Q.push(t)

21: return R

an edge (u, v) then GT contains an edge (v, u) with same weight
and vice versa. If G is undirected, then GT = G.

To build the SDS-tree for the query input node q, we run Dijk-
stra’s algorithm on the reversed edges of the graph (Algorithm 1).
Specifically, we maintain a priority queue of the current shortest
distance from each node to query node q. Each time, we dequeue
the node t with the shortest distance d(t, q), add t to the tree by
making it a child of its successor node in the shortest path from t
to q, and update the distance from t’s neighbors to query node q.
At the same time we conduct a rank refinement for t; that is we
compute Rank(t, q). This rank refinement procedure (GetRank in
Line 9 of Algorithm 1) will be explained shortly. During the tree
construction process, every time we dequeue a node t and after
updating Rank(t, q), we maintain the set R of the nodes with the
lowest Rank(t, q) values (to be output at the end of the algorithm).
The largest of the k lowest Rank(t, q) values so far is denoted by
kRank and serves as a bound. The tree construction finishes when
the shortest paths from all nodes to q have been determined.

For a large graph, constructing the entire SDS-tree is too expen-
sive. We now show some nice properties of the SDS-tree that can
help us to compute the reverse k-Ranks results, without having to
build the whole tree.

LEMMA 1. Consider a weighted graph G = (V,E) and two

nodes p, q ∈ V . For any node p′ whose shortest path to q passes

through p, Rank(p′,q) ≥ Rank(p,q).

PROOF. According to Definition 1, there must exist two sets
S and T , such that Rank(p,q)=|S| + 1 and Rank(p′,q)=|T | + 1.
The aim here is to prove that S ⊂ T , which means that |S| ≤
|T |. By definition, we know that ∀pi ∈ S, d(p, pi) < d(p, q).
Since all weights are non-negative, we further have d(p′, p) ≥ 0.
Also, a path from p′ to any pi passes through p, which means that
d(p′, pi) ≤ d(p′, p) + d(p, pi). As a result, we have d(p′, pi) ≤
d(p′, p) + d(p, pi) ≤ d(p′, p) + d(p, q) = d(p′, q), therefore
∀pi ∈ S, pi ∈ T ; i.e., S ⊂ T .

Based on Lemma 1, we can easily obtain the following funda-
mental theorem:

THEOREM 1. Given a SDS-tree Tq rooted at q and a node p of

Tq , for any descendant p′ of p, Rank(p′,q) ≥ Rank(p,q).

Based on Theorem 1, we can conclude that, given a SDS-tree Tq

rooted at q, if node p is not in the reverse k-ranks query result of
node q, then no child of p can be part of the result. This means that
p’s children need not be added to Tq during the tree construction;
this can greatly limit the number of nodes p′ that are added to the
tree and for which Rank(p′, q) needs to be computed.

3.2 Rank Refinement
During the SDS-tree construction, for each node p that we visit

and it is a candidate reverse k-ranks result, we have to apply a rank

refinement procedure which computes Rank(p, q). This is done by
counting all nodes whose distance from p is shorter than d(p, q).
For this purpose, we build a partial Dijkstra tree starting from node
p and we stop when we find q. The number of nodes that we en-
counter by this search is Rank(p, q).

Recall that in Algorithm 1 we keep track of the set R of the
lowest Rank values so far and of the current k-th top Rank value,
denoted by kRank. During the refinement of Rank(p, q), p can
be pruned as soon as the number of nodes in the partial Dijkstra
tree before reaching q is larger than kRank − 1, since in this case
p has no potential to become a reverse k-ranks result, as well as
its children nodes in the SDS-tree. The rank refinement step for a
node is described by Algorithm 2.

Algorithm 2 Rank Refinement Algorithm

1: procedure GETRANK(node, kRank)
2: Priority Queue Q← {node:0} ⊲ Nodes to visit
3: D ← ∅ ⊲ Nodes visited
4: rank← 1
5: while Q do

6: top← Q.pop()
7: D ← D

⋃

{top}
8: for t in top.neighbors() do

9: if t not in D then

10: dis← top.dis+ d[top][t]
11: if t ∈ Q and t.dis > dis then

12: t.dis← dis
13: else if t /∈ Q and node.dis > dis then

14: t.dis← dis
15: Q.push(t)
16: rank ← rank + 1
17: if rank > kRank then

18: return −1 ⊲ Definition 2

19: return rank

For the example of Figure 1, the SDS-tree is the same as the
Dijkstra tree since G is an undirected graph (see Figure 2). Assume
that k=2. The priority queue initially has ‘Alice’ as top element;
after that, Algorithm 1 will perform rank refinement for Bob and
get Rank(Bob,Alice) = 3. Since Bob can be in the reverse 2-
ranks results of Alice, the neighbors of Bob (i.e. Caroline and Eric)
are added to the priority queue Q. Because Eric’s distance to Alice
is shorter than that of Caroline, we will first do rank refinement of
Eric, and get Rank(Eric,Alice) = 6. Then, the neighbors of Eric
(i.e. Sid, George and Frank) will all be added to the priority queue.
Then, since Caroline has the shortest distance to Alice, we will do
rank refinement for it and get Rank(Caroline,Alice) = 4. After
that, Frank, Sid and George will be rank-refined one by one.
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Figure 2: The SDS-tree for Example 1

4. DYNAMIC BOUNDED SDS-TREE
The filter-and-refinement framework described in the previous

section significantly reduces the search space and it is much faster
than the brute-force approach of computing the entire rank matrix.
On the other hand, there may still be many false hits, i.e., nodes
which are ranked-refined without ending up in the reverse k-ranks
result. In Algorithm 1, each node is decided to be a candidate or
not, immediately after refining its parent at the SDS-tree. However,
at the time when a node p is dequeued, the current reverse k-ranks
result (and the bound kRank) may have changed and it might be
then possible to prune p just before its rank-refinement. We pro-
pose a Dynamic Bounded SDS-tree (DSDS-tree) approach, which
is based on the idea of delaying the decision whether a node is a
candidate to just before its rank refinement and on using a set of
bounds to potentially prune the node.

In the DSDS-tree approach we maintain for each node p in the
priority queue Q a lower bound of Rank(p, q). p will be consid-
ered as a candidate right when it is dequeued; then, it is rank-refined
only when its Rank lower bound is lower than the current k-th top
Rank value (i.e. kRank). Only then p has a chance to enter the
reverse k-Ranks query result. Specifically, we set the lower bound
of Rank(p, q) for each node p in DSDS-tree Tq rooted at node q as
the maximum of the following three quantities: the depth of node p
in tree Tq , the Rank value of its parent nodes, and the times visited
so far during the rank-refinement of other nodes. Formally,

THEOREM 2. Consider a DSDS-tree Tq rooted at query node q.

For any node p whose depth is h and parent node is p′, Rank(p,q)≥
max(h, Rank(p′,q), p.lcount), where p.lcount is the number of

visited times for node p during the rank refinements of other nodes

before actual refinement of node p itself.

We can prove Theorem 2 by showing that each of the three quan-
tities constitutes a lower bound by itself, therefore their maximum
is a lower bound (the tightmost one, hence the most useful). In fact,
we have already shown that Rank(p′, q) is a lower bound (Lemma
1). Now, we will prove the other two bounds.

We first demonstrate that Rank(p, q) should not be less than the
depth of node p in DSDS-tree Tq .

LEMMA 2. Consider the DSDS-tree Tq of a query node q and

suppose the depth for root is 0. For any node p whose depth is h,

Rank(p,q)≥ h.

PROOF. If p is at depth h, then the shortest path from p to q
passes through n = h−1 nodes, i.e., the path is {p, p1, p2, ...pn, q}.
Since ∀i ∈ [1, n], d(p, pi) < d(p, q), we have Rank(p, q) > n,
i.e., Rank(p, q) ≥ h.

We next show that Rank(p, q) should not be less than the times
that node p was visited during the rank-refinements of other nodes,
before being refined itself.

LEMMA 3. Consider a weighted graph G = (V,E) and two

nodes p1, p2 ∈ V , such that d(p1, q) ≤ d(p2, q). If d(p1, p2) <
d(p1, q) holds, d(p2, p1) < d(p2, q) also holds.1

PROOF. d(p2, p1) = d(p1, p2) < d(p1, q) ≤ d(p2, q), so d(p2, p1)
< d(p2, q) holds.

LEMMA 4. Given a DSDS-tree Tq for a query node q, for any

node p which has been visited during the rank refinements of other

nodes for p.lcount times before refinement of node p itself, Rank(p,q)≥
p.lcount.

PROOF. For any node p, let T be the set of nodes which have
been visited during the refinement of any node p′ ∈ T before node
p itself, where |T | = p.lcount. This means that d(p′, q) ≤ d(p, q)
and d(p′, p) < d(p′, q). Based on Lemma 3, we can conclude that
d(p, p′) < d(p, q), which means that Rank(p,q)≥ p.lcount.

In order to use Theorem 2, while building the dynamic SDS-Tree
rooted at node q, we also need to maintain a priority queue of the
current shortest distances from each node to query node q. Each
time, we dequeue the node t with the shortest distance d(t, q), we
add t to the tree by making it a child of its successor node in the
shortest path from t to q, and update the distance from t’s neigh-
bors to query node q if t successfully entered the current reverse
k-ranks result set (as in Section 3). However, unlike the static SDS-
tree, where for all nodes maintained in the priority queue we per-
form their rank refinement when we visit them, the dequeued nodes
in the dynamic SDS-Tree are only rank-refined if their rank lower
bound is smaller than the current kRank.

Consider the example in Figure 1. Similar to the basic frame-
work of Section 3, the priority queue will initially have ‘Alice’ as
root first. After dequeuing Alice and adding her neighbors in the
queue, we will dequeue and rank-refine Bob to get
Rank(Bob,Alice) = 3. Then, the neighbors of Bob (i.e. Car-
oline and Eric) will enter the priority queue. The rank refinement
of Eric follows, giving Rank(Eric,Alice) = 6. Then, neigh-
bors of Eric (i.e. Sid, George and Frank) will all enter the priority
queue. Next, we will do the rank refinement of Caroline and get
Rank(Caroline,Alice) = 4. The process can terminate here,
since the lower bounds of ranks for Frank, Sid and Gorge are al-
ready larger than kRank. As a comparison, note that we would
still have to do rank refinement for Frank, Sid and Gorge in the
basic framework.

The lower-bound of Rank for each node can be dynamically up-
dated during rank refinement steps. When meeting node t in the
rank refinement of node p, we can update t.lcount by adding 1,
which can be done in constant time using a hash table. The whole
space complexity will be O(|V |), but in practice we need much
less space as the framework does not visit the nodes which are far
from q.

5. INDEX-BASED SEARCH
In this section we propose an indexing approach which, when

paired with the method presented in Section 4, can help to further
reduce the cost of reverse k-ranks queries. A naive solution in this
direction would be to precompute the entire rank matrix of size
|V | ∗ |V |. Starting from each node u, we can run a single-source
shortest-path (SSSP) algorithm, i.e., build the entire Dijkstra tree,
which can order all other nodes v by increasing Rank(u, v) value.
After computing the rank matrix, for each node v, we can sort the
corresponding column of the matrix and obtain a ranked list of all

1This lemma holds for undirected graphs only. Therefore the
count-based bound is not used in the case of directed graphs.
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Algorithm 3 Build Dynamic SDS-Tree with Index Algorithm

1: procedure REVERSEKRANK(q,G)
2: Priority Queue Q← {q : 0} ⊲ Nodes to visit
3: R← top-k in reverse_rank_dict ⊲ result so far
4: D ← ∅ ⊲ Nodes visited
5: kRank ← k-th top Rank in R
6: while Q do

7: top← Q.pop()
8: D ← D

⋃

{top}
9: if top ∈ R then

10: for t in top.neighbours() do

11: if t /∈ D then

12: dis← top.dis+ d[top][t]
13: if t ∈ Q and t.dis > dis then

14: t.dis← dis
15: else

16: t.dis← dis
17: Q.push(t)

18: LBound ← max(top.height, top.parent.rank,
top.lcount, check_dic[top])

19: if LBound ≥ kRank then

20: continue

21: top.rank ← GetRank(top, kRank)
22: if top.rank 6= −1 then ⊲ Theorem 1
23: Update R
24: kRank ← new k-th rank in R
25: for t in top.neighbours() do

26: if t /∈ D then

27: dis← top.dis+ d[top][t]
28: if t ∈ Q and t.dis > dis then

29: t.dis← dis
30: else

31: t.dis← dis
32: Q.push(t)

33: return R

other nodes u with respect to Rank(u, v). For any reverse k-ranks
query q, we can then return as results the first k nodes in the ranked
list of q. The problem of this naive solution is that it is too ex-
pensive to precompute the entire rank matrix for very large graphs.
Instead, we propose to only select a subset of H nodes, called hubs,
and only run M iterations of SSSP from each hub node s to obtain
s’s top-M list of nearest nodes. For each node ti, i = {1, 2, ...,M}
in this list, we simply know that Rank(s, ti) is the order of ti in the
list. The index also includes two additional components: a Check

Dictionary and a Reverse Rank Dictionary, to be explained in Sec-
tion 5.2. The index can facilitate the evaluation of reverse k-ranks,
for k values not exceeding a parameter K. Index parameters H ,
M , and K are defined based on a precomputation cost/ speedup
tradeoff. The larger these values are the more time it takes to create
and maintain the index; on the other hand, reverse k-ranks queries
are evaluated faster. In Section 6 we study the overhead and effec-
tiveness of the index for various values of these parameters.

In the following, we first describe strategies for selecting the hub
nodes and then show how we can use the precomputed information
to initialize the index that can help to accelerate the computation of
reverse k-ranks queries.

5.1 Hub Selection
We propose the following three strategies for selecting the hubs:

random, degree first, closeness first. These strategies are experi-

Algorithm 4 Dynamic Rank Refinement with Index Algorithm

1: procedure GETRANK(node, kRank)
2: Priority Queue Q← {node:0} ⊲ Nodes to visit
3: D ← ∅ ⊲ Nodes visited
4: rank← 1
5: while Q do

6: top← Q.pop()
7: D ← D

⋃

{top}
8: Update reverse_rank_dict
9: for t in top.neighbours() do

10: if t not in D then

11: dis← top.dis+ d[top][t]
12: if t ∈ Q and t.dis > dis then

13: t.dis← dis
14: else if t /∈ Q and node.dis > dis then

15: t.dis← dis
16: Q.push(t)
17: rank ← rank + 1
18: t.lcount← t.lcount+ 1
19: if rank > kRank then

20: check_dic[node]←D.size()
21: return −1 ⊲ Definition 2

22: check_dic[node]← rank
23: return rank

mentally evaluated in Section 6.
Random: We select the hubs randomly; this is used as a baseline

to show the significance of other strategies.
Degree First: We select the vertices with the highest out-degrees

as hubs. The reasoning behind this strategy is that vertices with
higher out-degree have higher chances to connect with short short-
est paths to many other vertices and therefore they have higher
probability to be reverse k-Ranks query results.

Closeness First: We select as hubs the vertices with the highest
closeness centrality. If we define farness of a node v as the sum of
its distances from all other nodes, then closeness centrality is de-
fined as the reciprocal of farness, which is C(v) = 1/

∑

u
d(u, v)

[2, 18]. Since computing exact closeness centrality for all vertices
requires O(|V | · |E|) time [3] even for sparse graphs, we approxi-
mate closeness centrality by randomly sampling a small number of
vertices and computing distances from those vertices to all vertices
as in [1].

H = 4

M = 3

K = 2
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Figure 3: Index

5.2 Index Creation
After selecting H hubs following one of the heuristic strategies

mentioned above, we build the index by running the SSSP algo-
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rithm from each hub node u and stopping after obtaining the M
nearest nodes from u. For each hub we store the list of M near-
est nodes with their ranks. The index has two components: 1) the
Check Dictionary; a hash-map, having nodes as keys and the num-
ber of steps SSSP has taken starting from these nodes as values
(i.e., it contains an entry {u : M}, for each hub node u at the be-
ginning); and 2) the Reverse Rank Dictionary; a set of adjacency
lists, each corresponding to a node v and containing the current re-
verse K-ranks result of v ordered by rank value from small to large
(recall that K is the maximum possible value of k).

Following the running example, suppose we choose {Sid, Frank,
Bob, Eric} as the hubs, and precompute their top-3 rank list (i.e.,
H = 4 and M = 3). This gives us the rank matrix shown at
the top of Figure 3. Assume that the largest possible value for k
is K = 2. Then, we can set up the index with the following two
parts. The Check Dictionary is {Sid:3, Frank:3, Bob:3, Eric:3}
since from these four hub nodes we have so far retrieved the 3
nearest neighbors. The Reverse Rank Dictionary stores the exist-
ing reverse K-ranks result list for each hub node. Consider, for
example, hub node Bob; we already know three Rank values, i.e.
Rank(Eric,Bob) = 1, Rank(Sid,Bob) = 2 and Rank(Frank,
Bob) = 3, but we only need to store the top-2 ranks in the Reverse
Rank Dictionary, i.e., Rank(Eric,Bob) = 1 and Rank(Sid,Bob)
= 2.

5.3 Querying and Index Updates
The proposed index is dynamic and can be updated whenever a

new reverse k-ranks query is evaluated. For a new query node q,
we first look up the Reverse Rank Dictionary to get any existing
reverse k-ranks query results for q, which can give us an estimation
for the k-th top Rank value (i.e. kRank). However, what we get
from the index may not be the final query result; we may have to
conduct more graph exploration. For this, we follow the general
two-step framework described in the previous sections: we build
the dynamic bounded SDS-tree, and do rank-refinement for can-
didate nodes. The index allows us to have a better estimation of
the rank value Rank(u, q) for each candidate node u: if u is in
the Reverse Rank Dictionary of q, there is no need to do rank re-
finement for node u; if u is not in the Reverse Rank Dictionary of
q, but the value of node u in the Check Dictionary is no smaller
than the current kRank value, there is also no need to do rank re-
finement for node u (i.e., u can be pruned). Otherwise, we have
to do rank refinement for node u. For this purpose, we conduct
SSSP search from u. During SSSP search, until the rank value of
the nodes that we visit exceeds Check Dictionary[u], we have to
update Reverse Rank Dictionary. Specifically, if we reach node
v with Rank(u, v) = t1, and t1 is smaller than the highest rank
value of Reverse Rank Dictionary[v], then we have to update Re-

verse Rank Dictionary[v] with {u : t1}. After finishing the rank
refinement step from node u with Rank(u, v) = t2, we also need
to update the Check Dictionary with {u : t2}. Algorithms 3 and 4
show how the search algorithm and its rank refinement module are
adapted to use the index.

Following the previous example, we select {Sid, Frank, Bob,
Eric} as the hubs, and precompute their top-3 ranks list as initial
index. Consider Alice as the query. The index will be updated as
shown in Figure 4. The index initially is as shown in Figure 3. The
first step is to do rank refinement for Bob. However, as we can see
in the index, the Reverse Rank Dictionary of Alice has {Bob:3},
which means that we need not update or compute anything and we
can just turn to Eric directly. During the rank-refinement step of
Eric, we also get the rank of other nodes for node Eric, and we can
update the Check Dictionary and Reverse Rank Dictionary corre-

spondingly: We add {Eric: 4} for Sid, {Eric: 5} for George, and
finally {Eric: 6} for Alice, which is also the query node. After
we reach Alice starting from Eric with Rank equals to 6, we also
update the Check Dictionary with {Eric: 6}. Continuing this way,
we proceed to rank-refine the next node (Caroline), and terminate,
after updating again the Check Dictionary and the Reverse Rank

Dictionary. Even though index updates incur extra costs (com-
pared to the algorithm presented in Section 4), the updated index
can help to speed up processing of future reverse k-ranks queries,
as we demonstrate in the next section.

The space complexity for Check Dictionary and Reverse Rank

Dictionary is O|V |) and O(K · |V |), respectively. The overall
space complexity for both index componets isO(K ·|V |). The time
complexity of building the index is reduced from O(|V | · (|V | +
|E| · log |V |)) of the whole matrix building to O(H · (M + |E∗| ·
logM)) now, where |E∗| is the number of edges linked with M
nodes, estimated as |E∗| = M · |E|/|V | and bounded by O(|E|).

6. EXPERIMENTAL EVALUATION
In this section, we conduct an experimental evaluation for the

effectiveness of reverse k-ranks queries on large graphs and verify
the efficiency of our proposed algorithms. All tested methods were
implemented in C++ and the experiments were conducted on a In-
tel(R) Xeon(R) CPU E7-4870 @ 2.40GHz machine, with 1 TB of
main memory.

6.1 Datasets
Datasets DBLP, Epinions and SF are used in our experiments.

General statistics of the three datasets are shown in Table 2.

Table 2: Data Sets
DBLP Epinions SF

# of Nodes 1,314,050 75,879 321,678

# of Edges 18,986,618 508,837 800,172

Average Degree 14.45 6.71 2.49

Dataset DBLP2 contains the collaboration graph of DBLP in
May 2015. There are 1,314,050 nodes and 18,986,618 edges in this
dataset. Each node in the graph denotes an author and authors who
have collaborated are linked by edges. The edge weight between
two nodes u and v is set to 1 divided by the number of co-authored
papers by u and v increased by log2 deg(u) + log2 deg(v) with
normalization, where deg(u) is the degree of node u [17, 11]. Set-
ting the edge weights like this can produce less ties in the result set,
which is important for unambiguous ranking quality evaluation.

Dataset Epinions3 includes an online social network from the
trust based reputation system Epinions.com. There are 75,879 nodes
and 508,837 edges in this directed graph. Each node is a user of the
system. One user can indicate whether he/she ‘trust’ another user’s
review (i.e., whether it is useful to him/her) and one trust statement
forms an edge from the declarer to the target. Edge weights are
sampled from a Zipf distribution with a skewness parameter α = 2,
as in [23].

Dataset SF contains locations of stores and road network infor-
mation in San Francisco bay area. There are 408 stores in this
dataset, which are crawled from GeoDeg4. The road network was
made public during the 9th DIMACS Implementation Challenge5.

2http://konect.uni-koblenz.de/networks/dblp_coauthor
3http://snap.stanford.edu/data/soc-Epinions1.html
4http://geodeg.com
5http://www.dis.uniroma1.it/challenge9/download.shtml
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Figure 4: Index Update

There are 321,270 nodes and 800,172 edges in the network. Each
store is mapped to the nearest network node. The weight on an
edge (u, v) models the travel time between nodes u and v.

6.2 Effectiveness Analysis
To demonstrate the effectiveness of graph based reverse k-ranks

queries, we conduct analysis at different levels of granularity that
illustrate the problems of reverse top-k and top-k queries and the
superiority of reverse k-ranks queries.

6.2.1 Coarse-grained Analysis

In our coarse-grained analysis, we investigate the results of top-k
and reverse top-k queries on the DBLP dataset.

Reverse top-k query. Table 3 shows some statistics about the
result sizes of reverse top-k queries on the DBLP dataset. k varies
from 5 to 100. From the results, we can see that the size of re-
sult sets is not balanced. Reverse top-k queries return results of
different cardinality for different query nodes. No matter what the
value of k is, there always exists a large percentage of query nodes
with empty reverse top-k result sets. When we increase the value
of k from 5 to 100, the number of query nodes whose result set is
empty decreases, but it remains in the same order of magnitude. At
the same time, the largest result set size increases to 6,385, which
is impractical to users.

Table 3: Reverse Top-k Result Set Size
k 5 10 20 50 100

largest set size 327 560 1,031 2,596 6,385

# of empty set 315,424 240,378 190,105 155,927 148,238

# of small set (≤ 5) 1,004,448 757,906 529,390 301,321 213,192

# of large set (≥ 100) 332 3,765 32,686 158,412 311,874

Top-k query. The problem of the top-k queries is that they are
unilateral, i.e., the nodes that the query node ranks highest may
not rank the query node high as well. To illustrate this problem,
we investigate whether query nodes and the returned nodes have
each other in their top-k results. We use ✶(i, j) to indicate whether

nodes i and j agree with each other:

✶(i, j) =

{

1, if i ∈ topk[j] and j ∈ topk[i]
0, otherwise

where topk[j] is the set of k-nearest nodes to j. Then the agree-

ment rate can be calculated as:

agreement rate =

∑

i

∑

j∈topk[i]
✶(i, j)

∑

i
|topk[i]|

Table 4 shows the agreement rate for various values of k. From
the result, we can see that only less than half of the nodes in a top-
k result also include the query node in their own top-k lists, i.e., a
low agreement rate. Therefore top-k queries cannot be used as a
substitute of reverse top-k and reverse k-ranks queries.

Table 4: Agreement Rate of Top-k Queries on DBLP
k Value 5 10 20 50 100

Agreement Rate(%) 48.53 44.65 41.10 37.88 35.65

6.2.2 Fine-grained Case Study

Wellcome and Parknshop are the two most popular supermar-
ket chains in Hong Kong, having branches almost everywhere. We
randomly choose a Wellcome and a Parknshop supermarket nearby
on Google Maps, locate their nearby representative communities,
and measure the road network distance between them as shown in
Figure 5. In this case study, as we can see, the nearest represen-
tative community to Parknshop is B, however, if someone lives in
B, he/she will prefer Wellcome to Parknshop since Wellcome is
nearer. Instead, A and D would prefer Parknshop over Wellcome.
Thus, the result of a top-1 query for Wellcome and Parknshop (B
in both cases) is less meaningful for recommendation or advertise-
ment compared to the result of the reverse-1 ranks query (B and A,
respectively).

The reverse top-1 query here returns {A,D} for Parknshop and
{B,C,E, F,G} for Wellcome, which is reasonable compared to
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Figure 5: Case Study of Wellcome and Parknshop

Table 5: Parameters (default values in bold)
Parameter Values

k 5,10,20,50,100

h = H/|V | 0.03,0.05,0.07,0.1,0.15

m = M/|V | 0.03,0.05,0.07,0.1,0.15

hub strategy Random, Degree First, Closeness First

top-1 query, though with unfixed size. However, the relatively large
size of results also means higher cost for promotion for the com-
panies. On the other hand, the reverse k-ranks query defines an
ordering of the communities with respect to their preferences on
the supermarkets which can be used to prioritize market promotion
to the communities that have higher chances to use it, in case of a
limited budget.

6.3 Efficiency Analysis
In this section, we evaluate the performance of the reverse k-

ranks approaches proposed in this paper, namely the static SDS-
tree (Section 3), the dynamic SDS-tree (Section 4), and the dy-
namic SDS-tree with index (Section 5). We first measure the cost
of the approaches as a function of different parameter values of the
problem and the index. Then, we evaluate the effectiveness of the
bounds used by the dynamic SDS-tree method. Next, we assess the
cost of updating the index, and finally we study the efficiency of
our methods on bichromatic instances of the problem.

6.3.1 Varying the Parameter Values

We evaluate the performance of our methods as a function of
the following parameters: (1) size of the result set k, (2) percent-
age of hub nodes h = H/|V |, (3) percentage of ranked nodes in
each index entry m = M/|V |, (4) hub selection strategy. Table 5
summarizes the range of values and the default value of each pa-
rameter. We measure performance by means of (i) query time and
(ii) pruning power. For each setting of parameter values we run
1000 random queries and average the measures. Pruning power
is measured by the average number of times the Rank Refinement
function is called (we call this measure Rank Refinement in the
following). The larger the Rank Refinement value is, the lower the
pruning power of the method is.

Effect of k. To study the effect that the result size k has in the
performance of reverse k-ranks queries, we fix the other param-

Table 6: Results with Different h on DBLP
Hub Percentage h Index Size Query Time (s) Rank Refinement

0.03 1.2G 2.80015 166.702

0.05 1.2G 2.77694 151.608

0.07 1.2G 2.74801 139.514

0.1 1.2G 2.60599 124.591

0.15 1.2G 2.59796 124.591

Table 7: Results with Different h on Epinions
Hub Percentage h Index Size Query Time (s) Rank Refinement

0.03 25M 1.102102 70.431

0.05 27M 1.015720 66.483

0.07 29M 1.007760 63.699

0.1 30M 0.940826 59.044

0.15 32M 0.919234 51.488

eters to their default values (see Table 5), and vary k from 5 to
100. As Figure 6 shows, the evaluation cost increases with k,
which is consistent with the expectation that the search space and
the number of candidates increases with k. Note that the dynamic
approach has significantly reduced average query time for both
datasets, which can be explained by the greatly reduced number of
rank-refinements. The indexing method further reduces the query
time to less than a few seconds, with the help of the precomputed
index. We observe that the index has a greater effect on time for
smaller values of k on DBLP, which can be explained by the fact
that the information needed by the queries has higher chance to
already be present in the index for smaller values of k. Besides,
as we can see, the index works better for Epinions than for DBLP
when k is large. This is because of larger average degrees in DBLP.
In DBLP, even though the number of Rank Refinement calls is re-
duced significantly, the reduction of the average query time is not
as high. This is due to the fact that the index mainly helps to avoid
rank refinements that are cheap (they correspond to cases where
the resulting rank is low). DBLP is a much larger and denser graph
than Epinions and it is often the case that the reverse k-ranks of
a query q are nodes that are quite far from q (i.e., they have low
ranks). Therefore the rank refinements that are not avoided can be
quite expensive, so the numerous cheap rank-refinements that are
prevented due to the index have less profound effect to the query
cost.

In order to assess the effectiveness of our framework, we also ran
tests using a naive reverse k-ranks method, described at the end of
Section 2. Given the query node q, this method naively computes
Rank(p, q) for every node p ∈ V , by running SSSP from p until
q is encountered. The top-k Rank(p, q) values are tracked and
eventually returned to the user. For k = 1, the average runtime
of this naive approach on Epinions is 701.18s with 75878 Rank
Refinements (For DBLP dataset, the average runtime of this naive
approach is over 2000s, which is terminated by us manually), i.e.,
the naive method is significantly slower than the static SDS-tree
approach and the dynamic SDS-tree approach with index.

Effect of hub percentage. The second parameter of which the
effect we investigate is h = H/|V |, i.e., the percentage of hubs in
the index. As shown in Tables 6 and 7, on both datasets, the average
query time and the number of Rank Refinement calls decrease as h
increases. Still, even for small h values, the query cost is not much
higher compared to the default value. On the other hand, the index
size is bounded and does not increase significantly as h increases.

Effect of index percentage. The third parameter that we study is
m = M/|V |, i.e., the percentage of precomputed neighbors for
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Figure 6: Results with Different k

Table 8: Results with Different m on DBLP
Index Percentage m Index Size Query Time (s) Rank Refinement

0.03 1.2G 2.756210 125.358

0.05 1.2G 2.723310 124.952

0.07 1.2G 2.626200 124.669

0.1 1.2G 2.605990 124.591

0.15 1.2G 2.577100 124.291

Table 9: Results with Different m on Epinions
Index Percentage m Index Size Query Time (s) Rank Refinement

0.03 22M 0.970253 60.900

0.05 26M 0.963204 60.201

0.07 28M 0.954575 59.817

0.1 30M 0.940826 59.044

0.15 33M 0.912329 57.963

each node. As shown in Tables 8 and 9, similar to the effect of h,
both the average query time and Rank Refinement calls decrease as
m increases on the two real datasets. Again, the differences are not
dramatic compared to the default value of m.

Effect of hub selection stategy. Next we test the effect of different
hub selection strategies. As Table 10 shows, the Degree First and
the Closeness First strategies are superior compared to the baseline
Random strategy. Although on both DBLP and Epinions, Degree
First is the winner, Closeness First performs quite similarly.

Table 10: Results with Different Hub Selection Strategies
Dataset Random Degree First Closeness First

DBLP
Query Time (s) 2.861070 2.605990 2.665950

Rank Refinement 169.500 124.591 135.132

Epinions
Query Time (s) 1.07950 0.940826 0.948437

Rank Refinement 80.347 59.044 59.409

6.3.2 Bound Analysis

In this experiment, we test the effect of the three components of
the Rank lower bound of Theorem 2. We ran 1000 random queries
on Epinions. For each query and each candidate node, we count
how many times each component wins as a maximum. The results
are shown in Table 11. As we can see, in most cases, the rank of the
parent offers the tight-most bound. In addition, although simple,
height is a useful bound especially when the candidate nodes are
close to the query node (i.e., if the nodes have large degrees, or
when k is small). However, the effect of height declines when the
value of k increases. On the other hand, the Count component is
not very effective when k value is small, since only around 1%

of the pruned cases are due to this bound. Besides, this bound
cannot be applied for directed graphs, and it also has significant
space requirements (i.e. O(|V |)). The Count component is useful
only for candidate nodes that are quite far from the query node (i.e.,
if the nodes have small degrees, or when k is large).

Table 11: Bound Analysis of Theorem 2
k 1 5 10 20 50 100

Height wins 87.74% 39.35% 27.48% 17.96% 9.50% 5.80%

Count wins 0.00% 0.44% 0.71% 1.07% 1.76% 2.38%

Parent wins 12.26% 60.21% 71.81% 80.97% 88.74% 91.82%

We also test the performance on Epinions by choosing 1000
queries with largest degree or fewest degree, using the dynamic
SDS-tree algorithm with the four different bound strategies listed
below:

• Dynamic-Parent: Rank(p,q)≥ max(Rank(p′,q))

• Dynamic-Count: Rank(p,q)≥ max(Rank(p′,q), p.lcount)

• Dynamic-Height: Rank(p,q)≥ max(h, Rank(p′,q))

• Dynamic-Three: Rank(p,q)≥max(h, Rank(p′,q), p.lcount)6

The results are shown in Table 12 and Table 13. They also
demonstrate that Height Component works better for nodes with
large degrees while Count component works better for nodes with
small degrees. As shown in Table 12, Height Component can sig-
nificantly reduce Rank Refinement calls especially for small k val-
ues, while Count component brings in extra cost, which further
increases query time when combining the three components com-
pared to when using only the Height Component (an exception is
the case of a large k value, i.e. k=100). On the other hand, the
Count Component works better when the degree of the query node
is low (i.e. Table 13) and the value of k is large.

In general, the rank of the parent offers the tight-most bound,
while the Height Component helps when k is small or the query
node’s degree is large (i.e., candidate nodes are close to the query
node). The Count Component is the least useful, being effective
only when k is large or the query node has a small degree.

6Here we use the same symbol as in Section 4, where the depth
of node p is h, node p′ is the parent node of node p, and node
p has been visited during the rank refinements of other nodes for
p.lcount times before the refinement of node p itself.

45



Table 12: Results with Different Bound Strategies Tested on Queries with Max Degree

k 1 5 10 20 50 100

Dynamic-Parent
Query Time (s) 0.001347 0.001348 0.001388 0.001586 0.003025 0.006705

Rank Refinement 124.494 125.208 134.046 193.684 744.034 1738.360

Dynamic-Count
Query Time (s) 0.001385 0.001386 0.001419 0.001603 0.002872 0.006229

Rank Refinement 124.211 124.913 133.425 189.876 690.931 1554.540

Dynamic-Height
Query Time (s) 0.000584 0.000618 0.000687 0.000856 0.001507 0.004156

Rank Refinement 1.000 5.096 11.048 30.802 185.770 584.523

Dynamic-Three
Query Time (s) 0.000645 0.000680 0.000743 0.000917 0.001541 0.004076

Rank Refinement 1.000 5.096 11.046 30.542 178.782 541.056

Table 13: Results with Different Bound Strategies Tested on Queries with Min Degree

k 1 5 10 20 50 100

Dynamic-Parent
Query Time (s) 0.001581 0.105760 0.258846 0.533142 1.388120 2.738640

Rank Refinement 1.568 20.987 32.134 56.732 134.454 253.125

Dynamic-Count
Query Time (s) 0.001599 0.100026 0.269425 0.513132 1.318810 2.706620

Rank Refinement 1.568 20.712 31.827 56.443 132.923 248.364

Dynamic-Height
Query Time (s) 0.001614 0.106397 0.271879 0.500304 1.358450 2.736410

Rank Refinement 1.359 14.27 28.595 54.818 134.091 253.103

Dynamic-Three
Query Time (s) 0.001668 0.111674 0.257887 0.499597 1.274270 2.696320

Rank Refinement 1.359 14.229 28.411 54.576 132.588 248.342

6.3.3 Index Update Analysis

In the next experiment, we evaluate the effectiveness of index
updates. We randomly select 6,000 queries for each of the two
real datasets and applied these queries in four different ways. We
divided the 6,000 queries into n sets of the same size, i.e., for
n = 6, 3, 2, 1, each set has 1,000, 2,000, 3,000, 6,000 queries
respectively. Then, we run the Dynamic SDS-Tree with Index
method n times and computed the average query time (including
index update time) as well as the average number of Rank Refine-
ment calls. All four different times apply the same 6,000 queries
in the same order, the only difference being that when n > 1, the
index is initialized (i.e., reset) multiple times. For example, when
n = 6, the index is initialized and updated during the first 1,000
queries, then re-initialized, for the next 1,000 queries, etc. The ob-
jective is to understand whether and how the index performance
improves as the index gets updated. Table 14 shows the average
runtime and conducted rank-refinements per query. We can see
that the more the index evolves the more rank refinements can be
avoided and the more the average query time decreases.

Table 14: Results with Index Update

Dataset Query Time (s) Rank Refinement

DBLP

1,000 2.6287438 130.255
2,000 2.530356 126.634
3,000 2.486031 123.263
6,000 2.228565 115.641

Epinions

1,000 1.179105 61.407
2,000 0.985524 50.599
3,000 0.924317 45.206
6,000 0.544288 34.958

Table 15 shows the cost for initializing the index for various val-
ues of h and m. Although the times are quite high (especially for
large values of h and m), this one-time cost pays off, because the
index can help to achieve substantial cost savings for reverse k-
ranks queries, as already shown.

Table 15: Index Construction Time (hours)

h m DBLP Epinions

0.03 0.1 2.68 0.01

0.05 0.1 4.08 0.02

0.07 0.1 6.21 0.03

0.1 0.1 8.94 0.04

0.15 0.1 12.94 0.06

0.1 0.03 2.95 0.01

0.1 0.05 3.92 0.02

0.1 0.07 6.40 0.03

0.1 0.1 8.94 0.04

0.1 0.15 12.79 0.06

6.3.4 Bichromatic Queries

Although our solutions are only described in a monochromatic
context, they are readily available for the case where the graph
nodes are divided into two classes and the nodes are ranked with
respect to where they are ranked by nodes that belong to the other
class. Examples of bichromatic top-k, reverse top-k and reverse
k-ranks queries have been shown at the case study of Section 6.2.2.
In this section, we evaluate the performance of our methods for
bichromatic reverse k-ranks queries. For the sake of completeness,
we first provide a problem definition.

DEFINITION 3. (Bichromatic Rank(s,t)) Consider a bichro-

matic weighted graph G = (V,E), consisting of a set of nodes

V = V1 ∪ V2 and a set of edges E. Each edge in E carries a

non-negative weight. For any two nodes s ∈ V1, t ∈ V2, let d(s, t)
denote the shortest path distance from s to t, which is defined by

summing up the weights of the edges along the shortest path from s
to t. Let S ⊂ V2 be the set of nodes that satisfy ∀pi ∈ S, d(s, pi) <
d(s, t) and ∀pj ∈ (V2 − S − {t}), d(s, pj) ≥ d(s, t). Then,

Rank(s, t) = |S| + 1 where S ⊂ V2 and |S| is the cardinality of

S.

DEFINITION 4. (Reverse k-Ranks Query on a Bichromatic Graph)
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Given a bichromatic weighted graph G = (V,E), where V =
V1 ∪ V2, a query node q ∈ V2 and a positive integer k, the reverse

k-ranks query on a bichromatic graph returns a subset T of V1,

such that |T | = k and ∀pi ∈ T , ∀pj ∈ (V1 − T ), Rank(pi, q) ≤
Rank(pj , q).

In a reverse k-ranks query on a bichromatic graph, the query
node is of one type, while the returned results are of another type.
All our proposed methods can be used here with little modification:
only for the nodes of the same type as the result set we need to do
rank refinement, and only the nodes of the same type as the query
node need to be counted during rank refinement. This is consis-
tent with our case study with the communities and supermarkets;
i.e., the management of a supermarket may use a reverse k-ranks
query to find out which k communities the supermarket has higher
chances to attract.

We use the SF road network (described in Section 6.1) to test
the efficiency of our three proposed methods. We extract from the
graph the nodes which are the nearest ones to 408 real stores and
mark them as store nodes, while all other nodes are considered to
be community nodes. We vary k from 5 to 100 in the experiment
and measure the average query time and the average number of rank
refinements per query, as performance metrics. The results are plot-
ted in Figure 7. As we can see, when k is small, even though the
Dynamic and Dynamic-Indexed methods can reduce the number of
rank refinements, their average query time is not reduced; the cost
of these methods is higher than the static approach for k=5. This
is because the overhead cost by the data structures maintained by
the Dynamic and Dynamic-Indexed methods. However, for larger k
values, the superiority of the dynamic approaches and the index be-
comes apparent. Note that in this case of a sparse graph, the index
approach is much more efficient compared to the static/dynamic
SDS-tree method without index.

The general conclusions from our experimental study are as fol-
lows: (1) The reverse k-ranks query produces more useful results
compared to the top-k query and the reverse top-k in recommen-
dation applications, where a ranked set of objects of certain size
needs to be recommended to the query object q; (2) Our filter-
and-refinement framework is very efficient compared to the naive
approach; (3) In the dynamic SDS-tree method, the parent-based
and height-based bounds have higher applicability and effective-
ness compared to the count-based bound, but count-based bound
also has its applicable scenario; (4) The index is more effective for
sparse graphs and for medium to high values of k.
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Figure 7: Performance on a Bichromatic Network

7. RELATED WORK
Ranking queries have been widely used in many applications and

have many variants. The most general one is the top-k query which
returns the k objects with the highest scores based on a ranking

function. Recently, reverse ranking queries emerged, which rank
from the perspective of result objects, not the query objects.

Top-k query. Top-k queries have already been studied extensively
for decades [10]. They return a list of objects which are ranked us-
ing an aggregate function that applies on their features. The most
famous algorithms for top-k queries are Fagin’s Threshold Algo-
rithm (TA) and No Random Accesses (NRA) [5]. They are de-
signed for rank-combining sorted lists of objects based on different
attributes (features). TA allows both sequential and random ac-
cesses to these lists, whereas NRA allows only sequential accesses.
Both algorithms use bounds for the top-k results, based on the in-
formation accessed so far and terminate as soon as the current top-
k results are guaranteed to be the final ones, aiming at minimizing
the accesses to the input lists. Mamoulis et al. [15] proposed an im-
proved version of NRA, which is designed to minimize the number
of object accesses, the computational cost, and the memory require-
ments of top-k search with monotone aggregate functions. If the
ranking function is defined based on the distance of the objects to a
pivot object, top-k queries are referred to as k nearest neighbor (k-
NN) queries. k-NN queries have extensively been studied in spatial
databases [9]. The single-source shortest path (SSSP) algorithm (a
simple adaptation of Dijkstra’s algorithm) can be used to evaluate
k-NN queries on graphs.

Reverse k-NN query. The reverse k nearest neighbor (RKNN)
query returns a set of query objects that have a given query point as
one of their k nearest neighbors [24]. Preprocessing-based methods
usually leverage index structures for efficient RKNN query evalu-
ation. For example, the R-tree [8] is used for RKNN queries on
spatial data [13, 20]. Yiu et al. [25] studied RKNN on large graphs
using shortest path as the proximity measure. Similar to the reverse
top-k query, which we review next, the result size of RKNN is not
fixed, which may limit its application.

Reverse top-k query. The reverse top-k query returns the ag-
gregate functions which rank a given query object highest. Vla-
chou et al. [21] presented an efficient threshold-based algorithm
that eliminates candidates, without having to evaluate any top-k
queries using the result functions. Furthermore, they introduced an
indexing structure based on materialized reverse top-k views in or-
der to speed up the computation of reverse top-k queries. These
techniques were improved later in [22]. Ge et al. [6] proposed
methods that compute all top-k queries in batch by applying the
block indexed nested loops paradigm and a view-based algorithm.
Yu et al. [26] studied reverse top-k queries when applied on large
graphs, using Random Walk with Restart distance between nodes
as the ranking function. Essentially, such reverse top-k queries on
graphs are equivalent to RKNN on graphs, but using a different dis-
tance measure. As explained in [27], reverse top-k (and RKNN)
queries only give results for query objects which are ‘hot’ (i.e., eas-
ily reachable by many other nodes), while most ‘cold’ objects get
empty or too small result sets.

Reverse k-ranks query. To solve the aforementioned problem of
RKNN queries, Zhang et al. [27] propose a new ranking query: the
reverse k-ranks query in vector spaces. The reverse k-ranks query
returns the k objects with the smallest Rank(w,q) values, where
Rank(w,q) denotes the number of objects ranking higher than q for
the same ranking function w. As opposed to reverse top-k and
RKNN queries, the result set size of a reverse k-ranks query is
fixed.

8. CONCLUSION
This paper is the first-time ever study of reverse k-ranks queries
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over large graphs. We have shown through real-life case stud-
ies that reverse top-k queries may produce unsatisfactory results;
therefore, there is a need for the efficient support of reverse k-ranks
queries. Then, we proposed a filter-and-refinement framework for
evaluating reverse k-ranks queries, based on the construction of a
SDS-tree and the dynamic refinement of its nodes. We also pro-
posed an indexing technique that can further improve the perfor-
mance of the framework. Our experimental evaluation which uses
three real large-scale graphs of different characteristics confirms
the efficiency of the proposed techniques. In the future, we plan
to study reverse k-ranks queries for other node similarity measures
(i.e. PageRank, Personalized PageRank and SimRank), which re-
quire radically different approaches.
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ABSTRACT

Today’s streaming applications demand increasingly high
event throughput rates and are often subject to strict la-
tency constraints. To allow for more complex workloads,
such as window-based aggregations, streaming systems need
to support stateful event processing. This introduces new
challenges for streaming engines as the state needs to be
maintained in a consistent and durable manner and simulta-
neously accessed by complex queries for real-time analytics.

Modern streaming systems, such as Apache Flink, do not
allow for efficiently exposing the state to analytical queries.
Thus, data engineers are forced to keep the state in external
data stores, which significantly increases the latencies until
events are visible to analytical queries. Proprietary solu-
tions have been created to meet data freshness constraints.
These solutions are expensive, error-prone, and difficult to
maintain. Main-memory database systems, such as HyPer,
achieve extremely low query response times while maintain-
ing high update rates, which makes them well-suited for
analytical streaming workloads. In this paper, we identify
potential extensions to database systems to match the per-
formance and usability of streaming systems.

CCS Concepts

•Information systems → Stream management;

Keywords

stream processing; main-memory database systems

1. INTRODUCTION
Gartner recently forecasted that there will be more than

20 billion connected devices in 2020, a 400% increase com-
pared to 20161. The growing popularity of Internet of Things

1http://www.gartner.com/newsroom/id/3165317
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Figure 1: Analytics on fast data. Streaming events
may be processed concurrently in different par-
titions, whereas analytical queries cross partition
boundaries and require a consistent state.

applications [11], including connected vehicles, cell phones,
and health monitoring devices, enable a variety of new busi-
ness use cases and applications. These applications are typ-
ically built around streaming systems that are able to ingest
and aggregate enormous amounts of events from different
data sources. Given the spike of interest in building such
applications, it is not surprising that dedicated stream pro-
cessing systems, like Apache Storm2, Apache Spark Stream-
ing3, or Apache Flink4, are receiving significant attention
not only in the database but also in the data science and in
the open-source community.

To better understand the different types of workloads that
these systems need to handle, we will walk through different
ways of processing sensor readings (events) of connected ve-
hicles that contain information about street conditions such
as icy road segments.

First, a streaming system could warn vehicles about icy
road segments based on the information of single events. In
that case, the streaming system does not need to maintain
state. We refer to such workloads as stateless streaming.
Second, a system could process the aggregated informa-

tion of multiple events to decide if vehicles should be warned.
Such an implementation requires the system to maintain a
processing state, which introduces new challenges such as
consistency and durability. We call this kind of workloads
stateful streaming.

2http://storm.apache.org/
3http://spark.apache.org/streaming/
4http://flink.apache.org/
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Third, a streaming system allows users to perform analyt-
ical queries on the entire set of aggregates (the conditions
of all road segments across the city) to find the most crit-
ical segments. We refer to such workloads as analytics on

fast data. These workloads are particularly challenging for
a streaming system since it needs to perform computations
across multiple partitions in a consistent manner to answer
analytical queries (cf., Figure 1). In fact, without modifica-
tions, none of the streaming systems mentioned above can
handle this use case.

One idea to mitigate this problem is to make use of the fact
that these systems periodically flush their state to durable
storage (e.g., HDFS) to address fault tolerance. This means
that the system state becomes queryable for an analytical
engine like Apache Spark5. However, the delay that this
design introduces prohibits analytical queries to run on the
most recent state, which is required by use cases like the one
above.

Another example is the Huawei-AIM telecommunication
workload described in [2]. In this use case, events repre-
sent sales and marketing information generated by phone
calls. On the one hand, the application needs to maintain a
huge set of aggregates per customer in order to trigger alerts
for this particular customer (a stateful streaming workload).
On the other hand, maintenance specialists might query the
overall system state to localize sources for network failures
or business analysts might run analytics to gather insights
and propose new offers in real time (analytics on fast data).

Again, using an off-the-shelf stream processor does not
solve the case described in [2] because it cannot handle
the real-time analytics. There are, however, state-of-the-
art main-memory database systems (MMDBs) dedicated to
handle mixed OLTP and OLAP workloads, such as HyPer [7]
and Tell6, which seem promising because stream processing
could also be seen as a particular class of OLTP workloads.
These systems feature advanced query optimizers, compile
queries to native code, and can thus achieve extremely low
response times for complex analytical queries. Using efficient
snapshotting mechanisms, such as copy-on-write, MVCC, or
differential updates [7, 15, 8], these systems are able to sus-
tain high transaction throughput rates in parallel to analyt-
ical query processing making them well-suited for workloads
where analytical queries need to consider recently ingested
data.

Despite all these advantages, it seems that data engi-
neers are still reluctant to use MMDBs for stream process-
ing. They either build their own solutions on top of mod-
ern streaming systems (e.g., Apache Flink) or hand-craft
systems from scratch that are specifically tuned for partic-
ular workloads (e.g., AIM [2]). One reason that MMDBs
are not widely used for streaming workloads is that they
lack out-of-the-box streaming functionality, such as window
functions, and adding this functionality (e.g., through stored
procedures or user-defined functions) results in additional
engineering. If MMDBs would offer a better support for
streaming workloads (e.g., streaming extensions for SQL as
proposed in StreamSQL [16]), they would be preferable over
hand-crafted systems, which are also costly to maintain.

In this Experiments and Analyses paper, we thoroughly
evaluate the usability and performance of MMDBs, modern

5http://spark.apache.org/
6http://www.tell-project.org/

streaming systems, and AIM, a hand-crafted system, using
the Huawei-AIM workload [2]. Based on the evaluation re-
sults, we answer the question how off-the-shelf MMDBs can
be extended to sufficiently satisfy the requirements of ana-
lytics on fast data. We identify a set of modifications that,
if properly applied to the off-the-shelf MMDBs, allow these
systems to address the needs of analytics on fast data.

Our contributions include:

• A rich survey of various MMDBs, modern streaming
systems, and a hand-crafted system specifically de-
signed to address the Huawei-AIM workload

• A thorough usability and performance evaluation in-
cluding at least one representative of each of these
classes of systems

• A discussion of how MMDBs can be extended to match
the performance and usability of modern streaming
systems

The remainder of this paper is structured as follows: Sec-
tion 2 summarizes a broad variety of existing systems and
Section 3 revisits the Huawei-AIM workload and describes
how it can be implemented with these systems. Section 4
evaluates the performance of representatives of each kind of
system with respect to this workload. Section 5 enumerates
ideas regarding how to bridge the performance and usability
gap between MMDBs and modern streaming systems and is
followed by the conclusions to our evaluation presented in
Section 6.

2. APPROACHES
There are numerous systems that can be used to build

stream processing pipelines, including near real-time data
warehousing solutions like Mesa [6] and in-memory incre-
mental analytical engines like Trill [4]. S-Store [12] is an
approach to integrating stream processing into an OLTP
engine. Since addressing all of these systems is beyond the
scope of this paper, we will focus on representative MMDBs,
popular streaming systems from the open-source domain,
and AIM [2], a hand-crafted highly-optimized solution.

2.1 Main-Memory Database Systems
There are multiple MMDBs that can handle analytics on

fast data or more generally hybrid transactional/analytical
processing (HTAP) workloads. In HTAP, transactions are
usually more complex (e.g., TPC-C transactions) than the
single-row transactions studied in this work.

2.1.1 HyPer

HyPer7 is a MMDB that achieves an outstanding perfor-
mance for both OLTP and OLAP workloads, even when
they operate simultaneously on the same database. HyPer
uses two different snapshotting mechanisms to avoid expen-
sive synchronization. By leveraging the copy-on-write fea-
ture of the MMU, the fork mechanism [7] efficiently cre-
ates consistent copies of the database to enable analytical
queries to run without interruptions. The second snapshot-
ting mechanism [15] is based on multi version concurrency

7When saying HyPer, we are referring to the research version
of HyPer developed at the Technical University of Munich.
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control (MVCC ) and isolates transactions by versioning in-
dividual attributes. Currently, HyPer does not yet imple-
ment physical MVCC meaning that transactions do not run
simultaneously with analytical queries but are interleaved.
HyPer further features data-centric LLVM code generation
with just-in-time compilation. Finally, HyPer has an ad-
vanced dynamic programming-based optimizer including the
ability to unnest arbitrary queries.

2.1.2 MemSQL

MemSQL8 is a MMDB that uses LLVM for code gener-
ation. In-memory data is organized row wise while on-disk
data is organized column wise. MemSQL currently does not
support stored procedures, thus making it difficult to im-
plement stream processing workloads requiring a complex
logic for updating state. To implement such a workload
in MemSQL, one needs to implement the update logic ex-
ternally, leading to costly round trips between the appli-
cation and the database. Another alternative to implement
such workloads in MemSQL is to use MemSQL Streamliner9,
which offers a connector between Spark (Streaming) and the
relational database. Streaming results from Spark Stream-
ing can be materialized into MemSQL for further investiga-
tion. The main drawback of this solution is that the two sys-
tems remain separated causing higher than necessary laten-
cies. Further, streams cannot be joined with regular tables
residing in MemSQL without materializing and transferring
them to the relational database.

2.1.3 Tell

Tell is a distributed shared-data MMDB that supports
OLTP and OLAP in parallel and is developed at the Sys-
tems Group at ETH Zurich. The implementation of Tell
is fundamentally different from that of other systems pre-
sented in this paper as it separates the computation from
the storage layer in such a way that both layers can scale
out individually [10].

The storage layer, TellStore, is a versioned key-value store
with additional support for fast scans and different storage
layout options, such as RowStore and ColumnMap. Column-

Map, the preferred layout for HTAP workloads, was created
as part of Analytics in Motion (AIM) [2] (cf., Section 2.3)
and is a modified Partition Attributes Across (PAX) [1] ap-
proach that optimizes cache locality by storing data column-
wise in blocks of cache size. This optimization allows Colum-

nMap to support fast scans and, at the same time, reason-
ably fast record lookups and updates. TellStore employs
the shared scan technique, which allows incoming scan re-
quests to be batched and processed all at once by a single
thread. The shared scan can be parallelized efficiently by
partitioning the data and using a dedicated scan thread for
each of these partitions in parallel [18]. Isolation is guar-
anteed using a combination of differential updates [8] and
MVCC. Updates are put into a delta data structure, which
gets periodically merged with the main data structure that
serves analytical queries. This approach is also used in SAP
HANA [5].

Tell’s compute layer offers two processing APIs: TellDB
(C++) for general-purpose transactions and TellJava (Java)
for read-only analytics. TellJava can be further integrated

8http://www.memsql.com/
9http://blog.memsql.com/spark-streamliner/

into distributed processing frameworks, including Apache
Spark and Presto.

2.2 Modern Streaming Systems
In addition to MMDBs, there are dedicated streaming sys-

tems allowing for the implementation of streaming pipelines.
These systems provide out-of-the-box functionality, includ-
ing a rich set of operators to help data engineers to address
the specific demands of streaming use cases.

2.2.1 Apache Samza

Apache Samza10 is a distributed framework for contin-
uous real-time data processing that is lightweight, elastic,
and fault-tolerant. Samza uses Apache Kafka11 (a durable
publish-subscribe-based message passing system that allows
replaying messages) for real-time feeds and produces out-
put feeds for Kafka to consume. For distributed scheduling,
fault tolerance, and resource allocation, Samza depends on
Apache YARN and on Kafka. Samza employs a checkpoint-
ing mechanism to provide at-least-once guarantees. It cre-
ates checkpoints at predefined time intervals and in case of a
job failure, it replays messages from the last checkpoint. A
drawback of Samza is that it does not support exactly-once
semantics. A message might be processed twice after a job
failure, which can lead to non-exact results. That effect can
be minimized by using shorter checkpoint time intervals.

2.2.2 Apache Flink

Apache Flink [3] is a combined batch and streaming pro-
cessing system that supports exactly-once semantics. Flink
follows a tuple-at-a-time approach, providing low latency.
Using asynchronous checkpointing, Flink is able to decou-
ple its fault-tolerance mechanism from the tuple process-
ing. The processing continues while Flink periodically cre-
ates snapshots of the operator states and the in-flight tuples.
Flink can achieve superior throughput compared to Apache
Storm (cf., Section 2.2.4). In contrast to the other streaming
systems, Flink allows for event time semantics. Flink allows
the extraction of the actual event timestamp (i.e., the time
when the event was originally captured) when an event ar-
rives at the streaming engine to assign it to its appropriate
window. A drawback of Flink is that current versions only
allow maintaining state on an operator level. However, there
is a pull request for a queryable state12 to be released with
Flink 1.2.0. The idea is to maintain an operator-independent
state within Flink and expose it to external queries. Inter-
nally, the state is partitioned and guarantees fault tolerance
(i.e., exactly-once semantics). A restriction of this solution
is that it is only a key-value state supporting only point
lookups. More complex queries, including full table scans,
are not possible.

As a workaround, one can implement a custom operator
that holds both the state and the logic for the correspond-
ing analytical queries. The drawback of this approach is
that the whole state and query logic has to be implemented
manually. Further, this approach does not support concur-
rent stream and query processing since analytical queries
can only be ingested through the stream processing pipeline
itself resulting in an interleaved execution.

10http://samza.apache.org/
11https://kafka.apache.org/
12https://issues.apache.org/jira/browse/FLINK-3779
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2.2.3 Apache Spark Streaming

Apache Spark Streaming [19] is the streaming extension
to the cluster computing platform Apache Spark. Spark
Streaming organizes incoming streaming tuples into micro-

batches that are being processed atomically thus optimizing
for throughput. This approach allows the use of the same
programming model for batch and stream processing. Spark
Streaming supports exactly-once semantics.

2.2.4 Apache Storm

Apache Storm [17] is a widely used stream processing sys-
tem that does not guarantee state consistency and follows
a tuple-at-a-time approach, thus favoring low latency over
throughput. Storm implements at-least-once semantics by
keeping upstream backups of data that are being replayed if
no acknowledgements have been received from downstream
nodes. Trident13 extends Storm with exactly-once semantics
and allows running queries on consistent state.

2.3 AIM
In collaboration with Huawei, researchers of the Systems

Group at ETH Zurich designed the AIM system to address
the specific characteristics of a telecommunications work-
load. AIM is a research prototype that allows efficient ag-
gregation of high-throughput data streams. It was specif-
ically designed to address the Huawei-AIM workload that
we use for evaluation purposes in this paper (cf., Section 3).
Due to its hand-optimized nature, AIM achieves an out-
standing performance on that workload and therefore serves
as a baseline for our experiments. AIM has a three-tier
architecture consisting of storage, event stream processing
(ESP), and real-time analytics (RTA) nodes (or threads if
deployed in a standalone setting). RTA nodes push analyt-
ical queries down to the storage nodes, merge the partial
results, and finally deliver the results to the client. ESP
nodes process the incoming event stream, evaluate alert trig-
gers, and update corresponding records by sending Get and
Put requests to the storage nodes. The storage nodes store
horizontally-partitioned data in a ColumnMap layout and
employ shared scans as described in Section 2.1.3. AIM can
also be deployed standalone, which eliminates network costs
and therefore tests the pure read, write, and scan perfor-
mance of the server.

2.4 Summary
A comparison of different aspects of stream processing

approaches is presented in Table 1. These aspects include:

Semantics Streaming engines make different guarantees re-
garding how messages (i.e., events) are being processed.
A streaming engine only ensures completely correct re-
sults when providing exactly-once guarantees. Some
engines optimize for low latency and thus often can-
not provide exactly-once guarantees as this would re-
quire them to implement transactions, which are ex-
pensive in a distributed setting. Therefore, streaming
engines often fall back to at-least-once semantics (i.e.,
a message will be resent until it is processed at least
once), which are good enough for many applications.
Many stream processing engines require a durable data
source for exactly-once guarantees because they only
persist their processing state at certain points of time

13http://storm.apache.org/documentation/Trident-state

(often called checkpoints). In case of a failure, mes-
sages need to be replayed from the last checkpoint. In
contrast, database systems achieve durability through
the use of redo logs and thus only need to replay mes-
sages sent during the time the database system was
down. The third processing guarantee is at-most-once.
In an at-most-once setting, messages might get lost but
are never processed twice or more often. Few systems
implement this approach since loosing data is an un-
desirable property for most applications.

Durability Durability is closely related to the semantics
offered by stream processing systems. While some sys-
tems require a durable data source to achieve durabil-
ity, others provide durability out-of-the-box.

Latency Especially in real-time scenarios, low latencies are
crucial to deliver valuable results. As stated above,
latency often depends on the processing guarantee of-
fered by a system. MMDBs that often run on a single
machine or are optimized for low-latency networks can
yield low latencies while providing exactly-once pro-
cessing guarantees.

Computation model There are two computation models:
tuple-at-a-time andmicro-batch. The natural approach
is to process streams continuously. However, streams
can also be batched and processed as small chunks of
data. Spark Streaming follows this approach allowing
it to achieve high throughput rates. However, follow-
ing a tuple-at-a-time-based approach does not neces-
sarily lead to lower throughput since the computation
model can be independent from the checkpointing in-
terval. For instance, Flink follows a tuple-at-a-time-
based approach combined with a batch-based check-
pointing mechanism thus optimizing for both latency
and throughput. MMDBs usually treat stream events
as transactions, which might also be batched for better
performance (e.g., Tell processes 100 events within a
single transaction).

Throughput Another important aspect in stream process-
ing is throughput. Particularly when costs matter,
higher throughput helps to reduce the number of re-
quired resources. Due to the low costs to process
single-row transactions (updating aggregates of sin-
gle entities), throughput mainly depends on the em-
ployed fault-tolerance mechanism and whether a sys-
tem batches transactions. Throughput increases with
longer checkpointing intervals.

State management For mixed OLTP and OLAP work-
loads, the state updated by the OLTP subsystem needs
to be exposed to the OLAP subsystem. Traditional
streaming engines, such as Apache Storm, do not allow
maintaining state. They are only designed to process
and transform an input into an output data stream
preventing writing stateful stream processing applica-
tions (e.g., aggregations over windows). Trident ex-
tends Storm with state management capabilities. Flink
only maintains states on an operator basis and cur-
rently does not support global states that can be ac-
cessed by analytical queries. Database systems, on the
other hand, can persist streaming results in temporary
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MMDBs Modern Streaming Systems

Aspect HyPer MemSQL Tell Samza Flink Spark

Stream-

ing

Storm AIM

Semantics Exactly-once Exactly-once Exactly-once At-least-once Exactly-once Exactly-once Exactly-once Exactly-once

Durability Yes Yes No With durable
data source

With durable
data source

With durable
data source

With durable
data source

No

Latency Low Low Low High (writes
messages to
disk)

Low Medium
(depends on
batch size)

Low Low

Computation
model

Tuple-at-a-
time

Tuple-at-a-
time

Tuple-at-a-
time

Tuple-at-a-
time

Tuple-at-a-
time

Micro-batch Micro-batch Tuple-at-a-
time

Throughput High High High High High Medium
(depends on
batch size)

Low High

State man-
agement

Yes Yes Yes Yes (durable
K/V store)

Yes Yes (writes
into storage)

Yes Yes

Parallel
read/write
access to
state

Copy on
write, MVCC

No Differential
updates,
MVCC

No No No No Differential
updates

Implementation
languages

C++, LLVM C++, LLVM C++, LLVM Java, Scala Java Java, Scala Java, Clojure C++

User-facing
languages

SQL SQL C++,
Java, Scala
(through
Spark
shell), SQL
(through
Presto shell)

Java, Scala Java, Scala Java, Scala,
Python,
SparkSQL

Any (through
Apache
Thrift)

C++

Own memory
management

Yes Yes Yes (w/ GC) No Yes Yes No Yes

Window sup-
port

Using stored
procedures

Only manu-
ally

Only manu-
ally

Very basic Very power-
ful

Basic Basic Using tem-
plate code

Table 1: Comparison of different stream processing approaches

tables allowing OLAP queries to access them as if they
were regular database tables.

Parallel read/write access to state As mentioned ear-
lier, Trident extends Storm with state management
functionalities; however, it does not allow analytical
queries and updates to access state in parallel. In-
stead, they have to be interleaved to ensure a consis-
tent view of the state. In contrast, modern MMDBs
can efficiently expose their current state to analytical
queries through the use of snapshotting mechanisms,
such as copy-on-write, MVCC, or differential updates.

Implementation languages Most of the streaming sys-
tems are written in a JVM-based language, whereas
MMDBs are usually implemented in C or C++. The
trend is to compile queries to native code. HyPer, Tell,
and MemSQL use LLVM as a compiler backend.

User-facing languages The Apache systems support pri-
marily JVM-based languages while the MMDBs all
support SQL and, in the case of Tell, additional lan-
guages through its Spark and Presto integration.

Own memory management Whether a system employs
its own memory management or fully relies on the
memory management of the JVM. Spark Streaming
and Flink are based on the JVM but still employ their
own memory management to have a better control over
garbage collection cycles.

Window support In streaming applications, aggregations
are usually computed on a window basis. Two ba-
sic window types are sliding and tumbling. Sliding
windows are contiguous time or count-based intervals,
such as last 24 hours or last 10,000 events. Tumbling
windows are non-overlapping time or count-based in-
tervals, such as today or every 10,000 events. All of the
analyzed streaming engines support these two kinds of
windows. In particular, Flink offers extensive function-
ality to specify windows, supporting custom window
assigners, triggers, and evictors. AIM supports tum-
bling windows for specific time intervals and the stan-
dard aggregation functions through templated code.
The window definitions are loaded at startup and can-
not be changed afterwards. The analyzed MMDBs
have no natural window support. However, in the case
of HyPer, windows can be manually implemented us-
ing stored procedures.

3. WORKLOAD
AIM was motivated by a telecommunication workload,

which we will refer to as Huawei-AIM use case [2]. We chose
this workload as it is well-defined and represents the work-
load class of analytics on fast data.

3.1 Description
The Huawei-AIM use case requires events, more specifi-

cally call records, to be aggregated and made available to
analytical queries. The system’s state, which AIM calls the
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international calls ...

subscriber ID
today ... ...

count
duration ... ... ...

sum min max ... ... ...

Table 2: Schema snippet of the Analytics Matrix

Analytics Matrix

10M rows

546 columns

10,000 events/s

Event Stream Analytical Queries

Query 1

Query 4

Query 3

Query 2

Query 7

Query 5

Query 6

subscriber ID, no of calls, total duration, ...

1, 17, 42, ...

2, 815, 4771, ...

...Each event contains:

subscriber ID, duration, ...

Figure 2: The AIM-Huawei workload

Analytics Matrix, is a materialized view on a large number
of aggregates for each individual subscriber. There is an ag-
gregate for each combination of aggregation function (min,
max, sum), aggregation window (this day, this week, ...) and
several event attributes as shown in Table 2, which shows a
small part of the conceptual schema of an Analytics Matrix.
For instance, there is an aggregate for the shortest duration
of an international phone call today (attribute min in Ta-
ble 2). The number of such aggregates (which defines the
number of columns of the Analytics Matrix ) is a workload
parameter with default value 546, which we use in our ex-
periments. The Analytics Matrix also contains foreign keys
to dimension tables. Since these dimension tables are very
small, we omit them in our experiments.

The use case requires two things to be done in real time:
(a) update Analytics Matrix and (b) run analytical queries
on the current state of the Analytics Matrix. (a) is referred
to as Event Stream Processing (ESP) and (b) as Real-Time
Analytics (RTA). When an event arrives in ESP, the corre-
sponding record in the Analytics Matrix has to be atomically
updated. RTA, on the other hand, is used to answer busi-
ness intelligence questions. RTA queries are continuously
being issued by one or multiple clients and are evaluated on
a consistent state of the Analytics Matrix. This consistent
state (or snapshot) is not allowed to be older than a certain
bound tfresh, which is a service level objective (SLO) of the
Huawei-AIM benchmark and defaults to one second. Table 3
shows the seven queries from the original benchmark [2].
Additionally, users may issue ad-hoc queries. Since ad-hoc
queries are not available upfront and can involve any num-
ber of attributes, it is impractical for a stream processing
system to create specialized index structures.

Figure 2 summarizes the workload components. Events
are ingested at a specific rate fESP , which will usually be
10,000 events per second in our experiments. Each event
consists of a subscriber ID and call-dependent details, such
as the call’s duration, cost, and type (i.e., local or interna-
tional). The Analytics Matrix is the aggregated state on the
call records as described earlier and consists of 546 columns
and 10 million rows, each representing the state of one sub-
scriber. Depending on the event details, the corresponding
subset of columns in the Analytics Matrix is updated for the
particular subscriber. These updates are made available to
analytical queries within tfresh.

Query 1:
SELECT AVG (total duration this week)
FROM AnalyticsMatrix
WHERE number of local calls this week > α;

Query 2:
SELECT MAX (most expensive call this week)
FROM AnalyticsMatrix
WHERE total number of calls this week > β;

Query 3:
SELECT (SUM (total cost this week)) /

(SUM (total duration this week)) as cost ratio
FROM AnalyticsMatrix
GROUP BY number of calls this week
LIMIT 100;

Query 4:
SELECT city, AVG(number of local calls this week),

SUM(total duration of local calls this week)
FROM AnalyticsMatrix, RegionInfo
WHERE number of local calls this week > γ

AND total duration of local calls this week > δ

AND AnalyticsMatrix.zip = RegionInfo.zip
GROUP BY city;

Query 5:
SELECT region,

SUM (total cost of local calls this week) as local,
SUM (total cost of long distance calls this week)
as long distance

FROM AnalyticsMatrix a, SubscriptionType t,
Category c, RegionInfo r
WHERE t.type = t AND c.category = cat,
AND a.subscription type = t.id AND a.category = c.id,
AND a.zip = r.zip

GROUP BY region;

Query 6:
report the entity-ids of the records with the longest call this day and

this week for local and long distance calls for a specific country cty

Query 7:
SELECT (SUM (total cost this week)) /

(SUM (total duration this week))
FROM AnalyticsMatrix
WHERE CellValueType = v;

Table 3: RTA queries 1 to 7, α ∈ [0,2], β ∈ [2,5], γ

∈ [2,10], δ ∈ [20,150], t ∈ SubscriptionTypes, cat ∈

Categories, cty ∈ Countries, v ∈ CellValueTypes

3.2 Implementations
We implemented the workload using at least one repre-

sentative of each of the three categories: MMDBs, modern
streaming systems, and hand-crafted systems. We chose
Flink as a representative modern streaming system since
it features a continuous processing model combined with
a batch-based fault-tolerance mechanism allowing for low
latency under high throughput conditions. MemSQL cur-
rently does not support stored procedures14. Without this
feature, we were not able to implement the event process-
ing part of the workload in an efficient way and therefore
decided not to further evaluate MemSQL.

3.2.1 HyPer

Our workload implementation in HyPer was based on the
work of [2]. ESP is performed using a stored procedure that
updates aggregates stored in the Analytics Matrix, which is
implemented as a regular database table. RTA query pro-
cessing is implemented using SQL queries on that table.

When HyPer was first evaluated using the Huawei-AIM
benchmark in [2], HyPer was configured to use a copy-on-

write-based snapshotting technique that forked a child from
the main OLTP process at a specific time interval. This en-
ables RTA queries to be executed on a consistent snapshot of
the Analytics Matrix. Since the table representing the An-

alytics Matrix can be as large as 50GBs, forking a child of
the OLTP process (essentially a copy of its page table) may
take up to a hundred milliseconds. Additionally, our work-
load updates the records of randomly selected subscribers at
a rate of 10,000 events/s, which may impact performance as
the copy-on-write mechanism copies updated pages to main-

14http://docs.memsql.com/docs/mysql-features-
unsupported-in-memsql

54



tain consistent snapshots for RTA queries. HyPer currently
does not implement physical MVCC 15, which would lead
to better results than a copy-on-write-based approach. The
evaluated implementation interleaves the execution of mul-
tiple analytical queries thereby hiding memory latencies and
single-threaded phases (e.g., result materialization). Writes,
however, are never executed at the same time than analyti-
cal queries.

HyPer implements the PostgreSQL wire protocol allow-
ing one to use any PostgreSQL client. In our experiments,
we used PostgreSQL’s C++ library (pqxx) to communicate
between clients and HyPer (using TCP over UNIX domain
sockets). Since HyPer currently does not implement batched
transactions, HyPer’s event processing throughput would be
purely limited by network round trips between subsequent
write requests, context switches on the server to receive
incoming requests, and deserialization costs. To simulate
batch processing, we decided to additionally generate the
events within HyPer and only process these. In other words,
instead of actually transferring the batch of events from the
client to the server, we send a request to generate and pro-
cess a specified number of events.

3.2.2 Tell

For Tell, we used the Huawei-AIM benchmark implemen-
tation from the Tell GitHub project16. We configured Tell-
Store to use the ColumnMap layout with a total of 84GB
of memory, more than twice the memory that HyPer uses.
With less memory, TellStore regularly ran out of memory, es-
pecially with multiple storage threads. To minimize NUMA
effects, we configured Tell to run the storage layer (Tell-
Store) on NUMA node 0 and the compute layer (RTA and
ESP server-side threads) on node 1. RTA and ESP clients
were also run on node 1. With this configuration, Tell
achieved significantly better numbers than with the non-
NUMA-aware configuration.

It is worth mentioning that Tell, as opposed to AIM, can-
not be deployed in standalone mode. Whereas in AIM,
Flink, and HyPer events are generated internally, Tell needs
a client that generates events and sends them to the server
(using UDP over Ethernet). Additionally, the server needs
to send read and write requests to the storage (using RDMA
over InfiniBand). Compared to all other implementations
presented in this section, this makes ESP much more ex-
pensive as the overheads of network costs, context switching,
and deserialization cost are paid twice (cf., Section 3.2.1).
These extra costs should be be taken into account when
looking at the performance results.

As Tell is a layered system, we have to carefully allocate
threads to layers. In the compute layer, we have to allo-
cate a specific number of ESP and RTA processing threads,
whereas in the storage layer, we have to allocate the right
number of scan threads (responsible for analytical query pro-
cessing). The storage layer also runs one thread that inte-
grates updates into the next snapshot for analytics and one
thread for garbage collection. Microbenchmarks revealed
the optimal thread allocation strategy for each workload as
shown in Table 4. In general, Tell has a lot of different pa-
rameters most of which relate to memory management; and
fine-tuning these parameters to get the best performance
was a tedious task.

15[15] explains how versioned positions allow for fast scans.
16https://github.com/tellproject/aim-benchmark

Compute Storage

Workload ESP RTA scan update GC Total

read/write 1 n n 1 1 2n+ 2∗

read-only 0 n n 0 0 2n

write-only n 0 0 1 0 n+ 1

Table 4: Thread allocation strategy for different
workloads

3.2.3 AIM

Since the AIM system was specifically designed to ad-
dress the AIM-Huawei workload, we assumed that it would
achieve the best performance on the full workload and thus
we used it as a baseline for our experiments. We used
the same version used in [2] but in standalone mode where
client and server communicate through shared memory. For
the overall and the read-only experiments, we increased the
number of RTA threads (and used one ESP thread), whereas
for the write-only experiments, we increased the number of
ESP threads.

3.2.4 Flink

Currently, Flink does not support exposing its internal
state to external analytical queries. There is, however, a
pull request for a partitioned key-value store that will be
queryable. However, this queryable state only supports point
lookups and thus cannot be used to implement the AIM
workload. We implemented a custom operator that supports
table scans to meet the requirements of the AIM workload.
We experimented with a row and a column store layout for
storing the state. Since the AIM workload is mostly analyt-
ical, we opted for the column store layout.

Similar to HyPer, we generated the events internally in
Flink. We also implemented a version that uses Kafka for
event ingestion, which will not be included in the results,
as we found no significant difference in performance com-
pared to the version that generates the events internally.
In production, Kafka, or any other durable data source, is
preferable to ensure full fault tolerance.

Since we want to make the most recent state available
to analytical queries, windows need to be computed on an
event basis. As Flink’s built-in operators are not optimized
for these continuous window computations, we chose to man-
ually implement the window logic, which yielded better re-
sults. We did not enable Flink’s checkpointing mechanism
since the processing state of the Huawei-AIM workload can
be as large as 50GBs. Persisting a state of this size would
lead to a significant performance penalty.

Flink provides many built-in functionalities that seem suit-
able for our workload including windowed streams support-
ing various aggregation functions (e.g., min, max, and sum).
We tried to make use of the provided functionalities. How-
ever, in the studied version of Flink, combining multiple
aggregation functions that produce only one single output
stream is not yet supported. For this reason, we imple-
mented a custom aggregation operator.

∗Since GC is only running from time to time and the update
thread is also mostly idling for 10,000 events per second,
both threads have an average CPU usage clearly below 50%.
This is why we count them as one.
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Figure 3: Hybrid processing in Flink. A CoFlatMap
operator interleaves events with analytical queries.

All aggregations in the AIM workload are windowed. We
could express this behavior using Flink’s built-in window
operators. For only one window type, this works well. How-
ever, with two or more different window types, the different
windows would need to be merged into one consistent state
across all windows. As this is not a straightforward opera-
tion in Flink, we decided to implement windows ourselves.

Another challenge was to run the analytical queries on
the state maintained by the event processing pipeline. Flink
does not provide a globally accessible state that can be used
in such cases. States are only maintained at an operator
level and cannot be accessed from outside. We solved this
problem by processing both the event stream and the an-
alytical queries in the same CoFlatMap operator as shown
in Figure 3. Both streams are processed interleaved using
two individual FlatMap functions that both work on the
same shared state. This works as both functions are part
of the same operator. Our implementation interleaves the
two different streams on a partition basis. Since Flink fol-
lows the embarrassingly parallel paradigm, it is not designed
to synchronize access across partitions. As described in [2],
the AIM-Huawei workload does not require such a global
synchronization since events are only ordered on an entity
basis.

A powerful feature of Flink is its partitioning. Flink au-
tomatically partitions elements of a stream by their key and
assigns the partitions to a parallel instance of each operator.
Each instance of our CoFlatMap operator only receives the
events for its partition and thereby maintains a part of the
total state. The analytical queries, however, should run on
the whole state. Therefore, we broadcast the queries to each
CoFlatMap operator instance and run them on the individ-
ual partitions. The resulting partial results are merged in a
subsequent operator.

In our experiments, we used Kafka to send queries since
it integrates well with Flink and ensures that no queries are
lost. It would also be possible to ingest the queries using a
TCP client or other more sophisticated handwritten clients.

4. PERFORMANCE EVALUATION
We begin with a performance evaluation using the com-

plete Huawei-AIM workload as described in Section 3. We

System Version

HyPer Sep 12, 2016
Tell 0.2
AIM Same version as used in [2]
Flink 1.1-Snapshot

Table 5: Evaluated systems

drill down into the different aspects of the workload, includ-
ing updates and real-time analytics. We then investigate the
performance impact of the number of clients and the number
of maintained aggregates.

We did not evaluate how the systems scale out to multi-
ple machines since the evaluated version of HyPer is stan-
dalone. In future work, we plan to extend HyPer with dis-
tributed event processing. However, the boundary between
distributed systems and single-machine many-core systems
with non-uniform memory access is blurry. In fact, as shown
in the following section, even on our single two-socket ma-
chine the performance dropped when scaling beyond a single
NUMA node.

4.1 Configuration
We evaluated the different systems (cf., Table 5) on an

Ubuntu 15.10 machine with an Intel Xeon E5-2660 v2 CPU
(2.20GHz, 3.00GHz maximum turbo boost) and 256GB
DDR3 RAM. The machine has two NUMA sockets with 10
physical cores (20 hyperthreads) each, resulting in a total of
20 physical cores (40 hyperthreads). The sockets communi-
cate using a high-speed QPI interconnect (16GB/s).

We placed the clients on the same machine as the server
and generated events and queries by one client thread each
(except for Tell where we used eight RTA client threads).
Setting the total number of threads17 was enough to run
HyPer and Flink out-of-the-box. Conversely, Tell and AIM
required more tedious fine-tuning and server threads were
allocated as explained in Sections 3.2.2 and 3.2.3. As one can
see from these allocation schemes, some workloads require
more than one thread even in the most basic setting, which
is why the measurements for AIM and Tell do not typically
start at one thread and may have gaps.

4.2 Overall Performance
Figure 4 illustrates the query throughput when running

the full workload, which consists of 10M subscribers, 10,000
events per second, and the seven analytical queries (cf., Ta-
ble 3) where each of them is executed with equal probability.
Further, daily and hourly windows are maintained leading
to a total of 546 aggregates. AIM achieved the best per-
formance. With two threads, it had a throughput of 14.8
queries/s and its best throughput, with eight threads, was
145 queries/s. The reason why AIM achieves its best per-
formance at eight (and not at ten) threads is a NUMA ef-
fect: Since AIM statically pins threads to cores and allocates
memory locally whenever possible, the total number of client
and threads (2 + 8 = 10) precisely fits on NUMA node 0.
Hence, there is no communication to a remote memory re-
gion as it is the case for nine and ten threads. The spike at
four threads probably relates to non-uniform communica-

17Unless otherwise noted, we are always referring to the
server-side threads.
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Figure 4: Analytical query throughput for 10M sub-
scribers at 10,000 events/s
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Figure 5: Analytical query throughput for 10M sub-
scribers

tion paths between the cores on NUMA node 0. The spikes
observed here are reproducable, and are, as we will see, also
present in other workloads. Flink matches the performance
of AIM for two threads and scales up to 90.5 queries/s using
ten threads. HyPer achieved a throughput of 14.3 and 70.0
queries/s with two and nine threads, respectively. HyPer’s
throughput is lower than AIM’s since it interleaves analyti-
cal queries with writes (i.e., writes block reads) while AIM
processes them in parallel. With four threads, Tell achieved
a query throughput of 8.90 queries/s and 27.1 queries/s with
ten threads.

4.3 Read Performance
Figure 5 shows the analytical query throughput for the

different systems with an increasing number of threads with-
out concurrent events. With one thread, HyPer processed
19.4 queries/s while AIM sustained a throughput of 33.3
queries/s. As we increased the number of threads, Hy-
Per sometimes outperformed AIM and its throughput in-
creased linearly while AIM showed the same spikes as be-
fore18. HyPer’s maximum throughput was 136 queries/s
with ten threads compared to 164 queries/s for AIM with
seven threads. Flink’s throughput was 13.1 queries/s using
one thread and gradually increased to 105.9 queries/s with

18AIM cannot be configured with zero ESP threads, which is
why there is an additional idle ESP thread that we do not
account for, but which nevertheless occupies its CPU. This
is why the spike is at seven threads this time.
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Figure 6: Event processing throughput with an in-
creasing number of event processing threads

ten threads. With two threads, Tell sustained a throughput
of 8.68 queries/s while its maximum throughput was 32.1
queries/s using ten threads.

4.4 Write Performance
Figure 6 shows the event processing throughput of the

different systems with an increasing number of event pro-
cessing threads. This time, we evaluated the systems purely
on the basis of their write throughput without running any
analytical queries in parallel. Flink achieved the best write
performance by far. Using one thread, it had a throughput
of 30,100 events/s and the throughput scaled almost lin-
early to 288,000 events/s using ten threads. There are two
reasons for this: (1) Flink partitions the state depending
on the number of available processing threads. With this
strategy, it scales well since there is no cross-partition syn-
chronization involved. (2) Flink does not have any overhead
introduced by snapshotting mechanisms or durability guar-
antees. AIM processed 23,700 events/s using one thread and
achieved a maximum throughput of 168,000 events/s using
eight threads, roughly 1.7x less than Flink. Again, we see
the NUMA effect described earlier. AIM also partitions the
state to scale its write throughput, but since its differential

update mechanism introduces an overhead, AIM did not per-
form as well as Flink. Tell was able to process up to 46,600
events/s using six threads. The reason for the performance
degradation after six threads is again a NUMA effect. All
ESP processing threads as well as threads that handle UDP
events are allocated on NUMA node 1 leading to an oversub-
scription of cores. HyPer sustained a throughput of 20,000
events/s in all cases since it only uses one single thread to
process transactions.

4.5 Query Response Times
In this experiment, we measured the response time for

each of the seven analytical queries with and without con-
current writes (10,000 events/s) using four threads. Ta-
ble 6 shows the individual query response times and the
overall average. HyPer’s performance degraded the most
when writes were added to the query processing workload.
The reason is that HyPer interleaves analytical queries with
writes. As shown in the previous section, HyPer’s write
throughput is limited to 20,000 events/s and does not scale
for multiple threads. Thus, an event throughput of 10,000
events/s blocks the query processing for about 500ms ev-
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Figure 7: Analytical query throughput with an in-
creasing number of clients

ery second. The query processing can only happen in the
remaining 500ms. AIM and Tell did not experience the
same performance degradation since they perform writes
and reads in parallel using the differential updates approach.
Flink’s performance does not drop much when adding 10,000
events/s as its (parallel) write throughput is so high that
the analytical queries remain almost unaffected. However,
we expect a higher performance degradation in Flink’s an-
alytical performance when increasing the number of events
per second as Flink lacks efficient snapshotting mechanisms.

4.6 Impact of Number of Clients
Figure 7 shows the analytical query throughput with an

increasing number of clients using ten server-side threads.
HyPer performed the best of all systems and achieved a max-
imum throughput of 276 queries/s with ten client threads.
HyPer’s performance improves with multiple clients since
it interleaves the execution of analytical queries (cf., Sec-
tion 3.2.1). AIM’s peak throughput was 218 queries/s with
eight client threads. The gradual increase in the through-
put shows the effect of the shared scan technique as AIM
can now batch queries from multiple clients and process
them all at once. The fact that the performance drops af-
ter eight threads shows that batching is only beneficial up
to a certain point. Flink executes analytical queries as fol-
lows: Once a worker completed its part of the query, i.e.,
processed the query on its partition of the state, the worker
can continue with the next query. The worker does not have
to wait until the other partitions have been processed and
the partial query results have been merged. For this reason,
the idle time of threads decreases for more clients and the
query throughput increases to 131 queries/s. Tell employs
the same strategy as AIM and we can see a similar gradual
increase in its throughput.

4.7 Impact of Number of Aggregates
In this experiment, we studied the impact of the number

of aggregates being maintained. We measured the overall
as well as the write performance of AIM, HyPer, and Flink
while maintaining 42 instead of the original 546 aggregates.
We did not measure Tell here since its AIM benchmark
implementation was not flexible enough to accommodate
schema changes.

Figure 8 shows the analytical query throughput for 10M
subscribers and 42 aggregates at 10,000 events/s. Again,
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Figure 8: Analytical query throughput for 10M sub-
scribers and 42 aggregates at 10,000 events/s
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Figure 9: Event processing throughput for 42 aggre-
gates with an increasing number of event processing
threads

AIM achieved its best performance at eight threads (cf., Sec-
tion 4.2) whereas Flink and HyPer did not experience such
spikes. In contrast to the overall workload with 546 ag-
gregates, HyPer achieved a higher performance than Flink
throughout this experiment. The gain in HyPer’s perfor-
mance is expected since writes are now less expensive and
thus singlethreaded phases are reduced. With ten threads,
HyPer achieved a throughput of 125 queries/s (2.14x speedup
over 546 aggregates) while Flink sustained 97.4 queries/s
(1.08x).

Figure 9 shows the event processing throughput for 42
aggregates with an increasing number of event processing
threads. Note that we reduced the number of aggregates by
a factor of 13. As expected, the throughputs improved sig-
nificantly with less aggregates (cf. Section 4.4). With one
thread, AIM and HyPer achieved a throughput of 227,000
(11.4x) and 228,000 events/s (9.62x), respectively, whereas
Flink sustained 766,000 events/s (25.5x). With ten threads,
AIM and Flink reached a throughput of 1,000,000 (7.69x)
and 2,730,000 events/s (9.51x), respectively. HyPer’s perfor-
mance did not increase with more threads since it currently
does not parallelize transactions.

5. CLOSING THE GAP
We have shown that general-purpose MMDBs perform

fairly well on streaming workloads. Nevertheless, our ex-
periments indicate that there is still a gap between the per-
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Read (in isolation) Overall (w/ concurrent events)

Query HyPer Tell AIM Flink HyPer Tell AIM Flink

Query 1 5.25 249 2.44 5.83 12.2 242 5.32 16.9
Query 2 7.41 241 3.91 5.10 14.3 253 4.94 8.03
Query 3 20.4 298 10.4 29.9 29.5 289 10.5 37.2
Query 4 4.05 269 2.98 3.14 12.1 281 4.67 6.97
Query 5 12.5 264 21.1 37.8 20.7 271 38.3 45.1
Query 6 33.8 505 13.8 24.4 84.1 492 54.4 33.6
Query 7 17.7 246 9.04 24.4 25.8 236 17.5 32.8
Average 14.4 296 9.10 18.7 28.4 295 19.3 25.8

Table 6: Query response times in milliseconds

formance and usability of MMDBs and modern streaming
systems, such as Flink, particularly when it comes to scal-
able event processing (cf., Section 4.4).

We propose a threefold approach to improve the overall
write performance of MMDBs: (a) improve single-threaded
write performance, (b) use all cores on a single machine,
and (c) distribute load across multiple machines. In the
following, we will describe each of these aspects in more
detail.

Event ingestion in modern streaming systems is usually
implemented using a durable data source, such as Kafka.
This allows the streaming system to neglect durability, lead-
ing to higher throughputs. Durability in these systems is
usually more coarse-grained than in MMDBs. To match
Flink’s single-threaded write performance, MMDBs would
need to offer a more coarse-grained durability level by using
durable data sources instead of employing fine-grained redo
log mechanisms.

AIM, Flink, and Tell are capable of processing events in
parallel, whereas HyPer processes transactions in a single
thread. To match their scalability, HyPer would need to
be extended with parallel single-row transactions, which are
less complicated to parallelize than full transactions. Such a
streaming-optimized transaction isolation would only ensure
that there are no conflicts on the primary key column(s).
Work on allowing concurrent write transactions in HyPer is
ongoing [9]. In Tell, for instance, batches of events are pro-
cessed within the scope of a transaction and several trans-
actions can be executed in parallel. The latter, however,
comes at the high price of maintaining multiple versions of
the data, which again reduces performance as our experi-
ments illustrate.

MMDBs also need to be able to distribute writes across
multiple machines. HyPer, for instance, could employ a
similar strategy as Flink, which partitions the event input
stream and distributes it across nodes. Towards this end,
HyPer could employ the ScyPer architecture as suggested
in [13], where transactions are processed by the primary
ScyPer node, which multicasts redo logs to secondary nodes.
These secondaries are dedicated to query processing thus
freeing resources and leading to higher throughput rates on
the primary node. To scale out writes as well as reads,
these two strategies could be combined by having multiple
event processing nodes (the primary node in the ScyPer ar-
chitecture), each of them being responsible for a subset of
events. These event processing nodes would then multicast
their redo logs to query processing nodes (secondary nodes
in the ScyPer architecture). We plan to investigate such an

architecture in future research.
From a usability perspective, modern streaming systems

offer many features that help users to set up streaming appli-
cations, such as their out-of-the-box support for sliding and
tumbling windows. On the one hand, MMDBs support ar-
bitrary SQL allowing users to customize the analytical parts
of their workloads and to issue ad-hoc queries. On the other
hand, adding windowed aggregation functions using stored
procedures is a cumbersome task. PipelineDB19, which is
built on top of PostgreSQL, solves this usability issue by ex-
tending SQL with streaming features but still cannot match
the performance of dedicated streaming systems as we found
in early experiments. In addition to out-of-the-box stream-
ing features, modern streaming systems allow users to add
custom code. There has been work to allow for the same in
MMDBs, such as the integration of high-level programming
languages (using user-defined functions). These additions,
however, still do not allow for the same flexibility as writing
plain old Java code. These limitations are mainly caused by
the multi-tenant nature of database systems and the secu-
rity level that these systems need to fulfill. MMDBs would
need to allow for optionally disabling security arrangements
(e.g., enforcing access rights) in favor of better extensibil-
ity. Another mitigation path that MMDBs could follow is
to simply add more streaming features to its SQL process-
ing logic, namely, window-based semantics as proposed by
PipelineDB and StreamSQL [16]. This is also a topic we
plan to address in future research.

Besides extending MMDBs to better support streaming
use cases, the gap between MMDBs and streaming systems
could be closed from the other direction, which would mean
extending streaming systems with additional storage man-
agement features and query mechanisms. There is ongoing
work to make use of Apache Calcite20 (a SQL parser and
optimizer framework) to extend Flink with streaming SQL
and query optimization capabilities. Cache and register lo-
cality are crucial for high query performance and they can
both be addressed very efficiently by compiling query plans
into native code [14]. While this was possible to achieve in
systems like HyPer or Tell, which are written in C++ and
LLVM, it is more difficult to implement using JVM-based
systems such as the streaming systems evaluated in this pa-
per. Moreover, implementing efficient storage management
capabilities is a tedious task in JVM-based languages be-
cause to ensure data locality, custom memory management
has to be implemented outside the JVM heap.

19https://www.pipelinedb.com/
20https://calcite.apache.org
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6. CONCLUSIONS
In this paper, we evaluated a broad set of architectures

to address analytics on fast data. We performed an ex-
perimental evaluation including at least one representative
of each architecture. Our experiences as well as the per-
formance results indicate that there still exists a gap be-
tween MMDBs and dedicated streaming systems. MMDBs
are built for multi-tenant environments where durability and
isolation guarantees are essential. Dedicated streaming sys-
tems, on the other hand, often compromise these guarantees
in exchange for better performance or higher flexibility. To
catch up with these systems, MMDBs need to be able to
optionally lower their guarantees. In addition, new archi-
tectures are required that allow MMDBs to scale both their
event and query processing performance to keep up with the
demands for increasingly high event throughput rates. The
question remains whether these additions as well as new ar-
chitectures can enable MMDBs to address a broad set of
streaming workloads. Once fully implemented, we plan to
evaluate HyPer with enabled MVCC to investigate the im-
pact of event processing on analytics including the effects of
the garbage collection overhead MVCC introduces.
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ABSTRACT

Explosive growth in DRAM capacities and the emergence
of language-integrated query enable a new class of man-
aged applications that perform complex query processing
on huge volumes of data stored as collections of objects in
the memory space of the application. While more flexible
in terms of schema design and application development, this
approach typically experiences sub-par query execution per-
formance when compared to specialized systems like DBMS.
To address this issue, we propose self-managed collections,
which utilize off-heap memory management and dynamic
query compilation to improve the performance of querying
managed data through language-integrated query. We eval-
uate self-managed collections using both microbenchmarks
and enumeration-heavy queries from the TPC-H business
intelligence benchmark. Our results show that self-managed
collections outperform ordinary managed collections in both
query processing and memory management by up to an
order of magnitude and even outperform an optimized in-
memory columnar database system for the vast majority of
queries.

1. INTRODUCTION
This work follows two recent trends in data management

and query processing: language-integrated query and ever-
increasing memory capacities.

Language-integrated query is the smooth integration of
programming and database languages. The impedance mis-
match between these two classes of languages is well-known,
but recent developments, notably Microsoft’s linq and, to a
lesser extent, parallel streams and lambdas in Java, enrich
the host programming language with relational-like query
operators that can be composed to construct complex queries.
Of particular interest to this work is that these queries can
be targeted at both in-memory and external database data

c© 2017, Copyright is with the authors. Published in Proc. 20th Inter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

sources.
Over the last two decades, dram prices have been drop-

ping at an annual rate of 33%. As of September 2016, servers
with a dram capacity of more than 1TB are available for un-
der US$50k. These servers allow the entire working set of
many applications to fit into main memory, which greatly
facilitates query processing as data no longer has to be con-
tinuously fetched from disk (e.g., via a disk-based external
data management system); instead, it can be loaded into
main memory and processed there, thus improving query
processing performance.
Granted, the use-case of a persistent (database) and a

volatile (application) representation of data, coupled with a
thin layer to translate between the two is how programmers
have been implementing applications for decades and will
certainly not go away for all existing legacy applications that
are in production. Combining, however, the trends of large
memories and language-integrated query is forward-looking
and promises a novel class of new applications that store
huge volumes of data in the memory space of the applica-
tion and use language-integrated query to process the data,
without having to deal with the duality of data representa-
tions. This promises to facilitate application design and de-
velopment because there is no longer a need to setup an ex-
ternal system and to deal with the interoperability between
the object-oriented application and the relational database
system. Consider, for example, a business intelligence ap-
plication that, on startup, loads a company’s most recent
business data into collections of managed objects and then
analyses the data using language-integrated query. Such ap-
plications process queries that usually scan most of the ap-
plication data and condense it into a few summarizing val-
ues that are then returned to the user; typically presented
as interactive gui elements such as graphs, diagrams or ta-
bles. These queries are inherently very expensive as they
perform complex aggregation, join and sort operations, and
thus dominate most other application costs. Therefore, fast
query processing for language-integrated query is impera-
tive.
Unfortunately, previous work [12, 13] has already shown

that the underlying query evaluation model used in many
language-integrated query implementations, e.g., C♯’s linq-
to-objects, suffers from various significant inefficiencies that
hamper performance. The most significant of these is the
cost of calling virtual functions to propagate intermediate
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result objects between query operators and to evaluate pred-
icate and selector functions in each operator. Query compi-
lation has been shown to address these issues by dynamically
generating highly optimized query code that is compiled and
executed to evaluate the query. Previous work [13] also ob-
served that the cost of performing garbage collections and
the memory layout of the collection data which is imposed
by garbage collection further restricts query performance.
This issue needs to be addressed to make this new class of
applications feasible for application developers.

Our solution to address these inefficiencies is to use self-

managed collections (smcs), a new collection type that man-
ages the memory space of its objects in private memory that
is excluded from garbage collection. smcs exhibit different
collection semantics than regular managed collections. This
semantics is derived from the table type in databases and
allows smcs to automatically manage the memory layout
of contained objects using the underlying type-safe man-
ual memory management system. smcs are optimized to
provide fast query processing performance for enumeration-
heavy queries. As the collection manages the memory layout
of all contained objects and is aware of the order in which
they are accessed by queries, it can place them accordingly
to better exploit spatial locality. Doing so improves the per-
formance of enumeration-heavy queries as cpu and compiler
prefetching is better utilized. This is not possible when us-
ing automatic garbage collection as the garbage collector is
not aware of collections and their content. Objects may be
scattered all over the managed heap and the order they are
accessed may not reflect the order in which they are stored
in memory. smcs are designed with query compilation in
mind and allow the generated code low-level access to con-
tained objects, thus enabling the generation of more efficient
query code. On top of this, smcs reduce the total garbage
collection overhead by excluding all contained objects from
garbage collection. With applications storing huge volumes
of data in smcs, this further improves application perfor-
mance and scalability.

The remainder of this paper is organized as follows. In §2,
we provide an overview of smcs and their semantics before
presenting a type-safe manual memory management system
in §3. In §4, we introduce smcs and show how they utilize
our manual memory manager to improve query processing
performance compared to regular collections that contain
managed objects. Finally, we evaluate smcs in §7 using
microbenchmarks as well as some queries from the tpc-h

benchmark. We conclude this work in §9.

2. OVERVIEW
smcs are a specialized collection type designed to provide

improved query processing performance compared to regular
managed collections for application data accessed predom-
inantly by language-integrated queries. This performance
improvement may come at the expense of the performance
of other access patterns (e.g., random access). smcs are only
meant to to be used with data that is dominantly accessed
in queries.

smcs have a new semantics: they own their contained ob-
jects and hence the collection itself determines the lifetime
of the objects. In other words, objects are created when they
are inserted into the collection and their lifetime ends with
their removal from the collection. This accurately models
many use cases, as objects often are not relevant to the ap-

plication once they are removed from their host collection.
Consider, for example, a collection that stores products sold
by a company. Removing a product from the collection usu-
ally means that the product is no longer relevant to any
other part of the application. Managed applications, on the
other hand, keep objects alive so long as they are still ref-
erenced. This means that a rogue reference to an object
that will never be touched again prevents the runtime from
reclaiming the object’s memory. Object containment is in-
spired by database tables, where removing a record from a
table entirely removes the record from the database.
The following code excerpt illustrates how the Add and

Remove methods of smcs are used:

Collection<Person> persons = new Collection<Person>();
Person adam = persons.Add("Adam", 27);
/* ... */
persons.Remove(adam);

The collection’s Addmethod allocates memory for the object,
calls the object’s constructor, adds the object to the collec-
tion and returns a reference to the object. As the lifetime
of each object in the collection is defined by its containment
in the collection, mapping the collection’s Add and Remove

methods to the alloc and free methods of the underlying
memory manager is straightforward. When the adam object
is removed from the collection, it is gone; but it may still be
referenced by other objects. Our semantics requires that all
references to a self-managed object implicitly become null

after removing the object from its host collection; derefer-
encing them will throw a NullReferenceException.1

smcs are intended for high-performance query processing
of objects stored in main memory. To achieve this, they
leverage query compilation [12, 13] and support bag seman-
tics which allows the generated queries to enumerate a col-
lection’s objects in memory order. In order to exclude smcs
from garbage collection we have to disallow collection ob-
jects to reference managed objects. We enforce this by intro-
ducing the tabular class modifier to indicate classes backed
by smcs and statically ensure that tabular classes only ref-
erence other tabular classes. Strings referenced by tabu-
lar classes are considered part of the object; their lifetime
matches that of the object, thereby allowing the collection
to reclaim the memory for the string when reclaiming the
object’s memory. We further restrict smcs not to be defined
on base classes or interfaces, to ensure that all objects in a
collection have the same size and memory layout.
In contrast to regular managed collection types like List<T>

our collection types require a deeper integration with the
managed runtime. As collections allocate and free memory
for the objects they host, we introduce an off-heap mem-
ory system to the runtime that provides type, memory and
thread safety. The alloc and free methods of the mem-
ory system are part of the runtime api and are called by
the collection implementation as needed. The type safety
guarantees for tabular types are not the same as for au-
tomatically managed ones. We guarantee that a reference
always refers to an instance of the same type and that this
instance is either the one that was assigned to the reference
or, if the instance has been removed from the collection,
null. This differs from automatically managed types that

1This suggests that an ownership type system could be use-
ful to statically guarantee such exceptions are not raised;
but we leave this to future work.

62



guarantee that a reference points to the object it was as-
signed to for as long as the reference exists and refers to
that object. To ensure type-safe reference accesses, we store
additional information with each reference and perform ex-
tra checks when accessing an object. For managed types,
references are translated into pointer-to-memory addresses
by the just-in-time (jit) compiler. As the logic for tabular
types is more complex, we modify the jit compiler to make
it aware of tabular type references and the code that must
be produced when dereferencing them.

We use query compilation to transform linq queries on
smcs into query functions that process the query. To im-
prove query performance, the generated code directly op-
erates on the collection’s memory blocks (using unsafe, c-
style pointers). All objects in the collections are stored in
memory blocks that are private to the collections. Note that
these blocks are not accessible outside the collection and the
code generator. We assume that the structure of most linq
queries is statically defined in the application’s source code
with only query parameters (e.g., a constant in a selection
predicate) dynamically assigned. We modify the C♯ com-
piler to automatically expand all linq queries on smcs to
calls to automatically generated imperative functions that
contain the same parameters as arguments. Queries that
are dynamically constructed at run-time, can be dealt with
using a linq query provider as in [13]. The generated imper-
ative query code processes the query as in [13], but on top
of smcs that enable direct pointer access to the underlying
data.

3. TYPE-SAFE MANUAL MEMORY MAN-

AGEMENT
Our manual memory management system is purpose-built

for smcs. It leverages various techniques to allow smcs
to manually manage contained objects and to provide fast
query processing.

3.1 Type stability and incarnations
The memory manager allocates objects from unmanaged

memory blocks, where each block only serves objects of a cer-
tain type. By only storing objects of a certain type in each
block and disallowing variable-sized objects to be stored in-
place we ensure that all object headers in a block remain at
constant positions within that block, even after freeing ob-
jects and reusing their memory for new ones. We align the
base address of all blocks to the block size to allow extract-
ing the address of the block’s header from the object pointer.
This allows us to store type-specific information like vtable
pointers only once per block rather than with every object.
We refer to the memory space in a block that is occupied
by an object as the object’s memory slot. Object headers
contain a 32-bit incarnation number. We use incarnations to
ensure that objects are not accessed after having been freed.
For each slot, the incarnation number is initialized to zero
and incremented whenever an object is freed. References to
objects store the incarnation of the object together with its
pointer. Before accessing the object’s data, the system ver-
ifies that the incarnation number of the reference matches
that in the object’s header and only then allows access to the
object [1]. If the application tries to access an object that
has been freed (i.e., non matching incarnation numbers),
then the system raises a null reference exception. The jit

Block Header
Header

Inc. Number Pointer

Pointer Inc. Number
Reference

Indirection Table Block

Back-pointerStateObject Data
Freeze and Lock Bits

Data Block

Figure 1: Accessing object data through indirection

compiler injects these checks when dereferencing a manually
managed object. We do not expect incarnation numbers to
overflow in the lifetime of a typical application, but if over-
flows should occur, we stop reusing these memory slots until
a background thread has scanned all manually managed ob-
jects and has set all invalid references to null. Single-type
memory blocks combined with incarnation numbers ensure
type-safe manual memory management as defined in §2.

3.2 Memory layout
We illustrate the memory layout of our approach in Fig-

ure 1. We do not store a pointer to an object’s memory
slot in its reference, but instead use a level of indirection.
We will require this for the compaction schemes of §5. The
pointer stored in object references points to an entry in the
global indirection table which, in turn, contains a pointer to
the object’s memory slot. We store the incarnation number
associated with an object in its indirection table entry rather
than its memory slot. This allows us to reuse empty indi-
rection table entries and memory blocks for different types
without breaking our type guarantees.
As shown in Figure 1, each data block is divided into four

consecutive memory segments: block header, object store,
slot directory, and back-pointers. The object store contains
all object data. Each object’s data is accessible through a
pointer from the corresponding indirection table entry or
through the identifier of the object’s slot in the block. The
slot directory stores the state of each slot and further state-
related information (for a total of 32 bits). Each slot can be
in one of three states: free i.e., the slot has never been used
before, valid, i.e., it contains object data, or limbo i.e., the
object has been removed, but its slot has not been reclaimed
yet. Back-pointers are required for query processing and for
compaction; they store a pointer to the object’s indirection
table entry. The slot directory entry and the back-pointer
are accessible using the object’s slot identifier.

3.3 Memory contexts
We have so far grouped objects of the same type in blocks

private to that type. In many use cases, certain object types
exhibit spatial locality: objects of the same collection are
more likely to be accessed in close proximity. Memory con-

texts allow the programmer to instruct the allocation func-
tion to allocate objects in the blocks of a certain context
(e.g., a collection). The memory blocks of a context only
contain objects of a single type and only the ones that have
been allocated in that specific memory context.

3.4 Concurrency
Incarnation numbers protect references from accessing ob-

jects that have been freed. However, they do not protect
objects from being freed and reused while being accessed.
Consider Figure 2: Thread 2 frees and reuses the memory
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Thread 1 Thread 2

if (CHECK_INC(adam))

persons.Remove(adam);

Person tom = persons.Add(“Tom”, 25);

PRINT(adam.name);

Figure 2: Concurrency conflict
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Figure 3: Epoch-based memory reclamation

slot referenced by the adam reference just after Thread 1 suc-
cessfully checked the incarnation numbers for the same ob-
ject. As Thread 1’s incarnation number check was successful,
the thread accesses the object, which is now no longer Adam,
but Tom. This behavior violates the type-safety requirement
of always returning the object assigned to a reference, or
null if the referenced object has been freed. We refine the
requirement for the concurrent case by specifying the check
of the incarnation numbers to be the point in time where
the requirement must hold. Thus, all accesses to objects
are valid as long as the incarnation numbers matched at the
time they were checked. To enforce the type-safety require-
ment, the memory manager ensures that if an object is freed,
its memory slot cannot be reused for a new object until all
concurrent threads have finished accessing that object.

We use a variation of epoch-based reclamation [7] to en-
sure thread safety. In epoch-based reclamation, threads ac-
cess shared objects in grace periods (critical sections). The
memory space of shared objects can only be reclaimed once
all threads that may have accessed the object in a grace
period have completed this grace period. Thus, grace peri-
ods are the time interval during which a thread can access
objects without re-checking their incarnation numbers to en-
sure type safety. Epochs are time intervals during which all
threads pass at least one grace period. The system main-
tains a global epoch; each thread maintains its thread-local
epoch. In Figure 3, we show how we track epochs. Upon
entering a critical section (grace period), each thread sets
its thread-local epoch to the current global epoch. To leave
a critical section, a thread can increment the global epoch if
all other threads that currently are in critical sections have
reached the current global epoch. Hence, threads can either
be in the global epoch e or in e− 1. Memory freed in some
global epoch e can safely be reclaimed in epoch e+2 because
by that time, no concurrent thread can still be in epoch e.

To implement epoch-based reclamation, the jit compiler
automatically injects code to start and end critical sections
when dereferencing manually managed objects. Critical sec-
tions are not limited to a single reference access; several
accesses can be combined into a single critical section to
amortize the overhead of starting and ending critical sec-
tions. The following illustrates the code to start and end a
critical section:

void enter_critical_section() {
global->sectionCtx[threadId].epoch = global->epoch;
global->sectionCtx[threadId].inCritical = 1;

memory_fence(); }

void exit_critical_section() {
memory_fence();
global->sectionCtx[threadId].inCritical = 0; }

Upon entering a critical section, each thread sets its local
epoch to the current global epoch and sets a flag to indicate
that the thread is currently in a critical section; on exit the
thread clears this flag. We have to enforce compiler and cpu

instruction ordering around these instructions to ensure that
the session context is set before we access the object and not
unset until we have finished, hence, the memory fences. In
contrast to [7], we do not increment global epochs modulo

three, but as a continuous counter. We also do not increment
the global epoch and reclaim memory when exiting critical
sections, but in the memory manager’s allocation function.
This allows us to lazily reclaim memory on demand when
allocating new objects.

3.5 Memory operations
When freeing an object, we increment its incarnation num-

ber to prevent subsequent accesses to it. We refer to memory
slots that are freed, but not yet available for reuse as limbo

slots. We set the memory slot’s state to limbo and set its
removal timestamp to the current global epoch in the slot
directory. This bookkeeping ensures that the slot cannot
be reclaimed until at least two epochs have passed. Mem-
ory blocks become candidates for reclamation when they
surpass a threshold fraction of limbo slots, the reclamation
threshold. If this is the case, we add the block to a queue
of same-type memory blocks that may be reclaimed, along
with the earliest timestamp when the block can be reclaimed
(global epoch plus two).
All allocations are performed from thread-local blocks so

that only one thread allocates slots in a block at a time
(though there can be concurrent removals from the same
block). Thread-local blocks are taken from the reclamation
queue of the appropriate type if there are blocks ready for
reclamation; if the queue is empty they are allocated from
the unmanaged heap. To find a memory slot for a new
object the allocation function scans all entries in the slot
directory from the slot of the last allocation until either a
free slot or a reclaimable limbo slot is found. The maximum
number of slots scanned before finding a limbo slot that can
be reclaimed depends on the reclamation threshold. For
instance, if blocks can host one hundred objects and are
added to the queue once they contain more than 5% limbo
slots, then each allocation scans at most twenty slots to find
a reclaimable limbo slot. The actual number is likely to be
smaller as removals might have happened in the meantime.
The allocation function attempts to increment the global
epoch counter once there are blocks in the reclamation queue
that cannot be reclaimed yet because two epochs have not
passed.

4. SELF-MANAGED COLLECTIONS
smcs use the type-safe memory management described in

§3 and support the semantics of §2. The objects contained
in an smc are managed by the collection itself and not by
the garbage collector. This, along with bag semantics, en-
ables smcs to place objects in memory based on the order
the objects are touched when enumerating the collection’s
content in a query. This improves the locality of memory ac-
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cesses when enumerating the smc, leading to improved per-
formance compared to iterating over the collection’s content
through references that may point anywhere in the managed
heap (as is the case for all conventional .net collections). A
convenient side-effect of disallowing smcs to contain stan-
dard objects is that it significantly reduces the size of the
managed heap and the volume of memory that has to be
scanned during garbage collection and, in consequence, the
duration of garbage collection, which improves the overall
performance of the application.

smcs use the type-safe memory manager of §3 to manage
contained objects. The semantics of smcs mean that the
Add and Remove methods can directly be mapped to the
memory manager’s alloc and free methods. In addition to
allocating memory for the object, the Add method calls the
object’s constructor and returns a reference to the object.

Each smc has a private memory context to allocate all
objects added to the collection. This ensures that all ob-
jects in an smc end up in the same set of private mem-
ory blocks. The smc can access all of these blocks through
the memory context. Recall from §2 that we automatically
transform linq queries over smcs into calls to specialized
query functions that use query compilation to improve the
performance of query processing. By giving the smc access
to these memory blocks, we also allow the query compiler to
access them to enumerate over the smc’s objects. The fol-
lowing illustrates a simple compiled query that enumerates
over all objects in the smc by iterating over all valid slots in
all blocks in the smc’s memory context, checking a predicate
on the age field, and returning references to all qualifying
objects:

enter_critical_section();
foreach (Block* blk in collection.GetMemoryContext())
foreach (Slot i in blk)
if (blk->slots[i] == VALID)
if (blk->data[i].age > 17)
yield new ObjRef { ptr = blk->backptr[i],

inc = blk->backptr[i]->inc };
exit_critical_section();

The query uses the memory block’s slot directory blk->slots
to check if the corresponding memory slot contains a valid
object (in contrast to a free or limbo slot). As each entry
in the slot directory is only four bytes wide and stored in a
consecutive memory area, it is fairly cheap to iterate over
the slot directory to check for valid slots. The query touches
the object’s data only if the slot is valid. If the slot also sat-
isfies the selection predicate, the query returns a reference
(ObjRef) to the object. To do so, it uses the back-pointer
field blk->backptr to obtain a pointer to the corresponding
indirection table entry. The reference contains this pointer
and the current incarnation number of the object to ensure
that the memory slot can safely be reclaimed once the ob-
ject is removed from the smc. To generate code for more
complex queries we follow a similar strategy as in previous
work [10, 12, 13, 14].

To ensure that the accessed objects are not removed and
their memory slot is not reclaimed while directly accessing
objects in a query, we have to be in a critical section. This
applies to objects in the primary smc that we enumerate
as well as to objects in other smcs that we access through
references from the primary smc. Instead of entering and
exiting a critical section around each object access, we pro-
cess huge chunks of data in the same critical section. This

amortizes the cost of critical sections (in particular, memory
fences) and, hence, is a cornerstone of providing good query
performance. The query remains in the same critical section
either for its entire duration, or for the duration of process-
ing a single memory block. The query compiler chooses the
desired granularity for each query based on the requirements
of the query. Staying in the same critical section for the du-
ration of the query allows to generate code that stores direct
pointers to the memory locations of smc objects in interme-
diate results and data structures (otherwise the query may
only use object references). However, it also increases the
time until the memory manager can increment the global
epoch to reclaim limbo slots. As linq queries are lazily
evaluated, we enforce that critical sections are exited before
a result object is returned and, hence, control is returned to
the application. Since queries often contain several blocking
operations (e.g., aggregation or sorting), most query pro-
cessing is performed in a single critical section. Objects
that are concurrently removed from an smc while a query
enumerates the smc’s content are included in the query’s
result if: (a) the query reads the object’s slot directory
entry before the slot is set to limbo, or (b) the query follows
a reference to the object before its incarnation number is
incremented. Objects added to an smc behave accordingly.
smcs use a lower isolation level than database systems, in
line with other managed collections.

4.1 Columnar storage
While smcs manage the memory space of contained ob-

jects themselves, they keep the memory layout of the ob-
ject’s data unchanged. Previous work in database systems,
e.g., [2], has shown that some workloads, however, greatly
benefit from a columnar layout, instead of the row-wise lay-
out of smcs. Since smcs store all object data in blocks that
only contain objects from the same collection and, hence,
the same type, they can be easily extended to leverage a
columnar layout. The only requirements are that: (a) the
jit compiler injects the code required to access columnarly
stored data when following references to such objects, and
(b) the query compiler is aware of the data layout and also
generates code that accesses the data in a columnar fashion.
For columnar layouts, we store the object’s block and slot
identifiers in the object’s indirection table entry instead of a
pointer to the object’s memory location. To access the data
of an object, we look up its memory block using an array of
memory blocks indexed by their block identifier, and then
use the slot identifier to find the position of the value in its
column.

5. COMPACTION
Common uses of smcs do not cause them to shrink signif-

icantly; they stay at a stable size or grow steadily. However,
when facing heavy shrinkage of an smc, we perform com-
paction to reduce the smc’s memory footprint and improve
query performance. When relocating objects as part of a
compaction, we have to ensure that concurrent accesses to
them do not exhibit inconsistencies. Inconsistencies may
arise from accesses through references or from queries di-
rectly operating on the smc’s memory blocks.

5.1 Reference access
The indirection table allows us to move data objects within

and across memory blocks without having to update all ref-
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Figure 4: Relocating an object

erences held by the application. Atomically updating the
pointer in the indirection table suffices to ensure that all
threads can correctly reach the object. However, threads
that already are in critical sections and point to the old lo-
cation might cause inconsistencies by performing updates on
outdated memory locations. To compact data blocks with-
out stopping the application we extend the epoch scheme
for object relocation. We reserve the two most significant
bits of the incarnation number in the indirection table for
a frozen flag [3] and a lock flag. After a thread success-
fully increments the global epoch, it checks if a compaction
is necessary. The global epoch cannot be increased in the
meantime because the thread is still in a critical section us-
ing the previous epoch. If compaction is necessary we set the
global nextRelocationEpoch to e + 2 (e is the thread-local
epoch and e+1 is the global epoch we just incremented) and
then awake the compaction thread. Once a relocation epoch
is set, no other but the compaction thread can increment the
global epoch until the compaction is finished (epoch e+ 3).
To guarantee this, we run the compaction thread in a critical
section that uses the thread-local epoch e, which prevents
all other threads from incrementing the global epoch.

The compaction thread is active through two epochs: the
freezing epoch e + 1 and the relocation epoch e + 2. In
the freezing epoch it iterates over all blocks that need com-
paction (marked by previous allocations/removals). For each
block, it constructs a list of all slots that have to be moved
and the memory address the slots have to be moved to. This
list is accessible through the block’s header. The thread then
sets the frozen bit in the indirection table entry of each slot
that is scheduled to be copied.2 Once all blocks are prepared
for compaction, the thread waits until all other threads are
in the freezing epoch (e+1) and then increments the global

2By using a cas operation; this requires free to also use
cas to increment incarnation numbers

epoch to e+2 to start the relocation epoch. The relocation
epoch consists of two phases: the waiting phase, which lasts
until the compaction thread observes that all other threads
are in the relocation epoch, and the moving phase that starts
thereafter. While waiting, the compaction threat continu-
ously tries to increment the global epoch to proceed to the
moving phase. Once in the moving phase the compaction
thread makes this phase globally visible by setting a global
variable to indicate that frozen objects may now be moved.
It then iterates over all blocks scheduled for compaction. For
every slot to be moved, it atomically locks the incarnation
number by setting the lock bit and copies the object to the
new location, updates the pointer in the indirection table,
unsets the lock and freeze bits, and marks the relocation as
successful in the block’s relocation list. Once all scheduled
relocations are done, the compaction thread increments the
global epoch to e + 3 (all threads are guaranteed to be at
e + 2 by this point), exits its critical section to allow other
threads to increment the global epoch, and goes back to
sleep. Figure 4 illustrates the steps to move an object inside
a memory block.
If an object’s incarnation number is not frozen there is no

risk of it being moved in the current epoch, so all threads
can access it as before. Note that the incarnation number
comparison that we have to do anyway is enough to cover
the most common path. If we encounter a frozen incarna-
tion number (i.e., the first incarnation number comparison
fails, but a second that excludes frozen and lock bits suc-
ceeds), there are three cases: (a) We are in the freezing
epoch. There will not be any relocation in this epoch, so
we can return the data pointer. (b) We are in the waiting
phase of the relocation epoch and not all threads are in the
relocation epoch yet. A relocation might happen while we
access the object so we cannot proceed. However, we also
cannot relocate the object because not all threads are in the
relocation phase so they do not expect relocations yet. Our
only option is to bail out from relocating the object. To do
so, we find the object’s entry in the block’s relocation list,
atomically set the lock bit in the object’s incarnation num-
ber, set the status of the relocation to failed (in the object’s
relocation list entry), and unset the freeze and lock bits. If
the lock bit has already been set by another thread, we spin
until it is unset and then recheck the object’s status. Once
the freeze bit is removed, we can return the pointer and pro-
ceed. (c) We are in the moving phase of the relocation epoch
and all other threads are also in the relocation epoch. We
again cannot proceed because the object may be moved at
any time, but we can help the compaction thread move the
object to its new location and then proceed. To do so, we
find the object’s entry in the block’s relocation list, atom-
ically set the lock bit in the object’s incarnation number,
move the object to its new location, set the status of the
relocation to succeeded, and unset the freeze and lock bits.
As in the previous case, we spin if the bit is locked, then
recheck its status and finally return the pointer after the
frozen bit is unset. The following outlines the checks that
have to be performed before accessing a manually managed
objects through its reference:
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void* dereference_object(ObjRef oref) {
if(oref.inc == oref.ptr->inc) {
return oref.ptr->memptr;

} else if (oref.inc == (oref.ptr->inc & FL_MASK)) {
// First case:
if (global->sectionCtx[threadID].epoch

!= global->nextRelocationEpoch) {
return oref.ptr->memptr;

// Second case:
} else if (!global->inMovingPhase) {
bail_out_relocation(oref);
return oref.ptr->memptr;

// Third case:
} else {
relocate_object(oref);
return oref.ptr->memptr; }

} else {
throw new NullPointerException(); } }

Note that outside freeze and relocation epochs, the first
condition is always satisfied if the referenced object has not
been freed. If the object access is known to be read-only,
we can always use the original location of the object in the
waiting phase of the relocation epoch as its memory location
cannot be reclaimed while we access it. In this case, the
reader does not have to fail the relocation of that object.

When the compaction thread starts iterating over the blocks
to be compacted (i.e., the moving phase of the relocation
epoch), all failed relocations are visible so the thread can
deal with them. If necessary, it extends compaction by one
additional epoch to try all unsuccessful relocations again by
adding another freezing phase at the end of the relocation
epoch and setting the following epoch to be a relocation
epoch before exiting the current relocation epoch.

5.2 Block access
Queries directly operating on the memory blocks of an

smc can also cause inconsistencies where the query misses
some objects because they are concurrently being relocated
or includes them twice. To prevent these inconsistencies, we
have to extend the compaction scheme described thus far.
We always empty the memory blocks that take part in the
compaction by moving their objects to new memory blocks
and removing the emptied blocks from the collection. Blocks
only participate in a compaction if their occupancy is below
a threshold (e.g., 30%). Blocks that participate in a com-
paction are assigned to compaction groups where the objects
of all blocks in a compaction group are moved to the same
new block. The number of blocks in a compaction group
depends on the aforementioned threshold; a 30% threshold
results in three blocks per group.

Queries process all blocks of a compaction group in the
same thread-local epoch and in consecutive order. This en-
sures consistent query behavior outside relocation epochs as
relocations may not start while processing the compaction
group. During relocation epochs, we have to ensure that
queries may either only access the pre-relocation state of a
compaction group or the post-relocation state. If process-
ing of a compaction group starts in the moving phase of
the relocation epoch, the query first helps performing the
relocation of the compaction group and then uses the com-
pacted memory block for query processing. If processing of
the group starts in the waiting phase, we cannot compact
the group’s content yet. In this case, we add the group
to a list of groups that still have to be processed and con-
tinue with the remaining memory blocks. Once all remaining
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Figure 5: Direct pointer between collection objects

blocks are exhausted, we check if the moving phase has al-
ready started and, if this is the case, process all remaining
compaction groups by first performing the relocation and
then processing the compacted block. If the moving phase
has not started yet, we process the compaction group in
its pre-relocation state by atomically incrementing a query
counter in the compaction group that prevents other threads
from compacting the group until the query decremented the
counter again. Relocations only occur in the moving phase
of the relocation epoch and, hence, once a relocation waits
for the query counter of a compaction group to become zero,
there are no more queries incrementing it. The compaction
thread bails out of compacting a certain group after wait-
ing for a predefined amount of time for the read lock to be
released. We do this to deal with queries that return con-
trol to the application (i.e., return a result element) while
holding the read lock.

6. DIRECT POINTERS
When a query touches an object that contains many refer-

ences to nested objects, then smcs may loose ground to au-
tomatically managed collections: each dereference not only
has to check incarnation numbers, but, more importantly,
it has to pay for an additional (random) memory access to
the indirection table. We now provide an alternative imple-
mentation that solves this problem. We keep indirection for
all external references, but, for references between smcs, we
store the direct pointer to the corresponding memory loca-
tion. To be able to check incarnation numbers in both cases,
the incarnation number of a memory slot is moved back into
the memory slot (object header) instead of the indirection
table. In Figure 5 we show the new layout, which improves
query performance for queries that use references to access
objects from several smcs.
When relocating an object, however, the new memory lo-

cation of the object now has to be updated in the indirection
table as well as in all self-managed objects that reference it,
which is no longer an atomic operation. We address this
by adding a third flag to the incarnation number, the for-

warding flag. The forwarding flag turns the object’s old
memory slot into a tombstone. Queries reaching the tomb-
stone through direct pointers use the slot’s back-pointer to
access the object’s indirection table entry which contains a
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pointer to its new memory slot. To improve the performance
of future accesses to this object, the query also updates the
direct pointer to the object’s new memory location. The
forwarding flag is set by the thread relocating the object
after completing the relocation in the same atomic opera-
tion that unsets the frozen and lock bits; hence, tombstones
cannot be reached through (indirect) references. As was the
case for the two other flags, checking the forwarding flag is
performed during incarnation number checking and, hence,
does not penalize the common case of an unset forwarding
flag.

Tombstoned memory slots are not reclaimed until there
are no more direct pointers to them. After compacting an
smc, the compaction thread scans all smcs that have direct
pointers to it and updates the pointers to relocated objects.
Note that the references between smcs are statically known
and the compiler can produce specialized functions that only
scan smcs that have direct pointers that may have to be up-
dated and only check the corresponding pointer fields. We
improve the performance of scanning an smc to update di-
rect pointers by only following pointers to memory slots that
are known to have been relocated. This saves many random
memory accesses. We achieve this by building a hash ta-
ble during compaction that contains the memory addresses
of all blocks that are compacted and, instead of following
a direct pointer to see if the forwarding flag is set, we first
compute the address of the corresponding block, probe it in
the hash table and only follow the direct pointer if the block
address was in the hash table.

7. EVALUATION
We implemented smcs as a library using unsafe C♯ code.

We did not change the jit-compiler to automatically in-
ject the code for correctly dereferencing references to self-
managed objects but added this code by hand to factor out
any overhead. We implemented the code generation tech-
niques of [13] and we did not use any query-specific optimiza-
tions. Our experimental setup was an Intel Core i7-2700K
(4x3.5GHz) system with 16GB of ram, running Windows
8.1 and .net 4.5.2. We compare smcs with the default man-
aged collection types in C♯. Unlike smcs, most collections
in C♯ are not thread-safe (e.g., List<T>, C♯’s version of a
dynamic array). Thread-safe collection types in C♯ are lim-
ited and only ConcurrentDictionary<TKey, TValue> and
ConcurrentBag<T> provide comparable functionality to smcs;
however, ConcurrentBag<T> does not allow the removal of
specific objects. .net supports two garbage collection modes:
workstation and server. Both modes support either interac-
tive (concurrent) or batch (non-concurrent) garbage collec-
tions. In our tests the server modes outperformed the work-
station ones, so we only report results for the server mode
and only report both concurrency settings if their results
differ.

Our benchmarks are primarily based on an object-oriented
adaptation of the tpc-h workload. We have chosen to focus
on a database benchmark as we believe it exemplifies the
class of large-scale analytics applications that will benefit
from smcs. A relational workload is the most typical exam-
ple of an application that has traditionally offloaded ‘heavy’
data-bound computation to an optimized runtime for that
data model (a relational DBMS). As such, it is a good indi-
cation of both the classes of queries that can be integrated
in the programming language, while, at the same time, it
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can provide an immediate performance comparison to the
dominant alternative. tpc-h tables map to collections and
each record to an object composed of C♯’s primitive types
and references to other records (all primary-foreign-key rela-
tions). Based on the latter, most joins are performed using
references. Unless stated otherwise, we use a scale factor
of three for all tpc-h benchmarks. Note that due to a 16-
byte-per-object overhead and larger primitive types (e.g.,
decimal is 16 bytes wide) in C♯, a scale factor of three re-
quires significantly more memory than in a database system.

Sensitivity to relocation threshold Recall from §3.4
that the data blocks of smcs may contain limbo slots that
cannot be reclaimed yet and that we use a tolerance thresh-
old of such slots in a block that needs to be surpassed be-
fore adding the block to a reclamation queue. Varying this
threshold affects the memory size, the cost of memory oper-
ations and the query performance of smcs. In Figure 6 we
show how these factors change when varying the threshold
(normalized to the maximum value). As the percentage of
unused limbo slots grows, so does the memory footprint of
the collection. The cost of performing memory operations
(i.e., insertions and removals) slowly decreases with an in-
creasing threshold as allocations have to scan less memory
slots to find a slot that can be reclaimed. Query perfor-
mance seems to be less dependent on the additional slot di-
rectory entries that have to be processed with an increasing
threshold, but more on the branch misprediction penalties
when verifying if the slot is occupied. At a 50% threshold,
the branch predictor has the most trouble predicting if the
slot is occupied. Based on the results of Figure 6, we will
use a 5% threshold for the following experiments. For a 5%
threshold, the memory requirements of smcs are comparable
to that of storing managed objects in List<T>.

Memory allocation throughput In Figure 7 we com-
pare the throughput (in objects per second) of allocating
lineitem objects (using the default constructor) in an smc

to the pure allocation throughput of managed objects in
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.net
3 and the throughput of allocating managed objects and

adding them to a concurrent collection. For managed allo-
cations we report the throughput for interactive and batch
garbage collection; the latter consistently provides better
performance. smcs significantly outperform both managed
collections and the pure allocation cost of managed objects.
All objects remain reachable so the runtime performs nu-
merous garbage collections, with many of them stopping all
application threads to copy objects from younger to older
generations. smcs allocate from (previously unused) thread-
local blocks, which reduces the synchronization overhead of
multiple allocation threads to about one atomic operation
per 10k lineitem allocations.

Refresh streams To measure the throughput of memory
operations we introduce the tpc-h refresh streams. Each
thread continuously runs one of two kinds of streams with
the same frequency. The first stream type creates and adds
lineitem objects (0.1% of the initial population) to the
lineitem collection. The second stream type enumerates
all elements in the lineitem collection and removes 0.1%
of the initial population based on a predicate on the ob-
ject’s orderkey value. All 0.1% objects to delete are pro-
vided in a hash map and removed in a single enumeration
over the collection. This benchmark represents the com-
mon use case of refreshing the data stored in smcs. In
Figure 8 we report the stream throughput for smcs against
ConcurrentDictionary<TKey, TValue>; ConcurrentBag<T>
is not included because it does not support the removal of
specific elements. smcs perform better than both types of
managed collections in all cases.

Impact of garbage collection Out of the two garbage
collection settings reported in Figure 7, the (non-concurrent)
batch mode provides the higher throughput. In other garbage
collection intensive benchmarks, we found the batch mode
to enable a several times higher throughput. However, the

3Pre-allocated, thread-local arrays prevent objects from be-
ing garbage collected.
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higher throughput comes at a price: response time. Where
concurrent collectors (interactive) can perform big parts of
garbage collection on a background thread without paus-
ing all application threads, non-concurrent collectors have to
pause all threads for the duration of the collection. As the
size of the managed heap grows, so does the duration of full
garbage collections and, hence, the application’s maximum
response time. To illustrate this, we insert a number of ob-
jects into a collection, either managed or self-managed, and
then start two threads in parallel. The first thread continu-
ously allocates managed objects with varying lifetimes and
the second continuously sleeps for one millisecond and mea-
sures the time that passed in the meantime. If it observes
that significantly more time has passed than expected, it
records the value as it most likely was caused by garbage
collection triggered by the other thread. Figure 9 shows the
maximum timeout measured for a varying number of objects
stored in the collection. For non-concurrent garbage collec-
tion, the maximum timeout increases with a growing number
of objects stored in a managed collection, but remains fairly
stable when these objects are stored in an smc. Thus, the
duration of garbage collections increases with growing data
volumes stored in the managed heap. In the batch mode this
negatively impacts the responsiveness of the application; in
the interactive mode, it negatively impacts the overall ap-
plication performance as the background collection thread
steals processing resources from the application. In both
cases, smcs scale better with increasing data volumes.

Enumeration performance We first report on the pure
enumeration performance of smcs before considering more
complex queries. Our queries either: (a) enumerate the
lineitem collection and perform a simple function on each
object to ensure that all lineitem objects are accessed; or
(b) enumerate the lineitem collection, and for each object
follow the order reference to a customer object and perform
a simple function on the latter to ensure that customer ob-
jects are also accessed. Query performance deteriorates over
time as objects are added and removed from the collection.
In managed collections, objects may end up scattered all
over the managed heap, whereas in smcs the blocks con-
taining objects may have holes due to limbo slots. In Fig-
ure 10 we show the performance of both query types after
the collections are freshly loaded (fresh) and after the collec-
tions have undergone numerous object removals and inser-
tions (worn). smcs (indirect) outperform all automatically
managed collections. However, when performing nested ob-
ject accesses, the difference with List<T> diminishes be-
cause of the additional memory access required by indirec-
tion when following self-managed references. By utilizing
the direct pointers of §6, we can bypass this look-up and
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improve performance. When comparing the fresh and worn
states, smcs only lose performance under nested accesses,
whereas managed collections exhibit degraded performance
in both cases. As ConcurrentDictionary<TKey, TValue>

is the best performing thread-safe managed collection, we
exclude ConcurrentBag<T> in what follows.

Query processing In Figure 11 we show the performance
of the object-oriented adaptation of the first six tpc-h queries.
For managed collections, we report the query performance of
compiled C♯ code (as in [13] but with reference-based joins).
Using linq to evaluate the queries instead of compiling them
to C♯ code results in a 40% to 400% higher evaluation time,
but as this was not the focus of the paper, we do not re-
port it in Figure 11. We report on two versions of compiled
code for smcs: (a) Compiled C♯ code that, other than the
enumeration code, is equivalent to the code used for man-
aged collections. This illustrates the fraction of the overall
improvement contributed by the better enumeration perfor-
mance of smcs. (b) Compiled unsafe C♯ code that contains
optimizations only possible on smcs. One such optimization
is to use direct pointers to primitive types in an object (e.g.,
decimal values) as arguments to functions that operate on
them (e.g., addition). For managed objects, these functions
have to be called by value as the garbage collector may move
the object inside the managed heap at any time without no-
tice and, hence, the pointer would become invalid. Another
optimization is to use memory regions [16] for all interme-
diate data during query processing, which improves perfor-
mance by excluding those intermediates from garbage col-
lection. Figure 11 reports the query processing performance
relative to the performance of List<T>. smcs perform signif-
icantly better than ConcurrentDictionary<TKey, TValue>,
the fastest competing thread-safe collection in .net; and
even between 47% and 80% better than List<T>. Query 1 is
a great example of what can be achieved with direct pointer
access to self-managed objects. The query is decimal com-
putation heavy and as C♯’s decimal type is 16-bytes wide,
calling the functions that perform decimal math using point-
ers and allowing for in-place modifications results in a huge
performance gain. The other queries are less decimal com-
putation intensive and, hence, show very little improvement
from using unsafe code. Generating native c code leads to
another 10% to 20% improvement over compiled unsafe C♯

code. But as the compiled c code is (mostly) equivalent to
the compiled unsafe C♯ code, any performance differences
can be attributed to more aggressive code-level optimiza-
tions by the c compiler.

Direct pointers and columnar storage In Figure 12
we show the impact of the direct pointer optimization in-
troduced in §6 and columnar storage as discussed in §4.1.
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like workload

Direct pointer moderately improve query performance for
queries that contain joins, in particular for Query 5. Colum-
nar storage shows further improvements that are enabled by
the smcs decoupling the memory layout of their elements
from their definition through managing their own memory.

Comparison to RDBMS To put the smc results into per-
spective, we compare the query performance over objects in
smcs to that of a modern commercial database system. We
use sql server 2014 for this purpose as it is well integrated
into .net and incorporates a compressed in-memory colum-
nar store. We store all tables in the database’s column store
and, in addition, use clustered indexes on shipdate and
orderdate. We use the read uncommitted isolation level
and disable parallelized query execution to level the playing
field. The results are shown in Figure 13. For most of the
queries, smcs exhibit better query performance. For join-
heavy queries, they benefit from using references to perform
joins instead of explicit value-based join operations. In other
queries the database benefits from the indexes on shipdate

and orderdate.

8. RELATED WORK
Type-safe manual memory management is at the core of

smcs. Region-based memory management [16] groups ob-
jects in regions and deallocates entire regions. Deallocating
objects at region granularity is too high a storage overhead
as objects in the applications we target are long-lived with
only incremental insertions and deletions. Memory safety
at object granularity is enforced by introducing specialized
pointer types, e.g., smart pointers in c++11, which use ref-
erence counting to ensure that memory is only freed once
it is no longer referenced. Reference counting comes at a
high cost, especially when objects may be accessed concur-
rently [11]. Fat pointers are frequently used for type and/or
memory safety at run-time [1]. Tracking object incarna-
tions [6] is an application of this approach.
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We use a variant of epoch-based memory reclamation used
in lock-free data structures [5, 7], to ensure thread-safety.
Hazard pointers and their variants [8, 11] ensure that threads
only reclaim memory that is not referenced by other such
pointers. This is similar to our epoch-based approach, but
it would reduce performance: each query would iterate over
objects through a hazard pointer, requiring a memory bar-
rier whenever it is assigned to the next object. Epochs amor-
tize the cost of memory barriers by using the entire query
as the granularity of the critical section. Braginsky and Pe-
trank [3] propose a lock-free sorted linked list optimized for
spatial locality. Each list element is a sub-list of several
data elements stored as a chunk of memory. Hazard point-
ers ensure safe memory reclamation, while a freeze bit in the
elements’ next pointer ensures lock-free splitting and merg-
ing of chunks. The implementation is limited to a specific
format for each list element (integer key and value).

To improve query performance, smcs rely on query compi-
lation [9, 10, 14, 15]. We use popular techniques, e.g., max-
imizing the processing performed in each loop and merging
query operations inside a loop to maximize data reuse [14].
Klonatos et al. [9] propose the use of a high-level program-
ming language for implementation and use query compila-
tion for query processing. In contrast to our approach, the
data store and query processor are not integrated with the
application and, hence, the database functionality is treated
as a black box (e.g., there are no references to data ob-
jects). Murray et al. [12] first proposed query compilation
for linq queries on in-memory objects. Their code gener-
ation approach did not go beyond querying C♯ objects in
managed collections using compiled C♯ code. Nagel et al.
[13] extended that idea by experimenting with different data
layouts and identified managed collections as a performance
bottleneck; generating native c code that operates on arrays
of in-place structs provided the best performance. Our work
builds on these findings.

DryadLINQ [17] and Trill [4] both build on linq to ease
programming and to provide better application integration.
DryadLINQ transforms linq programs into distributed com-
putations running on a cluster whereas Trill operates on data
batches pushed from external sources.

9. CONCLUSION
In this paper we introduced self-managed collections, a

new type of collection for managed applications that man-
age and process large volumes of in-memory data. smcs
have specialized semantics that allow the collection to man-
ually manage the memory space of its contained objects;
and the objects of the collection to be referenced from the
application and other smcs. smcs are optimized for query
processing using language-integrated queries compiled to im-
perative code. We introduced the type-safe manual memory
management system of smcs and then the collection type
itself. Our evaluation shows that smcs outperform man-
aged collections on query performance, batch allocations,
and online modifications using predicate-based removal. At
the same time, smcs can improve the response time of the
application overall by reducing the stress on the garbage col-
lector and allow it to better scale with growing data volumes.
Such scalability is transparent to the developer and elimi-
nates the current required practise of resorting to low-level
programming techniques.
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ABSTRACT
Lightweight data compression algorithms are frequently ap-
plied in in-memory database systems to tackle the growing
gap between processor speed and main memory bandwidth.
In recent years, the vectorization of basic techniques such
as delta coding and null suppression has considerably en-
larged the corpus of available algorithms. As a result, today
there is a large number of algorithms to choose from, while
different algorithms are tailored to different data charac-
teristics. However, a comparative evaluation of these algo-
rithms under different data characteristics has never been
sufficiently conducted in the literature. To close this gap,
we conducted an exhaustive experimental survey by evalu-
ating several state-of-the-art compression algorithms as well
as cascades of basic techniques. We systematically investi-
gated the influence of the data properties on the performance
and the compression rates. The evaluated algorithms are
based on publicly available implementations as well as our
own vectorized reimplementations. We summarize our ex-
perimental findings leading to several new insights and to
the conclusion, that there is no single-best algorithm.

1. INTRODUCTION
The continuous growth of data volumes is a major chal-

lenge for the efficient data processing. This applies not only
to database systems [1, 5] but also to other areas, such as in-
formation retrieval [3, 18] or machine learning [8]. With the
growing capacity of the main memory, efficient analytical
data processing becomes possible [4, 11]. However, the gap
between computing power of the CPUs and main memory
bandwidth continuously increases, which is now the main
bottleneck for an efficient data processing. To overcome
this bottleneck, data compression plays a crucial role [1, 22].
Aside from reducing the amount of data, compressed data
offers several advantages such as less time spent on load and
store instructions, a better utilization of the cache hierarchy,

c©2017, Copyright is with the authors. Published in Proc. 20th Inter-
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and less misses in the translation lookaside buffer.
This compression solution is heavily exploited in modern

in-memory column stores for efficient query processing [1,
22]. Here, relational data is maintained using the decom-
position storage model [6]. That is, an n-attribute relation
is replaced by n binary relations, each consisting of one at-
tribute and a surrogate indicating the record identity. Since
the latter contains only virtual ids, it is not stored explicitly.
Thus, each attribute is stored separately as a sequence of val-
ues. For the lossless compression of sequences of values (in
particular integer values), a large variety of lightweight algo-
rithms has been developed [1, 2, 3, 9, 12, 15, 16, 17, 18, 22]1.
In contrast to heavyweight algorithms like arithmetic cod-
ing [19], Huffman [10], or Lempel Ziv [21], lightweight algo-
rithms achieve comparable or even better compression rates.
Moreover, the computational effort for the (de)compression
is lower than for heavyweight algorithms. To achieve these
unique properties, each lightweight compression algorithm
employs one or more basic compression techniques such as
frame-of-reference [9, 22] or null suppression [1, 15], which
allow the appropriate utilization of contextual knowledge
like value distribution, sorting, or data locality.

In recent years, the efficient vectorized implementation of
these lightweight compression algorithms using SIMD (Sin-
gle Instruction Multiple Data) instructions has attracted a
lot of attention [12, 14, 16, 18, 20], since it further reduces
the computational effort. To better understand these vec-
torized lightweight compression algorithms and to be able to
select a suitable algorithm for a given data set, the behav-
ior of the algorithms regarding different data characteristics
has to be known. In particular, the behavior in terms of
performance (compression, decompression, and processing)
and compression rate is of interest. In the literature, there
are two papers with a considerable evaluation part. First,
Adabi et al. [1] evaluated a small number of unvectorized al-
gorithms on different data characteristics, but they neither
considered a rich set of data distributions nor the explicit
combination of different compression techniques. Second,
Lemire et al. [12] already evaluated vectorized lightweight
data compression algorithms, but considered only null sup-
pression with and without differential coding. Furthermore,
their focus is on postings lists from the IR domain, which
narrows the considered data characteristics. Hence, an ex-
haustive comparative evaluation as a foundation has been
never sufficiently conducted. To overcome this issue, we have

1Without claim of completeness.
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done an experimental survey of a broad range of algorithms
with different data characteristics in a systematic way. In
our evaluation, we used a set of synthetic data sets as well
as one commonly used real data set. Our main findings can
be summarized as follows:

1. Performance and compression rate of the algorithms
vary greatly depending on the data properties. Even
algorithms that are based on the same techniques, show
a very different behavior.

2. By combining various basic techniques, the compres-
sion rate can be improved significantly. The perfor-
mance may rise or fall depending on the combination.

3. There is no single-best lightweight algorithm, but the
decision depends on the data properties. In order to se-
lect an appropriate algorithm, a compromise between
performance and compression rate must be defined.

The remainder of the paper is organized as follows: In Sec-
tion 2, we present more details about the area of lightweight
data compression and introduce our evaluated algorithms.
The implementation aspects are described in Section 3, while
Section 4 covers our evaluation setup. Selected results of our
experimental survey are presented in Section 5 and Section 6.
Finally, we conclude the paper in Section 7.

2. PREREQUISITES
The focus of our experimental survey is the large corpus

of lossless lightweight integer data compression algorithms
which are heavily used in modern in-memory column stores
[1, 22]. To better understand the algorithm corpus, this
section briefly summarizes the basic concepts and introduces
the algorithms which are used in our survey.

2.1 Lightweight Data Compression
First of all, we have to distinguish between techniques and

algorithms, thereby each algorithm implements one or more
of these techniques.

Techniques. There are five basic lightweight techniques to
compress a sequence of values: frame-of-reference (FOR) [9,
22], delta coding (DELTA) [12, 15], dictionary compression
(DICT) [1, 22], run-length encoding (RLE) [1, 15], and null
suppression (NS) [1, 15]. FOR and DELTA represent each
value as the difference to either a certain given reference
value (FOR) or to its predecessor value (DELTA). DICT
replaces each value by its unique key in a dictionary. The
objective of these three well-known techniques is to repre-
sent the original data as a sequence of small integers, which
is then suited for actual compression using the NS technique.
NS is the most studied lightweight compression technique.
Its basic idea is the omission of leading zeros in the bit
representation of small integers. Finally, RLE tackles un-
interrupted sequences of occurrences of the same value, so
called runs. Each run is represented by its value and length.
Hence, the compressed data is a sequence of such pairs.

Generally, these five techniques address different data lev-
els. While FOR, DELTA, DICT, and RLE consider the log-
ical data level, NS addresses the physical level of bits or
bytes. This explains why lightweight data compression al-
gorithms are always composed of one or more of these tech-
niques. In the following, we also denote the techniques from
the logical level as preprocessing techniques for the physi-
cal compression with NS. These techniques can be further
divided into two groups depending on how the input values

are mapped to output values. FOR, DELTA, and DICT
map each input value to exactly one integer as output value
(1:1 mapping). The objective of these preprocessing tech-
niques is to achieve smaller numbers which can be better
compressed on the bit level. In RLE, not every input value
is necessarily mapped to an encoded output value, because
a successive subsequence of equal values is encoded in the
output as a pair of run value and run length (N:1 mapping).
In this case, a compression is already done at the logical
level. The NS technique is either a 1:1 or an N:1 mapping
depending on the implementation.

Algorithms. The genericity of these techniques is the foun-
dation to tailor the algorithms to different data character-
istics. Therefore, a lightweight data compression algorithm
can be described as a cascade of one or more of these basic
techniques. On the level of the lightweight data compression
algorithms, the NS technique has been studied most exten-
sively. There is a very large number of specific algorithms
showing the diversity of the implementations for a single
technique. The pure NS algorithms can be divided into the
following classes [20]: (i) bit-aligned, (ii) byte-aligned, and
(iii) word-aligned.2 While bit-aligned NS algorithms try to
compress an integer using a minimal number of bits, byte-
aligned NS algorithms compress an integer with a minimal
number of bytes (1:1 mapping). The word-aligned NS algo-
rithms encode as many integer values as possible into 32-bit
or 64-bit words (N:1 mapping). The NS algorithms also dif-
fer in their data layout. We distinguish between horizontal
and vertical layout. In the horizontal layout, the compressed
representation of subsequent values is situated in subsequent
memory locations. In the vertical layout, each compressed
representation is stored in a separate memory word.

The logical-level techniques have not been considered to
such an extent as the NS technique on the algorithm level. In
most cases, the preprocessing steps have been investigated
in connection with the NS technique. For instance, PFOR-
based algorithms implement the FOR technique in combina-
tion with a bit-aligned NS algorithm [22]. These algorithms
usually subdivide the input in subsequences of a fixed length
and calculate two parameters per subsequence: a reference
value for the FOR technique and a common bit width for
NS. Each subsequence is encoded using their specific param-
eters, thereby the parameters are data-dependently derived.
The values that cannot be encoded with the given bit width
are stored separately with a greater bit width.

2.2 Considered Algorithms
We consider all five basic lightweight techniques in detail.

Regarding the selected algorithms, we investigate both, im-
plementations of a single technique as well as cascades of one
logical-level and one physical-level technique. We decided
to reimplement the logical-level techniques on our own (see
Section 3) in order to be able to freely combine them with
all seven considered NS algorithms (see Table 1). In the
following, we briefly sketch each considered NS algorithm.

2.2.1 Bit-Aligned NS Algorithms
4-Gamma Coding [16] processes four input values (data

elements) at a time. All four values are stored in the verti-
cal storage layout using the number of bits required for the

2[20] also defines a frame-based class, which we omit, as the
representatives we consider also match the bit-aligned class.
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largest of them. The unary representation of the bit width
is stored in a separate memory area for decompression.

SIMD-BP128 [12] processes data in blocks of 128 in-
tegers at a time. All 128 integers in the block are stored
in the vertical layout using the number of bits required for
the largest of them. The used bit width is stored in a sin-
gle byte, whereby 16 of these bit widths are followed by 16
compressed blocks.

SIMD-FastPFOR [12] is a variant of the original PFOR
algorithm [22], whose idea is to classify all data elements as
either regular coded values or exceptions depending on if
they can be represented with a certain bit width. This bit
width is chosen such that the overall compression rate be-
comes optimal. All data elements are packed with the chosen
bit width using the vertical layout. The exceptions require a
special treatment, since that number of bits does not suffice
for them. In SIMD-FastPFOR the exceptions are stored in
additional packed arrays. The overall input is subdivided
into pages which are further subdivided into blocks of 128
integers. SIMD-FastPFOR stores the exceptions at the page
level and uses an individual bit width for each block.

2.2.2 Byte-Aligned NS Algorithms
4-Wise Null Suppression [16] compresses integers by

omitting leading zero bytes. For each 32-bit integer, between
zero and three bytes might be omitted. 4-Wise NS processes
four data elements at a time and combines the corresponding
four 2-bit descriptors into a 1-byte mask. In the output,
four masks are followed by four compressed blocks in the
horizontal layout.

Masked-VByte [14] uses the same compressed represen-
tation as the VByte algorithm [12] and differs only in imple-
mentation details. It subdivides an integer into 7-bit units.
Each unit that is required to represent the integer produces
one byte in the output. The seven data bits are stored in
the lower part of that byte, while the most significant bit
is used to indicate whether or not the next byte belongs to
the next data element. Subsequent compressed values are
stored using the horizontal layout.

2.2.3 Word-Aligned NS Algorithms
Simple-8b [2] outputs one compressed block of 64 bits

for a variable number of uncompressed integers. Within
one block, all data elements are stored with a common bit
width using the horizontal layout. The bit width is chosen
such that as many subsequent input elements as possible
can be stored in the compressed block. One compressed
block contains 60 data bits and a 4-bit selector specifying
the compression mode. There are 16 compression modes:
60 1-bit values, 30 2-bit values, 20 3-bit values, and so on.
Additionally, Simple-8b has two special modes indicating
that the input consisted of 120 respectively 240 zeroes.

SIMD-GroupSimple [20] processes the input in units of
so-called quads, i.e., four values at a time. For each quad,
it determines the number of bits required for the largest
element. Based on the bit widths of subsequent quads, it
partitions the input sequence into groups, such that as many
quads as possible can be stored in four consecutive 32-bit
words using the vertical layout. There are ten compression
modes: the four consecutive 32-bit words could be filled with
4 × 32 1-bit values, 4 × 16 2-bit values, 4 × 10 3-bit values,
and so on. A four bit selector represents the mode chosen for
the compressed block. The selectors are stored in a different

Class Algorithm Layout Code origin SIMD

bit- 4-Gamma vert. Schlegel et al. yes
aligned SIMD-BP128 vert. FastPFor-lib yes

SIMD-FastPFOR vert. FastPFor-lib yes
byte- 4-Wise NS horiz. Schlegel et al. yes
aligned Masked-VByte horiz. FastPFor-lib n/y
word- Simple-8b horiz. FastPFor-lib no
aligned SIMD-GroupSimple vert. our own code yes

Table 1: The considered NS algorithms.

memory area than the compressed blocks.

3. IMPLEMENTATION ASPECTS
As already mentioned, we reimplemented all four logical-

level techniques in C++, i.e., DELTA, DICT, FOR, and
RLE. Regarding the physical-level, several high-quality open-
source implementations of NS are available. We used these
existing implementations whenever possible and reimplemen-
ted only one of them. Table 1 summarizes the origins of the
implementations we employed. We also implemented cache-
conscious generic cascades of logical-level techniques and NS.
Furthermore, we implemented a decompression with aggre-
gation for all algorithms to evaluate a processing of com-
pressed data. In this section, we describe some of the most
crucial implementation details with respect to performance.

3.1 SIMD Instruction Set Extensions
Single Instruction Multiple Data (SIMD) instruction set

extensions such as Intel’s SSE and AVX have been available
in modern processors for several years. SIMD instructions
apply one operation to multiple elements of so-called vector
registers at once. The available operations include parallel
arithmetic, logical, and shift operations as well as permu-
tations. These are highly relevant to lightweight compres-
sion algorithms. In fact the main focus of recent research
[12, 14, 16, 18, 20] in this field has been the employment
of SIMD instructions to speed up (de)compression. Conse-
quently, most algorithms we evaluate in this paper make use
of SIMD extensions (see Table 1). Vectorized load and store
instructions can be either aligned or unaligned. The former
require the accessed memory addresses to be multiples of 16
bytes (SSE) and are usually faster. Although nowadays In-
tel’s AVX2 offers 256-bit operations, we decided to restrict
our evaluation to implementations using 128-bit SSE. This
has two reasons: (1) Most of the techniques presented in the
literature are designed for 128-bit vector operations3 and (2)
The comparison is fairer if only one width of vector regis-
ters is considered. Intel’s SIMD instructions can be used in
C/C++ without writing assembly code via intrinsic func-
tions, whose names start with _mm_.

3.2 Physical-Level Technique: NS
In the following, we describe crucial points regarding ex-

isting implementations as well as one reimplementation.

3.2.1 Bit-Aligned Algorithms
We obtained the implementation of 4-Gamma Coding

directly from the authors [16], and those of SIMD-BP128
and SIMD-FastPFor from the FastPFor-library [13]. All

3Thereby, a transition to 256-bit operations is not always
trivial and could be subject to future research.
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three implementations use vectorized shift and mask oper-
ations. SIMD-BP128 and SIMD-FastPFor use a dedicated
optimized packing and unpacking routine for each of the 32
possible bit widths. It is worth mentioning, that – while the
original PFOR algorithm is a combination of the FOR and
the NS technique – SIMD-FastPFOR, despite its name, does
not include the FOR technique, but only the NS technique.

3.2.2 Byte-Aligned Algorithms
Regarding 4-Wise Null Suppression, we use the origi-

nal implementation by Schlegel et al. [16]. It implements the
horizontal packing of the uncompressed values using a vec-
torized byte permutation. The 16-byte permutation masks
required for this are built once in advance and looked up
from a table during the compression. This table is indexed
with the 1-byte compression masks, thus there are 256 per-
mutation masks in total. The decompression works by using
the inverse permutation masks.

Masked-VByte vectorizes the decompression of the com-
pressed format of the original VByte algorithm. The imple-
mentation we use is available in the FastPFor-library [13]
and is based on code by the original authors. The crucial
point of the vectorization is the execution of a SIMD byte
permutation in order to reinsert the leading zero-bytes re-
moved by the compression. After 16 bytes of compressed
data have been loaded into a vector register, the most sig-
nificant bits of all bytes are extracted using a SIMD instruc-
tion. The lower 12 bits of this 16-bit mask are used as a key
to lookup the required permutation mask in a table. After
the permutation, the original 7-bit units need to be stitched
together, which is done using vectorized shift and mask op-
erations. Masked-VByte also has an optimization for the
case of 12 compressed 1-byte integers.

3.2.3 Word-Aligned Algorithms
We use the implementation of Simple-8b available in the

FastPFor-library [13], which is a purely sequential imple-
mentation. It uses a dedicated sequential packing routine
for each of the possible selectors.

We reimplemented SIMD-GroupSimple based on the
description in the original paper, since we could not find an
available implementation. We employed the two optimiza-
tions discussed by the original authors: (1) We calculate the
pseudo-quad max values instead of the quad max values to
reduce the number of branch instructions. (2) We use one
dedicated and vectorized packing routine for each selector,
whereby the correct one is chosen by a switch-statement.

The original compression algorithm processes the input
data in three runs: The first run scans the entire input and
materializes the pseudo-quad max array in main memory.
The size of this array is one quarter of the input data size.
The second run scans the pseudo-quad max array and ma-
terializes the selectors array. The third run iterates over the
selectors array and calls the respective packing routine to do
the actual compression. This procedure results in a subopti-
mal cache utilization, since at the end of each run, the data
it started with has already been evicted from the caches.
Thus, reaccessing it in the next run becomes expensive.

In order to overcome this issue, we enhanced the compres-
sion part of the algorithm with one more optimization, which
was not presented in the original paper: Our reimplementa-
tion stores the pseudo-quad max values in a ring buffer of a
small constant size (32 32-bit integers) instead of an array

proportional to the input size. This is based on the observa-
tion that the decision for the next selector can never require
more than 32 pseudo-quad max values, since at most 4× 32
(1-bit) integers can be packed into four 32-bit words. Due to
its small size (128 bytes), the ring buffer fits into the L1 data
cache and can thus be accessed at top-speed. Our modified
compression algorithm repeats the following steps until the
end of the input is reached (in the beginning, the ring buffer
is empty): (1) Fill the ring buffer by calculating the next up
to 32 pseudo-quad max values. This reads up to 4×32 = 128
uncompressed integers. (2) Run the original subroutine for
determining the next selector on the ring buffer. (3) Store
the obtained selector to the selectors section in the output.
(4) Compress the next block using the subroutine belonging
to the selector. This will typically reread the uncompressed
data touched in Step 1. Note that this data is very likely to
still reside in the L1 cache, since only a few bytes of memory
have been touched in between. (5) Increase the position in
the ring buffer by the number of input quads compressed in
the previous step. We observed that using this additional
optimization, the compression part of our reimplementation
is always faster than without it. Note, that this optimization
does not affect the compressed output in any way.

3.3 Logical-Level Techniques
As previously mentioned, logical-level techniques are usu-

ally combined with NS in existing algorithms and are thus
hardly available in isolation. In order to be able to freely
combine any logical-level technique with any NS algorithm,
we reimplemented all four logical-level compression tech-
niques as stand-alone algorithms. Thereby, an important
goal is the vectorization of those algorithms.

3.3.1 Vectorized DELTA
Our implementation of DELTA represents each input ele-

ment as the difference to its fourth predecessor. This allows
for an easy vectorization by processing four integers at a
time. The first four elements are always copied from the in-
put to the output. During the compression, the next four dif-
ferences are calculated at once using _mm_sub_epi32(). The
decompression reverses this by employing _mm_add_epi32().
This implementation follows the description in [12] with the
difference that we do not overwrite the input data, because
we still need it as the input for the other algorithms.

3.3.2 Sequential DICT
Our implementation of DICT is a purely sequential single-

pass algorithm employing a static dictionary, which is built
on the uncompressed data before the (de)compression takes
place. Thus, building the dictionary is not included in our
time measurements and the dictionary itself is not included
in the compressed representation. This represents the case
of a domain-specific dictionary which is known in advance.
The compression uses a C++-STL unordered_map to map
values to their keys, whereas the decompression uses the key
as the index of a vector to look up the corresponding value.

3.3.3 Vectorized FOR
We implemented the compression of FOR as a vectorized

two-pass algorithm. The first pass iterates over the input
and determines the reference value, i.e., the minimum us-
ing _mm_min_epu32(). This minimum is then copied into all
four elements of one vector register. The second pass iter-
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ates over the input again and subtracts this vector register
from four input elements at a time using _mm_sub_epi32().
In the end, the reference value is appended to the output.
The decompression adds this reference value to four data
elements at a time using _mm_add_epi32().

3.3.4 Vectorized RLE
Our implementation of RLE also utilizes SIMD instruc-

tions. The compression part is based on parallel compar-
isons. It repeats the following steps until the end of the input
is reached: (1) One 128-bit vector register is loaded with four
copies of the current input element. (2) The next four input
elements are loaded. (3) The intrinsic _mm_cmpeq_epi32()

is employed for a parallel comparison. The result is stored in
a vector register. (4) We obtain a 4-bit comparison mask us-
ing _mm_movemask_ps(). Each bit in the mask indicates the
(non-)equality of two corresponding vector elements. The
number of trailing one-bits in this mask is the number of el-
ements for which the run continues. If this number is 4, then
we have not seen the run’s end yet, and continue at step 2.
Otherwise, we have reached the run’s end and append the
run value and run length to the output and continue with
step 1 at the next element after the run’s end.

The decompression executes the following until the entire
input has been consumed: (1) Load the next pair of run
value and run length. (2) Load one vector register with four
copies of the run value. (3) Store the contents of that register
to memory as often as required to match the run length.

3.4 Cascades of Logical-Level and Physical-
Level Techniques

The challenge of implementing cascades, i.e., combina-
tions of logical-level and physical-level techniques, is the high
implementation effort due to the high number of possible
combinations. To address this problem, we implemented a
cache-conscious cascade which is generic w.r.t. the employed
algorithms. That is, it can be instantiated for any two al-
gorithms, without further implementation effort. It takes
three parameters: a logical-level algorithm L, a physical-
level algorithm P , and an (uncompressed) block size bsu.

The output consists of compressed blocks, each of which
starts with its size as a 32-bit integer followed by 12 bytes of
padding to achieve the 16-byte alignment required by SSE
instructions. The body of the block contains the compressed
data possibly followed by additional padding bytes.

The compression procedure repeats the following steps un-
til the end of the input is reached: (1) Skip 16 bytes in the
output buffer. (2) Apply the compression of L to the next
bsu elements in the input. Store the result in an intermediate
buffer. (3) Apply the compression of P to that buffer and
store the result to the output buffer. (4) Store the size bsc
of the compressed block to the bytes skipped in Step 1. (5)
Skip some bytes after the compressed block, if it is necessary
to achieve 16-byte alignment.

The decompression is the reverse procedure repeatedly ex-
ecuting the following steps: (1) Read the size bsc of the
current compressed block and skip the padding. (2) Apply
the decompression of P to the next bsc bytes in the input.
Store the result to an intermediate buffer. (3) Decompress
the contents of that buffer using L and append the result to
the output. (4) Skip the padding in the input, if necessary.

The intermediate buffer is reused for all blocks. Its size is
in the order of magnitude of bsu (we chose 4KiB+2×bsu as

a pessimistic estimation). This algorithm is cache-conscious,
if bsu is chosen to fit the Lx cache, since then, the data read
by the second algorithm is likely to still reside in that cache.

3.5 Decompression with Aggregation
We also modified the decompressions of both, our own

reimplementations and existing implementations, such that
they sum up the decompressed data instead of writing it to
memory. The usual case for the vectorized algorithms is that
four decompressed 32-bit integers reside in a vector register
before they are stored to memory using _mm_store_si128().
We replaced these store instructions by vectorized additions.
However, since the sum might require more than 32 bits, we
first distribute the four 32-bit elements to the four 64-bit ele-
ments of two 128-bit registers using _mm_unpacklo_epi32()

and _mm_unpackhi_epi32() and add both to two 64-bit run-
ning sums (which are added in the very end) by applying
_mm_add_epi64(). In the case of RLE, we add the product
of the run length and the run value to the running sum.

4. EVALUATION SETUP
In this section, we describe our overall evaluation setup.

All algorithms are implemented in C/C++ and we compiled
them with g++ 4.8 using the optimization flag -O3. As the
operating system we used Ubuntu 14.04. All experiments
have been executed on the same hardware machine in or-
der to be able to compare the results. The machine was
equipped with an Intel Core i7-4710MQ (Haswell) proces-
sor with 4 physical and 8 logical cores running at 2.5 GHz.
The L1 data, L2, and L3 caches have a capacity of 32 KB,
256 KB and 6 MB, respectively. We use only one core at any
time of our evaluation to avoid competition for the shared
L3 cache. The capacity of the DDR3 main memory was
16 GB. We are able to copy data using memcpy() at a rate
of 6.15 GiB/s or 1,650 mis (million integers per second).

All experiments happened entirely in main memory. The
disk was never accessed during the time measurements. The
whole evaluation is performed using our benchmark frame-
work [7]. The synthetic data generation was performed by
our data generator once per configuration of data proper-
ties. The data properties were recorded and the algorithms
were repeatedly performed on the generated data. During
the executions, the runtimes and the compression rates were
measured. Furthermore, we emptied the cache before each
algorithm execution by copying a 12-MB array (twice as
large as the L3 cache) using a loop operation.

All time measurements were carried out by means of the
wallclock-time (C++-STL high_resolution_clock) and were
repeated 12 times to receive stable values, thereby we only
report average values. The time measurements include:
Compression: Loading uncompressed data from main mem-

ory, applying the compression algorithm, storing the
compressed data to main memory

Decompression: Loading compressed data from main mem-
ory, applying the decompression algorithm, storing the
uncompressed data to main memory

Decompression & Aggregation: Loading compressed data
from main memory, applying the decompression and
summation, storing 8 bytes in total to main memory

5. EXPERIMENTS ON SYNTHETIC DATA
In this section, we present selected results of our experi-
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Figure 1: The general behavior of the three classes of NS algorithms.

mental survey. We generate synthetic data sets in order to
be able to control the data properties in a systematic way.
All uncompressed arrays contain 100 million 32-bit integers,
i.e., 400 MB. Thus, only a small portion of the uncom-
pressed data fits into the L3 cache. We report speeds in
million integers per second (mis) and compression rates in
bits per integer (bits/int). We begin with the evaluation of
pure NS algorithms in Section 5.1. After that, we investi-
gate pure logical-level algorithms in Section 5.2. In Section
5.3, we evaluate cascades of logical-level techniques and NS.
Finally, in Section 5.4 we present the conclusions we draw
from our evaluation on synthetic data.

5.1 Null Suppression Algorithms
We start by identifying the characteristics of the three

classes of NS algorithms. After that, we compare five se-
lected NS algorithms in more detail.

5.1.1 Classes of NS Algorithms
We generate 32 unsorted datasets, such that all data ele-

ments in the i-th dataset have exactly i effective bits, i.e., the
value range is [0, 1] for i = 1 and [2i−1, 2i) for i = 2, . . . , 32.
Within these ranges, the values are uniformly distributed.

Figure 1 (a-d) show the results for the considered bit-
aligned algorithms. These have the finest possible com-
pression granularity and thus can perfectly adapt to any
bit width. Consequently, the compression rate is a linear
function of the bit width. The speeds of compression, de-
compression, and aggregation follow the same linear trend.
Nevertheless, there are differences between the algorithms.
Since SIMD-BP128 and SIMD-FastPFOR store less meta in-
formation than 4-Gamma, they achieve better compression
rates. They are also better regarding the decompression and
aggregation speed. However, in terms of compression speed,
SIMD-FastPFOR is by far the slowest, while SIMD-BP128
still shows very good performance.

Figure 1 (e-h) present the results for the considered byte-

aligned algorithms. These algorithms compress an inte-
ger at the granularity of units of 8 bits (4-Wise NS) or
7 bits (Masked-VByte). As a result, the curves of all four
measured variables exhibit a step-shape, whereby the step
width is constant and equals the unit size of the algorithm.
Since the units of 4-Wise NS and Masked-VByte have dif-
ferent sizes, the first and second regarding compression rate
change several times when increasing the bit width. Con-
cerning the speeds, 4-Wise NS is always at least as fast as
Masked-VByte, except for the compression of values with up
to 7 bits, in this case Masked-VByte is significantly faster.

Finally, Fig. 1 (i-l) provide the results for the word-
aligned algorithms. These can adapt only to certain bit
widths, which are not the multiples of any unit size. For
instance, SIMD-GroupSimple supports 1, 2, 3, 4, 5, 6, 8, 10,
16, and 32 bits. Hence, the measured variables show steps at
these bit widths, i.e., the steps do not have a constant width
per algorithm. This basic shape is especially clear for the
compression rate and the compression speed, but can also be
found in the decompression and aggregation speed. SIMD-
GroupSimple compresses better for certain bit widths, and
for others, Simple-8b does. Since Simple-8b uses 64-bit
words in the output, it can still achieve a size reduction
for bit widths up to 20, while SIMD-GroupSimple cannot
reduce the size anymore if the bit width exceeds 16. SIMD-
GroupSimple is faster for bit widths up to 3 and slower in
all other situations. However, regarding decompression and
aggregation, it is faster for all bit widths.

To summarize, each of the three classes exhibits its indi-
vidual behavior subject to the bit width. At the same time
the differences between the classes are significant.

5.1.2 Detailed Comparison of NS Algorithms
For the following experiments we pick SIMD-BP128, SIMD-

FastPFOR, 4-Wise NS, Masked-VByte, and SIMD-Group-
Simple and investigate their behavior in more detail. Note
that all three classes of NS are represented in this selection.
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Figure 2: Comparison of NS algorithms of different classes on different data distributions.

We generate unsorted data using four distributions D1–4,
whereby we vary one parameter for each of them. D1 is a
uniform distribution with a min of 0 and a max varying from
0 to 232 − 1. D2 is a normal distribution with a standard
deviation of 20 and a mean varying from 64 to 231. For D3,
90% of the values follow a normal distribution with a stan-
dard deviation of 2 and a mean of 8, while 10% are drawn
from a normal distribution with the same standard devia-
tion and a mean varying from 8 to 231. That is, 90% of the
data elements are small integers, while 10% are increasingly
large outliers. D4 is like D3, but with a ratio of 50:50. While
D1–2 have a high data locality, D3–4 do not.

The results for D1 can be found in Fig. 2 (a-d). The
bit-aligned algorithms SIMD-BP128 and SIMD-FastPFOR
always achieve the best compression rates, since they can
adapt to any bit width. Masked-VByte is the fastest com-
pressor for small values, although it is not even vector-
ized. However, for larger values, SIMD-BP128 is the fastest,
but comes closer to 4-Wise NS as the values grow. SIMD-
GroupSimple yields the highest decompression speed for max-
imums up to 32. From there on SIMD-BP128 and SIMD-
FastPFOR are the fastest, while SIMD-GroupSimple and
4-Wise NS come quite close to their performance, especially
for the values for which they do not waste too many bits due
to their coarser granularity.

For D2 (Fig. 2 (e-h)) we can make the same general obser-
vations. However, the steps in the curves of the byte-aligned
algorithms become steeper, since D2 produces values with

less distinct bit widths than D1.
The results of D3 (Fig. 2 (i-l)) reveal some interesting

effects. Regarding the compression rate, SIMD-FastPFOR
stays the winner, while SIMD-BP128 is competitive only for
small outliers. For large outliers it even yields the worst
compression rates of all five algorithms. This is due to the
fact that SIMD-BP128 packs blocks of 128 integers with the
bit width of the largest element in the block, i.e., one outlier
per block affects the compression rate significantly. SIMD-
FastPFOR on the other side, can handle this case very well,
since it – like all variants of PFOR – is explicitly designed
to tolerate outliers. The byte-aligned algorithms 4-Wise NS
and Masked-VByte are worse than SIMD-FastPFOR, but
still quite robust, since they choose an individual byte width
for each data element and are, thus, not affected by outliers.
SIMD-GroupSimple compresses better than SIMD-BP128 in
most cases, since outliers lead to small input blocks, while
there can still be large blocks of non-outliers. In terms of
compression speed, SIMD-BP128 is still in the top-2, but it
is overtaken by 4-Wise NS for large outliers. Concerning de-
compression speed, 4-Wise NS overtakes SIMD-BP128 when
the outliers need more than 12 bits. SIMD-FastPFOR is
nearly as fast as 4-Wise NS, but achieves much better com-
pression rates. Regarding the aggregation, SIMD-BP128 is
still the fastest algorithm, although SIMD-FastPFOR comes
very close for small outliers and 4-Wise NS for large outliers.

D4 increases the amount of outliers to 50%. The compres-
sion rate of SIMD-BP128 does not change any more, since
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Figure 3: Logical-level techniques applied to D5 (a-g) and D2 (h-l): Data properties.4
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basically all blocks were affected by outliers in D3 already.
However, since the other algorithms compress worse now,
the trade-offs have to be reevaluated. Thanks to patched
coding, SIMD-FastPFOR still is in the top-2 regarding the
compression rate. However, this comes at the cost of (de)-
compression and aggregation performance, which heavily de-
creases as the outliers grow. Encoding each value individu-
ally 4-Wise NS and Masked-VByte come very close to the
compression rate of SIMD-FastPFOR and 4-Wise NS de-
compresses faster than SIMD-FastPFOR for large outliers.

To sum up, the best algorithm regarding compression rate
or performance depends on the data distribution. Regarding
one measured variable, a certain algorithm can be the best
for one distribution and the worst for another distribution.
Moreover, for a certain distribution the best algorithm re-
garding one measured variable can be the worst for another
variable. In addition, there are many points of intersection
between the algorithms’ compression rates and speeds offer-
ing many different trade-offs.

5.2 Logical-Level Techniques
A general trend observable in Figures 1 and 2 is that all

NS algorithms get worse as the data elements get larger.
Logical-level techniques can be able to change the data prop-
erties in favor of NS. To illustrate this, we provide the re-
sults of the application of the four logical techniques to two
unsorted datasets: D2, already known from the previous sec-
tion, and D5, whose data elements are uniformly drawn from
the range [0, 216 − 1] while varying the average run length.

We start with the discussion of D5. First of all, in Fig. 3 (a)
we can see that the total number of data elements after the
application of FOR, DELTA, and DICT is the same as in
the uncompressed data (1:1 mapping), while with RLE it
decreases significantly as the run length increases (N:1 map-
ping). This has two consequences: (1) an NS algorithm
applied after RLE needs to compress less data and (2) RLE

alone suffices to reduce the data size. Figure 3 (b-f)4 show
the data distributions in the uncompressed data as well as
in the outputs of the logical-level techniques. Most uncom-
pressed values have 16 or 15 effective bits. This does not
change much with FOR, since the value distribution can pro-
duce values close to zero. In contrast, the output of DELTA
contains nearly only values of one effective bit for long runs,
since these yield long sequences of zeros. Note that there
are also outliers having 32 effective bits, resulting from neg-
ative differences being represented in the two’s complement.
With DICT, the values start to get smaller as soon as the
run length is high enough to lead to a decrease of the number
of distinct values (see Fig. 3 (g)), and thus the maximum
key. For RLE there are always two peaks in the distribu-
tions: one is at a bit width of 16 and corresponds to the run
values and the other one is produced by the increasingly
high run lengths. Note that this distribution is quite similar
to D4 from the previous section. The distributions might
seem to get worse for high run lengths. However, it must be
kept in mind that RLE reduces the total number of data ele-
ments in those cases. Figure 4 provides the (de)compression
speeds. The performance of DELTA and FOR is indepen-
dent of the data characteristics, since they execute the same
instructions for each group of four values. On the other side,
RLE is slow for short runs, but becomes by far the fastest
algorithm for long runs, since it has to write(read) less data
during the (de)compression. DICT is the slowest compres-
sor due to the expensive look ups in the map. Regarding the
decompression, it is competitive to DELTA and FOR, but
sensitive to the number of distinct values, which influences
whether or not the dictionary fits into the Lx cache.

The distributions for D2 are visualized in Fig. 3 (h-l).
Here, FOR can improve the distribution significantly, since
the value range is narrow. The same applies to DICT, since
consequently the number of distinct values is small. As the
data is unsorted and does not have runs, about half of the
values in the output of DELTA have 32 effective bits, i.e.,
the distributions get worse in most cases. Note that RLE
doubles the number of data elements due to the lack of runs.

To sum up, logical-level techniques can significantly im-

4 How to read Fig. 3 (b-f) and (h-l): The y-axis lists all
possible numbers of effective bits a data element could have.
Each vertical slice corresponds to one configuration of the
data properties. The intensity encodes what portion of the
data elements has how many effective bits. That is, the
dark pixels show which numbers of effective bits occur most
frequently in the dataset.
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Figure 5: Comparison of the cascades on dataset D2.5

prove the data distribution in favor of NS. However, the data
properties determine which techniques are suitable. In the
worst case, the distributions might even become less suited.
We also experimented with other data characteristics such
as the number of distinct values and sorted datasets, but
omit their results due to a lack of space. Those experiments
lead to similar conclusions.

5.3 Cascades of Logical-Level and Physical-
Level Techniques

To find out which improvements over the stand-alone NS
algorithms the additional use of logical-level techniques can
yield, we compare the five stand-alone NS algorithms from
Section 5.1.2 to their cascades with the four logical-level
techniques. That is, we compare 5 + 5 × 4 = 25 algorithms
in total. The evaluation is conducted on three datasets: D1
and D5, which are already known, and D6, a sorted dataset
for which we vary the number of distinct data elements by
uniformly drawing values from the range [0, max], whereby
max starts with 0 and is increased until we reach 100 M dis-
tinct values, i.e., until all data elements are unique. For all
three datasets, we provide a detailed comparison of SIMD-
BP128 to its cascaded derivatives as well as a comparison of
all 25 algorithms for selected data configurations. For our
generic cascade algorithm, we chose a block size of 16 KiB,
i.e., 4096 uncompressed integers. This size is a multiple of
the block sizes of all considered algorithms and fits into the
L1 cache of our machine. We also experimented with larger
block sizes, but found that 16 KiB yields the best speeds.

Figure 5 (a-d) show the results of SIMD-BP128 and its
cascaded variants on D2. The results for the compression
rate are consistent with the distributions in Fig. 3 (h-l):
Combined with FOR or DICT, SIMD-BP128 always yields
equal or better results than without a preprocessing, while
DELTA and RLE affect the results negatively. However, the
cascades with logical-level techniques decrease the speeds
of the algorithm, whereby the slow-down is significant for
small data elements, but becomes acceptable for large val-
ues at least for DICT (decompression) and FOR. Indeed,
the decompression of FOR + SIMD-BP128 is faster than
SIMD-BP128 alone for means larger than 216. A compar-

ison of all 25 algorithms can be found in Fig. 5 (e-h) and
(i-l) for means of 26 respectively 231.5 For the small mean,
the cascades with RLE and DELTA achieve the worst com-
pression rates, while for DICT, FOR and stand-alone NS,
the algorithms are roughly grouped by the employed NS al-
gorithm, since DICT and FOR do not change the distribu-
tions for the considered mean (see Fig. 3 (h-l)). Regarding
the speeds, the top ranks are held by stand-alone NS algo-
rithms. When changing the mean to 231, the cascades with
FOR and DICT achieve by far the best compression rates.
Stand-alone NS algorithms are still among the top ranks
for the speeds. However, none of them achieves an actual
size reduction. While depending on the application, many
trade-offs between compression rate and speed could be rea-
sonable, it generally does not make sense, to accept com-
pression rates of more than 32 bits/int, since then, the data
could rather be copied or not touched at all, which would be
even faster. Keeping this in mind, the cascades with FOR
achieve the best results regarding all three speeds, whereby
DELTA also makes it into the top-3 for the compression.

Figure 6 shows the results on D5. The cascades of any
logical-level technique and SIMD-BP128 achieve better com-
pression rates than the stand-alone SIMD-BP128 from some
run length on (Fig. 6 (a)). Regarding the (de)compression
speeds, only RLE + SIMD-BP128 can yield an improve-
ment, if the run length exceeds 25. It is noteworthy that the
cascades with DELTA and FOR imply only a slight slow
down, while they achieve much better compression rates.
The aggregation speed of RLE + SIMD-BP128 gets out of
scope for any other cascade for run lengths above 28, since
the aggregation of RLE has to execute only one multiplica-
tion and one addition per run. The next three rows of Fig.
6 compare all cascades for average run lengths of 6, 37, and
517. Even for the lowest of these run lengths (Fig. 6 (e-h)),

5 The bars in these diagrams are sorted, such that the best
algorithm is at the left. We use the color to encode the
NS algorithm and the hatch to encode the logical-level tech-
nique, whereby (none) means a stand-alone NS algorithm.
Furthermore, bars with an X on top mark algorithms which
do not achieve a size reduction on the dataset, i.e., require
at least 32 bits per integer.
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Figure 6: Comparison of the cascades on dataset D5.5

the cascades with RLE yield by far the best compression
rates, while those with DELTA are among the last ranks.
However, the (de)compression speeds of the cascades with
RLE are not competitive to those of the best stand-alone NS
algorithms. On the other hand, RLE + SIMD-BP128 has
the best aggregation speed. As the run lengths get a little
higher (Fig. 6 (i-l)), the cascades with RLE move further to-
wards the top-ranks of the speeds and further improve their
compression rates. Interestingly, the compression rates of
the cascades with DELTA do now achieve the best compres-
sion rates after the cascades with RLE, except for DELTA +
SIMD-BP128, which still yields the worst compression rate.
When the run length is increased further (Fig. 6 (m-p)),
these trends continue and the cascades with RLE do now
dominate both, the compression rate and all three speeds.

Figure 7 (a-d) report the results of SIMD-BP128 and its
cascades on D6 subject to the number of distinct data ele-
ments. Since D6 is sorted, a low number of distinct values
is equal to a high average run length. Consequently, RLE +
SIMD-BP128 achieves a better compression rate than stand-
alone SIMD-BP128 until the number of distinct values comes
close to the total number of values, i.e. 100 M. Although the
possible minimum value is zero, FOR + SIMD-BP128 also
improves the compression rate. This is due to the fact that
within each input block of the cascade, the value range is
small as the data is sorted. Apart from that, especially the
decompression speed is interesting. For low numbers of dis-
tinct values and thus long runs, SIMD-BP128 and its cascade
with RLE are nearly equally fast. As the number of distinct
values increases, SIMD-BP128 is affected stronger than RLE
+ SIMD-BP128. However, when the number of distinct val-
ues exceeds 221, the performance of the cascade with RLE
deteriorates and from this point on, the cascade with FOR,
respectively DELTA is the fastest algorithm. Note that in
this case, the decompression of the stand-alone SIMD-BP128
is never the fastest alternative. Figure 7 (e-h) show the com-

parison of all 25 algorithms when the dataset contains 128
distinct values. Since the average run length is very high
(nearly 800k), the cascades including RLE are the best re-
garding both, compression rate and speeds. The extreme
case of unique data elements, i.e., 100 M distinct values, is
given in Fig. 7 (i-l). Now the cascades of RLE are among the
worst algorithms for all four measured variables, since the
data contains no runs. The best compression rates are now
achieved by the cascades of DELTA, since the data is sorted.
While the fastest compressor is stand-alone SIMD-BP128,
the next ranks are held by cascades making use of DELTA.
Regarding the decompression speed, the top-3 algorithms
use SIMD-BP128 for the NS-part and DELTA, FOR, or no
preprocessing. In terms of the aggregation speed, the stand-
alone NS algorithms SIMD-BP128 and SIMD-FastPFOR are
the fastest. However, DELTA + SIMD-BP128 and FOR +
SIMD-BP128 also achieve very good aggregation speeds, but
much better compression rates.

Summing up, the changes to the data distributions achieved
by the logical-level techniques do indeed propagate to the
compression rates of their cascades with NS. Furthermore,
the speeds of the cascades can even exceed those of the cor-
responding stand-alone NS algorithms. This is especially
true for the cascades including RLE, if the data contains
long enough runs. Cascades with the other three logical-
level techniques generally lead to less significant speed ups
or even slow downs, whereby these often come with an im-
provement of the compression rate. Finally, if the logical-
level technique is fixed, its cascades with different NS algo-
rithms can lead to significantly different results regarding
compression rate and speed. This justifies the consideration
of multiple different NS algorithms even in cascades.

5.4 Lessons Learned
In order to employ lightweight compression effectively, it

is desirable to know which algorithm is most suitable for a
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Figure 7: Comparison of the cascades on dataset D6.5

given data set w.r.t. a certain optimization goal as, e.g., the
best compression rate, the highest (de)compression speed,
or a combination thereof. Regarding the compression tech-
niques, we can observe some general trends. For instance,
NS usually performs the better, the lower the values are,
while RLE profits from long runs, and DICT from few dis-
tinct values. However, these facts can be derived from the
ideas of the techniques and have already been shown ex-
perimentally by other authors, e.g. in [1]. What is more
interesting is the level of the compression algorithms. While
SIMD-BP128 seems to be a good choice regardless of the op-
timization goal if the data exhibits a good locality, the case is
more complicated for data with a low locality. What makes a
decision even more complex is that the performance of some
NS algorithms is not monotonic in the size of the values.
This holds, e.g., for the word-aligned NS algorithms (Fig. 1
(i-l)) as well as Masked-VByte (Fig. 2, second column).

Moreover, lightweight data compression is still a hot re-
search topic. Hence, more algorithms will be published in
the future. Therefore, an automatic approach for choosing
the best out of a set of algorithms would be welcome. It is
self-evident that the näıve solution of first executing all con-
sidered algorithms on the exact data to be compressed and
then choosing the best algorithm is infeasible for efficiency
reasons. Instead, a model of the algorithms’ compression
rate and performance – subject to the data properties –
could be used. While we believe that such a model could be
built based on our systematic evaluation, we see the main
contribution of this paper in illustrating that this decision is
non-trivial and that, thus, further research in the direction
of an automatic selection is necessary. However, since this is
beyond the scope of this paper, we leave it for future work.

6. EXPERIMENTS ON REAL DATA
To complement our experiments on synthetic data, we

evaluated the algorithms considered in Section 5.3 on a dataset
of postings lists of the real-world document collection GOV26,
which is frequently used to evaluate integer compression al-

6This data set of postings lists is provided by Lemire et al. at
http://lemire.me/data/integercompression2014.html.

gorithms [12, 18, 20]. GOV2 is a corpus of 25 M documents
found in a crawl of the .gov websites. The dataset contains
about 1.1 M postings lists in total, each of which is a sorted
array of unique 32-bit document ids. We discarded all lists
containing less than 8192 integers, since time measurements
are not reliable enough on too short arrays.

Figure 8 (a-d) compare SIMD-BP128 to its cascaded deriva-
tives subject to the list length. Note that, as the total num-
ber of entries in the lists increases, so does the number of
distinct entries (uniqueness), while the average difference of
two subsequent entries decreases. The compression rate of
RLE is noncompetitive to the other algorithms, since unique
values imply the absence of runs. Employing any other
logical-level technique can yield an improvement of the com-
pression rate, whereby DELTA and FOR get better as the
lists get longer. Regarding the compression and aggregation
speed, pure SIMD-BP128 is the fastest for all list lengths.
However, its cascades with DELTA respectively FOR (only
aggregation) are not much slower for long lists. Regarding
the decompression, using DELTA or FOR yields better re-
sults than pure NS for lists longer than 219 respectively 220.

Figure 8 (e-h) provide the rankings of all 25 algorithms.
The reported measurements are averages over all lists lengths
weighted by the actual distribution of the lengths in the
dataset. The cascades with DELTA yield the best compres-
sion rates. The fastest compressors are SIMD-BP128 and
4-Wise NS followed by their cascades with DELTA. Regard-
ing the decompression and aggregation speeds, the top-4 are
stand-alone NS algorithms, which are followed by cascades
with DELTA or FOR.

7. CONCLUSION
Lightweight data compression is heavily employed by mod-

ern in-memory column-stores in order to compensate for the
low main memory bandwidth. In recent years, the corpus
of available compression algorithms has significantly grown,
mainly due to the use of SIMD extensions. In our experi-
mental survey, we systematically evaluated recent vectorized
algorithms of all five basic techniques of lightweight compres-
sion as well as cascades thereof on a multitude of synthetic
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Figure 8: Comparison of the cascades on the postings lists of the real-world document collection GOV2.5

and one real data set. We have shown that there is no single-
best algorithm suitable for all data sets. Instead, making
the right choice is non-trivial and always depends on data
properties such as value distributions, run lengths, sorting,
and the number of distinct data elements. Furthermore, the
best algorithm regarding the compression rate is often not
the best regarding the (de)compression speed, such that a
trade-off must be defined. Even the various null suppression
algorithms show significantly different behavior depending
on the data distribution. Finally, cascades of two techniques
can heavily improve the compression rate, which comes at
the cost of a lower speed in some, but not all cases.
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ABSTRACT
Data volume and complexity continue to increase, as does
the need for insight into data. Today, data management and
data analytics are most often conducted in separate systems:
database systems and dedicated analytics systems. This sep-
aration leads to time- and resource-consuming data transfer,
stale data, and complex IT architectures.

In this paper we show that relational main-memory data-
base systems are capable of executing analytical algorithms
in a fully transactional environment while still exceeding
performance of state-of-the-art analytical systems rendering
the division of data management and data analytics unnec-
essary. We classify and assess multiple ways of integrating
data analytics in database systems. Based on this assess-
ment, we extend SQL with a non-appending iteration con-
struct that provides an important building block for analyti-
cal algorithms while retaining the high expressiveness of the
original language. Furthermore, we propose the integration
of analytics operators directly into the database core, where
algorithms can be highly tuned for modern hardware. These
operators can be parameterized with our novel user-defined
lambda expressions. As we integrate lambda expressions into
SQL instead of proposing a new proprietary query language,
we ensure usability for diverse groups of users. Additionally,
we carry out an extensive experimental evaluation of our
approaches in HyPer, our full-fledged SQL main-memory
database system, and show their superior performance in
comparison to dedicated solutions.
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Figure 1: Overview of approaches to data analytics
using RDBMS. Our system supports the novel layer
4, where data mining is integrated directly into the
database core leading to higher performance. To
maintain expressiveness, high-order functions (lamb-
das) are passed as parameters.

1. INTRODUCTION
The current data explosion in science and technology poses

difficulties for data management and data analytics. Es-
pecially stand-alone data analytics applications [2, 16] are
prone to have problems due to their simple data manage-
ment layer. Being optimized for read-mostly or read-only
analytics tasks, most stand-alone systems are unsuitable for
frequently changing datasets. After each change, the whole
data of interest needs to be copied to the application again,
a time- and resource-consuming process.

We define data analytics to be algorithms and queries that
process the whole dataset (or extensive subsets), and there-
fore are computation-intensive and long-running. This do-
main contains, for example, machine learning, data mining,
graph analytics, and text mining. In addition to the differ-
ences between these subdomains, most algorithms boil down
to a model-application approach: i.e., a two phase process
where a model is created and stored first and then applied
to the same or different data in a second step.

In contrast to dedicated analytical systems, classical DBMS
provide an efficient and update-friendly data management
layer and many more useful features to store big data reli-
ably, such as user rights management and recovery proce-
dures. Database systems avoid data silos as data has to be
stored only once, eliminating ETL cycles (extraction, trans-
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formation, and loading of data). Thus, we investigate how
data analytics can be sensible integrated into RDBMS to
contribute to a “one-solution-fits-it-all” system. What level
of efficiency is possible when running such complex queries
in a database? Can a database actually be better than sin-
gle purpose standalone systems? According to Aggarwal et
al. [4], seamless integration of data analytics technology into
DBMS is a major challenge.

Some newer database systems, for example SAP HANA [15]
and HyPer [20], are designed to efficiently handle different
workloads (OLTP and OLAP) in a single system. Main-
memory RDBMS, such as HyPer, are specifically well-suited
for high analytics workload due to their efficient use of mod-
ern hardware, i.e., multi-core CPUs with extensive instruc-
tion sets and large amounts of main memory.

How is an analytics algorithm best integrated into an
RDBMS? While existing database systems that feature data
analytics include the algorithms on a very high level, we pro-
pose to add a specific set of algorithmic building blocks as
deep in the system as possible. To describe and assess differ-
ent approaches of integrating data analytics algorithms into
an RDBMS, we distinguish four layers ranging form the least
to the most deeply integrated:

(1) DBMS as data storage with external analytics algo-
rithms—the currently most commonly used approach.

(2) User-defined functions (UDFs)—code snippets in high-
level languages executed by the DBMS.

(3) SQL queries—including recursive common table ex-
pressions (CTE) and our novel iteration construct.

(4) Integration as physical operators—the deepest integra-
tion, providing the highest performance.

We propose user-defined code snippets as parameters to
our operators to increase flexibility within (4). These so-
called lambda functions, containing for instance distance
metrics, are able to change the semantics of a given ana-
lytical algorithm.

These four approaches trade performance versus flexibil-
ity in a different way, as depicted in Figure 1. We propose
implementing several of these approaches into one system to
cover the diverse needs regarding performance and expres-
siveness of different user groups and application domains.
The novel operator integration (4) combines the highest per-
formance with high flexibility but can only be implemented
by the database system’s architects. Approaches (2) and
(3) provide environments in which expert users can imple-
ment their own algorithms. All three integrated approaches
[(2), (3), (4)] avoid ETL costs, stale data, and assembling
and administrating complex system environments, thereby
facilitating ad-hoc data analytics.

This paper focuses on two approaches, SQL- and operator-
centric approaches to data analytics in databases. Figure 2
gives a first idea of how these approaches are integrated into
query plans. As depicted, both approaches handle arbitrar-
ily pre-processed input. Both approaches result in a rela-
tion; this result can thus be post-processed within the same
query. The operator-centric approach features a specialized
operator that processes data as would any other relational
operator such as a join. In the SQL-centric approach, an-
alytical algorithms are expressed in SQL. k-Means is an it-
erative algorithm, hence Figure 2 shows an iteration as the
most important part of the query.

Scan data

Scan data Selection

k-Means Selection

initial centers

distance function

λ

(a) Operator-centric approach. The iterative k-Means algo-
rithm is implemented as physical relational operator. The
distance function is specified as a lambda expression.

Scan data

Scan data Selection Iteration Selection

initial centers

while
stop condition

false

(b) SQL-centric approach. The iterative algorithm, including
initialization and stop condition, is expressed in SQL. The it-
eration operator can either be the standard recursive common
table expression, or our optimized non-appending iteration
construct.

Figure 2: Query plans for k-Means clustering.

1.1 Contributions
In this paper, we present how data analytics can effi-

ciently be integrated into relational database systems. Our
approach targets different user groups and application do-
mains by providing multiple interfaces for defining and using
analytical algorithms. High expressiveness and performance
are achieved via a unique combination of existing and new
concepts including1:

• A classification and assessment of approaches to inte-
grate data analytics with databases.

• The iteration construct as extension to recursive com-
mon table expressions (with recursive) in SQL.

• Analytical operators executed within the database en-
gine that can be parameterized using lambda expres-
sions (anonymous user-defined functions) in SQL.

• An experimental evaluation with both dedicated ana-
lytical systems and database extensions for analytical
tasks.

The remainder of this paper is organized as follows: An
overview of the related work is provided in Section 2. In
Section 3 we discuss what characteristics make HyPer es-
pecially suited for in-database analytics. We continue by
explaining the in-database processing in Section 4. The
method by which analytics are integrated into SQL is de-
fined in Section 5 and our building blocks (operators) of the
fourth layer are shown in detail in Section 6. Our operators
are very flexible due to their lambda functions, which we
describe in Section 7. The evaluation of our operators in
HyPer is given in Section 8. We discuss the conclusions of
our work in Section 9.

1Partially based on our prior publication [29].
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2. RELATED WORK
Data analytics software can be categorized into dedicated

tools and extensions to DBMS. In this section, we introduce
major representatives of both classes.

2.1 Dedicated Data Analytics Tools
The programming languages and environments R2, SciPy3,

theano4 and MATLAB5 are known by many data scientists
and are readily available. For these reasons, they are heavily
used for data analytics, and implementations of new algo-
rithms are often integrated. In addition, these languages and
environments provide data visualizations and are well-suited
for exploration and interactive analytics. However, their
algorithm implementations often are only single-threaded,
which is a major drawback concerning currently used multi-
core systems and data volumes.

The next group of existing data analytics tools are data
analytics frameworks. Most representatives of this category
are targeted at teaching and research and do not focus on
performance for large datasets. Their architecture makes it
easy to implement new algorithms and to compare differ-
ent variants of algorithms regarding quality of results. No-
table examples of data analytics frameworks include ELKI 6,
which supports diverse index structures to speed up analyt-
ics, RapidMiner7, used in industry as well as research and
teaching, and KNIME8, which allows users to define data
flows and reports via a GUI.

Recently, Crotty et al. presented Tupleware, a high-per-
formance analytical framework. Tupleware is meant for pure-
ly analytical tasks and the system does not take into ac-
count transactions.The authors endorse interactive data ex-
ploration by not relying on extensive data preparation [12]
and by providing a data exploration GUI. Tupleware re-
quires users to annotate their queries with as much seman-
tics as possible: Queries may solely consist of simple building
blocks, e.g., loop or filter, augmented with user-defined
code snippets such as comparison functions. Relational op-
erators—the building blocks of SQL queries—are fairly sim-
ilar to Tupleware’s building blocks but are more coarse-
grained, more robust against faulty or malicious user input,
and can be used in a more general fashion. They therefore do
not guarantee as many invariants. SQL implementations of
algorithms could be optimized in a similar fashion, although
this requires major changes to relational query optimizers.

The cluster computing framework Apache Spark [31] sup-
ports a variety of data analytics algorithms. Analytical algo-
rithms, contained in the Machine Learning Library (MLlib),
benefit from Spark’s scale-up and scale-out capabilities. Or-
acle PGX 9 is a graph analytics framework. It can run pre-
defined as well as custom algorithms written in the Green-
Marl DSL and is focused on a fast, parallel, and in-memory
execution. GraphLab [22] is a machine learning framework
that provides many machine learning building blocks such

2http://www.r-project.org/
3http://www.scipy.org/
4http://deeplearning.net/software/theano/
5http://www.mathworks.com/products/matlab/
6http://elki.dbs.ifi.lmu.de/
7http://rapidminer.com/
8http://www.knime.org/
9http://www.oracle.com/technetwork/oracle-labs/
parallel-graph-analytics/

as regression or clustering, which facilitate building com-
plex applications on top of them. All of these frameworks
use dedicated internal data formats making it necessary to
use time-consuming data loading steps. Furthermore, the
synchronization of results back to the RDBMS is a complex
job that often must be implemented explicitly by the user.

2.2 Data Analytics in Databases
In addition to standalone systems there are database sys-

tems which contain data analytics extensions. Being faced
with the issue of integrating data analytics and relational
concepts, the systems mentioned below come up with differ-
ent solutions: Either analytical algorithms are executed via
calls to library functions, or the SQL language is extended
with data analytics functions.

MADlib [17] is an example for the second level of our clas-
sification, user-defined functions. This library works on top
of selected databases and heavily uses data parallel query
execution if provided by the underlying database system.
MADlib provides analytical algorithms as user-defined func-
tions written in C++ and Python that are called from SQL
queries. The underlying database executes those functions
but cannot inspect or optimize them. While the output pro-
duced by the functions can directly be post-processed using
SQL, only base relations are allowed as input to data ana-
lytics algorithms. Thus, full integration of the user-defined
functions and SQL queries is neither achieved on a query
optimization and execution level nor in the language and
query layer.

Another example for the UDF category is the SAP HANA
Predictive Analytics Library (PAL) [25, 15]. This library of-
fers multi-threaded C++ implementations of analytical al-
gorithms to run within the main-memory database system
SAP HANA. It is integrated with the relational model in a
sense that input parameters, input data, as well as interme-
diate results and the output are relational tables. The algo-
rithms, so-called application functions, are called from SQL
code. They are compiled into query plans and executed in-
dividually. In contrast to the afore-mentioned MADlib, PAL
integrates in one ecosystem only and is therefore capable of
connecting to SAP HANA’s user and rights management.

Oracle Data Miner [27] is focused on supervised machine
learning algorithms. Hence, training data is used to create a
model that is then applied to test data using SQL functions.
Both steps are run multi-threaded to make use of modern
multi-core systems. Results of the algorithms are stored in
relational tables. Interactive re-using and further processing
of results within the same SQL query is not possible, but can
be applied in precedent and subsequent queries.

EmptyHeaded [1] uses a datalog-like query language for
graph processing. This system follows the “one-solution-fits-
all” approach: Graph data is processed in a relational engine
using multiway join algorithms that are more suitable for
graph patterns than classical pairwise join algorithms.

LogicBlox [6] is also a relational engine that does not use
SQL for queries. It relies on functional programming, as
does Tupleware, but is a full relational DBMS. The func-
tional programming language of LogicBlox, LogiQL, can be
combined with declarative programming and features a rela-
tional query optimizer. LogicBlox exploits constraint solving
to optimize the functional code.

SimSQL [11] is another recent relational database with
analytical features. Users write algorithms from scratch
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which are then translated into SQL. Several SQL extensions,
such as for-each style loops over relations as well as vector
and matrix data types, facilitate analytics in the database.
While recognizing that its tuple-oriented approach to matrix-
based problems results in low performance [10], SimSQL em-
phasizes its general-purpose approach. As a result of those
design decisions, SimSQL is able to execute complex ma-
chine learning algorithms which many other computation
platforms are not able to do [10], but lacks optimizations for
standard analytical algorithms.

To conclude, while all presented database systems strive
for integration of analytical and relational queries, the achieved
level of integration vastly differs between systems. Most pre-
sented systems rely on black box execution of user-defined
functions by the database while others transform analytical
queries into relational queries to allow for query inspection
and optimization by the database.

3. HYPER FOR DATA ANALYTICS
HyPer [20] is a hybrid main-memory RDBMS that is op-

timized for both transactional and analytical workloads. It
offers best-in-class performance for both, even when operat-
ing simultaneously on the same data. Adding capabilities to
execute data analysis algorithms is the next step towards a
unified data management platform without stale data.

Several features of HyPer contribute to its suitability for
data analytics. First, HyPer generates efficient data-centric
code from user queries thus reducing the user’s responsi-
bility to write algorithms in an efficient way [24]. After
transforming the query into an abstract syntax tree (AST),
multiple optimization steps, and the final translation into
a tree of physical operators, HyPer generates code using
the LLVM compiler framework. Computation-intensive al-
gorithms benefit from this design because function calls are
omitted. As a result, users without knowledge in efficient
algorithms can write fast analytical queries.

Second, data locality further improves performance. Data-
centric execution attempts keeping data tuples in CPU reg-
isters as long as possible to avoid copying of data. If possi-
ble, a tuple is kept in registers while multiple operators are
executed on it. This so-called pipelining is important for
queries that touch tuples multiple times. For ad-hoc analyt-
ical queries pre- and post-processing steps can be combined
with the data processing to generate highly efficient machine
code. As many analytical algorithms are pipeline breakers,
in practice we pipeline pre-processing and data materializa-
tion as well as result generation and post-processing.

Third, HyPer focuses on scale-up on multi-core systems
rather than on scale-out on clusters; hence, parallelization
of the operators and the generated code is a performance-
critical aspect. Characteristics of modern hardware, such
as non-uniform memory access (NUMA), cache hierarchies,
and vector processing must be taken into account when new
features are integrated into the DBMS. Avoiding data distri-
bution onto multiple nodes is especially important when the
input data cannot be chunked easily, e.g., when processing
graph-structured data.

In addition to efficient integration of algorithms, other
characteristics further encourage the use of HyPer for data
analysis use-cases such as: the system provides a PostgreSQL-
compatible SQL interface, is fully ACID-compliant and of-
fers fast data loading [23], which is especially important for
data scientists.

4. IN-DATABASE PROCESSING
Existing systems for data analysis often use their own pro-

prietary query languages and APIs to specify algorithms
(e.g., Apache Spark [31] and Apache Flink [5]). This ap-
proach has several drawbacks. For example, unusual query
languages make it necessary to extensively train the domain
experts that write queries. If common high-level program-
ming languages like Java are used, many programmers are
available, but they usually lack domain knowledge. Addi-
tionally, optimizing high-level code is a hard problem that
compiler designers have been working on for decades, espe-
cially in combination with additional query execution logic.

Our goal is to enable data scientists to create and execute
queries in a straightforward way, while keeping all flexibility
for expert users. In this chapter, we assess multiple ap-
proaches to integrate data analytics into HyPer. The first
layer shown in Figure 1 using the database system solely as
data storage is omitted here as it does not belong to the in-
database processing category. Layers two and three, UDFs
and SQL queries, respectively, are already implemented in
various database systems. Layer four describes our novel
approach of deeply integrating complex algorithms into the
database core to maximize query performance while retain-
ing flexibility for the user.

4.1 Program Execution within the Database
Many RDBMS allow user-defined functions (UDFs) in

which database users can add arbitrary functionality to the
database. This eliminates the need to copy data to external
systems. The code snippets are registered with the database
system and are usually run by the database system as a black
box, although first attempts to “open the black box” have
been made [18]. If UDF code contains SQL queries, execut-
ing these queries potentially requires costly communication
with the database. This is because for most UDF languages
it is not possible to bind together the black box code and the
code that executes the embedded SQL query thus foregoing
massive optimization potential. Because of the dangers to
stability and security that go along with executing foreign
code in the database core, a sandbox is required to separate
database code and user code.

4.2 Extensions to SQL
There is general consensus that relational data should be

queried using SQL. By extending SQL to integrate new algo-
rithms, the vast amount of SQL infrastructure (JDBC con-
nectors and SQL editors) can be reused to work with ana-
lytical queries. Furthermore, the declarative nature of SQL
makes it easy to continuously introduce new optimizations.
By using this common language, one avoids the high effort
of creating a new language and of teaching it to users.

Some algorithms, such as the a-priori algorithm [8] for fre-
quent itemset mining, work well in SQL but others are dif-
ficult to express in SQL and even harder to optimize. One
common difficulty is the iterative nature of many analytical
algorithms. To express iterations in SQL, recursive com-
mon table expressions (CTE) can be used. CTEs compute
a monotonically growing relation, i.e., tuples of all previous
iterations are kept. As many iterative algorithms need to ac-
cess one previous iteration only, memory is wasted if the op-
timizer does not optimize this hard-to-detect situation. This
is a problem especially for main-memory databases where
memory is a scarce resource.
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To solve this issue, we suggest an iteration concept for
SQL that does not append to the prior iteration but in-
stead replaces it and therefore drastically reduces the mem-
ory footprint of iterative computations. As the intermedi-
ate results become smaller, less data has to be read and
processed, thus, non-appending iterations also improve an-
alytics performance. We explain the details of our iteration
concept in Section 5.

4.3 Data Analytics in the Database Core
In contrast to other database systems, HyPer integrates

important data analytics functionality directly into the core
of the database system by implementing special highly-tuned
operators for analytical algorithms. Because the internal
structures of database systems are fairly different, such op-
erators have to be specifically designed and implemented for
each system. Differentiating factors between systems are,
among others, the execution model (tuple-at-a-time vs. vec-
torized execution) as well as the storage model (row store
vs. column store). For example, an operator in the ana-
lytical engine Tupleware, which does not support updating
datasets, would look significantly different from an operator
in the full-fledged database system HyPer, which needs to
take care of updates and query isolation.

HyPer can arbitrarily mix relational and analytical op-
erators leading to a seamless integration between analyt-
ics with other SQL statements into one query plan. This
is especially useful because the functionality of existing re-
lational operators can be reused for common subtasks in
analytical algorithms, such as grouping or sorting. Analyt-
ical operators can focus on optimizing the algorithm’s core
logic such as providing efficient internal data representa-
tions, performing algorithm-dependent pre-processing steps,
and speeding up computation-intensive loops. A further
advantage of custom-built analytical operators is that the
query optimizer knows their exact properties and can choose
an optimal query plan based on this information. Having
all pre- and post-processing steps in one language—and one
query—greatly simplifies data analytics and allows efficient
ad-hoc queries. In Section 6 we elaborate on our implemen-
tation of (physical) operators.

Of the integration layers presented in this section, special
operators are integrated most deeply into the database. As
a result, they provide unrivaled performance but reduce the
user’s flexibility. To regain flexibility, we propose lambda
expressions as a way of injecting user-defined code into op-
erators. Lambdas can, for example, be used to specify dis-
tance metrics in the k-Means algorithm or to define edge
weights in PageRank.

By implementing multiple layers, we can offer data an-
alytics functionality to diverse user groups. User-defined
algorithms are attractive for data scientists wanting to im-
plement specific algorithms in their favorite programming
language without having to copy the data to another sys-
tem. Persons knowledgeable in analytical algorithms and
SQL might prefer to stick to their standard data querying
language making extensions to SQL their best choice. Al-
gorithm operators implemented by the database developers
are targeted towards users that are familiar with the data
domain but not with data analytics algorithm design.

Syntactically, UDFs, stored SQL queries and special op-
erators cannot and should not be distinguished by the user.

In this way, DBMS architects can decide on an algorithm’s
level of integration, which is transparent to the user.

In the following sections, we delve into the details of data
analytics using SQL and using specialized analytical oper-
ators with λ-expressions. We omit the details on the first
two layers—using the database solely as data storage, and
running UDFs in a black box within the database—because
the first layer does not incorporate any analytical algorithms
on the database system side and the second layer uses the
database system as a runtime environment for user-defined
code. When the database is only used to provide the data,
the performance is bound by data transfer performance and
the data analytics software used to run the algorithms. In
case the database is used to execute code in a black box,
again, the runtime depends on the programming language
and implementation used in these UDFs.

5. DATA ANALYTICS USING SQL
Our overall goal is to seamlessly integrate analytical al-

gorithms and SQL queries. In the third layer, which is de-
scribed in this section, SQL is used and extended to achieve
this goal. Standard SQL provides most functionality nec-
essary for implementing analytical algorithms, such as fix
point recursion, aggregation, sorting, or distinction of cases.
However, one vital construct is missing: a more general con-
cept of iteration has to be added to the language. Section 5.1
introduces this general-purpose iteration construct, called it-
erate operator. Query optimization for analytical queries is
discussed in Section 5.2.

Our running example is the three algorithms k-Means,
Naive Bayes, and PageRank which are well-known [30, 3]
examples from vector and graph analytics and used as ex-
ample building blocks in other state-of-the-art analytics sys-
tems [12]. Their properties are shared by many other data
mining and graph analytics algorithms. Furthermore, they
represent the areas of data mining, machine learning, and
graph analytics. Thus, these three algorithms are appropri-
ate examples for this paper.

5.1 The Iterate Operator
The SQL:1999 standard contains recursive common table

expressions (CTE) that are constructed using the with re-

cursive. Recursive CTEs allow for computation of growing
relations, e.g., transitive closures. In these queries, the CTE
can be accessed from within its definition and is iteratively
computed until no new tuples are created in an iteration. In
other words, until a fixpoint is reached. Although it is possi-
ble to use this fixpoint recursion concept for general-purpose
iterations, this is clearly a diversion from its intended use
case, and can thus result in incorrect optimizer decisions.

Our iterate operator has similar capabilities as recursive
CTEs: it can reference a relation within its definition al-
lowing for iterative computations. In contrast to recursive
CTEs, the iterate operator replaces the old intermediate re-
lation rather than appending new tuples. Its final result is
a table with the tuples that were computed in the last it-
eration only. This pattern is often used in data and graph
mining algorithms, especially when some kind of metric or
quality of data tuples is computed. In PageRank, for exam-
ple, the initial ranks are updated in each iteration. In clus-
tering algorithms, the assignment of data tuples to clusters
has to be updated in every iteration. These algorithms have
in common that they operate on fixed-size datasets, where
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SELECT * FROM ITERATE ([ initialization], [step], [stop
condition ]);

-- find smallest three-digit multiple of seven
SELECT * FROM ITERATE (( SELECT 7 "x"),

(SELECT x+7 FROM iterate),
(SELECT x FROM iterate WHERE x >=100));

Listing 1: Syntax of the ITERATE SQL language
extension. A temporary table iterate is created,
that in the beginning contains the result of the
initialization subquery. Iteratively, the subquery
step is applied to the result of the last iteration, until
the boolean condition stop condition is fulfilled.

only certain values (ranks, assigned clusters, et cetera) are
updated. This means the stop criterion has to be changed;
rather than stopping when no new tuples are generated, our
iterate operator stops when a user-defined predicate evalu-
ates to true. We show the syntax of the iteration construct in
Listing 1. By providing a non-appending iteration concept
with a while-loop-style stop criterion, we are adding more
semantics to the implementation, which has been shown to
massively speed up query execution due to better optimizer
decisions [12].

Although it is possible to implement the afore-mentioned
algorithms using recursive CTEs, the iterate operator has
two major advantages:

• Lower memory consumption: Given a dataset with n
tuples, and i iterations. With recursive CTEs, the
table is growing to n ∗ i tuples. Using our operator,
the size of the relation remains n. For comparisons of
the current and the last iteration, we need to store 2∗n
tuples and discard all prior iterations early. The iterate
construct saves vast amounts of memory in comparison
to recursive CTEs. Furthermore, if the stop criterion
is the number of executed iterations, recursive CTEs
have to carry along an iteration counter, which is a
huge memory overhead because it has to be stored in
every tuple.

• Lower query response times: Because of the smaller
relation size, our algorithm is faster in scanning and
processing the whole relation, which is necessary to
re-compute the ranks, clusters, et cetera.

Lower memory requirements are particularly important in
main-memory databases like HyPer, where memory is a scarce
resource. This is especially true when whole algorithms are
integrated into the database because they often need addi-
tional temporary data structures. Our evaluation, Section 8,
shows how algorithm performance can be improved by us-
ing our iterate operator instead of recursive CTEs, while
keeping the flexibility of with recursive statements. Both
approaches share one drawback, they can both produce infi-
nite loops. Those situations need to be detected and aborted
by the database system, e.g., via counting recursion depth
or iterations, respectively.

A conceptually similar idea that also features appending
and non-appending iterations can be found in the work of
Binnig et al. [7]. Being a language proposal for a functional
extension to SQL, their paper neither discusses where which

type of iteration is appropriate, nor does it list advantages
and drawbacks regarding performance or memory consump-
tion. Ewen et al. [14] also argue that many algorithms only
need small parts of the data to compute the next iteration
(so-called incremental iterations). Their work focuses on
parallelizing those iterations as they are only sparsely de-
pendent on each other. The SciDB engine features sup-
port for iteration processing on arrays where “update op-
erations typically operate on neighborhoods of cells” [26].
Soroush et al.’s work enables efficient processing of this type
of array iterations as well as incremental iterations.

5.2 Query Optimization and Seamless Integra-
tion with the Surrounding SQL Query

Keeping intermediate results small by performing selec-
tions as early as possible is a basic principle of query op-
timization. This technique, called pushing selections, is in
general not possible when analytical algorithms are affected.
This is because the result of an analytical algorithm is not
determined by single tuples (as it is for example for joins),
but potentially influenced by the whole input dataset. A
similar behavior can be found in the group-by operator,
where the aggregated results also depend on all input tu-
ples. This naturally narrows the search space of the query
optimizer and reduces optimization potentials.

One major influencing factor for query optimization is the
cardinality of intermediate results. For instance, precise car-
dinality estimations are necessary for choosing the best join
ordering in a query. It is, however, hard to estimate the
output cardinality of the generic iterate operator because
it can contain diverse algorithms. Some algorithms, e.g.,
k-Means, iterate over a given dataset and the number of tu-
ples stays the same before and after the iterate operator.
Other algorithms, e.g., reachability computations, increase
the dataset with each iteration, which makes the final cardi-
nality difficult to estimate. Cardinality estimation on recur-
sive CTEs faces the same difficulty so that similar estimation
techniques can be applied.

To conclude, the diverse nature of analytical algorithms
does not offer many generic optimization opportunities. In-
stead, relational query optimization has to be performed
almost independently on the subqueries below and above
the analytical algorithm while the analytical algorithm itself
might benefit from different optimization techniques, e.g.,
borrowed from general compiler design or constrained solv-
ing as suggested by [6]. Because of the lacking potential for
standard query optimization, low-level optimizations such as
vectorization and data locality, as introduced in Section 3,
become more important.

6. OPERATORS
The most in-depth integration of analytical algorithms

into a DBMS is by providing implementations in the form
of physical operators. Physical operators like hash join or
merge sort are highly optimized code fragments that are
plugged together to compute the result of a query. All
physical operators, including the analytical ones introduced
in this paper, use tables as input and output. They can
be freely combined ensuring maximal efficiency. Figure 3
shows how physical analytics operators are integrated into
query translation and execution. Physical operators are
performance-wise superior to the general iteration construct,
introduced in Section 5.1, as these specialized operators know
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Figure 3: Query translation and execution with re-
lational and analytical operators. A SQL query is
translated to an abstract syntax tree (AST) consist-
ing of both relational and analytical operators. The
optimizer can inspect both types of operators. This
approach provides highest integration and perfor-
mance.

SELECT * FROM PAGE RANK(( SELECT src , dest FROM edges),
0.85, 0.0001);

Listing 2: Operator integration in SQL. Arbitrary
preprocessing of input data and arbitrary post-
processing of the results is possible. Additional
parameters define the algorithm’s behavior.

invariants of their algorithms such as the estimated output
cardinality or data dependencies in complex computations.
These specialized operators know best how to distribute
work among threads or how to optimize the memory lay-
out of internal data structures.

For example, the query shown in Listing 2 computes the
PageRank value for every vertex of the graph induced by
the edges relation10. The query is processed by a table scan
operator followed by our specialized physical PageRank op-
erator. The PageRank operator implementation defines, for
example, whether parallel input (from the table scan op-
erator) can be processed, information that is used by the
optimizer to create the best plan for the given query.

In the next sections, we describe the chosen algorithms,
k-Means, Naive Bayes, and PageRank, and how we imple-
mented them in HyPer. Furthermore, we describe necessary
changes to the optimizer.

6.1 The Physical k-Means Operator
k-Means is a fast, model-based iterative clustering algo-

rithm, i.e., it divides a set of tuples into k spherical groups
such that the sum of distances is minimized. It can be uti-

10Parentheses around the subquery are necessary because ar-
bitrary queries are allowed there. The sole use of commas
would have lead to an ambiguous grammar.

lized as a building block for advanced clustering techniques.
The classical k-Means algorithm by Lloyd [21] splits each
iteration into two steps: assignment and update. In the as-
signment step, each tuple is assigned to the nearest cluster
center. In the update step, the cluster centers are set to be
the arithmetic mean of all tuples assigned to the cluster. The
algorithm converges when no tuple changes its assigned clus-
ter during an iteration. For practical use, the convergence
criterion is often softened: Either, a maximum number of
iterations is given, or the algorithm is interrupted if only a
small fraction of tuples changed its assigned cluster in an
iteration.

In our implementation, the k-Means operator requires two
input relations, data and initial centers, that are passed via
subqueries. An additional parameter defines the maximum
number of iterations. Using parallelism, our implementa-
tion benefits from modern multi-core systems. Each thread
locally assigns data tuples to their nearest center and to pre-
pare the re-computation of cluster centers, each thread sums
up the tuples values. The data tuples themselves are con-
sumed and directly thrown away after processing. For the
next iteration, tuples are requested again from the underly-
ing subquery. As a result, the query optimizer can decide
to compute the data relation each time, or use materialized
intermediate results, whatever is faster in the given query.
Data locality is ensured because all centers and interme-
diate data structures are copied for each thread. Thread
synchronization is only needed for the very last steps, global
aggregation of the local intermediate results and the final
update of the cluster centers. This procedure is repeated
until the solution remains stable (i.e., no tuple changed its
assignment during an iteration), or until the maximum num-
ber of iterations is reached. The operator then outputs the
cluster centers.

6.2 The Physical Naive Bayes Operator
Naive Bayes classification aims at classifying entities, i.e.,

assigning categorical labels to them. Other than k-Means or
PageRank, it is a supervised algorithm and consists of two
steps performed on two different datasets: First, a dataset
A with known labels is used to build a model based on the
Bayesian probability density function. Second, the model is
applied to a related but un-labeled (thus unknown) dataset
B to predict its labels. When implemented in a relational
database, one challenge is storing the model as it does not
match any of the relational entities, relation or index, com-
pletely.

We implemented model creation and application as two
separate operators, Naive Bayes training and Naive Bayes
testing, respectively. The generation of additional statistical
measures is handled by two additional operators that are not
limited to Naive Bayes but can be used as a building block
for multiple algorithms, for example k-Means.

Similar to k-Means, the Naive Bayes training operator is a
pipeline breaker. Each thread holds a hash table to manage
its input data with the class as key while not storing the
tuples itself. In addition, the number of tuples N is stored
for each class, as well as the sum of the attribute values∑

n∈N n.a and the sum of the square of each attribute value∑
n∈N n.a2 for each class and attribute. After the whole

input is consumed, the training operator computes the a-
priori probability for each class as well as the mean and
standard deviation for each class and attribute:
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Let a given training set D with |D| instances d ∈ D con-
tain a set of classes C with |C| instances c ∈ C. Let |c|
denote the number of instances of this class c in D. Then,
the a-priori probability of class c is given by:

PR(c) =
|c|+ 1

|D|+ |C|

Afterwards, the results and the class labels are fed into the
next operator: the testing operator.

6.3 The Physical PageRank Operator
PageRank [9] is a well-known iterative ranking algorithm

for graph-structured data. Each vertex v in the graph (e.g.,
a website or a person), is assigned a ranking value that can
be interpreted as its importance. The rank of v depends on
the number and rank of incoming edges, i.e., v is important
if many important vertices have edges to it. A PageRank
iteration is a sparse matrix-vector multiplication. In each
iteration, part of each vertex’s importance flows off to the
vertices it is adjacent to, and in turn each vertex receives im-
portance from its neighbors. Similar to k-Means, PageRank
converges towards a fixpoint, i.e., the vertex ranks change
less than a user-defined epsilon. It is common to specify a
maximum number of iterations.

The sparse matrix-vector multiplication performed in the
PageRank iterations is similar to many graph algorithms in
that its performance greatly benefits from efficient neighbor
traversals. This means for a given vertex v it has to be
efficiently possible to enumerate all of its neighbors. Our
PageRank implementation ensures this by efficiently creat-
ing a temporary compressed sparse row (CSR) representa-
tion [28] that is optimized for the query at hand. We avoid
storage overhead and an access indirection in this mapping
by re-labeling all vertices and doing a direct mapping. Af-
ter the PageRank computation we use a reverse mapping
operator that translates our internal vertex ids back to the
original ids.

The PageRank operator uses only the CSR graph index
and no longer needs to access the base data. In each itera-
tion we compute the vertices’ new PageRank values in par-
allel without any synchronization. Because we have dense
internal vertex ids we are able to store the current and last
iteration’s rank in arrays that can be directly indexed. Thus,
every neighbor rank access only involves a single read. At
the end of each iteration we aggregate each worker’s data
to determine how much the new ranks differ from the previ-
ous iterations. If the difference is less or equal to the user-
defined epsilon or if the maximum iteration count is reached,
the PageRank computation finishes.

7. LAMBDA EXPRESSIONS
In Section 4.3 we described the integration of specialized

data analytics operators into the database core. These oper-
ators provide unrivaled performance in executing the algo-
rithms they were designed for. However, without modifica-
tion they are not flexible, i.e., they are not even applicable in
the context of similar but slightly different algorithms. Con-
sider the k-Medians algorithm. It is a variant of k-Means
that uses the L1-norm (Manhattan distance) rather than
the L2-norm (Euclidean distance) as distance metric. While
this distance metric differs between the variants, their im-
plementations have in common predominant parts of their
code. Even though this common code could be shared, dif-

CREATE TABLE data (x FLOAT , y INTEGER , z FLOAT ,
desc VARCHAR (500));

CREATE TABLE center (x FLOAT , y INTEGER , z FLOAT);
INSERT INTO data ...
INSERT INTO center ...

SELECT * FROM KMEANS(
-- sub-queries project the attributes of interest
(SELECT x,y FROM data),
(SELECT x,y FROM center),
-- the distance function is specified as λ-expression
λ(a, b) (a.x-b.x)^2+(a.y-b.y)^2,
-- termination criterion: max. number of iterations
3

);

Listing 3: Customization of the k-Means operator
using a lambda expression for the distance function.

ferent metrics would make necessary different variants of our
algorithm operators.

Instead, when designing data analytics operators, we iden-
tify and aim to exploit such similarities. Our goal is to have
one operator for a whole class of algorithms with variation
points that can be specified by the user. To inject user-
defined code into variation points of analytics operators we
propose using lambda expressions in SQL queries.

Lambda expressions are anonymous SQL functions that
can be specified inside the query. For syntactic convenience,
the lambda expressions’ input and output data types are
automatically inferred by the database system. Also, for all
variation points we provide default lambdas that are used
should none be specified. Thus, non-expert users can easily
fall back to basic algorithms. With lambda-enabled opera-
tors we strive not only to keep implementation and main-
tenance costs low, but especially to offer a wide variety of
algorithm variants required by data scientists. Also, because
lambda functions are specified in SQL, they benefit from ex-
isting relational optimizations.

Listing 3 shows how our k-Means operator benefits from
lambdas. In the kmeans function call’s third argument, a
lambda expression is used to specify an arbitrary distance
metric. The operator expects a lambda function that takes
two tuple variables as input arguments and returns a (scalar)
float value. At runtime, these variables are bound with the
corresponding input tuples to compute the distance. Thus,
by providing a k-Means operator that accepts lambda ex-
pressions we do not only cover the common k-Means and k-
Medians algorithms but also allow users to design algorithms
that are specific to their task and data at hand. These cus-
tom algorithms are still executed by our highly-tuned in-
database operator implementation and because all code is
compiled together, no virtual function calls are involved.

8. EXPERIMENTAL EVALUATION
In this section, we evaluate our implementations of k-

Means, PageRank, and Naive Bayes. As introduced in Sec-
tion 4, we implemented multiple versions of the algorithms,
that reflect different depths of integration. We compare our
solutions to other systems commonly used by data scien-
tists. This includes middle-ware tools based on RDBMS,
analytics software for distributed systems, and standalone
data analysis tools.
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#tuples n #dimensions d k

Varying 160 000 10 5
number of 800 000 10 5
tuples 4 000 000 10 5?

20 000 000 10 5
100 000 000 10 5
500 000 000 10 5

Varying 4 000 000 3 5
number of 4 000 000 5 5
dimensions 4 000 000 10 5?

4 000 000 25 5
4 000 000 50 5

Varying 4 000 000 10 3
number of 4 000 000 10 5?

clusters 4 000 000 10 10
4 000 000 10 25
4 000 000 10 50

? same experiments, for connecting the three lines
of experiments

Table 1: Datasets for k-Means experiments.

8.1 Datasets and Parameters
We use a variety of datasets to evaluate the influence of

certain characteristics of the datasets and workload to the
resulting performance.

8.1.1 k-Means Datasets and Parameters
k-Means is an algorithm targeted at vector data, i.e., tu-

ples with a number of dimensions. This data model fits
perfectly into relations. The data is characterized by the
number of tuples n, the number of dimensions d used for
clustering, and the data types of the dimensions. We chose
to perform experiments for varied n and d while keeping the
data types constant. In addition to the dataset, the algo-
rithm itself has multiple parameters: the number of clusters
k, the cluster initialization strategy, and the number of it-
erations i that are computed. The number of clusters k
drastically influences the query performance because it de-
fines the number of distances to be computed and compared,
and is an important parameter in our evaluation. To pro-
duce comparable results with a wide range of systems, our
experiments use the simplest cluster initialization strategy:
random selection of k initial cluster centers. We chose to
perform three iterations i, which keeps the experiment du-
ration short while leveling out a possible overhead in the
first iteration.

While modifying one parameter, we keep the other two
fixed to focus on the effect on that parameter only. The re-
sulting list of experiments is shown in Table 1. We conduct
five to six experiments per parameters, which allows us to
assess not only the performance but also the scaling behavior
of the different systems. The dataset sizes, determined by n
and d, were chosen to be processable by all evaluated systems
within main memory and within a reasonable time given the
vast performance differences between the systems. We cre-
ate artificial, uniformly distributed, datasets because they
provide an important advantage over real-world datasets in
our use case. As the performance of plain k-Means with a
fixed number of iterations is irrespective of data skew, our

decision to use synthetic datasets does not introduce any
drawbacks.

8.1.2 Naive Bayes Datasets and Parameters
The Naive Bayes experiments are conducted using the

same synthetic datasets as k-Means. We vary the number of
tuples N and the number of dimensions d. For the labels we
chose a uniform probability density function of two labels
0 and 1. Our experiments cover the training phase of the
algorithm only as it has a much higher complexity and thus
runtime than the testing step.

8.1.3 PageRank Datasets and Parameters
PageRank is an algorithm targeted at graph data, i.e., ver-

tices and edges with optional properties. The algorithm is
parameterized with the damping factor d modeling the prob-
ability that an edge is traversed, e, the maximum change be-
tween two iterations for which the computation continues,
and the maximum number of iterations i. For the damp-
ing factor d we chose the reasonable value 0.85 [9], i.e., the
modeled random surfer continues browsing with a probabil-
ity of 85%. To better compare different systems, we set e
to 0 and run a fixed number of 45 iterations in all systems.
As datasets we use the artificial LDBC graph designed to
follow the properties of real-world social networks. We gen-
erated multiple LDBC graphs in different sizes up to 500,000
vertices and 46 million edges, using the SNB data genera-
tor [13], and used the resulting undirected person-knows-
person graph.

8.2 Evaluated Systems
We evaluate our physical operators, denoted as HyPer Op-

erator, SQL queries with our iterate operator, denoted as
HyPer Iterate, and a pure SQL implementation using re-
cursive CTEs, denoted as HyPer SQL, against diverse data
analysis systems introduced in Section 2. We chose MAT-
LAB R2015 as a representative of the “programming lan-
guages” group. The next category is “big data analytics”
platforms, in which we evaluate Apache Spark 1.5.0 with
MLlib. As contender in the “database extensions” cate-
gory, we chose MADlib 1.8 on top of the Pivotal Greenplum
Database 4.3.7.1.

To ensure a fair comparison, all systems have to imple-
ment the same variant of k-Means: Lloyd’s algorithm. Note
that we therefore disabled the following optimizations im-
plemented in Apache Spark MLlib. First, the MLlib imple-
mentation computes lower bounds for distances using norms
reducing the number of distance computations. Second, dis-
tance computation uses previously computed norms instead
of computing the Euclidean distance (if the error introduced
by this method is not too big). litekmeans11, a fast k-Means
implementation for MATLAB, uses the same optimizations.
We therefore use MATLAB’s built-in k-Means implementa-
tion in our experiments.

8.3 Evaluation Machine
All experiments are carried out on a 4-socket Intel Xeon

E7-4870 v2 (15×2.3 GHz per socket) server with 1 TB main
memory, running Ubuntu Linux 15.10 using kernel version
4.2. Greenplum, the database used for MADlib, is only avail-
able for Red Hat-based operating systems. We therefore set

11http://www.cad.zju.edu.cn/home/dengcai/Data/
Clustering.html
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Figure 4: k-Means experiments. From left to right: varying the number of tuples N , dimensions d, and
clusters k. Default parameters: 4,000,000 tuples, 10 dimensions, 5 clusters, 3 iterations.
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Figure 5: PageRank and Naive Bayes experiments. From left to right: PageRank using the LDBC SNB
dataset, damping factor 0.85, and 45 iterations. Naive Bayes experiment varying the number of tuples N .
Naive Bayes experiment varying the number of dimensions d.

up a Docker container running CentOS 7. The potential in-
troduced overhead is considered in our discussion. As men-
tioned, we chose the datasets to fit into main memory, even
when considering additional data structures. MATLAB does
not contain parallel versions of the chosen algorithms, as
mentioned in Section 2. This issue is also considered in the
discussion of our results.

8.4 Results and Discussion
Figures 4 and 5 display the total measured runtimes. In

general, the results match our claims regarding the four lay-
ers of integration as shown in Figure 1: Systems using UDFs
(layer 2), in our experiments represented by MADlib, are
slower than HyPer Iterate and HyPer SQL using SQL (layer
3). The fastest implementation, HyPer Operator, uses ana-
lytical operators (layer 4). Runtime of dedicated analytical
systems, such as MATLAB and Apache Spark, heavily de-
pends on the individual system.

8.4.1 Recursive CTEs and HyPer Iterate
As claimed in Section 5, using the iteration concept im-

proves runtimes over plain SQL. While the pure SQL imple-
mentation, using recursive CTEs, has to store and process
intermediate results that grow with each iteration, the iter-
ation operator’s intermediate results have constant size. In
our implementations this means additional selection predi-
cates for the pure SQL variant and more expensive aggre-
gates due to the larger intermediate results. k-Means is more

affected by this difference because it operates on larger data
and is less computation-intensive than PageRank.

8.4.2 Hyper Operator and HyPer Iterate
The k-Means experiments show almost no difference be-

tween the HyPer Operator and the HyPer Iterate approach.
k-Means is a rather simple algorithm: there is no random
data access, only few branches, vectorization can be applied
easily, and the data structures are straightforward. Fur-
thermore, k-Means operates on vector data; both operator
and SQL implementations use similar internal data struc-
tures. This results in very similar code being generated by
the operator and the query optimizer resulting in the similar
runtimes.

For PageRank, the experiments reveal a different picture:
HyPer Operator runs significantly faster than HyPer Iterate
because of its optimized CSR graph data structure. In con-
trast, HyPer Iterate has to work on relational structures, an
edges table and a derived vertices table, and subsequently
needs to perform many (hash) joins. As a result, its runtime
is dominated by building and probing hash tables. This be-
havior is also found in [19] where a SQL implementation
of PageRank also showed performance only comparable to
stand-alone-systems. The following rule of thumb can be
applied: The more similar optimized SQL code and code
generated from the hand-written operator are, the smaller
the runtime difference between HyPer Iterate and HyPer
Operator approaches.
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8.4.3 HyPer, MATLAB, MADlib, and Apache Spark
Among the contender systems, Apache Spark shows by

far the best runtimes, which was expected because Spark
was especially built for these kinds of algorithms. Still,
Apache Spark is multiple times slower than our HyPer Op-
erator approach for all three evaluated algorithms, as shown
in Figures 4 and 5. HyPer’s one-system-fits-all approach
comes with some overhead of database-specific features not
present in dedicated analytical systems like Apache Spark.
Therefore, it is important that these features do not cause
overhead when they are not used. For instance, isolation of
parallel transactions should not take a significant amount
of time when only one analytical query is running. Some
database-specific overhead, stemming for example from mem-
ory management and user rights management, cannot be
avoided. Nevertheless, HyPer shows far better runtimes
than dedicated systems, while also avoiding data copying
and stale data. MATLAB runs both algorithms single-threa-
ded and therefore cannot compete, but was included because
multiple heavily used data analytics tools do not support
parallelism. MADlib, even taking into account the runtime
impairment caused by the virtualization overhead, cannot
compete with solutions that integrate data analytics deeper
and produce better execution code.

Interestingly, Spark and MADlib almost seem not to be
affected by the number of dimensions or clusters in the ex-
periments. As algorithm-wise more complex computations
are necessary if either of the numbers increases, we suspect
those computations to be hidden behind multi-threading
overhead. For example, if each thread handles one clus-
ter, even the 50 clusters in the largest experiment still fit
into the 120 hyper-threads of the evaluation machine. But
k-Means with larger number of dimensions or clusters is not
common, because their results are impaired by the curse of
dimensionality or cannot be interpreted by humans. Re-
garding the scaling for larger datasets, log-scaled runtimes
fail to show runtime differences appropriately. Plots with
log-scaled runtimes counter-intuitively show converging lines
when in fact the runtime difference between two systems is
constant, which is the case for HyPer Operator/Iterate and
Apache Spark in the leftmost sub-figure of Figure 4.

The results presented above support our claim that a
multi-layer approach helps targeting diverse user groups.
DBMS manufacturers benefit from the identical interface
and syntax of UDFs, stored SQL queries, and hard-coded
operators. The decision as to in which layer an algorithm
should be implemented is solely affected by the implemen-
tation effort versus the gain in performance and flexibility.
Laypersons can use these manufacturer-provided algorithms
without having to care whether it is a UDF, an SQL query,
or a physical operator. Database users with expertise, op-
posed to laypersons wanting to implement their own ana-
lytical algorithms can choose to implement either UDFs or
SQL queries.

Briefly stated, the experiments match the expected order
of runtimes: the deeper the integration of data analytics,
the faster the system. Our results also support our idea of
one database system being sufficient for multiple workloads.
While this has been shown for combining OLTP and OLAP
workloads [15, 20], our contribution was to integrate one
more workload, data analytics, while keeping performance
and usability on a high level.

9. CONCLUSION
We described multiple approaches of integrating data an-

alytics into our main-memory RDBMS HyPer. Like most
database systems, HyPer can be used as a data store for
external tools. However, doing so exposes data transfer as
a bottleneck and prevents significant query optimizations.
Instead, we presented three layers of integrating data ana-
lytics directly into the database system: data analytics in
UDFs, data analytics in SQL, and analytical operators in
the database core. The layers’ depth of integration and their
analytics performance increases with each layer.

UDFs allow the user to implement arbitrary computations
directly in the database. However, because the database
runs UDFs as a black box, automated optimization poten-
tials are limited. To prevent this lack of optimization po-
tential, we proposed performing data analytics in SQL. As
iterations are hard to express in SQL and difficult to opti-
mize, we presented the iteration operator and a correspond-
ing language extension that serves as a building block for
arbitrary iterative algorithms directly in SQL. Compared to
recursive common table expressions, the iteration construct
significantly reduces runtime overhead, especially in terms
of memory consumption, as it only materializes the interme-
diate results of the previous iteration.

For major analytical algorithms that are used frequently
(e.g., k-Means, PageRank, and Naive Bayes), we proposed
an even deeper integration: integrating highly-tuned analyt-
ical operators into the database core. Using our novel SQL
lambda expressions, users can specialize analytical operators
directly within their SQL queries. This adds flexibility to
otherwise fixed operators and allows, for example, for ap-
plying arbitrary user-defined distance metrics in our tuned
k-Means operator. Just like the iterate operator and the an-
alytics operator, lambda expressions are part of the logical
query plan and are subject to query optimization and code
generation. Hence, they benefit from decades of research in
database systems.

Our presented approaches enable complete integration of
data analytics in SQL queries, ensuring both efficient query
plans and usability. In our experiments we saw that HyPer
data analytics on both graph and vector data is significantly
faster than in dedicated state-of-the-art data analytics sys-
tems: 92 times faster than Apache Spark for PageRank.
This is especially significant because as an ACID-compliant
database, HyPer must also be able to handle concurrent
transactional workloads. Thus, we showed that HyPer is
suitable for integrated data management and data analytics
on large data, with multiple interfaces targeted at different
user groups.
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ABSTRACT
Nowadays data scientists have access to gigantic data, many
of them being accessible through SQL. Despite the inherent
simplicity of SQL, writing relevant and efficient SQL queries
is known to be difficult, especially for databases having a
large number of attributes or meaningless attribute names.
In this paper, we propose a “rewriting” technique to help
data scientists formulate SQL queries, to rapidly and intu-
itively explore their big data, while keeping user input at
a minimum, with no manual tuple specification or labeling.
For a user specified query, we define a negation query, which
produces tuples that are not wanted in the initial query’s an-
swer. Since there is an exponential number of such negation
queries, we describe a pseudo-polynomial heuristic to pick
the negation closest in size to the initial query, and construct
a balanced learning set whose positive examples correspond
to the results desired by analysts, and negative examples to
those they do not want. The initial query is reformulated
using machine learning techniques and a new query, more
efficient and diverse, is obtained. We have implemented a
prototype and conducted experiments on real-life datasets
and synthetic query workloads to assess the scalability and
precision of our proposition. A preliminary qualitative ex-
periment conducted with astrophysicists is also described.

CCS Concepts
•Information systems → Data mining; Query refor-
mulation; Users and interactive retrieval; •Human-centered
computing→ Interactive systems and tools; •Computing
methodologies → Machine learning;
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Keywords
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1. INTRODUCTION
There’s a pressing need on the discovery rate of interest-

ing knowledge to keep pace with the booming data stores, as
is the case in scientific fields like astronomy or earth obser-
vation, with their continuous advent of data-producing in-
struments and techniques. For instance, the Large Synoptic
Survey Telescope [2] (LSST) currently under construction in
Chile is projected to produce about 15 TB of imaging data
each night, and over 10 petabytes of relational data in its
10 years lifetime. Clearly, our ability to stockpile data has
long left behind our data analysis and exploitation capaci-
ties. Trying to make sense of data of the mentioned sizes
with today’s systems and techniques is an extremely diffi-
cult, if not an impossible, task, as even simple queries can
return results so large they are practically incomprehensi-
ble [3]. Data storage and throughput related issues may be
quite challenging, but problems linked with data exploration
and system usage are even more so.

Scientific data commonly appear as SQL queryable rela-
tions, with hundreds of attributes holding numerical values
from physical measurements or observations1. The attribute-
based selection criteria are not always easily expressible. In
order to formulate the right SQL query, analysts need to cor-
rectly define the appropriate attribute thresholds and make
sure no attribute condition is missing from the query, which
can be a real hurdle. Moreover, it is often the case that
scientists do not know exactly what they are searching for,
until after they find it, e.g., astrophysicists searching for in-
teresting patterns in the data. Consider an astrophysicist
exploring a huge database holding data about stars. She
wants to select stars likely to harbor planets. But the data’s
attributes are mostly related to light magnitude and am-
plitude, and the presence of planets is only confirmed for a
small number of stars. The astrophysicist can easily pose
an initial query retrieving those stars but has no idea about
another SQL query whose results would be similar, i.e., pro-

1See for example the LSST website: http://lsst-web.ncsa.
illinois.edu/schema/index.php
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viding a fair number of true positives (stars with planets)
and a limited number of false positives (stars which surely
lack planets), but also introducing new stars, which are likely
to have planets.

Given the range of fields which produce or benefit from
increasingly sized data, more and more difficult to query by
a large spectrum of users, we believe it is crucial to enable
data exploration, while keeping the expertise requirements
as low as possible.

Example 1 Consider the CA (CompromisedAccounts) rela-
tion given in figure 1, inspired from the Ashley Madison data
breach2 [32]. Ashley Madison is a website targeting people
that seek out an extramarital affair. AccId is a user iden-
tifier and BossAccId is the boss of the user, only if she is
also registered online. JobRating is a job performance rat-
ing for some of the accounts and normalized to a scale of 1
to 5. MoneySpent and DailyOnlineTime refer to the money
spent on the site, and the average daily time spent online
by the owner’s account, respectively. Status tells whether
the user is a governmental employee or not. The meaning
of the other attributes is clear from context.

Assume a zealous reporter is searching for governmental
users that spend more time online than their bosses. The
reporter has built up a somewhat good background in SQL,
and poses the following query (initial query):

SELECT AccId, OwnerName, Sex
FROM CompromisedAccounts CA1
WHERE Status = ’gov’ AND
DailyOnlineTime > ANY
(SELECT DailyOnlineTime

FROM CompromisedAccounts CA2
WHERE CA1.BossAccId = CA2.AccId)

This query produces the tuples corresponding to Casanova
and PrinceCharming. But the reporter is interested in as
many government officials as possible. Clearly, the problem
of relaxing some conditions of the query to get more results
has no solution for her. Hovewer, as we will see in the paper,
the above query can be reformulated as follows:

Reformulated query:

SELECT AccId, OwnerName, Sex
FROM CompromisedAccounts
WHERE (MoneySpent >= 90000 AND JobRating >= 4.5) OR
(MoneySpent < 90000 AND DailyOnlineTime >= 9)

We notice that the reformulated query:

• is very much different from the initial one: it includes
the new attributes MoneySpent and JobRating ;

• it does not contain imbrications, therefore being more
efficient, only going once through the relation; when
the data volumes are very large, this is obviously of
major importance;

• it maintains Casanova and PrinceCharming in the re-
sult, but

2This is an example we came up with, in no way related to
real data from the breach.

• is not equivalent to the first query, introducing some
diversity in the results: tuples RhetButtler, MrDarcy
and BigBadWolf are only found in the new query’s
result.

However, the reporter does not know in advance the con-
ditions in the reformulation’s WHERE clause, which in fact
describe a pattern hidden in the data. According to this
pattern, accounts spending more than 90k and whose own-
ers do very well at work are likely to belong to cheating gov-
ernmental employees who spend more time on the website
than their bosses do. Same can be assumed about accounts
spending less than 90k, but more than one third of a day
online. A set of attributes is described based on another set
of attributes. We could uncover this pattern by feeding a
data mining tool with all these data, then go back to the
database and pose the found query. But this poor reporter
already deserves all the credit and our sympathy for digging
into databases, a field unfamiliar to her. Do we really want
to put her through the wringer of delving into the fascinat-
ing, yet complex world of data mining and machine learning?
Moreover, if on a 10 rows example one could come up with
a pattern close to the real one, this is impossible to achieve
in a realistic setting.

Problem statement.
The problem we are interested in can be formulated as

follows:

Given a database and a user-specified SQL query
that selects data based on some initial condition,
we are interested in a reformulation of the initial
query that captures the pattern revealed from the
initial query’s result data.

We do not search for an equivalent query, but for one
whose result overlaps the initial query’s result to a certain
extent, and that also introduces new tuples in its result.
The latter represents the exploratory potential of the new
query. We set out to build an interaction that allows an-
alysts to explore their data in this fashion, solely through
SQL queries.

For a user-specified SQL query Q on a database d, we can
easily define positive examples, or simply examples, based on
Q’s answer on d. They correspond to tuples that are wanted
by the analyst. One of the challenges is to define the neg-
ative examples or counter-examples, i.e., tuples the analyst
does not want to see in the result. This, in turn, raises the
question of defining a query Q that could be considered as a
negation of Q. If the generation of this query Q is possible,
we have a set of example tuples, the results of Q’s evalu-
ation, and a set of counter-example tuples, obtained from
Q’s evaluation. We can then use a data mining technique in
a supervised pattern learning approach on these two tuple
sets.

For a user-specified query Q on a database d, there is
an exponential number of possible negation queries Q that
can be defined by negating different parts of Q’s selection
condition. We aim to find the one whose answer size is
closest to Q’s answer size, i.e., the set of positive examples
and the set of negative examples are as close as possible
in size. We call it the balanced negation query. The “more”
balanced the learning set is, the higher its entropy, the better
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AccId Owner
Name

Age Sex Money
Spent

Daily
Online
Time

JobRating Status BossAccId

100 Casanova 50 M 100k 5h 4.5 gov 350
200 DonJuanDeMarco 20 M 20k 1h 2.1 null null
350 PrinceCharming 28 M 90k 4h 4.8 gov 230
40 Playboy 40 M 10k 35min 2 nongov 700
700 Romeo 50 M 30k 30min 3 nongov null
90 RhetButtler 40 M 95k 4h 4.9 null null
80 Shrek 40 M 25k 1h 1 nongov 700
70 MrDarcy 35 M 97k 3h 4.6 null null
230 JackSparrow 61 M 30k 2h 3 gov null
59 BigBadWolf 31 M 70k 9h 3 null 200

Figure 1: The CompromisedAccounts (CA) relation

for the decision tree algorithm working on it. Pruning the
exponential space of negation queries boils down to solving
an heuristic based on the Knapsack problem, known to be
pseudo-polynomial.

The decision-tree algorithm automatically proposes a new
query to the data analyst. This system-generated query can
be interesting in the exploratory quest, since its results are
close to, yet different from the initial query’s results, includ-
ing new tuples that were not directly accessible before. We
propose some quality measures to evaluate the reformulated
query quality, especially with respect to its diversity in terms
of returned tuples.

We emphasize that:

• the user’s input is kept to a minimum, i.e., only a
SQL query is expected from her; she does not need to
manually label any tuples, or input actual tuple values,
an approach frequently used by alternative systems;

• even for users with a data mining background, the job
is now much easier, since they only use one system,
without any disrupting switches between various tools.

Paper contribution.
To sum up, we propose a simple but powerful approach

to deal with the above problem statement. Our main con-
tributions can be summarized as follows:

• For a class of SQL queries, we introduce the notions of
positive examples - from the answer set of a query - and
negative examples - from the answer set of a negation
query.

• Since the set of negation queries is exponential, we pro-
pose a pseudo-polynomial Knapsack-based heuristic to
identify a negation query whose size is close to the size
of the initial query answer.

• The initial query and the selected negation query al-
low building a learning set on which machine learning
techniques, derived from decision trees, are applied. A
new SQL query, called a transmuted query, is proposed
from the decision tree. Some criteria are proposed to
evaluate the quality of the transmuted query.

• We have implemented a prototype and conducted ex-
periments on real-life datasets and synthetic query work-
loads to assess the scalability and precision of our propo-
sition. A preliminary qualitative experiment conducted
with astrophysicists is also described.

Paper Organization.
The rest of this paper is organized as follows. Section

2 discusses queries and their negation queries. A heuristic
that prunes the exponential space of negation queries is fully
described. In section 3 we present our approach to data
exploration, based on automatic query rewriting. We discuss
transmuted queries and metrics that assess the quality of
the rewriting. Section 4 describes preliminary results on
an astrophysics database and the experimental setting for
a newly implemented prototype. Section 5 positions our
approach with respect to related work. Finally, section 6
concludes our paper.

2. SQL QUERIES AND THEIR NEGATION
The challenge we take on is to define the set of tuples that

do not verify a query Q, which reduces to defining a nega-
tion query Q of Q. We then explore the exponential space
of possible negation queries, and finally present a pseudo-
polynomial Knapsack-based heuristic to find the negation
query whose answer size is closest to the answer size of Q.

2.1 Preliminaries
We briefly introduce the notations used throughout this

paper (see for example [4]). Let d be a database defined
on a schema R and Q be a query on R. We denote by
ans(Q, d) the result of the evaluation of Q on d. The do-
mains of attributes are assumed to give either categorical
values or numerical values. We assume the database allows
null values. As relational languages, we consider both rela-
tional algebra for formal notations and SQL for the running
example.

2.2 Considered relational queries
For the sake of clarity, we consider a simple class of re-

lational queries, basically conjunctive queries extended with
some binary operators and a construct to check for NULL
values. Identifying a larger class of relational queries is left
for future work.

Queries in the considered class have the following form:

Q = πA1,...,An(σF (R1 ./ . . . ./ Rp))

where

• π is the projection, σ the selection and ./ the natural
join as usual

• F is a conjunction of m atomic formulas of the form
γ1 ∧ ... ∧ γm with m ≥ 1
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• Each atomic formula (or predicate) γi in F has the
form A bop B, A bop a, A IS NULL, where A,B are
from R, a is a real value or a categorical one and bop ∈
{=, <,>,≤,≥}

• An atomic formula γ can be negated; its negation is
denoted by ¬(γ).

We denote by attr(F ) the set of attributes that appear in
a selection formula F . The cardinal of a set E is denoted by
|E|.

Example 2 To comply with this class of queries, the initial
query from example 1 is rewritten as:

SELECT CA1.AccId, CA1.OwnerName, CA1.Sex
FROM CompromisedAccounts CA1, CompromisedAccounts CA2
WHERE CA1.Status = ’gov’ AND

CA1.DailyOnlineTime > CA2.DailyOnlineTime AND
CA1.BossAccId = CA2.AccId

For a query Q of the above form, we consider the“reservoir
of diversity” (diversity tank) to consist of those tuples for
which:

• there exists at least one predicate γi whose evaluation
is NULL; (1)

• all the predicates in Q that do not evaluate to NULL,
evaluate to TRUE (2).

Some tuples in this diversity tank might turn out to be
interesting for the user, even if they do not appear in the
initial query’s result. Condition (1) states that, for a tu-
ple to have an exploratory potential, some data the user is
interested in about the tuple needs to be unknown. Condi-
tion (2) asks that none of Q’s predicates evaluate to false.
Otherwise, the tuple does not satisfy Q and shouldn’t be
explored at all, since the user is interested in tuples meeting
Q’s condition.

Example 3 For our running example, tuples corresponding
to employees (CA1.OwnerName) DonJuanDeMarco, Rhet-
Buttler, MrDarcy, JackSparrow and BigBadWolf form the
diversity tank (and indeed, the reformulated query’s new
tuples, RhetButtler, MrDarcy and BigBadWolf, came from
this set).

Positive examples are denoted by E+(Q) and come from
the query’s evaluation result. When the result’s size is rea-
sonable, we can consider all its tuples as examples. Oth-
erwise, we can use stratified random sampling for instance
to extract a subset of tuples as positive examples. We keep
all the possible attributes, so later on in the learning phase
we have as many as possible options to learn on. There-
fore, we eliminate the projection on A1, ..., An and obtain:
E+(Q) ⊆ σF (R1 ./ . . . ./ Rp).

Example 4 The positive tuples of query Q are those cor-
responding to employees Casanova and PrinceCharming.

2.3 The negation of queries
Let Q be a query. Its answer set is obtained by simply

evaluating Q on the database. We pose the problem of defin-
ing Q, a negation query of Q, i.e., a query whose evaluation
produces tuples we do not want to see when evaluating Q.

Intuitively, Q should not touch the same tuples of Q, i.e., the
intersection of their respective answer sets should be empty.

Since we aim to uncover dependencies between attributes
in the query rewriting process, we keep all the possible at-
tributes that might allow us to distinguish between tuples in
the learning step. As for positive examples, we eliminate the
projection from the negation queries’ definitions hereafter.

One way of computing a negation query for Q is to con-
sider its entire tuple space R1 ./ . . . ./ Rp and eliminate
those tuples that belong to Q’s answer. This is in fact the
complement of Q. We consider it to be Q’s complete nega-
tion and denote it by Qc:

Qc = (R1 ./ . . . ./ Rp) \ (σγ1∧...∧γm(R1 ./ . . . ./ Rp)) (1)

There is no guarantee on the answer size of Qc; it may
be quite different than Q’s size. We thus set out to explore
the space of alternative negation queries for Q. We consider
negation queries whose selection conditions are generated
from Q’s selection formula. In this case, we consider that a
negation query Q needs to negate at least one of Q’s predi-
cates.

We exclude foreign key join predicates from the set of
predicates that can be negated. They help narrow down
the set of tuples that can be used as examples and counter-
examples.

To simplify notations, we describe Q’s selection formula
F as Fk ∧ Fk, where Fk is the conjunction of all the foreign
key predicates in F , if any, and Fk the conjunction of all the
other predicates, i.e., the negatable predicates.

Property 1 Let Q be a query and n = |Fk|, the number

of negatable predicates. The number of negation queries Q
with respect to Q is exponential in n.

Proof. For each negatable predicate γ in Q, there are
three possibilities: (1) keep it in Q as it is, (2) take its
negation ¬(γ) or (3) do not consider it at all. Then there are
3n possible negation queries, but 2n out of them are invalid,
since they do not contain any negated predicate from Fk.
We get 3n − 2n, which is in O(2n).

We denote the set of the valid negation queries by
{
Q
}

.

All the negated γi come from Fk. We denote by attr(Fk)
all the attributes from Fk that appear in predicates that are

negated in Q.
Similarly to positive examples, the negative examples are

denoted by E−(Q) and verify the following:
E−(Q) ⊆ ans(Q, d).

Example 5 Let us denote the three predicates inQCA1.St-
atus = ’gov’ by γ1, CA1.DailyOnlineTime > CA2.Daily-
OnlineTime by γ2 and CA1.BossAccId = CA2.AccId by
γ3. In our approach there are five possible negations of Q,
with selection formulas: ¬(γ1)∧γ3, ¬(γ2)∧γ3, ¬(γ1)∧γ2∧γ3,
γ1∧¬(γ2)∧γ3 and ¬(γ1)∧¬(γ2)∧γ3. If we choose the third
one, the negation query Q is:

SELECT *
FROM CompromisedAccounts CA1, CompromisedAccounts CA2
WHERE NOT (CA1.Status = ’gov’) AND
CA1.DailyOnlineTime > CA2.DailyOnlineTime AND
CA1.BossAccId = CA2.AccId
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Accounts Playboy and Shrek are thus considered to be
negative examples. Both Q and Q answer sizes are equal to
two.

2.4 Pruning the space of negation queries
In this subsection we solve the problem of finding the clos-

est negation query, in terms of its answer size, for a given
query, by proposing an heuristic based on the subset-sum
problem (related to the knapsack problem). The subset-
sum problem is known to be pseudo-polynomial (weakly
NP-complete) [7]. The additional constraints we add do not
affect the complexity of the algorithm.

Notation.
To further simplify notations, when there’s no confusion

between a query Q and its answer, we denote the latter by
Q instead of ans(Q, d). Z denotes the entire tuple space
R1 ./ . . . ./ Rp. Similarly, for a predicate γi ∈ Q, we refer
to the query σγi(Z) simply by γi. Since we only touch the
selection formula, we ignore Q’s projection attributes. We
denote the negation of a predicate γ by γ.

Assumption.
DataBase Management Systems (DBMS) maintain many

statistics for cost-based optimization of query processing.
Moreover, to estimate the size of query results and make a
decision for choosing a physical plan, data are often assumed
to be uniformly distributed. In the sequel, we borrow the
same assumptions, i.e., data is uniformly distributed in Z
and for a given query Q, an estimate of the size of its answer
|Q| is supposed to be known. We denote the probability
that a tuple in Z verifies γi by P (γi). The cardinality of γi
is |γi| ' P (γi) ∗ |Z|. The probability that a tuple satisfies
both γi and γj is P (γi∧γj) = P (γi)∗P (γj). The cardinality
of the set of rows satisfying both predicates is estimated by
|γi ∧ γj | ' P (γi) ∗ P (γj) ∗ |Z|. The probability of a negated
predicate γi is P (γi) = 1− P (γi), and P (Q ∪Qc) = 1.

We can now give a more formal description of our problem
of finding the most balanced learning set corresponding to
a query Q.

Balanced negation query.
Let us consider a query Q with n negatable predicates in

Fk and l foreign key join predicates in Fk. The problem
statement is the following:

Given such a query Q, find a negation query Q
of Q such that:

(1) its answer size |Q| is closest to |Q|, i.e., abs(|Q|−
|Q|) is minimized,

(2) Q negates at least one predicate from Fk,

(3) Q can contain any number of the rest of the
predicates from Fk, negated or not, and

(4) Q contains all the predicates from Fk.

The possible solutions to this problem have the form Q =∧n+l
i=1 ai, where ai is a predicate. Let us consider the predi-

cates for Q as a (n+l)-tuple denoted by s. The components
of s are:

(1) the predicates from Fk,

(2) any predicate from Fk, or its negation, or the“identity”

element Q∪Qc, i.e., the predicate is not considered at
all in Q.

s can be represented as: s = (a1, . . . , an+l) = (γk1 , . . . , γkl ,

e1, . . . , en) with γki ∈ Fk and ej ∈
{
γkj , γkj , Q ∪Qc

}
, for

all γkj ∈ Fk.

Therefore every negation query Q can be represented as
such a tuple s and its cardinality is estimated by |Q| = |s| =( n+l∏
i=1

P (ai)

)
∗ |Z| =

( n+l∏
i=1

|ai|
|Z|

)
∗ |Z|.

Our problem now is in fact a particular case of the subset
product problem [19, 26], known to be NP-hard [24]:

Given a set E = {e1, . . . , en} of integer values
and a number m, does there exist a subset F of

E, such that
∏
ei∈F

ei = m?

For a given query Q, we need to choose all the predicates
in Fk and one of three possible versions for the predicates in
Fk, such that the product of their probabilities multiplied
by the cardinal of the tuple space Z is as close as possible
to the size of Q, the target number.

Applying logarithms on this product, we pass from the
subset-product problem to a kind of subset-sum problem on
real numbers (the pseudo-polynomial algorithm is working
on integers). ∑

ei∈F

log(ei) = log(m)

We propose a heuristic by introducing a tolerable approxi-
mation in the precedent relation:∑

ei∈F

blog(ei) ∗ sfc = blog(m) ∗ sfc

where the scale factor sf ≥ 1 is used to reduce the approx-
imation due to rounding logarithms.

Our problem can now be expressed as a particular case of
the subset-sum problem, also known to be NP-complete:

Given a total weight |Q| and a set of n + l ai
objects, l of them with fixed weights |γki |, i =
1, . . . , l, and n of them with three possible weights

|ej | ∈
{
|γkj |, |γkj |, 1

}
, j = 1, . . . , n, choose all

the γki objects and a version for each of the ej
objects, such that: (1) the sum of the combined
weights of the chosen objects is as close as pos-
sible to |Q| and (2) at least one of the ej objects
is negated.

If s is the solution tuple, its combined weight is its car-
dinality as defined above, and condition (1) translates to
minimizing abs(|Q| − |s|).

The heuristic described in algorithm 1 solves this prob-
lem. All the objects in the fixed-weights vector fk are in the
output; the target weight w is updated accordingly (lines
2-3). Function weight calculates the weight of s, i.e., the
number of rows estimated to satisfy all the predicates cur-
rently in s. From here on out, we only work with the fk
vector of negatable objects / predicates. For each such pred-
icate (weight: lWs[i].pW ), BalancedNegation assumes
its negation (weight: lWs[i].nW ) is part of the solution. It
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finds an optimal solution for the rest of the predicates and a
correspondingly updated weight (lines 5 - 15). This solution
could contain only positive objects, but the current predi-
cate is always added with its negated form, so restriction
(2) in the problem statement is met. Out of the n possible
solutions, the one that gets closer to the target weight is
chosen. We set the scale factor sf parameter value to 1000
(see experiment 2 in section 4.1).

Algorithm 1: Knapsack-based heuristic to find the bal-
anced negation of a query

1 procedure BalancedNegation (|Z|, |Q|, fk, fk, sf) ;
Input : the size of the tuple space |Z|; the target

weight |Q|; l-vector of fixed weights fk;
n-vector of negatable weights fk; scale factor
sf

Output: l + n-vector of chosen objects s; s’s weight sw
2 s := fk; sw := weight(s) ;

3 w := |Q|
sw

;

4 mW := 0 ;
5 for i← 1 to n do
6 lWs := fk ;
7 rW := lWs[i].pW ;
8 lWs.Remove(i) ;

9 tW := w∗|Z|
|Z|−rW ;

10 tW := −
⌊
ln( tW|Z| ) ∗ sf

⌋
;

11 for j ← 1 to n− 1 do

12 lWs[j].pW := −
⌊
ln( lWs[j].pW

|Z| ) ∗ sf
⌋

;

13 lWs[j].nW := −
⌊
ln( |Z|−lWs[j].pW

|Z| ) ∗ sf
⌋

;

14 end
15 SubsetSum(lWs, tW, out oObj, out oW ) ;

16 oW :=

⌊
e

(−oW )
sf ∗ |Z|

⌋
;

17 mWL :=
⌊
|Z|−rW
|Z| ∗ oW

⌋
;

18 if mWL > mW then
19 mW := mWL ;
20 CompleteSol(i, s, sw, oObj,mWL) ;

21 end

22 end

In lines 10-14 BalancedNegation transforms the input
in order to apply a classic Knapsack algorithm on it. For
each predicate, the algorithm computes its probability and
then logarithms it. Since probabilities are subunitary, all the
logarithms are negative and quite small, so they are multi-
plied by the scale factor sf , and the opposite of their integer
part is retained. The same treatment is applied to the target
weight. SubsetSum in line 15 computes an optimal solution
in vector oObj with the corresponding sum of the solution
subset in oW ≤ tW . The only difference from the classic al-
gorithm is that, if object lWs[i]’s positive version lWs[i].pW
is chosen, then its negation can not be part of the solution
and vice-versa.

The output weight oW is transformed back in line 16.
Lines 17-21 choose the best out of the n possible solutions
adding the temporarily removed object at position i with its
negated version (CompleteSol).

3. AUTOMATIC QUERY REWRITING
We now describe the machine learning stage that uncovers

relevant patterns in the data. Starting from a user’s initial
query Q, the system automatically generates its negation Q.
It then assembles a learning set from E+(Q) and E−(Q),
which is fed into an implementation of the C4.5 decision
tree learning algorithm. The output decision tree’s patterns
are forthrightly translated into a relational selection condi-
tion, yielding a new SQL query, the transmuted query of
Q. Different criteria evaluating the quality of our machine
learning-based rewriting approach are defined.

3.1 Learning set construction
Once we have the positive and the negative example sets,

we can build a learning set. As stated before, we do not
aim at producing a reformulated query that provides the
exact, precise answer of the initial query. Instead, we want
to help the analyst formulate a query that better answers
his expectations. These guesswork stages do not require
the consideration of all the data if its size is very large. A
detailed study of the guarantees we can provide for learning
is outside the scope of this paper.

Definition 1 Given a query Q and its negation Q, a learn-
ing set is defined on the schema of (R1 ./ . . . ./ Rp) \
attr(Fk) ∪ Class. Its tuples come from E+(Q) and E−(Q),
with the addition of the +, and the − value, respectively,
for the new Class attribute.

We exclude attributes in attr(Fk) from the learning set’s
schema to avoid learning (part of) the selection condition
expressed in the initial query.

Example 6 Going further with the running example, we
obtain the learning set described in Figure 2. The Status

attribute, i.e., the only attribute in attr(Fk), has been sup-
pressed and the Class attribute has been added with the
corresponding + and − values.

Decision tree-based machine learning methods construct
a tree that determines a class variable as a function of in-
put variable values. A path from its root to a leaf forms a
conjunction of conditions on the input variables. The class
of the data that fall through this path is given by the la-
bel of its leaf. The supervised model construction, i.e., tree
structure and conditions placed on internal nodes, based on
a learning set, depends on the used algorithms. We chose
the C4.5 algorithm [29]. It allows us to predict the values
of the Class attribute depending on a set of attributes from
the learning set.

3.2 Building the selection condition from a de-
cision tree

Starting from a decision tree, it’s relatively straightfor-
ward to build a relational selection condition by traversing
the tree in depth. A branch in a tree is a direct path from its
root to a leaf. A branch in the decision tree is a conjunction
of boolean conditions on a tuple’s attributes values. The
class of the tuple is the label on the leaf of the branch. The
set of branches leading to the class of positive tuples “+” can
thus be seen as a disjunction of conjunctive clauses obtained
from the branches. This disjunction can hence be used like
a new relational selection condition.
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CA AccId Owner
Name

Age Sex Money
Spent

Daily
Online
Time

JobRating BossAccId Class

100 Casanova 50 M 100k 5h 4.5 350 +
350 PrinceCharming 28 M 90k 4h 4.8 230 +
40 Playboy 40 M 10k 35min 2 700 -
80 Shrek 40 M 25k 1h 1 700 -

Figure 2: Learning set built from E+(Q) and E−(Q)

Definition 2 Let lSet be a learning set obtained from a
query Q. Let decisionTree be the decision tree learned from
lSet to predict the values of the Class attribute. Let b be a
positive branch of decisionTree, i.e., from the root to a leaf
labeled +. We use the following notation for the disjunction
of conjunctions leading to positively labeled leaves:

Fnew =
∨

b∈decisionTree

∧
e∈b

e

where e has the form Ai bopv, Ai is an attribute in lSet, bop
is a usual binary operator, and v is a numerical or categorical
value.

Definition 3 Let Q be a query. The rewritten query ob-
tained from Q, denoted by tQ, is defined as follows:

tQ = πA1,...,An(σFnew (R1 ./ . . . ./ Rp)).

We call it the transmuted query thereafter.

The transmuted query has a completely new selection con-
dition that can include attributes not identified as useful in
the initial query. Moreover, tQ is obviously simpler and
quicker if the initial query is nested with, for example, the
EXISTS or bop ANY operators. The rewriting is mechanically
simplified by a single selection (a single data scan only).

Example 7 In the running example, a decision tree algo-
rithm finds the condition (MoneySpent >= 90000 AND Jo-

bRating >= 4.5) OR (MoneySpent < 90000 AND DailyOn-

lineTime >= 9) . The corresponding rewritten query tQ is:

SELECT AccId, OwnerName, Sex
FROM CompromisedAccounts
WHERE (MoneySpent >= 90000 AND JobRating >= 4.5) OR
(MoneySpent < 90000 AND DailyOnlineTime >= 9)

3.3 Quality criteria
It is difficult to make guarantees about the precise rela-

tionships between the initial query Q and its rewriting tQ,
since the latter depends on the patterns discovered in the
learning phase. We can however describe the sets of tu-
ples involved in the rewriting process and give their optimal
properties:

• Z: the entire tuple space R1 ./ . . . ./ Rp

• tuples fulfilling Fk and tuples fulfilling Fk

• ans(Q, d): the set of tuples from the initial query Q
on d, i.e., tuples that meet both Fk and Fk

• ans(Q, d): the set of tuples from the negation Q of
Q on d, i.e., tuples that meet Fk, but do not meet Fk

• E+(Q): the set of positive tuples

• E−(Q): the set of negative tuples

• ans(tQ, d): the set of tuples from the new query tQ
on d

We now explicitly define a number of criteria and metrics
that assess the quality of tQ, the query obtained from Q.

3.3.1 Representativeness of the initial data
Our objective is to obtain a query tQ whose evaluation is

representative of Q’s results. Since the supervised learning
process uses examples and counter-examples, we can expect
to obtain patterns that help meet this criterion. We con-
cretely measure it with the following formulas:

|tQ ∩Q|
|Q| =

optimal
1 (2)

|tQ ∩ πA1,...,An(Q)|
|πA1,...,An(Q)|

=
optimal

0 (3)

Equation 2 justifies the direct representativeness of the
data obtained from tQ with respect to the data obtained
from Q: optimally, we should find in tQ all the tuples of
Q. In a similar manner, equation 3 evaluates the proportion
of tuples from Q found in tQ, which should be as small as
possible.

Example 8 Criteria 2 and 3 are optimal for the transmuted
query in example 7. Indeed, this query retrieves both pos-
itive tuples Casanova and PrinceCharming, and does not
produce any of the negative tuples Playboy or Shrek.

3.3.2 Diversity with respect to the initial data
The objective of the rewriting process is to produce a

query that is similar to an initial query specified by the user
(measurable by the previous criterion), but that also answers
the user’s exploratory expectation, and thus, presents new
tuples to the user. Therefore, it is important that this set of
new tuples is not only not empty (equation 4), but also of a
suitable size: not too small with respect to the data initially
obtained by the user (equation 5), nor comparable to the
size of the entire set of tuples (equation 6). If the last con-
dition is not met, the user will most likely have difficulties
interpreting the result.

tQ ∩ (πA1,...,An(Z)− (Q ∪ πA1,...,An(Q))) 6= ∅ (4)

|tQ ∩ (πA1,...,An(Z)− (Q ∪ πA1,...,An(Q)))| 6� |Q| (5)

|tQ ∩ (πA1,...,An(Z)− (Q ∪ πA1,...,An(Q)))| � |πX(Z)| (6)
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Example 9 The rewritten query tQ from example 7 pro-
duces three new tuples RhetButtler, MrDarcy and BigBad-
Wolf, so criterion 4 is fulfilled. These three tuples are nu-
merically comparable with respect to the 2 initial tuples (5),
and are less numerous than the ten possible tuples (6).

We give the compact representation of the query rewriting
approach in algorithm 2.

Algorithm 2: query rewriting

1 procedure QueryRewriting (Q, d) ;
Input : a query Q, database d
Output: the transmuted query tQ

2 let Q = πA1,...,An(σFk∧Fk
(R1 ./ . . . ./ Rp)) ;

3 SplitInTrainingAndTestSets(d, out trSet, out teSet) ;
4 E+(Q) := EvaluateQuery(Q, trSet);

5 Q := BalancedNegation(|trSet|, |Q|, Fk, Fk, 1000) ;

6 E−(Q) := EvaluateQuery(Q, trSet) ;

7 lSet := BuildLearningSet(E+(Q), E−(Q), attr(Fk)) ;
8 decisionTree := FindC45(lSet) ;
9 Fnew :=

∨
b∈decisionTree+

∧
e∈b e ;

10 return tQ = πA1,...,An(σFnew (R1 ./ . . . ./ Rp)) ;

4. IMPLEMENTATION AND EXPERIMEN-
TAL RESULTS

We have implemented the proposition made in this paper
in C# and SQL Server, with the C45Learning classifier in
the Accord.NET library [1], which implements the C4.5 algo-
rithm [29]. We have conducted experiments first to evaluate
the accuracy of the generated negation query with respect
to an optimal negation query and second, to study the effi-
ciency of the generation of negation queries. Based on pre-
vious results [13], we also have briefly described a validation
of SQL data exploration with Astrophysicists on a real-life
example.

4.1 Scalability and precision
Our proposition makes use of several existing pieces of

work (e.g. decision tree, query evaluation) which are not
detailed here. We focus on the most difficult part of our
proposition, i.e., the heuristic to identify a negation query
whose result size is similar to the size of the answer set of the
initial query. Quality criteria detailed in section 3.3 require
a cohort of users to assess the results and will be addressed
in future work.

For a given query, our Knapsack-based heuristic is evalu-
ated with respect to its accuracy, how good is the result with
respect to the best possible negation query and its efficiency.

Both accuracy and efficiency have been studied with re-
spect to different query workloads, a varying number of pred-
icates in the initial SQL query and the values of the sf pa-
rameter.

Experimental setup.
In our experiments we used two datasets:

• Iris: a small well-known dataset describing the prop-
erties of some species of iris flowers. The dataset has
150 tuples only, four numerical attributes and one cat-
egorical attribute. It was chosen to easily compute

(and understand) all the possible negation queries for
a given query.

• Exodata: a scientific dataset containing 97717 tuples
and 62 attributes (see next section for more details).

We generated a query workload as follows: for a fixed
number of predicates in a query (from 1 to 200), a pred-
icate of the form A bop value is generated by randomly
choosing an attribute A, the operator bop from a list of pos-
sibilities ({=} for categorical attributes, {<,<=, >,>=} for
numerical attributes), and the corresponding value value ∈
Dom(A) for attribute A.

We assume to have statistics available for each attribute
in the database, and hence the size of the database does not
interfere with the performance of the algorithm.

To assess the distance between the negation proposed by
our heuristic and the ”best negation” for a query, we pro-
ceeded as follows: for a given query Q, we computed all its
negations Q; it has been indeed possible since the number
of predicates remained small on our workloads.

We denote by QT the negation query closest in size to Q
and by QK our approximated negation of Q.

The distance between QK and QT is defined by

abs(|QK | − |QT |)/|Z|

where |Z| is the size of all possible tuples. The closer the
distance is to zero, the better the heuristic (and conversely,
the closer to one, the worse the heuristic).

Experiment 1.
To evaluate the impact of the number of predicates on the

accuracy and computation time of the approximated nega-
tion, we fixed the scale factor sf= 1000 and we generated a
query workload of 10 random queries with 1 to 9 predicates.

A query type is defined by its number of predicates. For
each query type, we processed 10 queries and we displayed
several values: the minimum distance, the first quartile, the
third quartile and the maximum distance via a box plot.
The average values for the distance are also given.

Figure 3 (top-left) shows the distance between the pro-
posed heuristic and the closest negation (accuracy). For
three predicates, we have a very bad result for one gener-
ated query (distance around 0.84) but, on average, the errors
are around 0.2, which remains acceptable. The results show
that the more predicates a query has, the better the heuris-
tic is, very close to the best solution. With more than 6
predicates, the heuristic turns out to be very precise. Ac-
curacy for both datasets is always excellent whenever the
number of predicates exceeds six.

Figure 3 (top-right) shows good performances for the pro-
posed heuristic on both datasets, always less than 0.2s.

Experiment 2.
The second test evaluates the impact of the scale factor

sf on the accuracy of the approximated negation. The
scale factor sf varies between 1 and 10000. As in the previ-
ous experiment, we used a query workload with 10 random
queries for each type of test defined by the number of pred-
icates (between 5 and 20) and different values of sf .

In our tests on Exodata, we observe that the accuracy
is affected by different values of sf. For the same number
of predicates, as the value of sf is increasing, the accuracy
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(Iris - Accuracy) (Iris - Performance)

(Exodata - Accuracy) (Exodata - Performance)

Figure 3: Impact of the number of predicates on the accuracy and computation time of the approximated
negation w.r.t. Iris dataset (top) and Exodata dataset (bottom).

is also improving. Whenever the value of sf exceeds 1000,
the heuristic behaves very well (distance gets closer to 0, see
figure 4-left).

Experiment 3.
As expected, the scale factor sf has an influence on the

processing time. As seen in experiment 2, a greater value
for sf allows a better approximation for the negation in
our heuristic, but the search space increases. For a large
number of predicates we execute the same tests only on
the Exodata schema in order to estimate the overhead in-
troduced by our heuristic in computing the negation for a
given query. We observe that the processing time is increas-
ing with the number of predicates in the original query and
the value of sf (figure 4-right). However the processing time
remains around 1 second for a query with 200 predicates and
sf = 10000.

4.2 Validation with astrophysicists
We describe the validation conducted on an astrophysics

database derived from the European project CoRoT3 (COn-

3http://smsc.cnes.fr/COROT/

vection, ROtation and planetary Transits), which studies
star seismology and searches for extra-solar planets. CoRoT

has observed for years the stars in our galaxy in order to
study them and to discover planets beyond our solar sys-
tem. A sample of the EXODATA4 database was extracted into
one table (EXOPL) with 97717 tuples and 62 attributes. A
tuple represented a star and attributes included the posi-
tion of the star, its magnitude at different wavelengths, the
degree of its activity, etc. A special attribute Object de-
scribed the presence of planets around the star - value p,
the absence of planets - value E, or the lack of knowledge
concerning possible revolving planets - NULL.

Most of the stars had not been classified, having the NULL

value for the Object attribute. The objective was to obtain
a set of stars that potentially harbor planets. We wanted
to identify some conditions that allow to infer the presence
of planets for stars that have not yet been studied, starting
from the stars for which the presence or absence of planets
has been confirmed. With astrophysicists, the initial query
was thus very simple to identify:

4http://cesam.lam.fr/exodat
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(Queries on Exodata) (Queries on Exodata schema)

Figure 4: Impact of the scale factor sf on the accuracy of the approximated negation w.r.t. Exodata dataset
(left) and the computation time overhead needed to find this negation on Exodata schema (right).

SELECT DEC, FLAG, MAG_V, MAG_B, MAG_U
FROM EXOPL
WHERE OBJECT = ’p’

The negation query was straightforward to obtain (with-
out the machinery introduced in this paper), simply by chang-
ing the condition to OBJECT = ’E’ (see [13] for a detailed dis-
cussion). There were 50 positive examples (OBJECT = ’p’)
and 175 counter-examples (OBJECT = ’E’) among the 97717
tuples in the database. Discussions with astrophysicists
emphasized different magnitude and amplitude attributes
as pertinent attributes to learn on. They hold data con-
cerning observed light under a variety of wavelength fil-
ters. Starting from this expert but easily exploitable in-
formation, we tried out, in a couple of minutes, several sets
of attributes on which to learn. The expert selected at-
tributes MAG_B, AMP11, AMP12, AMP12, AMP13 and AMP14.
The learning phase was then launched and generated a de-
cision tree from which the following new condition was ex-
tracted: MAG_B > 13.425 AND AMP11 <= 0.001717, easily
leading to the following transmuted query:

SELECT *
FROM EXOPL
WHERE MAG_B > 13.425 AND AMP11 <= 0.001717

It is worth noting that such an SQL query had very lit-
tle chance of germinating in the initial stage of data explo-
ration. This new query identified 22% of the initial positive
examples, 0% of the negative examples and 1337 new tuples.
These new tuples, representing stars around which the pres-
ence of revolving planets has not been studied, could thus
be priority study targets due to their proximity, in the data
exploration space, to a subset of stars around which planet
presence has been confirmed.

The new SQL query turned out to be itself interesting:
it showed the detectability limits of current instruments:
for magnitudes greater than 13.425, i.e., for dimmer stars,
it’s mandatory to have star variability amplitudes less than
0.001717, i.e., the light emitted by the star must have a small
variability.

Astrophysics scientists have found our approach satisfac-
tory and easy to use, all of them having basic knowledge

in SQL. The proposed transmuted query was a contribu-
tion per se. The use of machine learning techniques behind
the scenes for proposing new SQL queries was completely
transparent for them and very much appreciated. Clearly,
other validations with domain experts should be conducted
to assess the interest of our approach for data exploration
in SQL, but these first results were very encouraging.

5. RELATED WORK
Data exploration is a very active research field in databases,

data mining and machine learning. This section is organized
according to several themes, namely query exploration, rec-
ommendation-based exploration, query by output and why-
not queries.

Query exploration [25] shows that the time spent to as-
semble an SQL query is significantly higher than the query’s
execution time, even for SQL experts and decent-sized data.
This is even more true in discovery-oriented applications,
where the user does not know very well neither the database
(schema / content), nor exactly what she is looking for (the
right / exact queries to pose). [25] proposes a set of prin-
ciples for a guided interaction paradigm, using the data to
guide the query construction process. The user successively
refines the query considering the results obtained at each
iteration in order to reach a satisfactory solution.

[20] theorizes a new class of exploration-driven applica-
tions, characterized by exploration sessions with several in-
terlinked queries, where the result of a query determines
the formulation of the next query. [10] also talks about
interactive data exploration applications characterized by
human-in-the-loop analysis and exploration. It advocates
the need for systems that provide session-oriented usage pat-
terns, with sequences of related queries, where each query is
the starting gate for the next one.

Query morphing [21] proposes a technique in which the
user is presented with extra data via small changes of the
initial query. By contrast, our solution exploits the examples
and counter-examples sets obtained from the user’s initial
query, to obtain a new query via rules learned from these
sets. We believe it is most of the time quite difficult to
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define small modifications for a given SQL query.
Some database exploration approaches are based on man-

ual labeling of examples and counter-examples [34, 8, 30,
14, 23], on which machine learning approaches are eventu-
ally used to generate queries. Manual labeling has two main
drawbacks: it is quickly tiring for the user, reducing system
interactivity, simplicity and attractiveness; and it is far from
trivial when the user does not know the data very well (fre-
quently the case in an exploration task) or if the labeling cri-
teria are complex (again, frequently the case, otherwise the
user could probably obtain the data with a simple query).

Recommendation-based exploration [17] describes a
template-based framework that recommends SQL queries as
the user is typing in keywords. A top-k algorithm suggests
queries derived from the queryable templates identified as
relevant to the keywords provided by the user, based on a
probabilistic model. The QueRIE framework [16] uses Web
recommendation mechanisms to assist the user in formulat-
ing new queries. A query expressed by a user is compared
with similar queries in the system log and a set of recom-
mendations are proposed based on the behaviour of other
users in a similar context. [6, 5] help the user formulate
quantified, exploratory SQL queries. SnipSuggest [22] pro-
vides users with context-aware SQL query suggestions based
on a log of historical queries. [15] assists the user in the ex-
ploratory task by suggesting additional YMAL items, not
part of, but highly correlated with the results of an origi-
nal query. It exploits offline computed statistics to identify
subtuples appearing frequently in the original result, then
builds exploratory queries, guiding the user to different di-
rections in the database, not included in the original query.
While we also make use of common statistics maintained by
the optimizer, we incur no overhead by computing any other
statistics. The entire process of aiding the user formulating
her queries unfolds online.

Query by output solutions find a query that produces
the data specified by the user, no more, no less. [31] finds an
alternative path in the schema whose corresponding query
produces the same data; an initial query may or may not
be specified. The reformulated query in our approach does
overlap the initial one to some extent, but is not equivalent
to it. Similarly, [33] finds a join query, given its output,
using arbitrary graphs. By contrast, [30] searches for a min-
imal valid project-join query starting from a few example
tuples specified by the user. The generated query is ex-
pected to produce extra tuples, just like in our approach.
The approach is however based on the user manually in-
troducing example tuples. Likewise, [28] discovers queries
whose answers include user-specified examples, for sample-
driven schema mapping. [27] follows a similar approach to
[30], but generates and ranks multiple queries that can par-
tially contain the input tuples supplied by the user.

Why-not queries A database exploration approach tries
to explain why a query on a database does not return desired
tuples in the response, initially proposed in [11]. The frame-
work proposed in [11] identifies the components from the
guery evaluation plan responsible for filtering desired data
items. This approach has been studied for different types
of queries, as for reverse top-k queries [18]. As an alterna-
tive idea, the data provenance may be useful in our context
by explaining why some tuples are included in the proposed
exploration [9].

6. CONCLUSION AND DISCUSSION
In this paper we presented an approach that shows to be

very promising in tackling one of the Big Data challenges:
formulate SQL queries that correspond to what the analyst
searches for and that efficiently execute on data of huge size.
Starting from a query issued by a non-expert user, we ex-
plore the space of corresponding negation queries and we
choose the one whose result size is as close as possible to the
initial query’s result size using a Knapsack-based heuristic.
We then obtain a balanced set of examples and counter-
examples that can feed a decision tree learning process. The
learned model allows to directly rewrite the initial query us-
ing the obtained rules. This new transmuted query returns
results that are similar to the initial query’s ones, while also
producing new tuples, which again are similar to the ones
returned by the initial query. Such a form of diversity would
have been practically impossible to achieve without the help
of machine learning to formulate the query.

The user can also assess the global quality for the rewriting
of her query, using diverse criteria that compare for instance
the percentage of the new data obtained, or the number of
tuples from the initial query that are retrieved. She can thus
quickly evaluate the direction of her exploration, without
having to first interpret the data she obtains for each query.

We have implemented and conducted several experiments
to evaluate the main technical contribution of the paper,
i.e., the Knapsack-based heuristic. Results are quite promis-
ing both in term of accuracy and performance. Preliminary
validation results obtained on an astrophysics dataset with
a simpler version of our current prototype [13], that auto-
matically obtains a negation query from an initial so-called
discriminatory query, are promising and open the way for
an extensive experimental study.

The transparent integration of learning techniques with
SQL is a significant change in scientists’ way of working.
The user just explores the data by posing questions in the
golden SQL query language, both easy to use and intuitive.
The user could therefore focus on the science part instead of
the computational one. She does not have to switch between
various systems and to re-load data several times, rending
the exploration process ”seamless”.

A large number of possibilities has been opened up by this
approach. We can easily imagine its extension to other types
of SQL queries or to evaluate the scalability on very large
datasets. We can also extend this work to pattern mining
based on declarative languages like RQL [?], or, more gen-
erally, to all pattern types. For a given hypothesis (or pat-
tern or query), the notion of examples and counter-examples
seems to be relatively universal. This type of approach could
thus play an interesting role in Big Data exploration in the
years to come.
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ABSTRACT
With the maturity and popularity of Internet of Things
(IoT), the notion of Social Internet of Things (SIoT) has
been proposed to support novel applications and network-
ing services for the IoT in more effective and efficient ways.
Although there are many works for SIoT, they focus on de-
signing the architectures and protocols for SIoT under the
specific schemes. How to efficiently utilize the collabora-
tion capability of SIoT to complete complex tasks remains
unexplored. Therefore, we propose a new query, namely
Task-Optimized Group Search (TOGS), to address this need.
TOGS aims to extract the target SIoT group such that the
target SIoT group will be able to easily communicate with
each other while maximizing the accuracy of performing the
given tasks. We propose two problem formulations, namely
Bounded Communication-loss TOSS (BC-TOSS) and Ro-
bustness Guaranteed TOSS (RG-TOSS), for different com-
munication scenarios, and prove that they are both NP-Hard
and inapproximable. We propose a polynomial-time algo-
rithm with performance bound for BC-TOSS, and an effi-
cient polynomial-time algorithm to obtain good solutions for
RG-TOSS. The experimental results on real datasets indi-
cate that our proposed algorithms outperform other base-
lines.

1. INTRODUCTION
With the maturity and popularity of Internet of Things

(IoT), it has been widely recognized that the Internet of
Things (IoT) is the next paradigm shift. The future Inter-
net will embody a tremendous number of objects that pro-
vide valuable information and controllable actions. More-
over, with the capability of interactions among each other,
objects can collaborate with other counterparts toward pro-
viding services to the end users, e.g., environmental moni-
toring, surveillance, smart home, health care, and product
management.

Recently, since it has been shown that a large number of
users tied in a social network can provide far more accu-

c©2017, Copyright is with the authors. Published in Proc. 20th Inter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
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rate answers to complex problems than a single user [18],
a recent line of studies investigates the opportunities of in-
tegrating social networking concepts into solving complex
problems. Several schemes have been proposed to exploit
social networks for question answering via crowdsourcing [1],
P2P routing [3], or web security [22]. Meanwhile, by incor-
porating the concept of social network into IoT, the idea of
Social Internet of Things (SIoT) has been proposed to sup-
port novel applications and networking services for the IoT
in more effective and efficient ways.

However, current research focuses on designing the archi-
tectures and protocols for SIoT under the specific schemes.
For example, Kosmatos et al. integrated the RFID and
smart object-based infrastructures towards building blocks
of SIoT [8]. Nitti et al. proposed two trustworthiness man-
agement models to suggest strategies of establishing trust-
worthiness among nodes to isolate malicious nodes [12]. More-
over, to build reliable communication for SIoT, Chen et
al. proposed an adaptive trust management protocol which
adaptively chooses the best trust parameter settings w.r.t.
the changing IoT social conditions to assess the trust cor-
rectly and maximize the application performance [2]. To the
best of our knowledge, how to efficiently utilize the collab-
oration capability of SIoT to complete the complex tasks
remains unexplored.

To complete the complex tasks under SIoT environments,
one basic solution is to specify all the required functions
of the complex task and perform the required functions on
the corresponding SIoT. However, since the number of SIoT
objects with the same required functions is tremendous, it is
extremely redundant and inefficient to perform the functions
on all the compliant SIoT objects. Meanwhile, users also pay
the usage cost based on the amount of utilization (pay as you
go) in the forms of rental fee or the cost of requested data.
Therefore, we adopt the semantic of top-k query to search
the optimal group of SIoT objects with the largest success
possibility for completing the complex task. Moreover, due
to the network reliability of SIoT, it is desirable that each
component within the selected group is tightly-coupled or
at least not far from each other.

Take Figure 1 as an example. Since the number of catas-
trophic wildfires has been steadily rising, the government
plans to build a wildfire alarm system from the existing SIoT
objects. The wildfire alarm prediction task is correlated to
accumulative rainfall, temperature, wind speed, and accu-
mulative snowfall according to previous study [6], and each
SIoT object can report at least one measurement within an
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Figure 1: Illustrative example for wildfire detection

accuracy threshold.1 Therefore, the alarm system issues a
top-k query on SIoT and finds the group that maximizes the
accuracy of all related measurement. Moreover, under the
SIoT environment, each SIoT object replicates its measure-
ment data to its trustworthy ”friends” for reliability, fault-
tolerance, or accessibility. Therefore, for the data reliability,
it is desirable that each component in the selected group is
within h-hop from each other or has at least some friends.

Specifically, we propose a new framework, namely, Task-
Optimized Group Search (TOGS), to search the best group
under the abovementioned SIoT environments. Given a het-
erogeneous social graph, the set of tasks, the social relation-
ships between SIoT objects, and the relationships between
each SIoT object and the task, we propose a new problem
family, namely, Task-Optimized SIoT Selection (TOSS), to
find the best group of IoT objects for a given set of tasks in
the task pool.

To consider different application needs, we propose two
different problem formulations for TOSS, namely Bounded
Communication-loss TOSS (BC-TOSS) and Robustness Guar-
anteed TOSS (RG-TOSS). While the objective of the two
problems are both maximizing the accuracy of performing
the given tasks, BC-TOSS aims to bound the communica-
tion loss between different SIoT objects, and the goal of
RG-TOSS is to provide robustness for message transmis-
sion among different SIoT objects. We formulate the prob-
lems and prove that they are both NP-Hard and inapprox-
imable within any factor. We propose an error-bounded al-
gorithm with guaranteed performance, namely Hop-bounded
Accuracy-optimized SIoT Extraction (HAE), to obtain in
polynomial time a solution with objective value no worse
than the optimal solution with a bounded error for BC-
TOSS. For RG-TOSS, we propose an efficient algorithm to
obtain good solutions in polynomial time, namely Robustness-
Aware SIoT Selection (RASS) which includes effective pro-
cessing strategies such as Core-based Robustness Pruning,
Accuracy-Optimization Pruning, Robustness-Guaranteed Prun-
ing, and Accuracy-oriented Robustness-aware Ordering. We
conduct a user study for evaluating the effectiveness of the
problem formulations, and perform extensive experiments
on real datasets to evaluate the proposed algorithms. Ex-
perimental results show that our proposed algorithms sig-
nificantly outperform other baselines. The contributions are
summarized as follows.

• For completing complex task in SIoT environment, we
propose to model the social edges within SIoT ob-
jects with accuracy edges in a heterogeneous graph

1The SIoT objects that cannot report any related measure-
ment can be filtered at the beginning.

and propose two different problem formulations, i.e.,
BC-TOSS and RG-TOSS, to find suitable SIoT ob-
jects. To our best knowledge, there is no real system
or existing work in the literature that addresses the
issue of group search in SIoT environment.

• We prove that both formulations are NP-Hard and in-
approximable within any factors. We then propose a
polynomial-time algorithm with performance guaran-
tee and bounded error, namely Hop-bounded Accuracy-
optimized SIoT Extraction (HAE) for the BC-TOSS
problem. We also propose an effective polynomial time
algorithm, namely Robustness-Aware SIoT Selection
(RASS), to find good solutions for the RG-TOSS prob-
lem.

• We conduct a user study on 100 users to validate our
two problem formulations. Moreover, we perform ex-
tensive experiments on two real datasets. The re-
sults show that the proposed algorithms outperform
the baselines in terms of objective values and efficiency.

The rest of this paper is organized as follows. Section
2 introduces the related works. Section 3 formulates the
problems and proves that the proposed problems are NP-
Hard and inapproximable within any factor. Sections 4 and
5 propose algorithms to BC-TOSS and RG-TOSS problems,
respectively. Section 6 shows the experimental results and
Section 7 concludes this paper.

2. RELATED WORK
A recent line of SIoT research focuses on designing the ar-

chitectures and protocols for facilitating SIoT under the spe-
cific schemes [8, 12, 2]. For example, Nitti et al. propose two
trustworthiness management models to suggest strategies of
establishing trustworthiness among nodes so that malicious
nodes are isolated [12]. Yao et al. propose a joint proba-
bilistic framework for fusing the social relationships between
users and IoT objects to improve the accuracy of IoT rec-
ommendations [21]. However, these works do not take the
capability of collaboration between SIoT into consideration.
Moreover, our goal is to find the optimal group of SIoT to
accomplish certain tasks, not recommending a single IoT.

To find a cohesive group, many different measurements
have been reported in the literature, e.g., diameter [19], den-
sity [4, 5], clique and its variations [11]. However, the above
works only consider the characteristics inside the group on
the existing friendship edges, but TOGS needs to consider
the accuracy of the assigned task and the ”social” tightness
among IoT objects. Therefore, new algorithms are necessary
to take both types of edges into account. Researches have
been proposed to find a socially close group of individuals to
invite for activities. In [17], given a query group, the total
degree of the community containing this group is maximized.
The spatial factor is considered in [10, 20, 23]. Furthermore,
the willingness to participate activities is considered in [16].
All the above works keep the social tightness of the target
group on the friendship network while maximizing or main-
taining some characteristic people care about in an activity.
In contrast, in this paper, the accuracy is considered to be
maximized so that the query task can find a proper target
SIoT group to complete the complex tasks.

On the other hand, expert team formation has attracted
a lot of research interests. Forming an expert team is to find
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Table 1: Notation Summary.
Symbol Meaning
Q Query group

dES (F ) Largest shortest path distance in F on E
IF (t) Incident weight of t ∈ T

degEH(v) Inner degree of v in H
Ω(F ) Objective value of target group F
α(u) Sum of incident accuracy edge weight of u ∈ S

a set of experts the required skills, while the communication
cost among the chosen experts is minimized so that team
members can communicate with each other efficiently. Sev-
eral communication costs have been proposed under different
considerations. For example, Lappas et al. find a team that
covers the required skills and minimizes the social diameter
of the team or the total edge weight of the spanning tree
within the team [9]. Moreover, projects usually require a
leader for guiding the direction and negotiation among mem-
bers. Therefore, Kargar et al. [7] proposed to select a leader
for each skill and minimize the social distance from the skill
members to each skill leader. In [15], the authors further
consider both spatial proximity and skill requirements for
finding quick response teams. In contrast, our paper is the
first to study the task-optimized group search problem con-
sidering SIoT as the input. Based on both social edges and
accuracy edges, TOGS aims to find the target group with
enough social tightness on SIoT to ensure the reliability and
while maximizing the accuracy to query tasks.

3. PROBLEM FORMULATIONS
In this paper, we consider a family of Task-Optimized

SIoT Selection (TOSS) problems on a heterogeneous graph
which aim to find the best group of SIoT objects for cer-
tain tasks by considering the interactions among different
SIoT objects. Specifically, given the heterogeneous graph
G = (T, S,E,R), the vertex set T is the task pool, i.e., the
union of the tasks the SIoT objects can achieve such as mea-
suring humidity, rainfall. Vertex set S represents the set of
SIoT objects, where the social relationships among them are
captured by the unweighted social edge set E, S × S → E.
Here, a social edge (u, v) ∈ E represents that SIoT objects
u and v can communicate (e.g., using the same communica-
tion protocol or equipping the same transmission hardware).
For the ease of presentation, we use the term SIoT Graph,
GS = (S,E), to describe the graph composed of the SIoT
objects set S and the corresponding social edge set E. Fi-
nally, R is the set of task accuracy edge (accuracy edge for
short), where each accuracy edge r = [t, v] linking a task
vertex t ∈ T and an SIoT vertex v ∈ S indicates the ac-
curacy for the SIoT object v to perform task t as the edge
weight w[t, v] ∈ (0, 1]. An illustrative example of the hetero-
geneous graph G = (T, S,E,R) is shown in Figure 1. Table
1 summarizes the notations.

Given the heterogeneous graph G = (T, S,E,R) men-
tioned above, a query group Q ⊆ T and the desired size
p of SIoT objects, the goal of the TOSS problems is to find
the group F ⊆ S of exactly p SIoT objects to optimize the
accuracy (the definition of optimizing the accuracy will be
detailed later) of the selected tasks in Q. The size constraint
p here represents a budget constraint, i.e., how many SIoT
objects we plan to control or carry according to our applica-

tion scenario. Moreover, based on different practical needs,
we apply different constraints on Q to either reduce the com-
munication loss or to increase the robustness of the selected
SIoT objects in F . Based on the different constraints, we
propose two different problem formulations and algorithm
designs.

Specifically, we first propose the Bounded Communication-
loss TOSS (BC-TOSS) problem by taking into account the
communication loss between different SIoT objects in addi-
tion to optimizing the accuracy of the selected tasks in Q. To
achieve this, we place an upper bound on the hop distance
between each pair of SIoT objects in order to limit the num-
ber of message forwarding. In other words, the constraint of
BC-TOSS is to require the hop distance between each pair
of vertices in F on E to be at most h, i.e., dES (F ) ≤ h, to
reduce the potential communication loss. Please note that
since an SIoT object u can forward messages even if it is
not selected in F , therefore, the shortest path considered
by dES (F ) can go through vertices in S but outside F . For
example, in Figure 1, if F = {v2, v3}, d

E
S (F ) = 2 because

the shortest path can go through v1 /∈ F .
In the second problem, namely Robustness Guaranteed

TOSS (RG-TOSS), we pay special attention to the num-
ber of different message transmission paths. In other words,
RG-TOSS, in addition to optimizing the accuracy of the se-
lected tasks in Q, also requires that each SIoT object in
F has at least k neighboring SIoT objects for successfully
transmitting the messages. That is, each vertex v ∈ F must
have at least k neighboring vertices also in F .

To measure the solution quality of the returned group F ,
we consider the sum of the accuracy edge weights incident
to each vertex t in Q. Let IF (t) denote the sum of incident
accuracy edge weights of t ∈ Q to the target group F (in-
cident weight of t for short), i.e., IF (t) =

∑
v∈F w[t, v]. We

then use the sum of incident weights over all tasks t in the
task group Q to F to represent the aggregated quality of
the returned group F corresponding to Q. In other words,
the objective function of the returned group F is defined
as Ω(F ) =

∑
t∈Q IF (t). In this paper, we aim to maximize

the objective function Ω(F ) to ensure that the tasks in Q
are most likely to succeed. Furthermore, we also include
an accuracy constraint τ in the problem formulation. This
accuracy constraint requires that the edge weight of each ac-
curacy edge between Q and F must be at least τ , to ensure
the worst case performance of the returned target group.

In the following, we formally formulate the two TOSS
problems, namely Bounded Communication-loss TOSS (BC-
TOSS) and Robustness Guaranteed TOSS (RG-TOSS). We
also prove that the proposed two TOSS problems are both
NP-Hard and inapproximable within any factors unless P=NP.

3.1 Bounded Communication-loss TOSS (BC-
TOSS)

The Bounded Communication-loss TOSS (BC-TOSS) prob-
lem is defined as follows.

Problem: Bounded Communication-loss TOSS (BC-
TOSS).
Given: Heterogeneous graph G = (T, S,E,R), query group
Q ⊆ T , hop constraint h ≥ 1, size constraint p > 1, and
accuracy constraint τ ∈ [0, 1]
Objeective: To find a target group F ⊆ S where i) |F | = p,
ii) dES (F ) ≤ h, and iii) w[u, v] ≥ τ,∀u ∈ Q, v ∈ F, [u, v] ∈ R,
such that Ω(F ) =

∑
t∈Q IF (t) is maximized.
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Solving the proposed BC-TOSS problem is very challeng-
ing due to the interplay of two different edge sets, i.e., groups
with largest objective value may not satisfy the hop con-
straint. In the following, we first analyze the hardness of
BC-TOSS by proving that the BC-TOSS problem is NP-
Hard. In addition, we prove that there exists no polynomial
time approximation algorithm for BC-TOSS. In other words,
BC-TOSS is inapproximable within any factor.

Theorem 1. BC-TOSS is NP-Hard and inapproximable
within any factor.

Proof. We prove that BC-TOSS is an NP-Hard problem
with the reduction from the p̂-clique problem, which is an
NP-Complete problem. Given a graph Gc = (Vc, Ec), where
Vc is the set of vertices and Ec is the set of undirected and
unweighted edges, and an integer p̂, the decision problem of
p̂-clique is to answer whether there exists a subgraph Cc ⊆
Gc such that i) Cc has exactly p̂ vertices, i.e., |Cc| = p̂, and
ii) Cc is a complete graph, i.e., dES (Cc) = 1, where dES (Cc)
is the longest shortest path length on vertex set S and edge
set E among all the vertex pairs in Cc.

We transform each instance of p̂-clique to an instance of
BC-TOSS as follows. We construct the input graph of BC-
TOSS G = (T, S,E,R) by letting S = Vc, E = Ec, while
the task pool T , the accuracy edges in R, the corresponding
edge weights, and the query group Q are set arbitrarily. The
parameters of BC-TOSS are set as p = p̂, h = 1, and τ =
0. In the following, we prove that the decision problem p̂-
clique returns TRUE if and only if BC-TOSS has a feasible
solution. We first prove the sufficient condition. If p̂-clique
returns TRUE with a solution Cc with dES (Cc) = 1 and
|Cc| = p̂, then Cc must be a feasible solution to BC-TOSS
because dES (Cc) ≤ h = 1 and |Cc| = p̂ = p. We then
prove the necessary condition. If F is a feasible solution
to BC-TOSS, then dES (F ) ≤ h = 1 and |F | = p must hold,
which implies that F is also a complete graph of size p̂ = p.2

Therefore, F is also a solution to p̂-clique. This proves that
BC-TOSS is NP-Hard.

Finally, we prove hat there exists no approximation al-
gorithm for BC-TOSS unless P=NP. Note that BC-TOSS
will return Ω(F ) = 0 if F = ∅, i.e., no feasible solution ex-
ists for BC-TOSS. Therefore, if BC-TOSS has a polynomial-
time approximation algorithm with an arbitrarily large ratio
δ <∞, the above proof indicates that i) the algorithm is able
to obtain a feasible solution to BC-TOSS if p̂-clique returns
TRUE, and ii) any BC-TOSS instance with the algorithm
returning a feasible solution implies that the corresponding
instance in p̂-clique is TRUE. That is, the δ-approximation
algorithm can solve p̂-clique in polynomial time, implying
that P=NP. Therefore, BC-TOSS has no polynomial-time
approximation algorithm unless P=NP.

Theorem 1 states that the BC-TOSS problem is NP-Hard
and inapproximable within any factor. However, we observe
that if we slightly relax one constraint of the BC-TOSS prob-
lem, we are able to obtain the solution no worse than the
optimal solution within polynomial time. We detail this al-
gorithm with performance bound in Section 4.

3.2 Robustness Guaranteed TOSS (RG-TOSS)
2Please note that when dES (F ) = 0, F contains at most 1
vertex, not satisfying the requirement of BC-TOSS which
asks p > 1.

To find a target group to ensure the communication ro-
bustness, i.e., each SIoT object in the target group is able
to transmit or backup its data through a number of dif-
ferent neighboring objects, one promising way is to ensure
the minimum number of neighbors each SIoT object has in
the target group. This motivates us to introduce the degree
constraint to guarantee the robustness of communications.
We first denote the inner degree of a vertex v according to
the edge set E in a subgraph H ⊆ G as degEH(v), which is
the number of vertices u ∈ H such that (u, v) is an edge
in E. Then, we formally formulate the Robustness Guar-
anteed TOSS problem as follows, which incorporates the
degree constraint in the target group and has the identi-
cal objective function and size constraint as the BC-TOSS
problem.

Problem: Robustness Guaranteed TOSS (RG-TOSS).
Given: Heterogeneous graph G = (T, S,E,R), query group
Q ⊆ T , degree constraint k ≥ 1, size constraint p > 1, and
accuracy constraint τ ∈ [0, 1].
Objeective: To find a target group F ⊆ S where i) |F | =
p, ii) degEF (v) ≥ k,∀v ∈ F , iii) w[u, v] ≥ τ,∀u ∈ Q, v ∈
F, [u, v] ∈ R, such that Ω(F ) =

∑
u∈Q IF (u) is maximized.

Similar to BC-TOSS, the interplay of the constraints and
objective functions on social edges and accuracy edges makes
processing RG-TOSS very challenging, especially when the
degree constraint of RG-TOSS requires each SIoT object
in the returned group to have at least k neighbors in the
same group. Please note that this degree constraint re-
quires the inner degree to be at least k, which models a
more practical situation that we only have control on the
selected SIoT objects, i.e., we do not replicate data to or
communicate with SIoT objects outside the selected group.
Intuitive approaches such as greedily choosing vertices to op-
timize the objective value does not work because it does not
consider the degree constraint and may not obtain feasible
solutions. In fact, RG-TOSS is also NP-Hard and inapprox-
imable within any factor, which is proved as follows.

Theorem 2. RG-TOSS is NP-Hard and inapproximable
within any factors unless P=NP.

Proof. We prove that RG-TOSS is NP-Hard with the re-
duction from an NP-Complete problem, namely k̃-plex prob-
lem[14]. Given graph G = (Ṽ , Ẽ) and positive integers p̃ and

k̃, the decision problem k̃-plex determines if there exists a

set of vertices C ⊆ Ṽ , such that degẼ
C̃
(u) ≥ |C| − k̃,∀u ∈ C

and |C| = p̃.

We transform an instance of the k̃-plex problem to an
instance of the RG-TOSS instance by first creating the het-
erogeneous graph G = (T, S,E,R) with S = Ṽ and E = Ẽ.
The task pool T , the set of accuracy edges, and the corre-
sponding accuracy edge weights are set arbitrarily. More-
over, the query group Q ⊆ T is also chosen arbitrarily and
k = p̃− k̃, p = p̃, τ = 0.

We first prove the sufficient condition. If there exists a set

C ⊆ Ṽ with degẼ
C̃
(u) ≥ |C| − k̃,∀u ∈ C and |C| = p̃, then

C must be a feasible solution to the RG-TOSS instance.
For the necessary condition, if F is a feasible solution to

RG-TOSS, then |F | = p and degẼ
C̃
(u) ≥ |C| − k̃,∀u ∈ C

must hold. Therefore, F is also a k̃-plex. This proves that
RG-TOSS is NP-Hard.

For the inapproximability, if there exists any δ-approximation
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algorithm for any δ < ∞, then such δ-approximation algo-
rithm must be able to obtain a feasible solution of TG-TOSS
in polynomial time, which is equivalent to solving the NP-
Complete problem k̃-plex in polynomial time. Therefore,
RG-TOSS is inapproximable within any factor unless P=NP.
The theorem follows.

Since there exists no approximation algorithm for the RG-
TOSS problem unless P=NP, we propose an effective and
efficient polynomial-time algorithm to tackle the challenges
brought by the interplay of RG-TOSS. We detail the algo-
rithm design in Section 5.

4. ALGORITHM FOR BC-TOSS WITH PER-
FORMANE GUARANTEE

Theorem 1 in Section 3.1 states that BC-TOSS is NP-
Hard and inapproximable within any factor. One simple ap-
proach is to enumerate all the combinations to find the opti-
mal solution of BC-TOSS. Due to the large search space, the
time complexity of such intuitive approach would be O(|V |p)
which makes it computationally expensive and inapplicable
for a large-scale Social IoT network. However, we observe
that if we slightly relax the hop constraint, it is possible
to find a polynomial time algorithm that can find a solution
no worse than the optimal solution (performance guarantee)
to BC-TOSS with a bounded error. Therefore, in this sec-
tion, we propose a polynomial time algorithm, namely Hop-
bounded Accuracy-optimized SIoT Extraction (HAE), to find
the solution with the objective value no worse than the opti-
mal solution while the distance between each pair of vertices
on E in the returned group may exceed h, but is guaranteed
to be within 2h. We formally prove the performance guar-
antee and the error bound of the proposed algorithm.

To avoid generating infeasible solutions, the proposed HAE
algorithm first performs a preprocessing step to guarantee
that each SIoT object in S has all its incident accuracy edge
weights at least τ . That is, this preprocessing step removes
each vertex u ∈ S with an accuracy edge [u, v] for some
v ∈ Q with w[u, v] < τ . Then, the vertices in S which
have no incident accuracy edge are also removed because in-
cluding them in the solution will not increase the objective
value.

Afterwards, the HAE algorithm performs a Sieve Step to
filter out redundant vertices. If an SIoT object v ∈ S is in
the returned group F , then any vertex u ∈ F must satisfy
the following inequality: dES (u, v) ≤ h. Therefore, the Sieve
Step first constructs the candidate set Sv for each SIoT ob-
ject v ∈ S where Sv contains only the vertices that are able
to form the target group with v, i.e., Sv contains only the
vertices within h hops on E from v. Take Figure 1 as an ex-
ample. Assume Q = {Rainfall, Temperature, Wind Speed,
Snowfall}, p = 3, h = 1, and τ = 0.25. In the Sieve Step,
for example, Sv1 = {v1, v2, v3, v4, v5} because all these SIoT
objects are within h = 1 hop from v1, and Sv3 = {v1, v3, v4}.

After the Sieve Step is complete, algorithm HAE performs
the Refine Step to examine each vertex in Sv. Specifically,
given SIoT object u ∈ S, we denote α(u) the sum of ac-
curacy edge weights linking from u to the tasks in Q, i.e.,
α(u) =

∑
s∈Q w[u, s]. Then, to maximize the objective func-

tion, the Refine Step selects p vertices from Sv which have
the maximum α(u) and constructs a candidate solution Sv

for v. If Ω(Sv) is larger than that of the currently best solu-
tion S

∗, Algorithm HAE updates S∗ as Sv. Algorithm HAE

repeats the examinations of v ∈ S to construct different can-
didate solutions, and returns the solution with the maximum
objective value as the target group F . Return to our run-
ning example in Figure 1. After this step, Sv1 = {v1, v2, v3},
and Sv4 = {v1, v3, v4}. Please note that Sv2 does not need to
be examined because |Sv2 | = 2 < p, i.e., no feasible solution
can be constructed from Sv2 . After examining all Sv, the
returned target group F = {v1, v2, v3}, which is the optimal
solution.

One major weakness of the steps mentioned above is that
algorithm HAE needs to scan over all vertices in S to con-
struct candidate solutions and extract the best one among
them. However, this may incur large computation overhead.
We observe that if we examine each vertex v ∈ S in some
predefined order, then some v ∈ S does not need to be ex-
amined because the vertices in the corresponding Sv cannot
generate a solution better than the best solution obtained
so far. Therefore, we propose a vertex-visiting ordering and
lookup strategy, namely Incident Weight Ordering with Top-
p Objects Lookup (ITL) and a powerful pruning strategy,
called Accuracy Pruning (AP), to avoid unnecessary search
space exploration. ITL visits each vertex v ∈ S in descend-
ing order of α(v), which enables Accuracy Pruning to better
estimate the solution quality in each Sv to avoid redundant
examinations. Moreover, ITL enables quick candidate so-
lution Sv generation without sorting the vertices in Sv to
extract the top-p vertices with the maximum α(·) values.

Specifically, we associate with each vertex v ∈ S a list
Lv, which is used to store the top-p vertices of the max-
imum α(·) in Sv. Each time when algorithm HAE exam-
ines vertex v and constructs the corresponding Sv in the
descending order of α(v), HAE inserts v into each vertex
u’s list Lu,∀u ∈ Sv if |Lu| < p. For example in Figure 1,
v3 is visited first because α(v3) is the largest. After con-
structing Sv3 = {v1, v3, v4}, HAE also inserts v3 into Lv1 ,
Lv3 , Lv4 . The following Lemma 1 proves that the above-
mentioned strategy can guarantee that Lu always stores the
top-|Lu| vertices with the maximum α(·) in Lu.

Lemma 1. For any vertex u ∈ S, its associated Lu stores
the top-|Lu| vertices with the maximum α(·) in Su. More-
over, if |Lu| < p, then α(x) ≤ α(u), ∀x ∈ Su\Lu.

Proof. HAE visits the vertices v ∈ S in descending order
of α(v). Therefore, for any vertex u, the vertices in its list Lu

must be visited before u, leading to α(x) ≥ α(u),∀x ∈ Lu.
Moreover, if u ∈ Sv, then v ∈ Su as well. Therefore, the
vertices in Lu must be in Su. Since Lu stores at most the
first p vertices visited by HAE in Su, Lu stores the top-|Lu|
vertices with the maximum α(·) in Su.

Please note that the vertices in Lu must have been visited
by HAE and α(y) ≥ α(u),∀y ∈ Lu. If |Lu| < p, then the
vertices in Su\Lu must not have been visited by HAE yet.
According to the vertex-visiting ordering, α(x) ≤ α(u),∀x ∈
Su\Lu holds. The lemma follows.

HAE is equipped with a powerful pruning, namely Accu-
racy Pruning, which can avoid the examination of redundant
Sv which never generates better solutions than the currently
best solution S

∗. Accuracy Pruning works as follows. When
Algorithm HAE visits a vertex v ∈ S, before constructing Sv

to include the vertices within h hops of v, it first examines
the list Lv to check if Sv has a chance to generate a better
solution than the currently best solution S

∗. If Sv cannot,
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HAE skips v and proceeds to examine the next vertex. This
saves the computation of traversing the graph to construct
Sv. Specifically, the following lemma shows the pruning con-
dition and the correctness of the Accuracy Pruning.

Lemma 2. Accuracy Pruning. Given v ∈ S and the
currently best solution S

∗, if Ω(Lv)+(p−|Lv |)α(v) ≤ Ω(S∗)
holds, Sv can be safely pruned without examination.

Proof. Let Mv denote the p vertices with the maximum

α(·) values in Sv, and Ŝv be an arbitrary subset of Sv with

|Ŝv | = p. Then Ω(Mv) ≥ Ω(Ŝv) must hold. We would like to
show that if Sv is pruned by Accuracy Pruning, then there

does not exist any Ŝv such that Ω(Ŝv) > Ω(S∗).
We prove by contradiction. Assume that Ω(Mv) > Ω(S∗),

then Ω(Mv) > Ω(S∗) ≥ Ω(Lv)+(p−|Lv|)α(v) must hold be-
cause Sv is pruned by Accuracy Pruning. Case 1) If |Lv| = p,
then Ω(Mv) = Ω(Lv) according to Lemma 1, and we will
conclude that Ω(Mv) > Ω(Mv) which leads to a contra-
diction. 2) If |Lv | < p,

∑
x∈Mv

α(x) >
∑

x∈Lv
α(x) + (p −

|Lv |)α(v) holds. According to Lemma 1,
∑

x∈(Mv\Lv)
α(x) >

(p− |Lv|) holds. Therefore, there exists x ∈ (Mv\Lv) ⊆ Sv

Lv such that α(x) > α(v), which contradicts with Lemma 1.
Since the above two cases lead to contradictions, Ω(Mv) ≤

Ω(S∗) must hold, which leads to Ω(S∗) ≥ Ω(Mv) ≥ Ω(Ŝv).
Therefore, if Sv is pruned by Accuracy Pruning, any p-vertex

subset Ŝv ⊆ Sv must have Ω(Ŝv) ≤ Ω(S∗), i.e., Sv cannot
generate any solution with objective value better than the
currently best solution S

∗. The lemma follows.

Return to our running example in Figure 1. When Algo-
rithm HAE visits v4, Lv4 = {v1, v3}, and the currently best
solution S

∗ is {v1, v2, v3} with Ω(S∗) = 3.5. In this case,
Ω(Lv4 )+(p−|Lv4 |)·α(v4) = 2.7+1·0.7 = 3.4 < Ω(S∗) = 3.5,
and Accuracy Pruning prunes v4. Therefore, Algorithm
HAE avoids examining v4 and does not need to construct
Sv4 because any subset with p vertices of Sv4 will never
become a solution better than S

∗. The pseudo code of algo-
rithm HAE is shown in Algorithm 1.

In the following, we prove the performance guarantee and
error bound of the proposed algorithm. We first prove that,
if the optimal solution S

OPT contains a vertex v ∈ S, then
S
OPT ⊆ Sv must hold. That is, algorithm HAE does not

need to examine any vertex outside Sv if v ∈ S
OPT .

Lemma 3. If the optimal solution S
OPT contains vertex

v ∈ S, then S
OPT ⊆ Sv holds.

Proof. Assume that there exists vertex v′ ∈ S
OPT such

that SOPT is not a subset of Sv′ . Since SOPT is not a subset
of Sv′ , we can find a vertex u′ ∈ S

OPT such that u′ /∈ Sv′ .
In other words, dES (u

′, v′) > h where dES (u
′, v′) > h is the

shortest path distance from u′ to v′ on E. However, from
the hop constraint, we know that dES (u, v

′) ≤ h,∀u ∈ S
OPT

which is a contradiction. Therefore, if SOPT contains vertex
v ∈ S, then S

OPT ⊆ Sv holds.

We now prove that the proposed HAE algorithm is able
to obtain the solution no worse than the optimal solution
(performance guarantee) with an error bound h.

Theorem 3. The solution F returned by algorithm HAE
is no worse than the optimal solution S

OPT to BC-TOSS
with an error bound h. That is, Ω(F ) ≥ Ω(SOPT ) with
dES (F ) ≤ 2h.

Algorithm 1: Hop-bounded Accuracy-optimized SIoT
Extraction (HAE)

Input: G = (T, S,E,R), Q, h, p, τ
Output: F

1 begin
2 Remove each u ∈ S where w[u, v] < τ for v ∈ Q
3 S

∗ ← ∅
4 foreach v ∈ S in descending order of α(v) do
5 if v is pruned by Accuracy Pruning then
6 Continue

7 Sv ← {u ∈ S | dEV (u, v) ≤ h }
8 if |Sv| < p then
9 Continue

10 if ∃u ∈ Sv with |Lu| < p then
11 Add v into Lu

12 Sv ← {u1, .., up}, which are the p vertices with
maximum α(ui) in Sv (extracted with the aid
from Lv)

13 if Ω(Sv) > Ω(S∗) then
14 S

∗ ← Sv

15 F ← S
∗

16 return F

Proof. Lemma 3 states that if vertex v is included in
the optimal solution S

OPT , then S
OPT ⊆ Sv. Because HAE

chooses the p vertices with maximum α(·) in Sv as Sv, there
exists no other p-vertex subset of Sv with a larger objective
value. Therefore, if S

OPT ⊆ Sv, Ω(Sv) ≥ Ω(SOPT ) must
hold. On the other hand, Ω(S∗) ≥ Ω(Sv),∀v ∈ S, therefore,
Ω(S∗) ≥ Ω(SOPT ) holds. Moreover, Lemma 2 shows that
Accuracy Pruning only prunes the examination of Sv if it
cannot generate a better solution than S

∗. Please note that
for any v ∈ S, dES (Sv) ≤ 2h. Therefore, F returned by
algorithm HAE is no worse than the optimal solution with
dES (F ) ≤ 2h. The theorem follows.

Theorem 4. HAE has time complexity O(|R|+ |S||E|).

Proof. HAE removes the SIoT objects that do not sat-
isfy the accuracy constraint in O(|R|) time. Sorting v ∈ S
in descending order of α(v) takes O(|S|log|S|) time. That
is, HAE spends O(|R|+ |S|log|S|) time for preprocessing.

HAE then considers each v in descending order of α(v).
It first takes O(|S| + |E|) time for Accuracy Pruning and
extracting Sv for v. Then, HAE takes O(|V |) time to check
if there exists u ∈ Sv with |Lu| < p and O(|V |) time to
choose the p vertices ui with the maximum α(ui) from Sv. In
summary, the time complexity of HAE is O(|R|+|S|log|S|)+
O(|S|(|S| + |E|+ |V |+ |V |)) = O(|R|+ |S||E|).

Although there is a bounded error h for F , in Section 6,
we show that most F returned by HAE still satisfy the hop
constraint with experiments conducted on real datasets.

5. ALGORITHM DESIGN FOR RG-TOSS
As proved in Section 3.2, RG-TOSS is NP-Hard and in-

approximable within any ratio, indicating that RG-TOSS is
very challenging due to the interplay of accuracy and com-
munication robustness, i.e., the SIoT objects which have
high accuracy may not have robust communications, and
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those with robust communication capability may not always
have the optimized accuracy of the assigned tasks. To opti-
mize the objective function, one simple approach is to greed-
ily select F containing the p SIoT objects with the largest
incident weights. However, this greedy approach may re-
sult in a set of SIoT objects that cannot communicate with
each other at all. Another approach is to enumerate all
the combinations of the SIoT objects. Although this brute-
force approach can obtain the optimal solution, it incurs a
prohibitively high computation complexity and thus is im-
practical.

To strike a good balance between solution quality and
efficiency, in this section, we propose a polynomial-time al-
gorithm to RG-TOSS, namely Robustness-Aware SIoT Se-
lection (RASS) which can obtain good solutions very effi-
ciently. RASS employs a bottom-up approach to construct
different partial solutions while considering the accuracy and
communication robustness simultaneously. To incrementally
construct good partial solutions and lead to good solutions
eventually, we propose an effective ordering strategy, called
Accuracy-oriented Robustness-aware Ordering (ARO), to pri-
oritize the selections of SIoT objects into partial solutions.
Moreover, we also propose effective pruning strategies, namely
Core-based Robustness Pruning (CRP) Accuracy-Optimization
Pruning (AOP), and Robustness-Guaranteed Pruning (RGP),
which are based on our observations in different dimensions
to avoid constructing partial solutions that can never grow
into better solutions, in order to significantly reduce the
computation time of RASS.

Specifically, to significantly reduce the computation time,
RASS first employs a filter strategy to remove from G each
SIoT object u ∈ S not satisfying the accuracy constraint.
Afterwards, RASS performs Core-based Robustness Pruning
(CRP) to remove the SIoT objects in S which will not lead

to feasible solutions. A k̂-core Ck̂ is a graph where each ver-

tex v ∈ Ck̂ has degree at least k̂ [13]. A k̂-core Ck̂ is maximal

if there does not exist another k̂-core that is a superset of

Ck̂. Maximal k̂-core can be obtained in polynomial time.3

In Core-based Robustness Pruning, RASS extracts the max-
imal k-core Ck from the graph formed by the SIoT objects
and the corresponding social edge set, i.e., GS = (S,E),
where k is the degree constraint. RASS then trims the SIoT
objects from S which are not included in the maximal k-
core Ck. The following lemma shows that the SIoT objects
in S\Ck can be safely trimmed.

Lemma 4. Core-based Robustness Pruning. Given
maximal k-core Ck ⊆ GS and any feasible solution F to
RG-TOSS, (S\Ck)∩F = ∅ must hold, indicating that SIoT
objects in S\Ck can be safely trimmed.

Proof. Suppose v is an SIoT object which is not included
in the maximal k-core Ck, i.e., v ∈ S\Ck. We prove this
lemma by contradiction. Assume that F is a feasible solution
and v ∈ F . As F is a feasible solution, degEF (u) ≥ k,∀u ∈ F
must hold. Therefore, F is a k-core and F ⊆ Ck holds
(according to the definition of maximal k-core). Since v ∈ F ,
v ∈ Ck must hold, which leads to a contradiction. Therefore,
v /∈ F and v can be safely trimmed, ∀v ∈ S\Ck. The lemma
follows.

3Please note that the maximal k̂-core may contain multiple
connected components.

���

�
��

�

�
�

�
�

����

���

����

����

���

���
���

���

�
�

�
�

�
�

�
�

�
�

� � �� � � �� � � ����

Figure 2: Running example of RG-TOSS

Consider the running example in Figure 2. Given the het-
erogeneous graph G with p = 3, k = 2, and τ = 0.05. Since
the maximal 2-core in GS = (S,E) is {v1, v2, v4, v5, v6},
Core-based Robustness Pruning removes v3 from S because
v3 will never be included in any feasible solution.

In algorithm RASS, each partial solution σi is defined as
σi = {Si,Ci} where Si is the solution set containing a set
of SIoT objects, and Ci denotes the set of candidate SIoT
objects that can be considered by the current partial so-
lution σi. During the process of RASS, RASS maintains
a priority queue U to store different partial solutions. Let
S = {v1, ..., v|S|}. In the very beginning, RASS generates
|S| initial partial solutions and pushes them into U, where
each partial solution contains {{vi},

⋃
j∈[i+1,|S|] vj} for each

different vi ∈ S. Return to the running example in Figure
2. In the beginning, priority queue U contains the following
partial solutions: {S1 = {v1},C1 = {v2, v4, v5, v6}},{S2 =
{v2},C2 = {v4, v5, v6}},{S3 = {v4},C3 = {v5, v6}}. Please
note that v3 does not appear because it has been pruned by
Core-based Robustness Pruning. Moreover, there is no par-
tial solution {S4 = {v5},C4 = {v6}} because |S4∪C4| < p =
3. That is, even if we move all the candidate SIoT objects
in C4 into S4, we still cannot form a feasible solution with
exactly p SIoT objects. Similarly, {S5 = {v6},C5 = φ} does
not exist in U as well.

At each step afterwards, RASS generates a new partial
solution σ′ = {S′,C′} as follows. RASS first pops from the
priority queue U a partial solution σ = {S,C} based on
Accuracy-oriented Robustness-aware Ordering (ARO, will
be detailed later), and RASS creates a copy of σ, i.e., σ′.
Then for σ′, RASS moves an SIoT object u with the max-
imum α(u) from its candidate SIoT object set C

′ into its
solution set S

′. Therefore, σ′ becomes a new partial solu-
tion, i.e., S′\S = {u}.

Return to the running example in Figure 2, after initializa-
tion, assume ARO in RASS selects the partial solution σ =
{{v1}, {v2, v4, v5, v6}} for expansion. RASS first creates a
copy of σ, i.e., σ′ = {S′ = {v1},C

′ = {v2, v4, v5, v6}}. Since
choosing v2 for expanding S

′ does not satisfy ARO, RASS
choose v4 which satisfies ARO and has the maximum α(·).
Therefore, v4 is moved to S

′ and σ′ = {{v1, v4}, {v2, v5, v6}}
is a new partial solution. RASS then removes v4 from C

of σ to avoid generating duplicate partial solution as σ′ in
the future, and pushes σ = {{v1}, {v2, v5, v6}} back to the
priority queue U. Please note that, σ is always inserted back
into the priority queue (unless |S| + |C| < p) because σ is
able to generate other new partial solutions by expanding its
solution set with other vertices. Moreover, in order to guar-
antee not generating duplicate partial solutions, the SIoT
object that is moved from C

′ to S
′ is removed from C of σ.

For example, v4 is removed from C when σ is pushed back
into U.
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If the solution set S′ ∈ σ′ contains p SIoT objects, satisfies
the degree constraint, and Ω(S′) is larger than the currently
best solution S

∗, RASS updates S∗ as S′. If S′ contains fewer
than p SIoT objects, RASS inserts σ′ into the priority queue
U. In the second round in our running example, RASS pops
σ = {{v1, v4}, {v2, v5, v6}} according to ARO, and generates
a new partial solution σ′ = {{v1, v4, v5}, {v2, v6}}. Since
S
′ = {v1, v4, v5} contains p = 3 SIoT objects and satisfies the

constraints, and S
′ is the first feasible solution obtained so

far, RASS sets S∗ = S
′. RASS pushes the original σ back to

U (σ′ does not have to be pushed back because |S′| = 3). The
number of expansions on partial solutions RASS performs
is bounded by a parameter λ. After λ expansions of partial
solutions, RASS outputs the best solution S

∗ as the solution.
The setting of λ represents a trade-off between efficiency
and solution quality. We will compare the performance of
RASS under different λ values in the experimental results
in Section 6.

In the following, we detail the important strategies em-
ployed in our framework. These strategies include Accuracy-
oriented Robustness-aware Ordering, Accuracy-Optimization
Pruning and Robustness-Guaranteed Pruning, which can sig-
nificantly improve the efficiency and solution quality of the
proposed RASS algorithm. The pseudo code of algorithm
RASS is detailed in Algorithm 2.

Algorithm 2: Robustness-Aware SIoT Selection
(RASS)

Input: G = (T, S,E,R), Q, k, p, τ , λ
Output: F

1 begin
2 Remove each u ∈ S where w[u, v] < τ for v ∈ Q
3 S

∗ ← ∅; U← ∅; expand← 0
4 CRP (Lemma 4) on GS = (S,E)
5 foreach vi ∈ S = {v1, .., v|S|} do
6 push {{vi},

⋃
j∈[i+1,|S|] vj} into U

7 while expand < λ do
8 expand← expand+ 1
9 Pop σ = {S,C} from U based on ARO

10 if σ can be pruned by AOP (Lemma 5) or RGP
(Lemma 6) then

11 Continue

12 Copy σ to σ′; Push σ back into U if |S|+ |C| ≥ p
13 u← argmaxx∈C′ α(x)
14 Move u from C

′ to S
′

15 if |S′| = p and Ω(S′) > Ω(S∗) then
16 S∗ ← S′

17 else if |S′| < p then
18 push σ′ back to U

19 F ← S
∗

20 return F

5.1 Accuracy-oriented Robustness-aware Or-
dering

The selection of partial solution σ from the priority queue
to construct σ′ is critical to the solution quality and al-
gorithm efficiency. This is because a carefully selected σ
can generate a good solution earlier, which can be used to
prune other partial solutions afterwards. One simple ap-

proach, called Accuracy Ordering, is to select σ where its
corresponding solution set S has the maximum Ω(S) (i.e.,
maximum accuracy), to expand into σ′.

Consider Figure 2, after initialization, Accuracy Order-
ing would select {{v1}, {v2, v4, v5, v6}} because {v1} has the
maximum Ω(S). Moreover, this partial solution is copied
and expanded into {{v1, v2}, {v4, v5, v6}} because v2 has the
maximum α(·) in {v2, v4, v5, v6}. However, {v1, v2} will not
become a feasible solution because p = 3 and k = 2, i.e., re-
quiring the SIoT objects in the solution to connect to each
other. This example demonstrates that Accuracy Order-
ing does not consider the degree constraint and is inclined
to obtain a set of SIoT objects without communication ro-
bustness, resulting in the generation of a large number of
infeasible solutions.

To tackle the problem of Accuracy Ordering, we propose
Accuracy-oriented Robustness-aware Ordering (ARO) to con-
sider both accuracy and communication robustness simulta-
neously. The idea of ARO is to prioritize the selection of
Accuracy Ordering with additional conditions of the com-
munication robustness. Recall that Accuracy Ordering pops
the partial solution σ = {S,C} with the maximum Ω(S) from
U. Then σ′ is constructed by moving the vertex u ∈ C which
incurs the maximum α(u) to S. In ARO, σ is selected from
the priority queue only when (S ∪ {u}) (u incurs the maxi-
mum α(u) in C) has sufficient communication robustness. In
this case, ARO effectively guides RASS to expand good par-
tial solutions which has high potential to satisfy the degree
constraint.

Specifically, given a partial solution σ = {S,C}, let ∆(S) =
∑

v∈S
degE

S
(v)

|S|
be the average inner degree of S, and let u be

the SIoT object in C which incurs the α(u). In ARO, we first
assume that u is added to S. Then, we examine if the com-
munication robustness of the new set S ∪ {u} is sufficiently
large. After that, from those partial solutions that satisfy
the communication robustness requirement, we select and
pop the partial solution which incurs the maximum Ω(·) for
expansion. The communication robustness of S∪{u} is con-
sidered sufficiently large if the following Inner Degree Con-

dition (IDC) holds: ∆(S ∪ {u}) ≥ |S ∪ {u}| − µ·|S∪{u}|+p−1
p−1

,
where µ is a self-adjusting filtering parameter.

The filtering parameter µ is important for finding good
feasible solutions quickly. Specifically, µ is set as p − k − 1
initially to provide a more strict filtering power when select-
ing SIoT objects into S to fulfill the degree constraint, i.e.,
when µ is larger, vertex u passes IDC when u has more inner
degree in the current S∪{u}. When no SIoT object satisfies
IDC with the current µ values, ARO decreases µ to lower
the threshold until at least one vertex u satisfies IDC.

In our example shown in Figure 2, given σ = {S = {v1},C =
{v2, v4, v5, v6}}, with µ = p− k − 1 = 0, ARO avoids to se-
lect v2 ∈ C to expand S (which would be chosen by the
intuitive Accuracy Ordering) because ∆(v1 ∪ {v2}) < 2− 1
does not satisfy the Inner Degree Condition. In fact, se-
lecting v2 by Accuracy Ordering would not expand σ into
any feasible solution, but only costs unnecessary expansions.
Instead, ARO considers the set of SIoT objects in C which
satisfies Inner Degree Condition, i.e., {v4, v5, v6}, and picks
v4 because v4 incurs the maximum α(·). As a result, ARO
expands σ to σ′ = {{v1, v4}, {v2, v5, v6}}.

5.2 Pruning Strategies
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The ordering strategy, i.e., ARO, described in Section
5.1 prioritizes the expansion of partial solutions that are
likely to become good feasible solutions. It is expected that
ARO is able to obtain the first feasible solution which fol-
lows the degree constraint much earlier than Accuracy Or-
dering because inner degrees are examined during the pro-
cess. To reduce the examination of unnecessary partial so-
lutions which will never become better feasible solutions,
we further derive two pruning strategies, namely Accuracy-
Optimization Pruning (AOP) and Robustness-Guaranteed
Pruning (RGP).

Accuracy-Optimization Pruning (AOP) keeps tracks of
the objective value of the currently best solution, i.e., Ω(S∗)
and removes the partial solutions that will never become
a better solution than S

∗ by deriving the upper bound on
the objective values of the partial solutions. Equipped with
AOP, RASS is able to avoid unnecessary expansions of par-
tial solutions and significantly reduces the computation time.
On the other hand, Robustness-Guaranteed Pruning (RGP)
considers the communication robustness of the partial solu-
tions. RGP prunes the partial solutions (discards it from U

directly) if they cannot grow into feasible solutions, i.e., sat-
isfying the degree constraint. With RGP, algorithm RASS
can avoid spending unnecessary computation resource on
partial solutions that will not become feasible solutions.

Specifically, given the currently best solution S
∗ and its ac-

curacy Ω(S∗), Lemma 5 states Accuracy-Optimization Prun-
ing.

Lemma 5. Accuracy-Optimization Pruning (AOP).
Partial solution σ = {S,C} can be removed from the priority
queue U if

∑
v∈S

α(v)+(p−|S|)·maxu∈C α(u) ≤ Ω(S∗) holds.

Proof. The first term of the inequality is the total ac-
curacy of the SIoT objects in S, and the second term:
(p − |S|) · maxu∈C α(u) is an upper bound on the total ac-
curacy the current partial solution can achieve by adding
(p − |S|) SIoT objects. Therefore, if the inequality holds,
any solution constructed from the current partial solution σ
will never have total accuracy larger than the currently best
solution S

∗ and thus can be safely pruned.

Return to the running example in Figure 2. After ob-
taining S

∗ = {v1, v4, v5}, assume that RASS is consider-
ing to expand σ = {S = {v2},C = {v4, v5, v6}}. Since∑

v∈S
α(v) = 0.8 and (p − |S|) · maxu∈C α(u) = 2 · 0.6,∑

v∈S
α(v) + (p − |S|) ·maxu∈C α(u) = 2.0 < Ω(S∗) = 2.05.

Therefore, σ can be directly removed from U without any
further expansions.

On the other hand, Robustness-Guaranteed Pruning con-
siders the degrees of the SIoT objects inside S and those
outside S of a partial solution. The following Lemma 6 de-
tails RGP.

Lemma 6. Robustness-Guaranteed Pruning (RGP).
Partial solution σ = {S,C} can be removed from the pri-
ority queue U if one of the conditions holds: 1) p − |S| +
minv∈S deg

E
S (v) < k, or 2)

∑
v∈C

degEC∪S(v) < k(p− |S|).

Proof. For the first condition, p − |S| is the number of
SIoT objects which will be added into S, and minv∈S deg

E
S (v)

is the minimum inner degree of the SIoT objects in S. There-
fore, the left-hand-side of the first condition is the upper
bound on the inner degree of the vertex with the minimum
inner degree in S. If the first condition holds, at least one
SIoT object will not satisfy the degree constraint afterwards.

The first condition considers the SIoT objects that have
been moved into S. For the second condition, it considers
the SIoT objects that are in C. For the Right-Hand-Side of
the inequality, (p − |S|) is the number of SIoT objects that
need to be moved from C into S, and k(p−|S|) is the number
of total vertex degrees the added vertices should have to be-
come a feasible solution. Therefore, if the

∑
v∈C

degEC∪S(v),
i.e., the total vertex degrees C can provide, is fewer than
k(p− |S|), the partial solution σ will never grow into a fea-
sible solution.

Return to Figure 2, assume RASS is now examining σ =
{{v2}, {v4, v5, v6}}. Since

∑
v∈C

degEC (v) = 1 + 1 + 0, which
is smaller than k(p−|S|) = 2·(3−1). Therefore, σ can be di-
rectly removed from U without further expansions. The fol-
lowing Theorem 5 summarizes the time complexity of RASS.

Theorem 5. RASS has time complexity O(|R|+ λ(|S|+
λ)p2).

Proof. RASS removes vertices which do not satisfy the
accuracy constraint from S in O(|R|) time. Core-based Ro-
bustness Pruning is performed in O(|S|), and for initializa-
tion, RASS spends O(|S|) to construct and push each par-
tial solution {{vi},

⋃
j∈[i+1,|S|] vj} into U. Therefore, before

RASS expands any partial solution, it takes O(|R| + |S|)
time.

To identify and pop a partial solution, since U has at
most (|S| + λ) partial solutions, RASS performs O(|S| +
λ) times Inner Degree Condition verification (which takes
O(p2)). That is, it costs O((|S|+ λ)p2) to identify and pop
the partial solution σ. It takes O(p) and O(|S|) time to
examine Accuracy-Optimization Pruning and Robustness-
Guaranteed Pruning, respectively, and O(|S|) time to copy σ
to σ′. Therefore, expanding a partial solution takes O((|S|+
λ)p2) time. Since RASS expands at most λ partial solu-
tions, expanding λ partial solutions takes O(λ(|S| + λ)p2).
In summary, the time complexity of RASS is O(|R|+λ(|S|+
λ)p2).

6. EXPERIMENT
In this section, we first detail the preparation of the datasets

used in our evaluation. Afterwards, we evaluate the perfor-
mance of the proposed algorithms with real datasets. Since
BC-TOSS and BC-TOSS are NP-hard, we first enumerate
all the possible combinations on a small-scale dataset to de-
rive the optimal solution, and compare it with our solu-
tions. Moreover, to evaluate the efficiency and effectiveness
of the proposed algorithms, a co-author network is trans-
formed into an SIoT network, where each node in the net-
work contains a skill set (detailed in Section 6.1). Finally, a
user study with 100 people is conducted to compare manual
coordination with the proposed HAE and RASS.

6.1 Experiment Setting
The first dataset, RescueTeams, contains a small set of the

rescue and disaster response teams in Canada4 and Califor-
nia, USA,5 with 68 and 77 teams, respectively. We regard

4A part of the rescue and disaster response teams can be
found on http://en.wikipedia.org/wiki/Canadian\ Forces\
Search\ and\ Rescue

5A part of the rescue and disaster response teams can be
found on http://www.calema.ca.gov/Pages/default.aspx
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each team as a candidate SIoT object with possession of cer-
tain equipment representing proficiency in associated, e.g., a
rescue and disaster response team with equipment A and B
is viewed as a node in G with skills A and B. Moreover, the
accuracies of edges are generated by uniform distribution
ranged from 0 to 1. We also collect and analyze the spatial
coordinates and characteristics of 34 and 32 disasters occur-
ring in Canada and California, respectively, during the past
5 years to serve as the basis of queries and required skills
in our evaluation. The types of disasters include wildfires,
hurricanes, floods, earthquakes, and landslides. Due to the
lack of social relations in the RescueTeam dataset, we create
social links to the dataset based on the distance between two
teams. We first sort all the pairwise distances in ascending
order and select the top 50% to generate social edges.

Moreover, since there is no public large-scale SIoT dataset
with specified tasks, to generate the input for the TOSS
problem, we take Dataset DBLP, which contains 511, 163
nodes and 1, 871, 070 edges, and only entries corresponding
to the papers published in the areas of Database (DB), Arti-
ficial intelligence (AI), Data mining (DM), and Theory (T)
conferences are kept. Only the authors who have at least
three papers in the four areas are included, and each au-
thor is regarded as an SIoT object and the skills of authors
are regarded as the tasks can be assigned to them. More-
over, we generate the skill set and social edges similar to [9].
Specifically, an author owns a skill (terms) if the term ap-
pears in at least two titles of papers that he has co-authored.
We further generate the accuracy edges of author vi by first
counting the number of times each term appearing in titles
of papers that he has co-authored and then normalizing it
with the largest counts among all authors. Finally, two au-
thors vi and vj are connected if they appear as co-authors
in at least two papers in DBLP.

In the following, we compare HAE and RASS with two
baselines. The first baseline is a brute-force method which
enumerates all the feasible solutions for BC-TOSS (namely
BCBF ) and RG-TOSS (namely RGBF ) to show the differ-
ence between the solutions derived from the proposed meth-
ods and optimal solutions. Moreover, we compare HAE and
RASS with DpS [4]. DpS is an O(|V |1/3)-approximation
algorithm for finding a p-vertex subgraph H ⊆ S with the
maximum density (the number of edges induced by H di-
vided by |H |) on E without considering the query group,
accuracy edges, hop or degree constraint. Finally, we im-
plement the proposed algorithms, HAE and RASS, and in-
vite 100 people from various communities, e.g., government,
banks, hospitals, technology companies, schools, and busi-
nesses to join our user study, to compare the objective values
and the time for answering BC-TOSS and RG-TOSS with
manual coordination and proposed algorithms (i.e., HAE
and RASS) to demonstrate the advantages of automatic
query answering on SIoT. Each user is asked to plan 20 SIoT
object selections for query answering with the query tasks.
For the target graph, we sample a topology from Dataset
RescueTeams and randomly connect edges to the query task
with the weighting following the uniform distribution. All
the experiments are implemented in an HP DL580 server
with 4 Intel Xeon E7-4870 2.4 GHz CPUs and 1 TB RAM.

6.2 Performance Evaluation

6.2.1 RescueTeams
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Figure 3: Experiment results on RescueTeams
dataset

In the following, we first compare the performance of HAE
and RASS with baselines (BCBF and RGBF ) on Dataset
RescueTeams. BCBF and RGBF are brute-force algorithms
which enumerate all the combinations of solutions, check the
feasibility, and output the feasible solutions with the largest
objective value. We randomly sample the query tasks 100
times and report the averaged results.

Figure 3(a) compares the objective values of HAE and
RASS with BCBF and RGBF, respectively, for different
query task sizes |Q|, where the budget constraint p = 5,
hop constraint h = 2, and accuracy constraint τ = 0.3. The
results show that the objective value of the target group is
proportional to the query group size |Q|. Moreover, HAE
and RASS always derive the optimal objective value as |Q|
grows. The objective values of HAE are slightly larger than
those of RASS since the constraint is looser and thus reduces
the solution space. Figure 3(b) presents the running time for
answering BC-TOSS with different budget constraints p. As
p grows, the running time of BCBF significantly increases
due to the large number of possible combinations, while the
running time of HAE only slightly increases. On the other
hand, Figure 3(c) presents the running time for answering
RG-TOSS with different degree constraints k. RASS signif-
icantly outperforms RGBF as |Q| grows.

In addition to objective values and running time, the fea-
sibility ratio and average hop of HAE are reported in Figure
3(d). Although HAE slightly relaxes the hop constraint to
derive the optimal solution with a bounded error, all the fea-
sibility ratios w.r.t. different h are 100%. The average hop
of solutions derived by HAE slightly increases as h grows,
which implies that HAE finds optimal solutions of which
SIoT objects are not far away from each other for providing
data and transmission reliability. On the other hand, Figure
3(e) shows the feasibility ratio and average degree of RASS.
All the feasibility ratios w.r.t. different K are 100%. Note
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Figure 4: Experiment results on DBLP datasets

that the average degree of optimal solutions when k = 0 (no
degree constraint) and k = 1 are close. This is because the
rescue teams with different skills are usually not far from
each other to cover all the rescue tasks within an area. As
such, the average degree of the optimal solution without the
degree constraint is more than 1, i.e., nodes are connected
instead of being isolated. Figure 3(f) shows the feasibility
ratio with different accuracy constraints from 0 to 0.5, and
the results indicate the robustness of HAE and RASS since
the feasibility ratios are all 100% given different accuracy
constraints τ .

6.2.2 DBLP
We further evaluate and analyze the performance of the

proposed algorithms on DBLP dataset. Figures 4(a)-(d)
show the results for answering BC-TOSS. We report the re-
sults of HAE with three baselines: 1) brute-force method
(BCBF ), 2) Densest p-Subgraph (DpS) [4], and 3) HAE
without IncidentWeight Ordering with Top-p Object Lookup
and Accuracy Pruning (HAE w/o ITL&AP).

Figure 4(a) shows the running time with different budget
constraint p, where |Q| = 5, h = 2, and τ = 0.3. The
result indicates that the running time of HAE is close to
that of DpS but outperforms other baselines. The running
time of DpS is the smallest since DpS only finds the densest
p-subgraph without computing the feasibility of solutions.
On the other hand, as p grows, the running time of HAE is
much less than that of HAE w/o ITL&AP, which indicates

the effectiveness of the lookup and pruning strategy. Figure
4(b) shows the objective values and feasibility ratios with
different hop constraints given accuracy constraint τ = 0.3.
DpS slightly outperforms HAE in terms of feasibility ratio
since DpS finds socially-tight groups which are inclined to
satisfy the hop constraint. However, without considering
the objective values, the objective values of DpS are much
smaller than that of HAE, while the objective values of HAE
are close to optimal. Figure 4(c) reports the running time
with different hop constraints h. As h increases, the running
time of all methods grows linearly, while the running time
of HAE is still close to 1 second given h = 6. We further
investigate the relationship between accuracy constraint τ
and running time. The results manifest that the running
time can be reduced when τ is large since the solution space
is significantly reduced with large τ . However, if we set τ
with a value close to 1, the solution space may become empty
without any feasible solutions.

Figures 4(e)-(h) present the results for answering RG-
TOSS. The results of RASS are compared with those of the
brute-force method (RGBF ) and DpS. Given |Q| = 5, k = 3,
and τ = 0.3, Figures 4(e) shows the running time with dif-
ferent budget constraints p. The results indicate that the
proposed RASS outperforms RGBF by at least two orders.
On the other hand, Figure 4(f) shows the objective values
and feasibility ratios with different k. When the degree con-
straint k increases, the feasibility ratio of RASS is still 100%
and outperforms DpS since ARO prioritizes the examination
of partial solutions that will lead to feasible solutions. Note
that DpS finds the densest subgraph but may not satisfy the
degree constraint since most of the edges in the group may
only be incident to some nodes, while the remaining nodes
do not satisfy degree constraint. Meanwhile, the objective
values of RASS are close to those of the optimal solutions.

We further conduct experiments on the running time and
objective values with different k as shown in Figure 4(g).
As the degree constraint becomes strict, i.e., the require-
ment of reliability in data transmission becomes high, the
objective values become small since the cohesive require-
ment reduces the number of possible solutions and may
not answer the task correctly. Moreover, as k increases,
the running time of RASS also grows since the complex-
ity of finding a cohesive group is high, e.g., cliques. Fig-
ure 4(h) shows the running time of RASS, RASS with-
out Accuracy-oriented Robustness-aware Ordering (RASS
w/o ARO), RASS without Core-based Robustness Pruning
(RASS w/o CRP), RASS without Accuracy-Optimization
Pruning (RASS w/o AOP), and RASS without Robustness-
Guaranteed Pruning (RASS w/o RGP). The result man-
ifests that Accuracy-Optimization Pruning (AOP) is the
most effective because AOP precisely estimates the upper
bounds of partial solutions and effectively prunes the par-
tial solutions that cannot grow into better solutions.

6.2.3 User Study
Here we conduct a user study to show that human com-

putation for BC-TOSS and RG-TOSS is time-consuming,
while the objective values are not close to optimal even when
the number of SIoT objects is small. Each user is assigned
to solve BC-TOSS and RG-TOSS on 5 small SIoT networks
with vertex set sizes 12, 15, 18, 21, and 24. To avoid con-
fusing users with the complicated network structure, every
vertex is labelled with an objective value, which is the sum-
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Figure 5: User Study results

mation of the accuracy edge weights for the assigned tasks.
For each instance, the query group size, i.e., |Q|, is 3, the
budget constraint p is 4, the hop constraint is 2, and the
degree constraint is 2.

Figure 5(a) compares manual coordination, HAE, andRASS
in terms of running time. The result indicates that users
spend from 50 to 200 seconds solving the BC-TOSS and
RG-TOSS problem, while the running time for HAE, and
RASS is close to 0. Moreover, the time of manual coordi-
nation for BC-TOSS is greater than that of RG-TOSS with
different network sizes. However, as shown in Figure 5(b),
the feasible ratio of manual coordination forRG-TOSS is
small, especially for large network size, because it is difficult
for users to check the degree constraint on network topol-
ogy, while maximizing the summation of accuracy. The in-
terplay between network topology and accuracy complicates
RG-TOSS.

We also ask users to vote for the results of manual coor-
dination, HAE, and RASS, as shown in Figure 5(c). The
result manifests that users think our solutions are better as
compared to the solutions found by themselves. Moreover,
users think that RASS is more helpful since the feasibility
examination on network topology for RG-TOSS problem is
difficult. Therefore, it is desirable to deploy HAE and RASS
as a service for automatic task-optimized group search, es-
pecially to address the need of a large group in a massive
SIoT network nowadays.

7. CONCLUSIONS
In this paper, we propose and study a family of Task-

Optimized SIoT Selection (TOSS) problems. To our best
knowledge, this is the first paper that considers simulta-
neously the accuracy of performing tasks and the commu-
nication capability of SIoT objects. We study two differ-
ent TOSS problems based on two different communication
requirements, namely BC-TOSS and RG-TOSS. For BC-
TOSS, we propose a polynomial-time algorithm with per-
formance guarantee, and for RG-TOSS, we propose an effi-
cient and effective algorithm that can obtain good solutions
in polynomial time. We propose various ordering and prun-
ing strategies for each algorithm to significantly reduce the
computation time. Experimental results on real datasets
show that our proposed algorithms outperform the other
baselines.
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ABSTRACT

An increasing amount of user-generated content on the Web is

geotagged. This often results in the formation of user trails, e.g.,

sequences of photos, check-ins, or text messages, that users gener-

ate while visiting various locations. In this paper, we introduce and

study the problem of identifying sets of locations that are strongly

associated under social and textual criteria. We say that a loca-

tion set is associated with a set of keywords if there exists a user

with posts around these locations whose textual descriptions cover

all keywords. We measure the strength of this association by the

number of users with posts that support it. Although the prob-

lem reminisces frequent itemset mining, we show that our support

measure does not satisfy the necessary anti-monotonicity property,

which is used to effectively prune the search space. Nonetheless,

by studying the characteristics of the support measure, we are able

to devise an efficient approach. We present a basic and two opti-

mized algorithms, exploiting an inverted or a spatio-textual index

to increase efficiency. Finally, we conduct an experimental evalu-

ation using geotagged Flickr photos in three major cities. From a

qualitative perspective, the results indicate that the introduced type

of query returns meaningful and interesting location sets, which are

not discovered by other existing approaches. Furthermore, the pro-

posed optimizations and the use of appropriate indexes significantly

reduce computation time.

1. INTRODUCTION
With the increasingly widespread use of mobile GPS-enabled

devices and social networks, the amount of geotagged content on the

Web is constantly growing. A user moving around a city may upload

photos, post tweets, or check in at various locations, generating a

digital trail of activities, which can be represented as a sequence of

geotagged posts. Such publicly available trails enable the analysis

and extraction of location associations that are implicitly defined by

the activities of city dwellers or visitors. In turn, these associations

can be used to build smarter location-based services and better

understand how people experience their urban environment.

©2017, Copyright is with the authors. Published in Proc. 20th Inter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

In this work, we seek to find Socio-Textual Associations (STAs)

among locations that are strongly supported by a corpus of geo-

tagged social media content. Given a set of keywords, we say that a

group of locations are socio-textually associated if a user has posts

near each of these locations, and the combined keyword set of these

posts contains all query keywords. The more people make an asso-

ciation, i.e., the stronger its support in the corpus is, the likelier it is

that there exists a latent thematic connection among the locations.

Compared to previous works that search for connections among a

group of locations, our work has the distinguishing and novel aspect

that it considers social and textual criteria in unison to define asso-

ciations. In one line of work (e.g., [12, 10, 15, 3, 19, 23]), which we

term Location Patterns (LP), the objective is to determine groups,

patterns or sequences of locations (or regions) that are frequent in

terms of purely social criteria, i.e., how many people support them.

Since the process ignores the textual aspect, the identified locations

are not semantically characterized or distinguished, and thus there

is no mechanism to explore or exploit the resulting groups under

a thematic context. For instance, this limits queries to finding the

overall most frequent sequence of locations in a given area, or the

most frequent Point of Interest (POI) to visit next. Even though

one could easily enrich locations with textual information after the

mining process, say to support recommending the most frequent

restaurant to visit next, the locations remain only socially associ-

ated, and not thematically, because the computed frequencies still

ignore the textual aspect.

Another related line of work is the Collective Spatial Keyword

(CSK) query [21, 4], where locations are grouped according to tex-

tual criteria (i.e., they must collectively cover the given keywords)

and spatial criteria (i.e., they must be close to each other and/or

to the user’s location). Thus, the optimization objective is an ag-

gregate spatial distance, instead of some evidence-based frequency

metric. In other words, the strength of the association among a valid

group of locations (i.e., one that covers all keywords) is defined by

spatial proximity alone. Again, this proximity-based approach fails

to establish a thematic connection evidenced by users’ behavior.

For example, the fact that there is a restaurant next to an art exhibi-

tion venue, does not necessarily imply that art-loving people would

find this particular restaurant attractive, unless such a connection

is indeed supported by a large number of posts, from the same

users, containing, for example, both keywords “art” and “restau-

rant” around these locations. As a matter of fact, if a strong thematic

association among nearby locations exists, our problem formulation

will certainly capture it.

A rather straightforward way to associate locations with keywords
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Table 1: Categorization of Existing Work and Ours

Line of Work Information Exploited Optimization

Spatial Textual Social Objective

Location Patterns (LP) [3, 10, 12, 15, 19, 23] × × frequency

Collective Spatial Keyword (CSK) [4, 21] × × proximity

Aggregate Popularity (AP) × × × popularity

Socio-Textual Associations (STA) × × × frequency

according to users’ behavior is based on rank aggregation [8]. For

each keyword, consider a ranking of locations according to the

keyword popularity, i.e., the number of posts that contain it. Then,

to derive a group of locations that is most associated with a set of

keywords, one can simply collect the most popular location for each

keyword. This approach, which we call Aggregate Popularity (AP),

has the advantage that individual locations are strongly associated

with their respective keywords, but the location set as a whole

may lack a strong socio-textual association. Indeed, each location

may be popular for a different type of users, hence there may be

no significantly sized population for which all these locations are

popular. Exactly as in the case of proximity-based associations, if

a strong thematic association among popular locations exists, our

socio-textual approach will discover it.

Another differentiating trait of our work is that we consider the

textual information that is included in the posts themselves, and do

not rely on an external categorization of locations or POIs. The

reason is that we seek to exploit the wisdom of the crowd to also

determine textual relevance, in addition to quantify the strength

of derived associations. Nonetheless, our methods can be readily

adapted to take into account external textual descriptions as well.

To better frame our contribution with respect to previous works,

Table 1 summarizes all approaches according to the type of infor-

mation they exploit, i.e., spatial, textual, or social (user id), as well

as the objective they optimize for. Mining location patterns does

not exploit textual information, and seeks for groups of locations

that maximize the frequency with which they co-appear among

users’ trails. On the other hand, collective spatial keyword queries

ignore the social aspect, and look for location sets that maximize

their proximity (to each other and/or a target location) subject to

the constraint that they cover given keywords. An approach based

on aggregating popularity considers all types of information avail-

able, and strives to include locations that are individually popular

for some keyword and collectively cover given keywords. Our

work also considers all types of information, but optimizes for a

frequency metric that counts co-appearances of locations under a

certain theme/topic/context, which is defined by the given keywords.

As an example, consider a search for locations in Berlin using

the keywords “wall”, “art” and “restaurant”. Figure 1 depicts

the results returned by different alternative approaches for combin-

ing locations to satisfy these keywords. Our socio-textual based

approach returns the following location set as the top result (star-

shaped markers): 〈 “East Side Gallery”, “Hackescher Markt” 〉.
The former is a portion of the Berlin wall covered with paintings,

hence hosting many posts with the keywords “wall” and “art”. The

latter is a popular square in the city center, hosting also a series of

restaurants frequently visited by tourists and travelers. As it turns

out, these locations are neither the most popular ones for each indi-

vidual keyword (see locations with circle-shaped markers, returned

by the AP approach) nor close to each other. Yet, they reveal an

interesting association, hinting to the fact that many travelers that

have visited or plan to visit the Wall, being interested in art, tend to

also prefer restaurants located at Hackescher Markt.

Furthermore, a search based on CSK identified around 350 sin-

gleton locations, for which there exists at least one user with posts

Figure 1: Example of location sets retrieved for keywords

“wall”, “art” and “restaurant” in Berlin.

containing all query keywords. One of these results is illustrated

in Figure 1 (square-shaped marker). It is not straightforward how

to select the best among these results; in fact, several of them may

even be due to outliers or noise, which are inherent to crowdsourced

content. Since a CSK query does not take frequency into account,

it is better suited for cases where the query terms refer to (curated)

POI categories, while being error prone and sensitive to outliers

when searching on raw tags. On the other hand, the top result based

on AP consists of Brandenburg Gate (for “wall”), a famous monu-

ment close to where the Berlin wall used to pass; the intersection of

Gneisenaustr. and Mehringdamm streets (for “restaurant”), a place

with many popular restaurants; and Stattbad Wedding (for “art”), a

former well-known art venue. Each of these locations is popular for

the respective query keyword, but they do not represent any strong

shared interest between the people visiting them.

Existing algorithms for related problems cannot be used to extract

socio-textual associations. Although our problem seems similar to

mining frequent location patterns, the requirement for the locations

to collectively cover certain keywords significantly complicates the

problem, as we discuss in Section 4. Specifically, our notion of

support (frequency) for a location set does not exhibit the anti-

monotonicity property necessary to apply an Apriori-like algorithm

[1]. Briefly, such a property would allow for early pruning of

location sets that cannot be extended to produce valid results. Prac-

tically, the implication is that a naïve algorithm for even a relatively

small-sized city-level dataset, with around 20,000 distinct locations,

would need to investigate more than 1013 sets of three locations.

Nevertheless, by studying the problem characteristics, we are

able to introduce a weaker notion of support that (1) exhibits anti-

monotonicity, and (2) is an upper bound on the actual support of

location sets. Armed with these two properties, we then intro-

duce a methodology to efficiently identify location sets with strong

socio-textual associations. Moreover, we study three different im-

plementations of this methodology, each having its own merits. In

the simplest, we assume that no pre-processing is allowed and that

no index structure is available. We then present a method based

on a simple off-the-shelf inverted index, and demonstrate how it

can significantly speed up processing. The only caveat is that the

association of locations with nearby posts is assumed to be known

beforehand. Finally, leveraging the recent advances in spatio-textual

indices, we devise an algorithm that exploits their general function-

ality. In particular, we consider the state-of-the-art I3 index [22],

which we also extend further to derive an even faster approach.

Compared to the inverted index approach, the spatio-textual index

methods allow to define the association of locations with nearby
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posts dynamically, which causes an overhead in execution time but

provides higher flexibility.

In addition, we consider the problem of ranking socio-textually

associated location sets instead of relying on a user-specified min-

imum support threshold. Thus, we directly address the problem of

identifying the k most strongly associated location sets. We de-

scribe a general methodology, and propose algorithms that build

upon their threshold-based counterparts.

The main contributions of our work are summarized below:

• We introduce and formally define the problem of finding

socio-textually associated location sets.

• We study the problem characteristics and introduce a gen-

eral framework based on a weaker support measure, which

satisfies the desirable anti-monotonicity property.

• We present a basic algorithm, and two efficient algorithms

that exploit an inverted index and a spatio-textual index, re-

spectively, to significantly speed up computation.

• We consider the ranking variant of the problem, and discuss

the necessary adaptations to all proposed algorithms.

• We present results from an experimental evaluation using

real-world data from geolocated Flickr photo trails in three

major cities.

The rest of the paper is structured as follows. In the next section,

we present related work. Then, we formally define the problems in

Section 3, and study their characteristics in Section 4. Following

this analysis, we present our algorithms in Section 5, and extend

them to the top-k variant in Section 6. Finally, Section 7 presents

our experimental evaluation, and Section 8 concludes the paper.

2. RELATED WORK
Next, we review related work on the topics of mining frequent

locations from geotagged posts and spatial keyword search.

2.1 Mining Geotagged Posts
Several approaches analyze trails of geotagged posts, mainly pho-

tos, to extract interesting Location Patterns (LP), such as scenic

routes or frequently traveled paths. A typical methodology is to

use a clustering algorithm to extract landmark locations from the

original posts, and then apply sequence pattern mining.

In [12], clustering is first used to identify POIs; then, association

rule mining is applied to extract associative patterns among them.

In [10], each photo is first assigned to a nearby POI, whereas, for the

remaining ones, a density-based clustering algorithm is applied to

generate additional locations. Then, a travel sequence is constructed

for each user, and sequence patterns are mined from these individual

travel sequences. In [15], kernel vector quantization is used to

find clusters of photos; then, routes are defined as sequences of

photos from the same user, and patterns are revealed by applying

hierarchical clustering on routes using the Levenshtein distance. In

[3], a trajectory pattern mining algorithm is applied on geotagged

Flickr photos to identify frequent travel patterns and regions of

interest. In [16], a clustering method is applied on geotagged photos

to identify and rank popular travel landmarks.

Geotagged photos have been used to measure the attractiveness

of road segments in route recommendation. A tree-based hierar-

chical graph is used in [24] to infer users’ travel experiences and

interest of a location from individual sequences. Considering the

transition probability between locations, frequent travel sequences

are identified. Ranking trajectory patterns mined from sequences of

geotagged photos is investigated in [19]. The mean-shift algorithm

extracts locations from the original GPS coordinates of the photos;

then, the PrefixSpan algorithm identifies the frequent sequential

patterns, which are ranked based on user and location importance.

In [23], density-based clustering is used to identify regions of at-

tractions from trails of geotagged photos; then, the Markov chain

model is applied to mine transition patterns among them.

Other efforts have focused on automatic trip planning or per-

sonalized scenic route recommendations based on geotagged photo

trails, taking into account user preferences, current or previous lo-

cations, and/or time budget (e.g., [13, 17]). In [6], individual photo

streams are integrated into a POI graph, and itineraries are con-

structed based on POI popularity, available time, and destination.

In [14], users’ traveling preferences are learned from their travel his-

tories in one city, and then used to recommend travel destinations

and routes in a different city. In [11], a set of location sequences that

match the user’s preferences, present location, and time budget, are

computed from individual itineraries. From a different perspective,

a Bayesian approach is applied in [2] to test different hypotheses

about how photo trails are produced. Various assumptions are as-

sessed, e.g., that users tend to take photos close to the city center,

near POIs, close to their previous location, or a mixture of these.

Similar to the works presented above, we also select locations

that appear frequently in users’ posts. However, in our case these

locations should be strongly associated with a given set of keywords,

a requirement which complicates the search.

2.2 Spatial Keyword Search
Spatial keyword search involves queries that comprise a user

location and a set of keywords. Both the spatial and the textual parts

can be applied as boolean filters or as ranking criteria. For example,

the query may retrieve all relevant objects within a specified distance

from the given location, or rank them based on their proximity to it;

similarly, it may retrieve all objects containing one or more of the

query keywords, or rank them based on relevance. A comprehensive

survey of existing approaches is presented in [5].

These efforts focus on combining spatial and textual indices into

hybrid ones. Accordingly, they can be characterized as text-first or

space-first [7]. For example, the IF-R*-tree uses an inverted file

where the postings in each inverted list are indexed by an R-tree; on

the other hand, the R*-tree-IF employs an R*-tree where inverted

files are attached to each leaf node [25]. More recent methods have

focused on retrieving top-k objects, ranked by an aggregate score

combining both spatial proximity and textual relevance [22, 20].

More closely related to our work are Collective Spatial Keyword

(CSK) queries, such as themCK query [21]. Givenm keywords, it

retrieves a set of spatio-textual objects that are as close to each other

as possible and collectively contain all keywords. A similar variant

is defined in [4], where the retrieved objects need to be as close to

the user location as possible, and, optionally, in close proximity to

each other.

In our work, we search for a set of locations that cover all given

keywords. However, instead of optimizing for spatial proximity,

we seek to maximize their co-occurrence in user trails. Thus, the

approach for addressing the problem is fundamentally different.

3. PROBLEM DEFINITION
Assume a database of posts P made by users U . Each post p ∈ P

is a tuple p = 〈u, ℓ,Ψ〉, where p.u ∈ U is the user that made the

post, p.ℓ = (lon, lat) is the geotag (location) of the post, and p.Ψ is

a set of keywords that characterize it. We use Pu to denote all posts

of user u, i.e., Pu = {p ∈ P : p.u = u}. Furthermore, assume

a database of locations L. These may correspond to the posts’

locations, or, for generality, may also be defined independently of

P . For instance, one may use a POI database to populateL, or apply

a clustering algorithm on the posts’ geotags and then construct L
from the cluster centroids. Thus, we reserve the term location for
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Table 2: Notation

Symbol Definition

p, P post, database of posts
u, Pu user, posts of user
ℓ, L, L location, set of locations, database of locations
ψ, Ψ keyword, set of keywords
ULΨ set of users supporting (L,Ψ)
U
LΨ̃

set of users weakly supporting (L,Ψ)
UΨ set of users relevant to Ψ

sup(L,Ψ) support of (L,Ψ)
w_sup(L,Ψ) weak support of (L,Ψ)
rw_sup(L,Ψ) relevant and weak support of (L,Ψ)

σ support threshold

a member of L, and refer to a post’s location as its geotag. Table 2

summarizes the most important notation.

Locations are the principle objects in our work. We seek to

identify sets of locations that are strongly associated with a set of

keywords. To define this association, we first introduce the concepts

of locality and (textual) relevance for a post.

Definition 1 (Local Post). A post p is local to location ℓ if

the post’s geotag is within distance ǫ to ℓ, i.e., if d(p.ℓ, ℓ) ≤ ǫ, where

d is a distance metric (e.g., Euclidean).

Definition 2 (Relevant Post). A post p is relevant to key-

word ψ if the post’s keyword set contains ψ, i.e., if ψ ∈ p.Ψ.

Posts associate locations with keywords. These associations are

bestowed by users themselves, as opposed, for example, to a spe-

cific POI categorization made by a particular source; thus, they

capture the wisdom of the crowd. To model the relationships be-

tween users’ posts, locations, and keywords, we introduce a bipartite

graph, where the two types of vertices correspond to keywords and

locations, while edges correspond to users’ posts.

Definition 3 (Association Graph). The Association Graph

is a bipartite graph G = (V, E), where V = Ψ∪L and E ⊆ Ψ×L,

such that an edge e = (ψ, ℓ) exists iff there exists at least one post

p which is local to ℓ and relevant to ψ; moreover, e is labeled with

the set of users that have made such posts.

Figure 2 shows a running example with the posts of five users

u1, . . . , u5 around three locations ℓ1, ℓ2, ℓ3, containing two key-

words ψ1, ψ2. Post pij denotes the j-th post of the i-th user. For in-

stance, post p12 = 〈u1, ℓ2, {ψ1, ψ2}〉 of user u1 is local to location

ℓ2 and relevant to keywords ψ1 and ψ2. The resulting Association

Graph is depicted in Figure 3.

The association between a keyword and a location is explicit, and

its strength can be quantified by the number of users making it. For

example, three users have associated keyword ψ1 with location ℓ3
in the running example. On the other hand, the association between

sets of keywords and sets of locations is not immediately apparent,

e.g., what the textual description of the location set {ℓ1, ℓ2} should

be. If it is simply the set of keywords that have an edge towards

the location set, then how do we quantify its strength if different

users have made different associations? The location set should be

strongly associated with a set of keywords not because there exist

edges with multiple users in the Association Graph, but because

there exists a large number of users that agree on this association.

Therefore, the key question to answer is when a user supports an

association between a location set and a keyword set.

Definition 4 (Supporting User). A user u supports the as-

sociation between a location set L and keyword set Ψ, denoted as

u ∈ ULΨ, if:

Locations
Users ℓ1 ℓ2 ℓ3

u1 p11 : {ψ1} p12 : {ψ1, ψ2} p13 : {ψ1}
u2 p21 : {ψ1} p22 : {ψ1}
u3 p31 : {ψ2} p32 : {ψ1} p33 : {ψ1}
u4 p42 : {ψ2} p43 : {ψ1}
u5 p51 : {ψ1, ψ2}

L = {ℓ1, ℓ2}, Ψ = {ψ1, ψ2}
ULΨ = {u1, u3}, U

LΨ̃
= {u1, u2, u3}

UΨ = {u1, u3, u4, u5}, U
L̃Ψ

= {u1, u3, u5}

sup(L,Ψ) = 2, w_sup(L,Ψ) = 3, rw_sup(L,Ψ) = 2

Figure 2: Running example.

• for each keyword ψ ∈ Ψ, the user has made a post relevant

to ψ and local to a location ℓ′ ∈ L, i.e., every ψ ∈ Ψ is

connected via a u-labeled edge to some ℓ′ ∈ L; and

• for each location ℓ ∈ L, the user has made a post local to

ℓ and relevant to a keyword ψ′ ∈ Ψ, i.e., every ℓ ∈ L is

connected via a u-labeled edge to some ψ′ ∈ Ψ.

Hence, a user supports association (L,Ψ) if her posts connect

each keyword in Ψ to some location in L, and, vice versa, each

location in L to some keyword in Ψ. This implies a tight coupling

between all keywords and all locations, according to the user.

An association extracted from a user’s posts between a keyword

set and a location set could be arbitrary. After all, the content of

a post is not always related to the location where it was made, and

crowdsourced content is known to be characterized by errors and

noise. Hence, an association acquires credence by the number of

users supporting it. Accordingly, we use this to measure the strength

of a keywords-locations association.

Definition 5 (Support). The support of an association be-

tween a location set L and keyword set Ψ is the number of users

supporting (L,Ψ), i.e., sup(L,Ψ) = |ULΨ|.

Returning to our example, user u1 supports the location set L =
{ℓ1, ℓ2} and keyword set Ψ = {ψ1, ψ2}. For instance, post p11
(resp. p12) is relevant to ψ1 (resp. ψ2) and local to some location

among L; hence the first condition is satisfied; similarly, the second

condition is also satisfied. It is not hard to see that the conditions

are also satisfied for user u3. Therefore, sup(L,Ψ) = 2.

We can now formally state the objective of this work. Given a

set of keywords, we formulate two variants, one that retrieves all

associations above a support threshold, and one that retrieves the k

most strongly supported associations.

Problem 1 (Frequent Socio-Textual Associations). Given

a keyword set Ψ and a support threshold σ, identify all the location

sets, up to cardinality m, that have support above σ.

Problem 2 (Top-k Socio-Textual Associations). Given a key-

word set Ψ, identify k location sets, up to cardinality m, that have

the highest support.

The restriction on the cardinality of the location set is because,

as explained in Section 4, adding more locations can increase the

support of the set.

4. OBSERVATIONS AND APPROACH
Our approach is based on some key observations regarding the

intrinsic characteristics of the studied problems. In fact, the stated

problems reminisce the frequent itemset problem; however, the key
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ψ1

l1

{u1 ,u2 ,u5}
l2

{u1 ,u2 ,u3}

l3{u1 ,u3 ,u4}

ψ2
{u3 ,u5}

{u1 ,u4}

Figure 3: Association Graph for the running example.

difference here is that the introduced support function does not have

the necessary anti-monotonicity property which allows for applying

the Apriori principle. Given two setsX,Y , this property states that

if X ⊆ Y , then sup(X) ≥ sup(Y ). In other words, adding more

items to a set cannot increase its support. However, the support

introduced in Definition 5 does not exhibit this property.

Theorem 1. The support of a location set L and a keyword set

Ψ is not anti-monotonic with respect to the location set, i.e., there

exist two location sets L ⊆ L′ and a keyword set Ψ, such that

sup(L,Ψ) < sup(L′,Ψ).

Proof. We prove via an example. Assume three keywords, four

locations, and two users who have made posts in exactly those

locations, as shown below:

ℓ1 ℓ2 ℓ3 ℓ4
u1 ψ1 ψ2 ψ3 ψ1

u2 ψ3 ψ1 ψ1 ψ2

Consider the keyword set Ψ = {ψ1, ψ2, ψ3}. Notice that only

user u1 supports location set L = {ℓ1, ℓ2, ℓ3}, i.e., sup(L,Ψ) =
1. On the other hand, both users support location set L′ =
{ℓ1, ℓ2, ℓ3, ℓ4}, i.e., sup(L′,Ψ) = 2. In fact, any 3-location set in

this example has support at most 1.

As a matter of fact, the support of a location set and a keyword

set can increase or decrease with respect to the location set. Despite

this negative result, we devise an efficient filter-and-refine approach,

where the filtering step exploits a weaker support measure.

Definition 6 (Weakly Supporting User). A user u weakly

supports a given location set L and keyword set Ψ, denoted as

u ∈ U
LΨ̃

, if for each location ℓ ∈ L, the user has made a post local

to ℓ and relevant to a keyword in Ψ.

The difference with respect to Definition 4 is that only the second

condition applies. In other words, in the Association Graph, there

must exist edges associating each one of the locations in L with

keywords from Ψ, but without necessarily involving all keywords

in Ψ. Accordingly, we define the notion of weak support.

Definition 7 (Weak Support). The weak support of a given

location set L and keyword set Ψ is the number of users weakly

supporting (L,Ψ), i.e., w_sup(L,Ψ) = |U
LΨ̃

|.

In our example, user u2 weakly supports (L,Ψ), where L =
{ℓ1, ℓ2} and Ψ = {ψ1, ψ2}. For both locations, u2 has local

posts (p21 and p22) that are relevant to at least one keyword (ψ1). In

addition, users u1, u3 also weakly support the same location set and

keyword set. On the other hand, u4 and u5 do not, as they do not

have posts local to both locations. Therefore, w_sup(L,Ψ) = 3.

Our filter and refine approach hinges on two properties of the

weak support. The first is its anti-monotonicity, while the second is

that it provides an upper bound for the support of an association.

Lemma 1. The weak support of a location set and a keyword

set is anti-monotonic with respect to the location set, i.e., for

any two location sets L′ ⊆ L and keyword set Ψ, it holds that

w_sup(L′,Ψ) ≥ w_sup(L,Ψ).

Proof. We show that any user u that does not weakly support

(L′,Ψ) cannot weakly support (L,Ψ). Assume otherwise, meaning

that for each location in L there exists a post of u that is local to

that location and relevant to the set Ψ. Trivially, this property also

holds for any location in L′ ⊆ L. Therefore, u must also support

(L′,Ψ) — a contradiction.

Lemma 2. The support of location setL and keyword setΨ is not

greater than their weak support, i.e., sup(L,Ψ) ≤ w_sup(L,Ψ).

Proof. We show that any useru that supports (L,Ψ) also weakly

supports (L,Ψ). As per Definition 4, u has made a post local to each

location in L and relevant to a keyword in Ψ (second condition).

Therefore, the condition of Definition 8 applies, and u must also

weakly support (L,Ψ).

Returning to the example, users u1, u2, u3, u5 weakly support

(L′,Ψ), whereL′ = {ℓ1}. Hence, as per Lemma 1,w_sup(L′,Ψ) ≥
w_sup(L,Ψ). Moreover, as per Lemma 2, we have seen that the

weak support of (L,Ψ) is one more than its support. Based on

these lemmas, we can derive the following important property.

Theorem 2. If the weak support of a location set L and a key-

word set Ψ is less than σ, then the support of any location set

L′ ⊇ L and Ψ cannot be more than σ.

Proof. The premise suggests that σ > w_sup(L,Ψ). From

Lemma 1 we have that w_sup(L,Ψ) ≥ w_sup(L′,Ψ), while

from Lemma 2 we get w_sup(L′,Ψ) ≥ sup(L′,Ψ). Putting

all three inequalities together we get σ > sup(L′,Ψ), i.e., the

antecedent.

This result leads us to the following filter and refine strategy.

Similar to the candidate generation step of the Apriori algorithm,

location sets of increasing cardinality are constructed. Then, the

weak support of the set is counted, and if this is below the threshold,

the set is filtered out. At the end of entire process (when set car-

dinality reaches m), the refinement step is perfomed by explicitly

counting the support of all surviving location sets.

Still, this approach could be inefficient, producing many false

positives. It is possible that the support of a location set is below

the threshold even though its weak support is above the threshold.

Its support may even be zero if there exists no user that has posts

covering all keywords. Such a location set cannot be pruned by

Theorem 2. Following our example, consider location set L =
{ℓ1, ℓ2}, keyword set Ψ = {ψ1, ψ2}, and assume that only user u2

exists. In this case, w_sup(L,Ψ) = 1, but sup(L,Ψ) = 0, since

there exists no post from u2 relevant to ψ2. Motivated by this, we

seek additional ways to identify location sets that cannot have high

support. We first define the notion of a relevant user.

Definition 8 (Relevant User). We say that a user u is rele-

vant to a given keyword set Ψ, and denote as u ∈ UΨ, if for each

keyword ψ ∈ Ψ, the user has made a post relevant to ψ, i.e., the As-

sociation Graph contains an edge that is adjacent toψ and includes

u in its label.
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Figure 4: Set relationships between supporting, weakly sup-

porting, and relevant users with respect to the association be-

tween location set L and keyword set Ψ.

Notice that user u2 is not relevant to Ψ = {ψ1, ψ2}. The next

result shows that if we restrict the set of weakly supporting users to

include only relevant users, we can still define a pruning rule.

Theorem 3. If the number of relevant users that weakly support

a location setL and a keyword set Ψ is less than σ, then the support

of any location set L′ ⊇ L and Ψ cannot be more than σ.

Proof. Recall that UΨ, U
LΨ̃

denote the set of relevant users and

weakly supporting users, respectively. Then, the theorem assumes

that |UΨ ∩ U
LΨ̃

| < σ. From (the proof of) Lemma 1 we have

that U
LΨ̃

⊇ U
L′Ψ̃

. Therefore, UΨ ∩ U
LΨ̃

⊇ UΨ ∩ U
L′Ψ̃

and thus

|UΨ ∩ U
LΨ̃

| ≥ |UΨ ∩ U
L′Ψ̃

|. From (the proof of) Lemma 2 any

user u that supports (L′,Ψ) must also weakly support (L′,Ψ).
In addition, u must be relevant to Ψ due to the first condition of

Definition 4. Hence, |UΨ ∩ U
L′Ψ̃

| ≥ sup(L′,Ψ). Combining the

two derived inequalities and the theorem assumption, we derive that

sup(L′,Ψ) < σ.

This result improves upon our filter and refine strategy, by allow-

ing us to early prune a location set that cannot have support above

σ, even though its weak support might be above σ.

A better way to understand the relation between the sets of sup-

porting ULΨ, weakly supporting U
LΨ̃

and relevant UΨ users of a

location set and keyword set (L,Ψ) is to draw a Venn diagram. Fig-

ure 4 depicts these sets, and also includes for completeness their dual

sets drawn with dashed lines (discussed in Section 5.2). We have

shown that while the cardinality of set ULΨ is not anti-monotone

with respect to L, the cardinalities of sets U
LΨ̃

and UΨ ∩ U
LΨ̃

are.

Figure 4 emphasizes that the intersection of relevant and weakly

supporting users is a tighter superset of the desired supporting

users set, while still allowing anti-monotonicity-based prunning. In

the following, we write rw_sup(L,Ψ) to denote the number of

relevant and weakly supporting users, i.e., |UΨ ∩ U
LΨ̃

|.
Returning to the example of Figure 2, the relevant to Ψ users are

all except u2. Therefore, we derive sup(L,Ψ) = |{u1, u3}| =
2, w_sup(L,Ψ) = |{u1, u2, u3}| = 3, and rw_sup(L,Ψ) =
|{u1, u3}| = 2, showing that the relevant and weak support is

closer to the actual support than weak support is.

5. FINDING FREQUENT ASSOCIATIONS
We first present a baseline method for Problem 1, which serves

as the foundation for more elaborate solutions based on indices.

5.1 Basic Algorithm
This algorithm implements the filter and refine approach dis-

cussed in Section 4. Recall that Theorems 2 and 3 allow to prune

location sets with support less than σ based on the concepts of rele-

vant and weakly supporting users (filter step). While this guarantees

Algorithm 1: Algorithm STA

Input: keyword set Ψ, maximum cardinalitym, support threshold σ

Output: result setRσ of all location sets with support at least σ

1 Rσ ← ∅
2 C1 ← L ⊲ candidate 1-location sets

3 UΨ ← IdentifyRelevantUsers(Ψ)

4 for 1 ≤ i ≤ m do

5 Fi ← ∅ ⊲ i-location sets with more than σ relevant and weakly supporting

users

6 foreach L ∈ Ci do

7 ComputeSupports(L, Ψ)

8 if rw_sup(L,Ψ) ≥ σ then

9 Fi ← Fi ∪ {L}
10 if sup(L,Ψ) ≥ σ then

11 Rσ ← Rσ ∪ {L}

12 Ci+1 ← CandidateGeneration(Fi) ⊲ candidate (i+ 1)-location sets

Algorithm 2: STA.IdentifyRelevantUsers

Input: keyword set Ψ
Output: set UΨ of relevant users

1 UΨ ← ∅
2 foreach u ∈ U do

3 covΨ← ∅
4 foreach p ∈ Pu do

5 if p.ψ ∈ Ψ then

6 covΨ← covΨ ∪ {ψ}

7 if |covΨ| = |Ψ| then

8 UΨ ← UΨ ∪ {u}

no false negatives, there can still be false positives, i.e., location sets

with support less than σ, which need to be identified (refine step).

Note that instead of performing this at the end, it can be done more

efficiently during candidate generation, as explained later.

Algorithm 1 outlines the basic method, denoted as STA. It op-

erates on the set P of posts organized by user, i.e., the list Pu
containing the posts of each user u. The input includes the keyword

set Ψ, the maximum cardinality m of a location set, and the sup-

port threshold σ. STA exploits the Apriori principle (lines 4–12) to

identify the location sets with support above σ, filtering out each

location set with fewer than σ relevant and weakly supporting users.

Initially, the result set is empty and the potential 1-location sets

are set to all locations (lines 1–2). Also, the set of users relevant

to Ψ is identified (line 3). Procedure IdentifyRelevantUsers,

depicted in Algorithm 2, iterates across every list Pu and checks if

user u has made posts that cover all keywords that appear in Ψ.

Then, STA proceeds in m iterations, following the Apriori prin-

ciple. At the i-th iteration, all i-location sets with rw_sup not less

than σ are stored in set Fi. Among them, those with support not

less than σ are added to the result set Rσ . After initializing Fi (line

5), each candidate i-location set L is examined (lines 6–11). The

set Ci of candidate i-location sets was generated at the end of the

previous iteration (line 12) by the CandidateGeneration proce-

dure that applies the Apriori principle. In particular, Candidate

Generation creates candidate location sets of cardinality one more

than what was just examined. It takes as input the i-location sets

Fi with relevant weak support above σ, and inserts into Ci+1 an

(i + 1)-location set only if all its i-location subsets are in Fi, due

to the Apriori principle implied by Theorem 3.

For candidate i-location set L, procedure ComputeSupports

(described later) is invoked to determine the number rw_sup(L,Ψ)
of relevant weakly supporting users, and the number sup(L,Ψ) of

supporting users (line 7). If the former support is above σ, L is

added to Fi (lines 8–9). If, additionally, the latter support is greater

than σ, then L is added to the result set Rσ (lines 10–11). This

essentially corresponds to refining the surviving candidates.

Algorithm 3 depicts the pseudocode for ComputeSupports. The
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Algorithm 3: STA.ComputeSupports

Input: location set L, keyword set Ψ
Output: weak support and support of (L,Ψ)

1 r_sup(L,Ψ)← 0; sup(L,Ψ)← 0
2 foreach u ∈ UΨ do ⊲ relevant user

3 covL← ∅; covΨ← ∅
4 foreach p ∈ Pu do

5 foreach ℓ ∈ L do

6 if d(p.ℓ, ℓ) ≤ ǫ then

7 foreach ψ ∈ p.Ψ ∩Ψ do

8 covL← covL ∪ {ℓ}
9 covΨ← covΨ ∪ {ψ}

10 if |covL| = |L| then ⊲ weakly supporting user

11 rw_sup(L,Ψ)← rw_sup(L,Ψ) + 1
12 if |covΨ| = |Ψ| then ⊲ supporting user

13 sup(L,Ψ)← sup(L,Ψ) + 1

Table 3: Support of Associations Between Listed Location Sets

And Keyword Set Ψ = {ψ1, ψ2} Based on the Posts in Figure 2

Location set wr_sup sup

{ℓ1} 3 1
{ℓ2} 3 1
{ℓ3} 3 0

{ℓ1, ℓ2} 2 2

{ℓ1, ℓ3} 2 1
{ℓ2, ℓ3} 3 2

{ℓ1, ℓ2, ℓ3} 1 1

procedure iterates over all relevant users. Let u be the currently ex-

amined user. The objective is to determine if u (weakly) supports

(L,Ψ). For this purpose, the sets covL and covΨ are constructed

to indicate what locations among L and keywords among Ψ, re-

spectively, are covered by u. Each post of u is examined (lines

4–9). If the post’s location is within distance ǫ to some location in

ℓ ∈ L, and there exists a keyword ψ ∈ Ψ common with the post’s

keywords, then ℓ and ψ are inserted to covL and covΨ (lines 6–9).

If all keywords in L have been found in u’s relevant posts, then

the counter of relevant and weakly supporting users is incremented

(lines 10–11). Additionally, if all keywords appear in these posts,

the counter for the support is incremented (lines 12–13).

Table 3 shows the relevant and weak support, and support for all

location sets for keyword setΨ = {ψ1, ψ2}, as computed by STA for

the example of Figure 2 with support threshold σ = 2. Recall that

all users except u2 are relevant. As all 1-location sets have relevant

and weak support above σ (although none is actually a result),

all possible 2-location sets are constructed and their supports are

counted. Among them, {ℓ1, ℓ2} and {ℓ2, ℓ3} (marked bold) have

support 2 and are thus results. Observe the anti-monotonicity in

relevant and weak support, and the lack thereof in support. Finally,

as all 2-location sets have wr_sup above σ, the set {ℓ1, ℓ2, ℓ3} is

also considered but found to have low relevant and weak support.

5.2 Inverted Index-Based Algorithm
In STA, counting the weak support of a location set is particularly

time consuming, since it scans the entire list of posts to find the

weakly supporting users for each location. Even worse, if a location

is part of multiple location sets, this is repeated multiple times.

To address this performance bottleneck, we present next an ap-

proach, termed STA-I, that is based on a preconstructed inverted

index, which facilitates the identification of weakly supporting users

for any location. The assumption here is that the distance parameter

ǫ is known beforehand, i.e., it does not change with the queries.

To construct the index, we identify the posts that are within dis-

tance ǫ to each location ℓ. Then, for each location, we compile an

Table 4: Inverted Index for the Posts in Figure 2

Location Inverted list

ℓ1 ψ1 : u1, u5, ψ2 : u3, u5

ℓ2 ψ1 : u1, u3, ψ2 : u1, u4

ℓ3 ψ1 : u1, u3, u4

Algorithm 4: STA-I.IdentifyRelevantUsers

Input: keyword set Ψ
Output: set UΨ of relevant users

1 UΨ ← ∅
2 foreach ψ ∈ Ψ do

3 C ← ∅
4 foreach ℓ ∈ L do

5 C ← C ∪ U(ℓ, ψ)

6 UΨ ← UΨ ∩ C

inverted list U(ℓ), containing all users with posts local to ℓ. To

further speed up processing, we partition each list according to key-

word, such that each sublist U(ℓ, ψ) contains users with posts local

to ℓ and relevant toψ. Table 4 shows the lists for our example. STA-I

operates identically to STA, but uses the inverted index during the

procedures IdentifyRelevantUsers and ComputeSupports.

The IdentifyRelevantUsers procedure is depicted in Algo-

rithm 4. Recall, that the goal is to identify users who have made

posts relevant to all keywords in Ψ, irrespective of the posts’ geo-

tags. Hence, for each keyword ψ ∈ Ψ, and each possible location

ℓ, it retrieves the list U(ℓ, ψ) of users with relevant and local posts,

and it compiles the set of users with posts relevant to ψ and local

to some location in L. Finally, it computes the intersection of these

sets. This procedure essentially constructs the set of relevant users

as UΨ =
⋂

ψ∈Ψ

(
⋃

ℓ∈L
U(ℓ, ψ)

)

.

Algorithm 5 illustrates the ComputeSupports procedure, which

computes the weak support (lines 1–6) and the support (lines 8–

14) of location set and keyword set (L,Ψ). Regarding the former,

recall that a user weakly supports (L,Ψ) if for each location ℓ ∈ L

there exists a local post that is relevant to some keyword in Ψ.

The set
⋃

ψ∈Ψ
U(ℓ, ψ) represents users that have relevant posts

to some keyword in Ψ and are local to the specific location ℓ.

Thus the intersection over all locations in L of these sets represents

the weakly supporting users, i.e., U
LΨ̃

=
⋂

ℓ∈L

(

⋃

ψ∈Ψ
U(ℓ, ψ)

)

.

Specifically, the procedure computes the union in the inner loop

(lines 3–4), and the intersection of the unions in the outer loop

(lines 2–5). The weak support of (L,Ψ) is computed after the

non-relevant users are discarded (line 6).

Only when the weak support of (L,Ψ) exceeds threshold σ (line

7), its support is computed (lines 8–14), but in a manner significantly

different from that in STA. Recall from the discussion in Section 4

and Figure 4 that the set U
LΨ̃

of weakly supporting users has a

dual set U
L̃Ψ

, termed local-weakly supporting users. This latter set

contains users that for each keyword among Ψ have a post local to

some location among L. It is not hard to see that the users that

are both (relevant-)weakly supporting and local-weakly supporting

(L,Ψ) are exactly those that support (L,Ψ), i.e., it holds that

ULΨ = U
LΨ̃

∩ U
L̃Ψ

. Intuitively, the latter set satisfies the first

requirement of Definition 4, whereas the former the second.

Based on this observation, the ComputeSupports procedure

first computes the local-weakly supporting users U
L̃Ψ

(lines 8–

13). With similar reasoning as before, the procedure builds the set

as U
L̃Ψ

=
⋂

ψ∈Ψ

(
⋃

ℓ∈L
U(ℓ, ψ)

)

, where the union is compiled in

the inner loop (lines 11–12), and the intersection of the unions in

the outer loop (lines 9–13). Then, it intersects it with the previously

constructed U
LΨ̃

set to compute the support of (L,Ψ) (line 14).
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Algorithm 5: STA-I.ComputeSupports

Input: location set L, keyword set Ψ
Output: weak support and support of (L,Ψ)
⊲ construct set U

LΨ̃
of (relevant-)weakly supporting users

1 U
LΨ̃
← ∅

2 foreach ℓ ∈ L do

3 A ← ∅ foreach ψ ∈ Ψ do

4 A ← A∪ U(ℓ, ψ)

5 U
LΨ̃
← U

LΨ̃
∩ A

6 rw_sup(L,Ψ)← |U
LΨ̃
∩ UΨ|

7 if rw_sup(L,Ψ) < σ then return

⊲ construct set U
L̃Ψ

of local-weakly supporting users

8 U
L̃Ψ
← ∅

9 foreach ψ ∈ Ψ do

10 B ← ∅
11 foreach ℓ ∈ L do

12 B ← B ∪ U(ℓ, ψ)

13 U
L̃Ψ
← U

L̃Ψ
∩ B

14 sup(L,Ψ)← |U
LΨ̃
∩ U

L̃Ψ
|

5.3 Spatio-Textual Index-Based Algorithm
Although precomputing the inverted index reduces dramatically

the cost of calculating the weak support of a location set, it cannot

handle different values of the distance parameter ǫ. Next, we present

an alternative approach to accelerating weak support calculations

based on spatio-textual indices. Instead of relying on precomputed

static lists, we dynamically compile the information needed from

the index. We first present a generic approach that works with the

majority of existing spatio-textual indices, and then we consider a

particular index and propose further optimizations.

5.3.1 Generic Algorithm

We adapt the basic Apriori-like algorithm assuming the availabil-

ity of a spatio-textual index which can process spatio-textual range

queries with OR semantics. The latter specify a spatial range R

and a set of keywords Ψ, and seek all spatio-textual objects whose

location is inside R and contain at least one of the keywords in Ψ.

We next describe the STA-ST algorithm which operates on top

of such a general-purpose spatio-textual index. It operates similarly

to STA, with the difference that procedure ComputeSupports is

implemented in an index-aware manner, as outlined in Algorithm 6.

It first constructs the set U
LΨ̃

of weakly supporting users, and then

determines the support of (L,Ψ). To build U
LΨ̃

, it issues a spatio-

textual range query with parameters the disc (ℓ, ǫ) of radius ǫ around

each location ℓ ∈ L and keyword set Ψ (lines 2–9). For a specific

location ℓ, the results (set of posts) are stored in Pℓ (line 4). Then,

it scans the results and inserts into a temporary variable A each

encountered user p.u (line 8). In addition, it associates with each

user a bitmap p.u.covΨ indicating which query keywords appear

in her posts (lines 6–7); this information is later used to determine

if the user supports (L,Ψ). Once all users with posts local to ℓ and

relevant to Ψ have been identified in A, they are merged with the

ones for previously examined locations (line 9). Eventually, U
LΨ̃

contains users with posts local to every location inL and relevant to

at least one keyword in Ψ, i.e., the users weakly supporting (L,Ψ).
To compute the weak support among relevant users, the procedure

takes the intersection of U
LΨ̃

with the known set UΨ of relevant

users (line 10). If the weak support is lower than the threshold, the

algorithm returns (line 11). Otherwise it computes the support by

examining whether each user has covered all query keywords (lines

13–15); this is determined directly from bitmaps p.u.covΨ.

5.3.2 Optimized Algorithm

Next, we focus on a specific spatio-textual index, I3 [22], which

we adapt to devise an even more efficient algorithm.

Algorithm 6: STA-ST.ComputeSupports

Input: location set L, keyword set Ψ
Output: weak support and support of (L,Ψ)

1 U
LΨ̃
← ∅

2 foreach ℓ ∈ L do

3 A ← ∅
4 Pℓ ← ST-RANGE((ℓ, ǫ),Ψ)
5 foreach p ∈ Pℓ do

6 foreach ψ ∈ p.Ψ ∩Ψ do

7 p.u.covΨ← p.u.covΨ ∪ {ψ}

8 A ← A ∪ p.u

9 U
LΨ̃
← U

LΨ̃
∩ A

10 rw_sup(L,Ψ)← |U
LΨ̃
∩ Uψ|

11 if rw_sup(L,Ψ) < σ then return

12 sup(L,Ψ)← 0
13 foreach u ∈ U

LΨ̃
do

14 if |u.covΨ| = |Ψ| then

15 sup(L,Ψ)← sup(L,Ψ) + 1

We first elaborate on the index structure. For our purposes, the I3

index can be seen as a quadtree that hierarchically partitions the spa-

tial domain. Each node corresponds to a specific rectangular region,

and points to its four children corresponding to the quadrants of the

region. Leaf nodes point to disk pages containing the actual posts

grouped by keyword. We associate with each node some additional

aggregate information. Specifically, for each keyword ψ, we store

the number of users with relevant posts that are contained within

the subtree rooted at this node N . We denote this by N.count(ψ).
STA-STO differs from STA-ST in the first iteration of the main

Apriori loop (lines 4–12 of Algorithm 1 for i = 1). Instead of

computing the weak support (and support) of every location, it uses

the index to identify locations with potentially high weak support,

eliminating groups of locations with weak support less than σ.

To achieve this, it executes a best-first search (bfs) traversal [9],

performing a simple test at each node to decide whether to continue

in its subtree. Intuitively, we wish to terminate bfs when no location

in the subtree can have weak support greater than σ.

Let Q be the priority queue implementing bfs. For each node N

entering Q, the algorithm computes a(N) =
∑

ψ∈Ψ
N.count(ψ),

and uses it as the queue’s priority key. At each iteration, the nodeN

inQwith the largest a(N) value is removed. If a(N) is greater than

or equal to σ, there may exist some location in the subtree ofN with

weak support greater than σ. Otherwise, a safe conclusion cannot

be drawn. Hence, the algorithm calculates an additional value b(N)
for this node, which is an upper bound on the weak support of any

location within N . Clearly, if b(N) < σ, the node contains no

useful locations and can be pruned. Such pruned nodes, along with

their a() values, are maintained in a deleted list D, which serves in

the calculation of b() values as explained next. For nodeN , its b(N)
value is the sum of a() values for all nodes that are inQ or inD and

that are within distance ǫ to N . An important observation here is

that, due to the bfs traversal and the index structure, nodes inQ∪D
do not spatially overlap and hence b(N) does not double count

posts. To summarize, STA-STO first makes the quick a(N) ≥ σ

test, and only if this fails does it compute b(N) and makes the more

expensive b(N) ≥ σ test. If the latter fails too, the node definitely

cannot contain a location set with weak support greater than σ.

For each location dequeued in the bfs traversal, STA-STO invokes

the STA-ST.ComputeSupport procedure as described in the pre-

vious section, to determine its exact weak support and its support.

Compared to it, the benefit is that STA-STO executes the procedure

only for promising locations instead of every possible location.

6. FINDING TOP-K ASSOCIATIONS
Next, we present algorithms for Problem 2. We start with a basic
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Algorithm 7: Algorithm k-STA

Input: keyword set Ψ, maximum cardinalitym, number of results k

Output: result setRk containing top-k location sets with highest support

1 σ ← DetermineSupportThreshold(Ψ, k)

2 Rσ ← STA (Ψ,m, σ)

3 Rk ← k location sets fromRσ with highest support

approach, and then discuss more efficient index-based techniques.

6.1 Basic Algorithm
In Problem 2, we seek the top-k location sets with the highest

support, instead of setting a specific support threshold. However, a

support threshold is needed in order to apply an Apriori-like method;

thus, we explain how such a threshold can be computed. If we pick

any set of k distinct location sets and compute their supports, then

the minimum value among those can serve as the support threshold

σ; clearly, any other set with support lower than this cannot be in

the result. The challenge is to construct initial location sets with

high support so that the starting value of σ is effectively high.

Algorithm 7 outlines the generic method k-STA implementing

this simple idea. First, procedure DetermineSupportThreshold

is invoked to obtain an appropriate lower bound σ on the support

of the top-k set. Given σ, it invokes the STA algorithm to derive

all location sets with support above σ. Finally, among the returned

location sets, it returns the k with the highest support.

Regarding the DetermineSupportThreshold procedure, the

main idea is to construct at least k distinct location sets that cover

all keywords Ψ. Suppose that for each keyword ψ ∈ Ψ we have

determined k(ψ) distinct locations with local posts relevant to ψ.

Combining these k(ψ) distinct locations for each keyword, we can

construct distinct location sets. Note that a necessary condition to

obtain k location sets is
∏

ψ∈Ψ
k(ψ) ≥ k.

Following this process, a heuristic for obtaining combinations

with high support is to start with locations that are popular, i.e.,

have high weak support. In the absence of any index, procedure

DetermineSupportThreshold iterates over the set of posts lists

Pu, skipping users that do not have relevant posts to each ψ. For

the rest, the locations of the relevant posts to each ψ are noted.

In addition, a counter for the weak support of each location is

maintained. After a sufficient number of locations for each keyword

are seen, the procedure terminates. For each keyword, the locations

with the highest weak support are chosen and combined. The

support of each set is computed by ComputeSupports, and the

k-th highest among these values is set as the support threshold σ.

6.2 Index-Based Algorithms

6.2.1 Inverted Index

When an inverted index from locations to users with local posts is

available, DetermineSupportThreshold collects locations with

local posts relevant to each keyword in Ψ in a different manner.

It first computes the weak support of every location by invoking

ComputeSupports. Note that this has to be executed anyway when

we later invoke the STA-I algorithm irrespective of the support

threshold σ. Then, it examines locations in descending order of

their weak support. For each location ℓ, the procedure checks the

inverted list and associates the location with each keyword in Ψ
for which a local and relevant post exists. Similar to the basic

algorithm, once a sufficient number of locations per keyword are

seen, location sets are generated and their support is computed.

6.2.2 Spatio-Textual Index

In a generic spatio-textual index, DetermineSupportThreshold

Table 5: Dataset Characteristics

Dataset
Num. of Num. of Num. of Avg. num. of Avg. num. of Num. of

photos users distinct tags tags per photo tags per user locations

London 1,129,927 16,171 266,495 8.1 61.2 48,547

Berlin 275,285 7,044 88,783 8.1 39.4 21,427

Paris 549,484 11,776 122,998 7.8 38.8 38,358

operates identically to the basic algorithm with the exception that

the ComputeSupports procedure is index-aware. When the aug-

mented I3 index is used, a different process is followed. Procedure

DetermineSupportThreshold first performs a best-first search

traversal similar to that described in Section 5.3.2. The difference

is that initially there is no support threshold, and thus the b() val-

ues need not be computed. Moreover, the traversal is progressive,

meaning that at each step the next location with potentially high

weak support is identified. For each such location, its local posts

are retrieved (using the index) and it is marked for the keywords

that appear in these posts. As before, once a sufficient number of

locations per keyword are seen, the support threshold is computed.

7. EXPERIMENTAL EVALUATION
In this section, we present an experimental evaluation of our

approach using real-world datasets comprising geolocated Flickr

photos. We first describe our experimental setup, outlining the

datasets and the queries used in the experiments, and then we report

and discuss the results.

7.1 Datasets
In our experiments, we have used geolocated photos from Flickr,

extracted from a large-scale dataset that is provided publicly by

Yahoo! for research purposes [18]. Specifically, we compiled

datasets for the cities of London, Berlin and Paris. For each dataset,

Table 5 lists the number of photos, users, and distinct keywords

contained in it, as well as the average number of keywords per

photo and distinct keywords per user. As a database of locations,

we used POIs collected from the Foursquare API1. The number of

distinct locations per city is also shown in Table 5.

To construct a keyword set that is used to search for socio-textual

associations, we followed the process described next. First, for each

dataset, we retrieved the 100 most frequent keywords, where the fre-

quency of a keyword was measured by the number of users having

photos with it. From those, we manually picked a set of 30 key-

words, removing more generic ones, such as “london”, “england”,

“uk”, “iphone”, “canon”, etc. The top 10 selected keywords for

each city are listed in Table 6, showing also the number of users

with relevant posts to each one. Then, we combined these popular

keywords to create keyword sets of cardinality up to 4. For each

case, we selected the top 20 combinations according to the number

of users having photos with those tags. Table 7 lists the first 5 among

these 20 combinations for each case. In all reported experiments,

we set the value of the spatial distance threshold parameter ǫ, used

to associate photos to locations, to 100 meters.

7.2 Indicative Result
Figure 5 shows an example of the socio-textual associations our

methodology discovers. In particular, we look for locations that

are strongly associated with the keyword set Ψ = {“london eye”,

“thames”}. The depicted green (resp., purple) points denote the lo-

cations of photos that contain the keyword “thames” (resp., “london

eye”) and belong to relevant users, i.e., they have also posted pho-

tos containing the other keyword “london eye” (resp., “thames”).

1https://developer.foursquare.com/
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Table 6: Most Popular Keywords

London Berlin Paris

thames (2752) reichstag (876) louvre (2287)

park (1738) fernsehturm (774) eiffel+tower (1742)

london+eye (1730) architecture (716) seine (1488)

big+ben (1698) alexanderplatz (713) notre+dame (1244)

westminster (1543) wall (684) street (1194)

architecture (1519) graffiti (575) montmartre (1184)

museum (1386) street (562) architecture (1136)

art (1319) art (543) museum (1022)

tower+bridge (1276) museum (526) church (980)

statue (1178) spree (492) art (970)

Figure 5: Indicative example for London withΨ = {london eye,
thames}.

We can see that photos about “thames” are spread along the entire

length of the river Thames. On the other hand, although London

Eye has a specific location, due to its high visibility relevant photos

can be found at various other locations, e.g., in and around St. James

Park. Nevertheless, since London Eye happens to be located at the

bank of river Thames, the regions covered by the respective sets

of relevant photos have a high overlap. In fact, the single location

drawn as a star in this overlap has the strongest association with the

keyword set. In this case, there exists a singleton location set that

covers both keywords and has the highest support in the data.

7.3 Comparison with Other Association Types
As already explained (see Sections 1 and 2), there exist various

approaches that discover different associations between locations

and a given set of keywords. Hence, the purpose of our next exper-

iment was to investigate whether the location sets returned by our

approach (STA) are significantly different from those returned by

other works, collective spatial keywords (CSK) and aggregate pop-

ularity (AP). We note that we cannot compare with approaches that

discover location patterns (LP) as they ignore textual information.

To that end, we computed the top 10 results for STA, AP, and

CSK, with respect to the keyword sets we compiled for the three

datasets of London, Berlin, and Paris. Then, we computed the

Jaccard similarity of the result sets of CSK and AP to ours. This

measures the overlap in the query results, i.e., how many location

sets STA and either CSK or AP return in common.

The results of this experiment are presented in Table 8. The

results are averaged across queries with the same keyword set car-

dinality. As can be observed, the Jaccard similarity scores are very

low in all cases, with values not exceeding 0.3. The highest scores

are observed for queries with 2 keywords, where fewer possible

location combinations exist. In those queries, on average, around

Figure 6: Scatter plot where data points correspond to ex-

periments with distinct keyword sets; the x axis indicates the

number of associations above the support threshold, and the y

axis indicates the highest support among the associations.

2 or 3 of the top 10 location sets discovered by STA are common

with those appearing in the results of AP or CSK. The degree of

overlap drops even lower when the cardinality of the keyword set

increases, allowing for a significantly larger number of candidate

location sets. In those cases, often there is only one or zero results

in common. This outcome is consistent across the three datasets.

These results show that STA constitutes a novel and distinct cri-

terion for discovering interesting socio-textual associations among

locations, which cannot be replicated by existing approaches.

7.4 Number of Discovered Associations and
Maximum Support

Another aspect to investigate is the distribution of the number

of results (associations found) and the support scores for different

keyword set cardinalities. To that end, we computed the results

for all keyword sets described in Section 7.1, i.e., 60 sets for each

dataset, with cardinality |Ψ| ∈ [2, 4]. For each keyword set of

the respective dataset, we measured the number of results and the

support of the top result. The results of this experiment are shown

in Figure 6. We only present results for London; the other two

datasets exhibited a similar pattern, and are hence omitted. In this

result, the support threshold parameter was set σ = 0.1% of the

total number of users in the London dataset. Note that the value

of the support threshold affects both the execution time and the

number of results to be found. On the one hand, if the threshold is

set too low, an excessive number of results may be returned, and the

execution time may also be too high, since only few combinations

can be pruned; on the other hand, setting the support threshold too

high may return no results. Thus, the above value was selected

experimentally according to this trade-off.

We notice the following trend in the results. Having only two

keywords tends to produce results with high support (e.g., up to

around 3% of the total number of users). As the number of key-

words increases to 3 or 4, the maximum support among the returned

results reduces significantly, dropping close to the support thresh-

old; however, the number of returned results becomes much higher.

This is an effect of the fact that, as explained in Section 4, the

anti-monotonicity property does not hold in our problem.

7.5 Evaluation Time
Finally, we evaluate the efficiency of our proposed algorithms.

In this experiment, we used the same keyword sets as above.

First, we compare the execution time of the three algorithms,

STA-I, STA-ST and STA-STO, while varying the support threshold
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Table 7: Most Popular Keyword Sets

|Ψ| London

2 london+eye, thames (922); big+ben, london+eye (908); thames, westminster (898); park, thames (880); big+ben, thames (846)

3
big+ben, london+eye, thames (557); big+ben, thames, westminster (497); big+ben, london+eye, westminster (472); london+eye, thames, westminster (464); park, thames,

westminster (440)

4
big+ben, london+eye, thames, westminster (358); big+ben, london+eye, thames, tower+bridge (293); art, green, park, thames (258); green, park, thames, trees (257); park,

statue, thames, westminster (257)

Berlin

2 alexanderplatz, fernsehturm (404); fernsehturm, reichstag (320); alexanderplatz, reichstag (253); reichstag, wall (249); fernsehturm, spree (248)

3
alexanderplatz, fernsehturm, reichstag (192); alexanderplatz, fernsehturm, spree (166); alexanderplatz, fernsehturm, wall (145); brandenburger+tor, fernsehturm, reichstag

(144); fernsehturm, reichstag, spree (142)

4
alexanderplatz, fernsehturm, reichstag, spree (106); alexanderplatz, brandenburger+tor, fernsehturm, reichstag (96); alexanderplatz, fernsehturm, reichstag, wall (95);

alexanderplatz, fernsehturm, potsdamer+platz, reichstag (90); alexanderplatz, fernsehturm, museum, reichstag (82)

Paris

2 eiffel+tower, louvre (777); louvre, seine (745); louvre, museum (706); louvre, notre+dame (691); eiffel+tower, notre+dame (606)

3
eiffel+tower, louvre, notre+dame (415); eiffel+tower, louvre, seine (343); louvre, notre+dame, seine (339); louvre, river, seine (327); arc+de+triomphe, eiffel+tower, louvre

(324)

4
eiffel+tower, louvre, notre+dame, seine (215); bridge, louvre, river, seine (209); arc+de+triomphe, eiffel+tower, louvre, notre+dame (208); louvre, museum, river, seine

(189); bridge, river, seine, street (187)

Table 8: Degree of Overlap Between the Associations Discovered

by STA and those of Existing Approaches

London Berlin Paris

|Ψ| AP CSK AP CSK AP CSK

2 0.22 0.24 0.28 0.30 0.20 0.14

3 0.17 0.04 0.09 0.07 0.08 0.03

4 0.14 0.03 0.01 0.04 0.00 0.00

Table 9: Ratio of Number of Location Sets with Support Above

Threshold over Number of Location Sets with Weak Support

Above Threshold; σ = 0.2%

|Ψ| London Berlin Paris

2 13.29% 23.80% 25.98%

3 1.35% 1.09% 3.85%

4 0.01% 0.00% 0.36%

parameter σ, which is a percentage of the number of users in each

dataset. Note that the basic STA method was at least an order of

magnitude slower than all other methods and is thus omitted from

all plots. Moreover, we include STA-ST in the comparison, in order

to assess the benefits resulting by the STA-STO optimizations. The

results are presented in Figures 7 and 8, for 2 and 4 keywords,

respectively; results for |Ψ| = 3 are similar and are omitted.

As the support threshold increases, the performance of all meth-

ods improves because fewer location sets survive the pruning. This

is apparent in Paris, but not so much in London and Berlin for the

specific range of support values depicted. Clearly, STA-I achieves

the best performance. This is not surprising, since exploiting the

preconstructed inverted index saves a substantial amount of the

execution time during evaluation. It is worth noticing, however,

that STA-STO is also very efficient, achieving competitive execu-

tion times compared to STA-I. In fact, this is not a merit of the

spatio-textual index per se, but rather a result of the proposed op-

timizations; indeed, the execution times of the generic STA-ST are

higher by an order of magnitude. The results appear to be consistent

across the different datasets and for different number of keywords.

Table 9 quantifies the number of location sets (or associations)

discovered that have weak support above but actual support below

the threshold, which was set to σ = 0.2%. For example, in London

for Ψ = 2, we have that 13.29% of the location sets considered

are actual results. As the keyword cardinality increases, the ratio

decreases dramatically, because it becomes harder for location sets

with weak support above the threshold to also cover all keywords.

Finally, we evaluate the performance of the algorithms for the

top-k version of the problem. The results are presented in Figure 9

for |Ψ| = 3. A similar outcome is observed, with k-STA-I outper-

forming k-STA-STO in all cases. For both algorithms, the execution

time tends to increase with k as more results are requested.

8. CONCLUSIONS
In this paper, we have addressed the problem of finding socially

and textually associated location sets from user trails on the Web.

We have formally defined the problem and studied its characteristics.

Based on this, we have proposed a general approach for addressing

the problem, which we have elaborated to derive three algorithms

based on different indices. Furthermore, we have extended our

approach to address also the top-k variant of the problem. The pro-

posed methods have been evaluated experimentally using geotagged

Flickr photos in three different cities.
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ABSTRACT
Machine learning techniques are essential to extracting knowl-
edge from data. The volume of data encourages the use of
parallelization techniques to extract knowledge faster. How-
ever, schemes to parallelize machine learning tasks face the
trade-off between obeying strict consistency constraints and
performance. Existing consistency schemes require expen-
sive coordination between worker threads to detect conflicts,
leading to poor performance. In this work, we consider the
problem of improving the performance of multi-core machine
learning while preserving strong consistency guarantees.

We propose Conflict Order Planning (COP), a consistency
scheme that exploits special properties of machine learning
workloads to reduce the overhead of coordination. What is
special about machine learning workloads is that the dataset
is often known prior to the execution of the machine learning
algorithm and is reused multiple times with different settings.
We exploit this prior knowledge of the dataset to plan a
partial order for concurrent execution. This planning reduces
the cost of consistency significantly because it allows the use
of a light-weight conflict detection operation that we call
ReadWait. We demonstrate the use of COP on a Stochastic
Gradient Descent algorithm for Support Vector Machines
and observe better scalability and a speedup factor between
2-6x when compared to other consistency schemes.

1. INTRODUCTION
The increasingly larger sizes of machine learning datasets

have motivated the study of scalable parallel and distributed
machine learning algorithms [7, 16, 20–22, 24, 25, 27]. The
key to a scalable computation is the efficient management
of coordination between processing workers, or workers for
short. Some machine learning algorithms require only a small
amount of coordination between workers making them easily
scalable. However, the vast majority of machine learning
algorithms are studied and developed in the serial setting,
which makes it arduous to distribute these serial-based al-

c©2017, Copyright is with the authors. Published in Proc. 20th Inter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

gorithms while maintaining the algorithm’s behavior and
goals.

Distributing serial-based algorithms may be performed
by encapsulating the algorithm within existing parallel and
distributed computation frameworks. These frameworks are
oblivious to the actual computation. Thus, the machine learn-
ing algorithms may be incorporated as-is without redesign.
In this paper, we consider a framework of transactions [3, 10]
for parallel multi-core execution of machine learning algo-
rithms. A transaction may represent the processing of an
iteration of the machine learning algorithm where workers
run transactions in parallel. Serializability is the correctness
criterion for transactions that ensures that the outcome of a
parallel computation is equivalent to some serial execution.
To guarantee serializability, transactions need to coordinate
via consistency schemes such as locking [8] and optimistic
concurrency control (OCC) [15].

Recently, coordination-free approaches to parallelizing ma-
chine learning algorithms have been proposed [7, 24, 25].
In these approaches, workers do not coordinate with each
other thus improving performance significantly compared to
methods like locking and OCC. Although these techniques
were very successful for many machine learning problems,
there is a concern that the coordination-free approach leads
to “requiring potentially complex analysis to prove [paral-
lel] algorithm correctness” [21]. When a machine learning
algorithm, A, is developed, it is accompanied by mathe-
matical proofs to verify its theoretical properties, such as
convergence. These proofs are typically on the serial-based
algorithm. A coordination-free parallelization of a proven
serial algorithm, denoted ϕcf (A), is not guaranteed to have
the same theoretical properties as the serial algorithm A.
This is due to overwrites and inconsistency that makes the
outcome of ϕcf (A) different from A. Thus, guaranteeing
the theoretical properties requires a separate mathematical
analysis of ϕcf (A), that although possible [6, 25], can be com-
plex. Additionally, the theoretical analysis might reveal the
need for changes to the algorithm to preserve its theoretical
guarantees in the parallel setting [25].

Running parallel machine learning algorithms in a seri-
alizable, transactional framework bypasses the need for an
additional theoretical analysis of the correctness of paral-
lelization. This is because a serializable parallel execution,
denoted ϕSR(A), is equivalent to some serial execution of
A, and thus preserves its theoretical properties. We will
call parallelizing with serializability, the universal approach
because serial machine learning algorithms are applied to it
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without the need of additional theoretical analysis or changes
to the original algorithm.

In this work, we focus on the universal approach of paral-
lelizing machine learning algorithms with serializable trans-
actions. Consistency schemes like locking [8, 11], OCC [25],
and others [2] incur a significant performance overhead. Tra-
ditional serializability schemes were designed mainly for
database workloads. Database workloads are typically arbi-
trary, unrepeatable units of work that are unknown to the
database engine prior to execution. This is not the case for
machine learning workloads. Machine learning tasks are well
defined. Most machine learning algorithms apply a single
iterative task repeatedly to the dataset. Also, the dataset
(i.e., the machine learning workload) is typically processed
multiple times within the same run of the algorithm, and
is potentially used for different runs with different machine
learning algorithms. Generally, machine learning datasets
are also known, in offline settings, prior to the experiments.
These properties of machine learning workloads make it fea-
sible to plan execution. We call these the dataset knowledge
properties.

We propose Conflict Order Planning (COP) for parallel
machine learning algorithms. COP ensures a serializable
execution that preserves the theoretical guarantees of the
serial machine learning algorithm. It leverages the dataset
knowledge properties of machine learning workloads to plan
a partial order for concurrent execution that is serializable.
It annotates each transaction (i.e., a machine learning itera-
tion) with information about its dependencies according to
the planned partial order. At execution time, these planned
dependencies must be enforced. Enforcing a planned de-
pendency is done by validating that an operation reads or
overwrites the correct version according to the plan. This
validation is done using a light-weight operation that we
call ReadWait. This operation is essentially an arithmetic
operation that compares version numbers, which is a much
lighter operation compared to locking and other traditional
consistency schemes.

We present background about the problem, the system and
transactional machine learning model in Section 2. Then, we
propose COP in Section 3 followed by correctness proofs in
Section 4. We present our evaluation in Section 5. The paper
concludes with a discussion of related work and a conclusion
in Sections 6 and 7.

2. BACKGROUND
In this section, we provide the necessary background for

the rest of this paper. We introduce use cases of planning
within machine learning systems in Section 2.1. Section 2.2
presents the transactional model we will use for machine
learning algorithms.

2.1 Use Cases
We now demonstrate the opportunity and rewards of plan-

ning machine learning execution in three common models of
machine learning systems. We revisit these use cases in the
paper when appropriate to show how COP planning applies
to them.

2.1.1 Machine Learning Framework
Machine learning and data scientists do not process a

dataset only once in their process of analyzing it. Rather,
the scientist works on a dataset continuously, experimenting

ML algorithm 1

ML algorithm 2

ML algorithm i

Model 1

Model n

Dataset

Figure 1: A flow diagram of a typical machine learning frame-
work that employs a number of machine learning algorithms
to learn models from a dataset

Data collection

Data collection

Data collection

Data collection

Centralized 

machine learning

Figure 2: The current practice of machine learning of data
collected across the world is to batch data at geo-distributed
datacenters and send batches to a centralized location that
performs the machine learning algorithm

with different methods and machine learning algorithms to
discover what method works best with a dataset. Thus, the
same dataset is being processed by many machine learning al-
gorithms repeatedly. Figure 1 shows a typical flow diagram of
a machine learning framework [12, 14, 27]. Multiple machine
learning algorithms are applied to an input dataset to pro-
duce models of the dataset. Each machine learning algorithm
may be applied multiple times with different configuration
and parameters, such as the learning rate.

In this model of a machine learning framework, the dataset
is being processed many times, once for each generated model.
This is an opportunity for COP to perform a planning stage
that is then applied to all runs.

2.1.2 Global-Scale Machine Learning
Online machine learning is the practice of learning from

data or events in real time. An example is a web application
that collects user interactions with the website and gener-
ates a user behavior model using machine learning. Another
example is applying machine learning to data collected by
Internet of Things (IoT) and mobility devices. Typically,
data is born around the world, collected at different data-
centers, and then sent to a single datacenter that contains
a centralized machine learning system. This case is shown
in Figure 2 where there is a central datacenter for machine
learning in North America and four other collection data-
centers that collect and send data. This model has been
reported to be the current standard practice of global-scale
machine learning [4].

As data is being collected and batched at collection dat-
acenters, there is an opportunity to generate a COP plan.
This plan is then applied at the central datacenter for faster
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Figure 3: Execution of a machine learning algorithm by three workers with different consistency schemes. Each worker processes
an iteration of the machine learning algorithm, where the first and third iterations read and update the same model parameter.

execution. A challenge in this model is that data is generated
at different locations simultaneously and continuously. In
such cases, COP plans for each batch individually at col-
lection datacenters, and then batches are processed at the
centralized datacenter in tandem.

2.1.3 Dataset Loading, Preprocessing and Execution
In addition to the opportunities for planning shown in use

cases of machine learning systems, there is an opportunity
for planning even in a single execution of a machine learning
algorithm on a single dataset. This is because, typically, two
tasks are performed prior to a machine learning algorithm
execution: (1) Loading the dataset to main memory. Before
execution, the dataset is stored in persistent storage, such
as a disk. While loading the dataset from persistent storage,
there is an opportunity to perform additional work to plan the
execution. Our experiments demonstrate that planning while
loading the dataset introduces a small overhead between 3%
and 5% (Section 5.3).

Datasets are also typically preprocessed for various pur-
poses such as formatting, data cleaning, and normaliza-
tion [12]. Preprocessing is normally performed on the whole
dataset, thus introducing an opportunity to plan execution
while preprocessing is performed.

Even in the case of a dataset that is already preprocessed,
loaded and ready to be learned, there is another opportunity
to plan execution. A machine learning algorithm processes a
dataset in multiple rounds on the dataset that we call epochs.
Thus, planning during the first epoch will be rewarding for
the execution of the remaining epochs.

In Section 3 we introduce COP planning algorithms and
discuss their application to the various use cases we have
presented.

2.2 Transactional Model of Machine Learn-
ing

A machine learning algorithm creates a mathematical
model of a problem by iteratively learning from a dataset.
The mathematical model of a machine learning algorithm is
represented by model parameters, P , or parameters for short.
For example, the mathematical model of linear regression
takes the form y =

∑n
i=1 βixi + ε. The model parameters

consist of the variables of the model, namely the vector of

coefficients, β, and ε. The machine learning algorithm uses
the dataset to estimate the parameter values that will result
in the best fit to predict the dependent variable, y.

A dataset, D, contains a number of samples, where the
ith sample is denoted Di. Each sample contains information
about a subset of the parameters and the dependent variable
corresponding to them. To distinguish between model param-
eters and parameter values in samples, we call the parameter
values in samples features. For example, a dataset may con-
tain information about movies. Each sample contains a list
of the actors in a movie and whether the movie has a high
rating. A mathematical model can be constructed to predict
whether a movie has a high rating given the list of actors in
it. Each parameter in the model corresponds to an actor. A
sample contains a vector of feature values, where a feature
has a value of 1 if the actor corresponding to it is part of the
movie and 0 otherwise. A sample in the dataset also contains
whether the movie has a high rating. Using the dataset, the
mathematical model is constructed by estimating parameter
values. These parameter values can then be utilized in the
mathematical model to predict whether a new movie will
have a high rating based on the actors in it.

Estimating model parameters is performed by iteratively
learning from the dataset. Each iteration processes a single
sample or a group of samples to have a better estimate of
model parameters. An epoch is a collection of iterations
that collectively process the whole dataset once. Machine
learning algorithms run for many epochs until convergence.
For example, Stochastic Gradient Descent (SGD) processes
a single sample in each iteration. In an iteration, gradients
are computed using a cost function to minimize the error
in estimation. The gradients are then used to update the
model parameters.

Machine learning algorithms are typically studied and de-
signed for a serial execution where iterations are processed
one iteration at a time. A straightforward approach to paral-
lelizing a machine learning computation is to make workers
process iterations concurrently, where each worker is respon-
sible for the execution of a different iteration. Executing
iterations concurrently may lead to conflicts among some of
the updates from different workers, e.g., updates from dif-
ferent workers to the same model parameters may overwrite
each other. This means that the behavior of the algorithm no
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Algorithm 1 Processing an iteration as a transaction

1: procedure Process transaction Ti

2: µ← P.read(Ti.read-set)
3: δ ←ML computation(µ, Ti.sample, Ti.write-set)
4: P ← δ

Algorithm 2 Parallel machine learning algorithm with Op-
timistic Concurrency Control

1: procedure Process transaction Ti

2: µ← P.readversioned(Ti.read-set)
3: δ ←ML computation(µ, Ti.sample, Ti.write-set)
4: ATOMIC{
5: P.validate(µ.versions)
6: if not validated: abort or restart
7: P ← δ
8: }

longer resembles the intended serial execution of the machine
learning algorithm.

Figure 3(a) illustrates the possibility of data corruption.
Three workers are depicted processing three iterations of
a machine learning algorithm concurrently. Each iteration
reads a subset of the model parameters, computes new esti-
mates of a subset of the model parameters, and finally writes
them. In the figure, iterations 1 and 3 read and update the
model parameter p and iteration 2 reads and updates the
model parameter q. Iterations 1 and 3 read the same version
of the parameter p, denoted p0, and use it to calculate the
new parameter value of p. Worker 1 writes the new state
of p denoted p1 and then worker 3 writes the new state
of p denoted p3. In this scenario, the work of worker 1 is
overwritten by worker 3. Meanwhile, iteration 2 reads and
updates parameter q, which does not corrupt the work of
other iterations because it is not reading or writing parameter
p.

Serializability can be the correctness criterion for paral-
lel machine learning algorithms [21]. Serializability theory
abstracts access to shared data by using the concept of a
transaction [10] where a transaction is a collection of read
and write operations on data objects. A data object is a
subset of the shared state. The computation of an iteration
i of a machine learning algorithm may be abstracted as a
transaction, Ti, by considering reads of the model parameters
as reads of data objects and writes to the model parameters
as writes to data objects. We will denote the collection of
model parameters by P , where P [x] is the value of model
parameter x. The parameters that are read by a transaction
are denoted as Ti.read-set. Similarly, we will denote the pa-
rameters that are written by the transaction as Ti.write-set.
The sample’s data that is processed by iteration i is denoted
by Ti.sample, where i is the id of the transaction. In the
rest of the paper, we will use the terminology of transactions
when appropriate, where a transaction is an iteration, and a
data object is a model parameter.

The processing of a transaction follows the template in
Algorithm 1 which is a transaction processing template that
does not perform any coordination and is only serializable if
run sequentially. The transaction template algorithm first
reads the model parameters declared in the read-set and
cache them locally as µ (line 2). Then, the read parameter
values µ and the data sample information, Ti.sample, are

used to compute new values of the parameters declared in the
write-set (line 3). The new values are computed according to
the used machine learning algorithms, and they are buffered
locally as δ. Finally, the new parameter values, δ, are applied
to the shared model parameters, P (line 4).

Serializability guarantees the illusion of a serial execution
while being oblivious of the semantic computation performed
within the transaction. Thus, it may be applied to machine
learning algorithms. Serializability is achieved by ensuring
that if some transactions conflict with each other, then they
will not be executed concurrently. Detecting conflicts be-
tween concurrent transactions requires coordination among
workers via different methods. These methods are diverse
with different performance characteristics. We now present
common transaction execution protocols that have been used
in the context of machine learning algorithms, and we gen-
eralize them as transactional patterns that are oblivious
to the machine learning algorithm. Readers familiar with
transaction processing may skip to Section 2.3.

2.2.1 Locking
One of the most common methods for transaction manage-

ment is mutual exclusion also known as lock-based protocols
or pessimistic concurrency control [8]. In the rest of the pa-
per, we will call it Locking. Locking is used in many parallel
machine learning frameworks to support serializability [9, 19].
In this method, all read or written model parameters are
locked during the processing of the transaction. These locks
prevent any two transactions from executing concurrently if
they access any common objects. Locking may be applied
to the transactional pattern of Algorithm 1 by locking all
data objects in the read-set and write-set at the beginning.
These locks are released only after the transaction updates
are applied to the shared model parameters.

Locking prevents conflicts such as the overwrite of worker
3 to worker 1’s work in the scenario in Figure 3(a). The
scenario with Locking is shown in Figure 3(b). Workers
attempt to acquire a lock on the parameters they read or
write before beginning the iteration. Worker 1 acquires the
lock for p first and proceeds to compute and update the value
of p before releasing the lock. Thus, it prevents worker 3
from overwriting its work because worker 3 will wait until it
acquires the lock. Meanwhile, worker 2 acquires the lock for
q and process iteration 2 because no other iteration is reading
or updating q. This is a serializable execution because it
resembles the serial execution of iteration 1, iteration 2, and
then iteration 3. However, locking is an expensive operation
that leads to a significant performance overhead even for
iterations that do not need coordination, such as iteration 2.

2.2.2 Optimistic Concurrency Control
Optimistic concurrency control (OCC) [15] is an alterna-

tive to Locking. It performs better for scenarios with low
contention, which made it more suitable for machine learning
algorithms [21]. However, existing OCC methods for machine
learning applications have been only proposed as specialized
algorithms for domain-specific machine learning problems.
Pan et. al. [21], for example, propose optimistic concurrency
control patterns for DP-Means, BP-Means, and online facil-
ity location. Unlike these specialized OCC algorithms we
present a generalized OCC pattern that can be applied to
arbitrary machine learning algorithms.

A general OCC protocol [15] proceeds in three phases
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shown in Algorithm 2 :

• Phase I (Execution): in the execution phase, the trans-
action’s read-set is read from the shared model param-
eters (line 2). Model parameters in OCC are versioned,
where the version number of a parameter is the id of the
transaction that wrote it. The read parameter values
and the sample information are then used in the ma-
chine learning computation (denoted ML computation)
to generate the updates to model parameters, δ (line 3).
Note that during this phase no coordination or syn-
chronization is performed.

• Phase II (Validation): in this phase we ensure that
the read data objects were not overwritten by other
transactions during the execution phase (lines 5-6).
This is performed by reading the model parameters
again after the computation and comparing the read
versions to the current versions.

• Phase III (Commit): if the validation is successful, the
updates, δ, are applied to the global model parameters
(line 7).

One requirement for OCC to be serializable is to perform
the validation and commit phases atomically (lines 4-8) [3].
To perform these two steps atomically, there are two typical
approaches: (1) Execute these steps serially at a coordinator
node. This, however, limits scalability, because it means
that there is a dedicated worker that is doing the validation
and commit for all iterations. Such a method can only be
made efficient with domain knowledge about the machine
learning problem, which means that the algorithm no longer
becomes a general OCC scheme but rather a specialized OCC
algorithm [21]. (2) The general approach for validation is
to lock the write-set. This is different from Locking in two
ways: locks are only held after the computation has been
performed and only the data objects in the write-set are
locked (data objects in the read-set are not locked). Thus,
OCC outperforms Locking for cases when the contention is
lower, and the write-set is significantly smaller than the read-
set. This approach is adopted by recent state-of-the-art OCC
transaction protocols in the systems and database systems
community [29] and is the method we use in our evaluations.

2.3 Performance and Overheads of Consis-
tency Schemes

Consistency schemes, such as Locking and OCC, incur
overheads to ensure a serializable execution. These overheads
are: (1) Conflict detection overhead : this is the overhead
due to additional operations needed to detect conflicts, such
as locks, atomic sections, and comparing versions. These
overheads are incurred even in the absence of a conflict.
(2) Backoff overhead : this is the wasted time that is incurred
due to a detected conflict, such as waiting for a lock to be
released, aborting due to deadlock, and failed validation.

For Locking, the conflict detection overhead is due to
the operations to acquire and release locks. Even in the
absence of conflict, these operations incur an overhead. The
backoff overhead for Locking is the time spent waiting for
acquired locks to be released. Deadlocks do not occur in
our Locking algorithm. This is because locks are acquired
in ascending order—locks with lower keys are acquired first.
This is possible because the read and written data objects
are declared at the beginning of the execution.

For OCC, the conflict detection overhead is due to the
operations to acquire and release locks for the atomic section,
and the overhead to validate the read-set. Unlike Locking,
OCC locks are only for the data objects in the write-set. The
backoff overhead for OCC is due to wasted processing time
in the case of an abort and restart when validation fails.

3. CONFLICT ORDER PLANNING
In this section, we propose Conflict Order Planning (COP)

for parallel machine learning that ensures a serializable execu-
tion while reducing the overhead of conflict detection. COP
entails no use of locks or atomic blocks, which are expensive
operations necessary for existing consistency schemes such
as Locking and OCC.

3.1 Overview
COP leverages the dataset knowledge property of machine

learning workloads: a machine learning algorithm processes
a dataset of samples that is known prior to the experiment
and is typically processed multiple times. This creates the
opportunity to plan a partial order of execution to minimize
the cost of conflict detection. Dataset knowledge is not
manifested in traditional database systems. Thus, existing
consistency schemes, such as Locking and OCC are designed
with the assumption that they are oblivious of the dataset.
The use of traditional database transactional methods leads
to a lost opportunity as they do not exploit dataset knowledge.
In this section, we propose COP algorithms that exploit
dataset knowledge.

The intuition behind COP is to have a planned partial
order of transactions prior to execution and then ensure
that the partial order is followed during execution. We
derive the planned partial order from an arbitrary starting
serial order of transactions. For example, a dataset with
n samples will be transformed to n transactions in some
planned order T1, T2, . . . Tn. We will represent this ordering
by the relation Ti <o Tj , where Ti is ordered before Tj .
However, during execution, the order is not enforced between
every pair of transactions. Rather, the order is only enforced
for transactions that depend on each other. Thus, if T2 does
not depend on T1 then a worker may start processing T2

even if T1 did not finish. Otherwise, processing T2 must
begin only after T1 finishes. Thus, the enforced partial order
is based on an initial serial order and the conflict relations
between transactions.

Definition 1. (Planned partial order) There is a
planned dependency—or dependency for short—from a trans-
action Ti to a transaction Tj if the planned order entails
Tj reading or overwriting a write made by Ti. We denote
this dependency by Ti  x Tj and it exists if all the following
conditions are met:

• Ti writes the model parameter x (x ∈ Ti.write-set).

• Tj reads or writes the model parameter x (x ∈ Tj .read-
set ∪ Tj .write-set).

• Ti is ordered before Tj (Ti <o Tj).

• There exists no transaction Tk that is both ordered
between Ti and Tj and writes x (@Tk|x ∈ Tk.write-
set ∧ Ti <o Tk <o Tj).

Enforcing the order between transactions that depend on
each other is a sufficient condition to guarantee a serializable
execution (see Section 4.1 for a correctness proof).
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Algorithm 3 The COP partial order planning algorithm
that is performed prior to the experiment.

1: Planned version list := A list to assign read and write
versions initially all zeros

2: version readers := A list to count the number of trans-
actions that read a version

3: for Ti ∈ Dataset transactions do
4: for r ∈ Ti.read-set do
5: r.planned version =
Planned version list[r.param]

6: version readers[r.param]++

7: for w ∈ Ti.write-set do
8: w.p writer = Planned version list[w.param]
9: Planned version list[w.param] = i

10: w.p readers = version readers[w.param]
11: version readers[w.param] = 0

12: Delete Planned version list and version readers

COP enforces dependencies by versioning model param-
eters with the ids of the transactions that wrote them. A
transaction only starts execution if the versions it depends on
has been written. Consider applying COP to the scenario in
Figure 3(a). The resulting execution is shown in Figure 3(c).
Assume that the planned order is to execute samples 1, 2,
and 3, in this order. The partial order consists of a single
dependency from iteration 1 to iteration 3, because they
both read and write p. Iterations use a special read opera-
tion called ReadWait that waits until the version it reads is
written by the transaction that it depends on. Iteration 1 is
planned to read the initial version of p, denoted p0, because
it is the first ordered iteration to read p. Likewise, iteration 2
is planned to read the initial version of q. Iteration 3 depends
on Iteration 1, because they both read and write p. Thus,
iteration 3 is planned to read the version of p that is written
by iteration 1, denoted p1. With this plan, workers 1 and 2
process iterations 1 and 2 concurrently after verifying that
they have read their planned versions. Worker 3, however,
waits until the version p1 is written by worker 1 and then pro-
ceeds to process iteration 3. With COP, workers coordinate
without the need of expensive locking primitives. Rather,
workers only utilize simple arithmetic operations on the read
or written parameter’s version number to enforce the plan.

In the remainder of this section, we propose the COP
planning algorithm that is used to find and annotate depen-
dency relations between transactions (Section 3.2). Then
we propose the COP transaction execution algorithm that
enforces dependency relations (Section 3.3). We discuss the
performance benefits of COP in Section 3.4.

3.2 COP Planning Algorithm
In this section, we present the COP planning algorithm

in its basic form—planning prior to execution. Then, we
discuss how it can be used to plan in conjunction with the
first epoch and how it can be used in cases where there are
multiple sources of data.

3.2.1 Basic COP Planning
We begin by presenting the basic COP planning strategy.

Here, we assume that planning is performed before execution,
either in offline settings or while loading the dataset. The
objective of the planning algorithm is to annotate the dataset

with the planned partial order information. This annotation
includes the following:

Definition 2. (COP planning and annotation)
COP planning performs the following two annota-
tions: (1) Read annotation: each read operation is annotated
with the version number it should read, and (2) Write an-
notation: each write operation, w, is annotated with the id
of the version it should overwrites, w’, and the number of
transactions that are planned to read the version w’.

The read annotation’s goal is to enforce the order during
execution. The write annotation’s goal is to ensure that
a version is not overwritten until it is read from all the
transactions that are planned to read it.

Algorithm 3 shows the steps to annotate transactions with
the partial order information. The algorithm processes trans-
actions one transaction at a time ordered by some arbitrary
order—beginning with T1 and ending with Tn.

In COP, each read operation in the read-set, r, contains
both the read parameter to be read (r.param), and the
planned read version number (r.planned version), i.e., the
read annotation. A planned version number k means that the
transaction must read the value written by transaction Tk.
Also, each write in the write-set, w, contains the parameter
to be written (w.param), the number of transactions that
read the previous version (w.p readers), and the transaction
id of the transaction that it is overwriting (w.p writer), i.e.,
the write annotation.

The planning algorithm tracks the planned version num-
bers in a list named Planned version list as dependencies
are being processed. Planned version list[x] contains the
unique transaction id of the most recently planned transac-
tion that writes x. All entries in the list are initialized to
0. Also, the number of version readers are maintained in a
list named version readers. At any point in the planning
process, version readers[x] contains the number of planned
transactions that read the most recently planned written
version of x. Both lists are only used within the planning
algorithm and are deleted before the execution phase.

The planning of a transaction Ti proceeds by processing
the read-set and then the write-set. Each read operation r
in the read-set is annotated with a planned version from the
Planned version list (lines 4-5). For example, consider the
case where Ti reads model parameter x. Then, there is a read,
r, with r.param equals to x. At the time r is being planned,
the corresponding value in the list, Planned version list[x]
contains the unique transaction id, k, of the last transaction,
Tk, that wrote x. Thus, assigning the planned version of r to
k is a way of encoding that the plan is for Ti to read the value
of x that was written by Tk. Then, the corresponding number
of version readers is incremented (line 6). After processing
the read-set, the planning algorithm processes each write w
in the write-set (lines 7-11). Each write is annotated with
the previous writer’s version number (line 8). Then, the
corresponding entry in P lanned version list is updated with
the transaction id value i (line 9). Thus, reads of transactions
ordered after Ti can observe that they are planned to read
Ti’s writes. Then, the write is annotated with the number
of readers of the previous version (line 10). Finally, the
corresponding entry in version readers is reset. After all
the operations are processed, the lists Planned version list
and version readers are deleted.

The outcome of the algorithm is read and write annotations
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Algorithm 4 Parallel execution with COP

1: Global num reads := initially all zeros
2: procedure Process transaction Ti

3: for r ∈ Ti.read-set do
4: µ← P.ReadWait(r)
5: num reads[r.param]++

6: δ ← ML computation (µ, Ti.sample, Ti.write-set)
7: for w ∈ δ do
8: w.version = i
9: while w.p readers 6= num reads[w.param] OR
w.p writer 6= P [w.param].version do

10: Wait
11: num reads[w.param] = 0

12: P ← δ

of the whole dataset. The algorithm only requires a single
pass on the dataset. In the evaluation section, we perform
experiments to quantify the overhead of planning.

3.2.2 Alternative Planning Strategies
The basic COP planning algorithm, presented in the pre-

vious section, assumes that planning is performed prior to
execution in offline settings or during dataset loading. We
now show how to adapt the algorithm to plan in alternative
planning scenarios. The first alternative is to plan during
the first epoch of the machine learning algorithm’s execution.
The plan’s objective is to annotate transactions with a partial
order of a serializable execution. It is possible to execute the
first epoch of the machine learning algorithm via a traditional
consistency scheme (e.g., Locking) and then annotate the
dataset with the partial order of that epoch. Specifically, dur-
ing the first epoch using Locking, the planning Algorithm 3
is performed for each transaction while all the locks of that
transaction are held. Thus, each read is annotated with the
read version and each write is annotated with the version it
overwrites and the number of readers. After the first epoch,
that has passed through the whole dataset, the remaining
epochs are processed using COP with the annotated plan.
The planning only adds a small overhead to the first epoch,
as we discuss in the evaluation section.

Another alternative is to plan when the dataset is being
generated online from multiple sources, in cases such as
the global analytics scenario in Section 2.1.2. In such a
scenario, planning can be done at each source for batches
of samples using Algorithm 3. Then, at the centralized
location, the machines learning algorithms process batches
in tandem. The dependencies of a batch are transposed to
previous batches. For example, consider two batches b1 and
b2, where b1 is processed in the centralized location prior to
b2. The transactions in b2 that have dependencies on the
initial version, according to Algorithm 3, are transposed to
the most recent version written by b1. For example, the
first transaction that accesses x in b2 will be annotated as
reading the version 0. However, the centralized location will
translate this as an annotation to wait for the last version
written by b1.

3.3 Planned Execution Algorithm
We present the COP execution algorithm (shown in Algo-

rithm 4) that processes transactions in parallel according to
a planned partial order. We associate each model parameter

with a version number that corresponds to the transaction
that wrote it, e.g., P [x].version is the current version number
of model parameter x. A list of the number of version readers
for model parameters, num reads, is maintained and acces-
sible by all workers. For example, a value for num reads[x]
of 3 means that so far, three transactions read the current
version of x.

Dependencies between transactions are enforced by ensur-
ing that read operations read the planned versions. Ti’s read-
set is read from the shared model parameters, P (lines 3-5).
The ReadWait operation blocks until the annotated planned
version is available. The implementation of ReadWait simply
reads both the data object and its version number. Then, it
compares the version number to the annotated read version
number. If they match, the read data object is returned;
otherwise, the read is retried until the planned version is
read.

After reading the planned version, the number of version
readers is incremented (line 5). Then, the transaction execu-
tion proceeds by performing the machine learning computa-
tion using the read model parameters and the data sample’s
information (line 6). Writes to the model parameters com-
puted by the machine learning computation, δ, are buffered
before they are applied to the model parameters (lines 7-11).
First, each write, w, is tagged with a version number equal to
the transaction’s id (line 8). Thus, future transactions that
read the state can infer that Ti is the transaction that wrote
these updates. Then, the algorithm waits until the previous
version has been read by all planned readers by making sure
that the number of version readers is equal to the planned
number of readers of that version and by making sure that
the current version is identical to w.p writer (lines 9-10).
Since we are writing a new version, the corresponding entry
in num reads is reset to 0. The writes are then incorporated
in the shared state (line 12).

3.4 Performance and Overheads
In Section 2.3 we discussed two overheads of consistency

schemes: conflict detection overhead and backoff overhead.
The backoff overhead incurred in COP is similar to Locking
and OCC, i.e., transactions wait until conflicting transac-
tions complete. COP’s goal is to minimize the other source
of overhead: conflict detection overhead that is incurred
whether a conflict is detected or not. In COP, the conflict
detection overhead is due to: (1) The validation using the
ReadWait operation, and (2) Validation that each write opera-
tion’s previous readers have already read the previous version.
These two tasks are performed via arithmetic operations and
comparisons only, without the need for expensive synchro-
nization operations like acquiring and releasing locks. This
is the main contributor to COP’s performance advantage.

4. CORRECTNESS PROOFS
In this section, we present two proofs. The first proves that

COP is serializable and the second proves that deadlocks do
not occur in COP.

4.1 COP Serializability
We prove the correctness of COP and that it ensures a

serializable execution that is equivalent to a serial execu-
tion. We use a serializability graph (SG) to prove COP’s
serializability [3]. A protocol is proven serializable if the
SGs that represent its possible executions do not have cycles.
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A SG consists of nodes and edges. Each node represents a
committed transaction. A directed edge from one node to
another represents a conflict relation. There are three types
of conflict relations (edges) in SGs:

• Write-read (wr) relation: This relation is denoted as
Ti →wr Tj , which means that there is a wr edge from
Ti to Tj . This relation exists if Ti writes a version of a
data object x and Tj reads that version.

• Write-write (ww) relation: This relation is denoted as
Ti →ww Tj , which means that there is a ww edge from
Ti to Tj . This relation exists if Ti writes a version of
a data object x and Tj overwrites that version with a
new one.

• Read-write (rw) relation: This relation is denoted as
Ti →rw Tj , which means that there is a rw edge from
Ti to Tj . This relation exists if Ti reads a version of
a data object x and Tj overwrites that version with a
new one. If this edge exists between two transactions
(Ti →rw Tj) then it must be the case that there exists a
transaction Tk that writes x with the following conflict
relations: (1) A write-write conflict relation from Tk to
Tj (Tk →ww Tj), and (2) a write-read conflict relation
from Tk to Ti (Tk →wr Ti).

Lemma 1. For any conflict relation Ti→Tj in SG of a
COP execution, the following is true: Ti <o Tj , where <o is
the ordering relation of the initial planned order.

Proof. Assume that the data object that causes the con-
flict relation is data object x. We prove this lemma for the
three conflict relations:

• Write-read (wr) conflict relations (Ti→wrTj): accord-
ing to Definition 1 a transaction Tj is planned to read
from a transaction Ti if there is an ordering depen-
dency Ti  x Tj . One of the conditions of this ordering
dependency is that Ti is ordered before Tj (Ti <o Tj).
In the implementation algorithm, this is enforced by
the ReadWait operation (see Algorithm 4 lines 3-4).

• Write-write (ww) conflict relations (Ti→wwTj)): ac-
cording to Definition 1 a transaction Tj is planned to
overwrite a value written by transaction Ti if there is an
ordering dependency Ti  x Tj . One of the conditions
of this ordering dependency is that Ti is ordered before
Tj (Ti <o Tj). In the implementation algorithm, this is
enforced by the check of w.p writer (see Algorithm 4
lines 9-10).

• Read-write (rw) conflict relations (Ti→rwTj): this re-
lation implies the existence of a transaction Tk with
the relations Tk→wrTi and Tk→wwTj . According to
our analysis in the previous two points, the following
is true:

Tk <o Ti and Tk <o Tj (1)

Thus, the following ordering dependencies exist:

Tk  x Ti and Tk  x Tj (2)

We now show by contradiction that the following is
true: Ti <o Tj . Assume to the contrary that Tj <o Ti

is true. If Tj <o Ti then according to Equation 1 the
following is true:

Tk <o Tj <o Ti (3)

However, this equation violates one of the definitions
in Definition 1 that states that the ordering relation
Tk  x Ti that exists according to Equation 2 implies
that there exists no transaction that is ordered between
them and writes x. However, according to Equation 3,
Tj is ordered between Tk and Ti and it writes x. This
violation leads to a contradiction to Tj <o Ti thus
proving that Ti <o Tj . In the implementation algo-
rithm, this is enforced by the check of w.p readers (see
Algorithm 4 lines 9-10).

The condition of the lemma is proven for all three conflict
relations.

Theorem 1. Conflict Order Planning (COP) algorithms
guarantee serializability.

Proof. According to Lemma 1, a conflict relation Ti → Tj

in SG means that Ti <o Tj . We need to show that a cycle
Ti → . . . → Ti cannot exist. Assume to the contrary that
such a cycle exists. This means according to Lemma 1 that
Ti <o . . . <o Ti. Since the ordering relation <o is transitive
this leads to Ti <o Ti, which is a contradiction, thus proving
that no cycles exist in the SG of COP executions. The
absence of cycles in SG is a sufficient condition to prove
serializability [3].

4.2 COP Deadlock Freedom
The COP execution algorithm 4 can block in two locations:

(1) a read waits for its planned version to be available, and
(2) a write waits until all reads of the previous versions and
the write of the previous version are complete. In this section
we prove that these waits do not cause a deadlock scenario
where a group of transactions are waiting for each other. We
prove this by constructing a deadlock graph (DG). Nodes in
DG are transactions. A directed edge from one transaction
to another, Ti →d Tj , denotes that Tj may block waiting for
a read or a write of Ti.

Lemma 2. For any edge in DG, Ti →d Tj, the following
is true: Ti <o Tj, where <o is the ordering relation of the
planned order.

Proof. An edge Ti →d Tj exists in three cases: (1) Tj

reads a version written by Ti, (2) Tj overwrites a version
written by Ti, or (3) Tj overwrites a version to be read by Ti.
All cases are true in the COP algorithms only if the ordering
dependency Ti Tj exists. According to Definition 1, an
ordering dependency Ti Tj is only true if Ti <o Tj .

Theorem 2. Conflict Order Planning (COP) algorithms
guarantee deadlock freedom.

Proof. According to Lemma 2, a dependency relation
Ti →d Tj in DG means that Ti <o Tj . We need to show
that a cycle Ti →d . . . →d Ti cannot exist. Assume to the
contrary that such a cycle exists. This means according
to Lemma 2 that Ti <o . . . <o Ti. Since the ordering
relation <o is transitive this leads to Ti <o Ti, which is a
contradiction, thus proving that no cycles exist in the DG of
COP executions. The absence of cycles in DG is a sufficient
condition to prove deadlock freedom.
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Properties Performance (M transactions/s)
Dataset # features training set size test set size avg. transaction size Ideal COP Locking OCC

KDDA [26] 20,216,830 8,407,752 510,302 36.3 7.2 4.1 0.75 0.82
KDDB [26] 29,890,095 19,264,097 748,401 29.4 8.0 5.8 0.95 1.0

IMDB 685,569 167,773 14.6 15.2 11.0 6.7 4.9

Table 1: Performance comparison across of COP, Locking, OCC, and Ideal (without conflict detection) for three datasets

5. EVALUATION
In this section, we evaluate COP in comparison to Lock-

ing and OCC. We also compare with an upper-bound of
performance, which is the performance without any conflict
detection. We will call this upper-bound the ideal baseline,
or Ideal for short. Ideal does not guarantee a serializable
execution, unlike COP, Locking, and OCC. Thus, Ideal does
not guarantee preserving the theoretical properties of the
machine learning algorithm.

The transactional framework of machine learning can be
applied to a wide-range of machine learning algorithms. For
this evaluation, we run our experiments with a Stochastic
Gradient Descent (SGD) algorithm to learn a Support Vector
Machine (SVM) model. The goal of the machine learning al-
gorithm is to minimize a cost function f . We use a separable
cost function for SVM [25]. Each iteration in SGD processes
a single sample from the dataset. Gradients are computed
according to the cost function. The gradients are then used
to compute the new values of the model that are relevant to
the sample. We apply this machine learning algorithm to the
transactional template we presented in Algorithm 1. Each
transaction corresponds to an iteration of SGD. The itera-
tion computation (i.e., ML computation() in the algorithm)
represents the gradient computation using the cost function.
For this machine learning algorithm, the read and write-sets
of a transaction are the features in the corresponding sample,
i.e., the features with a non-zero value. In all experiments,
we initialize the SGD step size value to 0.1. The step size
value diminishes by a factor 0.9 at the end of each epoch over
the training dataset. All experiments are run for 20 epochs,
where an epoch is a complete pass on the whole dataset.

We implemented COP, Locking, and OCC as a layer on top
of the parallel machine learning framework of Hogwild! [25]
that is available publicly1. The source code is written in C++.
We use an Amazon AWS EC2 virtual machine to run our
experiments. The virtual machine type is c4.4xlarge with 30
GB memory and 16 vCPUs that are equivalent to 8 physical
cores (Intel(R) Xeon(R) CPU E5-2666 v3 @ 2.90GHz) and 16
hyper threads. Unless mentioned otherwise, the number of
worker threads used in the experiments is 8. Our experiments
with more than 8 threads show no significant performance
difference.

We use three datasets to conduct our experiments, sum-
marized in Table 1. The first two datasets are KDDA
and KDDB datasets, which were part of the 2010 KDD
Cup [26]. KDDA (labeled algebra 2008 2009) has 20,216,830
features and contains 8,407,752 samples in the training
set and 510,302 samples in the test set. KDDB (labeled
bridge to algebra 2008 2009) has 29,890,095 features and
contains 19,264,097 samples in the training set and 748,401
samples in the test set. The third dataset is the IMDB

1http://i.stanford.edu/hazy/victor/Hogwild/
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Figure 4: The throughput of Ideal, COP, Locking, and OCC
while varying the number of threads for three datasets (log
scale is used)

dataset2 that has 685,569 features and contains 167,773 sam-
ples. The IMDB dataset is not divided into training and test
sets. The average sample (transaction) size of each dataset,
which is the number of model parameters represented in
each sample, is 36.3 for KDDA, 29.4 for KDDB, and 14.6 for
IMDB. In addition to these three datasets, we use synthetic
datasets for experiments that require controlling the dataset
properties, such as contention.

5.1 Throughput
The metric that we are interested in the most is throughput.

We measure throughput as the number of processed samples

2http://komarix.org/ac/ds/
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(i.e., transactions) per second. Table 1 shows a summary of
throughput numbers for the different evaluated methods on
the three datasets. COP outperforms Locking and OCC by
a factor of 5-6x for KDDA and KDDB. For IMDB, COP’s
throughput is 64% higher than Locking and 124% higher
than OCC. The magnitude of performance improvement
of COP compared to Locking and OCC is influenced by
the level of contention in the dataset, i.e., the likelihood of
conflict between transactions. Our inspection of the datasets
revealed that there is more opportunity for conflict in the
KDDA and KDDB datasets than the IMDB dataset. We do
not present the statistical properties of the datasets to show
this due to the lack of space. However, we perform more
experiments in Section 5.2 to study the effect of contention on
performance. The comparison with Ideal shows that COP’s
throughput is 27-44% lower than Ideal. This percentage
represents COP’s overhead to preserve consistency. Although
conflicts are planned in COP, there is still an overhead for
conflict detection and backoff.

The throughputs of Locking and OCC are relatively close
to each other. For KDDA and KDDB, the throughputs
of Locking and OCC are within 10% of each other. For
IMDB, Locking outperforms OCC by 36.7%. In the case of
KDDA and KDDB, the locking contention for both Lock-
ing and OCC (to implement atomic validation) dominates
performance. In general, OCC benefits in cases where the
read-set is larger than the write-set. Because our machine
learning workload has a read and write-sets of equal sizes,
the advantage of OCC is not manifested (see Section 2.3).
In IMDB, which is the workload with less contention, Lock-
ing outperforms OCC. This is due to the additional work
needed to validate transactions by OCC. For the conflict
detection overhead, OCC experiences both the overheads of
locking and validation, while Locking only experiences the
overhead of locking. The overhead of validation is exposed
with workloads with less contention because in these cases,
locking contention does not dominate performance, i.e., in
the case of the KDDA and KDDB datasets, the overhead
due to locking contention dominates the validation overhead.
We revisit the effect of contention in Section 5.2.

In Figure 4, we show the performance of the different
schemes while varying the number of threads. Increasing the
number of threads increases contention. Also, using more
cores in the experiment exposes the effect of the underlying
cache and cache coherence on the performance of the different
schemes. Figure 4(a) shows the performance for the KDDA
dataset. Consider the throughput of all schemes with a
single worker thread. In this case, there is no conflict or
cache coherence overhead. What is observed is the conflict
detection overhead in isolation (Section 2.3). Ideal is only
21% higher than COP in the case of a single worker thread.
This shows that the overhead of conflict detection is small
compared to Locking and OCC; the throughput of Ideal is
163% higher than Locking and 186% higher than OCC.

For scenarios with more than one worker thread in Fig-
ure 4(a), the backoff and cache coherence overheads are
experienced in addition to the conflict detection overhead.
Ideal does not suffer from the backoff overhead because con-
flicts are not prevented. Also, Ideal has an advantage with
the cache coherence overhead compared to the consistent
schemes. Unlike COP, Locking, and OCC, Ideal does not
maintain additional locking or versioning data that may be
invalidated by cache coherence protocols. These factors cause
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Figure 5: Quantifying the effect of contention on performance
by experiments on synthetic datasets with varying contention
levels

the performance gap between Ideal and the other schemes to
grow as the number of threads is increased. COP’s through-
put, for example, is 17% lower than Ideal with one worker
thread, but it is lower by 43% in the case of 8 threads. The
contention between cores due to cache coherence limits scala-
bility. Ideal with 8 threads achieves 4 times the performance
of the case with a single thread—rather than 8 times the
performance in the case of linear scalability. COP with 8
threads achieves 3 times the performance of the case with
a single thread. For Locking and OCC, the contention is so
severe that performance slightly decreases beyond 4 threads.

We show the same set of experiments for KDDB and IMDB
in Figures 4(b) and 4(c). The experiments with the KDDB
dataset show similar behavior to the experiments with the
KDDA dataset. One difference is that COP scales better, as
the KDDB dataset is sparser than KDDA; for KDDB, COP’s
throughput with 8 threads is 4 times the throughput with a
single thread, rather than a 3x factor with the KDDA dataset.
For the IMDB dataset, there is less contention compared
to KDDA and KDDB. All schemes—including Locking and
OCC—scale with a factor around 4x when increasing the
number of threads from 1 to 8. Also, the smaller transaction
sizes with the IMDB dataset makes the absolute throughput
numbers higher than those with the KDDA and KDDB
datasets.

5.2 Contention Effect
Contention affects performance because it increases the

rate of conflict. A conflict between two transactions causes
at least one of them to either wait or restart, thus wasting
resources. Here, we quantify the effect of contention on
the performance of our consistency schemes. We generate
synthetic datasets to give us more flexibility in controlling
the contention. The synthetic datasets we generate contain
one million samples each. We fix the size of each sample
to 100 features, which means that each transaction contains
100 data objects in the read and write-sets. To control the
contention, we restrict transactions to a hot spot in the
parameter space. Each data object is sampled uniformly
from the hot spot. We control contention by varying the size
of the hot spot.

Figure 5 shows the performance with hot spot sizes of 1K,
10K, and 100K features. Contention leads to a higher conflict
overhead and lower performance. This is why consistency
schemes perform lower in the highest contention case (1K
features) when compared to cases with less contention. The
performance improvement factor of the case with 100K fea-
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Figure 6: A comparison of the loading time of the dataset
to main memory with and without order planning.

tures compared to the case with 1K features is 4x for COP,
8.8x for Locking, and 7.3x for OCC. Ideal also performs
lower as contention increases, although it does not face an
overhead due to conflicts. The performance of Ideal with
100K features is 131% higher than the performance with 1K
features. The reason is that more contention also means
more contention on cache lines, leading to a larger overhead
for cache coherence.

As contention decreases, the performance gap between the
consistency schemes and Ideal decreases. Part of the perfor-
mance benefit of Ideal compared to the consistency schemes
is that Ideal does not block or restart transactions due to
conflicts. As contention decreases, this performance benefit
diminishes, and the performance of the consistency schemes
becomes closer to Ideal. For example, in the high contention
case (1K features) Ideal’s throughput is 4x the throughput
of COP. For the low contention case (100K features), this
gap decreases with Ideal’s throughput only 34% higher than
COP. This is also true for Locking and OCC, where Ideal’s
throughput is higher than them by a factor of 20-23x in the
high contention case, but this factor decreases to around 5x
for the low contention case.

Like the performance difference between Ideal and the
other consistency schemes, the performance gap between
COP and the other consistency schemes (Locking and OCC)
also decreases as contention decreases. COP’s light-weight
conflict detection makes it less prone to conflicts than Lock-
ing and OCC because the latency of the transaction is lower.
Thus, Locking and OCC suffer from contention more than
COP. In the low contention case, COP’s throughput is 3.7x
higher than Locking and 3.1x higher than OCC. This perfor-
mance gap decreases in the low contention case where COP
outperforms Locking by 46% and OCC by 51%.

5.3 Planning Overhead
COP’s performance advantage is due to having conflicts

planned ahead of time. We have outlined in Section 2.1
examples of machine learning environments. In these envi-
ronments, planning can be done in advance, and thus the
planning overhead is not observed when the machine learning
algorithm is processed using COP. This includes the case of
the machine learning framework where a dataset is reused
in different experiments and is possibly stored with the an-
notated plan for future sessions. However, there are cases
where machine learning algorithms are used for fresh and
raw datasets. In these cases, the planning overhead becomes
important.

We performed several experiments to quantify the over-
head of planning. We propose two alternatives to plan for a
dataset. The first planning strategy is to plan while loading
the dataset. A dataset is typically stored in a persistent

storage such as a disk. Planning can be done in conjunc-
tion with reading the raw dataset from persistent storage
and loading it into the appropriate data structures in main
memory. Figure 6 shows the loading throughput with and
without planning for three datasets. Planning only adds a
small overhead to loading that we measure to be between
3% and 5%.

The second planning strategy is to plan during the first
epoch and then use the plan for later epochs (Section 3.2.2).
In the first epoch, a consistency scheme must be used. We run
the first epoch using Locking and the rest of the epochs using
COP. The throughput of the first epoch is within 1% of the
throughput of Locking for all our datasets. The throughput
of the remaining epoch is also within 1% of the performance
of COP with offline planning.

6. RELATED WORK
The use of transactional and consistency concepts have

been explored recently for parallel and distribute machine
learning by Pan et.al [20–24]. Some of these works build con-
sistent algorithms that follow the OCC pattern for distributed
unsupervised learning [21], correlation clustering [20, 24],
and submodular maximization [22]. These proposals show
that domain-specific implementations of OCC—rather than
general OCC that we presented in this work—achieve per-
formance close to their coordination-free counterparts while
guaranteeing serializability [22, 24].

The study of consistent machine learning algorithms has
been motivated by the complexity of developing mathemati-
cal guarantees and coordination-free algorithms that are par-
allel [20–24]. However, many coordination-free machine learn-
ing algorithms were developed [1, 6, 18, 25]. Hogwild! [25],
for example, is an asynchronous parallel SGD algorithm with
proven convergence guarantees for several classes of machine
learning algorithms.

Bounded staleness has been proposed as an alternative
to both serializability and coordination-free execution for
parallel machine learning. Bounded staleness is a correctness
guarantee of the freshness of read data objects. It has been
demonstrated for distributed machine learning tasks [13, 17].
Bounded staleness, however, may still lead to data corruption
which requires a careful design of machine learning algorithms
that leverage bounded staleness.

The concept of planning execution to improve the perfor-
mance of distributed and parallel transaction processing has
been explored in different contexts. Calvin [28] is a deter-
ministic transaction execution protocol. Sequencing workers
intercept transactions and put them in a global order that is
enforced by scheduling workers. Calvin is built for typical
database transactional workload and thus does not leverage
the dataset knowledge property of machine learning work-
loads. This makes its design incur unnecessary overheads
compared to COP for machine learning workloads, such as
always having the sequencing and scheduling workers in the
path of execution. Schism [5] is a workload-driven replication
and partitioning approach. The access patterns are learned
from the coming workload to create partitioning strategies
that minimize conflict between partitions and thus improve
performance. Cyclades [23] adopts a similar approach to
Schism for parallel machine learning workloads. Cyclades
improves the performance of both conflict-free and consis-
tent machine learning algorithms by partitioning access for
batches of the dataset to minimize conflict between parti-
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tions. Each partition is then processed by a dedicated thread,
leading to better performance. Partitioning for performance
complements COP’s objective. Whereas partitioning aims
to minimize conflict between workers, COP ensures that
conflicts are handled more efficiently.

7. CONCLUSION
In this paper, we propose Conflict Order Planning (COP)

for consistent parallel machine learning. COP leverages
dataset knowledge to plan a partial order of concurrent exe-
cution. Planning enables COP to execute with light-weight
synchronization operations and outperform existing consis-
tency schemes such as Locking and OCC while maintaining
serializability for machine learning workloads. Our evalua-
tions validate the efficiency of COP on a SGD algorithm for
SVMs.
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ABSTRACT
Reactive security monitoring, self-driving cars, the Internet
of Things (IoT) and many other novel applications require
systems for both writing events arriving at very high and
fluctuating rates to persistent storage as well as supporting
analytical ad-hoc queries. As standard database systems are
not capable to deliver the required write performance, log-
based systems, key-value stores and other write-optimized
data stores have emerged recently. However, the drawbacks
of these systems are a fair query performance and the lack
of suitable instant recovery mechanisms in case of system
failures.

In this paper, we present ChronicleDB, a novel database
system with a well-designed storage layout to achieve high
write-performance under fluctuating data rates and power-
ful indexing capabilities to support ad-hoc queries. In ad-
dition, ChronicleDB offers low-cost fault tolerance and in-
stant recovery within milliseconds. Unlike previous work,
ChronicleDB is designed either as a serverless library to
be tightly integrated in an application or as a standalone
database server. Our results of an experimental evaluation
with real and synthetic data reveal that ChronicleDB clearly
outperforms competing systems with respect to both write
and query performance.

1. INTRODUCTION
Data objects in time also known as events are ubiqui-

tous in today’s information landscape. They arise at lower
levels in the context of operating systems like file accesses,
CPU usage or network packets, but also at higher levels,
for example, in the context of online shopping transactions.
The rapidly growing Internet of Things (IoT) is reinforcing
the new challenge for present-day data processing. Sensor-
equipped devices are becoming omnipresent in companies,
smart buildings, airplanes or self-driving cars. Furthermore,
scientific observational (sensor) data is crucial in various re-
search, spanning from climate research over animal tracking
to IT security monitoring. All these applications rely on low-

c©2017, Copyright is with the authors. Published in Proc. 20th Inter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

latency processing of events attached with one or multiple
temporal attributes.

Due to the rapidly increasing number of sensors not only
the analysis of such events, but also their pure ingestion
is becoming a big challenge. On-the-fly event stream pro-
cessing is not always the outright solution. Many fields of
application require to maintain the collected historical data
as time series for the long term, e.g., for further temporal
analysis or provenance reasons. For example, in the field
of IT security, historical data is crucial to reproduce criti-
cal security incidents and to derive new security patterns.
This requires writing various sensor measurements arriving
at high and fluctuating speed to persistent storage. Data
loss due to system failures or system overload is generally
not acceptable as these data sets are of utmost importance
in operational applications.

There is a current lack of systems supporting the above
described workload scenario (write-intensive, ad-hoc tempo-
ral queries and fault-tolerance). Standard database systems
are not designed for supporting such write-intensive work-
loads. Their separation of data and transaction logs gener-
ally incurs high overheads. Our experiments with traditional
relational systems revealed that their insertion performance
is insufficient to keep up with the targeted data rates. Post-
greSQL [9], for example, managed only about 10K tuple
insertions per second. Relational database systems are de-
signed to store data with the focus on query processing and
transactional safety. Instead of relational systems, today,
it is common to use distributed key-value systems like Cas-
sandra [1] or HBase [3], but they only alleviate the write
problem at a very high cost. In our benchmarks, our event
store ChronicleDB outperformed Cassandra by a factor of
47 in terms of write-performance on a single node. In other
words: Cassandra would need at least 47 machines to com-
pete with our solution. Apart from economical aspects due
to high expenses for large clusters, there are many embed-
ded systems where scalable distributed storage does not suit.
For example, in [14], virtual machines of a physical server
are monitored within a central monitoring virtual machine,
which does not allow a distributed storage solution due to
security reasons. Other examples are self-driving cars and
airplanes that need to manage huge data rates within a local
system.

In order to overcome these deficiencies, particularly the
poor write performance, log-only systems have emerged
where the log is the only data repository [32, 16, 33]. Our
system ChronicleDB also keeps its data in a log, but it dif-
fers from previous approaches by its centralized design for
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high volume event streams. Because there are often only
modest changes in event streams, ChronicleDB exploits the
great potential of their lossless compression to boost write
and read performance beyond that of previous log-only ap-
proaches. This also requires the design of a novel storage
layout to achieve fault tolerance and near-instant recovery
within milliseconds in case of a system failure. In addition
to lightweight temporal indexing, ChronicleDB offers adap-
tive indexing support to significantly speed-up non-temporal
queries on its log. ChronicleDB can either be plugged into
applications as a library or run as a centralized system with-
out the necessity to use the common distributed storage
stack. In summary, we make the following contributions:

• We propose an efficient and robust storage layout for
compressed data with fault tolerance and instant re-
covery.

• ChronicleDB offers an adaptive indexing technique
compromising both lightweight temporal indexing as
well as full secondary indexing to speed-up queries on
non-temporal dimensions.

• In order to support out-of-order arrival of events, we
developed a hybrid logging approach between our log
storage and traditional logging.

• We compare the performance of ChronicleDB with
commercial, open-source and academic systems in our
experiments using real event data.

The remainder of this paper is structured as follows: Sec-
tion 2 discusses related work and proposes related solutions.
In Section 3, we give a brief overview of the system archi-
tecture. Section 4 addresses ChronicleDB’s storage layout,
Section 5 discusses its indexing approach. Recovery issues
are examined in Section 6. In Section 7, we evaluate our
system experimentally and Section 8 concludes the paper.

2. RELATED WORK
Our discussion of related work is structured as follows.

At first, we present data stores relating to ChronicleDB.
Then, we discuss previous work referring to our indexing
techniques.

Data Stores The domain of ChronicleDB partly relates
to different types of storage systems, including data ware-
house, event log processing as well as temporal database
systems.

One of the first solutions explicitly addressing event data
is DataDepot [20]. DataDepot is a data warehouse for
streaming data, running on top of a relational system.
Hence, DataDepot achieves a throughput of only about
10 MiB/s. Tidalrace [22], the successor of DataDepot, pur-
sues a distributed storage approach and reaches data rates
of up to 500.000 records per second, which still does not
compete with ChronicleDB running on a single machine.
DataGarage [25] is a data warehouse designed for manag-
ing performance data on commodity servers which consists
of several relational databases stored on a distributed file
system. Similar to ChronicleDB, DataGarage addresses ag-
gregation and deletion of outdated events. However, Data-
Garage is by design a scalable distributed system that is not
designed to run as a library tightly integrated in the appli-
cation code. In addition, DataGarage does not address high
ingestion rates.

The most popular NoSQL systems in the context of stor-
ing events are Cassandra [1] and HBase [3]. As shown in
our experimental section, ChronicleDB clearly outperforms
Cassandra when running on a central system.

A representative for log storage systems is LogBase [32],
which is also applied for event log processing. In contrast
to our approach, LogBase is designed as a general-purpose
database, also applicable for media data like photos. Log-
Base is based on HDFS [2] and simply writes data to logs.
The authors use an index similar to Blink-trees, augmented
with compound keys (key, timestamp) to index the data in
an in-memory multi-version index.

LogKV [16] utilizes distributed key-value stores to process
event log files. In fact, Cassandra [1] was used as underly-
ing key-value store. In experiments, the authors achieved a
throughput of 28K events/s ingestion bandwidth per worker
node, each consisting of an Intel Xeon X5675 system with
96GB memory and a 7200rpm SAS drive, connected via a
1GB/s network. In comparison to ChronicleDB, the inges-
tion rate is lower by about a factor of 100.

The third class of storage solutions ChronicleDB partly
relates to is that of time series databases. A representative
of this class is tsdb [18]. Similar to our approach, the au-
thors use a LZ compression for loss-less data compression.
In contrast to our approach, time series databases (including
tsdb) usually assume that data arrives at every tick.

Gorilla [29] proposes a main-memory time series system
on top of HBase with support for ad-hoc query processing.
The authors propose a compression technique for uni-variate
events of continuous event data.

OpenTSDB [8] and KairosDB [6] are time series database
systems on top of HBase and Cassandra. Thus, they have
the same deficiencies as their underlying systems.

The mostly related storage system is InfluxDB [5], a new
open-source time series database solution. As will be dis-
cussed in our experimental section, the performance and
functionality of InfluxDB on a central system are inferior
to ChronicleDB.

Indexing Aggregation in the context of temporal
databases has been extensively investigated before in the
database community. Widom et al. [34] proposed the SB-
tree for partial temporal aggregates. The SB-tree shares
some common characteristics with our indexing approach
TAB+-tree. But unlike our approach, a SB-tree only main-
tains the aggregates for a certain attribute.

More recent research concentrates on observational data
and event data. The recently proposed CR-index by Wang
et al. [33] is based on LogBase [32] and also utilizes tempo-
ral correlation of data. It maintains a separate index per
attribute on its minimum/maximum intervals within data
blocks. But instead of creating a separate index for each at-
tribute, ChronicleDB keeps all secondary information within
a single index. The cost for writing events is lower when the
event is written once. In addition, queries on multiple at-
tributes do not need to access multiple indexes.

3. SYSTEM ARCHITECTURE
This section introduces the general architecture of Chron-

icleDB. At first, we present our requirements on the system.
Afterwards, its main components are introduced. Finally,
we discuss the main features of ChronicleDB and its funda-
mental design principles.
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Figure 1: Layers of the ChronicleDB architecture.

3.1 Requirements
ChronicleDB aims at supporting temporal-relational

events, which consist of a timestamp t and several non-
temporal, primitive attributes ai. So, sequences of events
(streams) can be considered as multi-variate time series,
but with non-equidistant timestamps. Timestamps can ei-
ther refer to system time (when the event occurred at the
system) or application time (when the event occurred in
the application). The latter is more meaningful to tempo-
ral queries on the application level and thus our goal is to
maintain a physical order on application time.

Our main objective is fast writing in order to keep-up
with high and fluctuating event rates. ChronicleDB should
be as economical as possible in order to store data for the
long-term, i.e., months or years. Therefore, we aimed at a
centralized storage system for cheap disks running as an em-
bedded storage solution within a system (e.g., a self-driving
car).

Generally, we assume events to arrive chronologically.
Events are inserted into the system once and are (possi-
bly) deleted once. In the mean time, there are no updates
on an event. However, we also want to support occasional
out-of-order insertions as they typically occur in event-based
applications [13]. They can happen, e.g., if sensors are send-
ing their events in batches based on asynchronous clocks or
simply due to communication problems.

The most important types of queries the system has to
support are time travel queries and temporal aggregation
queries. Time travel queries allow requests for specific points
and ranges in time, e.g., all ssh login attempts within the last
hour. Temporal aggregation queries give a comprehensive
overview of the data, e.g., the average number of ssh logins
for each day of the week during the last three months. In
addition, the system should efficiently support queries on
non-temporal attributes, e.g., alls ssh logins within the last
day from a certain IP range.

3.2 Architecture Overview
Figure 1 depicts a high level view of ChronicleDB’s archi-

tecture. In this paper, we focus on the lower layer, i.e., the
storage engine and the indexing capabilities of ChronicleDB.
Nevertheless, we also give a short description of the other
layers, which will be discussed in more detail in future work.

The storage engine of ChronicleDB logically consists of
three components: event queues, workers and disks. Ba-
sically, event queues have two functions. Primarily, they
decouple the ingestion of events from further processing. As
a side effect, they also compensate chronologically out-of-
order event insertion. The workers are responsible for writ-
ing data to disks and therefore reside in their own threads.
Each worker processes the events from its assigned event
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Figure 2: Example of a ChronicleDB topology.

queues, as long as they are non-empty. All events of a stream
are separately stored on one of the worker’s dedicated disks.

The architecture of ChronicleDB is sufficiently flexible to
take into account workload characteristics as well as the
available system resources. The task of the load scheduler
is to determine the configuration settings. Figure 2 shows
an exemplary topology for seven streams, three workers and
two disks.

3.3 Design Principles & System Features
In ChronicleDB, the major design principle is: the log is

the database. We avoid costly additional logging as the con-
sidered append-only scenario does not cause costly random
I/Os and therefore does not incur buffering strategies with
no-force writes. Only in case of out-of-order arrival of events,
we have to deviate from this paradigm as we want to keep
the data ordered with respect to application time.

ChronicleDB is implemented in Java and is integrated into
the JEPC event processing platform [21]. It supports an
embedded as well as a network mode. ChronicleDB offers a
high-performance storage solution for event data while sup-
porting load-adaptive indexing and efficient removal of out-
dated events.

To improve storage utilization as well as write perfor-
mance, ChronicleDB makes use of (lossless) compression.
The main objective is write-optimization, thus we focused on
fast compression with reasonable compression rate. Hence,
we chose LZ4 [7] as compression algorithm, but any other
would be possible.

For data access, the query engine of ChronicleDB supports
an SQL-like query language. Additionally, queries can also
be processed via a Java API.

4. STORAGE LAYOUT
This section presents the storage layout of ChronicleDB.

At first, Section 4.1 describes the problem statement. Sec-
tion 4.2 introduces the components of the storage layout.
Finally, we present the overall layout.

4.1 Problem Statement
The main objective of the storage layout was to support

both full sequential write performance and full sequential
read performance. Furthermore, we aimed for reasonable
performance for random reads and fast recovery support in
case of system failures. The challenge was to support these
requirements with compressed, i.e., variable-sized data.

We decided to use blocks as compression unit, see Sec-
tion 4.2.1. Näıvly, the physical offset within a file could be
used as identifier (ID) for block addressing. In case of fixed
block sizes, the position of a block could be easily computed.
But due to compression, blocks are of variable size. So, the
final physical offset cannot be computed in advance, which
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also causes a rethink of the indexing architecture, see Sec-
tion 5.2 and 5.3.

Therefore, a smart address mapping was required while
offering low storage overhead. To the best of our knowledge,
there is no existing solution that satisfies these requirements.
For example, TokuFS [19] proposes a compressed file system
for micro data, but only reaches about 35% of sequential
disk speed in the presented experiments. So, we developed
a novel storage layout that meets our requirements while
offering fast recovery.

4.2 Components
The management of compressed blocks is closely related

to that of variable-length records in database systems. They
usually manage variable-length records in blocks of fixed
size and maintain pointers to the different records within
the block. To solve the problem of addressing variable-
sized blocks, we adopt this approach. We introduce logical
IDs (representing virtual addresses) and an abstraction layer
that maps logical IDs to physical addresses. While this so-
lution is quite obvious, the challenging aspect is the storage
of the mapping. A straight-forward approach would be to
store the physical mapping information logical IDs → phys-
ical addresses separately. Unfortunately, this incurs random
writes and therefore results in a significant performance loss,
as we will show in our experimental evaluation. Thus, we
decided to store the mapping information interleaved with
the data.

4.2.1 Blocks
The smallest operational unit of the proposed storage lay-

out is a logical block (L-block). Because we utilize disks as
primary storage, we align the L-block size at the size of a
physical disk block. Each L-block has to be separately ac-
cessible via a unique ID. This is why we chose L-blocks as
unit for compression. While L-blocks are of fixed size, the
size of a compressed block (in the remainder of the paper
denoted as C-block) depends on its individual compression
ratio and therefore, C-blocks are of variable size.

In terms of compression, the optimal physical data storage
layout would be a column layout. In terms of write perfor-
mance, a row layout is superior. We optimized our storage
layout for better compression rates utilizing a hybrid ap-
proach. ChronicleDB stores relational events in a column-
based fashion only within a single L-block, similar to the
PAX layout [12]. Thus, all data belonging to the same row
is organized within the same L-block. At the same time, the
column-based ordering of the data within a L-block groups
values that are expected to be very similar, which allows
better compression.

4.2.2 Macro Blocks
C-blocks are managed in groups of blocks, denoted as

macro blocks, with a fixed physical size. Nevertheless, the
number of C-blocks contained in a macro block varies, de-
pending on the compression rate of the corresponding L-
blocks. Macro blocks provide the smallest granularity for
physical writes to disk. The size of the macro block has
to be a multiple of the L-block size. We impose this con-
straint for recovery purposes, as will be discussed in detail
in Section 6.

Each macro block stores the number of C-blocks it con-
tains as well as the size of each C-block. If a C-block does

not completely fit into the current macro block, the C-block
is split and the overflow is written to a new macro block.
So, macro blocks are dense by default. However, out-of-
order events cause updates on C-blocks. In case of dense
blocks such updates result in costly macro block overflows.
In order to avoid these cost, we reserve a certain amount of
spare space for updates in macro blocks. Section 5.7 pro-
vides more details on spare space in blocks. Figure 3 shows
the layout of a macro block.

4.2.3 Translation Lookaside Buffer
Translation of virtual to physical memory addresses is a

fundamental task in computer systems, typically conducted
in hardware in the memory management unit (MMU).

In ChronicleDB, we followed a similar approach, but
used a software-based translation lookaside buffer (TLB).
In ChronicleDB, a virtual address is the ID of an L-block.
The physical address is the position of the corresponding
C-block in the storage layout. The physical address of a
C-block c is represented by a tuple (mbc, pc), consisting of
the position of the corresponding macro block mbc and the
offset pc within mbc.

The IDs of L-blocks are simply consecutive numbers.
Hence, the TLB only has to store the physical addresses,
while the virtual addresses are implicitly given by the posi-
tion. This TLB structure is related to the CSB+-tree [31],
which also uses implicit child pointers to improve the cache
behavior of the B+-tree.

The mapping information for recent blocks is kept in mem-
ory. Though, to support fast recovery, we have to write parts
of the mapping information frequently to disk. Therefore,
TLB entries are also managed in blocks, denoted as TLB-
blocks. The size of a TLB-block is equal to the size of an
L-block. If a TLB-block is filled, it is written to disk. Each
TLB-block contains the same amount of entries. E.g., for an
L-block size of 8 KiB and 64 bit address size, a TLB-block
can contain up to 1020 entries (considering meta data). To
support a large address space, we organize TLB-blocks hier-
archically in a tree. The resulting TLB tree does not require
explicit routing information for address lookup.

Algorithm 1 outlines the address lookup. It starts at the
root of the TLB tree, which is always and solely kept in
memory. Thanks to the consecutive ID numbering, the in-
dex of the corresponding child entry can be easily calculated
as well as the associated address. This address is used to load
the child block from disk. The algorithm proceeds with the
next levels until a leaf node is reached and the final C-block
address can be looked up. To speed up address translation,
we use a write buffer for each level of the TLB. Furthermore,
at least the index levels of the TLB are kept in memory to
improve read performance. This should be possible as the
size of the TLB index (without the leaf level) is N/b2 for N
C-blocks and L-block size b.

4.3 Overall Layout
The storage layout is designed to avoid random I/Os.

Therefore, macro blocks and TLB-blocks are stored inter-
leaved.

In a first possible solution, from the query processing per-
spective, a TLB-block with k mapping entries should ide-
ally address its k succeeding C-blocks. Unfortunately, this
requires either to buffer these k blocks with the risk of data
loss in case of a system failure, or to perform a random I/O
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Algorithm 1: TLB-block Address Lookup

Input : ID id of the requested block, entries per
TLB-block b and TLB height l

Output: The physical address of the C-block

index ←
⌊
id

bl

⌋
mod b;

for i = l − 1 to 1 do
address ← TLBi+1[index];
load TLBi from address;

index ←
⌊
id

bi

⌋
mod b;

end
return TLB0[id mod b]

to write the TLB-block after writing the k C-blocks. So,
there is a tradeoff between performance and safety issues.

In a second solution, we solve this problem by placing the
TLB-block behind the data it refers to. So, a TLB-block
with k entries always refers to its immediately preceding
k C-blocks. In this way, we do not have to buffer C-blocks
during ingestion, but still avoid random I/Os for writing the
mapping information. The drawback of the second solution
is that read operations now cause random I/Os. To avoid
these random I/Os, a sliding read buffer of k L-blocks is used
when a sequential scan is performed. This requires less than
8 MiB memory in case of 8 KiB per L-block. In comparison
to the first solution, this approach requires the same amount
of buffering, but avoids possible data loss. So, we opted for
the second solution.

5. ON INDEXING EVENTS
In this section we present our indexing approach to sup-

port the queries we listed in Section 3.1. Among those are
time-travel queries, temporal aggregation queries and filter
queries on non-temporal attributes.

The remainder of this section is structured as follows: At
first, Section 5.1 describes the key characteristics of tempo-
ral data. Section 5.2 presents our primary index, secondary
indexes are addressed in Section 5.3. Removal of old data
is explained in Section 5.4. In Section 5.5, we propose our
temporal partitioning and load scheduling approach. Sec-
tion 5.6 explains how the indexes can efficiently support the
targeted types of queries. Finally, Section 5.7 addresses our
solution for dealing with out-of-order events.

5.1 Temporal Correlation
In general, we observe in event processing that values

occurring within a small time interval are often very sim-
ilar. Sensor values, e.g., representing temperature or main
memory consumption, typically do not change tremendously
within short time periods. We call this temporal correlation.
In agreement with [16], we introduce a formal notation of
temporal correlation in the following. For a given sequence
A of attribute values ai, 1 ≤ i ≤ N , we define the average
distance as

dist(A) :=
1

N − 1

N∑
k=2

| ak − ak−1 |

This sum is the arithmetic mean of the Manhattan distance.
The temporal correlation (tc) is then 1 minus the average
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distance divided by the range of values within the sequence
A. Thus,

tc(A) := 1− dist(A)

max(A)−min(A)

The value of temporal correlation is in the unit interval. If
close to 1, there is a high correlation within the sequence A.
We will leverage temporal correlation for lightweight-index-
ing to speed-up queries.

5.2 TAB+-tree
As primary index for ChronicleDB, we propose the Tem-

poral Aggregated B+-tree (TAB+-tree). The TAB+-tree is
based on the B+-tree and uses the events’ timestamp as
key. As usual for B+-trees, the TAB+-tree node size matches
block size, i.e., L-block size.

5.2.1 Index Layout
For query processing and recovery issues, we use a linking

in both directions at every level of the tree. We utilize this
linking to speed-up query processing as well as to enhance
recovery, discussed in Section 6.

To improve query processing, we leverage temporal corre-
lation of event data. For every node in the TAB+-tree, we
store the minimum and maximum (minai ,maxai) value of
each attribute Ai. Figure 4 shows the index entry layout.

These min-max values are used for supporting filter
queries on non-temporal attributes without the need of an
index on the secondary attribute. This approach is called
lightweight indexing as it is inexpensive to offer. How-
ever, the indexing quality largely depends on the temporal
correlation of attributes.

In addition to minimum and maximum values, the TAB+-
tree also maintains the sum as well as the number of entries
(count) for each attribute in a subtree. These simple statis-
tics are stored in the index entries, next to the timestamp
(t), which represents the key in the TAB+-tree. The storage
overhead is very small because aggregates are only main-
tained in the index levels and the number of attributes is
negligible compared to the number of entries in an index
node.

5.2.2 Tree Construction
The problem of storing chronological events in an indexed

fashion on disks can be solved with an efficient sort-based
bulk-loading strategy for B+-trees. Figure 5 sketches the in-
dex construction. Due to the key’s sorted nature, the index
can be built in from-left-to-right fashion while holding the
tree’s right flank in memory. Because sorting is not required,
the cost for index creation is reduced from O(N

b
logb

N
b

) to

O(N
b

) for N events and block size b. Hence, index construc-
tion is almost for free. We avoid the traversal of the right
flank for each event and build the tree from bottom to top.
When a leaf node is filled, its corresponding index entry is
inserted into the parent node. Therefore, the parent node
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left to right 

Figure 5: TAB+-tree construction.

has to be accessed only once per child node, which also ap-
plies to the entire tree.

A problem arises due to the next neighbor linking (indi-
cated by red arrows in Figure 5). The next neighbor refer-
ence has to be known in advance when the node is written to
disk. Otherwise, the node would have to be updated later,
resulting in random I/Os which would deteriorate the sys-
tem performance notably. This issue is intensified by data
compression. Therefore, stable IDs are necessary as we have
discussed in Section 4 already.

5.3 Secondary Indexes
To efficiently support queries on non-temporal attributes

without high temporal correlation, ChronicleDB also pro-
vides secondary indexes. We chose log-structured indexes
as they are designed for high write-throughput. Neverthe-
less, secondary indexes incur high overheads. Hence, Chron-
icleDB’s load scheduler temporally deactivates secondary in-
dexing in case of peak loads, as will be discussed in Section
5.5.

The most popular log-structured index used, e.g., in
HBase [3] or TokuDB [23], is the LSM-tree [28]. In addi-
tion to LSM trees ChronicleDB also supports cache oblivious
look-ahead arrays (COLA), another log-structured index.
The advantage of COLA in comparison to a native LSM-
tree is its better support for proximity and range queries. To
speed-up exact-match queries, we utilize Bloom filters [15],
which can be maintained very efficiently.

5.4 Time-Splitting
ChronicleDB is a hybrid between OLTP and OLAP

database. In terms of data ingestion, ChronicleDB is like
a traditional OLTP system, but queries to ChronicleDB are
similar to OLAP queries. Aggregation queries on (histori-
cal) data are essential in OLAP systems and commonly ad-
dress predefined time ranges, like the sales within the last
week or month ([17]). ChronicleDB offers the possibility to
align data organization to the specific query pattern. There-
fore, we introduce regular time-splits. After a user-defined
amount of time, a new TAB+-tree residing in a separate
file is created. E.g, a salesman is interested in weekly sales
statistics, so he would choose weeks as regular time split
granularity. The same takes place for each secondary index
such that the regular time-split covers a fixed interval for
all indexes. The regular time-splits are managed within a
TAB+-tree again. This enables aggregation queries even in
constant time.

Though ChronicleDB aims at long-term storage, it also
addresses deletion and reduction of ancient data. Removing
events from the TAB+-tree could be realized via cutting off
its left flank. However, this would result in costly I/O oper-
ations, as the data has to be removed event-by-event. Even

more critical: secondary indexes have to be kept consistent.
Thus, all events contained in the left flank of the TAB+-tree
also have to be removed from the secondary index. Instead
of removing data event-by-event, ChronicleDB supports the
removal of outdated events at the granularity of regular time
splits. Thus, only the corresponding files have to be deleted
(logically). Alternatively, outdated events can be thinned
out or condensed via aggregation, leveraging the aggregates
in the TAB+-tree again.

Regular time-splits enable ChronicleDB to keep local
statistics for each time-split. Especially the temporal cor-
relation is an important metric that can be considered to
decide which secondary indexes should be maintained. If
the temporal correlation for the last split is above a cer-
tain threshold, ChronicleDB can switch to lightweight in-
dexing only. This results in systematic partial indexing.
Furthermore, time splits allow for higher insertion perfor-
mance while building secondary indexes compared to one
large index. This also has been observed in [27]. Ancient
data is removed from ChronicleDB in whole regular time
splits, indicated in Figure 6 before rs1.

5.5 Partial Indexing
Fluctuating data rates are always a very challenging prob-

lem, especially in the context of sensor data. We addressed
this problem with load scheduling to ensure maximum in-
gestion speed. In times of moderate input rates, we try
to maintain as many secondary indexes as possible. We
give higher priority to those indexes on attributes with low
temporal correlation. More advanced strategies are possible
taking into account the access frequency of the attributes.
But in case of a system overload, the load scheduler stops
building secondary indexes for attributes with high temporal
correlation until ChronicleDB can handle the input again.
This results in (unplanned) partial indexes, which have to
be synchronized with the primary index again. Therefore,
we introduce a second kind of time split, termed irregular
split.

Figure 6 shows an example where regular splits are pre-
fixed with rsx, irregular splits with isx. For each time split,
Px denotes a TAB+-tree, Sx a secondary index. At is3,
secondary indexation has been switched off due to a sys-
tem overload. Therefore, the primary index is split, too. If
the system load decreases, secondary indexes are switched
on again. Re-activation only takes place at regular splits.
In this example, secondary indexation continues after rs5.
In case of sufficient resources, ChronicleDB can also rebuild
secondary indexes for previous time splits that emerged dur-
ing an overload, e.g., [is3, rs4] as well as [rs4, rs5].

5.6 Query Processing
In this section we discuss how a TAB+-tree can be utilized

for query processing.

5.6.1 Time travel queries
Due to its descent from B+-tree and the fact that events

are indexed based on their (start) timestamps, the TAB+-
tree performs a time travel query like a range query in a
B+-tree. The leaf nodes of the TAB+-tree can be sequen-
tially traversed from left to right using the linking between
adjacent leaf nodes until an event occurs that is outside of
the temporal query range. Thus, the total cost is logarith-
mic (in the number of events) plus the time to access the
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Figure 6: Index scheduling example.

required leaves.
In addition, we also utilize restrictions on non-temporal

attributes specified in the query to speed-up query process-
ing. Then, the (min, max) information of the correspond-
ing attributes is used for pruning. If the query interval for
a specific attribute a and the interval (mina,maxa) of a
TAB+-tree node are disjoint during tree traversal, the node
is skipped.

Algorithm 2: TAB+-tree pruning query

Input : Time interval [ts, te], range [minai ,maxai ] for
attributes Ai

Stack s, Node n, Index i;
s.push(root);
s.push(0);
while ! s.isEmpty() do

n ← s.pop();
i ← s.pop();
while i < n.size do

if n.isLeaf() then
if n [i ].t > te then

return; /* No further results */

else if n [i ].t ≥ ts then
output n [i ];

end

else if Intersection ( n [i ],intervals) then
s.push(n);
s.push(i +1);
n ← n [i ].child;
i ← 0;
continue;

else if i > 0 AND n [i-1].t > te then
return; /* No further results */

end
i ← i +1;

end

end

5.6.2 Temporal aggregation queries
Temporal aggregation queries compute an aggregation

value (sum, avg, stdev, count, min, max) for a given point
or range in time. Again, the TAB+-tree acts as guide for the
temporal dimension. Additionally, the aggregation informa-
tion per node can be utilized. If a node in the TAB+-tree is
fully covered by the query range, ChronicleDB can exploit
the node’s aggregate value (covering all of its child nodes).

If the node’s time interval is intersected by the given query
range, the query proceeds with its qualifying child nodes.
Therefore, also temporal aggregation queries are answered
in logarithmic time.

5.6.3 Secondary queries in TAB+-tree
Secondary queries can utilize the inherent lightweight in-

dexing of the TAB+-tree. Algorithm 2 sketches the sec-
ondary query processing. As input, the requested time in-
terval as well as the restrictions on the desired attributes are
provided. For simplicity, the proposed algorithm reports all
query results; in fact, query processing in ChronicleDB is
demand-driven. The TAB+-tree is traversed in depth-first
order by means of a stack while nodes are pruned as early as
possible. The stack keeps track of the current tree path as
well as the index of the last visited entry for each tree level.

5.7 Managing out-of-order Data
So far, we have assumed an unexceptional chronological

order of the incoming events. This is, however, not satisfied
in real scenarios where asynchronous clocks, network delays
and faulty devices cause exceptional out-of-order arrival of
events. This problem is well-known in event processing [13],
but also has a serious impact on the design of ChronicleDB.
There are two basic solutions for dealing with out-of-order
arrivals of events. First, we could change the notion of time
in the TAB+-tree. Instead of using application time as the
primary attribute for indexing, we could use system time.
By definition, the events are then always in correct order
because an event item receives its timestamp at arrival in
ChronicleDB. Furthermore, application time should be used
as an additional attribute indexed in a lightweight fashion
within the TAB+-tree. This causes additional cost in query
processing, in particular for aggregate queries. The second
solution still maintains the TAB+-tree as an index on appli-
cation time (as described in the previous sections). We will
pursue this approach in the following.

5.7.1 Out-of-order Buffers
In order to deal with out-of-order, we introduce the Algo-

rithm 3 that is illustrated in Figure 7. First, we try to insert
incoming out-of-order events into the right flank buffer of the
tree. If the timestamp of an event is too far in the past, we
insert the event into a dedicated queue sorted with respect
to application time. When this queue becomes full, we flush
its entries in bulk into the TAB+-tree. To prevent data loss
in case of a system crash, all events in the queue are addi-
tionally written to a mirror log in system time order.

While the sorted queue serves to leverage temporal lo-
cality, we also target at leveraging physical locality in the
storage layout. Therefore, an additional buffer in combina-
tion with a write-ahead log [26] and no-force write strategy
is introduced for the TAB+-tree .

Without any further modifications, this approach would
still cause serious problems in the TAB+-tree. First of all,
an out-of-order insertion will often hit a full L-block. Conse-
quently, a split would be triggered and the sequential layout
would be damaged causing higher costs for queries. In or-
der to avoid these splits, we propose to reserve a certain
amount of spare space in an L-block for absorbing out-of-
order insertions without structural modifications. This is
only meaningful if the number of out-of-order arrivals is not
extremely high. For example, if we expect 15 out-of-order
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Algorithm 3: Out-of-order Insertion

Input: Out-of-order event e, right flank of TAB+-tree
flank, sorted queue queue, mirror log log

if e.timestamp > flank[1].getLast().timestamp then
// Add e to leaf of the TAB+-tree flank

flank[0].add(e);

else
// Add e to sorted queue

queue.add(e);
// Write e to the mirror log

log.append(e);
if queue.isFull() then

// Flush all events from queue
for qe in queue do

insert qe from bottom to top into flank;
end
Clear log;

end

end

Primary 

Index 
 

Right TAB+-tree Flank 

Mirror Log 

Sorted Queue Tree Buffer (LRU) 

Write-ahead Log 
Disk 

Clear Checkpoint 

Data 

Base 

Figure 7: Buffer layout and data flow for out-of-
order data.

events per L-block, a simple urn-based analysis shows that
the probability of an overflow is less than 10% for a spare
space of 20 events.

In addition, we also address additional spare space on the
storage level. Each L-block corresponds to a compressed C-
block which size depends on the compression rate. A reduc-
tion of the compression rate results in an increased C-block
size. For example, an update on an aggregate could lead
to an increased C-block size, even though the L-block size
has not changed. Thus, macro blocks also reserve a certain
amount of spare space. If a C-block exceeds the remaining
spare space of its macro block, it is moved to the end of
the database and a reference entry is written at its original
position.

5.7.2 Keeping Secondary Indexes consistent
References in the secondary index are represented by phys-

ical addresses. So, references to relocated C-blocks in the
storage layout will become invalid in a secondary index. One
solution for this problem is to update the affected references
in the secondary index. However, since there can be many
secondary indexes, eager reference updates are very expen-
sive.

Thus, we use the following lazy approach instead where
a split of a block does not trigger an update of the entries
in the secondary indexes. In order to maintain the search
capabilities of secondary indexes, we store the timestamp of
the event in the corresponding index entry of a secondary
index. In addition, a flag in each block is kept for indicating
whether a block is split or not. If a search via a secondary
index arrives at a block that has been split, we use the times-
tamp to search for the event in the primary index. For all
other blocks we still use the direct linkage.

6. FAILURES AND RECOVERY
This section addresses the recovery capabilities of Chron-

icleDB after a system crash. Recovery takes place in three
steps. At first, the storage layout is recovered. Subsequently,
the primary index is restored and finally the logs are pro-
cessed to transfer the system into a consistent state again.

6.1 Storage Layout Recovery
In ChronicleDB, the most critical part of the storage lay-

out is its address translation, i.e., the TLB. As the root
and the right flank of the TLB are only kept in memory,
any information about block address translation is lost in
case of a system crash. Rebuilding the TLB would require
a full database scan. However, this is not acceptable for a
database we expect to be very large (in the range of ter-
abytes).

In order to support fast reconstruction of the TLB’s right
flank, we introduce references within the TLB. As only the
recently created part of the TLB has to be restored, recovery
is performed from the end of the database to its start. Each
TLB-block keeps a reference to its previous TLB-block on
the same level. Given the last successfully written TLB-
block, its predecessor can be directly accessed. The recovery
has to scan all TLB-blocks that are children of the last (and
therefore lost) TLB-block in the parent level. Then, recovery
continues with the next level. To support the direct access
to upper levels, TLB-blocks additionally store a reference to
its parent’s predecessor TLB-block. Thus, these references
implicitly create checkpoints for each level. Figure 8 shows
the linking of TLB-blocks. For presentation purposes, we
assume two address entries per TLB-block. For example,
the leaf d10 is a child of m1 and keeps an extra pointer to
d9 that is the predecessor of m1.

The TLB recovery is outlined in Algorithm 4. In case of
a crash, the last written TLB-block is seeked on disk. This
is simple as the size of a macro block is a multiple of TLB-
block size. There are two possibilities for the classification
of the last written L-block: either it is a TLB-block or it
is part of a macro block. In the latter case, the previous
L-block is read until the last successfully written TLB-block
is found. The upper bound for the number of L-blocks to
be read before finding a TLB-block is the number of entries
per TLB-block. After having located the last successfully
written TLB-block the recovery of the TLB continues by
leveraging the introduced references.

The predecessors of the last written TLB-blocks are lo-
cated until the parent reference is different. The correspond-
ing references of these TLB-blocks (except the last) are used
to rebuild the parent node. The recovery continues at the
next upper level with the parent’s previous entry. At each
level of the TLB, the number of entries to be read is limited
by the number of entries per TLB-block.
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Figure 8: TLB structure with recovery references.

Figure 8 gives an example. In case of a system failure,
the TLB-blocks m0 − m3 are lost. The recovery starts to
discover d10 first, which was referenced in m1 before the
crash. Its predecessor, d8, has a different previous parent
reference. So, recovery continues with d9 and afterwards
with d6. After that, m1 −m3 are recovered. m0 is restored
by simply scanning all macro blocks after d10.

Algorithm 4: TLB Recovery

Input: Database size in bytes s, L-block size in bytes b

baddr ←
⌊s
b

⌋
∗ b ; // Last complete block address

block ← read(baddr);
// Lookup last TLB-block

while block is not a TLB-block do
baddr ← baddr − b;
block ← read(baddr);

end
// Rebuild TLB

while block.prev != null do
prev ← read(block.prev) ; // Read previous entry

if prev.prevParent != block.prevParent then
// Switch to the next higher TLB level

block ← read(block.prevParent);

else
// Restore the reference in the new

parent entry

Add baddr to TLBblock.level+1;

end

end

6.2 TAB+-tree Recovery
In the second step of the system recovery, the right flank

of the TAB+-tree is reconstructed. This reconstruction is
very similar to the TLB recovery and starts scanning the
data base in reverse order for the last successfully written
TAB+-tree node. After locating the last node ni at level i,
a new index entry is inserted into the tree’s right flank at
level i + 1. In the next step, all nodes of level i belonging
to the same parent node are iterated utilizing the previous
neighbor linking at all levels of the TAB+-tree. The recovery
continues recursively with the last written node of the parent
level until the root is reached.

6.3 Log Recovery
Finally, the consistency of the data base has to be ensured.

This step only matters in case of previously occurred out-

of-order events. At first, the write-ahead log is processed
from start to end. For each log entry, its LSN is compared
with the LSN of the block it refers to. If the LSN of the
block is smaller than the entry’s LSN, the associated event
is regularly inserted into the TAB+-tree. Finally, the sorted
queue is restored by scanning the mirror log.

7. EXPERIMENTAL EVALUATION
This section presents a selection of important results from

an extensive performance comparison. Section 7.1 describes
the experimental setup, Section 7.2 evaluates the storage
layout of ChronicleDB and Section 7.3 evaluates the query
performance. Section 7.4 compares ChronicleDB with open-
source (Cassandra), commercial (InfluxDB) academic sys-
tems (LogBase in combination with CR-index). Finally, Sec-
tion 7.5 investigates the performance impact of out-of-order
data.

7.1 Experimental Setup
All experiments were conducted on a Windows 7 desk-

top computer with Intel I7 2600 quad-core CPU at 3.4 GHz
and 8 GB DDR3 RAM, equipped with an 1 TB HDD and
128 GB SSD. The latter is only used for writing the out-
of-order logs. We run various experiments to identify the
impact of parameters on the performance of ChronicleDB
and to chose the best settings. The L-block size and the
size of macro blocks are two parameters we set to 8 KiB and
32 KiB, respectively. Smaller block sizes (e.g. 4 KiB) as well
as larger block sizes (e.g. 32 KiB) perform slightly inferior
to our standard settings. Because we measured only a minor
impact of these parameters, we do not detail these results.
Unless specified otherwise, the experiments with Chronicle-
DB where conducted with 10 % spare for an L-block and
without partial indexing on a single worker.

In our experiments we used four data sets termed CDS,
BerlinMod, DEBS and SafeCast. CDS is a synthetic data
set with eight numerical attributes and a timestamp. This
data set was generated based on real-world cpu data [14].
DEBS is a real data set, extracted from the DEBS Grand
Challenge 2013 data [11]. The data provides sensor read-
ings of a soccer game. We used the data set obtained from
the ball. BerlinMOD is a semi-synthetic data set, sampled
from a collection of taxi trips in Berlin. We used the pre-
calculated trips data available at [4]. SafeCast [10] contains
spatio-temporal radiation data collected by the community.
We extracted spatial and temporal attributes as well as the
radiation. Table 1 reports important properties: the num-
ber of events, the size of an event, the compression rate,
the minimum temporal correlation among all attributes of
the corresponding data set and the time for reading the in-
put into memory. As these data sets are ordered by time,
they are not suited for out-of-order experiments. We will
postpone the generation of out-of-order data to Section 7.5.

7.2 Compression and Recovery
First of all, we evaluate the performance of the stor-

age layout presented in Section 4, in the following denoted
as ChronicleDB layout. We compare ChronicleDB layout
with a completely separated storage layout (separate lay-
out), storing the address information of the blocks from the
data of the TAB+-tree in a separate file.

In order to evaluate the storage layout, we measured the
impact of compression. We run experiments with a hy-
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Table 1: Indicators of the data sets.
Data set #Events Bytes/Event Compression minimum tc Input Processing (s)
DEBS 24,278,210 76 34.37% 0.476 53.14

BerlinMOD 56,129,943 48 71.14 % 0.9996 285.655
SafeCast 40,193,450 36 64.08 % 0.9622 354.093

CDS 20,000,000 72 68,36 % 0.869 0.618
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Figure 9: Throughput as a function of the compres-
sion rate for different storage layouts.

pothetical compression rate that is constant for all blocks.
Figure 9 shows that the write as well as the read perfor-
mance of ChronicleDB layout scales almost linearly with
the compression rate. In addition, we measured the sequen-
tial disk speed by writing data without address information
and without compression. This results in 123.89 MiB/s that
matches sequential disk speed. Without compression Chron-
icleDB achieves almost the same results, while the write
performance of the separate layout drops to 71.59 MiB/s.
This shows the advantage of ChronicleDB layout where data
blocks and TLB blocks are kept interleaved in a single file.

Finally, we discuss the recovery times of ChronicleDB lay-
out. Therefore, we triggered a system crash after ingesting
a predefined number of events from DEBS and measured
the recovery time for the TLB. The results are depicted as
a function of the number of ingested events in Figure 10.
Note that recovery of the storage layout requires only a few
milliseconds, independent of the number of events. The re-
covery time is not a perfect monotonic function because it
is determined by the fill degree of the nodes from the right
flank of the TLB.

7.3 Query Performance
At first, we discuss the TAB+-tree lightweight indexing

performance for the data set CDS. Therefore, we report the
impact of the number of (lightweight) indexed attributes
on the overall ingestion performance, depicted in Figure 11.
There is a very mild linear performance decrease in the num-
ber of indexed attributes because of the capacity reduction
of internal nodes in the TAB+-tree.

7.3.1 Time-Travel & Temporal Aggregation Queries
Next, we discuss the query times for time-travel queries as

well as temporal aggregation queries in ChronicleDB while
varying the temporal range (selectivity). We used the DEBS
data set in this experiment. Figure 12 depicts the total
processing time as a function of selectivity. The performance
of the time travel queries decreases linear in the selectivity,
while the logarithmic performance of the aggregate query
seems to be constant.
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Figure 12: Performance evaluation of time-travel
queries and temporal aggregation queries on DEBS.

7.3.2 Secondary Indexes
Finally, we evaluate the index capabilities of ChronicleDB.

Therefore, we ingested the DEBS data set into ChronicleDB
twice. First, we used lightweight indexing (TAB+-tree) on
velocity, the attribute with smallest temporal correlation.
In the second built, we used a secondary index (LSM-tree)
on the same attribute. As shown in Figure 13a, the build
time is substantially higher in case a LSM-tree is generated.

Figure 13b presents our query results for ChronicleDB
with TAB+-tree and LSM-tree respectively (note the log-
scale). Additionally, we compared the results with the CR-
index in LogBase. Therefore, we used the configuration from
[33] and deployed LogBase on the local file system of the
same machine as ChronicleDB. We also depict the time for
a full range scan in ChronicleDB as a dashed line. In sum-
mary, LogBase with CR-index is inferior to ChronicleDB.
For very low selectivity, the secondary LSM index in Chron-
icleDB performs best, slightly better than the CR-index. In
contrast to CR-index, TAB+-tree is not fully kept in mem-
ory, which explains the lower query performance for very low
selectivities. In case of higher selectivities, the TAB+-tree
is significantly faster than both LSM and CR-Index. In case
of LSM, the low temporal correlation of velocity introduces
many random accesses resulting in poor query performance.
To find the break-even in query performance between LSM
and TAB+-tree, the selectivity as well as the temporal cor-
relation have to be taken into account. But due to the high
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Figure 14: Ingestion throughput benchmark.

cost for index creation, the LSM is only justified for highly
read-intensive applications.

7.4 Benchmarking ChronicleDB
In the following, we compare ChronicleDB with sIn-

fluxDB (v0.9), Cassandra (v2.0.14) and LogBase, all running
on the same machine as ChronicleDB. In terms of write-
performance as well as read throughput, Cassandra is cur-
rently one of the fastest representatives of distributed key-
value stores (see Rabl et al. [30]). For InfluxDB we used
batches of 5K events and a batch interval of one second to
reduce network overhead. Cassandra does not offer batches
for performance improvement. We used the JAVA client li-
braries for InfluxDB1 and Cassandra2. For LogBase, we ap-
plied the suggested configuration from [33] again. Figure 14
reports the throughput of the four systems for our data sets.
We did not include here the time for reading and convert-
ing the input data, see Table 1. In summary, ChronicleDB
clearly outperforms Cassandra, InfluxDB and Logbase. In
case of CDS, ChronicleDB is superior to Cassandra and In-
fluxDB by a factor of 50 and 22, respectively. For LogBase,
the speedup is still more than a factor of three.

We also report the performance of full relation scans (ex-
emplary for DEBS), as replaying of historical data is an
important feature of a historical data store. In case of In-
fluxDB, we used only half of the data due to limitations
regarding the response size of a query. As presented in Fig-
ure 15, ChronicleDB outperforms LogBase by a factor of 5,

1https://github.com/influxdb/influxdb-java
2https://github.com/datastax/java-driver
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Figure 15: Write and read throughput comparison
with LogBase, Cassandra and InfluxDB on DEBS.
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Figure 16: Out-of-order ingestion performance

Cassandra and InfluxDB by a factor of 22 and 43, respec-
tively.

7.5 Out-of-order Data
In order to examine the out-of-order insertion perfor-

mance, we modified the timestamps of the CDS data as fol-
lows. Out-of-order insertions take place in bulk after every
10K insertions of chronological events. The delay of out-of-
order data is restricted to the time interval since the last
out-of-order bulk insertion, simulating late arrivals from a
sensor. We consider two distributions for a delay: uniform
and exponential. For an exponential distribution, smaller
delays occur more often than longer ones (with an expected
delay of 40 ms).

Figure 16 shows the results of our experiments with differ-
ent fractions of out-of-order data as well as varying amounts
of spare for uniform and exponential delay distribution.
Out-of-order inserts are expensive. The throughput for 10%
out-of-order is smaller by a factor of three than that of 1%.
Nevertheless, even for an out-of-order rate of 10%, Chron-
icleDB outperforms InfluxDB by more than an order of
magnitude. As expected, exponential distribution performs
slightly better during ingestion because of higher locality
in the buffer. The read performance is very similar for all
approaches at about 1.4M events per second. In general,
sparing improves ingestion performance as well as read per-
formance because larger reorganizations can be avoided and
there is no need to remap blocks.

We also measured the influence of the ratio between the
range of out-of-order data and the buffer size, depicted in
Figure 17. For example, a buffer ratio of 2 indicates that the
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Figure 17: Evaluation of the buffer ratio impact.

buffer covers half of the out-of-order data. The size of the
out-of-order buffer does not have a significant influence on
the overall performance, as the system is CPU-bound due
to overheads for compression and serialization.

8. CONCLUSION & FUTURE WORK
The design of a database system for event streams is nowa-

days important to tackle the very high ingestion rates in
new application related to IoT. Not all of these applica-
tions allow large-scale distributed database systems, but re-
quire a tightly integrated database solution in the applica-
tion code. In this paper, we presented ChronicleDB, a new
type of centralized database system that exploits the tem-
poral arrival order of events. We discussed in detail its stor-
age management, indexing support and recovery capabili-
ties. Due to its dedicated system design, our experimental
results showed a great superiority of ChronicleDB in com-
parison to distributed systems like Cassandra and InfluxDB
that are widely used for write-intensive applications like the
management of event streams.

So far, we put our focus on the careful design of Chronicle-
DB as a centralized system and showed that simply making
standard systems scalable is not the right answer. However,
there is no reason for not using ChronicleDB in a distributed
environment. In our current and future work, we examine
how to exploit the benefits of distributed frameworks for
write-intensive applications. We even believe that Chroni-
cleDB’s write-once policy and its storage layout suits well to
distributed file systems like HDFS.
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ABSTRACT
In this paper, we present the EXstream system that pro-

vides high-quality explanations for anomalous behaviors that
users annotate on CEP-based monitoring results. Given
the new requirements for explanations, namely, conciseness,
consistency with human interpretation, and prediction power,
most existing techniques cannot produce explanations that
satisfy all three of them. The key technical contributions of
this work include a formal definition of optimally explaining
anomalies in CEP monitoring, and three key techniques for
generating sufficient feature space, characterizing the con-
tribution of each feature to the explanation, and selecting a
small subset of features as the optimal explanation, respec-
tively. Evaluation using two real-world use cases shows that
EXstream can outperform existing techniques significantly
in conciseness and consistency while achieving comparable
high prediction power and retaining a highly efficient imple-
mentation of a data stream system.

1. INTRODUCTION
Complex Event Processing (CEP) extracts useful infor-

mation from large-volume event streams in real-time. Users
define interesting patterns in a CEP query language (e.g,.
[3, 4]). With expressive query languages and high perfor-
mance processing power, CEP technology is now at the core
of real-time monitoring in a variety of areas, including the
Internet of Things [16], financial market analysis [16], and
cluster monitoring [26].

However, today’s CEP technology supports only passive
monitoring by requesting the monitoring application (or user)
to explicitly define patterns of interest. There is a recent re-
alization that many real-world applications demand a new
service beyond passive monitoring, that is, the ability of the
monitoring system to identify interesting patterns (includ-
ing anomalous behaviors), produce a concrete explanation
from the raw data, and based on the explanation enable a
user action to prevent or remedy the effect of an anomaly.
We broadly refer to this new service as proactive monitoring.
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We present two motivating applications as follows.

1.1 Motivating Applications
Production Cluster Monitoring. Cluster monitoring

is crucial to many enterprise businesses. For a concrete ex-
ample, consider a production Hadoop cluster that executes
a mix of Extract-Transform-Load (ETL) workloads, SQL
queries, and data stream tasks. The programming model
of Hadoop is MapReduce, where a MapReduce job is com-
posed of a map function that performs data transformation
and filtering, and a reduce function that performs aggre-
gation or more complex analytics for all the data sharing
the same key. During job execution, the map tasks (called
mappers) read raw data and generate intermediate results,
and the reduce tasks (reducers) read the output of mappers
and generate final output. Many of the Hadoop jobs have
deadlines because any delay in these jobs will affect the en-
tire daily operations of the enterprise business. As a result,
monitoring of the progress of these Hadoop jobs has become
a crucial component of the business operations.

However, the Hadoop system does not provide sufficient
monitoring functionality by itself. CEP technology has been
shown to be efficient and effective for monitoring a variety
of measures [26]. By utilizing the event logs generated by
Hadoop and system metrics collected by Ganglia[12], CEP
queries can be used to monitor Hadoop job progress; to find
tasks that cause cluster imbalance; to find data pull strag-
glers; and to compute the statistics of lifetime of mappers
and reducers. Consider a concrete example below, where
the CEP query monitors the size of intermediate results that
have been queued between mappers and reducers.

Example 1.1 (Data Queuing Monitoring). Collect all the
events capturing intermediate data generation/consumption
for each Hadoop job. Return the accumulative intermediate
data size calculated from those events (Q1).

Figure 1(a) shows the data queuing size of a monitored
Hadoop job. The X-axis stands for the time elapsed since
the beginning of the job, while the Y-axis represents the size
of queued data. In this case, the job progress turns out to
be normal: the intermediate results output by the mappers
start to queue at the beginning and reach a peak after a
short period of time. This is because a number of mappers
have completed in this period while the reducers have not
been scheduled to consume the map output. Afterwards,
the queued data size decreases and then stabilizes for a long
period of time, meaning that the mappers and reducers are
producing and consuming data at constant rates, until the
queued data reduces to zero at the end of the job.
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(a) Data queuing size of a normal
Hadoop job

(b) Data queuing size of an abnor-
mal Hadoop job
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Figure 1: Hadoop cluster monitoring: examples and system architecture.

Suppose that a Hadoop user sees a different progress plot,
as shown Figure 1(b), for the same job on another day: there
is a long initial period where the data queuing size increases
gradually but continually, and this phase causes the job com-
pletion time to be delayed by more than 500 seconds. When
the user sees the job with an odd shape in Figure 1(b), he
may start considering the following questions:

I What is happening with the submitted job?

I Should I wait for the job to complete or re-submit it?

I Is the phenomenon caused by the bugs in the code or
some system anomalies?

I What should I do to bring the job progress back to
normal?

Today’s CEP technology, unfortunately, does not provide
any additional information that helps answer the above ques-
tions. The best practice is manual exploration by the Hadoop
user: he can dig into the complex Hadoop logs and manually
correlate the Hadoop events with the system metrics such as
CPU and memory usage returned by a cluster monitoring
tool like Ganglia [12]. If he is lucky to get help from the
cluster administrator, he may collect additional information
such as the number of jobs executed concurrently with his
job and the resources consumed by those jobs.

For our example query, the odd shape in Figure 1(b) is
due to high memory usage of other programs in the Hadoop
cluster. However, this fact is not obvious from the visualiza-
tion of the user’s monitoring query, Q1. It requires analyzing
additional data beyond what is used to compute Q1 (which
used data relevant only to the user’s Hadoop job, but not
all the jobs in the system). Furthermore, the discovery of
the fact requires new tools that can automatically generate
explanations for the anomalies in monitoring results such
that these explanations can be understood by the human
and lead to corrective / preventive actions in the future.

Supply Chain Management. The second use case is
derived from an aerospace company with a global supply
chain. By talking with the experts in supply chain manage-
ment, we identified an initial set of issues in the company’s
complex production process which may lead to imperfect or
faulty products. For instance, in the manufacturing pro-
cess of a certain product the environmental features must to
be strictly controlled because they affect the quality of pro-
duction. For example, the temperature and humidity need
to be controlled in a certain range, and they are recorded
by the sensors deployed in the environment. However, if
some sensors stop working, the environmental features may
not be controlled properly and hence the products manufac-

tured during that period can have quality issues. When such
anomalies arise, it is a huge amount of work to investigate
the claims from customers given the complexity of manufac-
turing process and to analyze a large set of historical data
to find explanations that are meaningful and actionable.

1.2 Problem Statement and Contributions
The overall goal of EXstream is to provide good explana-

tions for anomalous behaviors that users annotate on CEP
monitoring results. We assume that an enterprise informa-
tion system has CEP monitoring functionality: a CEP moni-
toring system offers a dashboard to illustrate high-level met-
rics computed by a CEP query, such as job progress, network
traffic, and data queuing. When a user observes an abnor-
mal value in the monitoring results, he annotates the value
in the dashboard and requests EXstream to search for an
explanation from the archived raw data streams. EXstream
generates an optimal explanation(formalized in Section 2.2)
by quickly replaying a fraction of the archived data streams.
Then the explanation can be encoded into the system for
proactive monitoring for similar anomalies in the future.

Challenges. The challenges in the design of XStream
arise from the requirements for such explanations. Informed
by the two real-world applications mentioned above, we con-
sider three requirements in this work: (a) Conciseness: The
system should favor smaller explanations, which are easier
for humans to understand. (b) Consistency : The system
should produce explanations that are consistent with hu-
man interpretation. In practice, this means that explana-
tions should match the true reasons for an anomaly (ground
truth). (c) Prediction power : We prefer explanations that
have predictive value for future anomalies.

It is difficult for existing techniques to meet all three re-
quirements. In particular, prediction techniques such as
logistic regression and decision trees [2] suffer severely in
conciseness or consistency as shown in our evaluation re-
sults. This is because these techniques were designed for
prediction, but not for explanations with conciseness and
consistency requirements. Recent database research [25, 20]
seeks to explain outliners in SQL query answers. This line
of work assumes that explanations can be found by search-
ing through various subsets of the tuples that were used to
compute the query answers. This assumption does not suit
real-world stream systems for two reasons: As shown for our
example, Q1, the explanation of memory usage contention
among different jobs cannot be generated from only those
events that produced the monitoring results of Q1. Fur-
thermore, the stream execution model does not allow us to
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Event type Meaning Schema

JobStart Recording a Hadoop job starts (timestamp, eventType, eventId, jobId, clusterNodeNumber)
JobEnd Recording a Hadoop job finishes (timestamp, eventType, eventId, jobId, clusterNodeNumber)
DataIO Recording the activities of generation

(positive values) / consumption (nega-
tive values) of intermediate data

(timestamp, eventType, eventId, jobId, taskId, attemptId, clusterN-
odeNumber, dataSize)

CPUUsage Recording the CPU usage for a node
in the cluster

(timestamp, eventType, eventId, clusterNodeNumber, CPUUsage)

MemUsage Recording the memory usage for a
node in the cluster

(timestamp, eventType, eventId, clusterNodeNumber, memUsage)

Figure 2: Example event types in Hadoop cluster monitoring. Event types can be specific to the Hadoop job (e.g.,

JobStart, DataIO, JobEnd), or they may report system metrics (e.g., CPUUsage, FreeMemory).

Q Pattern seq(Component1, Component2 , . . . )
Where [partitionAttribute] ∧ Pred1 ∧ Pred2 ∧ . . .
Return (timestamp, partitionAttribute, derivedA1,

derivedA2, . . .)[]

Q1 Pattern seq(JobStart a, DataIO+ b[], JobEnd c)
Where [jobId]
Return (b[i].timestamp, a.jobId,

sum(b[1· · · i].dataSize))[]

Figure 3: Syntax of a query in SASE (on the left), and an example query for monitoring data activity (on the right).

repeat query execution over different subsets of events or
perform any precomputation in a given database [20].

Contributions. In this work, we take an important step
towards discovering high-quality explanations for anomalies
observed in monitoring results. Toward this goal, we make
the following contributions:

1) Formalizing explanations (Section 2): We provide a
formal definition of optimally explaining anomalies in CEP
monitoring as a problem that maximizes the information
reward provided by the explanation.

2) Sufficient feature space (Section 3): A key insight
in our work is that discovering explanations first requires a
sufficient feature space that includes all necessary features
for explaining observed anomalies. EXstream includes a new
module that automatically transforms raw data streams into
a richer feature space, F, to enable explanations.

3) Entropy-based, single-feature reward (Section 4):
As a basis for building the information reward of an expla-
nation, we model the reward that each feature, f ∈ F, may
contribute using a new entropy-based distance function.

4) Optimal explanations via submodular optimiza-
tion (Section 5): We next model the problem of finding an
optimal explanation from the feature space, F, as a submod-
ular maximization problem. Since submodular optimization
is NP-hard, we design a heuristic algorithm that ranks and
filters features efficiently and effectively.

5) Evaluation (Section 6): We have implemented EXstream
on top of the SASE stream engine [3, 26]. Experiments us-
ing two real-world use cases show promising results: (1) Our
entropy distance function outperforms state-of-the-art dis-
tance functions on time series by reducing the features con-
sidered by 94.6%. (2) EXstream significantly outperforms
logistic regression [2], decision tree [2], majority voting [15]
and data fusion [19] in consistency and conciseness of expla-
nations while achieving comparable, high predication accu-
racy. Specifically, it outperforms others by improving con-
sistency from 10.7% to 87.5% on average, and reduces 90.5%
of features on average to ensure conciseness. (3) Our imple-
mentation is also efficient: with 2000 concurrent monitoring
queries, the triggered explanation analysis returns explana-
tions within half a minute and affects the performance only

slightly, delaying events processing by 0.4 second on average.

2. EXPLAINING CEP ANOMALIES
The goal of EXstream is to provide good explanations

for anomalous behaviors that users annotate on CEP-based
monitoring results. We first describe the system setup, and
give examples of monitoring queries and anomalous obser-
vations that a user may annotate. We then discuss the re-
quirements for providing explanations for such anomalies,
and examine whether some existing approaches can derive
explanations that fit these requirements. Finally, we define
the problem of optimally explaining anomalies in our set-
ting.

2.1 CEP Monitoring System and Queries
In this section, we describe the system setup for our prob-

lem setting. The overall architecture of EXstream is shown
in Figure 1(c). Within the top dashed rectangle in Fig-
ure 1(c) is a CEP-based monitoring system. We consider a
data source S, generating events of n types, E = {E1, E2, . . . , En}.
Events of these types are received by the CEP-based moni-
toring system continuously. Each event type follows a schema,
comprised of a set of attributes; all event schemas share
a common timestamp attribute. The timestamp attribute
records the occurrence time of each event. Figure 2 shows
some example event types in the Hadoop cluster monitoring
use case [26].

We consider a CEP engine that monitors these events
using user-defined queries. For the purposes of this pa-
per, monitoring queries are defined in the SASE query lan-
guage [3], but this is not a restriction of our framework, and
our results extend to other CEP query languages. Figure 3
shows the general syntax of CEP queries in SASE, and an
example query, Q1, from the Hadoop cluster monitoring use
case. Q1 collects all data-relevant events during the lifetime
of a Hadoop job. We now explain the main components of
a SASE query.

Sequence. A query Q may specify a sequence using the
SEQ operator, which requires components in the sequence
to occur in the specified order. One component is either a
single event or the Kleene closure of events. For example,
Q1 specifies three components: the first component is a sin-
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gle event of the type JobStart; the second component is a
Kleene closure of a set of events of the type DataIO; and
the third component is a single event of type JobEnd.

Predicates. Q can also specify a set of predicates in its
Where clause. One special predicate among these is the
bracketed partitionAttribute. The brackets apply an equiv-
alence test on the attribute inside, which requires all se-
lected events to have the same value for this attribute. The
partitionAttribute tells the CEP engine which attribute to
partition by. In Q1, jobId is the partition attribute.

Return matches. Q specifies the matches to return in
the Return clause. Matches comprise a series of events with
raw or derived attributes; we assume timestamp and the
partitionAttribute are included in the returned events. We
denote with m a match on one partition and with MQ the
set of all matches. Q1 returns a series of events based on
selected DataIO events, and the returned attributes include
timestamp, jobId, and a derived attribute— the total size
for all selected DataIO events. In order to visualize results
in real time, matches will be sent to the visualization module
as events are collected.

Visualizations and feedback. Our system visualizes matches
from monitoring queries on a dashboard that users can inter-
act with. The visualizations typically display the (relative)
occurrence time on the X-axis. The Y-axis represents one of
the derived attributes in returned events. Users can specify
simple filters to focus on particular partitions. All returned
events of MQ are stored in a relational table TMQ , and the
data to be visualized for a particular partition is specified
as πt,attr i(σpartitionAttribute=v(M)). Figure 1(a) shows the
visualization of a partition, which corresponds to a Hadoop
job for this query. In this visualization, the X-axis displays
the time elapsed since the job started, and the Y-axis shows
the derived sum over the “DataSize” attribute.

Users can interact with the visualizations by annotating
anomalies. For example, the visualization of Figure 1(b)
demonstrates an unexpected behavior, with the queueing
data size growing slowly. A user can drag and draw rect-
angles on the visualization, to annotate the abnormal com-
ponent, as well as reference intervals that demonstrate nor-
mal behavior. We show an example of these annotations
in Figure 4. A user may also annotate an entire period
as abnormal, and choose a reference interval in a different
partition. The annotations will be sent to the explanation
engine of EXstream, which is shown in the bottom dashed
rectangle of Figure 1(c). The explanation engine will be
introduced in detail in following sections. We use IA to
denote the annotated abnormal interval in a partition PA:
IA = (Q, [lower, upper], PA). We use IR to denote the refer-
ence interval, which can be explicitly annotated by the user,
or inferred by EXstream as the non-annotated parts of the
partition. We write IR = (Q, [lower, upper], PR), where PR

and PA might be the same or different partitions.

2.2 Explaining Anomalies
Monitoring visualizations allow users to observe the evolu-

tion of various performance metrics in the system. While the
visualizations help indicate that something may be unusual
(when an anomaly is observed), they do not offer clues that
point to the reasons for the unexpected behavior. In our
example from Figure 4, there are two underlying reasons for

IA IR

Figure 4: Abnormal (IA) and reference (IR) intervals.

the abnormal behavior: (1) the free memory is lower than
normal, and (2) the free swap space is lower than normal.
However, these reasons are not obvious from the visualiza-
tion; rather, a Hadoop expert had to manually check a large
volume of logs to derive this explanation. Our goal is to au-
tomate this process, by designing a system that seamlessly
integrates with CEP monitoring visualizations, and which
can produce explanations for surprising observations.

We define three desirable criteria for producing explana-
tions in EXstream:

1. Conciseness: The system should favor smaller, and thus
simpler explanations. Conciseness follows the Occam’s
razor principle, and produces explanations that are easier
for humans to understand.

2. Consistency: The system should produce explanations
that are consistent with human interpretation. In prac-
tice, this means that explanations should match the true
reasons for an anomaly (ground truth).

3. Prediction power: We prefer explanations that have
predictive value for future anomalies. Such explanations
can be used to perform proactive monitoring.

Explanations through predictive models. The first step
of our study explored the viability of existing prediction
techniques for the task of producing explanations for CEP
monitoring anomalies. Prediction techniques typically learn
a model from training data; by using the anomaly and refer-
ence annotations as the training data, the produced model
can be perceived as an explanation. For now, we will assume
that a sufficient set of features is provided for training (we
discuss how to construct the feature space in Section 3), and
evaluate the explanations produced by two standard predic-
tion techniques for the example of Figure 4.

Logistic regression [2] produces models as weights over a
set of features. The algorithm processes events from the two
annotated intervals as training data, and the trained predic-
tion model — a classifier between abnormal and reference
classes — can be considered an explanation to the anomaly.
The resulting logistic regression model for this example is
shown in Figure 5. While the model has good predictive
power, it is too complex, and cannot facilitate human un-
derstanding of the reported anomaly. The model assigns
non-zero weights to 30 out of 345 input features, and while
the two ground truth explanations identified by the human
expert are among these features (23 and 24), their weights
in this model are low. This model is too noisy to be of use,
and it is not helpful as an explanation.
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No. Feature Weight

1 DataIOFrequency -0.01376
2 CPUIdleMean 0.0089
3 PullFinishFrequency -0.00708
4 ProcTotalMean 0.00085
. . . . . . . . .
23 SwapFreeMean -4.79E-07
24 MemFreeMean -3.28E-07
. . . . . . . . .
30 BoottimeMean 2.61E-10

Figure 5: Model generated by logistic regression for the

annotated anomaly of Figure 4.

MapFinishNodeNumberMean	

PullFinishNodeNumberMean	 MemFreeMean	

Abnormal	 Normal	 Abnormal	 Normal	

<4.7 ≥4.7 

<4.5 ≥4.5 <1684942 ≥1684942 

Figure 6: Model Generated by Decision Tree

Decision tree [2] builds a tree for prediction. Each non-leaf
node of the tree is a predicate while leaf nodes are predic-
tion decisions. Figure 6 shows the resulting tree for our
example. The decision tree algorithm selects three features
for the non-leaf nodes, and only one of them is part of the
ground truth determined by our expert. The other two fea-
tures happen to be coincidentally correlated with the two
intervals, as revealed in our profiling. This model is more
concise than the result of logistic regression, but it is not
consistent with the ground truth.

The above analyses showed that prediction techniques are
not suitable for producing explanations in our setting. While
the produced models have good predictive power (as this
is what the techniques are designed for), they make poor
explanations, as they suffer in consistency and conciseness.
Our goal is to design a method for deriving explanations
that satisfies all three criteria (Figure 7).

2.3 Formalizing Explanations
Explanations need to be understandable to human users,

and thus need to have a simple format. EXstream builds
explanations as a conjunction of predicates. In their general
format, explanations are defined as follows.

Definition 2.1 (Explanation). An explanation is a boolean
expression in Conjunctive Normal Form (CNF). It contains
a conjunction of clauses, each clause is a disjunction of pred-
icates, and each predicate is of the form {v o c}, where v is a
variable value, c is a constant, and o is one of five operators:
o ∈ {>,≥,=,≤, <}.

Example 2.1. The formal form of the true explanations for
the anomaly annotated in Figure 4 is (MemFreeMean <
1978482 ∧ SwapFreeMean < 361462), which is a conjunc-
tion of two predicates. It means that the average available
memory is less than 1.9GB and free swap space is less than
360MB. The two predicates indicate that the memory usage
is high in the system (due to resource contention), thus the
job runs slower than normal.

Arriving at the explanation of Example 2.1 requires two

Algorithm Conciseness Consistency Prediction
quality

Logistic regression Bad Bad Good
Decision tree Ok Bad Good
Goal Good Good Good

Figure 7: Performance of prediction methods on our

three criteria for explanations.

non-trivial components. First, we need to identify important
features for the annotated intervals (e.g., MemFreeMean,
SwapFreeMean); these features will be the basis of form-
ing meaningful predicates for the explanations. Second, we
have to derive the best explanation given a metric of op-
timality. For example, the explanation (MemFreeMean
< 1978482) is worse than (MemFreeMean < 1978482 ∧
SwapFreeMean < 361462), because, while it is smaller, it
does not cover all issues that contribute to the anomaly, and
is thus less consistent with the ground truth.

Ultimately, explanations need to balance two somewhat
conflicting goals: simplicity, which pushes explanations to
smaller sizes, and informativeness, which pushes explana-
tions to larger sizes to increase the information content. We
model these goals through a reward function that models
the information that an explanation carries, and we define
the problem of deriving optimal explanations as the problem
of maximizing this reward function.

Definition 2.2 (Optimal Explanation). Given an archive of
data streams D for CEP, a user-annotated abnormal inter-
val IA and a user-annotated reference interval IR, an optimal
explanation e is one that maximizes a non-monotone, sub-
modular information reward R over the annotated intervals:
argmaxeRIA,IR(e)

The reward function in Definition 2.2 is governed by an
important property: rewards are not additive, but submod-
ular. This means that the sum of the reward of two expla-
nations is greater than or equal to the reward of their union:
RIA,IR(e1) + RIA,IR(e2) ≥ RIA,IR(e1 ∪ e2). The intuition
for the submodularity property is based on the observation
that adding predicates to a conjunctive explanation offers
diminishing returns: the more features an explanation al-
ready has, the lower the reward of adding a new predicate
tends to be. Moreover, R is non-monotone. This means
that adding predicates to an explanation could decrease the
reward. This is due to the conciseness requirement that
penalizes big explanations. The optimal explanation prob-
lem (Definition 2.2) is therefore a submodular maximization
problem, which is known to be NP-hard [11].

2.4 Existing Approximation Methods
Submodular optimization problems are commonly addressed

with greedy approximation techniques. We next investigate
the viability of these methods for our problem setting.

For this analysis, we assume a reward function for ex-
planations based on mutual information. Mutual informa-
tion is a measure of mutual dependence between features.
This is important in our problem setting, as features are
often correlated. For example, PullStartFrequency and
PullF inishFrequency are highly correlated, because they
always appear together for every pull operation. For this
precise reason, Definition 2.2 demands a submodular reward
function. Mutual information satisfies the submodularity
property. Greedy algorithms are often used in mutual infor-
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Figure 8: Accumulative mutual information gain under

greedy and random strategies.

mation maximization problems. The way they would work
in this setting is the following: given an explanation e, which
is initially empty, at each greedy step, we select the feature
f that maximizes the mutual information of e ∪ f .

Figure 8 shows the performance of the greedy algorithm
for maximization of mutual information, with a strawman
alternative. The random algorithm selects a random feature
at each step. The greedy strategy clearly outperforms the al-
ternative by reaching higher mutual information gains with
fewer features, but it still selects a large number of features
(around 20-30 features before it levels off). This means that
this method produces explanations that are too large, and
unlikely to be useful for human understanding.

2.5 Overview of the EXstream Approach
Since standard approaches for solving the optimal expla-

nation problem are insufficient for our problem setting, we
develop a new heuristic method based on good intuitions to
address the problem. We next provide a high-level overview
of our approach in building EXstream.

1. Sufficient feature space (Section 3): A key insight in
our work is that discovering optimal explanations first re-
quires a sufficient feature space that includes all necessary
features for explaining observed anomalies. Our work differs
fundamentally from existing work on discovering explana-
tions from databases [25, 20]: First, EXstream operates on
raw data streams, as opposed to the data carefully curated
and stored in a relational database. Second, EXstream does
not assume that the raw data streams carry all necessary fea-
tures for explaining anomalous behaviors. In our above ex-
ample, the feature, SwapFreeMean, captures average free
swap space and it does not exist in Hadoop event logs or
Ganglia output. Our system includes a module that auto-
matically transforms raw data streams into a richer feature
space, F, to enable the discovery of optimal explanations.

2. Entropy-based, single-feature reward (Section 4):
As a basis for building the information reward defined in
Definition 2.2, we consider the reward that each feature,
f ∈ F, may contribute. To capture the reward in such a base
case, we propose a new, entropy-based distance function that
is defined on a single feature across the abnormal interval,
IA, and the reference interval, IR. The larger the distance,
the more differentiating power over the two intervals that
the feature contributes, and hence more reward produced.

3. Optimal explanations via submodular optimiza-
tion (Section 5): The next task is to find an optimal ex-
planation from the feature space, F, that maximizes the in-
formation reward provided by the explanation. The reward
function in Definition 2.2 is non-monotone and submodu-
lar, resulting in a submodular maximization problem. Since

timestamp node usagePercent

4 2 35
5 5 49
6 8 99
7 1 86
8 2 61
9 6 43

Figure 9: Sample events in the type of CPUUsage.

submodular optimization is NP-hard, our goal is to design
a heuristic to solve this problem. Our heuristic algorithm
first uses the entropy-based, single-feature reward to rank
features, subsequently identifies a cut-off to reject features
with low reward, and finally uses correlation-based filtering
to eliminate features with information overlap (emulating
the submodularity property). Our evaluation shows that
our heuristic method is extremely effective in practice.

3. DISCOVERING USEFUL FEATURES
Explanations comprise of predicates on measurable prop-

erties of the CEP system. We call such properties features.
Some features for our running example are DiskFreeMean,
MemFreeMean, DataIOFrequency, etc. In most existing
work on explanations, features are typically determined by
the query or the schema of the data (e.g., the query predi-
cates in Scorpion [25]). In CEP monitoring, using as features
the query predicates or data attributes is not sufficient, be-
cause many factors that impact the observed performance
are due to other events and changes in the system. This
poses an additional challenge in our problem setting, as the
set of relevant features is non-trivial. In this section, we dis-
cuss how EXstream derives the space of features as a first
step to producing explanations.

In an explanation problem, we are given an anomaly inter-
val IA and a reference interval IR; the relevant features for
this explanation problem are built from events that occurred
during these two intervals. To support the functionality of
providing explanations, the CEP system has to maintain an
archive of the streaming data. The system has the ability
to purge archived data after the relevant monitoring queries
terminate, but maintaining the data for longer can be useful,
as the reference interval can be specified on any past data.

Formally, the events arriving in a CEP system in input
streams and the generated matches compose the input to
the feature space construction problem. We assume that
the CEP system maintains a table for each event type, such
as the one depicted in Figure 9. That is, for each event type
Ei, logically there is a relational table R(Ei) to store all
events of this type in temporal order. There is also a table
R(M) to archive all match events, denoted as type M . Let
D denote the database for EXstream, which is composed
of those tables. So, D is defined as D = {R(Ei)|1 ≤ i ≤
n} ∪R(M).

Each attribute in event type Ei, except the timestamp,
forms a time series in a given interval (which can be an
anomaly interval IA or a reference interval IR). Such time
series as features are called raw features.

Example 3.1. The table of Figure 9 records events of type
CPUUsage in a given time interval [4, 9], and forms two raw
features, from two time series. The first one is CPUUsage.Node,
and its values are ((4, 2), (5,5), (6,8), (7,1), (8,2), (9,6));
the other is CPUUsage.UsagePercent with values ((4,35),
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Figure 10: Visualization of the separating power of four

features: (1) free memory size, (2) idle CPU percentage,

(3) CPU percentage used by IO, and (4) system load.

This visualization is not part of EXstream, but we show

it here for exposition purposes.

(5,49), (6,99), (7,86), (8,61), (9,43)).

We found that the raw feature space is not good for deriv-
ing explanations due to noise. Instead, we need higher-level
features, which we construct by applying aggregation func-
tions to features at different granularities. We apply sliding
windows over the time series features and over each win-
dow, aggregate functions including count and avg to gener-
ate new time serious features. The EXstream system has an
open architecture that allows any window size and any new
aggregate functions to be used in the feature generation pro-
cess. Features produced this way are“smoothed”time series;
they demonstrate more general trends than raw features,
and outliers are smoothed. Example high-level features that
we produce by applying aggregations over windows on the
raw features are DataIOFrequency and MemFreeMean.

4. SINGLE-FEATURE REWARD
In this section, we present the core of our technique: an

entropy-based distance function that models the reward of
a single feature. We first discuss the intuition and require-
ments for this function, we then discuss existing, state-of-
the-art distance functions and explain why they are not
effective in this setting, and, finally, we present our new
entropy-based distance metric.

4.1 Motivation and Insights
In seeking explanations for CEP monitoring anomalies,

users contrast an anomaly interval with a reference interval.
An intuitive way to think about the different behaviors in
the two intervals is to consider the differences in the events
that occur within each interval. We can measure this dif-
ference per feature: how different is each feature between
the reference and the anomaly. Each feature is a vector of
values, a time series, and our goal is to measure the distance
between the time series of a feature during the abnormal
interval and the time series of the same feature during the
normal interval.

To explain one of the desirable properties of the distance
function, we visualize a feature as follows: We order the
values of a feature in increasing order and assign a color
to each value; red for values that appear in the abnormal
interval only, yellow for values that appear in the normal
interval only, and blue for values that appear in both normal
and abnormal intervals. Figure 10 shows this visualization

for 4 different features. In this figure, we note that the first
2 features show a clear separation of values between the
normal and abnormal periods. The third feature has less
clear separation, but still shows the trend that lower values
are more likely to be abnormal. Finally, the fourth feature
is mixed for a significant portion of values.

Intuitively, the first two features in Figure 10 are better
explanations for the anomaly, and thus have higher reward.
The first feature means when the anomalies occur, the free
memory size is relatively low, while during the reference in-
terval the free memory size is relatively high. The second
feature means that during the abnormal interval, idle CPU
percentage is low while it is high during the reference in-
terval. The unclear separation of the other two features, in
particular the blue segments, indicate randomness between
the two intervals, making them less suitable to explain the
annotated anomalies.

This example provides insights on the properties that we
need from the distance function: it should favor clear separa-
tion of normal and abnormal values, and it should penalize
features with mixed segments (values that appear in both
normal and abnormal periods). Therefore, the reward of a
feature is high if the feature has good separating power, and
it is lower with more segmentation in its values.

4.2 Existing State of the Art
Distance functions measuring similarities of time series

have been well studied [24], and there is over a dozen dis-
tance functions in the literature. However, these metrics
were designed with different goals in mind, and they do not
fit our explanation problem well. We discuss this issue for
the two major categories of distance functions [24].

Lock-step measure. In the comparison of two time se-
ries, lock-step measures compare the ith point in one time
series to exactly the ith point in another. Such measures
include the Manhattan distance (L1), Euclidean distance
(L2) [9], other Lp-norms distances and approximation based
DISSIM distance. Those distance functions treat each pair
of points independently, but in our case, we need to compare
the time series holistically. For example, assume four simple
time series: TS1 = (1, 1, 1), TS2 = (0, 0, 0), TS3 = (1, 0, 1)
and TS4 = (0, 1, 0). Based on our separating power crite-
rion, D(TS1, TS2) should be larger than D(TS3, TS4) be-
cause there is a clear separation between the values of TS1

and TS2, while the values of TS3 and TS4 are conflicting.
However, applying any of the lock-step measures produces
D(TS1, TS2) = D(TS3, TS4).

Elastic measure. Elastic measures allow comparison of
one-to-many points to find the minimum difference between
two time series. These measures try to compare time series
on overall patterns. For example, Dynamic Time Warping
(DTW) tries to stretch or compress one time series to better
match another time series; while Longest Common SubSe-
quence(LCSS) is based on the longest common subsequence
model. Although these measures also take value difference
into account, the additional emphasis on pattern matching
makes them ill-suited for our problem.

Both lock-step and elastic measures fall in the category
of sequence-based metrics. This means that they consider
the order of values. Lock-step functions perform strict step-
by-step, or event-by-event comparisons; such rigid measures
cannot find similarities in the flexible event series of our
problem setting. Elastic measures allow more flexibility, but
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the emphasis on matching the microstructure of sequences
introduces too much randomness in the metric.

In our case, temporal ordering is not important, because
we assume the sample points in time series are independent.
This makes set-based functions a better fit (as opposed to
sequence-based). Set-based functions measure the macro
trend while smoothing low-level details.

4.3 Entropy-Based Single-Feature Reward
Since existing distance functions are not suitable to model

single-feature rewards, we design a new distance function
that emphasizes the separation of feature values between
normal and abnormal intervals (Section 4.1). Our distance
function is inspired by an entropy-based discretization tech-
nique [10], which cuts continuous values into value intervals
by minimizing the class information entropy. The segmen-
tation visualized in Figure 10, shows an intuitive connection
with entropy: The more mixed the color segments are, the
higher the entropy (i.e., more bits are needed to describe
the distribution). We continue with some background defi-
nitions, and then define our entropy-based distance function,
which we will use to model single-feature rewards.

Definition 4.1 (Class Entropy). Class entropy is the infor-
mation needed to describe the class distributions between
two time series. Given a pair of time series, TSA and TSR,
belonging to the abnormal and reference classes, respec-
tively. Let |TSA| and |TSR| denote the number of points

in the two time series, let pA = |TSA|
|TSA|+|TSR|

, and let pR =
|TSR|

|TSA|+|TSR|
. Then, the entropy of the class distribution is:

HClass(f) = pA ∗ log(
1

pA
) + pR ∗ log(

1

pR
) (1)

Definition 4.2 (Segmentation Entropy). Segmentation en-
tropy is the information needed to describe how merged
points are segmented by class labels. If there are n segmen-
tations, and pi represents the ratio of data points included
in the ith segmentation, the segmentation entropy is:

HSegmentation =

n∑
i=1

pi ∗ log(
1

pi
) (2)

Complicated segmentations in a feature result in more en-
tropy. When there is a clear separation of the two classes,
as in the first two features of Figure 10, the segmentation
entropy is the same as the class entropy. Otherwise, the
segmentation entropy is more than the class entropy.

Penalizing for mixed segments. Segmentation en-
tropy captures the segmentation of the normal and abnormal
classes, but does not penalize mixed segments with values
that appear in both classes (blue segments in the visualiza-
tion). Take an extreme case, where all values appear in both
classes (single mixed segment). This is the scenario with the
worst separation power, but its segmentation entropy is 0,
because it is treated as a single segment. This indicates that
we need special treatment for mixed (blue) segments.

We assume the worst case distribution of normal and ab-
normal data points within the segment. This is the uniform
distribution, which leads to most segmentation and highest
entropy. For example, if a mixed segment c consists of 5
data points, 3 contributed from the normal class (N) and 2
contributed from the abnormal class (A), distributing them
uniformly leads to 5 segments: (N,A,N,A,N). We denote this

worst-case ordering of segment c as c∗. We assign a penalty
term for each segment c, which is equal to the segmentation
entropy of its worst-case ordering, c∗: HSegmentation(c∗).
We thus define the regularized segmentation entropy:

H+
Segmentation = HSegmentation+

m∑
j=1

HSegmentation(c∗j ) (3)

The first term in this formula is the segmentation entropy
of the feature, and the second term sums the regularization
penalties of all mixed segments (m).

Accounting for feature size. Features may be of differ-
ent sizes, as different event types may occur more frequently
than others. The segmentation entropy is only comparable
between two features f1, f2, if |f1.TSA| = |f2.TSA| and
|f1.TSR| = |f2.TSR|. However this does not hold for most
features. To make these metrics comparable, we normalize
segmentation entropy using class entropy and get the follow-
ing definition for our entropy-based feature distance:

D(f) =
HClass(f)

H+
Segmentation(f)

(4)

We use this distance function as a measure of single-feature
reward. Features with perfect separation, such as the first
two features of Figure 10, have reward equal to 1. Features
with more complex segmentation have lower rewards. For
the 4 features displayed in Figure 10, the rewards are 1, 1,
0.31, and 0.18, respectively.

5. CONSTRUCTING EXPLANATIONS
The entropy-based single-feature reward identifies the fea-

tures that best distinguish the normal and abnormal peri-
ods. However, ranking the features based on this distance
metric is not sufficient to generate explanations. We need
to address three additional challenges. First, it is not clear
how to select a set of features from the ranked list. There
is no specific constant k for selecting a set of top-k features,
and moreover, such a set would likely not be meaningful as a
top-k set is likely to contain highly-correlated features with
redundant information. Second, there are cases where large
distances are coincidental, and not associated with anoma-
lies. Third, the rewards are computed for each feature indi-
vidually, and due to submodularity, they are not additive.
Determining how to combine features into an explanation re-
quires eliminating redundancies due to feature correlations.

We proceed to describe the EXstream approach to con-
structing explanations by addressing these challenges in three
steps. Each step filters the feature set to eliminate features
based on intuitive criteria, until we are left with a high-
quality explanation.

5.1 Step 1: reward leap filtering
The single-feature distance function produces a ranking of

all features based on their individual rewards. Sharp changes
in the reward between successive features in the ranking in-
dicate a semantic change: Features that rank below a sharp
drop in the reward are unlikely to contribute to an explana-
tion. Therefore, features whose distance is low, relatively to
other features, can be safely discarded.

5.2 Step 2: false positive filtering
It is possible for features to have high rewards due to rea-

sons unrelated to the investigated anomaly. For example, a
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IA IR

(a) Temporal alignment
IA IR

(b) Point-based alignment

Figure 11: Two ways of alignment

feature that measures system uptime can have strong sepa-
rating power between the annotated anomaly and reference
regions (e.g., the anomaly is before the reference), but this
is simply due to the nature of the particular feature, and it
is not related to the anomaly. We call these features false
positives. Our method for identifying and purging such false
positives leverages other partitions (e.g., other Hadoop jobs
in our running example). The intuition is that if a feature is
a false positive, the feature will demonstrate similar behav-
ior in other partitions without an indication of anomaly.

Identifying related partitions. We search the archived
streams to identify similar partitions. Intuitively, such par-
titions should be results generated by the same query, mon-
itoring the same Hadoop program, on the same dataset.
EXstream maintains a record of partitions in a partition
table to facilitate fast retrieval. The partition table con-
tains dimension attributes that record categorical informa-
tion (e.g., CEP − QueryID, HadoopJobName, Dataset)
about the partition, and measure attributes that record par-
tition statistics (e.g., monitoring duration, number of points).
The system identifies related partitions, as those that match
the dimension attributes.

Partition alignment. Once it discovers related partitions,
EXstream needs to map the annotated regions to each re-
lated partition. This alignment can be temporal-based or
point-based. In temporal-based alignment, an annotation is
mapped to a partition based on its temporal length. For
example, in Figure 4, the abnormal period occupies 31%
of temporal length; this annotation will align with the the
first 31% of the temporal length in a related partition (Fig-
ure 11(a)). In point-based alignment an annotation is mapped
to a partition based on the ratio of data points that it occu-
pies in the monitoring graph. For example, the annotated
high-memory usage partition of Figure 4 includes 113,070
points, with 2116 points falling in the abnormal annotation;
this annotation will align with the first equal fraction of
points in a related partition (Figure 11(b)). EXstream se-
lects the alignment for which the two partitions have the
smallest relative difference. For example, if a related parti-
tion has 10% more points, but is 50% longer in time com-
pared to the annotated partition, point-based alignment is
preferred.

Interval labeling. Alignment maps the annotations to all
related partitions. Now, these new annotations need to be
labeled as normal or abnormal. EXstream assigns labels
through hierarchical clustering: a period that is placed in the
same cluster as the annotated anomaly is labeled as abnor-
mal. The clustering uses two distance functions: entropy-
based, and normalized difference of frequencies. Periods
whose cluster is far from the anomaly cluster are labeled
as normal (reference). Finally, periods that cannot be as-
signed with certainty are discarded and not used later for

Feature Reward (annotated) Reward (all)

Free memory size 1 0.77
Hadoop DataIO size 1 0.64
Num. of processes 1 0.64

Free swap size 1 1
Cached memory size 0.81 0.77
Buffer memory size 0.65 0.72

Figure 12: The six validated features after the removal

of false positives.

validation.
In Figure 11(b), both intervals are assigned a “Reference”

label. The left one is “Reference” because its frequency is
significantly different from the annotated one (3.7 vs. 50.1);
while the right one is “Reference” because both its frequency
and value difference are quite small, meaning it is similar to
the annotated “Reference” interval.

Feature validation. The process of partition discovering
and automatic labeling generates a lot more labeled data
that helps EXstream filter out false positives, and improve
the current set of features. Features that have high entropy
reward on the annotated partition will be reevaluated on
the large dataset. If the high reward is validated in the
larger dataset as well, the feature is maintained; otherwise,
it is discarded. In our running example, after the validation
step, only 6 out of 670 features remain. Figure 12 shows
the reward for each of these 6 features for the annotated
partition and the augmented partition set.

5.3 Step 3: filtering by correlation clustering
After the validation step, we are usually left with a small

set of features, which have high individual rewards, and the
high rewards are likely related to the investigated anomaly.
However, it is still possible that several of these features
have information overlap. For example, two identical fea-
tures, are good individually, but putting them together in
an explanation does not increase the information content.
We identify and remove correlated features using clustering.

We use pairwise correlation to identify similar features.
We represent a feature as a node; two nodes are connected, if
the pairwise correlation of the two features exceeds a thresh-
old. We treat each connected component in this graph as a
cluster, and select only one representative feature from each
cluster. In our running example, the final six features are
clustered into two clusters, one cluster with a single node,
and another cluster with five nodes. Based on this result,
the final explanation has two features.

5.4 Building final explanations
Once we make the final selection of features, the construc-

tion of an explanation is straightforward. For each selected
feature, we can build a partial explanation in the format
defined in Section 2.3. The feature name becomes the vari-
able name. The value boundaries for the abnormal intervals
become the constants. If a feature offers perfect separation
during segmentation (Section 4), there is one boundary and
only one predicate is built: e.g., the abnormal value range
of feature f1 is (−∞, 10], then the predicate is f1 ≤ 10. If a
feature has more than one abnormal intervals, then multiple
predicates are built to compose the explanation: e.g., the ab-
normal value ranges of feature f2 are (−∞, 20],[30, 50], and
then the explanations are f2 ≤ 20∨(f2 ≥ 30∧f2 ≤ 50). Then
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No. Anomaly Hadoop workload

1 High memory WC-frequent users
2 High memory WC-sessions
3 Busy Disk WC-frequent users
4 High High CPU WC-frequent users
5 High High CPU WC-sessions
6 Busy High CPU Twitter trigram
7 High Busy Network WC-sessions
8 High Busy Network Twitter trigram

Figure 13: Workloads for evaluating the explanations

returned by EXstream.

we simply connect the partial explanations constructed from
different features using conjunction and write the final for-
mula into the conjunctive normal form.

6. EVALUATION
We have implemented EXstream on top of the SASE stream

engine [3, 26]. Due to the space constraints, the implemen-
tation details are left to our technical report [27]. In this
section, we evaluate EXstream on the conciseness, consis-
tency, and prediction power of its returned explanations, and
compare its performance with a range of alternative tech-
niques in the literature. We further evaluate the efficiency
of EXstream when the explanation module is run concur-
rently with monitoring queries in an event stream system.

6.1 Experimental Setup
In our first use case, we monitored a Hadoop cluster of 30

nodes which was used intensively for experiments at the Uni-
versity of Massachusetts Amherst. To evaluate EXstream
for explaining anomalous observations, we used three Hadoop
jobs: (A) Twitter Trigram: count trigrams in a twitter
stream; (B) WC-Frequent users: find frequent users in a
click stream; (C) WC-session: sessionization over a click
stream.

The running example throughout this paper, which starts
to show in Figure 1(a) and 1(b), is a real use case. A Hadoop
expert found out the root causes by manually checking a
large volume of logs. The expert also confirmed that the
results generated by EXstream match the ground truth per-
fectly.

To enable the ground truth for evaluation further, we
manually created four types of anomalies by running ad-
ditional programs to interfere with resource consumption:
(1) High memory usage: the additional programs use up
memory. (2) High CPU: the additional programs keep CPU
busy. (3) Busy disk: the programs keep writing to disk.
(4) Busy network: the programs keep transmitting data be-
tween nodes. By combining the anomaly types and Hadoop
jobs, we create 8 workloads listed in Figure 13. The ground
truth features are verified by a Hadoop expert.

Our second use case is supply chain management of an
aerospace company. Due to confidentiality issues we were
unable to get real data. Instead, we consulted an expert
and built a simulator to generate manufacturing data and
anomalies such as faulty sensors and subpar material. Since
both use cases generate similar results, we report results
using the first use case and refer the reader to [27] for results
of the second use case.

All of our experiments were run on a server with two Intel
Xeon 2.67GHz, 6-core CPUs and 16GB memory. EXstream
is implemented in Java and runs on Java HotSpot 64-bit
server VM 1.7 with the maximum heap size set to 8GB.
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Figure 14: Consistency comparison

6.2 Effectiveness of Explanations by EXstream
We compare EXstream with a range of alternative tech-

niques. We use decision trees to build explanations based
on the latest version of weka, and logistic regression based
on a popular R package. We consider two additional tech-
niques, majority voting [15] and data fusion [19]. Both
techniques make full use of every feature, and make predic-
tion based on all features. Majority voting treats features
equally and uses the label which counts the most as the
prediction result. The fusion method fuses the prediction
result from each feature based on their precision, recall and
correlations. We compare these techniques on three mea-
sures: (1) consistency: selected features as compared against
ground truth; (2) conciseness: the number of selected fea-
tures; (3) prediction accuracy when the explanation is used
as a prediction model on new test data.

Consistency. First we compare the selected features of
each algorithm with the ground truth features. The results
are shown in Figure 14. X-axis represents different work-
loads (1 - 8), while Y-axis is the F-measure, namely, the
harmonic mean of precision and recall regarding the inclu-
sion of ground truth features in the returned explanations.
EXstream represents our results before applying clustering
on selected features, while EXstream-cluster represents re-
sults clustered by correlations (Section 5). We can see that
EXstream-cluster works better than EXstream without clus-
tering for most of workloads, and EXstream-cluster provides
much better quality than the alternative techniques. Ma-
jority voting and fusion do not select features, and hence
their F-measures are low. Logistic regression and decision
tree generate models with selected features, with sightly
increased F-measures but still significantly below those of
EXstream-cluster.

Conciseness. Figure 15 shows the sizes of explanations
from each solution. Here the Y-axis (in logarithmic scale) is
the number of features selected by each solution, where the
total number of available features is 345. “Ground truth”
represents the number of features in ground truth, while
“Ground truth cluster” represents the number of clusters af-
ter we apply clustering on the contained features. Again,
majority voting and fusion do not select features, so the size
is the same as the size of feature space. The models of logis-
tic regression includes 20 - 30 features, which is roughly 10
times of the ground truth. Decision trees are more concise
with less than 10 features selected. Overall, EXstream out-
performs other algorithms, and is quite close to the number
of features in ground truth cluster.
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Figure 15: Conciseness comparison
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Figure 16: Prediction power comparison

Predication accuracy. In Figure 16 we compare the
prediction accuracy of each method. The Y-axis represents
F-measure for prediction over new test data. The F-measures
of EXstream, logistic regression and decision tree are quite
stable, most of time above 0.95. Data fusion and major-
ity voting fluctuate more. Overall, our method can provide
consistent high-quality prediction power.

Effectiveness of the distance function. We finally
demonstrate the effectiveness of our entropy-based distance
function by comparing it with a set of existing distance func-
tions [24] for time series: (1) Manhattan distance, (2) Eu-
clidean distance, (3) DTW, (4) EDR, (5) ERP and (6) LCSS.

The results are shown in Figure 17. In each method,
all available features are sorted by the distance function of
choice in decreasing order. We measure the number of fea-
tures retrieved from each sorted list in decreasing order in
order to cover all the features in the ground truth, shown
as the Y-axis. We see that our entropy distance is always
the one using the minimum number of features to cover the
ground truth. LCSS works well in the first two workloads,
but it works poorly for workloads 3, 4, 5, and 6. This is be-
cause the ground truth features for the first two workloads
have perfect separating power based on LCSS distance, while
in other workloads they contain some noisy signals. So LCSS
is not as robust as our distance function. Other distance
functions always use large number of features.

Summary. Our explanation algorithm outperforms other
techniques in consistency and conciseness while achieving
comparable, high predication accuracy. Specifically, EXstream
improves consistency to other methods from 10.7% to 87.5%
on average, and up to 100% in some cases. EXstream is also
more concise, reducing the number of features in an explana-
tion 90.5% on average, up to 99.5% in some cases. EXstream
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Figure 17: Distance function comparison

is as good as other techniques on prediction quality: its F-
measure on prediction is only slightly worse than logistic
regression by 0.4%, while it is 3.3% higher than majority
voting, 6.1% percent higher than fusion, and 1.9% higher
than decision tree.

Our entropy distance function works better than existing
distance functions on time series. It reduces the size of ex-
planations by 94.6% on average, up to 97.2%, compared to
other functions.

6.3 Efficiency of EXstream
We further evaluate the efficiency of EXstream. Our main

result shows that our implementation is highly efficient: with
2000 concurrent monitoring queries, triggered explanation
analysis returns explanations within half a minute and af-
fects the performance only slightly, delaying events process-
ing by only 0.4 second on average. Additional details are
available at [27].

7. RELATED WORK
In the previous section, we compared our entropy distance

with a set of state-of-the-art distance functions [24] and com-
pared our techniques with prediction techniques including
decision trees and logistic regression [2]. In this section we
survey broadly related work.

CEP systems. There are a number of CEP systems in
the research community [8, 17, 1, 21, 23]. These systems
focus on passive monitoring using CEP queries by providing
either more powerful query languages or better evaluation
performance. Existing CEP techniques do not produce ex-
planations for anomalous observations.

Explaining outliers in SQL query results. Scor-
pion [25] explains outliers in group-by aggregate queries.
Users annotate outliers on the results of group-by queries,
and then scorpion searches for predicates that remove these
outliers while minimally affect the normal answers. It does
not suit our problem because it works only for group-by ag-
gregation queries and it searches through various subsets of
the tuples that were used to compute the query answers.
As shown for our example, Q1, the explanation of memory
usage contention among different jobs cannot be generated
from only those events that produced the monitoring results
of Q1. Recent work [20] extends Scropion by supporting
richer and insightful explanations by pre-computation and
thus enables interactive explanation discovery. This work
assumes a set of explanation templates given by the user
and requires precomputation in a given database. Neither
of the assumptions fits our problem setting.
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Explaining outputs in iterative analytics. Recent
work [7] focuses on tracking, maintaining, and querying lin-
eage and “how” provenance in the context of arbitrary itera-
tive data flows. It aims to create a set of recursively defined
rules that determine which records in a data-parallel com-
putation inputs, intermediate records, and outputs require
explanation. It allows one to identify when (i.e., the points
in the computation) and how a data collection changes, and
provides explanations for only these few changes.

Set-based distance function for time series. Besides
the lock-step and elastic distance functions we compared
with, time series are also transformed into sets [18] for mea-
surement. However, the goal of the set-based function is to
speed up the computation of existing elastic distance, so it
is different from our entropy based distance function.

Anomaly detection. Common anomaly detection tech-
niques [5, 6, 14, 13, 22] do not fit our problem setting. There
are two main approaches. One is using a prediction model,
which is learned on labeled or unlabeled data. Then incom-
ing data is compared against with expected value by the
model. If the difference is significant, the point or time se-
ries will be reported as outlier. The other approach is using
distance functions, and outliers are those points or time se-
ries far from normal values. Both approaches report only
outliers, but not the reasons (explanations) why they occur.

8. CONCLUSIONS
In this paper, we present EXstream, a system that pro-

vides high-quality explanations for anomalous behaviors that
users annotate on CEP-based monitoring results. Formu-
lated as a submodular optimization problem, which is hard
to solve, we provide a new approach that integrates a new
entropy-based distance function and effective feature rank-
ing and filtering methods. Evaluation results show that
EXstream outperforms existing techniques significantly in
conciseness and consistency, while achieving comparable high
prediction power and retaining a highly efficient implemen-
tation of a data stream system.

To enable proactive monitoring in CEP systems, our fu-
ture work will address temporal correlation in discovering
explanations, automatic recognition and explanation of anoma-
lous behaviors, and exploration of richer feature space to
enable complex explanations.
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ABSTRACT 
Microblogging streams typically contain information pertaining to 
emerging real world events. Due to the rapid pace of messages in 
these data streams, short message size and many concurrent events, 
it is often difficult for users to understand the full context behind 
an arriving message. Hence, users resort to the cumbersome task of 
sifting through many messages to obtain the full context of the 
underlying event. To address this problem, we propose a novel 
notion – Contextual Event Summary Threads – and present a 
technique to extract highly meaningful yet compact event summary 
threads, capturing the complete context of events appearing in data 
stream, in real time. Our technique is unsupervised and 
automatically identifies different facets of live events in an 
unfiltered data stream in a scalable way and presents them to the 
users as evolving event threads. Extensive experiments over real 
data demonstrate that our technique -- while avoiding per message 
processing -- can summarize live data streams with high accuracy 
and produce compact event summary threads. The summary size of 
each event is dependent only on the underlying information and not 
on the number of messages pertaining to that event. Our technique 
is generic and is applicable on any chronologically ordered data 
stream which can be modeled in a <user: message> framework. 

CCS Concepts 
 Information systems →  Information retrieval →  Retrieval 

tasks and goals →  Summarization 

Keywords 
Real Time Search; Data Streams; Event Summarization; 
Algorithm; Experiments. 

1. INTRODUCTION 
1.1 Motivation 
Unstructured data streams -- sequences of chronologically ordered 
messages posted by multiple users -- occur in various social media 
and enterprise domains. For example, on Twitter, with a large user 
base, messages are posted at a high rate. Twitter is often the first 
medium to report emerging events [14][18]. An event in a data 
stream is defined by “messages, posted by multiple users, in the 
same context, within a bounded time window”, for example, 
messages posted by the fans during the course of a football match. 

An event can be a real world or an abstract activity, relevant for a 
group of people. It is only natural that in a fast-moving world, a 
huge number of events occur concurrently.  

There have been many recent attempts [14][15][16] at identifying 
emerging events in real time over live social media streams.  
Existing unsupervised approaches identify emerging events as 
temporally and spatially correlated clusters of keywords over 
dynamic message streams. The temporally and spatially correlated 
cluster of keywords forms an ‘event-topic’. In order to capture the 
event-topic, a dynamic graph is constructed using the most recent 
messages, with a sliding window model. Therefore, nodes in the 
dynamic graph represent temporally correlated keywords. An edge 
between two nodes -- representing two keywords -- indicates that 
messages within the recent sliding window contain both the 
keywords, representing spatial correlation. Thus, nodes of dense 
sub-graphs embedded in the dynamic graph represent the keyword 
clusters with strong spatial and temporal correlations [15][16].  

When the tweets posted during the Nairobi terrorist attack [30] are 
fed to the system described in [15], one of the keyword clusters, 
i.e., event-topic, discovered contained the keywords: 

- A: UK, #kenya, #westgate, #nairobi” 

Clearly, the keywords are insufficient to describe the underlying 
event. The same is true of another event-topic: 

        -   B: was,  69,  kofi,  among,  #ghana, attacks,  
ghanaian,  awoonor,   killed,  poet,  prof., #kenya 

Systems such as [14][15] discover event-topics like A and B. To 
better understand an event-topic, users have to search for the 
relevant messages in the data stream by themselves. This burdens 
the users with the task of understanding the emerging events 
manually or to determine if there is a connection between A and B. 
The shortcomings of the message search-based approach are:  

(1) Keyword search over live data streams is primitive, e.g., Twitter 
just returns the most recent tweets for a given search query [19]. It 
is not necessary that the most recent tweets are also the most 
relevant and informative tweets for the event.  

(2) Keyword search can produce an information overload for a fast-
moving data stream. Often a large number of tweets are returned by 
Twitter for a search query [5]. Moreover, search results are 
continuously updated with recent messages. This poses difficulties 
for the users to keep pace with the evolving events. 

Typically, the rate at which messages are generated is high. Hence, 
even if a subset of the messages in the query response is 
informative, it is challenging to identify these messages in real-
time. The high rate of message arrival, and the fact that the 
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messages are short often makes it difficult for the users to 
understand the context of a standalone message. Thus, the first goal 
of this paper is to discover a minimal set of most informative 
messages from the message stream, related to an emerging event. 
These messages represent the complete summary of the event. 
Furthermore, live real-world events are not just point events – they 
evolve. Our second goal is, for each discovered event, its summary 
must be updated every time there is any significant change in the 
event. Note that the events evolving in real time may comprise 
several different aspects or facets. When these changes in the event 
summary are arranged temporally, an event thread results, 
capturing the complete event context with the passage of time.  

Given these needs, we present a novel method to automatically 
extract the Contextual Event Summary Threads in real-time for 
events unraveling in an unfiltered and fast moving data stream. 

In [31], we presented our methodology to create and update an 
index over discovered ‘Contextual Event Summary Threads’ in a 
highly dynamic data stream in real time and enabled keyword 
search over these events using it. In this paper, we present our 
technique to summarize the events and to discover the Contextual 
Event Summary Threads.  

1.2 Contributions 
Most real-world events comprise several facets. Therefore, the 
summary for an event is represented as a Directed Acyclic Graph 
(DAG) that reveals the way the event has evolved. Each node in an 
event thread, called sub-event, has an associated event-topic similar 
to A and B. An event-topic is summarized using a minimal set of 
most relevant messages discovered from the data stream.  

The event thread in Figure 1 was produced automatically by our 
system [31] from the tweets sent during ‘Nairobi Terrorist 
Attack’ [30]. There are 13 sub-events in the thread in Figure 1. The 
summary started with a tweet about a mall being attacked, followed 
by tweets about action against attackers, rumors, claims and 
counter claims by authorities and citizens, etc., which were 
discovered in real time. The event thread describes a meaningful 
chronological sequence of the event. Figure 1 depicts a part of the 
event thread discovered over 164K tweets. For each sub-event in 
the event thread, our method identified an appropriate summary. 

We identify most appropriate message(s) in the data stream, 
describing the event-topic. In Figure 1, sub-event 9 corresponds to 

 

A and sub-event 5 corresponds to B. Note, all the keywords for both 
the event-topics are present in their summaries. 

In summary, our system:  

     (i) Clusters the related messages together in the data stream: 
Event-topics are identified by discovering dense sub-graphs, called 
event-graphs, in the dynamic graph constructed over the message 
stream [15]. Our system exploits the event-graphs to pool the 
relevant messages together, related to event-topics.  

     (ii) Identifies important messages in the message pool to create 
an event summary: We identify a minimal set of the most relevant 
messages from the message pool of an event-topic such that the 
summary is complete and meaningful. In fact, we exploit the 
structural properties of the underlying event-graph to identify a 
subset of messages as ‘summary candidates’. 

     (iii) Discovers the event threads for evolving events: As the 
events evolve, the underlying event-graphs go through structural 
changes. These changes are tracked in real time. Event summary is 
updated whenever its event-graph goes through a ‘significant’ 
change (cf. Section 6). The updates in the event summaries are 
captured in contextual summary threads like one shown in Figure 
1. Our technique automatically discovers different facets of live 
events in real time. In general, an event thread can have multiple 
roots. We say that each unique path in the event thread, from each 
of its root(s) to each of its leaves, represents a different facet of the 
event. Event thread in Figure 1 has 6 facets.  

In a nutshell, our research contributions involve 

1. Summarizing all the events, discovered in a fast-moving 
unfiltered data stream, in real time, in a scalable and 
unsupervised manner. For each discovered event-topic, a 
minimal set of messages is identified to produce a meaningful, 
informative, stable and complete event summary (Section 5). 

2. Tracking the evolution, emergence and dissolution of dense 
graphs (event-graphs) in a large and highly dynamic graph in the 
presence of node and edge insertion and deletion. 

3. Exposing different facets of live events which are presented as 
a contextual event summary thread, representing one or more 
aspects of the event in real time (cf. Section 6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. Spread to all Kenyans - the westgate situation may be trying to distract 
Nairobi, a bigger attack may happen, STAY INDOORS- RT n SHARE 

2. Day 2: Al-Shabaab Jihadists Holding Innocent 
Civilians at Westgate in Nairobi, Death Toll at 59. 

4. KENYA UPDATE: Death toll in #Westgate siege rises to 68 
as 9 more bodies recovered during  rescue operation 5. Ghanaian poet & author- Prof. Kofi #Awoonor was among the 69 killed in the 

attack on #Nairobi's #Westgate mall. #Ghana #Kenya 

7. Israeli forces enter Nairobi mall: security source 
http://t.co/E0NoM7lxPA \u2026 #westgate 

8. Two helicopters landed on the roof of #westgate mall where 
#nairobi hostage crisis continues. 

10. Kenyan forces kill two terrorists, claim control of Westgate mall: 
Kenyan forces assaulted terrorists in Nairo... http://t.co/zoJaHgAuun 

9. Speculation that convertite 'white widow' Samantha Lewthwaite from UK is 
the mastermind of the attack on #Westgate Mall in #Nairobi, #Kenya 

13. Day 3: Kenyan Government Takes Westgate Mall From al-
Shabaab Jihadists p://t.co/E66dDy5l6y #BigTweet 

11. Something I never saw in 30 yrs as journalist: civilians bringing food, coffee 
to journalists covering #Nairobi's #Westgate siege. Amazing! 

12. Militants at the Westgate mall in Nairobi, Kenya, are still 
holding their ground, Somalia's Al-Shabab group claims 

1. #AlShabaab says it attacked #Westgate mall in 
#Nairobi to retaliate for Kenya's role in #Somalia.  

3. MAJOR assault by security forces ongoing to end two-day siege at Westgate 
mall. Fears abound death toll could be higher when dust settles. 

Figure 1: Contextual Event Summary Thread Discovered by our system for Nairobi Attack 
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To the best of our knowledge, ours is the first technique that 
captures the multi-faceted summary of live events and to arrange 
them in event threads. The event topics, discovered over an 
unfiltered and fast moving data stream, are summarized in real time 
in an unsupervised manner, in absence of any user query. The 
contextual event summary thread is a novel concept in contrast with 
the story-line generating techniques [4]. Our approach is generic 
and applicable on any data stream that is a sequence of <user: 
message>s. Experiments over real data show, our technique leads 
to compact and meaningful event summary threads for live events. 

The organization of the paper is: In Section 2, we present the related 
work. The event-graph model to capture the state of dynamic data 
stream and the challenges involved in discovering event summaries 
are presented in Section 3 and Section 4 respectively. In Section 5 
and Section 6, we present the methodology to discover event 
summary and event summary threads. We present our experimental 
study in Section 7 followed by conclusion in Section 8. 

2. RELATED WORK 
Topic Detection and Tracking [1][2] is related to our work. In [12], 
Yang et al., presented a method to summarize web documents. For 
these techniques, the document characteristics are completely 
different from microblog streams (‘large size/less in 
number/offline’ vs. ‘small size/too many of them/real time’). These 
methods work on static data only.  

In [5], Shou et al., presented a technique to summarize a Twitter 
data stream, filtered in the context of a given user query. In [23], 
authors reduce the summarization problem to that of optimizing 
probabilistic coverage on static data. In [8], Yang et al., present a 
method to compress the Twitter data stream. Lee et al., in [24] 
propose a snapshot based method to track the incremental evolution 
of event-topics. There is significant work [10][11][13] to identify a 
fixed size summary of microblog posts on a pre-specified topic and 
on static data, i.e., data which is not updated with new messages.  

Gao et al., [3] proposed an unsupervised approach to summarize 
events, by preparing a joint sentence-tweet level model, across 
news media and Twitter. Too similar or too different sentence/tweet 
pair were discarded. In [4], Lin et al. proposed a mechanism to 
generate a storyline from a microblog data stream. However, the 
technique is applicable only for static data sets. Vosecky et al., [7] 
presented a method to identify multiple facets of an event, i.e., 
important keywords, entities, location, etc., on a static Twitter 
stream.  

The basic difference between existing work and the problem 
addressed in this paper is: These techniques [1][4][5][7] work in 
the context of a given query, topic and/or on static data. In contrast, 
our technique organizes the event summary into event threads, 
capturing the complete context, for each underlying event 
discovered in the unfiltered data stream in real time.  

The dynamic graph model is exploited to identify the event 
summary. Our technique exploits the presence of Short Cycle 
Property (SCP) in the dense sub-graphs of a dynamic graph. In [15], 
it was shown that dense sub-graphs of a graph possess SCP. There 
is a large body of work for triangle counting and triangle listing in 
graphs. Triangle listing is considered an important measure for 
discovering dense neighborhood [28]. A triangle in a graph induces 
a cycle of length three. SCP extends this notion to cycle of up to 
length four, i.e., each node in a graph, possessing short cycle 
property, participates in a cycle of length at most four within the 
graph. Triangle listing problem can be divided into processing 
static graphs [20] and streaming graphs [27]. Streaming graph 

algorithms for triangle listing are further divided into edge insert 
graphs [27] and edge insert or delete graphs [9]. In contrast, our 
algorithm works on a graph with insertion and deletion of both 
edges and nodes. In this paper, we identify dense event-graphs, 
discovered based on SCP [15], representing emerging events in a 
large dynamic graph, with edge and node insert and delete. Our 
technique keeps track of emergence, evolution and dissolution of 
the dense sub-graphs in a large dynamic graph. This evolution is 
presented as contextual event summary thread for the event.  

3. EVENT-GRAPH MODEL 
Let S = St-wSt-w+1…St represents a message stream. Si = {di

1di
2…di

m} 
is the set of messages arriving in block i. A message dt

j=<ui, k> in 
the data stream contains message k and the userid uj of the user 
posting the message. A message k is an ordered set of keywords. 
m, called the block size, is the number of messages in a block. The 
stream is moved forward by expiring the messages in (t-w)th block 
and including the messages in (t+1)th block. The message 
timestamp is implicit with the arrival order in the data stream. For 
constructing the event thread as shown in Figure 1, we extract the 
<userid: message> from the incoming data stream. No pre-
processing is done on the message, except removing stop-words 
from it and tokenizing the message into keywords.  

Temporal and Spatial correlation: The data stream S is modeled 
as dynamic graph Gt (Vt, Et) [15]. For the problem studied in this 
paper, Gt is an input to our system. The graph Gt (Vt, Et) captures 
the state of the data stream at the arrival of messages in block t (t

N ). Keywords are represented as nodes in the graph Gt. At time 

step t-1, the graph is updated with the keywords present in the last 
block of m messages and t-1 is incremented to t. Vt contains the 
bursty and active keywords in the last w blocks at time t. Nodes Vt 
capture temporal correlation as only temporally correlated 
keywords (nodes) are present in the graph. 

Table 1: Notation 

St;|St|=m St is the block of m messages in the tth time step. 

Gt=(Vt, Et) Dynamic graph at time step t. Vt represent the keywords and 
edges Et the keyword-correlation in the graph Gt. 

Gt
c(Vt

c, Et
c) Gt

c is the event-graph embedded in Gt for event c at time step 
t. Vt

c represent the keywords in event-topic. 

N (v); vVt
c N(v) represent the set of adjacent nodes to node v Vt

c. 

dt
j=<ui, k>; 

1≤j≤m 
Message dt

j posted by user ui during time step t. k is set of 
keywords in the message. 

w Graph Gt contains the bursty and active keywords from last w 
message blocks.  

γ Keyword Burtstiness threshold.  

λ Edge correlation threshold.  

Mt
c Message set representing summary of event c at time t. 

Uv Set of userids associated with node v Vt. 

userCover Set of userids, whose messages include all the keywords in an 
event-topic. 

A keyword is bursty if it is used in γ (>1) messages in the current 
window of m messages. A keyword k is called active if its 
corresponding node vkVt is present in Gt (Vt, Et), i.e., the keyword 
is used in at least one of the messages in the last w message blocks. 
An active keyword remains in the graph Gt for as long as it is active. 
A keyword is removed from the graph Gt if it is inactive for w time 
windows. Hence, a keyword has to be bursty at least once to move 
into the graph Gt. The burstiness constraint helps identify events 
relevant for a community or group of users. 
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Each node vk   Vt is associated with a user list Uk, containing 
userids of the users who have used the corresponding keyword k 
since the time it has moved into the graph Gt. This list is used to 
establish spatial correlation among the keywords (nodes). For a 
pair of nodes {vi, vj}Vt, if the similarity score between their 
respective user lists Ui and Uj  is above a given threshold λ, an edge 
e is placed between the nodes. Jaccard coefficient (Jc) is used as 
the similarity measure. Jc between two nodes vi, vj in graph Gt is 
calculated as |||| jiji UUUU  ; hence 0≤λ≤1. Edge e   Et 

captures the spatial correlation between the associated keywords. 

Dense sub-graphs in graph Gt represent an event: Dense sub-
graphs, embedded in the graph Gt (Vt, Et) are called event-graphs. 
The nodes Vt

c   Vt in the event- graph Gt
c (Vt

c, Et
c) are the 

keywords in the event-topic c and edges Et
c  Et represent the 

correlation between these keywords. Gt
c represents the keywords 

with strong spatial and temporal correlation. In a data stream, 
modeled as dynamic graph, emerging dense sub-graphs represent 
the emerging events [15][16]. 

Short cycles in dense graphs: The length of the Shortest-cycle in 
a graph has a strong correlation with graph density. For example, 
triangle listing is a well-known method to measure graph density 
[27]. Each edge of a triangle induces a cycle of length 3. Similarly, 
in chordal graphs [29], each node is part of a cycle of length 3. In 
[15], authors expose a property for the dense sub-graphs embedded 
in a large graph, called the short-cycle property; each node in a 
dense sub-graph participates in at least one cycle of length at most 
4, within the sub-graph. Next, we formally define the Shortest-cycle 
and short-cycle property. 

Def. 3.1.1 Shortest-cycle: For a graph G (V, E) and a node vV, 
Shortest-cycle is the shortest path P through which one can return 
to node v; EePe  , .  

Def. 3.1.2 Short Cycle Property (SCP): For a keyword cluster c, 
let Gt

c (Vt
c, Et

c) represent the corresponding subgraph embedded in 

graph Gt (Vt, Et) ( t
ck Vvck  ; ). Vt

c Vt, Et
c Et and

t
c

t
cvu VvuEe  },{,),( . Gt

c possesses the short-cycle property if it 

satisfies the following conditions:  

P1. For any two adjacent nodes u and v in the Gt
c, there exists at 

least one more path P between u and v, such that |P| ≤ 3 and
 t

cvuvu EePe  ),(),( , . Therefore, the length of Shortest-cycle 

for t
cVv is ≤ 4. Note, length of the Shortest-cycle for node v is 

|P| + 1 (for edge e(u, v)).  

P2. For a node vVt
c in graph Gt

c, all the Shortest-cycles node v 
participates in within the graph are of length at most 4. 

P3. There is no articulation point in Gt
c. An articulation point is a 

node whose removal breaks the graph into multiple disconnected 
components (e.g. in Figure 3(a), node a4). 

In Figure 2 (a), in the absence of P3, clusters C1 to C4 will merge 
into a single cluster since the merged cluster satisfies P1 and P2. 
Similarly, in the absence of P2, C1 to C5 will merge together into a 
single cluster. Please note, due to SCP, though necessary, it is not 
sufficient for two event-topics to just share two or more keywords 
to merge into a single event-topic. In Figure 2(b), C6 and C5 share 
two keywords, but they are not merged together since the merged 
cluster does not satisfy P2 of SCP. Thus, SCP ensures discovery of 
dense clusters efficiently [15]. 

 
Figure 2: Example event-graphs 

Example 1: In Figure 3(a), sets {a1, a3, a4} and {a2, a4, a5} represent 
an independent event each. Event-graph in Figure 3(b) represents a 
single event. In Figure 3(b), keywords having their Jc ≥ 0.25, have 
an edge between them. An event-graph satisfies the SCP (Def. 
3.1.2). 

In Figure 3 (b), k2 and k3 participate in two Shortest-cycles each. 
Cycle k1→ k2→ k4→ k3→ k1 is an intra-graph cycle too but not the 
Shortest-cycle (Def. 3.1.1). In [15], authors present an efficient 
algorithm to identify dense-graphs in a dynamic graph by 
exploiting SCP. SCP ensures that keywords that show a strong 
temporal and spatial correlation are identified as event-topics. 

 
Figure 3: Example event-graphs  

4. ISSUES in EVENT SUMMARIZATION 
There is a user list Uv associated with each node vk t

cV in event-

graph Gt
c (Vt

c, Et
c) for event c. vk is the node corresponding to 

keyword k. We represent vk by just v when the context is clear. The 

messages posted by users in list Uv, t
cVv , are considered the 

pool of message related to event c. Event summary is identified 
from these messages.  

Def. 4.1 Event Summary: Event summary is a set of messages Mt
c 

from a set of users Uc );( t
cv VvU  such that t

ck Vv  , 

cUu  where u has used the keyword k in its message(s).  

Thus, the event summary is defined as a set of message(s) from a 
set of users whose messages covers all the keywords in the event-
topic. This set of users is also called the valid userCover.  

Let vUu of the userid list of node vk t
cV . Let N(vk) represents 

the set of nodes adjacent to vk in Gt
c (Vt

c, Et
c). )( kvNn , if

nUu , node n is considered covered. Thus, all neighbors of node 

vk that contain u in their respective user lists are considered covered. 
Note, only the user lists of the neighbors of node vk in the event-
graph are checked for the presence of user u. The messages in the 
current time window from the users in the userCover become part 
of the event summary Mt

c. The summary Mt
c for a new event c, 

emerging in the tth time window is defined as ct
u

t
c UuS  |M

where Su
t is a set of messages from user u in tth message block. Mt

c 

is the ordered sequence of messages based on the message 
timestamp.  

Def. 4.3 Optimal UserCover: An optimal userCover T is the 

smallest subset of users such that  TUVvU v
t
cv ,| . 
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Theorem 1: Discovering optimal userCover is NP-hard. 

Proof Sketch:  Hitting set is a well-known NP-complete problem 
[25]. It is defined as follows: Given a collection S of sets Sis; 1≤i≤n, 

find the smallest size set H such that  HSSS ii , . By 

mapping each element in a set Si to a user id in userCover, Hitting 
set problem is polynomial time reducible to userCover. If T* is a 
solution for userCover and H* is a solution for Hitting set, |H*| = 
|T*|.                                                                                                  □ 

Theorem 1 states, discovering optimal userCover is NP-hard even 
when the user lists associated with keywords are static. However, 
the set of nodes Vt

c in an event graph Gt
c as well as the user lists Uv 

associated with each node t
cVv  are highly dynamic due to 

continuous updates in the message stream. Thus, it is non-trivial to 
identify a minimal set of most relevant messages from the data 
stream that ensures that the event summary be informative, 
compact, complete, meaningful and stable. 

Identifying users (and not messages) helps us create a more 
meaningful event summary (at times, users post multiple messages 
in a small time window to explain the full context of their 
messages). Since user lists are large for popular events, it is non-
trivial to identify optimal UserCover. To efficiently identify these 
users, each arriving message is assigned a score in a scalable 
manner to rank more relevant messages higher (cf. Section 5.3). 

We next highlight how the dynamic updates in the data stream may 
result in an unstable event summary:   

Figure 4: Evolution in the event-graph 

Live updates can make a summary unstable: For an event 
present in a live data stream, let its initial event-graph be as shown 
in Figure 4(a). The userCover had been identified as {1, 3} by any 
userCover discovery algorithm (k1 in Figure 4(a) is not part of the 
event-graph). In the next time step, the event-graph gets updated to 
as shown in Figure 4(b). However, the same algorithm identifies 
{2, 9} as userCover, which results in a different set of messages as 
summary, making it difficult for users to keep track of evolving 
event. Thus, due to live updates, event summary may be unstable.  

The evolution of the summary for a live event is handled as 
described in Section 6. We present our algorithm to summarize the 
event by identifying an approximate userCover in Section 5. 

5. DISCOVERING EVENT SUMMARIES 
In this section, we present our method to discover meaningful event 
summaries, with the aid of central nodes, called pivot nodes, in the 
dense event-graphs. In Section 5.2, we present our algorithm to 
identify the event summaries. In Section 5.3, we present our method 
to rank the messages in the data stream. 

5.1 Pivot Nodes and Pivot Edges 
Def. 5.1.1 Pivot Edge: An edge that participates in more than one 
Shortest-cycles within the event-graph is defined as a pivot edge. 
Higher the number of Shortest-cycles a pivot edge participates in, 
the more central it is in the event graph.  

Def. 5.1.2 Pivot Node: Nodes associated with a pivot edge are 
called pivot nodes.  

Nodes which are not pivot nodes are called peripheral nodes. In 
Figure 4(b), edge (k2, k4) is a pivot edge. {k2, k4} are pivot nodes.  

Lemma 1:  A graph possessing short-cycle property with more 
than one shortest-cycles within the graph, has a pivot edge. 

Proof: Let event-graph Gt
c (Vt

c, Et
c) has multiple short cycles, 

satisfying SCP. Let C (V, E) be a cycle in the event-graph Gt
c such 

that it has no common edge with any other cycle in the graph. Let 

n )(VC  be a node common with another cycle in graph Gt
c (if 

cycle C has not even one node common with any other cycle within 
the graph; Gt

c will be disconnected); Since no edge in cycle C 
participates in another cycle, for any node v in C(V) - n, and for any 
node u in Vt

c – V, there exist just one path from v to u via node n. 
Hence in graph Gt

c, node n is an articulation point, violating Def. 
3.1.2 of SCP event-graph. Therefore, there must exist another path 
from v to u. Hence, there exist a cycle vunv  . Hence any 

edge e )(EC in path nv  participates in another cycle, i.e., e is 

a pivot edge. Therefore, for each Shortest-cycle C (V, E) in an 

event-graph, )(ECe that is a pivot edge.                                   □ 

Corollary of Lemma 1: Either a node itself or one of its neighbors 
is the pivot node in the event-graphs that possesses SCP. Due to 
this corollary, we can create a pivot edge cover (PECover), as 
described below.  

Def. 5.1.3 PECover: For Gt
c (Vt

c, Et
c), a PECover is a subset  of 

pivot edges o
pE    Et

c such that, t
cVv , o

p
t
c VvEvue  |),( . 

Hence, a PECover (corresponding PNCover) o
pE  ( o

pV ) is a subset 

of pivot edges (corresponding pivot nodes) in the event-graph Gt
c 

(Vt
c, Et

c) such that )( o
p

t
c VVv  , node v is adjacent to a node in

o
pV .  

Let Uv be the user list for node v  Vt
c and C be a collection of all 

the user lists in Gt
c (Vt

c, Et
c). Let Cp be a collection of user lists 

associated with pivot nodes o
pV  in graph Gt

c (Cp   C).  

Lemma 2: For collection Cp |; pjpi CUCCU  ,  

ji UU  . 

Proof: For two nodes vi and vj and their associated user lists Ui and 
Uj in an event-graph Gt

c(Vt
c, Et

c), if edge (vi, vj) Et
c, 

   ||,0|;|.|| },{ jiljiji UUUUU  . Therefore, for any 

edge e Et
c there exists at least one userid which occurs in the user 

lists of both the nodes. Since, each node in Gt
c is adjacent to a node 

in the PECover of Gt
c, therefore, for collection Cp,  

 jipjpi UUCUCCU |; .                                    □ 

Hence, we first identify a set of pivot edges, called PECover. A 
valid userCover can be identified only from the user lists associated 
with pivot edges (cf. Lemma 2). Thus, pivot edges help us avoid 
processing a large number of messages associated with peripheral 
nodes and yet ensure that the event summary is complete.  

Further motivation to use the pivot edges is explained below: 

5.1.1 Informative 
A message containing more keywords from the event graph is 
considered more informative. Naturally, a keyword with higher 
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number of neighbors in the event graph is likely to contain such 
messages. We capture this notion of informative-ness as follows:  

Def. 5.1.4 Informative-ness: Informative-ness of a node v is 
defined as N(v), the set of nodes adjacent to v in event graph Gt

c.  

Let edge e (u, v) be a pivot edge. Let s be a neighbor of u such that 
e (u, s) be a non-pivot edge (s is a peripheral node). N(v) represents 
the set of nodes adjacent to v in Gt (Vt, Et).  

Lemma 3: |N(u)| > |N(s)|. 

Proof: Omitted (cf. Lemma 5).                                            □ 

Lemma 3 shows that the messages from the users associated with 
the pivot nodes contain more keywords from the event-topic. 
Identification of summary from these messages leads to a more 
informative and compact summary. 

5.1.2 Stable 
Since a pivot edge participates in multiple cycles, it is more stable 
than the other edges in a dynamic event-graph. Even if one or more 
edges/nodes, among edges and nodes adjacent to a pivot edge get 
deleted in the underlying event-graph, the message set identified as 
the event summary continues to be a valid event summary (cf. 
Section 6.2). Hence, identification of event summary based on 
pivot edges, leads to more stable event summary. 

5.1.3 Complete 
An event summary containing messages that cover all the keywords 
in an event-graph is considered a complete event summary. 
However, we identify the users only from the user lists associated 
with pivot nodes, i.e., from the collection Cp.  

Lemma 4: A user cover identified only from the pivot nodes of an 
event-graph, possessing short cycle property, is a valid userCover. 

Proof: The corollary of Lemma 1 along with Lemma 2 completes 
the proof.                                                                                         □ 

Lemma 4 shows that the userCover identified from the user lists in 
collection Cp results in a valid userCover. With the help of pivot 

edges, we identify a subset of user lists Cp (from the entire user list 
collection C for event c) and a valid userCover can be identified 
only from these sets. Thus, the event-graph structure helps us 
identify a small number of more relevant user lists for discovering 
a valid userCover. However, discovering optimal set of pivot nodes 
in an event-graph remains an NP-hard problem (cf. Theorem 3).  

5.1.4 Optimal Summary Size 
We next show that the summary size discovered with the aid of 
optimal PECover leads to the optimal size summary.  

As shown in Lemma 2, once a pivot edge e(u, v) is identified, all the 
nodes adjacent to the pivot nodes {u, v} can be covered using only 
the user lists associated with these nodes. We now show that there 
cannot be any smaller collection of user ids than optimal size 
PECover that results in a valid userCover.  

Let T* represent the optimal collection of user ids that provide a 
valid userCover for a given event-graph Gt and let PECover* be 
the optimal PECover.  

Theorem 2: |PECover*| ≤ |T*|. 

Proof: For a given event-graph Gt (Vt, Et), a dominating set D is 
subset of nodes in Vt such that each node in (Vt – D) is adjacent to 

a node in D [25]. Let D* tV be the optimal size dominating set. 

Therefore, D* is the smallest set of nodes such that each node in Vt 

– D* is adjacent to a node in D*.  

Step 1: Each node in Vt, is adjacent to a pivot edge (corollary of 
Lemma 1). Therefore, for each node v in D* we get a corresponding 

pivot edge as follows: either edge e(v, u) is a pivot edge; )(vNu  

or edge e (u, N(u)) is a pivot edge.  

In this manner, we get a pivot edge cover peCover from D* which 
is a valid PECover since D* is a dominating set for graph Gt; 
|peCover| = |D*|.  Let PECover* is the optimal PECover. Hence, 
|PECover*| ≤|peCover| ≤ |D*|.  

Step 2: Any two nodes that share an edge, have at least one userid 
common (Lemma 2).  Let T* be the optimal set of user ids, 
providing the valid userCover. Since D* is the optimal dominating 
set, therefore, |T*| ≥ |D*| because for each node in D*, at least one 
userid has to be selected in T* (since the user lists of only the 
neighbors of a node in the event-graph are considered while 
constructing userCover)   

From Step 1 and Step 2, |PECover*| ≤ |T*|                                       □ 

Thus, optimal pivot edge cover leads to optimal summary size.  

On event graph Gt
c we induce a graph G’(V’, E’) such that each 

edge in G’ is a pivot edge in Gt
c (with the aid of Lemma 5, Section 

5.2). We identify a smallest subset VPN V’ of nodes in G’ such 
that every node in V’ – VPN is adjacent to at least one node in VPN. 
We call the set VPN Pivot nodes cover or PNCover.    

Theorem 3: Discovering optimal PNCover for a given event-graph 
Gt

c(Vt
c, Et

c)  is NP-hard.  

Proof Sketch: Dominating set is a NP-complete problem [25]. It 

can be shown that PNCoveratingSetDo Pmin .                          □ 

 

Figure 5: Dominating set Vs. Pivot nodes over event-graph 

An alternative to pivot edges is to identify the dominating set of 
nodes [25] itself in an event-graph. Our primary reason to choose 
the pivot edges over dominating set is, nodes in dominating set 
divides a graph into stars whereas the pivot edges divide it into 
cycles (i.e., quasi-cliques). The userCover discovered from nodes 
that are part of same quasi-clique leads to more informative event 
summary. For instance, black nodes in Figure 5 (a) and Figure 5 (b) 
both represent the dominating sets. However, Figure 5 (b) 
represents the dominating set induced due to the pivot edge. 
Therefore, pivot edges ensure that a message summary discovered 
based on pivot edges is more informative, stable, complete, and 
compact.      

Pivot nodes are ‘central nodes’ in an event graph. There are other 
notions of central nodes in a graph, for example, HITS [17] and 
PageRank [21] identify central nodes (authorities). However, there 
are basic differences in the settings of our two problems as:  

a) [17][21] techniques are iterative in nature, therefore not 
amenable to rapidly changing dynamic graphs;  

b) The notion of ‘completeness’ (Section 5.1.3) is not applicable 
for these methods. Due to the same reason, the notion of between-
ness centrality [22] is not applicable; 

(b) Black nodes 
depicting optimal 
pivot nodes (c=2) 

(a) Black nodes 
depicting optimal 
dominating set 

 (d=3) 
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c) These techniques exploit the link structure to identify the 
authorities, whereas we exploit the graph structure to identify the 
pivot nodes (since the objectives of two problems are different). 

5.2 Approximate User Cover 
Next, we present our algorithm to identify approximate userCover. 
On an event-graph Gt

c(Vt
c, Et

c), we induce a graph G’(V’, E’), 
t

cVV ' and )( ''' VVEE t
c    such that 'Vv ; v is a pivot 

node in graph Gt
c. The induced graph G’ is called the core event-

graph. The event summary discovered from G’(V’, E’) follows the 
same notion of event-summary (Def. 4.1) except that it is 
discovered on induced graph G’.  

Instead of identifying the userCover for graph Gt
c, we identify the 

userCover on G’. The core event-graph G’ does not contain the 
peripheral nodes in Gt

c. However, presence of peripheral nodes in 
the event-graph Gt

c defines the pivot nodes.  Therefore, peripheral 
nodes impact the event summary only indirectly.  

Lemma 5: A node v with degree Δ(v) > 2 in graph Gt
c(Vt

c, Et
c) is a 

pivot node. 

Proof: 2)(,  vVv t
c  (node v is part of a cycle). Let v t

cV |Δ 

(v) > 2 be a node in graph Gt
c  such that v is not a pivot node. Since 

Δ(v) > 2, node v is part of more than one cycles. Let C1 and C2 be 
two cycles node v is part of. Let edge e (v, n’) belong to C1 and edge 
e (v, n”) belong to C2. Hence, there exists one path from node n’ to 
node n” via node v.  However, if this is the only path between the 
two nodes, node v becomes an articulation point violating the short 
cycle property. Hence there exists one more path p from node n’ to 

n” inducing a cycle C (v→n’ 
p  n”→v). Length of cycle |C|≤4 

(SCP). Therefore, edge e(v, n’) participates in two cycles C1 and C. 
Hence e(v, n’)  is a pivot edge and v is a pivot node.                         □ 

With the aid of this lemma, it is easy to induce graph G’ on Gt
c. 

Note, G’ may not follow the short cycle property. 

 

Figure 6: Discovering core graph from an event-graph 

Each node v in G’ is assigned a score p(v); p(v) ← dv(Gt
c); dv(Gt

c) 
is the degree of node v in graph Gt

c. This score is used to identify 
userids in the userCover. In Lemma 2, it is shown that if two nodes 
are adjacent, they have one or more userids common. Therefore, by 
selecting the nodes with higher score, event summary is likely to 
contain more keywords in event-graph Gt

c. We describe our 
algorithm to find userCover for graph G’ below. 

Algorithm approxUserCover (nodeList nL) 
1. Let Gt

c(Vt
c, Et

c) be an event-graph. 
a. let cId be its clusterId; 

2. G’ is the core event-graph induced on graph Gt
c. 

a. )();,( ''' t
cvv GdpEVGv   

b.  Uv ← list of userids associated with node v 
3. S ← Φ 

4. for )( 'VGv  {if nLv { vSS  }} 

5. cId.nL ← V’; /*we record the pivot node to efficiently update  
                           the event summary when cluster evolves later*/ 

6. uC ← Φ /*userCover is set to null*/ 

7. while ( S ) 

a. v← )((arg '
' GdpMax vvVv




 /*return node with   

                                                highest pv dv(G’) score*/ 
b. U ← Uv ; 
c. Let Un be userids set associated with a node n, such that n is 

neighbor of node v in G’. 
i. T ← )(arg tkmessageRanMax

nUUt   

ii. uC ←uC  {T}; 

iii. U = U – U  Un /*We do not select any more userids 
covering same keyword*/ 

d. For each remaining neighbor, check if userid T exists in their 
userid list  

i. A← v.adjList (G’) /*adjacency list of v in G’*/ 

ii. nAuu  | , if T  Uu, S ←S-u; 

8. return uC; 
 
Each edge in graph G’ is a pivot edge in Gt

c. The degree of a node 
v in G’, dv(G’) is a measure of the number of cycles it participates 
in graph Gt

c. messageRank (.) returns the userid of the message with 
highest rank. Since, a user is added in the user list of a node one at 
a time, it is kept sorted in the message score efficiently. In the above 
algorithm, each node in the event-graph is visited exactly once. 
Thus, the complexity of identifying userCover is O(|Vt

c|). 
Algorithm approxUserCover is greedy and achieves the same 
complexity as Dominating set [25], i.e., (1+ log (Δ)) OPT; OPT is 
optimal userCover size and Δ is the maximal degree in graph G’. 
Dominating set problem is LOG-APX-COMPLETE and no better 
bound is possible. 

5.3 Ranking the Messages 
Since our objective is to summarize a highly dynamic data stream 
in real time, the methodology to rank each arriving message must 
be i) fast and efficient; ii) rank more meaningful messages higher; 
and iii) does not re-rank the already ranked messages with fresh 
updates in the data stream. There are many studies related to 
ranking the microblogs [18][19][6]. A common conclusion across 
these studies is that the rank of a tweet depends on the authority of 
its author and the authority of the message. We exploit these 
features to establish the rank of a tweet. 

Let di, djSt be two messages in the data stream S. Let R(.) be a 
monotonically increasing function such that if di is deemed more 
important than dj, R(di) > R(dj). To efficiently rank the messages, 
R(.) is applied on both these messages independently.  

A tweet is considered more meaningful i) if it is retweeted more 
(retweet count RT captures the authority of the tweet [18]); and ii) 
if it is tweeted by a person with many followers (follower count f 
captures the authority of the user [19]). Therefore, the tweet score 
R(d) of a tweet d is computed as:  

R(d) =   αRT.log f 

Since the dynamics of an event vary at much finer time scale 
compared to a user’s follower’s count, f is a logarithmic factor.  

The ranking function scores each arriving message efficiently, as 
soon as it arrives such that the more important messages are likely 
to be ranked higher. Please note the first criterion to choose a 
message is the underlying event-graph structure. The highest 
ranked messages associated with the pivot nodes in the event-graph 
are identified as summary (Section 5.2). Therefore a message from 
a user with lesser following and/or retweets would be picked in the 
event summary, if it is more relevant in the context of an event. 

In summary, we translate our goal to provide an event’s summary 
into one of discovering a set of users, collectively using all the 
keywords in the event-topic. We show, this set of users can be 
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discovered only from pivot nodes in the event-graph. We also show 
that pivot nodes enable us to discover informative, stable and 
compact summary. 

6. DISCOVERING EVENT THREADS 
In this section, we present our technique to discover the contextual 
event summary threads capturing the evolution of live events. The 
evolution of an event is tracked by tracking changes in its 
underlying event-graph Gt

c(Vt
c, Et

c).  

A possible approach for constructing the event threads is to 
maintain the snapshots of each event-graph in each time window 
[24], but it is not practical to construct summary threads in real time 
from these snapshots, as 1) instead of incrementally processing the 
graph, the complete event-graph needs to be processed for each 
event for each snapshot, thus making it impractical for processing 
a fast moving data stream in real time; 2) it is shown in [31], that a 
highly efficient mechanism is needed to keep the indexes updated 
for the event threads. Thus, it is not practical to create the index 
again for each snapshot. 

Hence, we maintain contextual event threads for each event by 
keeping a corresponding eventTree. EventTree captures the 
evaluation of the event-graph. We assign a unique event-id (called 
clusterId) to each event-graph. When an event-graph evolves, the 
summary is updated and the change is recorded in its eventTree. 
With changes in event-graph, eventTree is maintained as follows:  

Incremental changes in the event-graph: There are incremental 
changes in the event-graph due to addition and deletion of nodes 
and edges. Due to these changes, the summary may or may not 
change but the clusterId of the event-graph remains the same. 

Disruptive changes in the event-graph: If the structure of an event-
graph changes so much that we need to assign it a new clusterId, 
such a change is called disruptive change. For example, when two 
independent event-graphs with clusterId c1 and c2 merge into a 
single event-graph c due to emergence of new nodes/edges. The 
mapping c←c1, c2 is recorded in the eventTree. When two event-
graphs merge, their corresponding threads also merge in a single 
thread. Similarly, due to deletion of nodes/edges, if an event-graph 
c breaks into say two sub-graphs, c1, c2, we record c1← c and c2← 
c in the eventTree. Thus, a eventTree captures the evolution in the 
corresponding event-graph.  

Whenever a disruptive change occurs, we record the parent 
clusterId (cp)and child clusterId (c)relationship as an 
‘evolutionEdge’ (c← cp is an ‘evolutionEdge’). Each 
‘evolutionEdge’ that emerges in the current time window w, is 
processed at the end of the window, and the event summary is 
updated (cf. Section 6.3). We exploit the graph structure so that 
only the necessary ‘evolutionEdges’ are recorded. Note that 
‘evolutionEdges’ track the evolution of event-graphs and they are 
not the edges in the graph Gt (Vt, Et). Instead of maintaining 
complete snapshots, we just maintain ‘evolutionEdges’ to capture 
the differences between Gt and Gt+1.   

We next illustrate how the event summary changes due to addition 
and deletion of nodes. Similar process is applicable on graph edges. 

6.1 Effect of Node Addition 
Gt

c(Vt
c, Et

c) is an event-graph and G’(V’, E’) is the graph induced 
on Gt

c such that E’  Et
c be the set of pivot edges for graph Gt

c. 
When a new node (keyword) n joins the event-graph, it may induce 
a new pivot edge in graph Gt+1

c. A node n can join the event-graph 
Gt

c in two possible ways: 

Case 1: Due to the addition of node n, an edge e  Et+1
c – E’ 

becomes a new pivot edge.  

For example, as shown in Figure 7, when a new node n joins the 
cluster {A, B, C, D}, a new short cycle n→A→B→n is induced 
such that edge AB becomes a new pivot edge. 

In this case, the induced graph G’ includes an extra node (node A) 
and the corresponding edge(s). The existing userCover is extended 
to cover ‘A’. Please note, it is possible that the event summary does 
not change as the existing userCover could be sufficient due to 
pivot edge e(B, C). This check is done in O (1). 

  

Figure 7: Change in event summary with node addition 

Case 2: A node n joins the cluster such that it induces a new cycle 
on an existing pivot edges epE’.  

In Figure 7, n’ induces a new short cycle on edge BC (B→n’→C) 
which was already a pivot edge. Therefore, node n’ is a peripheral 
node and no change is made in the event summary. 

The cases underline the way event-graph is exploited to update the 
summary; due to the concept of pivot edges, summary does not 
change rapidly because of minor changes in the event-graph. 

6.2 Effect of Node Deletion 
A departing node breaks at least one short cycle. Departing node is 
either a pivot node or a non-pivot node. 

Case 1: The departing node n is a non-pivot node (e.g., node n in 
Figure 7); nV’. With the departure of node n, a pivot edge may 
no longer remain the pivot edge. Since n is not a pivot node it can 
impact only one pivot edge as it induces only one cycle. However, 
the userCover continues to remain a valid user cover as the edge 
e(n’, u), erstwhile pivot edge, remains part of the event-graph Gt+1

c.  

Case 2: The departing node n is a pivot node for edge e (n, v). For 
example, consider node B in Figure 7. Departure of a pivot node 
has a significant impact on the event-graph Gt

c and the graph may 
break into multiple sub-graphs or it may get dissolved if it no longer 
possesses the short-cycle property (in that case, the event ceases to 
exist as a live event). Each surviving sub-graph must possess SCP. 
Each of the surviving sub-graphs is assigned a new clusterId. The 
updateEvolutionEdge () records the relationship between the old 
and each new clusterId. For each ‘evolutionEdge’ ci← c, we extract 
the event-graph Gt+1

ci, update its summary and its event thread.  

Algorithm: UpdatePECover (node n) 

 'n N (n) /*N(n) returns neighbors of n in Gt
c*/ 

    If n’   V’  /* V’ is a set of pivot nodes in induced graph G’*/ 

      u N (n’) 

           if e(n’, u)  E’   

              if ep is no longer a pivot edge 

                 E’ ← E’ – e(n’, u); 

           else /*edge is a pivot edge*/ 

              childId ← getNewClusterId(); 

              updateEvolutionEdge (childId, clusterId);  
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The merging and splitting of event-graphs, results in an eventTree 
which is a Directed Acyclic Graph (DAG), representing the 
contextual event summary thread similar to shown in Figure 1. 

6.3 Temporal Evolution of Event Thread 

 
Figure 8: Processing ‘evolutionEdges’ to update event threads 

For all the ‘evolutionEdges’ (childId←parentId), the 
corresponding event threads are updated. Figure 8 depicts how the 
event threads evolve with time. Each eventTree is identified by a 
unique id, called tId. For each childId←parentId ‘edge’, if the 
parent cluster’s tId is null, it is a new event. We initialize its 
eventTree and identify event summary (using approxUserCover). 
Otherwise, we merge the eventTree of the parent cluster with the 
tId of the child cluster and update the event summary. The evolving 
event summary is recorded in the event thread. Similarly, event 
threads are updated in case of event-graph split. For two clusterIds 
c1 and c2 in an eventTree, if c1 is ancestor of c2, c1 has occurred 
before c2 in real world time. Each path in an event thread, from each 
of its roots to each of its leaves, exposes a different facet of the 
event. The event thread in Figure 1 has 6 facets. 

7. PERFORMANCE EVALUATION 
The goals of our experiments are to study our system’s ability a) to 
construct informative, complete, meaningful, stable and compact 
event summaries in real time (Section 7.2); b) to discover the 
contextual event summary threads in real time (similar to Figure 1) 
and to study the impact of the changes in the granularity of the 
event-graph on the event summary and event threads (Section 7.3); 
c) to discover event threads efficiently and in a scalable manner 
(Section 7.4). The experiments use the prototype built by us [31] 
and run on a quad-core 2.61 GHz, 4GB RAM machine running 
Windows 8 and Java as programming language. 

In Table 2, we describe the Twitter traces used in experiments. We 
use two types of traces: a) general timeline based (ALL) which 
contains all the tweets generated within US geography within a 
time window, provided by Twitter API and b) event specific (ES) 
traces. The event specific traces were created as follows: For each 
event, we specify a set of rules. Each rule contains one or more 
relevant keywords and/or hashtags associated with the event. Any 
tweet, containing the keywords from a rule is included in the event 
trace. We have carefully selected the traces to cover the entire 
spectrum of event change density -- from very low (22) to very high 
(775). Events change density specifies total number of times all 
the underlying event-graphs in a trace evolve every 100k tweets. 
Traces are read in their chronological order to mimic the real-time 
arrival of the tweets. 

Table 2: Details of Datasets 

Event #of Tweets Events change density 

Big Data 200k 775 changes/100k tweets 

Nairobi–complete 720k 274 changes/100k tweets 

Syria   1.7million 182 changes/100k tweets 

Twitter Time Line (ALL) 3.2million 22 changes/100k tweets 

7.1 Discovering Base Events 
To the best of our knowledge, no previous system exists that 
summarizes a complete live data stream in the absence of any user 
query. Therefore, we construct the ground truth as follows: Live 
events unraveling in the data stream are the base events and form 
the ground truth for our system. The objective of our experiments 
is to study the performance of our summarization technique and its 
ability to construct meaningful contextual summary threads for the 
events given to it as ground truth. Any algorithm discovering dense 
graphs as event-topics in a highly dynamic graph can be used to 
provide the base events. For our experiments, we use the algorithm 
in [15] – it efficiently discovers the events in a live data stream with 
high precision and recall. It is shown in [15] that the events 
discovered by this system correlates highly with real world events 
reported in Google news headlines. Additionally, it discovers many 
other real world events that do not occur in Google news headlines. 

The number of event-topics as well as the number of keywords in 
an event-topic in a data stream depends on the dynamic event-graph 
Gt (Vt, Et) at time t. The set of nodes Vt in the graph Gt depends on 
burstiness threshold γ and the set of edges Et depends on the edge 
similarity threshold λ. The default values are: γ=5 and λ=0.2, unless 
specified otherwise. The message block size m is set to 1000 and w 
(cf. Table 1) is set to be 75 for all the experiments. 

7.2 Quality of Event Summarization 
Informative-ness: We identify the userCover only for the pivot 
nodes in an event-graph (Section 5). The premise is that the 
important keywords in the event-graph are likely to be pivot nodes. 
The peripheral nodes in the event-graph may or may not be covered 
in the event summary. We quantify the informative-ness of the 
summary as follows: If there is a keyword in an event-topic that is 
a proper noun and is not present in the event summary, we count it 
towards loss of precision. Precision is computed as the fraction of 
proper noun keywords present in the event summary among all the 
proper noun keywords in the event-topic. Let there be N events in 
a given trace. Let Ri be the set of proper noun words in the summary 
of the ith event discovered by our algorithm; 1≤ i ≤ N. Let Bi be the 
set of all the proper noun keywords present in the event-topic of 
event i. The precision of informative-ness, PI, is defined as: 

PI = Ni
B

R

i

i 



1;

||

||  

Figure 9: Summary Informative-ness and Completeness 

Complete-ness: We compute the fraction of total keywords in the 
event-topic covered in the event summary to compute the complete-
ness score PC. As shown in Figure 9, PC for various traces varies 
from 79% to 99%. PC is marginally lower than PI, as typically noun 
keywords are more central in the event-graphs. For the ALL trace, 
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since almost all the keywords are covered in the event summary, 
there is no difference in the two scores. We see, that our system 
achieves very high informative-ness and complete-ness score.      

Stability: We study the stability of the event summaries by our 
algorithm for live events. The results are shown in Table 3. Since 
different traces have different sizes, we report the results in terms 
of event change density/100k tweets. 

Table 3: Rate of changes in event-graphs for different traces 

Total event-
graph 
changes/  
100k tweets 

Changes 
(addition 
in event-
graph) 

Changes 
(event-
graph 
break) 

No change 
in 
summary  
(additions) 

No change 
in 
summary 
(deletions) 

Big data-775 114 33 411 217 

Nairobi-274 43 5 173 53 

Syria-182 30 3 114 35 

ALL- 22 1.5 0 13.5 7 

We see that across the traces, more than 80% of the changes in the 
event-graphs do not result in any change in the summary. For 
example, for Big-Data trace, for every 775 changes in the event-
graphs; event summary remains the same for 411 changes when 
nodes/edges or messages get added to the event-graph and for 217 
changes when a node/edge gets deleted from the event-graph, i.e., 
no summary change for 81% of event-graph changes. Thus, the 
event summary remains stable for a large fraction of changes. 

Summary-size: Next, we compare the message pool size of an 
event with the number of messages in its summary (summary-size). 
The average message pool size varies from 74 tweets (for ALL 
trace) to 1394 tweets (for Syria trace) as shown in Figure 11, 
denoting that for an emerging event in the Twitter data stream, a 
large number of related messages are posted. The number of 
messages is per event-graph and not per event thread (an event 
thread captures the evolution of associated event-graph(s)). We 
divide the events based on the number of keywords in the event-
topic, as shown in Figure 10 and Figure 11. For ALL trace, no 
event-topic contained more than 16 keywords. 

 
Figure 10: Average number of tweets in ‘event summary’ for 

different event-topics sizes 

As expected, summary-size increases with increasing event-topic 
size (Figure 10). Similarly, number of messages pertaining to an 
event increases with event cluster size (Figure 11). The key insights 
are: 

1) Summary-size is independent of the message pool size (i.e., 
tweets associated with an event-graph). It depends only on the 
underlying information. For example, for Syria trace, average 
message pool size increase from 128 to 1394 for different size 

event-topics but the summary-size remains almost stable. The event 
summaries were highly meaningful. 

2) Average summary-size varies from 2.61 to 7.71 tweets for 
different traces for event-topics comprising up to a few hundred 
tweets. Thus, our system discovers highly compact summaries. 

Figure 11: Average number of tweets in the event ‘message 
pool’ for different sizes of event-topics 

We construct alternative summary for a discovered as follows: For 
an event-graph, we randomly select a message from the message 
pool covering an event keyword. We keep on selecting messages 
till each keyword in the event graph is covered by at least one 
message. This ‘naïve method’ serves as a baseline to compare the 
performance of our system.  

Since we select the messages randomly in ‘naïve method’, 
qualitatively, the summary by naïve method was markedly inferior 
for almost all the events. The other issues with this naïve method 
were; 1) A significant number of redundant messages occur in the 
event summary. For many events, the summary size was more than 
twice the summary discovered by our system.; 2) the naïve method 
will not discover the event threads, exposing different event facets.       

To further compare the quality of event summary we compared the 
summary discovered based on our approach with Google News 
headlines (for the events which also appear in Google headlines). 
In Table 4, we present the comparisons between a few of the 
Google headlines with our summary tweets.  

  Table 4:  Google News Headlines Vs. Event Summary 
discovered by our approach 

Google Headline Summary based on our approach 

India vs New Zealand, 3rd Test: 
Ashwin 6/81 hands India huge 
first innings lead 

India vs New Zealand, 3rd Test: Ashwin 6/81 
hands India huge first innings lead 
https://t.co/ih5oTkOlIY 

NASA Mission Tests Thrusters 
On Journey To Asteroid 

NASA probe tests thrusters on journey to 
asteroid Bennu - Zee News: NASA probe tests 
thrusters on jou... https://t.co/2Tv0XC71cJ 

Pampore attack: Militants holed 
up inside govt building; combing 
operations intensify 

RT @kashmirglobal: Smoke and dust 
engulf a government building where 
suspected militants have fighting with 
Indian forced in Pampore… 

NASA resupply mission to space 
station postponed 

Atlantic Storm System Delays NASA 
Resupply Launch to Space Station via 
NASA https://t.co/wdWmqwhz7k 

Obama pushes NASA to send 
humans to Mars by 2030s 

Can the U.S. Really Get Astronauts to Mars by 
2030?: President Obama renewed his call to 
send Americans to th... 
https://t.co/ZeSADfvDNZ 

1000 asteroids heading towards 
Earth; conspiracy theorists claim 
end of the world is near! 

RT @Ufo_area: Asteroid mission: 1000 
space rocks heading towards Earth – Daily Star 
https://t.co/ExDVSJOzly #Asteroid 
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Microsoft Office for Android will 
be supported on Chrome OS 

Microsoft Office for Android will be 
supported on Chrome OS +AC0- The 
Indian Express https://t.co/7xLBJJpSKW 

We see that the summary tweets represent the Google headlines 
very accurately. For a few headlines, Google headline matches 
completely with the tweet selected by our approach. However, the 
timestamp of tweets in our summary is ahead by few minutes to 
few hours, for different event, compared to their corresponding 
appearance in Google headlines.  Details are omitted due to lack of 
space.  

In our next experiment, we study the performance of our system to 
expose context event summary threads.  

7.3 Contextual Event Summary Threads 
How do Real-time Events Evolve with Time? – Next, we study 
what fraction of the real-time events evolve into event threads. We 
divide the events into; 1) standalone events, i.e., events which do 
not result in threads and 2) event threads. We plot the density of 
events per 100k tweets for each trace. The results are shown in 
Table 5. The event density is highest for Big-data trace. We see; 1) 
a significant number of events result in event threads; and 2) the 
density of events is much higher for event specific traces as 
opposed to ALL trace. ALL trace has a density of 1.1 standalone 
events and 1 event thread/100k tweets respectively. Since the 
average tweets/event is highest for Syria trace (Figure 11), the 
density of events for it is relatively smaller. 

We show the average number of times an event-graph changes 
during its life cycle in Table 5. An interesting insight is that even 
though the density of events is lowest for ALL trace, the average 
number of times its event-graphs changes during their life span is 
significantly higher compared to ES traces. The reason is, density 
of tweets related to a single event in ALL trace is very low. 
Therefore, the changes in the existing event-graphs are only 
marginal and the event-graphs absorb such changes, resulting in a 
longer life span. In summary, a large fraction of events result in 
threads. Further event threads evolve only when there are 
significant changes in the event. 

Table 5:  Event density and Average number of times an 
event-topic changes during its life span 

Density/100K Tweets Nairobi Big Data Syria All 

Density of Standalone Events  19.44 94.38 16.25 1.1 

Density of Event Threads 39.9 59.9 15.6 1 

# of Changes in an event-
topic during its life span 

6.22 5.88 6.46 10.88 

How Complete are the Event Threads? - In this experiment, we 
study how the real-time events evolve. An event thread is a DAG. 
The depth of a DAG is the length of the path from its root to its 
deepest leaf (depth of DAG in Figure 1 is 9). To count the number 
of facets in the DAG, we sum the total number of unique paths from 
the root(s) to each of the leaf nodes of an event thread. We study 
the temporal evolution of the events by computing the average 
depth and average number of facets of the event threads. The facets 

are counted as: 
 



Ll Rr

r
lpfacets where r

lp  is total number of 

paths to reach from root node r to leaf node l and L (R) is the set of 
leaf (root) nodes in the event-graph. Depth of an event thread and 
its facets capture the complexity of the events. The results for 
different datasets are shown in Table 6. Only the event threads, not 
the stand-alone events, are considered for this experiment. 

Table 6: Average depth and average facets for an event 

Event Thread 
Complexity  

Nairobi Big Data Syria All 

Average event depth 5.98 4.97 5.42 2.77 

Average event facets  2.63 2.25 2.27 1.21 

Average depth/facets of the event threads are highest for Nairobi 
trace at 5.98/2.63 and lowest for ALL trace at 2.77/1.21. Hence, 
event complexity is highest for Nairobi trace. The result signifies 
that our algorithm can handle changes in a fast- moving data stream 
gracefully. For the default values of λ and γ, the maximum depth of 
an event was 30 (for Nairobi trace) with 9 facets, exposing the 
complex way the live events evolve. 

How does Granularity of Event-Graph impact the summary? 
To vary the granularity of the dynamic graph Gt (Vt, Et), we vary 
the burstiness threshold (Bt) γ and edge correlation threshold (Ec) 
λ. If γ and/or λ are reduced, there will be more nodes and/or edges 
in the graph Gt (Vt, Et), leading to more events being discovered and 
vice versa. In Figure 12, we show how the number of event threads 
(every 100k tweets) varies -- by varying γ and λ for different traces.  

We find two distinct trends: 1) for Big-Data and Syria traces, with 
more nodes/edges in the dynamic graph Gt (lower γ and/or λ), the 
number of event threads increase but the depth and the facets are 
not significantly impacted; 2) for Nairobi and ALL traces, with 
more nodes/edges in Gt, the number of events is not impacted much 
but the event depth/facets increase, exposing the same events at 
finer granularity. In summary, when the messages related to an 
event tend to come in bursts, we observe trend (1). If the messages 
related to an event are distributed more evenly in the data stream, 
we observe trend (2). 

 
Figure 12. Event Density (blue), event thread depth (red) and 

event thread facets (green) with varying γ (Bt), λ (Ec) 

7.4 Efficiency and Scalability 
In this experiment, we analyze the overhead of our method to 
summarize the events and arrange them into contextual summary 
threads. We also analyze the scalability of our approach, i.e., how 
many tweets are processed/second (TPS). We discover the event-
topics in a twitter trace without contextual summarization system 
and with it. In Table 7, we show the overhead of our system. We 
see that the summarization algorithm imposes only a marginal 
overhead over base event discovery system in [15]. Overhead of 
our method is highest for Nairobi trace at 12.36% and smallest for 
ALL trace at 3.17%. The tweet processing rate is highest for ALL 
trace at 6631 TPS and lowest for Big-Data trace at 1044 TPS, with 
summarization system on. For Nairobi trace, the rate is 4473 TPS 
with summarization and 5026 without summarization. 
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Table 7:  Tweet processing rate per second (TPS) 

TPS Nairobi Big Data Syria All 

With Summarization 4473 1044 2505 6631 

Without Summarization 5026 1129 2614 6841 

Without the summarization, the TPS for ALL trace is 6841 for the 
algorithm presented in [15]. ALL trace is closest to the general 
Twitter data stream. The average rate for global Twitter data stream 
is reported to be 5700 TPS in August 2013 (peak rate is ~144k TPS) 
[26]. Therefore, our technique is highly scalable for real time 
processing and does not impose a big overhead to identify event 
summary and event threads over event discovery algorithm. 

In summary, we present a novel system that constructs meaningful, 
stable, and compact event summaries for the events present in an 
unfiltered data stream. We also discover contextual event threads 
in real time over live data streams efficiently. 

8. CONCLUSION 
In this paper, we present a novel unsupervised technique that builds 
the summaries for emerging events in real time in a complete fast 
moving data streams in absence of any user query. The summaries 
are complete and meaningful and contain the informative messages 
for the underlying events. Our technique also discovers the 
contextual event summary threads in a scalable manner. It is not 
necessary that the most recent messages are also the most 
informative for a live event. However, the most informative 
messages about the event are present in its summaries. We plan to 
extend our technique to enable improved real time search over data 
streams. 
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ABSTRACT
Truth discovery, a validity assessment method for conflict-
ing data from various sources, has been widely studied in the
conventional database community. However, while existing
methods for static scenario involve time-consuming itera-
tive processes, those for streams suffer from much sacrifice
on accuracy due to the incremental source weight learning.
In this paper, we propose a novel framework to conduc-
t truth discovery over streams, which incorporates various
iterative methods to effectively estimate the source weight-
s, and decides the frequency of source weight computation
adaptively. Specifically, we first capture the characteristics
of source weight evolution, based on which a framework is
modeled. Then, we define the conditions of source weight
evolution for the situations with relatively small unit and
cumulative errors, and construct a probabilistic model that
estimates the probability of meeting these conditions. Fi-
nally, we propose a novel scheme called adaptive source re-
liability assessment (ASRA), which converts an estimation
problem into an optimization problem. We have conducted
extensive experiments over real datasets to prove the high
effectiveness and efficiency of our framework.
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Keywords
truth discovery; data streams; source reliability; data qual-
ity
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1. INTRODUCTION
The current big data era has witnessed various sources

providing information on the same set of objects or events
[18]. The data inconsistency across multiple sources is an
important research issue in many applications. The re-
al world applications like weather situation analysis and
health-care require techniques to identify which data sources
are more reliable or what information is accurate. For ex-
ample, when we identify the weather condition of a city,
the inconsistent information may be obtained from multi-
ple websites. As another example, different medical records
on a patient may be found from different hospitals. Thus,
it is highly demanded to automatically identify trustworthy
information from conflicting data. For this task, truth dis-
covery has been proposed to model the source quality and
derive the truth based on a principle: the information from
a reliable source is trustworthy and the source providing
trustworthy information is reliable. By leveraging this prin-
ciple, several mechanisms have been proposed in previous
works for both static and dynamic data.

Consider a set of conflicting stock information for Apple
Inc. at certain time as shown in Figure 1. As the informa-
tion on the open price is arriving continuously, the truth on
it evolves over time. In addition, the value from Insidestocks
is closer to the truth at ti−1, while that from Stocksmart is
closer to the truth at ti. This implies the reliability degrees
of these three sources change over time as well. Thus, it is
vital to identify the reliability of sources and the truths over
continuous data streams, and develop advanced techniques
for the truth discovery under dynamic scenario. Existing
approaches for truth discovery mainly focus on static data
[6, 7, 8, 19, 2, 22, 3, 1, 15, 5, 9, 12, 4, 14, 24], where an
iterative process is exploited. The truth discovery process
constantly iterates until the source weight converges to an
optimal value. Applying the iterative process to the truth
discovery at each timestamp over streams, the high accura-
cy performance can be achieved. However, these approaches
suffer from expensive time costs, which is not applicable to
high-speed data streams. Recently, some approaches have
been proposed to improve the truth discovery efficiency by
learning source weights and deriving truths incrementally
[11, 23]. However, these methods sacrifice much accuracy,
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because they model each source weight as a constant. The
reliability of each source estimated by them is converged to
a value, while the true source weights in real applications
are constantly changing over time [16].
To effectively and efficiently discover truths over stream-

s, we need to well address three issues. First, various it-
erative methods should be incorporated in a nice way to
find the truths and the reliability of sources. This is im-
portant, as the optimal truths and source weights at each
timestamp can only be derived by iteration strategy. As
a result, the accuracy of truth discovery over data streams
can be improved. Second, we need to design a set of ad-
vanced techniques which adaptively decide the frequency
of source weight assessment to minimize the number of it-
erative operations. As data streams flow in large volume
at high speed, it is clearly unacceptable to perform itera-
tions at each timestamp. Finally, we should study the er-
rors caused by not accessing the source weights continually
over streams, and control these errors in a certain range.
In this paper, we propose a novel framework for effective

and efficient truth discovery over streams. The idea behind
it is to incorporate the iterative process in truth discovery
for high accuracy and adaptively reduce the frequency of
source weight assessment for high efficiency. Specifically, we
first define two concepts, Unit error and Cumulative error,
to describe the error caused by not changing the source reli-
ability over data streams. Then, we present the relationship
between each of these two concepts and the source reliabil-
ity change based on theoretical analysis, which guarantees
the accuracy of our truth discovery framework. For mini-
mizing the source weight assessment frequency, we turn the
problem of source weight assessment into an optimization
problem and propose a scheme called ASRA to determine
this frequency adaptively over data streams. In summary,
we make the following contributions:

• We speculate the condition of the source reliability
evolution under the constraints of small errors based
on theoretical analysis, which guarantees the accuracy
of our method. A probabilistic model is constructed to
estimate the probability of meeting these conditions.

• We propose an optimization-based scheme ASRA, that
minimizes the source reliability assessment frequency
by estimating the maximum value of cumulative error
smaller than a given threshold in a certain confidence
level of probabilities.

• We propose a framework, which adaptively determines
the time of source reliability assessment by combining
the incoming data. Our framework incorporates vari-
ous iterative approaches to estimate the reliability of
sources, and balances the efficiency and accuracy by
tuning the parameters.

• We validate the proposed framework on real datasets,
and the results demonstrate the high performance of
our proposed framework in term of effectiveness and
efficiency.

The rest of paper is organized as follows. We survey the
related work in Section 2, and formulate the research prob-
lem in Section 3. Section 4 proves some conclusions of truth
discovery over data streams. Section 5 introduces the prob-
ability model and proposes our method. Section 6 conducts
experiments and analyzes experimental results. Section 7
concludes our paper.
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Streams

2. RELATED WORK
Truth discovery has been widely recognized in research

community, and applied in several domains such as social
sensing [17], health communities [13] and wireless sensor
networks [20]. Previous works on truth discovery mainly
focus on static databases [8, 7, 19, 6, 2, 22, 3, 1, 15, 5,
9, 12, 4, 21, 24]. In [19], Yin et al. propose an algorithm
called TruthFinder that identifies truths using an iterative
process. In [6], Galland et al. propose three alternative fix-
point algorithms, Consine, 2-Estimates and 3-Estimates, to
estimate the truths and the reliability of sources. In [22],
Zhao et al. study the truth discovery problem by modeling
the two-sided source quality and leveraging Gibbs sampling.
In [21], a probabilistic model is designed for the truth dis-
covery over numerical data. In [8], an optimization-based
framework is proposed to resolve the conflicts among mul-
tiple sources of heterogeneous data types. A confidence
aware truth discovery method is proposed to find truths
from the conflicting information with long-tails phenomenon
[7]. However, none of these approaches can be directly ap-
plicable to data streams due to the costly iterative process.

Source correlation analysis has been studied as another
topic of truth discovery [2, 3, 1, 15, 5, 9]. In [2], the AC-
CU model is proposed, which applies Bayesian analysis to
decide the dependence between sources. In [3], Dong et
al. propose a probabilistic-based approach to decide the
copying relationship in a dynamic world. A Hidden Markov
Model (HMM) is utilized to decide whether a source is a
copier of another source and identify the specific moments
at which it copies. In [1], a global model is proposed to i-
dentify the co-copying and transitive copying relationships.
In [15], Pochampally et al. explore the correlation beyond
copying, and propose a Bayesian-based model for address-
ing the positive and negative relationships in sources. A
multilayer probabilistic model is proposed to compute the
trustworthiness levels of sources [5]. A set of experiments
is conducted to analyze the advantages and limitations of
several truth discovery methods [9].

Recently, some attempts have been conducted to solve
the truth discovery problem over data streams. In [23],
Zhao et al. propose a probabilistic model that handles con-
flicting values over data streams. However, their method
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Table 1: Notations
Notation Definition Defined in (Section)

v
(k,e,m)
i the observation of the mth property for the eth object by the kth source at ti 3
Vi the observations of all the objects on all the properties from all the sources at ti 3

wk
i the weight of the kth source at ti 3

Wi the source weight collection at ti 3

v
(∗,e,m)
i the truth of the mth property for the eth object at ti 3
V ∗

i the truths of all the objects on all the properties at ti 3
λ the smoothing factor 3.1

∆wk
i the source weight evolution on kth source at ti 3.2

ε the unit error threshold 4
α the probability threshold 5.2
E the cumulative error threshold 5.2

can only work over categorical data. In [11], Li et al. pro-
posed an incremental truth discovery method by transform-
ing their optimization-based solution into a probabilistic
model. However, the previous truth discovery work has
shown that true source weights change over time [16], and
this key point has not been considered in the models pro-
posed in [23] and [11]. The source weight learned by these
incremental methods converges to a certain value, which
is considered as the corresponding true source weight. Al-
though a smoothing factor has been introduced to capture
the source’s reliability changes [11], the source weight com-
puted by it also finally converges to a certain value. Thus,
these incremental methods suffer from low accuracy com-
pared with optimization-based solutions. To the best of
our knowledge, our work is the first attempt ever made to
trade off the accuracy and efficiency of truth discovery over
streams flexibly by tuning the parameters [10]. Moreover,
with our proposed framework, various iterative truth dis-
covery algorithms can be utilized to improve accuracy with
neglectable efficiency losses. The notation used in this paper
is listed in Table 1 for easy reference.

3. PROBLEM FORMULATION
In this section, we illustrate our proposed framework for

truth discovery over data streams. Before proceeding to the
problem formalization, we will introduce several important
concepts first, Observation, Source Weight, and Truth.

Definition 1. An observation is the data that describes
an object property of a source at a timestamp. We denote
the observation of the mth property on the eth object from

the kth source at ti as v
(k,e,m)
i , and all observations at ti as

Vi.

Definition 2. A source weight is the reliability degree of a
source at a timestamp. The source weights at ti are denoted
as Wi = {w1

i , w2
i , . . . , wK

i }, where wk
i is the reliability

degree of the kth source at ti.

Definition 3. A truth is an aggregated result derived from
truth discovery. We denote the truth of the mth prop-

erty for the eth object at ti as v
(∗,e,m)
i . Let v

(∗,e,m)
o,i be

the optimal truth satisfying the convergence criterion of a
given iterative method at ti, and Dist be a distance func-
tion. Given a timestamp tk for source weight assessmen-

t, the truth v
(∗,e,m)
k is a value that holds the condition:

Dist(v
(∗,e,m)
o,k , v

(∗,e,m)
k ) = 0. Given a timestamp tj with-

out source weight assessment, and two thresholds, ε, α, the

truth v
(∗,e,m)
j is a value that is derived by previous source

weights Wi (i < j) and holds the condition: the probabil-

ity of Dist(v
(∗,e,m)
o,j , v

(∗,e,m)
j ) ≤ ε(j − i)2 is no less than α.

The truths of all the objects on all the properties at ti are
denoted as V ∗

i .

Given a set of observations Vi, truth discovery over da-
ta streams is to automatically infer the truths V ∗

i and the
source weights Wi at each timestamp ti. In this paper, we
propose a novel framework that balances the effectiveness
and efficiency of truth discovery over data streams. The
idea behind it is to incorporate iterative process in truth
discovery for high accuracy and adaptively determine the
frequency of source weight assessment for high efficiency.
For this task, we first formalize the truth computation and
the source weight evolution to analyze the error caused by
not assessing source weights continually over data streams.
Then, we define two concepts, unit error and cumulative
error, and speculate the relationship between the source
weight evolution and the two errors based on theoretical
analysis, which guarantees the accuracy of our framework.
Finally, we propose an optimization-based scheme which
minimizes the iterative operations, and then propose our
method which adaptively decides the source weight assess-
ment frequency by combining the incoming data. We denote
the timestamp that our method updates the source weights
as update point. Next, we will introduce our basic ideas on
truth computation and source weight evolution.

3.1 Truth Computation
Truth computation is to keep the truths close to the claim-

s from reliable sources. Traditional voting or averaging
schema assumes all sources are equally reliable, which is
generally unreasonable in real applications. To overcome
this problem, many truth discovery methods use weighted
voting or averaging to obtain the truths [8, 7, 11, 19, 6,
2], which makes the observations from high quality sources
more important. In this paper, we infer the truth by ex-
ploiting the same weighted averaging strategy considering
its advantages:

v
(∗,e,m)
i =

∑K
k=1 w

k
i · v(k,e,m)

i
∑K

k=1 w
k
i

(1)

According to this weighted combinations, the information
from the higher quality sources is more trustworthy, which
is consistent with the principle of truth discovery. Howev-
er, for truth discovery over data streams, the information
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Figure 2: Source Weight Evolution in Real-World Applications

usually evolves smoothly. To capture this characteristic, we
add one smooth constraint on the aggregated results. As

such, the truth v
(∗,e,m)
i is computed by:

v
(∗,e,m)
i =

∑K
k=1 w

k
i · v(k,e,m)

i + λ · v(∗,e,m)
i−1

∑K
k=1 w

k
i + λ

(2)

where λ is the smoothing factor [11]. This equation treats

the truth v
(∗,e,m)
i−1 as the information from a pseudo source

and λ as the weight of this source.

Existing iterative truth discovery methods usually assess
the truths and source weights by conducting an alternating
iterative process [8, 7, 11, 19, 6, 2]. In other words, such
methods update truths while fixing source weights and then
update source weights while fixing truths until convergence.
We aim to design a framework which can embed various
iterative truth discovery approaches for the accuracy im-
provement, and infer the truth by exploiting the weighted
combinations strategy (i.e., Formula (1) or (2)). Thus, an
iterative truth discovery method can be plugged into our
framework only in the case that its truth computation is in
the form of weighted combinations.

3.2 Source Weight Evolution
Based on the principle of truth discovery, the source weight

reflects the contribution of a source to the results of weight-
ed combinations. Therefore, a relatively smooth evolution
of a source weight implies a small variation on the contri-
bution of this source. Under this situation, neglecting the
updating of source weights will cause small errors, while
decrease the iterative process. Thus the iterative methods
can be applied to dynamic scenarios. The Source Weight
Evolution ∆wk

i on kth source at time ti is computed by:

∆wk
i =

∣

∣

∣w
k
i /

∑K

k=1
wk

i − wk
i−1/

∑K

k=1
wk

i−1

∣

∣

∣ (3)

To observe the evolution of source weights, we conduc-
t a set of experiments on two real-world datasets: Stock
Dataset and Weather Dataset. These datasets have been
used in the evaluation of truth discovery solutions [9, 3],
and their ground truths are available. For each dataset, we
randomly select two sources, S1 and S2, for tests. Each
source weight is quantified by comparing its observation-
s with the ground truths and measuring the closeness be-
tween them. Since data usually contain multiple attributes
in real applications, we normalize the deviation from various
attribute values. Figure 2 shows the experimental result-
s on source weight evolution over two different real-world
datasets. Clearly, the evolution of source weights is quite
minor at some moments. Under this scenario, it is natural
to utilize previous source weights instead of current ones
to obtain truths. For one thing, since the source weight
computation is neglected, the iterative process is decreased

under dynamic scenario. Thus, the iterative methods are
applicable to data streams to improve the accuracy of truth
discovery. For another, the deviation between the optimal
truth and the approximate one will be small as well. Next,
we will analyze this deviation caused by un-assessing source
weights.

4. THEORETICAL ANALYSIS
In this section, we prove the condition of the source weight

evolution under the constrains of small errors caused by un-
assessing source weights. We first define the error in the
form of mathematical formula. The unit error Φi

j (i < j) is
given by:

Φi
j = (

v
(∗,e,m)
o,j − v

(∗,e,m)

i/j

v
(max,e,m)
j

)2 (4)

where v
(∗,e,m)
i/j (i < j) is the approximate truth computed

based on the previous source weight Wi, and v
(max,e,m)
j is

the absolute maximum value of v
(k,e,m)
j (1 ≤ k ≤ K). We

use v
(max,e,m)
j to normalize the distance between the optimal

truth v
(∗,e,m)
o,j and the approximate one v

(∗,e,m)
i/j at tj . Here,

v
(∗,e,m)

i/j refers to v
(∗,e,m)
j in Definition 3.3. Specifically, let

Φ represent Φi−1
i . The relationship between the unit error

Φ and the source weight evolution is given by Theorem 1.

Theorem 1. Given a unit error threshold ε, let K be the
size of source collection. If for all k, 1 ≤ k ≤ K, the source
weight evolution holds: ∆wk

i ≤
√
ε/K, then the unit error

Φ ≤ ε is satisfied.

Proof. According to Formulas (1) and (4), we derive the
following:

√
Φ =

∣

∣

∣

∣

∣

∑K
k=1 (w

k
i /

∑K
k=1 w

k
i − wk

i−1/
∑K

k=1 w
k
i−1) · v(k,e,m)

i

v
(max,e,m)
i

∣

∣

∣

∣

∣

Then, we can infer

√
Φ ≤

∑K

k=1

∣

∣

∣

∣

∣

(wk
i /

∑K
k=1 w

k
i −wk

i−1/
∑K

k=1 w
k
i−1) · v(k,e,m)

i

v
(max,e,m)
i

∣

∣

∣

∣

∣

Since
∣

∣

∣
v
(max,e,m)
i

∣

∣

∣
≥

∣

∣

∣
v
(k,e,m)
i

∣

∣

∣
(1 ≤ k ≤ K), we have

√
Φ ≤

∑K

k=1

∣

∣

∣w
k
i /

∑K

k=1
wk

i − wk
i−1/

∑K

k=1
wk

i−1

∣

∣

∣

Further,
√
Φ ≤ K ·

√
ε/K =

√
ε

So far, we prove that Φ ≤ ε holds.
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Theorem 1 demonstrates the relationship between the
source weight evolution and the unit error, i.e., the unit
error Φ should be no more than ε if the formula (5) is sat-
isfied,

∆wk
i ≤
√
ε/K (1 ≤ k ≤ K) (5)

Under this scenario, we can use Wi−1 to approximate Wi

and ensure that the deviation between the optimal truth
and the approximate one will be constrained by a threshold
ε. Since we un-assess all sources weights at ti, the time com-
plexity of truth discovery is linear. For further improving
the efficiency, we aim to assess source weights over time as
few as possible. Therefore, it is essential to further analyze
the relationship between the source weight evolution and
the errors cumulated in a time period, i.e., the cumulative
error, which is computed by Formula (6),

Ψi
j =

∑j

h=i+1
Φi

h (6)

Combining with Formula (4), we can see that the cumulative
error is defined as the sum of unit errors in a time period.
Then, we give the maximum value of the cumulative error
under the condition that Formula (5) holds in a time period.

Theorem 2. Given a unit error threshold ε, let K be the
size of source collection. If for all k, h, 1 ≤ k ≤ K, i < h ≤
j, the source weight evolution holds: ∆wk

h ≤
√
ε/K, then

the cumulative error Ψi
j meets the condition Ψi

j ≤ ∆T (∆T+
1)(2∆T + 1)ε/6, where ∆T = j − i.

Proof. According to Formulas (1) and (4), we derive the
following:

√

Φi
h =

∣

∣

∣

∣

∣

∑K
k=1 (w

k
h/

∑K
k=1 w

k
h − wk

i /
∑K

k=1 w
k
i ) · v(k,e,m)

h

v
(max,e,m)
h

∣

∣

∣

∣

∣

Then similar to Theorem 1, we have
√

Φi
h ≤

∑K

k=1

∣

∣

∣
wk

h/
∑K

k=1
wk

h − wk
i /

∑K

k=1
wk

i

∣

∣

∣

According to ∆wk
h ≤

√
ε/K , for any h (i < h ≤ j), it is

easy to derive the following:
√

Φi
h ≤ (h− i) ·

√
ε

Further,
∑j

h=i+1
Φi

h ≤
∑j

h=i+1
(h− i)2ε

Then,
∑j

h=i+1
Φi

h ≤ (j − i)(j − i+ 1)(2(j − i) + 1)ε/6

Since Ψi
j =

∑j
h=i+1Φ

i
h, we have

Ψi
j ≤ (j − i)(j − i+ 1)(2(j − i) + 1)ε/6

Let ∆T = j − i, we prove that Ψi
j ≤ ∆T (∆T + 1)(2∆T +

1)ε/6 holds.

According to Theorem 2, we can get that the relationship
between the unit error and the maximum value of cumula-
tive error under the condition of ∆wk

h ≤
√
ε/K (i < h ≤

j, 1 ≤ k ≤ K):

max(Ψi
j) = ∆T (∆T + 1)(2∆T + 1)ε/6 (7)

where ∆T = j − i. Let the size of source collection K
be 3 and the unit error threshold ε be 0.03. Suppose that

we update the source weights at t1 and the source weight
evolutions satisfy Formula (5) from t2 to t5, i.e., ∆wk

i ≤
0.03
3

= 0.01 (1 ≤ k ≤ 3, 1 < i ≤ 5). The cumulative error

Ψ1
5 will be no more than 4×(4+1)×(2×4+1)×0.03/6 = 0.9.
Theorem 2 ensures that, under dynamic scenario, we can

incorporate iterative methods to improve the accuracy of
truth discovery without scarifying much efficiency. The rea-
son is that we neglect the iterative estimation of source
weights Wi when the source weight evolutions ∆wk

i (1 ≤
k ≤ K) satisfy Formula (5), i.e., the iterative truth discov-
ery methods are utilized over data streams only at certain
timestamps. In addition, as the cumulative error is con-
strained by ε and ∆T , we can ensure the accuracy of truth
discovery even if the iterative process is reduced. Although
we do not update the source weights at each timestamp,
the accuracy of our method is still much higher than the
existing incremental methods (as shown in Section 6).

To capture the temporal relations among truths by adding
smoothing factor as in Formula (2), we only need to re-

define v
(max,e,m)
j in Formula (4) as the absolute maximum

value of v
(1,e,m)
j , v

(2,e,m)
j , ..., v

(K,e,m)
j , v

(∗,e,m)
j−1 , and slightly

modify Formula (5) by changing K into K +1. The reason
is that we treat the smoothing factor as the weight of the

(K + 1)th source and v
(∗,e,m)
j−1 as the information from this

source. Since we still compute truths by exploiting weighted
combinations, the smoothing factor will not affect our con-
clusions. Moreover, we introduce the smoothing factor for
truth computation only when the data changing is smooth,

thus it is reasonable to utilize the v
(max,e,m)
j to normalize

the unit error.
As shown in Theorems 1 and 2, a relative smooth source

weight evolution leads to a lower unit error comparing with
a big “jump” (the peaks in Figure 2) of source weight evo-
lution. However, since the evolution of source weight is un-
known over data streams, it is hard to make sure whether
Formula (5) is satisfied. For solving this issue, we propose a
probabilistic model to dynamically estimate the probability
of Formula (5) holding over data streams.

5. ASRA-BASED TRUTH DISCOVERY
In this section, we propose an adaptive source reliabili-

ty assessment scheme (ASRA) for truth discovery over da-
ta streams. The basic idea behind this scheme is to dy-
namically determine the time for source weight assessment.
Then the truth with a predetermined accuracy is identified.
Specifically, we first derive a probabilistic model to estimate
the probability of the source weight evolution which meets
the condition in Formula (5). By integrating the conclu-
sions in section 4, we achieve the maximal period of source
weight assessment under the condition that the maximum
value of cumulative error is smaller than a given threshold
in a certain confidence level. This will transform the source
weights assessment into an optimization problem. Based
on this optimization problem, we then propose our ASRA
scheme that adaptively assesses source weights over stream-
s.

5.1 Probability Forecasting Model
As proved in Theorem 1, the source weight evolution has

great influence on unit error. If all the source weight evolu-
tions meet the conditions in Formula (5), the unit error will
be less than ε. Otherwise, it can not be controlled within
the ε constraint. However, in real-world applications, even if
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the variation trend of the information from various sources
can be obtained, the evolution of each source weight is still
not available. Considering this, we propose a probability
model based on the Bernoulli distribution to estimate the
probability of Formula (5) holding over data streams. Given
a timestamp ti, we can consider ∆wk

i ≤
√
ε/K (1 ≤ k ≤ K)

as an independent and random event. Here, the probability
of the event occurrence is a random variable which follows
Bernoulli distribution, i.e., ξ ∼ B(1, p). Based on the proba-
bility theory, the probability p can be estimated by sampling
as explained by Example 1.

Example 1. Given a unit error threshold ε and a source
collection, assume that t1 ∼ tl is the initial period of time.
We assess the source weight at each timestamp. Let N be
the times of all source weight evolutions satisfying Formula
(5) during this period. The total times of counting all source
weight evolutions is M = l − 1. Thus the probability p can
be estimated as N/M .

As the time increases, both the source weight evolution
and the probability p are likely to change. Thus, a dynamic
estimation makes the probability p more accurate. This
is also the basis of ASRA scheme. We will illustrate the
time for the update of probability p while introducing our
scheme.

5.2 ASRA Scheme
This section presents our ASRA scheme in details. The

ASRA scheme includes two parts: (1) adaptive update point
prediction; and (2) ASRA-based truth discovery algorithm.
We first transform the update point prediction issue into
an optimization problem which minimizes the frequency of
source weight assessment. Then, an ASRA-based algorithm
is proposed with the support of this optimization strategy.
ASRA assesses source weights with changeable frequencies
while finding the truth with a certain level of accuracy given
by users. Accordingly, we can achieve high efficiency by
reducing the frequency of assessing source weights and high
accuracy by incorporating the iterative process. Given a
current update point ti, ASRA predicts the next update
point tj by solving the following optimization problem:

Max j = i+∆T
s.t. (∆T − 1)(∆T − 2)(2∆T − 3)ε/6 ≤ E

p∆T−2 ≥ α
(8)

where ∆T is considered as the maximum period of assessing
source weights. There are two constraint functions regard-
ing this optimization problem as listed below:

• p∆T−2 ≥ α: This is equivalent to p(∆wk
h ≤
√
ε/K) ≥

α (1 ≤ k ≤ K, i + 1 < h < j), where α is the prob-
ability threshold given by users. We do not need to
estimate the source weight evolutions at ti+1 and tj .
For one thing, we assess the source weights Wi since
ti is an update point. Considering that we should
compute the source weight evolutions for dynamical-
ly updating p, the source weights Wi+1 is also as-
sessed to obtain the evolution of all source weights,
i.e., ∆w1

i+1, . . . , ∆wK
i+1. Then, we utilize Wi+1 in-

stead of Wi+2, . . . , Wj−1 to compute the truths at
ti+2, . . . , tj−1. For another, we assess the source
weights Wj since tj is also an update point. Thus, it
is unnecessary to estimate the probability of ∆wk

i+1 ≤√
ε/K, ∆wk

j ≤
√
ε/K (1 ≤ k ≤ K).

• (∆T − 1)(∆T − 2)(2∆T − 3)ε/6 ≤ E: Based on Theo-
rem 2, when p(∆wk

h ≤
√
ε/K) ≥ α (i+1 < h < j), the

probability of max(Ψi+1
j−1) = (∆T −1)(∆T −2)(2∆T −

3)ε/6 is no smaller than α. Though we expect ∆T
to be large for high efficiency, max(Ψi+1

j−1) will become
large with ∆T increasing. Thus, we also need to make
sure that max(Ψi+1

j−1) is no more than E, where E is
the cumulative error threshold given by users. By this
way, the cumulative error between any two update
points is constrained.

Formula (8) implicates that our ASRA scheme tries to
search for the maximum period of assessing source weights.
When the unit error threshold ε is fixed, only two tuned
parameters, α and E, need to be set. A large α may lead
to a small ∆T , while a small E will also result in a small
∆T . However, the performance trend of ε is actually un-
certain. We will show in Section 6 that the effects of the
probability threshold α, cumulative threshold E and unit
error threshold ε in our framework, and the performance
of our framework can be flexibly changed by tuning these
parameters.

Algorithm 1 presents the whole procedure of ASRA-based
truth discovery. Let ti denote the current timestamp and
tj denote the update point, Algorithm 1 performs in three
steps. In the first step (lines 3-4), we update the source
weights. Given the update points tj and tj+1 (line 3),
we call the existing truth discovery method to assess the
source weights Wj , Wj+1. In the second step (lines 5-13),
we update the probability p of satisfying Formula (5) by
re-estimating p according to ∆wk

j+1 (1 ≤ k ≤ K). In the
last step (lines 14-18), we predict the next update point.
By utilizing the probability p computed in the second step,
we predict the next update point tj according to Formula
(8). If ∆T computed by Formula (8) is less than 2, we set
∆T = 2 (lines 16-17).

In Algorithm 1, line 4 suggests that various methods for
source weight computation can be plugged into our scheme
only if the truth computation of the plugged method is in
the form of weighted combinations. We set a window size M
for more accurately estimating the probability p without the
influence of out-of-date data. Note that we can introduce
the smoothing factor by slightly modifying our algorithm.
As mentioned above, we treat the smoothing factor λ as the
weight of (K + 1)th source and the previous truths as the
information from this source. As λ is a constant [11], only
the source weight evolution and the size of source collection
will be changed when the smoothing factor λ is introduced.
Accordingly, for capturing the temporal relationship over
streaming data, we only need to change K into K + 1 in
line 6, and change “Formula (1)” into “Formula (2)” in line
21. For the existing truth discovery methods plugged into
our scheme (line 4), we also simply change its truth com-
putation from “Formula (1)” into “Formula (2)”. Obviously,
the complexity of the algorithm is determined by the cor-
responding iterative truth discovery methods at an update
point. Otherwise, its complexity is O (|Vi|) at ti.

For probability p, there are two points to remark: (1) the
cumulative error is usually constrained to a small value in
real world applications. According to Formula (8), ∆T will
not be a large value. Thus we can assume that p is a con-
stant in a small time window (∆T ); and (2) p is defined as
the probability of all the source weight evolutions satisfying
Formula (5) at each timestamp, i.e., a small p implies the
source weight evolution is generally large over data streams.
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Algorithm 1: ASRA-based truth discovery

Input : Observation collection Vi, threshold α, E;
Output: Truth collection V ∗

i ;

1 j ← 1, m← 1, N [1...M ] ← 0, p← 0;
2 for i = 1→∞ do

3 if i == j||i == j + 1; then
4 Update V ∗

i , Wi according to existing iterative
truth discovery methods;

5 if i == j + 1; then
6 if all ∆wk

i (1 ≤ k ≤ K) satisfy Formula (5);
then

7 N [m] = 1;
8 if m <= M ; then
9 p = (

∑m
n=1 N [n])/m

10 else

11 Slide the window forward and keep array N
always contains M elements;

12 p = (
∑M

n=1 N [n])/M ;

13 m++;
14 i = i− 1;
15 Update j by Formula (8);
16 if j − i < 2; then
17 j = i+ 2;
18 i = i+ 1;

19 else

20 Wi ←Wi−1;
21 Set V ∗

i by Formula (1);

22 Return V ∗

i ;

Note that the exact timestamp with a large source weight
evolution is still unknown if we do not compute the source
weights. Therefore, the algorithm may also neglect source
weight computation when the source weight evolution does
not satisfy Formula (5). However, according to Formula (8),
a small p will lead to more frequent source weight estima-
tion, thus the high performance of our framework can be
ensured (as shown in Section 6).

6. EXPERIMENTS
In this section, we experimentally validate the proposed

approach for truth discovery over data streams.

6.1 Experimental Setup
We evaluate our framework on three real-world dataset-

s: Sensor Dataset1, Stock Dataset2 and Weather Dataset2.
The Sensor Dataset contains data from 54 sensors deployed
in the Intel Berkeley Research lab between Feb. 28, 2004
and Apr. 5, 2004. Each sensor collected the time-stamped
topology values once per 30 seconds. The temperature and
humidity properties are adopted for evaluation. The Stock
Dataset contains data for 1000 stocks that are collected from
55 sources over the weekdays of July 2011. We adopt three
properties: change %, change value and last trade price.
The ground truths are given. The Weather Dataset con-
tains 18 sources that record weather data for 30 cities of U-
nited States from Jan. 28, 2010 to Feb. 4, 2010. We adopt
the temperature and humidity properties, and consider the
information collected from Accuweather.com as the ground
truths.

1http://db.csail.mit.edu/labdata/labdata.html
2http://lunadong.com/fusionDataSets.htm

Since the ground truths of Stock Dataset and Weather
Dataset are known, each source weight can be quantified by
measuring the distance between its observations and the
ground truths. Accordingly, the true source weight-

s of Stock Dataset and Weather Dataset are also

available. Moreover, although Stock Dataset and Weather
Dataset have been used in [11], the experimental results can
be different because we choose various types of properties
to conduct the experiments while only one type of property
was used in [11].

6.2 Evaluation Methodology
We have conducted extensive experiments to evaluate the

effectiveness and efficiency of the proposed method by four
steps: (1) validate the effectiveness of the probabilistic mod-
el estimateing source weight evolution; (2) analyze the ef-
fects of three parameters, probability threshold α, cumu-
lative error threshold E and unit error threshold ε in our
framework; (3) evaluate the effectiveness and efficiency of
our approach by comparing with state-of-art competitors;
and (4) further confirm the accuracy of source weight com-
putation of our proposed approach. Eleven methods, includ-
ing seven state-of-the-art competitors and four proposed al-
ternatives, are used in the experiments.
Baseline Methods. The following state-of-the-art method-
s for truth discovery over continuous data are implemented.
The parameters of each baseline method are set according
to the original paper.

• GTM: Using Bayesian probabilistic model for resolv-
ing conflicts on continuous data [21].

• CRH: Working with heterogeneous data by incorpo-
rating into various loss functions [8].

• DynaTD: Finding truths over data streams in an in-
cremental way [11].

• DynaTD+smoothing: Adding the smoothing factor
based on DynaTD [11].

• DynaTD+decay: Adding the decay factor based on
DynaTD [11].

• DynaTD+all: Adding both the smoothing factor and
the decay factor based on DynaTD [11].

• Dy-OP: Optimization-based solution of DynaTD [11].

Proposed Alternatives. We plug different existing truth
discovery methods into our framework. All these methods
iteratively conduct the updates of source weights and truths
until convergence. For the truth update, all these methods
exploit weighted combinations strategy (i.e., Formula (1) or
(2)) [8, 11] and can be plugged into our framework. The
details on the source weight update for each method are as
follows:

• ASRA(CRH): We incorporate CRH into our frame-
work and choose the normalized squared loss function
to measure the deviation from the truths to the ob-
servations. The source weight wk

i is derived as the
following formula:

wk
i = − log(

lki
∑K

k′=1 l
k′

i

) (9)
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where lki refers to the normalized squared loss function
of the kth source at ti [8], i.e.,

lki =
∑E

e=1

∑M

m=1

(v
(k,e,m)
i − v

(∗,e,m)
i )

2

std(v
(1,e,m)
i , . . . , v

(K,e,m)
i )

(10)

• ASRA(CRH+smoothing): We further introduce the
smoothing factor λ to ASRA(CRH) for capturing the
temporal relations over streams. Under this scenari-

o, we consider v
(∗,e,m)
i−1 as the information from the

(K + 1)th source (v
(∗,e,m)
i−1 = v

(K+1,e,m)
i ) and λ is the

weight of this source. Therefore, only the number
of sources in Formula (10) and Formula (9) need to
be changed for computing loss functions and source
weights.

• ASRA(Dy-OP): We incorporate the basic optimiza-
tion function of DynaTD [11], denoted as Dy-OP, into
our framework. The source weight wk

i is derived as
the following formula:

wk
i =

qki
η · lki

(11)

where qki refers to the number of observations provided
by the kth source at ti and η is a trade-off parameter
of Dy-OP [11]. In addition, the normalized squared
loss functions lki (1 ≤ k ≤ K) in Formula (11) are
computed by Formula (10).

• ASRA(Dy-OP+smoothing): The smoothing factor λ
is also introduced to ASRA(Dy-OP) for capturing the
temporal relations over streaming data. As mentioned,
only the number of sources need to be changed for
computing source weights and loss functions.

So far, for each method plugged into our framework, we
have presented the formula for its source update step. The
details of Formulas (9) and (11) are listed in Appendix. For
truth computation, we only need to utilize Formula (2) to
capture the temporal relations over streaming data.
Performance Metrics. To evaluate the efficiency of our
framework, we report the running time of each method. To
assess the accuracy of it, we calculate the Mean of Absolute
Error (MAE) of each method by comparing their outputs
with ground truths. For both metrics, lower values indicate
better performance. All the algorithms were performed on
a PC with Windows OS, Intel Core i7 processor.

6.3 Probabilistic Model Validation
This part validates the effectiveness of the probabilistic

model for estimating the source weight evolution over data
streams. Obviously, if the probabilistic model can capture
the large source weight evolution (Formula (5) cannot be
satisfied), our proposed model is effective. Thus, we validate
the effectiveness of our probabilistic model by counting all
probable scenarios including:

(1) Formula (5) does not hold and our framework updates
the source weights at the same time (denoted as TP );

(2) Formula (5) holds and our framework keeps the source
weights at the same time (denoted as TN);

(3) Formula (5) does not hold and our framework keeps
the source weights at the same time (denoted as FN);

Table 2: Probabilistic Model Valiadation
(a) Stock Dataset

Parameter Setting Experimental Results
ε α TP TN FN FP CR

5× 10−4 0.45 0.500 0.278 0.167 0.055 0.778

1× 10−3 0.45 0.390 0.333 0.222 0.055 0.723

5× 10−3 0.45 0.155 0.500 0.112 0.233 0.655

5× 10−4 0.55 0.500 0.278 0.167 0.055 0.778

1× 10−3 0.55 0.500 0.389 0.056 0.055 0.889

5× 10−3 0.55 0.212 0.444 0.055 0.289 0.656

5× 10−4 0.65 0.612 0.278 0.055 0.055 0.890

1× 10−3 0.65 0.612 0.333 0 0.055 0.945

5× 10−3 0.65 0.389 0.444 0.055 0.112 0.833

(b) Weather Dataset

Parameter Setting Experimental Results
ε α TP TN FN FP CR

5× 10−2 0.45 0.155 0.540 0 0.305 0.695

1× 10−1 0.45 0.058 0.724 0.023 0.195 0.782

5× 10−1 0.45 0.034 0.799 0 0.167 0.833

5× 10−2 0.55 0.155 0.495 0 0.350 0.650

1× 10−1 0.55 0.052 0.695 0.029 0.224 0.747

5× 10−1 0.55 0.034 0.776 0 0.190 0.810

5× 10−2 0.65 0.255 0.431 0.006 0.308 0.686

1× 10−1 0.65 0.063 0.632 0.017 0.288 0.695

5× 10−1 0.65 0.035 0.747 0 0.218 0.782

(4) Formula (5) holds and our framework updates the
source weights at the same time (denoted as FP ).

Both scenario (1) and (2) show that our probabilistic model
captures the source weight evolution successfully. Thus, the
effectiveness of our probabilistic model can be transformed
into CaptureRate (CR) formulated as:

CR = TN + TP (12)

The experiments are conducted over Stock Dataset and
Weather Dataset. We vary two parameters, α and ε, to
observe the effectiveness of our probabilistic model with d-
ifferent parameter settings. The cumulative threshold E is
given to constrain the maximum of ∆T .

The experimental results are reported in Table 2. As we
can see, CR is always more than 0.6 on both two datasets
and can achieve more than 0.9 at some cases. Note that
our framework assigns the first two timestamps to update
points, which may lead to a higher FP and a lower CR.
Therefore, our probabilistic model can capture the source
weight evolution in most situations, which further proves
the effectiveness of our framework.

6.4 Evaluation on Parameters
To analyze the effects of the probability threshold α, cu-

mulative error threshold E and unit error threshold ε in our
framework, we test the performance of our method over the
Sensor Dataset and Weather Dataset by changing the value
of one parameter while fixing the others. To discover truths,
we incorporate Dy-OP into our framework, i.e., ASRA(Dy-
OP). Three metrics, running time, MAE and assess times,
are used to observe the influence of three parameters to our
framework. Here, assess times is defined as the average
times of assessing source weight over streaming data. Ob-

187



200 400 600 800 1000
100

150

200

250

300

350

Timestamp

T
im

e 
(m

s)

 

 

0.65
0.6
0.75
0.8
0.85

(a) Sensor Dataset (α)

200 400 600 800 1000
0.3

0.32

0.34

0.36

0.38

0.4

0.42

Timestamp

A
ss

es
s 

T
im

es

 

 

0.65
0.7
0.75
0.8
0.85

(b) Sensor Dataset (α)

35 70 105 140 175
0.5

1

1.5

2

2.5

3

Timestamp

M
A

E

 

 

0.45
0.25
0.15

(c) Weather Dataset (α)

200 400 600 800 1000
100

150

200

250

300

350

Timestamp

T
im

e 
(m

s)

 

 

0.1
0.02

(d) Sensor Dataset (E)

200 400 600 800 1000
0.35

0.4

0.45

0.5

0.55

0.6

Timestamp

A
ss

es
s 

Ti
m

es

 

 

0.1
0.02

(e) Sensor Dataset (E)

35 70 105 140 175
0

0.5

1

1.5

2

2.5

Timestamp

M
A

E

 

 

1
0.2

(f) Weather Dataset (E)

200 400 600 800 1000
100

150

200

250

300

Timestamp

Ti
m

e 
(m

s)

 

 

0.00005
0.0001
0.0005

(g) SensorDataset (ε)

200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

Timestamp

A
ss

es
s 

Ti
m

es

 

 

0.00005
0.0001
0.0005

(h) Sensor Dataset (ε)

35 70 105 140 175
0.2

0.4

0.6

0.8

1

1.2

Timestamp

M
A

E

 

 

0.2
0.5

(i) Weather Dataset (ε)

Figure 3: Evaluation on Parameters

viously, lower assess times indicates higher efficiency and
lower accuracy.

6.4.1 Effect of α
In this test, we evaluate the effect of the probability thresh-

old α on the accuracy and efficiency of our framework. For
Sensor Dataset, we fix ε to 10−5 and E to 1, and vary the
value of α from 0.65 to 0.85. For Weather Dataset, we fix
ε to 0.1 and E to 1, and vary the value of α from 0.15 to
0.45. The results are shown in Figures 3(a)-(c).
As we can see, with the increasing of α, running time and

assess times increase while MAE decreases. This result is
caused by the following reason. The probability threshold α
controls the holding probability of Formula (5) during the
period of keeping source weights. Therefore, a relatively
large α means Formula (5) should be more likely hold, and
a smaller α will relax this constraint while leading to a rela-
tively large ∆T . In other words, a lager α achieves a higher
accuracy while suffering from much sacrifice on efficiency.

6.4.2 Effect of E
In this test, we evaluate the effect of the cumulative er-

ror threshold E on the performance of our framework. For
Sensor Dataset, we set E to 0.02 and 0.1 respectively, and
fix ε to 10−5 and α to 0.75. For Weather Dataset, we set E
to 0.2 and 1 respectively, and fix ε to 0.1 and α to 0.2. The
results are shown in Figures 3(d)-(f).
Obviously, with the decreasing of cumulative threshold E,

running time and assess times increase while MAE decreas-
es. According to Formula (8), a relatively large E means our
framework is allowed to make more errors between any two
update points. Therefore, a large E will lead to a large pe-
riod of assessing source weights and improve the efficiency.
However, it suffers from much sacrifice on accuracy.

6.4.3 Effect of ε
We test the effect of the unit error threshold, ε, on three

metrics. For Sensor Dataset, we fix α to 0.6 and E to 0.01,
and set ε to 5× 10−5, 10−4 and 5× 10−4 respectively. For
Weather Dataset, we fix α to 0.95 and E to 1, and set ε to
0.2 and 0.5 respectively. The results are shown in Figures
3(g)-(i).
As we can observe, with the increasing of ε, running time

and assess times decrease while MAE increases. However,
the performance trend of unit error threshold is actually
uncertain. Based on the first constraint function of Formula
(8), a relatively small ε may result in a larger ∆T . At the
same time, the second constraint of Formula (8) implicates
that a relatively small ε can also result in a smaller ∆T .
Since we set a relatively large cumulative error threshold
E (E = 1) in our experiments, the optimal ∆T is mainly
restricted by the second constraint function of Formula (8).
Thus a larger ε achieves a better efficiency and suffers from
much sacrifice on accuracy.

For the same parameter setting, with the time increasing,
MAE decreases while both running time and assess time
increase over two datasets. This is because the source weight
evolutions of these two datasets become large as the time
increases. Thus our framework automatically improve the
frequency of assessing source weights and achieve the high
accuracy of the truth discovery.

To summarize, all the experimental results (Figures 3(a)-
(i)) show that these three parameters of our framework can
tune the performance of truth discovery flexibly.

6.5 Evaluation on Performance
We first compare our proposed approach with the state-

of-the-art competitors in terms of effectiveness and efficien-
cy. Then, we further study the effectiveness of our approach
under the optimal efficiency, and its efficiency under the best
accuracy.

6.5.1 Comparison with Existing Approaches
In this test, we evaluate our proposed approach by com-

paring with the existing competitors: DynaTD, DynaTD+s-
moothing, DynaTD+decay, DynaTD+all, Dy-OP, CRH and
GTM. For Stock Dataset, we set ε to 10−3, α to 0.75 and
E to 1. For Weather Dataset, we set ε to 0.1, α to 0.8 and
E to 1. For Sensor Dataset, we set ε to 5× 10−6, α to 0.85
and E to 0.01. Table 3 shows the experimental results for
all the methods on the three datasets. Since the ground
truths of Sensor Dataset are unknown, we only report the
accuracy (MAE) on two datasets with ground truths, i.e.,
Stock Dataset and Weather Dataset.
Efficiency. In terms of efficiency, the proposed method
performs nearly as well as DynaTD, DynaTD+smoothing,
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Table 3: Comparison with Existing Approaches

Method
Stock Dataset Weather Dataset Sensor Dataset

MAE Time(ms) MAE Time(ms) Time(ms)
ASRA(Dy-OP) 1.3941 99 0.4974 419 658
ASRA(CRH) 1.4007 104 0.5029 424 674

ASRA(Dy-OP+smoothing) 1.0142 103 0.4474 417 638
ASRA(CRH+smoothing) 1.0781 117 0.5076 427 676

DynaTD 1.5462 99 1.0593 316 549
DynaTD+smoothing 1.5064 98 0.9261 306 595

DynaTD+decay 1.4956 98 0.9300 310 552
DynaTD+all 1.4455 93 0.9205 307 570

Dy-OP 1.3328 305 0.4425 1680 2041
CRH 1.3994 325 0.5028 1782 2092
GTM 1.4112 430 0.6011 1718 2133
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Figure 4: Efficiency Study
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Figure 5: Accuracy Study

DynaTD +decay and DynaTD+all. As all these method-
s work in an incremental way, they can be viewed as the
low bound of the iterative methods. Therefore, the result-
s shown in Table 3 implicate our proposed framework can
achieve high efficiency. Meanwhile, ASRA(Dy-OP) can run
as fast as DynaTD on Stock Dataset. The reason is that
the proposed framework only performs iterations at certain
timestamps. Moreover, our proposed framework is more
efficient compared with other iteration-based truth discov-
ery methods. Specifically, our framework outperforms the
iterative method GTM in terms of both accuracy and effi-
ciency. The reason is that the basic methods plugged into
our framework (CRH, Dy-OP) achieve better performance
than GTM.
Accuracy. In terms of effectiveness, the proposed method
is better than existing competitors, DynaTD, DynaTD+sm-
oothing, DynaTD+decay and DynaTD+all. The reason
is that these competitors exploit incremental computation,
updating the source weights according to the new arrival
data until each source weight converges to a certain value.
However, the true source weights in real applications are
constantly changing. Thus, the source weights computed by
the incremental methods deviate from the true ones, leading
to big errors. In addition, CRH and Dy-OP are more accu-

rate than our methods (ASRA(CRH), ASRA(Dy-OP)), as
they solve the truth discovery task by an iterative process
that iteratively computes the truths and source weights at
each timestamp. In this way, each source weight converges
to its optimal one. However, without computing the source
weights at each timestamp, the accuracy of ASRA(Dy-OP)
and that of ASRA(CRH) are still similar to the correspond-
ing basic methods Dy-OP and CRH. The reason is that our
proposed framework updates the source weights frequent-
ly when the source weight evolutions are generally large.
Based on Theorems 1 and 2, we can constrain the cumula-
tive error and ensure the accuracy of our framework. When
a smoothing factor is introduced, our methods, ASRA(Dy-
OP+smoothing) and ASRA(CRH+smoothing), achieve the
best accuracy among all the methods on Stock Dataset. It
can also be observed that ASRA(Dy-OP) achieves better
accuracy than ASRA(CRH), while Dy-OP performs better
than CRH on both two datasets. Obviously, the accuracy of
our framework is consistent with the basic method plugged
into it.

In conclusion, from the performance comparison results,
it can be seen that our framework always outperforms the
iterative methods with respect to efficiency and performs
better than the incremental methods in terms of accuracy.
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Since our framework can contain different plugged truth dis-
covery methods, it also outperforms some baselines in terms
of both accuracy and efficiency (such as GTM).

6.5.2 Further Study
To further confirm the performance of our framework, we

evaluate its efficiency while achieving the optimal accura-
cy, and its accuracy while the efficiency is optimal. In this
test, we conduct experiments on Stock Dataset and Weath-
er Dataset. Since our framework can flexibly tune the effi-
ciency and accuracy of truth discovery over streaming da-
ta, both accuracy and efficiency can be optimized by tuning
the parameters. Also, we change the number of properties in
this part, and denote the experiments conducted on a single
property as Single-Property (“Sin” in Figures (4)-(5)), and
the ones on multiple properties as Multiple-Property (“Mul”
in Figures (4)-(5)). For evaluation on Single-Property, we
choose the last trade price property for Stock Dataset, and
the humidity property for Weather Dataset.
Efficiency. From Table 3, we can see that Dy-OP achieves
the best accuracy comparing with all the baselines. Thus,
the accuracy of Dy-OP can be considered as the optimal
accuracy. We achieve the same accuracy with Dy-OP by
tuning the parameters (ε = 10−3, α = 0.85, E = 0.1 for
Stock Dataset and ε = 10−3, α = 0.85, E = 1 for Weather
Dataset). Under this scenario, we evaluate the efficiency of
our framework by comparing with Dy-OP.
From Figures 4(a)-(d), we can see that our framework

achieves much higher efficiency performance than Dy-OP
for both Single-Property and Multi-Property. The reason
is that our framework does not assess the source weights
continually. In addition, the gap between our framework
and Dy-OP on Multiple-Property is larger than the one on
Single-Property, which illustrates our method is more suit-
able for addressing different types of properties.
Accuracy. To the best of our knowledge, DynaTD is the
most effective incremental truth discovery method for con-
tinuous data, and also the basis of DynaTD+smoothing,
DynaTD+decay, DynaTD+all [11]. Thus, we consider the
efficiency of DynaTD as the optimal efficiency. Then we
achieve the same efficiency with DynaTD by tuning the pa-
rameters (ε = 10−3, α = 0.75, E = 1 for Stock Dataset
and ε = 0.1, α = 0.65, E = 1 for Weather Dataset). Under
this scenario, we evaluate the accuracy of our framework by
comparing with DynaTD.
Figures 5(a)-(d) show that, for both Single-Property and

Multi-Property, the accuracy of our proposed framework is
much higher than the incremental method. For one thing,
we use the iterative method to assess source weights, which
makes source weights converge to the optimal values at each
timestamp. For another, both Theorems 1 and 2 ensure the
accuracy of our framework. Although we do not assess the
source weights continually, our framework achieves much
higher accuracy comparing with the existing incremental
methods. Moreover, Figure 5(a) shows that, at the initial
time, the truths computed by our framework is nearly e-
qual to the ground truths, which also implicates the high
accuracy of our framework.
To summarize, by tuning the parameters of our frame-

work, we can balance the efficiency and accuracy of the
truth discovery task, and achieve better performance than
the state-of-the-art competitors as well.

6.6 Evaluation on Source Weight
As aforementioned, the estimation of source weights plays
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Figure 6: Evaluation on Source Weight

a vital role in the truth discovery task. Thus, we design a
set of experiments to evaluate the accuracy of source weight
computation using our proposed framework. In this test, we
choose Weather Dataset as the experimental dataset. We
randomly select two sources (denoted as S1, S2 respectively)
for experiments. Dy-OP method is plugged into our frame-
work, i.e., ASRA(Dy-OP). For comparison purpose, we also
compute the source weights using the existing incremen-
tal methods, DynaTD and DynaTD+decay. Moreover, for
controlling the source weights in a same range, we utilize
L1-norm to regularize the source weights computed by all
the methods.

Figures 6(a)-(b) show the experimental results. Clearly,
each true source weight changes constantly over time, and
the source weights computed by our framework are usually
more closer to the true values. Conversely, a source weight
computed by DynaTD and DynaTD+decay can converge to
a certain value quickly, which is inconsistent with the real
source weight change. In conclusion, these results prove the
accuracy of our approach in terms of source weight compu-
tation.

7. CONCLUSION
In this paper, we study the truth discovery problem over

data streams. We propose a framework for truth discov-
ery which adaptively determines the frequency of assessing
source weights for high efficiency and incorporates various
iterative truth discovery methods for high accuracy. We first
define and study the unit error and the cumulative error of
truth discovery. Then we transform the prediction of the cu-
mulative error into an optimization problem, and propose
our ASRA scheme. Tuning parameters of our framework
supports a trade-off between accuracy and efficiency in truth
discovery. Moreover, by a series of theoretical analysis, the
accuracy of our framework is guaranteed while the iterative
processes are reduced. Extensive experiments on real-world
datasets have been conducted to evaluate the effectiveness
and efficiency of our approach, and the experimental result-
s have proved the high performance of our truth discovery
framework.
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APPENDIX

A. PROOF OF FORMULA (9)

Proof. According to [8], for each timestamp ti, the source
weights Wi are conducted as the following:

Wi ← arg min
Wi

∑K
k=1 w

k
i l

k
i s.t.

∑K
k=1 exp(−wk

i ) = 1

(13)
Then the derivation of Formula (9) is the same as the

derivation of source weights in [8].

B. PROOF OF FORMULA (11)

Proof. According to [11], as we model that each source
weight changes over time, the source weights Wi can be
conducted as the following:

Wi ← arg min
Wi

η
∑K

k=1
wk

i l
k
i −

∑K

k=1
qki log(wk

i ) (14)

where qki denotes the number of observations provided by
kth source at ti, and η is given to support the trade-off
between the two terms in Formula (14) [11]. Moreover, the
initial loss function in [11] is un-normalized. However, in
this paper, we choose the normalized squared loss function
for addressing different types of attributes (Formula (10)).
Since the standard deviation of the observations at each
timestamp can be considered as a constant, the conclusions
will not be affected. We take the partial derivative of Wi

in Formula (14) with respect to wk
i , and set the partial

derivative equal to zero. Then we obtain the source weight
expression as shown in Formula (11).
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ABSTRACT 

The correlated exploitation of heterogeneous data sources offering 

very large historical as well as streaming data is important to 

increasing the accuracy of computations when analysing and 

predicting future states of moving entities. This is particularly 

critical in the maritime domain, where online tracking, early 

recognition of events, and real-time forecast of anticipated 

trajectories of vessels are crucial to safety and operations at sea. 

The objective of this paper is to review current research 

challenges and trends tied to the integration, management, 

analysis, and visualization of objects moving at sea as well as a 

few suggestions for a successful development of maritime 

forecasting and decision-support systems.  
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1. INTRODUCTION 
The maritime environment has a huge impact on the global 

economy and our everyday lives. Specifically, Maritime Situation 

Awareness (MSA) and surveillance systems have been attracting 

increasing attention due to their importance for the safety and 

efficiency of maritime operations. Safety and security are constant 

concerns of maritime navigation, especially when considering the 

continuous growth of maritime traffic around the world and 

persistent decrease of crews on-board. For instance, preventing 

ship accidents by monitoring vessel activity represents substantial 

savings in financial cost for shipping companies (e.g., oil spill 

cleanup) and averts irrevocable damages to maritime ecosystems 

(e.g., fishery closure). This has favoured and led to the 

development of automated monitoring systems, such as the 

Automatic Information Systems (AIS) and institutional initiatives 

for maritime data infrastructures [31]. However, the necessary 

correlated exploitation of large data sources offering historical 

and streaming maritime data is still a crucial computational issue. 

For instance, a typical volume of radio and satellite-based 

worldwide maritime data represents an estimated 18 millions 

positions per day [16] (see Figure 1 for an illustration of AIS 

coverage at the global level).  

 

 

 

Figure 1: Worldwide AIS positions acquired by satellites 

(ORBCOMM) 

Beside the indisputable value of information extracted from 

the AIS, the correlated exploitation of additional and 

heterogeneous sources is unavoidable to overcome the lack of 

veracity and incompleteness of the data. Thus, additionally to 

volume, velocity and variety, veracity of maritime data poses 

significant challenges. In particular, AIS messages are vulnerable 

to manipulation and subject to hacking [44], due to the unsecured 

channel of transmission, which weakens the whole system and the 

safety of navigation [35]. AIS data can thus contain deliberate 
falsifications and undergo spoofing [36], such as identity fraud, 

obscured destinations, or GPS manipulations [43]. According to 

[44], approximately 05% of AIS static data transmissions have 

errors of any kind. Vessels involved in illicit activities such as 
illegal fishing, deliberately avoid transmitting their information, 

while others may simply want to keep secret their fishing area to 

others.  

Moreover, despite large available volumes, AIS data at open 

seas or at the border of Exclusive Economic Zones (EEZs) may be 

sparse, or delayed due to either low coverage or to multi-level 

processing issues. The data sparseness, latency, possibly 

manipulated, and the poor quality of movement data in general 

[1], render very challenging the design of information systems to 

support MSA processing AIS data and detecting abnormal 

behaviours. Thus, in addition to the need of real-time processing 

of large volume of data of high velocity, maritime surveillance 

systems should also have the ability to process and correlate many 

data sources, ideally of wide variety to compensate any lack of 

veracity of the data. For instance, Long Range Identification and 

Tracking (LRIT) and Vessel Monitoring Systems (VMS), 

Synthetic aperture radar (SAR) imagery can be used to verify AIS 

emission and detect anomalies [19].  

Indeed, vessel trajectories are quite unique with respect to 

terrestrial trajectories: they are in only a limited way constrained 

by rigid network infrastructures, landmarks (e.g., ports), prefixed 
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waiting / meeting points, and more difficult to observe and 

monitor. The objective of this paper is to review recent 

development and research challenges of methods, operational 

frameworks and systems oriented at large towards moving objects 
at sea. Most of the ideas and proposals developed in this paper are 

generated by the datAcron European funded project, which aims 

to advance the management and integrated exploitation of 

voluminous and maritime data sources, so as to significantly 

advance the capacities of systems to promote safety and 

effectiveness of critical operations for large numbers of moving 

entities in large geographical areas [12].  

Our perspective towards an integrated maritime information 

infractructure is presented in Figure 2. The different components 

identified cover the integration of in-situ streaming data, 

trajectories detection and forecasting, recognition and 

identification of complex events and the development of visual 

analytics interfaces for maritime experts and decision-makers. 

 

Figure 2: Towards an integrated maritime information 

infrastructure [12] 

The rest of the paper is organised as follows. Section 2 
introduces the main issues and challenges behind the integration 

of very large and heterogeneous maritime data and briefly surveys 

recent progress in information fusion, in-situ processing and 

database integration. Section 3 presents recent progress and 

remaining directions to explore in maritime event pattern and 

abnormal behaviour detection, trajectory analysis and 

visualisation. Section 4 explores issues, challenges and trends in 

maritime decision support and forecasting. Finally, Section 5 

draws the conclusions. 

2. MARITIME DATA INTEGRATION AND 

MANAGEMENT 
The search for successful MSAs implies multiple data sources, 

such as surveillance sensors, automated processors, maritime 

institutional databases (e.g., navigation rules, protected areas), 

ocean and weather data, and “soft” data in unstructured formats 
(e.g., social media, intelligence reports). Nonetheless, advances in 

the spatio-temporal data analytics field with application on the 

urban domain (e.g., the very recent work over NYC Urban 

collection [10]) are not easily applicable in the maritime case. 

Efficient integration and management of maritime data is 

instrumental in effectively exploiting the available data, but it 

nevertheless entails some challenges that will be discussed in this 

section. 

2.1 In-situ data processing 

To face challenges due to the volume, velocity and variety of data 

sources, in-situ processing aims to scale, by shortening the time 

needed for detecting patterns of interest within a single- or cross-

streaming process; addressing this challenge has been the focus of 

a great deal of academic research and industry efforts in recent 

years [11]. For instance, a framework for a distributed stream 

processing architecture supporting in-situ processing has been 

presented in [5]. However, such approaches have to become 

communication efficient and have to learn abilities for automatic 

model adaption for handling concept drift. 

In-situ processing for the detection of patterns can be worthly-

investigated towards cross-streaming data integration, and 

integration of streaming data (e.g., regarding a specific vessel) 

with contextual information (e.g., weather data) given that 

detected patterns may further be joined and aggregated, producing 

output streams that provide semantically and contextually rich 

information, further enabling effectiveness in detection and 

predictive analytics.  
Closely related to the in-situ processing paradigm is the 

computation of data synopses. In particular, the computation of 

trajectories synopses for individual vessels is challenging, given 

that state of the art techniques [29] have achieved a compression 

ratio of 95% over AIS vessel traces. The challenge here is to 

address high levels of data compression without compromising 

the accuracy of the prediction / detection components.  

2.2 Streaming data integration 

In close relation to the computation of data synopses, a major 

objective is to develop appropriate components for integrating and 

summarizing maritime streaming data sources producing a 

scalable framework for cross-streaming data integration. 

Summarized streams can be semantically integrated with archival 

data as well as with detected and forecasted vessel trajectories and 

events.  

The database community has proposed many efficient 

algorithms for link discovery applied to RDF data [32] [39]. 

Major shortcomings of these approaches are (a) the restriction to 

RDF properties of specific (mostly numerical) types, (b) the not-

proved ability to integrate in real-time (cross-) streaming with 

archival data. Viewing the annotation of trajectories with 

contextual data as part of link discovery task, a specific challenge 

is the computation of semantic trajectories, taking advantage of 

trajectory-specific works (e.g., [34]). Distributed paradigms for 

streaming data, such as Storm, Spark Streaming, and Flink 

Streaming provide richer sets of primitive for incremental data 

sources, however, they do not provide full support for the 

integration of heterogeneous and historical data sources as well as 

for semantic enrichment and querying facilities [21] [37]. 

Moreover, these systems still lack specific spatio-temporal 

primitives necessary to deal with moving object trajectory data 

management [15]. 

2.3 Streaming data management  
Recent works focus on the volume of spatial data to be processed, 

developing systems specifically oriented to the spatial domain and 

particularly moving objects [29] [38]. Other works have been 

extended to process data “on the fly” to handle data velocity and 

provide fast response time in a “moving object context” [34]. 

Nevertheless, these systems are oriented either towards a 

“posteriori analysis” characterized by long processing times or 
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“on the fly processing” which can provide approximate answers to 

queries. 

Provision of integrated views of data for exploring and 

querying streaming and archival data sources in real-time has also 
been addressed in the context of the Internet of Things (IoT): Live 

Knowledge Graphs, backed with scalable and elastic software 

stack can deal with millions of static records and billions of 

streaming triples per hour in real time [22] [26]. However, support 

of spatio-temporal queries and real-time integration of disparate 

data sources enabling scalability for massive amounts of dynamic 

data still remains a challenge. Concerning the representation and 

querying of spatial information, several RDF stores have begun 

integrating spatial query processing and reasoning [27]. Their 

performance still falls largely behind standard spatially-enabled 

DBMS‟s. Parallel and distributed platforms [46], key-value stores 

[33] and main memory systems, such as TriAD [20] and Trinity 

[47] have been developed for RDF data. However, current RDF 

stores with spatial and/or temporal support are not tailored to offer 

efficient trajectory-oriented data management, due to the volatile, 

multi-dimensional, and inherently sequential nature of such data 

(e.g., Strabon [24]).  

2.4 Maritime data fusion 

The information fusion literature addresses extensively the 

integration and combination of information from cooperative and 

non-cooperative maritime data sources. Information (data) fusion 

originally focused on "low-level'' processing mainly from signals 

or images, from which vessel tracks (and trajectories) are built, 

new sensor measurements (contacts) are associated to tracks, 

objects corresponding to tracks are recognised and identified. The 

corresponding challenges include alignment of data in space and 

time, multi-resolution issues, at the same time, handling 

contextual and semantic differences.  

The more recent trend in information fusion is higher-level 

processing with tasks, such as situation and impact assessments, 

closer to the decision maker, where the semantics has a higher 

importance, and involving human sources (hard and soft fusion) 

[13]. The integration and fusion of maritime data and information 

from various sources can overcome some of the single source 

processing issues (e.g., compensating for the lack of coverage and 

increasing accuracy). However, this also requires a suitable 

management of conflicting information, which may be either due 

to unintentional malfunction of sensors or to deliberate deception 

deemed of interest. The cross-fertilisation of database and fusion 

techniques will contribute to MSA just like the InFuse framework 

[14] or, more recently, the architecture proposed in [18].  

2.5 Maritime data semantics and ontologies 
A few semantic approaches, including vocabularies, taxonomies 

and ontologies have been proposed as tentatives to bridge the gap 

between low level data from maritime sensors and maritime 

domain semantics [25], for example to enhance the integration of 

maritime information (6], to model ships‟ behaviour [41], for 

patterns identification [2], abnormal behaviour detection [42], and 

prediction [7].  Indeed, semantics‟ representation and exploitation 
is preferably addressed at the application level, because existing 

semantic approaches and technologies are not adequate to address 

the requirements of multi-mission and multi-task MSAs. In 

particular, approaches for semantic multi-domain interoperability 

able to integrate heterogeneous information sources (e.g., 

surveillance data, weather and ocean data, registers, bulletins) and 

combine multi-representation formalisation of multiple contexts 

need to be developed.  

Regarding the integrated exploitation of disparate data sources 

in the maritime domain, semantic representation of maritime 

information in multi-scale and at multiple granularity levels 

brings new bussiness opportunities as well as new research 

challenges. For instance, processing maritime data as linked 
stream data requires integration and joint processing of this data 

with quasi-static data from the Linked Data Cloud or other open 

data sources, in soft-real-time, that usually are at different scales 

and granularity levels. As additional examples, data from Earth 

Observation sensors and VMS data are at a lower temporal 

resolution than surveillance data from VTS radar and AIS, which 

have revisit times of few minutes; VTS radar spatial resolution is 

poor compared to GPS position accuracy from AIS, which is 

assumed to be around 10m; freely available meteorologic data 

have spatial resolution of few kilometres, and estimated and 

measured environmental variables are provided with hourly and 

daily means. In addition, using open data sources in the maritime 

domain is a challenge itself because of the different policies of 

European countries regarding the provision of environmental and 

other marine data to the users, that, depending on the data sources, 

can be classified at national level and not freely distributable at 

the necessary resolution.  

2.6 Discussion 
Support to real-time (semantic) integration, storage and spatio-

temporal querying of disparate maritime data sources enabling 

scalability for massive amounts of dynamic data is a challenging 

task. A series of specific challenges are as follows: 

- producing a scalable, fault-tolerant framework for cross-

streaming data integration and processing of maritime data 

from multiple streaming sources, via the real-time 

computation of data synopses, achieving high rates of data 

compression; 

- reconstruction of vessel trajectories and computation of events 

and multi-scale visualizations of data and patterns via 

advanced analytics techniques; 

- incremental integration of maritime data, allowing advanced 

management and query answering of spatio-temporal data; 

- automatic, real-time semantic annotation and linking of 

maritime data towards generating coherent views on 

integrated cross-streaming and archival data; 

- efficient distributed management and querying of integrated 

trajectory and contextual data. 

3. EVENT PATTERN DETECTION AND 

TRAJECTORY ANALYSIS 

3.1 Event detection 
Detection of anomalous vessel movements and analysis of 

suspicious vessel trajectories are crucial assets for improving the 

security of vessel traffic. The range of possible events of interest 

is very large, from detecting vessels in distress and collisions at 

sea to discovering illegal fishing and any other illicit activities 

occurring at sea such as contrabands and smuggling. 

Detecting events and patterns of interest in the maritime 

domain requires, as a first step, correlating vessel trajectories with 

data expressing entities‟ characteristics, geographical information, 
weather data, patterns of mobility in specific areas, regulations, 

intentional data (e.g. planned routes) etc., in a timely manner, 

while addressing the challenges described in the previous section. 
As part of the data integration task, the annotation of trajectories 

with contextual data is expected to provide a more robust solution 

towards the semantic annotation of trajectories [34], the 

interlinking of events with trajectories and with other contextual 
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data that are of particular importance for maritime domain 

awareness and decision-making. These present major challenges 

as they do concern both archival and streaming data, and they do 

require dealing with spatio-temporal features at multiple scales 
and dimensions (e.g., for determining the similarity among 

trajectories, or for relating events to trajectory segments) [4] . 

The specific challenges of event detection and suspicious 

pattern identification in the maritime domain are driven by MSA 

objectives. In particular, the development of early warning 

anomaly detection algorithms supporting maritime operators in 

the identification of the potentially suspicious of dangerous 

activities in the maritime areas under surveillance encompasses 

many challenges, such as: 

- real-time reconstruction of vessel trajectories, supported by 

real-time analysis of multiple and voluminous streams of data 

on possibly conflicting vessel positions;  

- algorithms for the prediction of anticipated vessel trajectories 

at different time scale, which is fundamental to achieve early 

warning maritime monitoring;  

- machine learning methods supporting the identification and 

the formalization of events and patterns that are of interest to 

maritime security operators, able to observe and learn from 

their behaviour;  

- algorithms for complex event (and outlier) recognition and 
prediction in real-time, dealing with heterogeneous, 

fluctuating and noisy voluminous data streams of moving 

entities in large geographic areas, taking advantage of data 

analytics results over archival data.  

3.2 Visual analytics  

MSA may greatly benefit from the development of Visual 

Analytics (VA) methods oriented to the maritime domain. VA 

methods, being more oriented than traditional analysis approaches 

towards addressing human factors and enhancing user perception, 

may help obtaining better analysis results through a more 

effective integration of unformalized operative knowledge and 

expertise, which are of fundamental importance in surveillance 

activities [30]. Specific VA research challenges are as follows: 

- interactive data exploration of both archival (data-at-rest) and 

streaming (data-in-motion) spatio-temporal data, with varying 

levels of resolution and quality;  

- exploration of real-time maritime moving entities integrating 

contextual and historical information at varying levels of 

resolution, supporting operators in early alerting validation; 

- scalable spatio-temporal analytical querying, such as drill-

down / zoom-in and on user-defined spatio-temporal regions 

of interest for surveillance; 

- interactive pattern extraction (and assessment of data quality) 

considering both data-in-motion and data-at-rest, able to 

visually integrate information on sensor performance to 

validate early alerts obtained by the analysis tools; 

- user-guided model building and validation, aiming at visual 

steering of modelling tools enabling interactive selection of 

model types, tuning model parameters, and analysis of model 

residuals in multiple dimensions, including space and time; 

- building situation overview and situation monitoring, capable 

of computing an overall operational picture of mobility at 

desired scales and levels of detail, both in spatial and temporal 

dimensions. Monitoring needs to provide alarms and 

explanations if observations significantly deviate from 

models. 

4. TOWARDS A MARITIME DECISION 

SUPPORT AND FORECASTING SYSTEM 
The variety of data sources is expected to provide an improved 

MSA to the operator taking advantage of the complementarity and 

redundancy provided. For instance, the knowledge captured in 

databases of records of events like piracy events or incidents at 

sea, the lists of vessels of interest such as blacklisted vessels, may 

provide the relevant context to understand and explain some 

events of interests. If the processing and correlation of data and 

information from different sources and databases can also 

overcome for some incompleteness in databases and compensate 

for sparseness, it however may reveal some inconsistencies that 

need to be managed. For instance, ship information from the 

MarineTraffic1 database may conflict with that from Lloyds‟2 : the 

length may differ slightly, or the flag may be different due to a 

lack of update in one source. In this regards, additional knowledge 

on sources‟ quality may help solving the issue. An example of 
estimating and exploiting the AIS reliability is proposed in [8], 

while for enhancing the reliability of AIS, the vessel identity 

verification method has been used by the US Coast Guard 

(USCG)‟s Maritime Information for Safety and Law Enforcement 
(MISLE) and Vessel Documentation System (VDS) [44]. 

The correlation with social media information [3] can 

furthermore help in establishing links with external events for a 

better global picture. However, most of these sources contain 

natural language information (possibly in different languages), 

which needs to be automatically processed, analysed, interpreted 

and finally correlated with other data from physical sensors. The 

fusion of human generated information (“soft”) with sensor data 
(“hard”), thus named “hard and soft fusion”, has been recently 

widely addressed [28] and brings promising avenue to the MSA 

problem [17], in keeping the human at the core of the processing. 

Hence, the design of an efficient information system for Maritime 

Domain Awareness and decision support should consider the 

maritime data quality issues in their entirety and diversity to 

ideally resolve them or at least to not occult them and rather 

inform the operator of some possible output uncertainty. 

Probabilistic databases are certainly a promising avenue for 

the maritime domain [3] [23], which allows to deal for instance 

with empty fields very common in marine data, approximate 

values or uncertain fields. Besides, the consideration of the open-

world assumption is unavoidable if one wants to provide a 

realistic outcome to the user [9]. Indeed, the AIS database clearly 

violates the closed-world assumption since, according to 

Windward [43], 27% of ships do not transmit data at least 10% of 

the time („go dark‟). Consequently, querying for instance rendez-

vous events from an AIS database will return only those events 

reflected by the AIS data. Considering that anything which is not 

in the AIS database remains possible is thus crucial to maritime 

anomaly detection. Moreover, the extension to other uncertainty 

representations such as evidence or possibility theories is certainly 

desirable for maritime anomaly detection and event forecasting in 

order to cope with the different nature of uncertainty 

(probabilistic, subjective, vague, ambiguous, etc) due to the 

variety and poor veracity of the sources. 

Although no clear guidelines exist so far for the selection of 

the appropriate uncertainty framework and aggregation (or fusion) 

rule, it is acknowledged that the choice depends on the nature, 

interpretation or type of uncertainty and information, and on the 

sources quality and independence [45]. Considering second-order 

                                                             
1 http://www.marinetraffic.com 
2 http://www.lloydslistintelligence.com 
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uncertainty seems also unavoidable if one wants to properly 

account for the imperfection of data in the estimation of patterns-

of-life, in developing approximate models of vessels‟ motion or in 
recognition of vessels, but also if one wants to communicate to 
the user faithful information. Interestingly, similar uncertainty 

challenges recently arose within the visualization community. A 

great challenge is to enable reasoning under uncertainty (in all its 

forms) uncertainty throughout the processes of sensemaking, 

decision-making, and action-taking [23]. 

In the aim of developing trustful and useful decision support 

systems, the human must be considered in his/her two main roles 

of (i) source of information and (ii) decision maker. The 

underlying challenges are then, on the one hand, to properly 

capture the human generated information including the associated 

uncertainty assessment so it can be meaningfully aggregated with 

other information from physical sensors or databases, and on the 

other hand, to ensure that the system outputs meaningful, 

interpretable and unambiguous results on which the user can take 

an informed decision. The design of information systems should 

provide a flexible architecture to ensure both the utility of the 

output provided and adaptability to dynamic and unforeseen 

events, and to changing user‟s needs. For instance, an explicit 
consideration of context provides an understanding of normalcy 

as a reference for anomaly detection (i.e., pattern-of-life) [40]. It 
helps detecting, and distinguishing between, spoofed information 

and deception, reducing the set of possible hypotheses (e.g., 

classes) for threat classification; it also provides information 

about sources‟ quality such as reliability or truthfulness. 
Finally, the development of decision support systems for 

maritime event detection and forecasting should provide (1) the 

necessary simplicity to the processes by a judicious filtering of 

information suited to the users‟ needs, (2) the suitable flexibility 
and adaptability for the algorithms implementation by separating 

between the events of interest and their surrounding context, (3) 

the adequate uncertainty representation and processing 

considering the sources‟ quality and uncertainty‟s origin and (4) 
the expected human-system synergy for a better understanding of 

the system‟ outputs with associated explanations and simpler 
queries tuned to specific needs. 

5. CONCLUSION 
While most of current research in spatial databases and 

geographical information systems addresses issues often related to 

phenomena and practices related to the land domain, we believe 

that the maritime environment also provides many application 

opportunities and research challenges that still deserve to be 

addressed. This paper surveys a series of current computational 

issues still opened for a successful integration, manipulation and 

analysis of maritime information, with a specific focus on 

trajectories of moving objects at sea. We explore and suggest 

several research development directions that might contribute to a 

better use of voluminous and disparate sets of maritime data 

available so far. Due to the diversity and complexity of the 

problem, a successful solution should involve an integration of 

complementary contributions from different scientific domains, 

let us mention amongst many research areas ontology and 

conceptual data models at the data integration level, data mining 

and visual analytics for the ability to discover patterns within 

large volume of data, machine learning for streaming data, 

information fusion for the ability to combine information from 

different sources and deal with uncertainty, human factor and 

decision-aided systems. This is why we believe that not only 

many opportunities are still open for the extended database 

community, but also avenues for further experimentations and 

interactions with the maritime world at large. 
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ABSTRACT

Selective materialization of intermediate query results as views is

an effective method for improving query performance. In this pa-

per, we extend this technique to adaptively partition views based on

the access patterns of a workload. That is, we collect information

about the selection conditions of queries at runtime and utilize this

information to determine fragment boundaries for the initial par-

titioning when materializing a view. Furthermore, we refine view

partitions over time based on the selection conditions of incom-

ing queries. We present a novel cost-benefit model for partitioned

views, as well as a candidate view and fragment selection approach

- both of which exploit the nature of partitioned views by taking

the correlation among view fragments into account. Furthermore,

we present DeepSea, an implementation of these techniques built

on top of Hive. Our experimental evaluation demonstrates the ef-

fectiveness of partitioned views, improving performance by up to

an order of magnitude compared to state-of-the-art approaches.

1. INTRODUCTION
The use of materialized views is a common technique to improve

the performance of query workloads [21]. The questions of what

to materialize, when to materialize, and when to use a view have

been well studied. The same is true for other automated physi-

cal design techniques such as index and partition selection. Proper

physical design for base tables, e.g., horizontal partitioning, often

significantly improves the performance of queries [23]. In mod-

ern SQL systems built on-top of distributed dataflow engines (e.g.,

Hadoop [1]), issues of physical design, including partitioning of

large files, are paramount to the performance of the system. Fur-

thermore, intermediate results are often materialized for fault tol-

erance purposes and these results can be utilized as materialized

views to answer future queries [12]. While each of these techniques

has been studied intensively, we are the first to study the combina-

tion of materialized view selection and horizontal partitioning.

The major advantage of creating a partitioned view from an inter-

mediate query result is that future queries with selection conditions

over the partition attribute can be answered efficiently by access-

ing a subset of the view’s fragments. However, partitioning a view

c©2017, Copyright is with the authors. Published in Proc. 20th International Con-

ference on Extending Database Technology (EDBT), March 21-24, 2017 - Venice,

Italy: ISBN 978-3-89318-073-8, on OpenProceedings.org. Distribution of this paper

is permitted under the terms of the Creative Commons license CC-by-nc-nd 4.0

increases the cost of view creation. Furthermore, new challenges

arise because we have to decide when to partition a view, how to

select fragment boundaries (within a partitioning), when to reparti-

tion, and what fragments to evict to save space. We address these

challenges in this work.

Online View Selection. A view selection algorithm that is based on

a query workload is called adaptive. Adaptive (or workload-aware)

materialization and partitioning of views may be done at design-

time or at runtime. That is, either a complete workload is given

and the view selection algorithm determines which views to mate-

rialize and how to partition them offline, or the algorithm works in

an online fashion making decisions based on the history of queries

that have been processed so far. While online materialized view

selection has been studied [24], we are the first to consider the on-

line adaptation of partitioning choices for views. Our partitioning

strategy is motivated by two important characteristics of real-life

data analytic workloads: 1) data access is often not distributed uni-

formly over the domain of a selection attribute and 2) access pat-

terns evolve as the interests of users change over time.

Non-Uniform Distribution of Access. Figure 1 shows the ac-

cess distribution for a real analytic workload over the Sloan Dig-

ital Sky Survey dataset (SDSS) [2]. The figure shows the selection

ranges on attribute ra of table PhotoPrimary for queries submitted

to SDSS between March 8, 2010 and March 8, 2011. Note that

there are ranges that are rarely queried and others that are very fre-

quently queried. Clearly, adaptive partitioning can improve query

performance. We use the range conditions of queries to adjust frag-

ment (partition) boundaries with the effect that hot spots are cov-

ered by relatively small fragments and less frequently accessed data

are covered by fewer and larger fragments. This has the advantage

of focusing the effort of partitioning on the parts of the data which

will give us the most benefit. Queries accessing hot spots can be an-

swered using small fragments without touching unwanted ranges of

the view. Furthermore, using this approach we avoid paying the

cost of partitioning data that is accessed infrequently.

Evolving Access Patterns. In addition to being non-uniform, real

workloads are not static, but rather access patterns may shift over

time. Figure 2 shows how the selection ranges of SDSS queries

over attribute ra of table PhotoPrimary evolve over the sequence of

the first 10,000 queries containing such a selection, starting from

March 8, 2010. The vertical line near query 1,000 means that one

or more queries have selected the whole domain of attribute ra.

The figure shows that the first 3,000 queries focus mainly on the

range between 200 and 300 degrees. Later in the workload, a large

number of queries focus on values around 100 degrees.

To accommodate evolving access patterns, we make decisions on

how to partition a view online as queries arrive. We create a mate-
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Figure 2: Evolution of selection ranges on SDSS

rialized view with an initial partitioning once we have determined

that there is enough evidence that the creation of the view will ben-

efit the current workload. We progressively refine fragment bound-

aries based on the selection conditions of incoming queries. Our

progressive partitioning, coupled with a cost-based view and frag-

ment eviction policy, allows us to adapt to evolving workloads. A

view’s competitiveness according to this cost model is based on its

observed benefits (an estimate of the runtime that would have been

saved if the view were to be materialized), its creation cost (the

runtime overhead of materializing and partitioning the view), and

its storage size. Importantly, we apply a decay function to timeout

view benefits over time. This ensures that after a shift in the work-

load, views that are no longer useful for the current access pattern

will eventually be replaced with views that fit the new pattern.

Partitioned Materialized View Pool Size. Typically, the storage

space allocated for materialized views is not unlimited. We ana-

lyzed a BigBench workload [13] and found that if we materialize

all intermediate join results as views, the total storage required is

four times the size of the BigBench base tables. Of course, for

evolving workloads, the number of materialized views and frag-

ments would continue to increase and not all views will continue to

provide a benefit to queries. Jain et al. [20] show the importance of

a good view selection strategy for real-life applications: the savings

that can be achieved with a small materialized view pool are similar

to the savings that can be achieved with a large pool size as long

as a good view selection strategy is applied. An important bene-

fit of partitioned views is the finer granularity of control on view

and partition selection: we can individually evict the fragments of

a partitioned view that are unlikely to be used in the future.

Correlated Fragments. Given a finite amount of space for storing

views, we present a novel strategy for selecting what fragments of

a view to keep. Typically, decisions on whether to keep or evict

a view are made independently for each view [15]. However, the

benefits that different fragments of a partitioned view provide to

a workload are not independent of each other. Returning to Fig-

ure 1, observe that ranges which are accessed often (ranges with

many hits) tend to have neighbors with many hits (which are also

accessed often). We find similar patterns for other attributes of dif-

ferent SDSS tables: parts of the domain of an attribute that are close

to hot spots have a higher chance of being hit in the future than parts

that are further away from hot spots. We present a new probabilis-

tic model based on this correlation to determine when a fragment

of view should be evicted. Our model treats a hit to a fragment as

a sample from a probability distribution. We determine the normal

distribution that has the maximum likelihood to have produced the

sample and use this distribution for fragment selection.

Overlapping Fragments. Figure 2 also hints at a common pattern

for selection ranges. A partition containing a few large fragments

(for cold spots) and several small fragments (located at hot spots)

may work well for some time, but as the workload evolves, there is

a need to split a large fragment as additional queries begin to access

it. This split incurs high write cost for repartitioning because if a

fragment is split, its whole content needs to be read and written

to disk. We present a solution that permits overlapping fragments.

Rather than reading and writing the large fragment, we create a

small fragment that overlaps the large fragment.

Contributions. Our main contributions are as follows.

• Progressive, adaptive partitioning of materialized views. We pro-

pose the first algorithm for progressively partitioning materialized

views that adapts online to changes in a query workload.

• Exploitation of fragment correlations. Based on our study of

real-life workloads, we present a novel cost-benefit model for view

fragments and candidate selection that takes the correlation among

fragments of a partition into account.

• Overlapping fragments. We allow overlapping fragments and

show that they can reduce the cost of view creation especially over

evolving workloads.

• DeepSea. We present DeepSea, an implementation of our tech-

niques in Hive [27].

• Evaluation. We demonstrate DeepSea’s effectiveness using a

query workload modelled after a real workload from SDSS [2] and

workloads from BigBench [13].

The remainder of the paper is organized as follows. We discuss

related work in Section 2, introduce preliminaries in Section 3, and

formally state the problem addressed in this work in Section 4. We

give an overview of our approach in Section 5. We then present

how to select view candidates in Section 6, how to select what to

materialize and how to partition in Section 7, and how to answer

queries using partitioned materialized views in Section 8. After-

ward, we discuss the implementation of DeepSea in Section 9 and

present our experimental evaluation in Section 10.

2. RELATED WORK
There are several lines of work related to our approach: answer-

ing queries using views; reusing intermediate query results; (on-

line) self-tuning techniques for physical database design; database

cracking; and semantic caching.

Answering Queries Using Views. Answering queries using mate-

rialized views has been studied intensively [3, 21]. Given a set of

views and a query, computing the least expensive plan for the query

using the views is computationally hard, because query contain-

ment checks are required to determine whether a query can be com-

puted from a view. Query containment for bag semantics (SQL) is

undecidable, even for restricted query classes (union of conjunc-

tive queries). As a consequence, practical approaches for logical

matching (i.e., determining whether a view can be used to answer

a query independent of the query syntax) usually apply sufficient

conditions for matching that are decidable or even in PTIME [14,

29]. Goldstein and Larson [14] present a lightweight algorithm that

is integrated with a transformation-based optimizer and uses a cost

model to determine the best rewriting. We have extended this ap-

proach to support matching fragments of partitioned views.

Reusing Intermediate Results. Although materialization has been

studied extensively for relational databases [3, 16, 21], distributed
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systems such as Hadoop have different characteristics that need to

be explored and exploited. ReStore [12] materializes intermedi-

ate results of MapReduce jobs for reuse in future queries. Perez

and Jermaine [24] exploit salient features of SQL-on-Hadoop sys-

tems including immutable data, abundant storage to accommodate

materialized views, and excessive materialization of intermediate

results that enables generating materialized views as a by-product

of answering queries. The approach optimizes queries to produce

intermediate results that, if materialized as views, would improve

performance for past queries. If past queries are indicative of future

queries then this would result in a speed up for future queries. We

also gather knowledge about a workload to guide materialization,

but in addition investigate partitioning for materialized views. The

Nectar system [15] caches and reuses results of DryadLINQ/Dryad

computations. ReStore and Nectar only perform physical match-

ing, i.e., a view matches a sub-query if they are computed using the

same expression. As explained previously, we decide to use logical

matching which greatly improves the potential for reuse. Reuse of

intermediate query results has also been studied for main memory

DBMS such as MonetDB [19, 22]. This approach uses physical

matching of operators except for selections where subsumption of

range restrictions is considered, e.g., the result of a selection on

A < 5 is a superset of the result of a selection on A < 3, and

thus a query with selection A < 3 can be rewritten by using a

materialized view whose selection is A < 5. Similar to ReStore

and in contrast to automated materialized view and index selection

approaches for relational databases, our approach significantly re-

duces view creation cost by considering intermediate query results

as candidates for materialized view creation. In addition, whenever

possible we use intermediate results that are materialized anyways

by the MapReduce engine (e.g., at the end of a reduce phase).

Automated Physical Design. Automated tuning [10] is a rich field

including: partitioning [23, 25], index selection [6, 26], and mate-

rialized view selection [4, 5, 8]. Adaptive index selection creates

and drops indexes on-the-fly [6, 26]. Given a constraint on stor-

age space, the idea is to monitor incoming queries and profile the

performance gain for each index and then create the most promis-

ing ones. Adaptive materialized view selection [4, 5, 8] shares the

same philosophy. Both index and materialized view selection use

the DBMS optimizer’s cost model to evaluate the benefits of an in-

dex or view without actually creating it. Bruno and Chaudhuri [9]

have explored online index selection that is 3-competitive. How-

ever, this bound only holds for single index candidates. In contrast

to these approaches we do not assume a sophisticated optimizer.

Our solution also repartitions data on-the-fly, as a by-product of

query answering. The H2O system [7] supports multiple storage

layouts, i.e., columnar, row and group of columns. At run-time, the

system decides which layout to use for which part of the data, and

continuously evolves the storage layout and data access strategy.

In constrast to H2O, we focus on horizontal partitioning of data

in a distributed environment, and address the size requirement of

materialized view pool.

Database cracking. Database cracking [18], i.e., adaptive and pro-

gressive indexing, incrementally builds an index structure over a

table based on access patterns of queries. There is a rich body of

work on enhancements of cracking such as the study of robust-

ness and adaptiveness to dynamic workloads [17]. A similarity be-

tween cracking and our approach is that they both incrementally

refine physical designs based on selection conditions in queries. In

contrast to cracking, DeepSea focuses on horizontal partitioning of

materialized views and makes cost-based decisions on whether to

refine a partition.

Semantic caching. Semantic caching [11] studies how to reuse

subsets of input tables that are stored in a client-side cache. Each

entry in the cache is described as a logical constraint (selection con-

dition) providing a semantic description of the content of a cache

entry. When a query is submitted to the client and can be answered

(partially) using the cache, only a "remainder query" will be sent

to the server to fetch the results that do not exist in the client’s

cache. Similar to DeepSea, intermediate results are reused and are

reorganized based on access patterns. However, semantic caching

only considers caching of the results of selections over base tables

(we consider caching of a view that is partitioned on a selection

attribute) and does not allow cached regions to overlap.

3. PRELIMINARIES
We now review the concept of horizontal partitioning. We use R,

S, . . . to denote relations, A, B, . . . to denote attributes, and D(A)
to denote the domain of attribute A. We call an attribute A ordered

if there exists a total order ≤A over D(A). Only ordered attributes

are considered as keys for horizontal partitioning.

Horizontal Partitioning. Horizontal partitioning splits the tuples

of a relation into a set of disjoint fragments - each fragment holds

the data for a range of values of the partition key (the attribute on

which we partition). The union of these fragments equals the orig-

inal relation.

DEFINITION 1 (HORIZONTAL PARTITIONING). Let R be a re-

lation and A an ordered attribute from R’s schema. Consider a

set I = {I1, . . . , In} of intervals where Ii ⊆ D(A). The frag-

mentation PI(R.A) of R on A according to I is the set of frag-

ments Fi ⊆ R defined as Fi = {t | t ∈ R ∧ t.A ∈ Ii}. If
⋃

I∈I I = D(A) and ∀i, j : Ii ∩ Ij = ∅ then PI(R.A) is called a

horizontal partition.

1 2 3 4 5 6

t1 t2 t3 t4 t5 t6

I1 I2 I3

I4

I5 I6

EXAMPLE 1. Assume a relation R has 6 tuples {t1, t2, t3, t4,
t5, t6} where the value of attribute A for tuple ti is i. The do-

main D(A) of A is {1, . . . , 6}. Consider a set I of three inter-

vals I1 = [1, 2], I2 = [3, 4], and I3 = [5, 6] as shown above.

A partitioning based on these intervals would result in fragments

F1 = {t1, t2}, F2 = {t3, t4}, and F3 = {t5, t6}. The frag-

mentation PI(R.A) is a horizontal partition of R according to

A. Consider a second set of intervals I′ containing I4 = [1, 4],
I5 = [3, 4], and I6 = [5, 6]. The fragmentation according to

I′ results in fragments F4 = {t1, t2, t3, t4}, F5 = {t3, t4}, and

F6 = {t5, t6}. This fragmentation PI′(R.A) is not a horizontal

partition of R, because of the overlap between I4 and I5. Finally,

I′′ = {I4, I6} is again a horizontal partition of R.

Overlapping Partitioning. It is sometimes beneficial to relax the

disjointness requirement by allowing fragments to overlap. We call

such a fragmentation an overlapping partitioning.

DEFINITION 2 (OVERLAPPING PARTITIONING). Let R be a

relation and A one of its attributes. We call a fragmentation PI(R.A)
an overlapping partitioning iff

⋃

I∈I I = D(A).

EXAMPLE 2. Figure 3 illustrates why it may be beneficial to

allow fragments to overlap. Assume that a query Q1 acccesses a

range [a, b] and that based on this access pattern we have decided
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Figure 3: Overlapping fragments in progressive partitioning

to create a partition with three fragments [l, a), [a, b], and (b, u]. A

subsequent query Q2 accesses data in the range [a′, b′]. Note that b
and b′ are close to each other. Adaptive horizontal partitioning may

create four new fragments based on Q2 by splitting the previously

created fragments into [a, a′), [a′, b], (b, b′] and (b′, u]. If we al-

low fragments to overlap, then we can avoid creating the fragment

(b′, u] because no query has accessed data from this fragment yet.

Instead, we create a fragment (b, b′] and keep the fragment (b, u]
that was created based on Q1. This avoids writing a large fragment

that may not be accessed by future queries at the cost of additional

storage for (b, b′].

4. PROBLEM STATEMENT
We now state the problem addressed in this work: how to main-

tain a set of partitioned views (the materialized view pool) in an

online fashion in order to maximize query performance.

Configuration. A configuration C models the current content of

the materialized view pool. It consists of the set of views V that are

currently in the pool and a mapping P that associates each view

V and one of its attributes A with a set of intervals describing the

current partitioning of the view on this particular attribute. Note

that we permit multiple partitions of a view to be stored in the pool

as long as these partitions are on different attributes. We define

P(V,A) = ∅ if view V has not been partitioned on attribute A yet.

DEFINITION 3. A configuration C is a pair (V,P) where V is

the set of views materialized in the pool and P is a mapping that

associates with each view V ∈ V and an attribute A in the schema

of V a set of intervals I over the domain D(A) of A. We use S(C)
to denote the total storage size of the views in configuration C.

Problem Definition. In this work, we assume a query-only work-

load, i.e., no updates. We address the following problem: given

a workload Q = Q1, . . . , Qn of queries to be executed that is

unveiled one query at a time and a pool size limit Smax (maxi-

mal storage to be used for views), choose a sequence of config-

urations C = C1, . . . , Cn in order to minimize the total execu-

tion time of the workload plus the time spent on view creation

COST(Q, C) =
∑n

i=1 COST(Qi, Ci) +
∑n−1

i=1 COST(Ci, Ci+1).
Here COST(Q,C) denotes the cost of executing query Q given the

set of views C and COST(Ci, Ci+1) denotes the cost of creating

configuration Ci+1 from configuration Ci. We require C1 = ∅, i.e.,

no views have been created before the workload execution. We are

interested in a restricted version of this problem where new views

and refinements of partitions have to be based on the currently ex-

ecuted query Qi, i.e., only views and fragments corresponding to

intermediate results of this query (Vcand(Qi) and Pcand, defined

in Section 6) are considered as candidates to be added to Ci+1.

Given these preliminaries we can state the online partitioned view

selection problem as follows.

DEFINITION 4 (ONLINE PARTITIONED VIEW SELECTION).

Given a pool size limit Smax and workload Q = Q1, . . . , Qn that

is unveiled one query at a time, incrementally determine the se-

quence of configurations C = C1, . . . , Cn that minimizes

COST(Q, C) =
n
∑

i=1

COST(Qi, Ci) +

n−1
∑

i=1

COST(Ci, Ci+1)

subject to

1. C1 = ∅
2. Ci+1−Ci ⊆ Vcand(Qi)∪Pcand for all i ∈ {1, . . . , n−1}
3. S(Ci) ≤ Smax for all i ∈ {1, . . . , n}

The online partitioned view selection problem is difficult for sev-

eral reasons. First, this is an online problem: for each incoming

query Qi, we must decide which partitioned views or fragments to

create and which to evict from the pool without knowing the re-

maining sequence of queries from the workload. There is abundant

literature for online algorithms that provide worst-case guarantees.

An online algorithm is said to be k-competitive if its result is at most

of a factor k worse than the solution computed by an optimal of-

fline algorithm (an algorithm which has access to the whole input).

However, the competitiveness factor of such algorithms for search

space sizes encountered in our problem are too high to be of any

practical relevance. Even if we were to consider the offline version

of the problem, we cannot hope for an optimal solution because of

the undecidability of query answering with views.

Given these constraints we strive for a principled yet scalable

solution that applies a carefully selected set of heuristics for each

of the sub-problems of determining view and partition candidates,

view and partition selection (determine the next configuration), and

view and partition matching (determining whether a partitioned

view can be used to answer a query). The main idea underlying our

approach is that a solution should take hints provided by queries in

the workload into account when deciding which intermediate query

results to materialize and how to partition them.

5. SOLUTION OVERVIEW
Algorithm 1 gives a high-level view of the approach we use to

process a query. The input to the algorithm is a query Q, view

configuration C, and view statistics STAT. In the first step we de-

termine which views and fragments (in the pool or not) can be used

to answer the query (Section 8). The result of this step is a set

Rewr(Q) of possible rewritings of the input query which use the

views. We then update the statistics kept for partitioned views to

record that some views/fragments can be used to answer the query.

Afterwards, among the rewritings that only use queries which are

currently in the pool (C) we determine the rewriting Qbest with

the lowest expected cost. Now that we have chosen a “plan” for

the query (Section 6), we determine which of the intermediate re-

sults of the query are viable candidates to be stored as materialized

views (Vcand) and how to partition them (Pcand). Note that even

if a view V ∈ Vcand already exists and is partitioned, we may still

produce fragment candidates for it (e.g., splitting an existing frag-

ment to create a refined partition). Given such sets of candidates we

add them to the set of partitioned views for which we want to keep

statistics (using an initial rough estimate of their costs and benefits).

The next step, described in more detail in Section 7, is to determine

which of these candidates should be materialized during the exe-

cution of Qbest and, if necessary, which views to evict from the

current configuration C to make space for these new views (recall

that we limit the pool size by Smax). Once we have selected the

views Vsel and fragments Psel to create, we instrument the query

Qbest to materialize intermediate results (and partition them if need
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Algorithm 1 ProcessQuery (Q,C, STAT)

Input : Query Q, View Configuration C, View Statistics STAT

Output : Updated configuration C and statistics STAT

1: Rewr(Q) = COMPUTEREWRITINGS(Q,C, STAT)
2: UPDATESTATS(Rewr(Q), STAT)
3: Qbest = SELECTREWRITING(Rewr(Q))
4: (Vcand,Pcand) = COMPUTEVIEWCAND(Qbest, C, STAT)
5: ADDCANDIDATES(Vcand,Pcand, STAT)
6: (Vsel,Psel) = VIEWSELECTION(Vcand,Pcand, C)
7: Qinstr

best = INSTRUMENTQUERY(Qbest,Vsel,Psel)

8: EXECUTEQUERY(Qinstr
best )

9: UPDATESTATS(Vcand,Pcand, STAT)

be). We then execute the instrumented query Qinstr
best and return its

result to the user. Finally, we update the statistics for all candidates

based on the information gained by executing Qbest, e.g., we now

have precise measurements for the size of candidate views.

6. VIEW AND PARTITION CANDIDATES
We now discuss how our approach determines which views and

fragments to create for a given query Q and configuration C. Our

creation process operates in two steps: first we determine for which

views and fragments we have gathered enough evidence to materi-

alize them and then based on this subset of candidates we determine

the next configuration based on the “value” of a view or a fragment

using the statistics that we keep.

View and Fragment Statistics. For each view or fragment can-

didate, no matter whether materialized in the pool or not, we store

statistics such as its size S, the estimated cost of creating it (COST),

the set of timestamps when this view could have been used to an-

swer a query (T ), and a list of potential savings associated with

each such timestamp (B). B and T together with a decay function

that times out benefit as mentioned in Section 1, are used to com-

pute the benefit of a view. For fragments we only record T and S
since the benefit can be inferred based on its size and the saving of

the view this fragment belongs to. Similarly, COST of a fragment

is determined based on COST for its view.

DEFINITION 5. The view statistics STAT is a triple (VSTAT,PSTAT,
Σ) where VSTAT is a set of views, PSTAT is a mapping as in C that

associates each view and attribute in its schema with a set of frag-

ment intervals, and Σ maps each view in VSTAT and fragment in

PSTAT to a tuple (S, COST, T, B) respective (S, T ).

6.1 View Candidates
We first notice that certain relational operators are less likely to

provide results that can be reused or the reuse of such an operator’s

result would not result in significant performance improvement.

We consider the intermediate results of the following operators as

candidates: join, aggregation, and projection. Joins are good can-

didates, because join computation is expensive and join results are

likely to be reused. We consider aggregation operators, because

the result size of an aggregation is typically small while its input

size is large. Thus, we can save large computational cost by paying

a small storage and creation cost. Likewise, projections can also

reduce the size of their input considerably. We do not consider se-

lections as view candidates, because materializing the input of the

selection and partitioning it on the attribute used in the selection is

usually more effective than using selections along.

DEFINITION 6 (VIEW CANDIDATES). For a query Q and view

configuration C, the set Vcand(Q) of view candidates for Q con-

tains all subqueries Q′ of Q that fulfill the following conditions:

• Q′ is of the form γ(Q1), Q1 ⊲⊳ Q2, or π(Q1)
• Q′ does not exist in V

6.2 Partition Candidates
Similar to our view candidate generation approach, we want to

use the characteristics of the current workload to guide the par-

tition candidate generation. Note that we may maintain multiple

partitions of the same view on different attributes. Given a cur-

rent configuration of partitioned views C and statistics STAT kept

for this configuration as well as for candidates, we consider new

fragment candidates based on the selection conditions applied by

a query. For every conjunction in the condition of a selection, i.e.,

a selection σl≤A≤u(Q
′), which is a subquery of the current query

Q, we consider new partition candidates for the view correspond-

ing to Q′, say V , based on the selection condition over attribute

A. For the following discussions, without loss of generality, we

assume l ≥ A where A is the lowerbound of the domain of A, and

u ≤ Ā where Ā is the upperbound of the domain of A. It is trivial

to replace l with A and similar for u when the above conditions

do not hold. We have to distinguish several cases: 1) if we have

not materialized Q′ as a view V yet. In this case, we use l and u
to split the potential fragments in PSTAT(V,A) which contain these

points. If we have not yet gathered any intervals for this partition

of V yet (PSTAT(V,A) = ∅), then we initialize the partition with a

single fragment: {D(V,A)} and then use l and u to split this frag-

ment; 2) if a view V corresponding to Q′ and a partition P(V,A)
on attribute A already exists, then we again use the end points of

the interval defined by the selection condition to consider splits of

existing fragments that contain an end point as candidates. For each

interval I ′ = [l′, u′] of P(V,A) and the interval I = [l, u], we cre-

ate new candidates if either l ∈ I ′ or u ∈ I ′ using l respective u
(or both) as split point(s).

DEFINITION 7 (PARTITION CANDIDATES). Let Q be a query,

C a view configuration, and STAT a view statistics. Consider a

subquery σl≤A≤u(Q
′) of Q where Q′ corresponds to a view V in

VSTAT and the intervals associated with partitioning V on attribute

A (either P(V,A) if the view is in the pool or PSTAT(V,A) other-

wise). We use I to denote [l, u]. For every interval I ′ = [l′, u′]
from P(V,A) respective PSTAT(V,A) we define the set of parti-

tion candidates Pcand(V,A,Q′) according to V , Q, and Q′ as the

union of the sets of candidates for every such I ′:

1. There is no overlap between these two intervals, i.e., I ′∩I =
∅. In this case, no candidates are generated.

2. The query selection interval contains the partition interval,

i.e., I ′ ⊆ I . In this case, no candidates are generated.

3. The query selection interval overlaps the fragment interval

from the left, i.e., l < l′ < u < u′. In this case, intervals

[l′, u] and (u, u′] are considered as candidates.

4. The query selection interval overlaps the fragment interval

from the right, i.e., l′ < l < u′ < u. In this case, intervals

[l′, l) and [l, u′] are considered as candidates.

5. The query selection interval is contained in the fragment in-

terval, i.e., I ⊂ I ′. In this case, we consider three intervals

as candidates: [l′, l), [l, u], and (u, u′].

EXAMPLE 3. Consider a view V (A,B) that is partitioned on

attribute A using intervals I1 = [0, 10], I2 = (10, 20] and I3 =
(20, 30]. For an incoming query Q = σ5≤A≤25(V ) we would con-

sider the following candidates. Interval I = [5, 25] overlaps with

I1 on the right (case 4). Thus, we create candidates [0, 5) and

[5 − 10]. No candidates are generated for I2 (case 2). Finally, I
overlaps with I3 from the left (case 3) and we generate additional

candidates (20, 25] and (25, 30].
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7. VIEWS AND PARTITION SELECTION
Our view and fragment selection method consists of two steps:

1) exclude candidates for which we have not gathered enough ev-

idence of their effectiveness in improving the performance of the

workload and 2) decide which candidates to materialize and which

ones to evict to keep the pool size below the limit (Smax). The

second step ranks views and fragments based on their value (Φ)

as defined below. For each new fragment, we either create it by

splitting existing fragments or create it as an overlapping fragment.

7.1 Cost and Benefit Model
We use a heuristic cost-benefit model to keep track of the “ben-

efits” of view and fragment candidates. The benefits of a candi-

date are computed based on the potential savings in query execu-

tion time if this candidate would have been used to answer queries

from the workload, the cost of creating it, its storage size, and other

useful statistics for views and fragments. For candidates that have

not been generated yet, we estimate their storage size and creation

cost. We use this information to select which candidates to mate-

rialize and to decide which candidates to evict to make space for

more competitive candidates.

View Statistics. For each view (candidate) V we keep the follow-

ing statistics in VSTAT: the storage size S(V ) occupied by the view,

a set of timestamps T (V ) when the view was used to answer a

query, and the creation cost of the view COST(V ) (which is ini-

tially estimated when we first see this view as a candidate). The

creation cost is replaced with the actual cost once the first query

containing the view as a subquery has been executed. The same

applies to S(V ).
We compute the accumulated benefit B(V, tnow) for a view at

time tnow as follows. B(V, tnow) is the cost we (could) have saved

by using the view. The benefit is defined as

B(V, tnow) =
∑

Q used V at t

(COST(Q)−COST(Q/V ))·DEC(tnow, t)

where COST(Q) is the cost of query Q without using the view,

COST(Q/V ) is the cost of running the query when using view

V , and DEC(tnow, t) is a monotonically decreasing function (in

tnow − t) mapping the current time (tnow) and time when query

Q was executed (t) to a value in [0, 1]. DEC(tnow, t) is used to

weight past cost savings by their age. This enables our approach to

adapt to a changing workload. In our implementation we use the

decay function as defined below which times out any benefit after

a threshold tmax and otherwise counts it proportionally based on
t

tnow
.

DEC(tnow, t) =

{

0 if (tnow − t) > tmax

t
tnow

otherwise

View Value. Similar to Nectar [15], for each view V in the pool

and candidate in VSTAT we compute its “value” at time tnow as a

cost-benefit ratio Φ(V, tnow). We use Φ during view selection to

determine which views should be in the next configuration (views

with a higher value are preferred over views of lower value). Using

COST(V ), the accumulated benefit B(V, tnow), and size S(V ), we

define Φ(V, tnow) as:

Φ(V, tnow) =
COST(V ) · B(V, tnow)

S(V )

The intuition behind the definition of Φ(V, tnow) is that when

a view is expensive to generate or the accumulated benefit of the

view is large, its value is high and it is preferred over views with

lower value. On the other hand, if the size of the materialized view

is large, it is less competitive than other views of smaller size and

similar benefits.

Fragment Statistics. Similar to view statistics we also keep sep-

arate statistics for every fragment in P(V,A) (a partition of view

V on attribute A that is in the pool) as well as PSTAT(V,A) (a po-

tential fragment candidate which is currently not materialized, but

we have considered as a candidate before). For each such interval

I (corresponding to a fragment F ) we maintain the following in-

formation: the storage size of the fragment S(I), its creation cost

COST(I), and a set of timestamps T (I) when the fragment was hit

(it was or could have been used to answer a query). These times-

tamps are used to compute the fragment value in a similar fashion

as the view value explained above. We define the cost of creating

the fragment to be the same as the cost of creating the partitioned

view this fragment belongs to. This is because in order to recom-

pute the fragment if it is not in the pool, we have to recompute the

view’s query and partition it.

Fragment Value. The value of a fragment is also modeled as a

cost-benefit ratio in the same fashion as for views with the excep-

tion that benefits are computed as a ratio of the view creation cost

and the relative size of the fragment compared to the total size of

the view. The accumulated benefit for a fragment I is computed as

B(I, tnow) =
∑

Q used I at t

(
S(I)

S(V )
· COST(V ) · DEC(tnow, t))

and

Φ(I, tnow) =
COST(V ) · B(I, tnow)

S(I)

Probabilistic Fragment Benefit Model. The definition of the value

of a fragment above ignores the fact that fragments in a partition

of a view do not exist independent of each other, i.e., two frag-

ments may be “neighbors” (e.g., [0, 10] and [11, 30]) or may be

quite dissimilar (e.g., [0, 10] and [1000, 1010]). If we treat the hits

on fragments we have observed so far in the workload as sam-

ples of a probability distribution, then when using these samples

to determine the underlying distribution it would be natural to con-

sider “distance” between fragments in the mechanism that deter-

mines the distribution. For instance, if we observe a large num-

ber of hits on a fragment [0, 5] and no hits on fragments [6, 10]
as well as [11, 15], then it is still reasonable to assume that frag-

ment [6, 10] which is close to a “hot spot” has a higher likelihood

to be used in the future than fragment [11, 15]. Based on this ob-

servation, we present a mechanism for adjusting the number of hits

per fragment. Define the number of hits H(I) for a fragment I as

H(I) =
∑

Q used I at t DEC(tnow, t)).We now define the adjusted

number of hits HA(I) to compute a more realistic fragment value.

Consider a partition PI(V.A) for a view V . Note that we do not

require that all intervals in I are currently in the pool. We keep

statistics for each I ∈ I no matter whether materialized or not.

Let Htotal denote the total hits over all fragments of I adjusted by

our decay function, i.e., Htotal =
∑

I∈I H(I). Htotal is the total

number of queries that used at least one fragment from PI(V.A)
weighted by DEC(tnow, t).

203



Based on the analysis of the real-life workloads presented in Sec-

tion 1, it is reasonable to assume that a normal distribution under-

lies accesses to values of an attribute’s domain. Thus, given the

observed hits for fragments we want to choose the mean µ and vari-

ance σ2 of a normal distribution such that the resulting distribution

best fits the observed hits. Here we apply well-known techniques

from statistics for computing the maximum likelihood estimators

(MLE) for the mean µ̂ and variance σ̂2 of normal distributions [28]

to do the curve fitting.

We split the domain of attribute A into equi-size intervals p1,
. . . , pn which we call parts to distinguish them from fragments.

We choose a quantification such that no part pi is partially con-

tained in an interval I ∈ I. For instance, for a domain [0, 20] if

I = {[0, 10], [11, 15], [16, 20]} we may choose parts of size 5:

{[0, 5], [6, 10], [11, 15], [16, 20]}. Based on the hits recorded for

fragments I ∈ I we then determine the hits for each part pi. For

each fragment, we split the number of hits to this fragment evenly

to the parts that are contained in the fragment. Let I′ ⊆ I be the

intervals containing pi and #I the number of parts contained in

interval I . We define H(pi) =
∑

I∈I′

H(I)
#I

, i.e., summing up the

number of hits for each interval containing the part weighted based

on the number of parts the interval contains. The likelihood func-

tion L for a standard distribution N(µ, σ) and set of observations

{p1, . . . , pn} determines how likely it is that this particular distri-

bution produced the given set of observations. It is defined as:

L(µ, σ2; p1, p2, ..., pn) = (2πσ2)−n/2exp(−
1

2σ2

n
∑

i=1

(pi − µ)2)

By solving the log-likelihood function of the above function we

have the maximum likelihood estimator mean and variance:

µ̂n =
1

n

n
∑

i=1

pi σ̂2
n =

1

n− 1

n
∑

i=1

(pi − µ̂n)
2

The distribution N(µ̂, σ̂) is the normal distribution which is most

likely given the observations (it maximizes the likelihood function

L). Note that we use the adjusted sample variance for the estima-

tor σ̂2
n because usually we do not expect a very large number of

fragments for a view. This is a standard approach in statistics [28].

Note that since the MLE method is inexpensive we repeatedly

adapt the estimation during the selection process for each incom-

ing query. Based on the smoothed distribution of value accesses

N(µ̂, σ̂) we get from the maximum likelihood method and Htotal,

the total number of hits over all partitions, we compute the adjusted

hits for a fragment I = [l, u] as:

HA(I) = Htotal · (P (x ≤ u)− P (x ≤ l))

Here P (x ≤ c) is an estimate (which ignores interval overlap) of

how likely an access to a point in the interval [−∞, c] is computed

over the normal distribution we have estimated using MLE. Note

that this technique works for any probability distribution such as

a Zipfian distribution or a mixture of distributions as long as it is

feasible to compute the MLE of such a distribution given the obser-

vations. Here we choose the normal distribution, because it closely

resembles the access patterns we have found in the real world work-

loads we have studied.

7.2 Filtering View and Partition Candidates
Our goal is to only save an intermediate result as a materialized

view if this view is likely to be reused in the future and if the benefit

of reuse B(V, tnow) will offset the cost COST(V ) of materializing

this view. Thus, the subset of candidates we consider for material-

ization is:

Vsel = {V | V ∈ Vcand ∧ COST(V ) ≤ B(V, tnow)}

We apply a similar filtering step for fragment candidates. This

step is only applied for fragment candidates of existing partitions,

i.e., when we decide whether to refine an existing partition based

on selection, but not for candidates fragments for partitions which

are not in the pool yet. Here we use the total benefits for a fragment

computed based on its adjusted hits (using the estimated probabil-

ity distribution of hits). Consider a candidate fragment Icand for

partition P(V,A) that is a candidate for the current query. The

cost of creating Icand depends on which fragments are currently in

P(V,A). To materialize Icand we have to read all fragments I such

that I∩Icand 6= ∅, extract data that belongs to Icand and then store

Icand. While we do not know upfront the actual size S(Icand) for a

fragment Icand, we can estimate it based on the sizes of fragments

currently in P(V,A) that overlap with Icand. We assume that val-

ues are uniformly distributed within each fragment, and thus we can

use the relative overlap between Icand and an intervals in P(V,A)
to estimate the size as:

S(Icand) =
∑

I∈P(V,A):I∩Icand 6=∅

‖Icand ∩ I‖

‖I‖
· S(I)

Based on this estimate of the size for a candidate fragment we

have not materialized yet (otherwise we would know its size) we

estimate the cost of creating the fragment as:

COST(Icand) = wwrite·S(Icand)+
∑

I∈P(V,A):I∩Icand 6=∅

wread·S(I)

Here wread (and wwrite) denote implementation specific con-

stants for reading (respectively, writing) data. In our implementa-

tion of Deepsea, wwrite is typically much larger than wread if we

store a fragment in HDFS. Given the cost and estimated size, we

only consider fragments for which the benefits are larger than the

creation cost:

Psel = {I | I ∈ Pcand ∧ COST(I) ≤ B(I)}

7.3 View and Fragment Selection
Given the prefiltered set of candidate views Vsel, we now deter-

mine which of them to materialize (admit to the pool). In case this

causes the total size of the views and fragments to exceed the limit

Smax, we also have to decide which views or fragments to evict

from the pool. Note that for selection we treat each fragment of

a view independently. That is, the views in the pool do not par-

take in the selection process, only their fragments. However, can-

didate views and fragments are treated alike (candidate fragments

are only created for partitioned views in the pool and view candi-

dates are only created for views that do not currently exist in the

pool). Thus, the set of views and fragments that are considered to

be selected for the next configuration are:

ALLCAND = Vsel ∪ Psel ∪
⋃

V ∈V,A∈SCHEMA(V )

P(V,A)

We rank the elements (views and fragments) in this set based

on their value Φ (defined in Section 7.1). We then greedily add

elements to the new configuration based on their rank.

Let ALLCAND[i] be the ith element from ALLCAND accord-

ing to Φ in decreasing order. We keep the first n elements from

ALLCAND for the largest n such that
∑n

i=0 S(ALLCAND[i]) ≤
Smax:

Ci+1 = {ALLCAND[i] | i ∈ {0, . . . , n}}

where

n = argmax
j∈N

(

j
∑

i=0

S(ALLCAND[i]) ≤ Smax)
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8. VIEW AND PARTITION MATCHING
The first important step when processing a query Q with our ap-

proach is to determine which views (whether in the pool or not)

can be used to answer query Q. We call this process matching. The

purpose of this step is to 1) update the statistics of views and frag-

ments that could be used to answer query Q and 2) to determine the

most efficient way of executing the query given the current config-

uration. The problem of finding all rewritings of a query Q given a

set of views, i.e., queries that use the views and are equivalent to the

input query, has often been called query answering with views. As

mentioned earlier this problem in its full generality is undecidable

for the class of queries we are interested in. We adopt a technique

from Goldstein and Larson [14] that uses a sufficient condition to

determine whether a view can be used to answer a query and in-

dexes views such that this condition can be efficiently tested. We

use a modified version of the index structure introduced in this work

adapted for partitioned views to speed up matching.

8.1 A Sufficient Condition for Matching
The sufficient matching condition of Goldstein and Larson is

checked over a representation of the query and the view (called sig-

nature) which is mostly independent of syntax, but can nonetheless

be constructed from a concrete plan for the query. Signatures ab-

stract away certain syntactic features such as join order. Our logical

matching approach compares subqueries of a query with material-

ized views by computing the signatures for both the view and the

subquery, and then checking the sufficient condition of Goldstein

and Larson. Thus, we are able to also match parts of a query with

a view. The signature of a query consists of the set of relations

accessed by the query (relation classes), information on join and

selection predicates (attribute equivalence classes, selection pred-

icate ranges, and remaining selection predicates), projections, ag-

gregation functions and group-by expressions. We refer the reader

to Goldstein and Larson [14] for definitions of these abstractions.

8.2 Partition Matching
Once we have determined a rewriting using the views, the next

step is to determine which partition of each view included in the

rewriting to use and for each partition determine a subset of the

fragments to be used. In order to match a fragment and a query, we

must first find a match between the view represented by the frag-

ment and the query. Note that a fragment of a view V corresponds

to a view σl<A<u(V ) where A is the attribute on which V is parti-

tioned on, and u and l are the boundaries of the fragment.

For every view V partitioned on A that is matched against a sub-

query Q′ of the current query Q, we determine the restrictions Q′

places on attribute A. This is done by using information about

value ranges of selection conditions that are stored in the Attribute

Value Ranges part of a query’s signature (see [14] for a detailed

explanation of the signature). Given our definitions of overlapping

partitioning, the matching between a set of overlapped fragments

and a query selection range is a set cover problem and thus is in-

tractable. We use Algorithm 2 that greedily matches the fragments

to a query selection range. Note that we use I to denote the lower

and Ī to denote the upper bound of an interval I . We look for a

set of fragments whose union covers the selection range. We main-

tain a variable ucovered that stores the upper bound of the region

covered so far. ucovered is initialized to the lower bound of the

selection range of the query uθ . In each iteration of the loop, we

greedily add the fragment that has the largest lower bound among

the fragments that cover ucovered from the left.

8.3 Indexing Partitioned Views

Algorithm 2 Partition Matching Algorithm

1: procedure PARTITIONMATCHING(θ, I)
2: uθ ← Upperbound of θ
3: lθ ← Lowerbound of θ
4: F ← ∅
5: ucovered ← lθ
6: while ucovered < uθ do

7: Icand ← {I | I ∈ I ∧ I ≤ ucovered ∧ Ī > ucovered}
8: Icur = argmaxI∈Icand

I

9: ucovered ← ¯Icur
10: F ← F ∪ {Icur}
11: end while
12: return F

When computing matches between a query Q and a set of mate-

rialized views, it would be too slow to evaluate the sufficient match-

ing condition over the signatures of all pairs of subqueries of Q and

views in the pool. We adapt an in-memory index for view signa-

tures called a filter tree [14] to be able to prune the search space

early-on. A node in the tree is represented by a set of (key, pointer)

pairs, where the key is a set of values, and the pointer points to

a node on the next level. Each level represents one of the signa-

ture parts, e.g., the relations accessed by the view. The pointer of

a leaf node points to a view. For each view, we store its partition

information. For each partition of a view, we store the boundaries

and statistics for each of its fragments. Note that we allow multiple

partitions for the same view to exist as long as they are on different

attributes. The search key for a query Q is its signature. We also

use this index to keep the statistics for view and partition candidates

(covered in Section 6).

8.4 Updating View and Partition Statistics
During view matching we update the statistics we keep for each

view and its fragments, no matter whether the view or fragment is

currently in the pool or not. For every rewriting Qrewr ∈ Rewr(Q)
let V be a view that has been used in Qrewr and for each such view

P(Qrewr, V, A) be the fragments of the partition of V on attribute

A that are accessed by Qrewr . We update the statistics for each

such view and its fragments to reflect that it could be used to an-

swer the query Q using the formulas presented in Section 7.1.

9. IMPLEMENTATION
DeepSea extends Hive [27], an SQL-on-Hadoop system [1]. While

we have chosen Hive, because it is relatively mature, our techniques

are applicable for any system that supports declarative querying on-

top of shared-nothing dataflow systems.

Query Processing in DeepSea. Figure 4 shows how a query is

processed by DeepSea. We use the parser and semantic analyzer

of Hive to transform the input query into an abstract syntax tree

(AST). The AST is translated into a directed acyclic graph (DAG)

of operators (operator tree) and a task DAG (task tree) is generated

from the operator DAG. Task DAGs assign operators to map and

reduce phases. Our view matching module (see Section 8) rewrites

the task DAG by replacing subqueries with references to material-

ized views or fragments. The rewritten DAG is then transformed

into a DAG of MapReduce jobs to form a execution plan. We have

implemented a partition operator that splits its input based on a list

of fragment predicates which determine which input tuple belongs

to which fragment. The output for each fragment is routed to a file

sink operator that writes the fragment’s content to a file.

Simulator. Testing view and fragment selection strategies requires

extensive experiments over a large number of diverse workloads.
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Figure 4: Query processing in DeepSea

Description Values (default in bold)

Instance size 100GB, 500GB

Pool size 50GB, 125GB, 250GB, 500GB, ∞
Query selectivity 1% (Small), 5% (Medium), 25% (Big)

Query skew Uniform (U), Light (L), Heavy (H)

Table 1: Parameters and their values

Since the benefits of partitioned views are more pronounced for

large datasets, it is necessary to consider such datasets which re-

sults in large query runtimes. To be able to quickly test variations

of a workload with different selection conditions ranges we have

developed a simulator to study the efficiency of our selection al-

gorithm and compare it to alternative approaches. We run a series

of query templates with different selection patterns (introduced in

Section 10) and gather statistics such as the storage size of views

and fragments as well as the elapsed time. The simulator keeps

track of the query template and the selection pattern that is running.

It builds the necessary views and partitions based on the selection

strategies and the size limit of the materialized view pool. Once

sufficient statistics have been gathered for a query template, we es-

timate the runtime of future executions of a query template using

linear regression.

Bounding Fragment Size. There are situations where bounding

the size of a fragment (from above or below) may be beneficial.

If the access patterns of queries are limited to a small subrange of

the domain of an attribute, then our approach may create very large

fragments for the parts of the domain that are accessed infrequently.

In general it would be beneficial to split such large fragments, be-

cause the potential benefit of large fragments is small while the

overhead of creating a few medium sized fragments instead is not

very high. We approach this problem by limiting the maximal size

of the fragments we create relative to the size of a view. We define

a threshold φ for the relative size of a fragment. When we material-

ize and partition a view, we split every fragment that is larger than

φ × S(V ) into smaller, equi-sized fragments. Big data systems

are usually built on top of distributed file systems that favors large

block sizes. For instance, HDFS has a default block size of 128

MB (or 64 MB depending on the version). We use the file system’s

block size as the lower bound for fragment size.

10. EVALUATION
We evaluate our system using the big data benchmark suite Big-

Bench [13]. We demonstrate the overall performance of DeepSea

using queries and data distributions that are modeled based on the

SDSS workload [2]. This ensures that our evaluation considers im-

portant characteristics of real workloads. We also use BigBench

to generate a set of synthetic workloads that are tailored to evalu-

ate our major contributions: adaptive and progressive partitioning,

exploitation of fragment correlations, and overlapping partitioning.

We generate instances of size 100GB and 500GB, both with uni-

form distribution, for the synthetic workloads. Table 1 shows pa-

rameters that we vary in the experiments as independent variables.

The default value for each variable is shown in bold. We use the

default value for the experiments unless otherwise mentioned. We

consider three different query selectivities: Small (S) means that the

selection condition returns 1% of the data; Medium (M) means that

the selection condition returns 5%; and Big (B) means 25%. We

use three different distributions for selection conditions of queries:

uniform distributed (U), lightly skewed (L), and heavily skewed

(H). Uniform means that for a fixed interval size, we pick a set

of intervals such that the mid-point of the intervals is uniformly

distributed. Lightly skewed means the mid-point of the selection

intervals follows a normal distribution over the domain with a vari-

ance set to 7.5% of the domain. Heavily skewed also uses a normal

distribution, but with the variance set to 0.25% of the domain.

Our evaluation is conducted on a cluster of 32 nodes. One node

is a dedicated master node with 8 threads and 48GB memory. Each

of the remaining 31 slave nodes has 6 threads, 12GB memory, and

a 400GB disk. All results are based on the average of at least three

runs, unless mentioned explicitly.

10.1 Workload for a Real-Life Application
We demonstrate two key properties of our system on a real-life

application: 1) we compare the performance of DeepSea when

there is no size limit for the materialization pool to Hive that does

not uses materialization and NP, a materialization strategy that stores

each view without partitioning them; 2) we compare the perfor-

mance of DeepSea when there is a size limit for the pool to state-

of-the-art view selection strategies such as the one of Nectar [15].

We create a histogram over the values of attribute ra for the

table PhotoPrimary of SDSS. We then generate a BigBench

dataset, and for all tables that contain attribute item_sk use the

histogram that we obtained from SDSS attribute ra to sample val-

ues for item_sk. Furthermore, we generate a query workload:

we pick ten query templates (Q1, Q5, Q7, Q9, Q12, Q16, Q20,

Q26, Q29, Q30) from BigBench that contain joins, and we add a

selection on attribute item_sk to these templates. We randomly

pick 1000 selection ranges from the SDSS workload (selections

on attribute ra of the table PhotoPrimary, kept in order of the

query submission time). Next, we randomly picked a BigBench

query template and mapped the selections of SDSS to selections on

item_sk of the BigBench queries. Thus, we obtain a workload

of 1000 BigBench queries simulating SDSS access patterns over

an SDSS data distribution to evaluate the overall performance of

DeepSea.

In this experiment, we compare DeepSea with two baselines.

The first is the unmodified Hive system (H in the graphs). The sec-

ond is a materialization strategy that does not use partitioning. We

call this strategy non-partition (or NP in the graphs). This is akin

to using a materialization strategy like ReStore [12]. However, in

constrast to ReStore which only uses physical matching, NP applies

our logical matching technique. Figure 5a shows performance re-

sults for the 500GB dataset without a pool size limit. Our approach

requires only 64.2% of the time of non-partition materialization to

execute the whole workload. Materialization without partitioning

results in roughly 65.6% of the time of Vanilla Hive.

To evaluate the effectiveness of DeepSea’s selection strategy, we

compare it with the view selection strategy of Nectar [15]. Nectar

does not consider accumulated benefit as a factor. To understand

the performance gain due to the use of accumulated benefit in con-

trast with the other innovations in DeepSea, we extended Nectar’s

cost-benefit model to include the accumulated benefit of a view or

fragment. The modified cost-benefit measure N+ for views which

we call Nectar+ is: N+(V ) = COST(V )×N (V )
S(V )×∆T

where ∆T is the

time elapsed since the last access to V and

N (V ) =
∑

Q used V at t

(COST(Q)− COST(Q/V ))

For fragments, we adapt our formula from Section 7.1 in a simi-

lar fashion by removing the application of the decay function. Fig-
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Figure 5: Workload simulating SDSS (1000 queries), 500GB

ure 5b shows results for Nectar (N in the graph), Nectar+ (N+ in the

graph), and DeepSea (DS in the graph) for different pool size lim-

its. We observe that Nectar+ consistently outperforms Nectar, and

DeepSea consistently outperforms Nectar+. When the size limit of

the materialized view pool is relatively large (500GB, which is the

total size of all base tables), the difference between Nectar, Nectar+

and DeepSea is marginal. When the size limit is shrunk to 10% of

the total size of all base tables, DeepSea shows its strength requir-

ing only ∼ 28% of the time of Nectar (20% faster than Nectar+) and

being 30% faster than Vanilla Hive. DeepSea keeps fragments that

can improve the overall performance in the pool, because they are

neighbors of more frequently accessed fragments. Nectar and Nec-

tar+, however, evict these fragments because of their low hit count.

When the pool limit is decreased to 5% of the total database size, all

three techniques perform poorly (worse than original Hive with no

materialization (Figure 5a)). This is because with such a small ma-

terialized view pool, all three strategies evict fragments that are ac-

cessed earlier and admit fragments that are accessed more recently.

Since evicted fragments may be accessed soon after eviction, there

is an "oscillation" in the pool with extra working being done for the

materialization and little or no gain seen from this extra work.

10.2 Adaptive and Progressive Partitioning
To understand the benefits of partitioning strategy, we compare

DeepSea with equi-depth partitioning (E in the graphs or E fol-

lowed by a number indicating the number of fragments). Equi-

depth is a simple, non-adaptive and non-progressive alternative to

DeepSea’s partitioning approach. To evaluate the benefit of pro-

gressive partitioning standalone, we tease out the benefits of using

DeepSea which is workload aware.

For this experiment, we do not bound the size of the largest frag-

ment. We use instances of query template Q30 and vary the selec-

tion condition of this query to produce workload sequences where

Q30_i denotes the ith query in a sequence.

First we generate a sequence of queries that has small selectivity

and is heavily skewed as defined at the beginning of this section.

Figure 6 shows the cost of partitioned view creation and the cost

for queries that reuse fragments. Figure 6a shows that when the

number of generated fragments increases, the cost for creating and

partitioning the view increases as well. In Figure 6b, we notice that

if the same number of fragments are generated by both approaches

(6 fragments in this experiment), equi-depth performs worse than

DeepSea because of the larger size of fragments that must be read

during query evaluation. Increasing the number of generated frag-

ments for equi-depth reduces the average runtime for the following

queries. However, when we set the number of fragments to be rel-

atively large (60 fragments), performance decreases. Small frag-

ment size affects performance negatively, because a large number

of files has to be read and data is unevenly distributed among tasks.

Figure 6c shows the cumulative time for the query sequence.

In addition to better performance, DeepSea also differs from

equi-depth partitioning in terms of the execution of MapReduce

jobs on the cluster. We analyze cluster utilization for the queries

that reuse the generated fragments by running the default query se-

quence on the default dataset. Besides noticing the time needed

in DeepSea is about 20% less than equi-depth, the number of map

tasks issued to the Hadoop engine is about 40% to 50% more for

equi-depth. The reason is that the fragments used by equi-depth to

answer the query are larger than the ones used by DeepSea. Thus,

the Hadoop engine issues more map tasks to parallelize the read

as much as possible. This indicates that equi-depth uses more re-

sources than DeepSea to answer the same queries.

We now investigate how characteristics of the workload affect

the performance of DeepSea compared to non-adaptive partition-

ing approaches such as equi-depth. In addition to measuring time

for running a workload of 10 such queries, we also project the time

(using linear regression) for 100 queries. Figure 7 shows the per-

formance of materialization without partitioning (NP), materializa-

tion using an equi-depth partition of a fixed size (E), and our Deep-

Sea approach using workload-aware partitioning (DS) compared to

Hive on a 500GB dataset. The settings are indicated by concatenat-

ing the abbreviations for the selectivity and query-skew settings, for

example, ML stands for medium selectivity and a lightly skewed

distribution over the selection ranges.

Figure 7a shows that both partitioning techniques (DeepSea and

equi-depth) perform well compared to Hive and non-partition ma-

terialization in all experiments. When the selectivity is large, (in-

dicated by B), our partition techniques can save 50 to 60% com-

pared to Hive. For medium (M) selectivity, the partition techniques

can save 60 to 70% and for small (S) selectivity the partition tech-

niques can save 70 to 80%. Materialization alone without partition-

ing (NP) provides only a 15 to 25% improvement over Hive.

For uniformly distributed selections, DeepSea, as expected, does

not provide a performance improvement over an equi-depth strat-

egy (E). This is because equi-depth is tailored for such a distribu-

tion and the adaptive techniques of DeepSea do not pay off. How-

ever, for lightly skewed and heavily skewed selections, DeepSea

has a noticeable advantage (up to 30%) over equi-depth partition-

ing. The performance of DeepSea increases and that of equi-depth

decreases when introducing more skew (switching from uniformly

distributed to lightly skewed and heavily skewed workloads). This

is because we use the same number of fragments for DeepSea and

equi-depth. When the workload is more and more skewed, there are

fewer and smaller fragments needed by DeepSea to get the same

benefit achieved by equi-depth.

Most optimizers will push down selections for reducing the size

of intermediate results. Our materialization strategy requires that

selections are not pushed down and hence we incur a performance

hit initially. But even for small selectivities, this cost is quickly

amortized over a workload. To understand when the additional

work DeepSea does (by not pushing selections) is worth the cost,

we plot the number of queries needed to recoup the cost of Deep-

Sea in Figure 7b. Notice that for both DeepSea and equi-depth

partitioning, the cost of not pushing a selection is recouped at al-

most the same point unless the workload is heavily skewed and

includes queries with a large selectivity (requesting large portions

of the data) in which case DeepSea has an advantage.

10.3 Exploitation of Fragment Correlations
We now compare our selection strategy that exploits fragment

correlations against Nectar’s strategy that is oblivious of such cor-

relations. We use a workload that consists of ten queries (template

Q30) that have big selectivity and are heavily skewed followed by

another ten queries (also template Q30) that have small selectivity

and are heavily skewed. We use a 500GB dataset with the pool
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Figure 6: Comparing equi-depth vs. adaptive partitioning (DeepSea) over workload using 10 instances of query template Q30, 100GB
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Figure 7: Varying selectivity and skew, Q30, 500GB

size limit set to 7GB. Figure 8a shows that DeepSea benefits from

smoothing the distribution of hits to fragments from the same par-

tition and, thus, is more likely to keep fragments that are similar to

frequently accessed fragments.

Recall that we smoothen the distribution of hits over an attribute’s

range by fitting it to a normal distribution. Figure 8 shows how the

performance of our approach is affected by the distribution under-

lying the selections in a workload. DeepSea significantly outper-

forms Nectar’s selection strategy if the real hits follow a normal

distribution. Importantly, it does not perform worse than Nectar if

the selection ranges follow a radically different distribution (Zipf).
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Figure 8: Selection ranges following Normal resp. Zipf distribution

10.4 Overlapping Partitioning
A key benefit of overlapping partitioning is that it writes less data

when repartitioning for certain patterns that we observe in real-life

applications frequently. In order to compare overlapping partition-

ing with horizontal partitioning, we generate a workload sequence

of 30 queries from template Q30 with small selectivity and heavy

skew. The selections of Q30_1 to Q30_10 have a midpoint of

20,000, the selections of Q30_11 to Q30_20 have a midpoint of

40,000, and the selections of Q30_21 to Q30_30 have a midpoint

of 60,000. The domain of the selection attribute is [0, 400,000].

We generate this workload to simulate the common query selection

pattern that we have observed in SDSS.
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Figure 9: Overlapping partitioning (Q30_1 to Q30_30)

We are switching the pattern between Q30_10 and Q30_11 and

between Q30_20 and Q30_21. Figure 9 shows that overlapping

partitioning is more robust against changes in the workload, be-

cause it avoids writing a fragment that extends from the current

upper bound of the selections to the upper bound of the domain

that has not been queried yet.

We also generated a workload with 200 queries using query tem-

plate Q5, all of which have big selectivity and are heavily skewed.

The selection ranges for the first 100 queries were sampled from

one distribution while the selection ranges for the next 100 queries

follow a different distribution. Running this workload on the 100GB

dataset, we compare against materialization without partitioning

(NP in the graph), equi-depth partitioning with 5 fragments (E-5 in

the graph) and DeepSea with no repartitioning (NR in the graph).

Figure 10a shows for changing workloads, DeepSea outperforms

the non-progressive approach that never repartitions by 7% and

equi-depth partitioning by 27%. Figure 10b shows the cumulative

time of DeepSea normalized to the cumulative time of the NR ap-

proach (no repartitioning), from query 101 (the first query follow-

ing the new distribution) to query 200. DeepSea performs worse

than NR for the first 30 queries because of the cost of repartition-

ing. This cost, however, is amortized by the subsequent queries.
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Figure 10: Adaptation to workload changes, Q5, 100GB

11. CONCLUSIONS
DeepSea is the first adaptive, progressive, workload-aware ap-

proach for automatic materialization and partitioning of views. Our
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cost-benefit model for both views and fragments takes the correla-

tions among fragments into account. Our progressive partitioning

accommodates both dynamic analytic workloads and exploratory

workloads where users explore multiple regions in the data before

finding (and then focusing on) a region of interest. DeepSea is

implemented in Hive and our experiments demonstrate that our ap-

proach is more effective than traditional materialization techniques

that do not consider the physical design of materialized views or do

not adapt online to the workload. We also demonstrate that for real

workloads, our view/fragment selection strategy outperforms state-

of-the-art selection techniques when the materialized view pool has

a small size limit.

In the short term, there are several interesting ways in which we

can improve DeepSea including considering how to merge consec-

utive fragments that are mostly accessed together and how to best

partition views on multiple attributes. DeepSea contributes to a rich

literature on adaptive, progressive physical design strategies. For a

fixed memory overhead, DeepSea selects a set of partitioned views

and fragments of views to optimize the query performance (or min-

imize the read overhead). In the future, we would like to consider

updates and explore how our techniques could be used with dif-

ferent optimization goals (including minimizing update overhead).

We also would like to integrate our approach with query optimiza-

tion, this would allow us to explore strategies that potentially select

a more expensive query plan if it allows the materialization of in-

teresting views that could benefit the workload.
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ABSTRACT
Relational HTML tables on the Web contain data describ-
ing a multitude of entities and covering a wide range of
topics. Thus, web tables are very useful for filling missing
values in cross-domain knowledge bases such as DBpedia,
YAGO, or the Google Knowledge Graph. Before web ta-
ble data can be used to fill missing values, the tables need
to be matched to the knowledge base in question. This
involves three matching tasks: table-to-class matching, row-
to-instance matching, and attribute-to-property matching.
Various matching approaches have been proposed for each
of these tasks. Unfortunately, the existing approaches are
evaluated using different web table corpora. Each individual
approach also only exploits a subset of the web table and
knowledge base features that are potentially helpful for the
matching tasks. These two shortcomings make it difficult to
compare the different matching approaches and to judge the
impact of each feature on the overall matching results.
This paper contributes to improve the understanding of the
utility of different features for web table to knowledge base
matching by reimplementing different matching techniques as
well as similarity score aggregation methods from literature
within a single matching framework and evaluating different
combinations of these techniques against a single gold stan-
dard. The gold standard consists of class-, instance-, and
property correspondences between the DBpedia knowledge
base and web tables from the Web Data Commons web table
corpus.

1. INTRODUCTION
Cross-domain knowledge bases such as DBpedia [18], YAGO

[17], or the Google Knowledge Graph [36] are used as back-
ground knowledge within an increasing range of applications
including web search, natural language understanding, data
integration, and data mining. In order to realize their full
potential within these applications, cross-domain knowledge
bases need to be as complete, correct, and up-to-date as
possible. One way to complement and keep a knowledge base

c©2017, Copyright is with the authors. Published in Proc. 20th Inter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

up to date is to continuously integrate new knowledge from
external sources into the knowledge base [10].

Relational HTML tables from the Web (also called web
tables) are a useful source of external data for complementing
and updating knowledge bases [31, 10, 40] as they cover a
wide range of topics and contain a plethora of information.
Before web table data can be used to fill missing values (”‘slot
filling”’) or verify and update existing ones, the tables need
to be matched to the knowledge base. This matching task
can be divided into three subtasks: table-to-class matching,
row-to-instance matching, and attribute-to-property match-
ing. Beside the use case of complementing and updating
knowledge bases, the matching of web tables is also neces-
sary within other applications such as data search [40, 1] or
table extension [41, 8, 21].

Matching web tables to knowledge bases is tricky as web
tables are usually rather small with respect to their number
of rows and attributes [19] and as for understanding the se-
mantics of a table, it is often necessary to partly understand
the content of the web page surrounding the table [41, 20].
Since everybody can put HTML tables on the Web, any kind
of heterogeneity occurs within tables as well as on the web
pages surrounding them. In order to deal with these issues,
matching systems exploit different aspects of web tables (fea-
tures) and also leverage the page content around the tables
(context) [42, 41, 19].

There exists a decent body of research on web table to
knowledge base matching [3, 22, 25, 39, 42, 16, 32]. Unfortu-
nately, the existing methods often only consider a subset of
the three matching subtasks and rely on a certain selection
of web table and knowledge base features. In addition, it is
quite difficult to compare evaluation results as the systems
are tested using different web table corpora and different
knowledge bases, which in some cases are also not publicly
available. What is missing is an transparent experimental
survey of the utility of the proposed matching features using
a single public gold standard covering all three matching
subtasks.

Whenever different features are used for matching, a method
is required to combine the resulting similarity scores. While
certain similarity aggregation methods work well for some
tables, they might deliver bad results for other tables. Thus
in addition to comparing different features and respective
similarity functions, we also compare different similarity ag-
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gregation methods. We focus the comparison on matrix
prediction methods [33, 5] which are a specific type of sim-
ilarity aggregation methods that predict the reliability of
different features for each individual table and adapt the
weights of the different features accordingly.

The contributions of this paper are twofold:

• We provide an overview and categorization of the web
table and knowledge base features (together with re-
spective similarity and similarity aggregation methods)
that are used in state-of-the-art web table matching
systems.

• We analyze the utility of the different matching fea-
tures using a single, public gold standard that covers
all three subtasks of the overall matching task. The
gold standard consists of class-, instance-, and prop-
erty correspondences between the DBpedia knowledge
base [18] and web tables from the Web Data Commons
table corpus [19].

The paper is organized as follows: Section 2 gives an
overview of the overall matching process. Section 3 describes
and categorizes the web table and knowledge base features.
Section 4 discusses how the features can be used within the
three matching tasks and describes the matchers that are
employed to exploit the features within the experiments. The
aggregation of similarity scores using matrix predictors is
discussed in Section 5. Section 6 describes the gold standard
that is used for the experiments. Section 7 compares the
results of the different matrix prediction methods. Section 8
presents the matching results, compares them with existing
results from the literature, and analyzes the utility of each
feature for the matching tasks. Conclusions are drawn in
Section 9.

2. OVERALL MATCHING PROCESS
We use the model and terminology introduced by Gal and

Sagi in [15] to describe the overall process of matching a
set of web tables and a knowledge base. Figure 1 shows
an exemplary matching process. As input, two sources are
required while as output, the process generates correspon-
dences between manifestations of the sources. We consider
everything within the sources a manifestation, e.g. manifes-
tations are rows and columns of a table as well as instances,
properties, and classes within a knowledge base. The internal
components of a process are called first line matchers (1LM)
and second line matchers (2LM).

A first line matcher (1LM) takes one feature of the man-
ifestations as input and applies a similarity measure. As
an example, a first line matcher gets the labels of the dif-
ferent attributes (columns) of a web table and the labels
of the properties of a specific class within the knowledge
base as feature, tokenizes both labels, removes stop words,
and compares the resulting sets using the Jaccard similarity.
The resulting similarity scores are stored as elements in a
similarity matrix. In most cases, only considering a single
feature is not sufficient for matching two sources. Thus, an
ensemble of first line matchers is applied, ideally covering
a wide variety of features exploiting different aspects of the
web tables and the knowledge base.

Second line matchers (2LM) transform one or more sim-
ilarity matrices into a resulting similarity matrix. Gal [14]
distinguishes decisive and non-decisive second line matchers.
Non-decisive matchers do not take any decision about the
resulting correspondences, e.g. they only aggregate matri-
ces. Typical aggregation strategies of non-decisive second
line matchers are to take the maximal elements that can
be found among the matrices or to weight each matrix and
calculate a weighted sum. In the example depicted in Figure
1, the aggregation is performed by summing up the elements
of both matrices. Non-decisive second line matchers are also
referred to as combination methods [9] or matcher composi-
tion [11].

In contrast to non-decisive matchers, decisive second line
matchers create correspondences between manifestations.
For instance, a second-line matcher that applies a threshold
is decisive because it excludes all pairs of manifestations
having a similarity score below this threshold. It is often
desirable that a single manifestation within a web table is
only matched to a single manifestation in the knowledge base.
To ensure this, so called 1 : 1 decisive second line matchers
are used. In our example, the 1 : 1 matcher decides for the
highest element within each matrix row and sets them to 1,
all other elements are set to 0.

3. FEATURES
Features are different aspects of web tables and the knowl-

edge base that serve as input for first line matchers. We
perceive web tables as simple entity-attribute tables, mean-
ing that each table describes a set of entities (rows in web
tables) having a set of attributes (columns). For each entity-
attribute pair, we can find the according value in a cell. We
require every table to have an attribute that contains natural

Figure 1: The matching process
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language labels of the entities (called entity label attribute),
e.g. the entity label of the city Mannheim is “Mannheim”.
All other attributes are either of data type string, numeric
or date. We currently do not consider any other data types
like geographical coordinates as for instance taken into ac-
count by Cruz et al. [6] or tables with compound entity label
attributes [20]. Further, each attribute is assumed to have a
header (attribute label) which is some surface form of the at-
tribute’s semantic intention. In order to distinguish between
web tables and the knowledge base, we use the terms entity
and attribute when talking about web tables and instance
and property when talking about the knowledge base.

We use the categorization schema shown in Figure 2 for
categorizing web tables features. In general, a feature can
either be found in the table itself (Table T ) or outside the ta-
ble (Context C). As context features, we consider everything
that is not directly contained in the table, e.g. the words
surrounding the table. Context features can either be page
attributes (CPA) like the page title or free text (CFT ). We
further divide table features into single features (TS), e.g. a
label of an entity, and multiple features (TM), e.g. the set of
all attribute labels occurring in a table. Single features refer
to a value in a single cell while multiple features combine
values coming from more than one cell.

Figure 2: Web table feature categories

Table 1 gives an overview of all features that we consider
and classifies them by category. As single table features we
use the entity label, the attribute label, as well as the values
that can be found in the cells. Multiple features are the
entities as a whole, the set of attribute labels, and the table
as text. We represent multiple features as bag-of-words. For
example, the set of attribute labels can be characteristic for
a table, e.g. the attribute labels “population” and “currency”
give an important hint that the table describes different
countries.

As context features, we use the page attributes title and
URL and as free text feature the words surrounding the
table. Often, the URL as well as the title of the web page
contains information about the content of the table, e.g. the

URL http://airportcodes.me/us-airport-codes indicates that
a table found on this page might describe a set of airports.
Context features are often not directly related to a specific
table which makes it tricky to exploit them for matching.
Nevertheless Yakout et al. [41] as well as Lehmberg [20]
found context features to be crucial for high quality match-
ing. Braunschweig et al. [1] take the surrounding words to
extract attribute-specific context in order to find alternative
names for attribute labels. The CONTEXT operator of the
Octopus system [3] uses context features to find hidden at-
tributes which are not explicitly described in the table.

Most state-of-the-art matching systems only exploit single
table features [26, 43, 38, 40, 25, 22, 24, 39, 23, 16]. Mul-
tiple table features are considered by Wang et al. [40] (set
of attribute labels), by the TableMiner system [42] (set of
attribute labels and entities), and by the InfoGather sys-
tem [41] (set of attribute labels, entities, and tables). Only
the systems InfoGather and TableMiner leverage context
features.

Table 2 shows the features of the knowledge base (DBpedia)
that we exploit within the experiments. Analog to the table
features, DBpedia features can either refer to a single triple,
e.g. a triple representing the information about an instance
label, or to a set of triples like the set of all abstracts of
instances belonging to a certain class.

In addition to the web table and knowledge base features,
external resource can be exploited for matching, e.g. general
lexical databases like WordNet [12]. For matching web tables,
systems use external resources which have been created based
on co-occurrences [39], that leverage a web text corpus and
natural language patterns to find relations between entities
[35], or that exploit the anchor text of hyperlinks in order to
find alternative surface forms of entity names [2].

4. MATCHING TASKS
The overall task of matching web tables against a knowl-

edge base can be decomposed into the subtasks table-to-
class matching, row-to-instance matching, and attribute-to-
property matching. In this section, we provide an overview
of the existing work on each subtask. Afterward, we describe
the matching techniques that we have selected from the lit-
erature for our experiments. We employ the T2KMatch
matching framework [32]1 for the experiments and imple-
ment the selected techniques as first line matchers within

1http://dws.informatik.uni-mannheim.de/en/research/
T2K

Table 1: Web table features

Feature Description Category
Entity label The label of an entity TS
Attribute label The header of an attribute TS
Value The value that can be found in a cell TS
Entity The entity in one row represented as a bag-of-words TM
Set of attribute labels The set of all attribute labels in the table TM
Table The text of the table content without considering any structure TM
URL The URL of the web page from which the table has been extracted CPA
Page title The title of the web page CPA
Surrounding words The 200 words before and after the table CFT

212



Table 2: DBpedia features

Feature Description
Instance label The name of the instance mentioned in the rdfs:label
Property label The name of the property mentioned in the rdfs:label
Class label The name of the class mentioned in the rdfs:label
Value The literal or object that can be found in the object position of triples
Instance count The number of times an instance is linked in the wikipedia corpus
Instance abstract The DBpedia abstract describing an instance
Instance classes The DBpedia classes (including the superclasses) to which an instance belongs to
Set of class instances The set of instances belonging to a class
Set of class abstracts The set of all abstracts of instances belonging to a class

the framework. The framework covers all three matching
subtasks. Similar to PARIS [37], T2KMatch iterates between
instance- and schema matching until the similarity scores
stabilize. Correspondences between tables and classes are
chosen based on the initial results of the instance matching.
Due to this decision, only instances of this class as well as
properties defined for this class are taken into account. Thus,
the class decision can have a strong influence on the other
matching tasks [32].

4.1 Row-To-Instance Matching
The goal of row-to-instance matching is to find corre-

spondences between instances in the knowledge base and
entities described by individual rows of a web table. The
row-to-instance matching task is tackled frequently by vari-
ous systems in literature. Some systems purely rely on the
label of the entity [26, 43] or on the label enriched with
alternatives surface forms [22]. In addition, other systems
also take the cell values into account [42, 38, 40, 25]. Most of
them have in common that they query APIs to find potential
instances, e.g. the Probase, Freebase or Wikiontology API.
As a result, a ranked list of possible instances per entity is
returned. The ranking function is not always known in detail
but often relies on the popularity of an instance. Besides the
internal API ranking, other rankings like the page rank of the
according Wikipedia page of an instances can be added [26,
38]. As another source of information, Zhang [42] introduced
context features (page title, surrounding words).

Within our experiments, we evaluate the utility of all single
table features as well as the entity feature for the row-to-
instance matching task. For this, we have implemented the
following first line matchers within the T2KMatch frame-
work:

Entity Label Matcher: Before the entity label can be
matched, we need to identify the attribute of the web tables
that contains the entity label (entity label attribute). For
determining the entity label attribute, we use a heuristic
which exploits the uniqueness of the attribute values and
falls back to the order of the attributes for breaking ties [32].
For matching the entity label, we apply the entity label
matcher that is included in T2K. The matcher compares
the entity label with the instance label using a generalized
Jaccard with Levenshtein as inner measure. Only the top
20 instances with respect to the similarities are considered
further for each entity.

Value-based Entity Matcher: T2KMatch implements

a value matcher which applies data type specific similarity
measures. For strings, a generalized Jaccard with Leven-
shtein as inner measure, for numeric the deviation similarity
introduced by Rinser et al. [30], and for dates a weighted
date similarity is used which emphasizes the year over the
month and day. The value similarities are weighted with
the available attribute similarities and are aggregated per
entity. If we already know that an attribute corresponds to a
property, the similarities of the according values get a higher
weight.

Surface Form Matcher: Web tables often use synony-
mous names (”‘surface forms”’) to refer to a single instance
in the knowledge base, which is difficult to spot for pure
string similarity measures. In order to be able to under-
stand alternative names, we use a surface form catalog that
has been created from anchor-texts of intra-Wikipedia links,
Wikipedia article titles, and disambiguation pages [2]. Within
the catalog, a TF-IDF score [34] is assigned to each surface
form. We build a set of terms for each label resp. string value
consisting of the label/value itself together with according
surface forms. We add the three surface forms with the high-
est scores if the difference of the scores between the two best
surface forms is smaller than 80%, otherwise we only add the
surface form with the highest score. For each entity label
resp. value, we build a set of terms containing the label or
value as well as the alternative names. Each term in the set
is compared using the entity label resp. value-based entity
matcher and the maximal similarity per set is taken.

Popularity-based Matcher: The popularity-based matcher
takes into account how popular an instance in the knowledge
base is. For example, an instance with the label “Paris” can
either refer to the capital of France or to the city in Texas.
Both instances are equal regarding the label but most of
the times, the city in France will be meant. To compute
the popularity of an instance, we count the number of links
in Wikipedia that point at the Wikipedia page which cor-
responds to the instance [7]. Similar methods based on the
Wikipedias instance’s page rank are applied by Mulwad et
al. [26] and Syed at al. [38].

Abstract Matcher: Comparing the entity label and the
values can be insufficient if the labels differ too much or if not
all information about an instance is covered in the values, e.g.
the capital of a country is not contained in the knowledge
base as a value but stated in the abstract of the instance.
This is especially relevant when thinking about the use case
of filling missing values in the knowledge base. Therefore,
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the abstract matcher compares the entity as a whole with the
abstracts of the instances, both represented as bag-of-words.
For each entity represented as bag-of-words, we create a TF-
IDF vector and compare it to the TF-IDF vectors constructed
from the abstracts where at least one term overlaps. As
similarity measure we use a combination of the denormalized
cosine similarity (dot product) and Jaccard to prefer vectors
that contain several different terms in contrast to vectors
that cover only one term but this several times:

A •B + 1 − ( 1
‖A∩B‖ ) where A and B are TF-IDF vectors.

4.2 Attribute-To-Property Matching
The attribute-to-property matching task has the goal to

assign properties from the knowledge base (both data type
and object properties) to the attributes found in web tables.
Existing attribute-to-property matching methods often fo-
cus on the matching only object properties to attributes[26,
25, 24], also named “relation discovery”. As cross-domain
knowledge bases usually contain data type and object prop-
erties, the goal in this paper is to detect correspondences
for both types of properties. Beside exploiting attribute and
property values, other methods also take the attribute label
into account and compare it to the label of the property [22].
Similar to the instance matching task, the label comparison
can be enhanced by including alternative attribute labels,
e.g. computed based on co-occurrences [41]. The system
introduced by Braunschweig et al. [1] discovers synonymous
labels by using the context as well as the lexical database
WordNet. Neumaier et al. [27] present a matching approach
that explicitly focuses on numeric data which is published
via open data portals.

Within our experiments, we evaluate solely single features
for attribute-to-property matching and have implemented
the following matchers for this:

Attribute Label Matcher: The attribute label can give
hints which information is described by the attribute. For ex-
ample, the label “capital” in a table about countries directly
tells us that a property named “capital” is a better candidate
than the property “largestCity” although the similarities of
the values are very close. We use a generalized Jaccard with
Levenshtein as inner measure to compare the attribute and
property label.

WordNet Matcher: To solve alternative names for at-
tribute labels, we consult the lexical database WordNet which
has also been used by Braunschweig et al. [1]. WordNet is
frequently applied in various research areas, e.g. in the field
of ontology matching. Besides synonyms, we take hypernyms
and hyponyms (also inherited, maximal five, only coming
from the first synset) into account. As an example, for the
attribute label “country” the terms “state”, “nation”, “land”
and ”commonwealth“ can be found in WordNet. We again
apply a set-based comparison which returns the maximal
similarity scores.

Dictionary Matcher: While WordNet is a general source
of information, we additionally create a dictionary for at-
tribute labels based on the results of matching the Web Data
Commons Web Tables Corpus to DBpedia with T2KMatch.
As a result, from 33 million tables around 1 million tables

have at least one instance correspondence to DBpedia [31].
We group the property correspondences and extract the ac-
cording labels of the attributes that have been matched to a
property. Thus, we are able to generate a dictionary contain-
ing the property label together with the attribute labels that,
based on the matching, seem to be synonymous. At this
point, the dictionary includes a lot of noise, e.g. the term
“name” is a synonym for almost every property. A filtering
based on the number of occurrences or on the number of web
sites is not useful, since the rare cases are most promising.
Thus, we apply a filter which excludes all attribute labels
that are assigned to more than 20 different properties because
they do not provide any benefit. The comparison is the same
as for the other matchers including external resources. A
related approach is performed by Yakout et al. [41] where
synonyms of attribute labels are generated based on web
tables that have been matched among each other.

Duplicate-based Attribute Matcher: The duplicate-
based attribute matcher is the counterpart of the value-based
entity matcher: The computed value similarities are weighted
with the according instance similarities and are aggregated
over the attribute. Thus, if two values are similar and the
associated entity instance pair is similar, it has a positive
influence on the similarity of the attribute property pair, see
[32] for more details.

4.3 Table-To-Class Matching
The goal of table-to-class matching is to assign the class

from the knowledge base to a web table which fits best to
the content of the whole table. Assigning the class to which
the majority of the instances in the table belong to is most
common strategy for table-to-class matching [22, 42, 39, 23,
38, 43, 16]. On top of this approach, methods take also
the specificity of a class into account [25], exploit the set of
attribute labels [40] or consider the context [42].

We evaluate the utility of features from the categories
“table multiple” and “context” for table-to-class matching and
have implemented the following matchers for this:

Page Attribute Matcher: We process the page at-
tributes page title and URL by applying stop word removal
and simple stemming. The similarity of a page attribute to
a class of the knowledge base is the number of characters of
the class label normalized by the number of characters in the
page attribute.

Text Matcher: Ideally, the set of abstracts belonging to
instances of a class contains not only the instance labels and
associated property labels but also significant clue words.
We use this matcher for the features “set of attribute labels”,
“table” and “surrounding words”. All features are represented
as bag-of-words. After removing stop words, we build TF-
IDF vectors indicating the characteristic terms of the table
and the classes. We apply the same similarity measure which
is used by the abstract matcher.

Majority-based Matcher: Based on the initial similar-
ities of entities to instances computed by the entity label
matcher, we take the classes of the instances and count how
often they occur. If an instance belongs to more than one
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class, the instance counts for all of them. Such a matching
approach has for example been applied by Limaye et al. [22]
to assign classes to attributes covering named entities.

Frequency-based Matcher: Ideally, we want to find
correspondences to specific classes over general classes which
is not captured by the majority-based class matcher. Similar
to Mulwad et al. [25], we define the specificity of a class as
following:

spec(c) = 1 − ‖c‖
maxd∈C ‖d‖

where c represents a particular class and C the set of all
classes in DBpedia.

Agreement Matcher: The agreement matcher is a sec-
ond line matcher which exploits the amount of class matchers
operating on features covering different aspects. Although
the matchers might not agree on the best class to choose, a
class which is found by all the matchers is usually a good
candidate. We propose the agreement matcher which takes
the results of all other class matchers and counts how often
they agree per class. In this case, all classes are counted
having a similarity score greater than zero.

The results of our matching experiments are presented in
Section 8.

5. SIMILARITY SCORE AGGREGATION
Each of the previously described matchers generates a

similarity matrix as result. Depending on the task, these
matrices contain the similarities between the entities and
instances, attributes and properties or the table and classes.
In order to generate the correspondence, all matrices dealing
with the same task need to be combined which is the task of
a non-decisive second line matcher. Most approaches in the
field of web table matching use a weighted aggregation to
combine similarity matrices. While some of them empirically
determine the weights, e.g. TableMiner [42], others employ
machine learning to find appropriate weights [41, 22]. All
existing approaches for web table matching have in common
that they use the same weights for all tables. Due to the
diversity of tables, one single set of weights might not be the
best solution. To overcome this issue, we use a quality-driven
combination strategy which adapts itself for each individual
table. Such strategies have been shown as promising in the
field of ontology matching [5]. The approach tries to mea-
sure the reliability of matchers by applying so called matrix
predictors [33] on the generated similarity matrices. The
predicted reliability is then used as weight for each matrix.
Since the prediction is individually performed on each matrix,
the reliability of a matcher can differ for each table and in
turn we are able to use weights which are tailored to a table.

We evaluate three different matrix predictors: the average
predictor (Pavg), standard deviation predictor (Pstdev) [33]
as well as a predictor (Pherf ) which bases on the Herfindahl
Index [29] and estimates the diversity of a matrix.

Average: Based on the assumption that a high element
in the similarity matrix leads to a correct correspondence, a
matrix with many high elements is preferred over a matrix
with less high elements. We compute the average of a matrix
M as following:

Pavg(M) =

∑
i,j|ei,j>0 ei,j∑
i,j|ei,j>0 1

Standard Deviation: In addition to the average, the
standard deviation indicates whether the elements in the
matrix are all close to the average. Formally:

Pstdev(M) =

√∑
i,j|ei,j>0(ei,j−µ)2

N

µ is the average and N is the number of non-zero elements.

Normalized Herfindahl Index: The Herfindahl Index
(HHI) [29] is an economic concept which measures the size of
firms in relation to the industry and serves as an indicator of
the amount of competition among them. A high Herfindahl
Index indicates that one firm has a monopoly while a low
Herfindahl Index indicates a lot of competition. We use this
concept to determine the diversity of each matrix row and
in turn of the matrix itself. Our matrix predictor based
on the Herfindahl Index is similar to the recently proposed
predictor Match Competitor Deviation [13] which compares
the elements of each matrix row with its average.[

1.0 0.0 0.0 0.0
]

Figure 3: Matrix row with the highest HHI (1.0)[
0.1 0.1 0.1 0.1

]
Figure 4: Matrix row with the lowest HHI (0.25)

Figure 3 and Figure 4 show the highest and lowest possible
case for a four-dimensional matrix row. At best, we find
exactly one element larger than zero while all other elements
are zero. Having this ideal case, we can perfectly see which
pair fits. In contrast, a matrix row which has exactly the
same element for each pair does not help at all to decide
for correspondences. We compute the normalized Herfindahl
Index for each matrix row which ranges between 1/n and
1.0 where n is the dimension of the matrix row. That is
the reason why the matrix row in Figure 3 has a normalized
Herfindahl Index of 1.0 and the matrix row in Figure 4 of
0.25. To get an estimation per matrix, we build the sum
over all Herfindahl Indices per matrix row and normalize it.
Formally:

Pherf (M) = 1
V

∑
i

∑
j ei,j

2

(
∑

j ei,j)
2

where V represents the number of matrix rows in the ma-
trix.

Section 7 presents the evaluation results of the different
matrix predictors and determines the predictor that is most
suitable for each matching task. Further, we discuss how the
weights are distributed across the different matrices generated
by the matchers.

6. GOLD STANDARD
We use Version 2 of the T2D entity-level gold standard2

for our experiments. The gold standard consists of web ta-
bles from the Web Data Commons table corpus [19] which

2http://webdatacommons.org/webtables/
goldstandardV2.html
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has been extracted from the CommonCrawl web corpus3.
During the extraction, the web tables are classified as layout,
entity, relational, matrix and other tables. For the use case
of filling missing values in a knowledge base, relational tables
are most valuable as they contain relational data describ-
ing entities. However, as shown by Cafarella et al. [4], the
vast majority of tables found in the Web are layout tables.
In addition we have shown in [31] that only a very small
fraction of the relational tables can actually be matched to
the DBpedia knowledge base. Thus, it is important for a
matching algorithm to be good at recognizing non-matching
tables. For a gold standard, it is in turn important to contain
non-matching tables.

Version 2 of the T2D entity-level gold standard consists of
row-to-instance, attribute-to-property, table-to-class corre-
spondences between 779 web tables and the DBpedia knowl-
edge base. The correspondences were created manually. In
order cover the challenges that a web table matching system
needs to face, the gold standard contains three types of tables:
non-relational tables (layout, matrix, entity, other), relational
tables that do not share any instance with DBpedia and re-
lational tables for which least one instance correspondence
can be found. Out of the 779 tables in the gold standard,
237 tables share at least one instance with DBpedia. The
tables cover different topics including places, works, and peo-
ple. Altogether, the gold standard contains 25 119 instance
and 618 property correspondences. About half the property
correspondences refer to entity label attributes, while 381
correspondences refer to other attributes (object as well as
data type attributes). Detailed statistics about the gold
standard are found on the web page mentioned above.

A major difference between Version 2 of the T2D gold
standard and the Limaye112 gold standard [22] is that the
T2D gold standard includes tables that cannot be matched
to the knowledge base and thus forces matching systems to
decide whether a table can be matched or not.

7. SIMILARITY AGGREGATION RESULTS
This section describes the experiments we perform regard-

ing the similarity score aggregation using matrix predictors.
Following Sagi and Gal [33], we measure the quality of a ma-
trix predictor using the Pearson product-moment correlation
coefficient [28]. With a correlation analysis, we can ensure
that the weights chosen for the aggregation are well suitable.
We perform the correlation analysis for the three matching
tasks with the three introduced matrix preditors Pavg, Pstdev
and Pherf on the evaluation measures precision P and recall
R.

P =
TP

TP + FP
R =

TP

TP + FN

While TP refers to the number of true positives, FP repre-
sents the number false positives and FN the number of false
negatives.

If a predictor has a high correlation to precision respect
recall and we use the prediction for weighting the similarity
matrix, we assume that the result also has an according
precision/recall.

3http://commoncrawl.org/

Table 3 shows the results of the correlation analysis for the
property and instance similarity matrices regarding precision,
e.g. PPstdev, and recall, e.g. RPstdev. All predictor correla-
tions are significant according to a two-sample paired t-test
with significance level α = 0.001. The analysis of the class
similarity matrix predictors is not shown since the correla-
tions are not significant. This results from the fact that only
237 tables in the gold standard can be assigned to a DBpedia
class and in turn only for those tables we can compute a
correlation with precision and recall. However, in practice
the predictor Pherf shows the most promising results. The
same holds for instance similarity matrices where Pherf has
the highest correlation with precision as well as recall. In
contrast, for property similarity matrices, Pavg correlates
most. One reason is the comparably low amount of proper-
ties that can potentially be mapped to one attribute. Within
a single matching task, the choice of the best performing
predictor is in most cases consistent. One exception is the
correlation of Pherf to the recall of the matrix generated
by the popularity-based matcher since the most popular in-
stances do not necessarily need to be the correct candidates.
Based on the results, we use the prediction computed by
Pherf as weights for the instance as well as for class similarity
matrices and Pavg for the property similarity matrices in the
matching experiments that we report in the next section.

Figure 5 shows the variations of weights for the similar-
ity matrices coming from different matchers. We can see
that median of the weights differ for the various matchers
which in turn indicates the overall importance of the features
across all tables for a certain matching task. For the instance
matching task, the popularity of an instance seems to play
a crucial role, followed by the label. Contrary, the values
build the foundation for the property matching task. The
size of the class as well as the amount of instance candi-
dates belonging to one class, used in the frequency-based
resp. majority-based matcher, forms the basis of the class
matching task. Adding external resources like Wordnet only
leads to slight changes of the weights.

Besides the median, the variations of the weights show that
the actual utility of a feature depends on the individual ma-
trix and in turn on the table. This supports our assumption
that taking the same aggregation weights for all the tables
is not always the best strategy. While the weight variations
are very large for all matchers operating on attribute labels
(attribute label-, wordnet- and dictionary matcher), this is
the opposite for the matchers dealing with bag-of-words. A
large variation implies that the reliability is predicted dif-
ferently for various tables which in turn indicates that the
attribute label is a suitable feature for some but not for all
of the tables. This finding is reasonable since tables can
either have attribute labels that perfectly fit to a property
label like “capital” while others do not use any meaningful
labels. For the bag-of-words matchers, the reliability is es-
timated quite similar but low for all the tables. Since they
compare bag-of-words, they will always find a large amount
of candidates.

8. MATCHING RESULTS
In this section, we report the results of our matching ex-

periments and compare them to results from the literature.
After applying the different matchers and aggregating their
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Table 3: Correlation of matrix predictors to precision and recall

First Line Matcher PPstdev RPstdev PPavg RPavg PPherf RPherf

Property Similarity Matrices
Attribute label matcher 0.474 0.415 0.433 0.448 0.215 0.209
Duplicate-based attribute matcher 0.048 0.094 0.086 0.106 -0.074 0.042
WordNet matcher 0.425 0.341 0.317 0.367 0.120 0.178
Dictionary matcher 0.360 0.274 0.364 0.447 0.130 0.150
mean 0.327 0.281 0.300 0.342 0.098 0.145

Instance Similarity Matrices
Entity label matcher -0.167 0.092 -0.160 0.049 0.233 0.232
Value-based entity matcher 0.361 0.496 0.122 0.311 0.378 0.531
Surface form matcher -0.291 -0.094 -0.294 -0.128 0.241 0.238
Popularity-based matcher 0.136 -0.043 0.112 -0.038 0.263 -0.236
Abstract Matcher 0.047 0.182 0.134 0.286 0.205 0.152
mean 0.022 0.158 -0.021 0.120 0.330 0.229

Figure 5: Matrix aggregation weights

similarity scores, we use a 1 : 1 decisive second line matcher
for generating correspondences. The matcher selects for each
entity/attribute/table the candidate with the highest simi-
larity score. This score needs to be above a certain threshold
in order to ensure that correspondences are only generated if
the matching system is certain enough. The thresholds are
determined for each combination of matchers using decision
trees and 10-fold-cross-validation. In addition to threshold-
ing, we also apply the filtering rule that we only generate
correspondences for a table if (1) a minimum of three entities
in the table have a correspondence to an instance in the
knowledge base and (2) one forth of the entities in the table
is matched to instances of the class we decided for.

We evaluate the matching results according to precision,
recall and F1. We compare our results to the results of
existing approaches. However, it is tricky to directly compare
result as the other systems were tested using different web
tables and different knowledge bases and as the difficulty of
the matching task is highly dependent on these inputs.

8.1 Row-to-Instance Matching Results
Table 4 presents the results of the row-to-instance match-

ing task for different combinations of matchers. If we only
considering the entity label feature, a moderate result with a
precision of 0.72 is achieved. Also taking the table cell values
into account increases the recall by 0.09 and the precision by
0.08. As expected, based on the weight analysis, considering

the values helps to improve the performance but only using
the entity label already leads to a decent amount of correct
correspondences. By adding surface forms, the recall can
again be raised by 0.02 which indicates that we indeed find
alternative names for entities in the tables. The popularity-
based matcher can slightly increase the precision and recall.
Whenever the similarities for candidate instances are close, to
decide for the more common one is in most cases the better
decision. However, this assumption does especially not hold
for web tables containing long-tail entities, e.g. entities that
are rather unknown.
Including the only instance matcher relying on a multiple
table feature (Abstract matcher), the precision is strongly
increased by 0.13 while 0.08 recall is lost. This might be
unexpected at first glance since a matcher comparing bag-of-
words tends to add a lot of noise. The reason is the choice
of the threshold since it needs to be very high to prevent
a breakdown of the F1 score. Thus, comparing the entity
as a whole with the DBpedia abstracts helps to find correct
correspondences but has to be treated with caution to not
ruin the overall performance. If we use the combination of
all instance matchers, the highest F1 value can be achieved.
This shows that the instances found by matchers exploiting
different features do not necessarily overlap and that the
matchers can benefit from each other by compensating their
weaknesses.

In the following, we compare our results to existing results
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Table 4: Row-to-instance matching results

Matcher P R F1
Entity label matcher 0.72 0.65 0.68
Entity label matcher + Value-based entity matcher 0.80 0.74 0.77
Surface form matcher + Value-based entity matcher 0.80 0.76 0.78
Entity label matcher + Value-based entity matcher + Popularity-based matcher 0.81 0.76 0.79
Entity label matcher + Value-based entity matcher + Abstract matcher 0.93 0.68 0.79
All 0.92 0.71 0.80

from literature. While Mulwad et al. [26] report an accuracy
of 0.66 for a pure label-based instance matching approach,
the F1 score achieved by Limaye et al. [22] (web manual data
set) is 0.81 when taking alternative names for the labels into
account. Extending the label-based method by including the
values results in an accuracy of 0.77 [38] resp. a F1 score
of 0.82 if the web tables are matched to DBpedia and 0.89
if they are matched against Yago [25]. Very high F1 scores
above 0.9 are stated by Zhang [42]. However, the presented
baseline that only queries the Freebase API already obtains
very close scores such that the good performance is mainly
due to the internal API ranking. For other APIs used by the
systems, it is not always clear which ranking functions are
used and which performance they already achieve without
considering any other features.

8.2 Attribute-To-Property Matching Results
Table 5 shows the results of our attribute-to-property

matching experiments using different combinations of match-
ers. In contrast to the row-to-instance matching task, we get
a rather low recall (0.49) if we only take the attribute label
into account. Based on the weight analysis, we already know
that the attribute label is not necessarily a useful feature for
all the tables. Including cell values increases the recall by
0.35 but decreases the precision by 0.10. While it provides
the possibility to compensate non-similar labels, it also adds
incorrect correspondences if values accidentally fit. This
especially holds for attributes of data type numeric and date,
for example, in a table describing medieval kings it will be
quite difficult to distinguish birth dates and death dates by
only examining a single attribute at a time. Nevertheless,
the values present a valuable feature especially to achieve
a decent level of recall, given that the attribute labels are
often misleading. Taking WordNet into account does neither
improve precision nor recall. This shows, that a general
dictionary is not very useful for the property matching task.
In contrast, using the dictionary created from web tables
increases the recall as well as the precision. With specific
background knowledge that is tailored to the web tables, it is
possible to enhance the performance. However, the creation
of the dictionary requires a lot of smart filtering. Without
proper filtering, the dictionary would add only noise. The
result of using all matchers together is slightly lower than
the best result due to the WordNet matcher.

Our results for the attribute-to-property matching task are
difficult to compare to other existing results as many of the
existing systems only match attributes to object properties
and do not cover data type properties, such as numbers and
dates. For this task, Mulwad et al. [26] report an accuracy of
0.25, their advanced system achieves a F1 score of 0.89 [25]
while Muñoz et al. [24] report a F1 score of 0.79. Although

Limaye et al. [22] additionally include the attribute header,
only a result of 0.52 (F1) can be reached. Even without the
consideration of data type properties, the property matching
task seems to be more difficult than the instance matching
task.

8.3 Table-To-Class Matching Results
Table 6 reports the results of our table-to-class matching

experiments. Since we need an instance similarity matrix for
the class matching, we use the entity label matcher together
with the valued-based matcher in all following experiments.
When only considering the majority of the instance correspon-
dences to compute the class correspondences, the precision is
0.47 and the recall 0.51, meaning that only for approximately
half of the tables the correct class is assigned. One reason
for this is the preferential treatment of superclasses over
specific classes which are further down in the class hierarchy.
All instances that can be found in a specific class are also
contained in the superclass and there might be further in-
stances belonging to the superclass that fit. Together with
the consideration of the frequency which exactly tackles the
mentioned issue, a F1 score of 0.89 can be reached.

In order to see how far we get when solely considering
matchers that rely on context features, we evaluate the page
attribute matcher and the text matcher independently from
the others. Since the differences in the performance are
marginal, we do not present the results for the individual
features. Whenever the page attribute matcher finds a corre-
spondence, this correspondence is very likely to be correct.
However, since the URL and page title are compared with the
label of the class, it can happen that no candidate is found at
all. Regarding the recall, similar holds for the text matcher
but the generated correspondences are not necessarily correct.
This is not surprising because we already discovered that
matchers using features represented as bag-of-words have a
weak ability to differentiate between correct and incorrect
candidates due to a lot of noise.

When we combine all previous matchers, a F1 of 0.88
is obtained which is still lower than the outcome of the
majority-based together with the frequency-based matcher.
If we make use of the number of available class matchers
which is transposed by the agreement matcher, we reach a
F1 value of 0.92. Thus, taking advantage of features covering
the whole spectrum of available information and deciding for
the class most of them agree on, is the best strategy for the
class matching task.

Due to the fact that the table-to-class matching task
has a strong influence on the other two matching tasks in
T2KMatch, their performance can be substantially reduced
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Table 5: Attribute-to-property matching results

Matcher P R F1
Attribute label matcher 0.85 0.49 0.63
Attribute label matcher + Duplicate-based attribute matcher 0.75 0.84 0.79
WordNet matcher + Duplicate-based attribute matcher 0.71 0.83 0.77
Dictionary matcher + Duplicate-based attribute matcher 0.76 0.86 0.81
All 0.70 0.84 0.77

Table 6: Table-to-class matching results

Matcher P R F1
Majority-based matcher 0.47 0.51 0.49
Majority-based matcher + Frequency-based matcher 0.87 0.90 0.89
Page attribute matcher 0.97 0.37 0.53
Text matcher 0.75 0.34 0.46
Page attribute matcher + Text matcher +
Majority-based matcher + Frequency-based matcher 0.9 0.86 0.88
All 0.93 0.91 0.92

whenever a wrong class decision is taken. For example, when
solely using the text matcher, the row-to-instance recall drops
down to 0.52 and the attribute-to-property recall to 0.36.

For the table-to-class matching task, results between 0.43
(F1) [22] and 0.9 (accuracy) [38] are reported in the literature.
In between, we find outcomes varying from 0.55 (F1) [43]
over 0.65 to 0.7 for different knowledge bases [39]. When
taking also the specificity of the classes into account, the
performance of 0.57 (F1) is neither higher nor lower than
other results [25]. Similar holds for considering the context
with a result of 0.63 (F1) [42].

In summary, our matching system is able to distinguish
between tables that can be matched to DBpedia and tables
that do not have any counterparts. This becomes especially
obvious if we look at the results of the table-to-class match-
ing task. The ability to properly recognize which tables can
be matched is a very important characteristic when dealing
with web tables. Whenever the table can be matched to
DBpedia, features directly found in the table are crucial for
the instance and property matching tasks. For properties,
the cell values need to be exploited in order to achieve an
acceptable recall. Adding external resources is useful the
closer the content of the external resource is related to the
web tables or to the knowledge base. For the table-to-class
matching task, the majority of instances as well as the speci-
ficity of a class has a very high impact on the performance.
While matchers based on page attributes often do not find
a correspondence at all, this is the opposite for all features
represented as bag-of-words which add a large amount of
noise. Ways to handle the noise are either filtering or to
only use them as an additional indicator whenever matchers
based on other features agree with the decision.

Comparing the related work among each other shows that
almost no conclusions can be drawn whether a certain feature
is useful for a matching task or not. One reason for this is
that the systems are applied to different sets of web tables
and different knowledge bases. As indicated by Hassanzadeh
et al. [16], the choice of the knowledge base has a strong
influence on the matching results. For example, a knowledge

base might not contain certain instances (e.g. web tables
contain a lot of product data while DBpedia hardly covers
products) or properties at all (e.g. product prices) and the
granularity of the classes can differ a lot, depending on the
structure and the focus of the knowledge base [16, 31].

9. CONCLUSION
This paper studied the utility of different features for task

of matching web tables against a knowledge base. We pro-
vided an overview as well as a classification of the features
used in state-of-the-art systems. The features can either be
found in the table itself or in the context of the table. For
each of the features, we introduce task specific matchers that
compute similarities to instances, properties, and classes in a
knowledge base. The resulting similarity matrices, represent-
ing the feature-specific results, have been combined using
matrix predictors in order to gain insights about the suitabil-
ity of the aggregation weights. Using matrix predictors, we
allow different web tables to favor the features that are most
suitable for them.

We showed that a positive correlation between the weight-
ing based on the reliability scores as well as the performance
measures precision and recall can be found. However, the
best way to compute reliability scores differs depending on
the matching task. While predictors based on the diversity
of the matrix elements work best for the row-to-instance
and table-to-class matching task, an average-based predictor
shows a better performance for the attribute-to-property
matching task.

The computed weights gave us an idea which features are
in general important for the individual matching tasks and
how much their significance varies between the tables. While
the entity label and the popularity of an instance are very
important for the row-to-instance matching task, compar-
ing the cell values is crucial for the attribute-to-property
matching task. For the table-to-class matching task, several
features are important, while the ones directly coming from
the table outperform context features. The largest variation
in the weights was discovered for the attribute labels. This
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indicates that attribute labels can be a good feature as long
as meaningful attribute names are found in the web tables
but also that this is not always the case.

We further explored the performance of different ensembles
of matchers for all three matching tasks. In summary, taking
as many features as possible into account is promising for all
three tasks. Features found within tables generally lead to
the best results than context features. Nevertheless, taking
context features into account can improve the results but
particular caution is necessary since context features may
also add a lot of noise. External resources proofed to useful
as long as their content is closely related to the content of the
web tables, i.e. the general lexical database WordNet did not
improve the results for the attribute-to-property matching
task while a more specific dictionary did improve the results.
The performance that we achieved in our experiments for
the row-to-instance and the attribute-to-property matching
tasks are roughly in the same range as the results reported in
literature. For the table-to-class matching task, our results
are higher than the ones reported in the related work.

The source code of the extended version of the T2KMatch
matching framework that was used for the experiments is
found on the T2K website4. The gold standard that was
used for the experiments can be downloaded from the Web
Data Commons website5.
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[24] E. Muñoz, A. Hogan, and A. Mileo. Using Linked Data

220



to Mine RDF from Wikipedia’s Tables. In Proc. of the
7th ACM Int. Conference on Web Search and Data
Mining, pages 533–542, 2014.

[25] V. Mulwad, T. Finin, and A. Joshi. Semantic message
passing for generating linked data from tables. In Proc.
of the 12th Int. Semantic Web Conference, 2013.

[26] V. Mulwad, T. Finin, Z. Syed, and A. Joshi. Using
linked data to interpret tables. In Proc. of the 1st Int.
Workshop on Consuming Linked Data, 2010.

[27] S. Neumaier, J. Umbrich, J. X. Parreira, and
A. Polleres. Multi-level semantic labelling of numerical
values. In Proc. of the 15th International Semantic
Web Conference, pages 428–445, 2016.

[28] K. Pearson. Notes on regression and inheritance in the
case of two parents. Proc. of the Royal Society of
London, 58:240–242, 1895.

[29] S. Rhoades. The Herfindahl-Herschman Index. Federal
Reserve Bulletin, 79:188–189, 1993.

[30] D. Rinser, D. Lange, and F. Naumann. Cross-Lingual
Entity Matching and Infobox Alignment in Wikipedia.
Information Systems, 38:887–907, 2013.

[31] D. Ritze, O. Lehmberg, Y. Oulabi, and C. Bizer.
Profiling the Potential of Web Tables for Augmenting
Cross-domain Knowledge Bases. In Proc. of the 25th
International World Wide Web Conference, 2016.

[32] D. Ritze, O. Lehmberg, and C. Bizer. Matching HTML
Tables to DBpedia. In Proc. of the 5th International
Conference on Web Intelligence, Mining and Semantics,
2015.

[33] T. Sagi and A. Gal. Schema matching prediction with
applications to data source discovery and dynamic
ensembling. VLDB Journal, 22:689–710, 2013.

[34] G. Salton and M. McGill. Introduction to modern
information retrieval. McGraw-Hill, 1983.

[35] Y. A. Sekhavat, F. di Paolo, D. Barbosa, and
P. Merialdo. Knowledge Base Augmentation using
Tabular Data. In Proc. of the 7th Workshop on Linked
Data on the Web, 2014.

[36] A. Singhal. Introducing the knowledge graph: Things,
not string. Blog, 2012. Retrieved March 19, 2015.

[37] F. Suchanek, S. Abiteboul, and P. Senellart. Paris:
Probabilistic alignment of Relations, Instances, and
Schema. Proc. VLDB Endowment, 5:157–168, 2011.

[38] Z. Syed, T. Finin, V. Mulwad, and A. Joshi. Exploiting
a Web of Semantic Data for Interpreting Tables. In
Proc. of the 2nd Web Science Conference, 2010.

[39] P. Venetis, A. Halevy, J. Madhavan, M. Paşca,
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ABSTRACT
In the recent years JSON affirmed as a very popular data
format for representing massive data collections. JSON data
collections are usually schemaless. While this ensures sev-
eral advantages, the absence of schema information has im-
portant negative consequences: the correctness of complex
queries and programs cannot be statically checked, users
cannot rely on schema information to quickly figure out the
structural properties that could speed up the formulation of
correct queries, and many schema-based optimizations are
not possible.

In this paper we deal with the problem of inferring a
schema from massive JSON datasets. We first identify a
JSON type language which is simple and, at the same time,
expressive enough to capture irregularities and to give com-
plete structural information about input data. We then
present our main contribution, which is the design of a schema
inference algorithm, its theoretical study, and its implemen-
tation based on Spark, enabling reasonable schema infer-
ence time for massive collections. Finally, we report about
an experimental analysis showing the effectiveness of our ap-
proach in terms of execution time, precision, and conciseness
of inferred schemas, and scalability.

CCS Concepts
•Information systems→ Semi-structured data; Data
model extensions; •Theory of computation → Type
theory; Logic;

Keywords
JSON, schema inference, map-reduce, Spark, big data col-
lections

1. INTRODUCTION
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national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

Big Data applications typically process and analyze very
large structured and semi-structured datasets. In many of
these applications, and in those relying on NoSQL docu-
ment stores in particular, data are represented in JSON
(JavaScript Object Notation) [10], a data format that is
widely used thanks to its flexibility and simplicity.

JSON data collections are usually schemaless. This en-
sures several advantages: in particular it enables applica-
tions to quickly consume huge amounts of semi-structured
data without waiting for a schema to be specified. Unfor-
tunately, the lack of a schema makes it impossible to stati-
cally detect unexpected or unwanted behaviours of complex
queries and programs (i.e., lack of correctness), users cannot
rely on schema information to quickly figure out structural
properties that could speed up the formulation of correct
queries, and many schema-based optimizations are not pos-
sible.

In this paper we deal with the problem of inferring a
schema from massive JSON datasets. Our main goal in this
work is to infer structural properties of JSON data, that is,
a description of the structure of JSON objects and arrays
that takes into account nested values and the presence of
optional values. These are the main properties that charac-
terize semi-structured data, and having a tool that ensures
fast, precise, and concise inference is crucial in modern appli-
cations characterized by agile consumption of huge amounts
of data coming from multiple and disparate sources.

The approach we propose here is based on a JSON schema
language able to capture structural irregularities and com-
plete structural information about input data. This lan-
guage resembles and borrows mechanisms from existing pro-
posals [20], but it has the advantage to be simple yet very
expressive.

The proposed technique infers a schema that provides a
global description of the whole input JSON dataset, while
having a size that is small enough to enable a user to consult
it in a reasonable amount of time, in order to get a global
knowledge of the structural and type properties of the JSON
collection. The description of the input JSON collection is
global in the sense that each path that can be traversed in
the tree-structure of each input JSON value can be traversed
in the inferred schema as well. This property is crucial to
enable a series of query optimization tasks. For instance,
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thanks to this property JSON queries [1, 9] can be optimized
at compile-time by means of schema-based path rewriting
and wildcard expansion [16] or projection [8]. These opti-
mizations are not possible if the schema hides some of the
structural properties of the data, as happens in related ap-
proaches [22].

At the same time, our inferred schemas precisely capture
the presence of optional and mandatory fields in collection
of JSON records. Thanks to our approach, the user has
a precise knowledge about i) all possible fields of records,
ii) optional ones, and iii) mandatory ones. Property i) is
crucial, as thanks to it the user can avoid time consum-
ing, error-prone (approximated) data explorations to realize
what fields can be really selected, while property ii) guides
the user towards the adoption of code to handle the op-
tional presence of certain fields; property iii), finally, indi-
cates fields that can be always selected for each record in
the collection.

A precise schema, like the one that can be inferred by our
approach, can be very useful when very large datasets must
be analyzed or queried with main-memory tools: indeed, by
identifying the data requirements of a query or a program
through a simple static analysis technique, it is possible to
match these requirements with the schema in order to load
in main memory only those fragments of the input dataset
that are actually needed, hence improving both scalability
and performance.

It is worth stressing that, even if in some cases JSON data
feature a rather regular structure, the only alternative way
for the user to be sure that all possible (optional) fields are
identified is to explore the entire dataset either manually or
by means of scripts that must be manually adapted to each
particular JSON source, with weak guarantees of efficiency
and soundness. Our approach instead applies to any JSON
data collection, and is shown to be sound and effective on
massive datasets. In addition, it is worth observing that,
while in many cases processed JSON data come from re-
mote, uncontrolled sources, in other particular cases JSON
data are generated by applications whose code is known. In
these cases a wider knowledge is available about the struc-
ture of the program output, but again schema inference is
important as it can highlight subtle structural properties
that can arise only in outputs of some particular program
runs; also, when the code starts being complex, it is difficult
to precisely figure out the structure of output JSON data. In
some other cases, remote JSON sources can be accessed by
APIs (e.g., Twitter APIs) that sometimes are provided with
some schema descriptions. Unfortunately, these descriptions
are often incomplete, some fields are often ignored, and the
distinction between optional and mandatory fields is often
omitted.

Our Contribution. Our main contribution is the design of
a schema inference algorithm and its implementation based
on Apache Spark [7], in order to ensure reasonable schema
inference time for massive collections. Our schema inference
approach consists of two main steps. In the first one, an in-
put collection of JSON values is processed by a Map trans-
formation in order to infer a simple type for each value. The
resulting output is processed by a Reduce action, which fuses
inferred types that are not necessarily identical, but that
share similar structure. This step relies on a binary function
that takes two JSON types as input and fuses them. This

function inspects the two input types and identifies parts
that are mandatory, optional, or repeated in the types, in
order to obtain a type which is a super type of the two input
types (it includes them), but that is potentially much more
succinct than their simple union. A theoretical study shows
that the fusion function is correct and, very importantly,
associative.

Associativity is crucial as it allows Spark to safely dis-
tribute and parallelize the fusion of a massive collection of
values. Associativity is also important to enable incremen-
tal evolution of the inferred schema under updates. In many
applications the JSON sources are dynamic, and new values
can be added at any time, with a structure that can differ
from that already inferred for previous records. In this situ-
ation, in the case of insertion of a new record in an existing
record collection, thanks to associativity, we simply need to
fuse the existing schema with the schema of the new record.
For incremental maintenance under other forms of updates,
in the usual case that a massive dataset is kept partitioned
and the updated parts are known, it just suffices to re-infer
the schema for the updated parts and to fuse them with
previously inferred schemas for unchanged parts.

Our last contribution consists of an implementation of
the proposed approach based on Spark, as well as an ex-
perimental evaluation validating our claims of succinctness,
precision, and efficiency. We based our tests on 4 real JSON
datasets. Our experiments confirm that our schema infer-
ence algorithm returns very succinct yet precise schemas,
even in the presence of poorly organized data (i.e., Wikipedia
dataset). Furthermore, a scalability analysis reveals that
our approach ensures reasonable execution times, and that
a simple partitioning strategy allows the performance to be
improved.

Paper Outline. The paper is organized as follows. In Sec-
tion 2 we illustrate some scenarios that motivate our work.
In Section 3, then, we survey existing works. In Section 4,
we describe the data model and the schema language we use
here, while in Section 5 we present our schema inference ap-
proach. In Sections 6 and 7, finally, we show the results of
our experimental evaluation and draw our conclusions.

2. MOTIVATION AND OVERVIEW
This section overviews the two steps of our schema fu-

sion approach: type inference and type fusion. To this end,
we first briefly recall the general syntax and semantics of
JSON values. As in most semi-structured models, JSON dis-
tinguishes between basic values, which range over numbers
(e.g., 123), strings (e.g., “abc”), and booleans (i.e., true/-
false), and complex values which can be either (unordered)
sets of key/value pairs called records or (ordered) lists of
values called arrays. The only constraint that JSON values
must obey is key uniqueness within each record. Arrays can
mix both basic and complex types. In the following, we will
use the term mixed-content arrays for arrays mixing atomic
and complex values.

A sample JSON record is illustrated in Figure 1. Syn-
tactically, records use the conventional curly braces symbols
whereas arrays use square brackets; finally, string values and
keys are wrapped inside quotes in JSON (but we will avoid
quotes around keys in our formal syntax).
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{"A": 123

"B": "The ..."

"C": false

"D": ["abc", "cde", "fr12"]

}

Figure 1: A JSON record r1.

Type inference.
Type inference, during the Map phase, is dedicated to

inferring individual types for the input JSON values, and
yields a set of distinct types to be fused during the Reduce
phase. Some proposals of JSON schemas exist in the liter-
ature. With one exception [20], none of them uses regular
expressions which, as we shall illustrate, are important for
concisely representing types for array values. Moreover, a
clean formal semantics specification of types is often miss-
ing in these works, hence making it difficult to understand
their precise meaning.

The type language we adopt is meant to capture the core
features of the JSON data model with an emphasis on suc-
cinctness. Intuitively, basic values are captured using stan-
dard data types (i.e., String, Number, Boolean), complex
values are captured by introducing record and array type
constructors, and a union type constructor is used to add
flexibility and expressive power. To illustrate the type lan-
guage, observe the following type that is inferred for the
record r1 given in Figure 1:

{A : Num, B : Str, C : Bool, D : [Str, Str, Str]}

As we will show, the initial type inference is a quite simple
and fast operation: it consists of a simple traversal of the
input values that produces a type that is isomorphic to the
value itself.

Type fusion.
Type fusion is the second step of our approach and consists

in iteratively merging the types produced during the Map
phase. Because it is performed during the Reduce phase in
a distributed fashion, type fusion relies on a fusion operator
which enjoys the commutativity and associativity proper-
ties. This fusion operator is invoked over two types T1 and
T2, and produces a supertype of the inputs. To do so, the
fusion collapses the parts of T1 and T2 that are identical and
preserves the parts that are distinct in both types. To this
end, T1 and T2 are processed in a synchronised top-down
manner in order to identify common parts. The main idea
is to represent only once what is common, and, at the same
time, to preserve all the parts that differ.

Fusion treats atomic types, record types, and array types
differently, as follows.

• Atomic types: the fusion of atomic types is obvious, as
identical types are collapsed while different types are
combined using the union operator.

• Record types: recall that valid record types enjoy key
uniqueness. Therefore, the fusion of T1 and T2 is led
by two rules:

(R1) matching keys from both types are collapsed and
their respective types are recursively fused;

(R2) keys without a match are deemed optional in the

resulting type and decorated with a question mark
?.

To illustrate those cases, assume that T1 and T2 are,
respectively, {A:Str, B:Num} and {B:Bool, C:Str}.
The only matching key is “B” and hence its two atomic
types Num and Bool are fused, which yields Num+Bool.
The other keys will be optional according to rule R2.
Hence, fusion yields the type

T12 = {(A:Str)?, B:Num + Bool, (C:Str)?}

Assume now that T12 is fused with

T3 = {A:Null, B:Num}

Rules R1 and R2 need to be slightly adapted to deal
with optional types. Intuitively, we should simply con-
sider that optionality ‘?’ prevails over the implicit total
cardinality ‘1’. The resulting type is thus

T123 = {(A:Str + Null)?, B:Num + Bool, (C:Str)?}.

Fusion of nested records eventually associates keys with
types that may be unions of atomic types, record types,
and array types. We will see that, when such types
are merged, we separately merge the atomic types, the
record types, and the array types, and return the union
of the result. For instance, the fusion of types

{l:(Bool + Str + {A:Num}}

and

{l:(Bool + {A:Str, B:Num})}

yields

{l:(Bool + Str + {A:(Num + Str), (B:Num)?}}.

• Array types: array fusion deserves special attention. A
particular aspect to consider is that an array type ob-
tained in the first phase may contain several repeated
types, and may feature mixed-content. To deal with
this, before fusing types we perform a kind of simpli-
fication on bodies by using regular expression types,
and, in particular, union + and repetition ∗. To illus-
trate this point, consider the array value

[′′abc′′,′′ cde′′, {′′E′′ :′′fr′′, ′′F ′′ : 12}],

containing two strings followed by a record (mixed-
content). The first phase infers for this value the type

[Str, Str, {E:Str, F :Num}].

This type can be actually simplified. For instance, one
can think of a partition-based approach which collapses
adjacent identical types into a star-guarded type, thus
transforming

[Str, Str, {E:Str, F :Num}]

into

[(Str)∗, {E:Str, F :Num}]

by collapsing the string types. The resulting schema
is indeed succinct and precise. However, succinctness
cannot be guaranteed after fusion. For instance, if that
type was to be merged with

[{E:Str, F :Num}, Str, Str],
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where strings and record swapped positions, succinct-
ness would be lost because we need to duplicate at least
one sub-expression, (Str)∗ or {E:Str, F :Num}. As we
are mainly concerned with generating types that can
be human-readable, we trade some precision for suc-
cinctness and do not account for position anymore. To
achieve this, in our simplification process (made before
fusing array types) we generalize the above partition-
based solution by returning the star-guarded union of
all distinct types expressed in an array. So, simplifica-
tion for either

[Str, Str, {E:Str, F :Num}]

or

[{E:Str, F :Num}, Str, Str]

yields the same type

S = [(Str + {E:Str, F :Num})∗].

After the array types have been simplified in this man-
ner, they are fused by simply recursively fusing their
content types, applying the same technique described
for record types: when the body type is a union type,
we separately merge the atomic components, the array
components, and the record components, and take the
union of the results.

3. RELATED WORK
The problem of inferring structural information from JSON

data collections has recently gained attention of the database
research community. The closest work to ours is the very
preliminary investigation that we presented in [12]. While
[12] only provides a sketch of a MapReduce approach for
schema inference, in this paper we present results about a
much deeper study. In particular, while in [12] a declarative
specification of only a few cases of the fusion process is pre-
sented, in this paper we fully detail this process, provide a
formal specification as well as a fusion algorithm. Further-
more, differently from [12], we present here an experimental
evaluation of our approach validating our claims of paral-
lelizability and succinctness.

In [22] Wang et al. present a framework for efficiently man-
aging a schema repository for JSON document stores. The
proposed approach relies on a notion of JSON schema called
skeleton. In a nutshell, a skeleton is a collection of trees de-
scribing structures that frequently appear in the objects of
JSON data collection. In particular, the skeleton may to-
tally miss information about paths that can be traversed in
some of the JSON objects. In contrast, our approach enables
the creation of a complete yet succinct schema description
of the input JSON dataset. As already said, having such
a complete structural description is of vital importance for
many tasks, like query optimisation, defining and enforc-
ing access-control security policies, and, importantly, giving
the user a global structural vision of the database that can
help her in querying and exploring the data in an effective
way. Another important application of complete schema in-
formation is query type checking: as illustrated in [12] our
inferred schemas can be used to make type checking of Pig
Latin scripts much stronger.

In a very recent work [20], motivated by the need of laying
the formal foundations for the JSON Schema language [3],
Pezoa et al. present the formal semantics of that language,

as well as a theoretical study of its related expressive power
and validation problem. While that work does not deal with
the schema inference problem, our schema language can be
seen as a core part of the JSON Schema language studied
therein, and shares union types and repetition types with
that one. These constructors are at the basis of our tech-
nique to collapse several schemas into a more succinct one.
An alternative proposal for typing JSON data is JSound
[2]. That language is quite restrictive wrt ours and JSON
Schemas: for instance it lacks union types.

In a very recent work [13] Abadi and Discala deal with
the problem of automatic transforming denormalised, nested
JSON data into normalised relational data that can be stored
into a RDBMS; this is achieved by means of a schema gener-
ation algorithm that learns the normalised, relational schema
from data. Differently from that work, we deal with schemas
that are far from being relational, and are closer to tree reg-
ular grammars [17]. Furthermore, the approach proposed in
[13] ignores the original structure of the JSON input dataset
and, instead, depends on patterns in the attribute data val-
ues (functional dependencies) to guide its schema genera-
tion. So, that approach is complementary to ours.

In [15] Liu et al. propose storage, querying, and indexing
principles enabling RDBMSs to manage JSON. The paper
does not deal with schema inference, but indicates a pos-
sible optimisation of their framework based on the identifi-
cation of common attributes in JSON objects that can be
captured by a relational schema for optimization purposes.
In [21] Scherzinger et al. propose a plugin to track changes in
object-NoSQL mappings. The technique is currently limited
to only detect mismatches between base types (e.g., Boolean,
Integer, String), and the authors claim that a wider knowl-
edge of schema information is needed to enable the detection
of other kinds of changes, like, for instance, the removal or
renaming of attributes.

It is important to state that the problem of schema infer-
ence has already been addressed in the past in the context
of semi-structured and XML data models. In [18] and [19],
Nestorov et al. describe an approach to extract a schema
from semistructured data. They propose an object-oriented
type system where nodes are captured by classes built start-
ing from nodes sharing the same incoming and outcoming
edges and where data edges are generalized to relations be-
tween the classes. In [19], the problem of building a type
out a of a collection of semistructured documents is studied.
The emphasis is put on minimizing the size of the resulting
type while maximizing its precision. Although that work
considers a very general data model captured by graphs, it
does not suit our context. Firstly, we consider the JSON
model, that is tree-shaped by nature and that features spe-
cific constructs such as arrays that are not captured by the
semi-structured data model. Secondly, we aim at processing
potentially large datasets efficiently, a problem that is not
directly addressed in [18] and [19].

More recent efforts on XML schema inference (see [14] and
works cited therein) are also worth mentioning since they
are somewhat related to our approach. The aim of these ap-
proaches is to infer restricted, yet expressive enough forms
of regular expressions starting from a positive set of strings
representing element contexts of XML documents. While
XML and JSON both allow one to represent tree-shaped
data, they have radical differences that make existing XML
related approaches difficult to apply to the JSON setting.
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Similar remarks hold for related approaches for schema in-
ference for RDF [11]. Furhermore, none of these approaches
is designed to deal with massive datasets.

4. DATA MODEL AND TYPE LANGUAGE
This section is devoted to formalizing the JSON data

model and the schema language we adopt.
We represent JSON values as records and arrays, whose

abstract syntax is given in Figure 2. Basic values B com-
prise null value, booleans, numbers n, and strings s. As
outlined in Section 2, records are sets of fields, each field be-
ing an association of a value V to a key l whereas arrays are
sequences of values. The abstract syntax is practical for the
formal treatment, but we will typically use the more read-
able notation introduced at the bottom of Figure 2, where
records as represented as {l1 : V1, . . . , ln : Vn} and arrays
are represented as [V1, . . . , Vn].

V ::= B | R | A Top-level values
B ::= null | true | false | n | s Basic values
R ::= ERec | Rec(l, V,R) Records
A ::= EArr | Arr(V,A) Arrays

Semantics:

Records
Domain : FS(Keys ×Values)

JERecK M
= ∅

JRec(l, V,R)K M
= {(l, V )} ∪ JRK

Arrays
Domain : Lists(Values)

JEArrK M
= [ ]

JArr(V,A)K M
= JV K :: A

Notation:

{l1 : V1, . . . , ln : Vn}
M
= Rec(l1, V1, . . .Rec(ln, Vn,ERec))

[V1, . . . , Vn]
M
= Arr(V1, . . .Arr(Vn,EArr))

Figure 2: Syntax of JSON data.

In JSON, a record is well-formed only if all its top-level
keys are mutually different. In the sequel, we only consider
well-formed JSON records, and we use Keys(R) to denote
the set of the top-level keys of R.

Since a record is a set of fields, we identify two records
that only differ in the order of their fields.

The syntax of the JSON schema language we adopt is de-
picted in Figure 3. The core of this language is captured by
the non-terminals BT , RT , and AT which are a straightfor-
ward generalization of their B,R and A counterparts from
the data model syntax.

As previously illustrated in Section 2, we adopt a very
specific form of regular types in order to prepare an array
type for fusion. Before fusion, an array type [T1, . . . , Tn]
is simplified as [(T1 + . . . + Tn)∗], or, more precisely, as
[LFuse(T1, . . . , Tn)∗]: instead of giving the content type el-
ement by element as in [T1, . . . , Tn], we just say that it con-
tains a sequence of values all belonging to LFuse(T1, . . . , Tn)
that will be defined as a compact super-type of T1+ . . .+Tn.
This simplification is allowed by the fact that, besides the

basic array types AT = [T1, . . . , Tn], we also have the sim-
plified array type SAT = [T∗], where T may be any type,
including a union type.

A field OptRecT (l, T, . . .), represented as l : T? in the
simplified notation, represents an optional field, that is, a
field that may be either present or absent in a record of
the corresponding type. For example, a type {l : Num?,m :
(Str + Null)} describes records where l is optional and, if
present, contains a number, while the m field is mandatory
and may contain either null or a string.

A union type T +U contains the union of the values from
T and those from U . The empty type ε denotes the empty
set.1

We define now schema semantics by means of the function
J K, defined as the minimal function mapping types to sets
of values that satisfies the following equations. For the sake
of simplicity we omit the case of basic types.

Auxiliary functions

S0 M
= {[ ]}

Sn+1 M
= {[V ] :: a | V ∈ S, a ∈ Sn[ ]}

S∗
M
=

⋃
i∈N Si

Records
Domain : Sets(FS(Keys ×Values))

JERecT K M
= {∅}

JRecT (l, T,RT )K M
= {{(l, V )} ∪R | V ∈ JT K, R ∈ JRT K}

JOptRecT (l, T,RT )K M
= JRecT (l, T, RT )K ∪ JRT K

Arrays and Simplified Arrays
Domain : Sets(Lists(Values))

JEArrT K M
= {[ ]}

JArrT (T,AT )K M
= {[V ] :: A | V ∈ JT K, A ∈ JAT K}

J[T∗]K M
= JT K∗

Union types

JεK M
= ∅

JT + UK M
= JT K ∪ JUK

The basic idea behind our type fusion mechanism is that
we always generalize the union of two record types to one
record type containing the keys of both, and similarly for
the union of two array types. We express this idea as ‘merg-
ing types that have the same kind’. The following kind()
function that maps each type to an integer ranging over
{0, . . . , 5} is used to implement this approach.

kind(Null) = 0
kind(Bool) = 1
kind(Num) = 2

kind(Str) = 3
kind(RT ) = 4
kind(AT ) = kind(SAT ) = 5

In the sequel, generic types are indicated by the metavari-
ables T,U,W , while BT , RT , and AT are reserved for basic
types, record types, and array types.

1The type ε is never used during type inference, since no
value belongs to it. In greater detail, ε is actually a tech-
nical device that is only useful when an empty array type
EArrT is simplified, before fusion, into a simplified array
type: EArrT (that is, the type [ ]) is simplified as [ε∗], which
has the same semantics as EArrT , and our algorithms never
insert ε in any other position.
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T ::= BT | RT | AT | SAT | ε | T + T Top-level types
BT ::= Null | Bool | Num | Str Basic types
RT ::= ERecT | RecT (l, T,RT ) | OptRecT (l, T,RT ) Record types
AT ::= EArrT | ArrT (T,AT ) Array types

SAT ::= [T∗] Simplified array types

Notation:

{l1 : T1[?], . . . , ln : Tn[?]} M
= [Opt ]RecT (l1, T1, . . . [Opt ]RecT (ln, Tn,ERecT )) ‘?’ is translated as ‘Opt’

[ ]
M
= EArrT

[T1, . . . , Tn]
M
= ArrT (T1, . . .ArrT (Tn,EArrT ))

Figure 3: Syntax of the JSON type language.

Later on, in order to express correctness of the fusion pro-
cess we rely on the usual notion of subtyping (type inclu-
sion).

Definition 4.1 (Subtyping) Let T and U be two types.
Then T is a subtype of U , denoted with T <: U , if and only
if JT K ⊆ JUK.

The subtyping relation is a partial order among types.
We do not use any subtype checking algorithm in this work,
but we exploit this notion to state properties of our schema
inference approach.

5. SCHEMA INFERENCE
As already said, our approach is based on two steps: i)

type inference for each single value in the input JSON data
collection, and ii) fusion of types generated by the first step.
We present these steps in the following two sections.

5.1 Initial Schema Inference
The first step of our approach consists of a Map phase

that performs schema inference for each single value of the
input collection. Type inference for single values is done ac-
cording to the inference rules in Figure 4. Each rule allows
one to infer the type of a value indicated in the conclusion
(part below the line) in terms of types recursively deter-
mined in the premises (part above the line). Rules with no
premises deal with the terminal cases of the recursive typing
process, which infers the type of a value by simply reflect-
ing the structure of the value itself. Note the particular
case of record values where uniqueness of attribute keys li
is checked. Also notice that these rules are deterministic:
each possible value matches at most the conclusion of one
rule. These rules, hence, directly define a recursive typing
algorithm. The following lemma states soundness of value
typing, and it can be proved by a simple induction.

Lemma 5.1 For any JSON value V , ` V ; T implies
V ∈ JT K.

It is worth noticing that schema inference done in this phase
does not exploit the full expressivity of the schema language.
Union types, optional fields, and repetition types (the Sim-
plified Array Types) are never inferred, while these types will
be produced by the schema fusion phase described next.

5.2 Schema Fusion

The second phase of our approach is meant to fuse all the
types inferred in the first Map phase. The main mechanism
of this phase is a binary fusion function, that is commutative
and transitive. These properties are crucial as they ensure
that the function can be iteratively applied over n types in
a distributed and parallel fashion.

When fusion is applied over two types T and U , it outputs
either a single type obtained by recursively merging T and
U if they have the same kind, or the simple union T + U
otherwise. Since fusion may result in a union type, and since
this is in turn fused with other types, possibly obtained by
fusion itself, the fusion function has to deal with the case
where union types T = T1 + . . .+Tn and U = U1 + . . .+Um

need to be fused. In this case, our fusion function identifies
and fuses types Tj and Uh with matching kinds, while types
of non-matching kinds are just moved unchanged into the
output union type. As we will see later, the fusion process
ensures the invariant property that in each output union
type a given kind may occur at most once in each union;
hence, in the two union types above, n ≤ 6 and m ≤ 6,
since we only have six different kinds.

The auxiliary functions KMatch and KUnmatch, defined
in Figure 5, respectively have the purpose of collecting pairs
of types of the same kind in two union-types T1 and T2, and
of collecting non-matching types. In Figure 5, two similar
functions FMatch and FUnmatch are defined. They identify
and collect fields having matching/unmatched keys in two
input body record types RT1 and RT2.

These two functions are based on the auxiliary functions
◦(T ) and �(RT ). The function ◦(T ) transforms a union type
T1 + . . .+ Tn into the multiset of its addends, i.e non-union
types T1, . . . , Tn. The function �(RT ) transforms a record
type {(l1:T1)m1 , . . . (ln:Tn)mn} into the set of its fields —
in this case we can use a set since no repetition of keys is
possible. Here we use (l:T )1 to denote a mandatory field,
(l:T )? to denote an optional field, and the symbols m and n

for metavariables that range over {1, ?}.
We are now ready to present the fusion function. Its for-

mal specification is given in Figure 6. We use the function
⊕ (S), that is a right inverse of ◦(T ) and rebuilds a union
type from a multiset of non-union types, and the function
©(S), that is a right inverse of �(RT ) and rebuilds a record
type from a set of fields. We also use min(m, n), which is
a partial function that picks the “smallest” cardinality, by
assuming ? < 1.

The general case where types T1 and T2 that may be union
types have to be fused is dealt with by the Fuse(T1, T2)
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(TypeNull)

` null ; Null

(TypeTrueBool)

` true ; Bool

(TypeNumber)

` n; Num

(TypeString)

` s; Str

(TypeEmptyRec)

` ERec ; ERecT

(TypeEmptyArray)

` EArr ; EArrT

(TypeRec)
` V ; T `W ; RT l /∈ Keys(RT )

` Rec(l, V,W ) ; RecT (l, V,RT )

(TypeArray)
` V ; T `W ; AT

` Arr(V,W ) ; ArrT (T,AT )

Figure 4: Type inference rules.

◦(T ) : transforms a type into a multiset of non-union types, where ∪b is multiset union

◦(T1 + T2) := ◦(T1) ∪b ◦(T2)
◦(ε) := { }
◦(T ) := {T} when T 6= T1 + T2 and T 6= ε

KMatch(T1, T2) := {(U1, U2) | U1 ∈ ◦(T1), U2 ∈ ◦(T2), kind(U1) = kind(U2)}
KUnmatch(T1, T2) := {U1 ∈ ◦(T1) | ∀U2 ∈ T2. kind(U1) 6= kind(U2)}

∪{U2 ∈ ◦(T2) | ∀U1 ∈ ◦(T1). kind(U2) 6= kind(U1)}

�(RT ) : transforms a record type into a set of fields

�(ERecT ) := ∅
�(RecT (l, T,RT )) := {(l:T )1} ∪ �(RT )
�(OptRecT (l, T, RT )) := {(l:T )?} ∪ �(RT )

FMatch(RT1, RT2) := {((l:T )n, (k:U)m) | (l:T )n ∈ �(RT1) and (k:U)m ∈ �(RT2) and l = k}
FUnmatch(RT1, RT2) := {(l:T )n ∈ �(RT1) | ∀(k:U)m ∈ �(RT2). l 6= k} ∪ {(l:T )n ∈ �(RT2) | ∀(k:U)m ∈ �(RT1). l 6= k}

Figure 5: Auxiliary functions.

function. According to what was said before, it recursively
applies LFuse to pairs of types coming from T1 and T2 and
having the same kind, while unmatched types are simply
returned in the output union type.

The specification of LFuse is captured by lines 2 to 7. Line
2 deals with the case where the input types are two identical
basic types. In this case, the fusion yields the input basic
type. Line 3 deals with the case where the input types are
records. In this case, pairs of fields whose keys match are
recursively fused by calling LFuse, the lowest cardinality
is chosen for each, so that a field is mandatory only if is
mandatory in both record types, whereas the unmatching
fields are copied in the result type as optional fields.

The remaining lines of LFuse are dedicated to the case
where the input types are arrays. Each of these lines deals
with a combination among original and simplified arrays by
ensuring that Fuse is called over the body types of arrays
that have been simplified through the call of collapse. While
line 4 faces the case that the two types have not been sub-
ject to fusion yet, lines 5-7 deal with the case that one of the
input is the result of previous fusion operations, and there-
fore it has a *-expression as a body (recall the discussion in
Section 2). Lines 8 and 9 are dedicated to the array sim-
plification function collapse. This function simply relies on
Fuse in order to generate an over-approximation of all the
different types that are found in the original array type, in
order to prepare the array type for the fusion process.

To illustrate both body array type simplification and record
fusion, consider the following type T :

T = [Num, Bool, Num, {l1 : Num, l2 : Str}, {l1 : Num},
{l2 : Bool, l3 : Str}]

We have that collapse(T ) is equal to:

(Num + Bool + {l1 : Num, l2 : Str + Bool, (l3 : Str)?})

Note that only one record type is created, by iterating fusion
over the three record types. Also note that there is a good
level of size reduction entailed by simplification. This hap-
pens in the most frequent cases (where elements of an array
share most of their structure), while size reduction becomes
weaker when very heterogeneous records appear in the ar-
ray body type (in the particular case where no field key is
shared among records, the unique record type given by sim-
plification contains all keys, with their associated types, as
optional fields).

To conclude this section, the following theorems state
the main theoretical properties of the fusion process: cor-
rectness, commutativity and associativity. The crucial role
played by these properties has already been discussed in the
previous sections.

All these properties hold for types that respect the invari-
ant that types of a given kind can occur at most once in
each union. We use the term “normal types” to refer to such
types. All of our algorithms respect this invariant, that is,
they only generate normal types.

We first deal with correctness.
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⊕(S) : transforms a multiset of addends into a union type of these addends, right inverse for ◦(T )

⊕({ }) := ε
⊕({T}) := T
⊕({T1, T2, . . . , Tn}) := T1 + ⊕({T2, . . . , Tn}) when n ≥ 2

©(S) : transforms a set of fields into a record type, right inverse for �(RT )

©(∅) := ERecT
©({(l:T )1} ∪ S) := RecT (l, T,©(S))
©({(l:T )?} ∪ S) := OptRecT (l, T,©(S))

1. Fuse(T1, T2) := ⊕({LFuse(U1, U2) | (U1, U2) ∈ KM } ∪b {U3 | U3 ∈ KU })

with KM = KMatch(T1, T2), KU = KUnmatch(T1, T2)

2. LFuse(B,B) := B with kind(B) < 4

3. LFuse(RT1, RT2) := ©({l:Fuse(T1, T2)min(m,n) | ((l:T1)m, (l:T2)n) ∈ FM }
∪{(l:T )? | (l:T )m ∈ FU })

with FM = FMatch(RT1, RT2), FU = FUnmatch(RT1, RT2)

4. LFuse(AT1, AT2) := [ Fuse(collapse(AT1), collapse(AT2))∗ ]
5. LFuse([T∗], AT ) := [ Fuse(T, collapse(AT ))∗ ]
6. LFuse(AT, [T∗]) := [ Fuse(collapse(AT ), T )∗ ]
7. LFuse([T1∗], [T2∗]) := [ Fuse(T1, T2)∗ ]

8. collapse(EArrT ) := ε
9. collapse(ArrT (T,AT )) := Fuse(T, collapse(AT ))

Figure 6: The formal specification of the type fusion.

Theorem 5.2 (Correctness of Fuse) Given two normal
types T1 and T2, if T3 = Fuse(T1, T2), then T1 <: T3 and
T2 <: T3.

The proof of the above theorem relies on the following
lemma.

Lemma 5.3 (Correctness of LFuse) Given two non-union
normal types T1 and T2 with the same kind, we have that
T3 = LFuse(T1, T2) implies both T1 <: T3 and T2 <: T3.

Another important property of fusion is commutativity.

Theorem 5.4 (Commutativity) The following two prop-
erties hold.

1. Given two normal types T1, T2, we have Fuse(T1, T2) =
Fuse(T2, T1).

2. Given two non-union normal types T and U having the
same kind, we have LFuse(T,U) = LFuse(U, T ).

Associativity of binary type fusion is stated by the follow-
ing theorem.

Theorem 5.5 (Associativity) The following two proper-
ties hold.

1. Given three normal types T1, T2, and T3, we have

Fuse(Fuse(T1, T2), T3) = Fuse(T1,Fuse(T2, T3))

2. Given three non-union normal types T , U and V of
the same kind, we have

LFuse(LFuse(T,U), V ) = LFuse(T,LFuse(U, V ))

6. EXPERIMENTAL EVALUATION
In this section we present an experimental evaluation of

our approach whose main goal is to validate our precision
and succinctness claims. We also incorporate a preliminary
study on using our approach in a cluster-based environment
for the sake of dealing with complex large datasets.

6.1 Experimental Setup and Datasets
For our experiments, we used Apache Spark 1.6.1 [7] in-

stalled on two kinds of hardware. The first configuration
consists in a single Mac mini machine equipped with an In-
tel dual core 2.6 Ghz processor, 16GB of RAM, and a SATA
hard-drive. This machine is mainly used for verifying the
precision and succinctness claims. In order to assess the
scalability of our approach and its ability to deal with large
datasets, we also exploited a small size cluster of six nodes
connected using a Gigabit link with 1Gb speed. Each node
is equipped with two 10-core Intel 2.2 Ghz CPUs, 64GB of
RAM, and a standard RAID hard-drive.

The choice of using Spark is intuitively motivated by its
widespread use as a platform for processing large datasets of
different kinds (e.g., relational, semi-structured, and graph
data). Its main characteristic lies in its ability to keep large
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datasets into main-memory in order to process them in a fast
and efficient manner. Spark offers APIs for major program-
ming languages like Java, Scala, and Python. In particular,
Scala serves our case well since it makes the encoding of
pattern matching and inductive definitions very easy. Using
Scala has, for instance, allowed us to implement both the
type inference and the type fusion algorithms in a rather
straightforward manner starting from their respective for-
mal specifications.

The type inference implementation extends the Json4s li-
brary [4] for parsing the input JSON documents. This li-
brary yields a specific Scala object for each JSON construct
(array, record, string, etc), and this object is used by our im-
plementation to generate the corresponding type construct.
The type fusion implementation follows a standard func-
tional programming approach and does not need to be com-
mented.

It is important to mention that the Spark API offers a
feature for extracting a schema from a JSON document.
However, this schema inference suffers from two main draw-
backs. First, the inferred schemas do not contain regular
expressions, which prevents one from concisely representing
repeated types, while our type system uses the Kleene-Star
to encode the repetition of types. Second, the Spark schema
extraction is imprecise when it comes to deal with arrays
containing mixed content, such as, for instance, an array of
the form:

[Num, Str, {l : Str}]

In such a case, the Spark API uses type coercion yielding an
array of type String only. In our case, we can exploit union
types to generate a much more precise type:

[(Num + Str + {l : Str})∗]

For our experiments we used four datasets. The first two
datasets are borrowed from an existing work [13] and corre-
spond to data crawled from GitHub and from Twitter. The
third dataset consists in a snapshot of Wikidata [6], a large
repository of facts feeding the Wikipedia portal. The last
dataset consists in a crawl of NYTimes articles using the
NYTimes API [5]. A detailed description of each dataset is
provided in the sequel.

GitHub.
This dataset corresponds to metadata generated upon pull

requests issued by users willing to commit a new version
of code. It comprises 1 million JSON objects sharing the
same top-level schema and only varying in their lower-level
schema. All objects of this dataset consist exclusively of
records, sometimes nested, with a nesting depth never greater
than four. Arrays are not used at all.

Twitter.
Our second dataset corresponds to metadata that are at-

tached to the tweets shared by Twitter users. It comprises
nearly 10 million records corresponding, in majority, to tweet
entities. A tiny fraction of these records corresponds to a
specific API call meant to delete tweets using their ids. This
dataset is interesting for our experiment for many reasons.
First, it uses both records and arrays of records, although
the maximum level of nesting is 3. Second, it contains five
different top-level schemas sharing common parts. Finally,
it mixes two kinds of JSON records (tweets and deletes).

This dataset is useful to assess the effectiveness of our typ-
ing approach when dealing with arrays.

Wikidata.
The largest dataset comprises 21 million records reach-

ing a size of 75GB and corresponding to Wikipedia facts.
These facts are structured following a fixed schema, but suf-
fer from a poor design compared to the previous datasets.
For instance, an important portion of Wikidata objects cor-
responds to claims issued by users. These user identifiers
are directly encoded as keys, whereas a clean design would
suggest encoding this information as a value of a specific key
called id, for example. This dataset can be of interest to our
experiments since several records reach a nesting level of 6.

NYTimes.
The last dataset we are considering here is probably the

most interesting one and comprises approximately 1.2 mil-
lion records and reaches the size of 22GB. Its objects feature
both nested records and arrays, and are nested up to 7 lev-
els. Most of the fields in records are associated to text data,
which explains the large size of this dataset compared to the
previous ones. These records encode metadata about news
articles, such as the headline, the most prominent keywords,
the lead paragraph as well as a snippet of the article itself.
The interest of this dataset lies in the fact that the content
of fields is not fixed and varies from one record to another.
A quick examination of an excerpt of this dataset has re-
vealed that the content of the headline field is associated,
in some records, to subfields labeled main, content kicker,
kicker, while in other records it is associated to subfields la-
beled main and print headlines. Another common pattern
in this dataset is the use of Num and Str types for the same
field.

In order to compare the results of our experiments us-
ing the four datasets, we decided to limit the size of every
dataset to the first million records (the size of the small-
est one). We also created, starting from each dataset, sub-
datasets by restricting the original ones to respectively thou-
sand (1K), ten thousands (10K) and one hundred thousands
(100K) records chosen in a random fashion. Table 1 reports
the size of each of these sub-datasets.

1K 10K 100K 1M
GitHub 14MB 137MB 1.3GB 14GB
Twitter 2.2MB 22 MB 216MB 2.1GB

Wikidata 23MB 155MB 1.1GB 5.4GB
NYTimes 10MB 189MB 2GB 22GB

Table 1: (Sub-)datasets sizes.

6.2 Testing Scenario and Results
The main goal of our experiments is to assess the effec-

tiveness of our approach and, in particular, to understand if
it is able to return succinct yet precise fused types. To do
so we report in Tables 2 to 5, for each dataset, the number
of distinct types, the min, max, and average size of these
types as well as the size of the fused type. The notion of
size of a type is standard, and corresponds to the size (num-
ber of nodes) of its Abstract Syntax Tree. For fairness, one
can consider the average size as a baseline wrt which we
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compare the size of the fused type. This helps us judge the
effectiveness of our fusion at collapsing common parts of the
input types.

From Tables 2, 3, and 4, it is easy to observe that our
primary goal of succinctness is achieved for the GitHub and
the Twitter datasets. Indeed, the ratio between the size of
the fused type and that of the average size of the input types
is not bigger than 1.4 for GitHub whereas it is bounded by 4
for Twitter, which are relatively good factors. These results
are not surprising: GitHub objects are homogeneous. Twit-
ter has a more varying structure and, in addition, it mixes
two different kinds of objects that are deletes and tweets,
as outlined in the description of this dataset. This explains
the slight difference in terms of compaction wrt GitHub.
As expected, the results for Wikidata are worse than the
results for the previous datasets, due to the particularity
of this dataset concerning the encoding of user-ids as keys.
This has an impact on our fusion technique, which relies on
keys to merge the underlying records. Still, our fusion algo-
rithm manages to collapse the common parts of the input
types as testified by the fact that the size of the fused types
is smaller than the sum of the input types.2 Finally, the
results for NYtimes dataset, which features many irregular-
ities, are promising and even better than the rest. This can
be explained by the fact that the fields in the first level are
fixed while the lower level fields may vary. This does not
happen in the previous datasets, where the variations occur
on the first level.

Inferred types size Fused
type size# types min. max. avg.

1K 29 147 305 233 321
10K 66 147 305 239 322
100K 261 147 305 246 330
1M 3,043 147 319 257 354

Table 2: Results for GitHub.

Inferred types size Fused
type size# types min. max. avg.

1K 167 7 218 74 221
10K 677 7 276 75 273
100K 2,320 7 308 75 277
1M 8,117 7 390 77 299

Table 3: Results for Twitter.

Inferred types size Fused
type size# types min. max. avg.

1K 999 27 36,748 1,215 37,258
10K 9,886 21 36,748 866 82,191
100K 95,298 11 39,292 607 87,290
1M 640,010 11 39,292 310 117,010

Table 4: Results for Wikidata.

Execution times for the type inference and the type fusion
for GitHub, Twitter, and Wikidata datasets are reported

2The total size of input types can be roughly estimated by
multiplying either the minimum, maximum, or average size
with the number of types.

Inferred types size Fused
type size# types min. max. avg.

1K 555 299 887 597.25 88
10K 2,891 6 943 640 331
100K 15,959 6 997 755 481
1M 312,458 6 1,046 674 760

Table 5: Results for NYTimes.

in Table 6. As it can be observed, processing the Wiki-
data dataset is more time-consuming than processing the
two other datasets. This is explained, once again, by the
nature of the Wikidata dataset. Observe also that the pro-
cessing time of GitHub is larger than that of Twitter due to
the size of the former dataset that is larger than the latter
one.

1K 10K 100K 1M
GitHub 1s 4s 32s 297s
Twitter 0 1s 7s 73s

Wikidata 7s 15s 121s 925s

Table 6: Typing execution times.

6.3 Scalability
To assess the scalability of our approach, we have deployed

the typing and the fusion implementations on our cluster. To
exploit the full capacity of the cluster in terms of number of
cores, we set the number of cores to 120, that is, 20 cores
per node. We also assign to our job 300GB of main memory,
hence leaving 72GB for the task manager and other runtime
monitoring processes. We used the NYTimes full dataset
(22GB) stored on HDFS. Because our approach requires two
steps (type inference and type fusion), we adopted a strategy
where the results of the type inference step are persisted into
main-memory to be directly available to the fusion step. We
ran the experiments on datasets of varying size obtained by
restricting the full one to the first fifty, two hundred-fifty and
five hundred thousands records, respectively. The results
for these experiments are reported in Table 7 together with
some statistics on these datasets (number of records and
cardinality of the distinct types). It can be observed that
execution time increases linearly with the dataset size.

size # records # distinct types time
1GB 50,000 5,679 2 min

4.5GB 250,000 54,868 4.4 min
9GB 500,000 128,943 8.5 min
22GB 1,184,943 312,458 12.5 min

Table 7: Scalability - NYTimes dataset.

In an attempt to optimize the execution time on the clus-
ter, we started by analyzing the execution and realized that
the full capacity of the cluster was not exploited. Indeed,
the HDFS uses only one node to store the entire dataset,
which does not allow the parallelism to be exploited. We
also observed that the intermediate results produced by the
type inference step were split on only two nodes. The overall
effect is that the computation was performed on two nodes
while the remaining four nodes were idle.
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To overcome this problem, we considered a strategy based
on partitioning the input data that would force Spark to take
full advantage of the cluster. In order to avoid the overhead
of data shuffling, the ideal solution would be to force com-
putation to be local until the end of the processing. Because
Spark 1.6 does not explicitly allow such an option, we had
to opt for a manual strategy where each partition of data
is processed in isolation, and each of the inferred schema
is finally fused with the others (this is a fast operation as
each schema to fuse has a very small size). The purpose
is to simulate the realistic situation where Spark processes
data exclusively locally, thus avoiding the overhead of syn-
chronization. The times for processing each partition are re-
ported in Table 8. The average time is 2.85 minutes, which
is a rather reasonable time for processing a dataset of 22
GB.

# objects # types time
partition 1 284,943 67,632 2.4 min
partition 2 300,000 83,226 3.8 min
partition 3 300,000 89,929 1.9 min
partition 4 300,000 84,333 3.3 min

Table 8: Partition-based processing of NYTimes.

Note that this simple yet effective optimization is possible
thanks to the associativity of our fusion process.

7. CONCLUSIONS AND FUTURE WORK
The approach described in this paper is a first step to-

wards the definition of a schema-based mechanism for ex-
ploring massive JSON datasets. This issue is of great im-
portance due to the overwhelming quantity of JSON data
manipulated on the web and due to the flexibility offered by
the systems managing these data.

The main idea of our approach is to infer schemas for the
input datasets in order to get insights about the structure of
the underlying data; these schemas are succinct yet precise,
and faithfully capture the structure of the input data. To
this end, we started by identifying a schema language with
the operators needed to ensure succinctness and precision of
our inferred schemas. We, then, proposed a fusion mecha-
nism able to detect and collapse common parts of the input
types. An experimental evaluation on several datasets vali-
dated our claims and showed that our type fusion approach
actually achieves the goals of succinctness, precision, and
efficiency.

Another benefit of our approach is its ability to perform
type inference in an incremental fashion. This is possible
because the core of our technique, fusion, is incremental by
essence. One possible and interesting application would be
to process a subset of a large dataset to get a first insight on
the structure of the data before deciding whether to refine
this partial schema by processing additional data.

In the near future we plan to enrich schemas with sta-
tistical and provenance information about the input data.
Furthermore, we want to improve the precision of the infer-
ence process for arrays and study the relationship between
precision and efficiency.
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ABSTRACT

Using so-called triple patterns as building blocks, SPARQL queries

search for specified patterns in RDF data. Although many aspects

of the challenges faced in large-scale RDF data management have

already been studied in the database research community, current

approaches provide centralized DBMS (or disk) based solutions,

with high consumption of resources; moreover, these exhibit very

limited flexibility dealing with queries, at various levels of granu-

larity and complexity (e.g., SPARQL queries involving UNION or

OPTIONAL operators). In this paper we propose a computational

in-memory framework for distributed SPARQL query answering,

based on the notion of degree of freedom of a triple. This algo-

rithm relies on a general model of RDF graph based on the first

principles of linear algebra, in particular on tensorial calculus. Ex-

perimental results show that our approach, utilizing linear algebra

techniques can process analysis efficiently, when compared to re-

cent approaches.

CCS Concepts

•Information systems → Data management systems; World Wide

Web; •Computing methodologies → Linear algebra algorithms;

Distributed algorithms;

Keywords

RDF; SPARQL; Tensor Calculus

1. INTRODUCTION
Today, many organizations and practitioners are all contributing

to the “Web of Data”, building RDF repositories of huge amounts

of semantic data, posing serious challenges in maintaining and query-

ing large datasets. Modern scenarios involve analyses of very large

semantic datasets, usually employing the SPARQL query language.

Many aspects of large-scale RDF data management have already

been studied in the database research community, including native

RDF storage layout and index structures [18], SPARQL query pro-

cessing and optimization [8], as well as formal semantics and com-

putational complexity of SPARQL [20, 23].

c©2017, Copyright is with the authors. Published in Proc. 20th Inter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

Challenges. Examining the prevalent trend in semantic informa-

tion storage and inspection, we face two major challenges: manage-

ment of large datasets, and scalability of both storage and querying.

As size increases, both storage and analysis must scale accordingly;

however, despite major efforts, building performant and scalable

RDF systems is still a hurdle. Most of the current state-of-the-art

approaches consider SPARQL as the SQL for RDF, and therefore

they usually employ RDBMS-based solutions to store RDF graphs,

and to execute a SPARQL query through SQL engines (e.g. Jena

or Sesame). Moreover, popular systems are developed as single-

machine tools [18, 28], which hinder performances as the size of

RDF dataset continues to escalate. In particular Jena, Sesame,

RDF-3X [18], BitMat [1], TripleBit [29] and GADDI [31] repre-

sent centralized approaches exploiting single-machine implemen-

tations of edge (e.g., [18, 1]) and subgraph (e.g. [31]) index based

approaches to graph matching over graph-shaped data (e.g. RDF).

In this context efficiency is driven by various forms of horizontal

and vertical partitioning scheme [4], or by sophisticated encoding

schemes [1, 29]. Hence, such proposals require the replication of

data in order to improve performances, or introduces several index-

ing functions that increase the overall size of stored information.

Lately, some distributed RDF processing systems have been devel-

oped [30, 8, 19, 9]. Trinity.RDF [30] is a distributed GraphDB

engine for RDF graph matching: it observes that query process-

ing on RDF graphs (i.e. by SPARQL) requires many graph op-

erations not having locality [23], but relies exclusively on random

accesses. Therefore typical disk-based triple-store solutions are not

feasible for performing fast random accesses on hard disks. To this

aim, among distributed approaches, Trinity.RDF exploits GraphDB

technology to store RDF data in a native form and implements a

scheduling algorithm to reduce step-by-step the amount of data to

analyze during SPARQL query execution. However non-selective

queries require many parallel join executions that the generic ar-

chitecture of Trinity.RDF is not able to integrate, as it is common

in MapReduce approaches using Hadoop (e.g., [11]). On the other

hand, MapReduce solutions involve a non-negligible overhead, due

to the synchronous communication protocols and hob scheduling

strategies. Therefore, H2RDF+ [19] builds eight indexes using

HBase. It uses Hadoop to perform sort-merge joins during query

processing. DREAM [9] proposes the Quadrant-IV paradigm and

partitions queries instead of data and selects different number of

machines to execute different SPARQL queries based on their com-

plexity. It employs a graph-based query planner and a cost model to

outperform its competitors. In addition, we mention the TriAD dis-

tributed system [8], embedding a main-memory architecture, based

on the master-slave paradigm. The problem of such system, as in

other approaches and as it will be shown experimentally, is that

it exhibits complex indexing (i.e., SPO permutation indexing) and
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partition schemes (i.e. RDF summary graph), damaging seriously

the maintenance of the approach itself and making not possible to

exploit completely an in-memory (distributed) engine. Moreover

graph data are often maintained in a relational store which is repli-

cated on the disk of each of the underlying nodes of a cluster; man-

aging big attributed graphs on a single machine may be infeasible,

especially when the machine’s memory is dwarfed by the size of

the graph topology.

Contribution. In this paper we propose a novel distributed in-

memory approach for SPARQL query processing on highly unsta-

ble very large datasets. Our objective is to provide a performance-

oriented system able to analyze RDF graphs on which no a pri-

ori knowledge is possible or available, and to avoid collection (ex-

ploitation) of complex statistics on initial data and/or frequent past

queries. Based on the notion of DOF, the degree of freedom of

a triple pattern, that is a measure of triple pattern’s explicit con-

straints, we rely on a simple and optimal scheduling algorithm that

builds incrementally answers to a SPARQL query. Intuitively, a

pattern with no constraints, i.e., constituted only by variables, has

the highest DOF, while one constituted by only constants is associ-

ated with the lowest DOF. Specifically, our scheduling starts from

triple patterns with the lowest degree of freedom, and proceeds in

bounding variables incrementally to their values by selecting the

triple pattern with the highest probability of decreasing the search-

space.

As opposed to DBMS-based (single-machine) approaches, our

approach avoids any schema or indexing definition over the RDF

graph to query, being reindexing impractical for both space and

time consumption in a highly volatile environment. Additionally,

we highlight as, in a distributed query system, storing RDF data in

disk-based triple stores hinders performances, as queries on such

graphs are non-local [30], and therefore random access techniques

are required to speedup processing. We define a general model

of RDF graph based on first principles derived from the tensor

algebra field. Many real-world data (e.g., knowledge bases, web

data, network traffic data, and many others [25, 13, 5]) with mul-

tiple attributes are represented as multi-dimensional arrays, called

tensors. In analyzing a tensor, tensor decompositions are power-

ful tools in many data mining applications: correlation analysis on

sensor streams [25], latent semantic indexing on DBLP publication

data [26], multi-aspect forensics on network data [16], network dis-

covery [5] and so on.

Leveraging such background, this paper proposes a formal ten-

sor representation and endowed with specific operators allowing

to perform efficiently our scheduling algorithm for both quick de-

centralized and centralized massive analysis on large volumes of

data—i.e., billions of triples. We strongly rely on an in-memory dis-

tributed approach, so that our framework may comfortably analyze

any given RDF dataset, without any cumbersome processing; in

other words, the tensor construction itself is the only processing op-

eration we perform. Our model and operations, inherited by linear

algebra and tensor calculus, are therefore theoretically sound, and

their implementation exploit the underlying hardware for search-

ing in the solution space. In detail, by applying bit-oriented oper-

ations on data, each computational node in our distributed system

is able to exploit low-level CPU operations, e.g., 64-bit or 128-bit

x86 register opcodes; additionally, operations are carried out in a

cache-oblivious manner, thus taking advantage of both L1 and L2

caches on modern architectures. Due to the properties of our ten-

sorial model, we are able to dissect tensors (i.e., Ri) representing

RDF graphs into several chunks to be processed independently (i.e.,

by each process pi), as shown in Figure 1.
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Figure 1: Distributed query processing in TENSORRDF.

Outline. Our manuscript is organized as follows. Section 2 will

introduce our general model of a RDF graph, accompanied by a for-

mal tensorial representation, subsequently put into practice in Sec-

tion 3, where we provide a method for RDF data analysis. Section 4

describes a scheduling algorithm to perform SPARQL queries. Sec-

tion 5 illustrates the physical modeling of our framework, while

Section 6 discusses the complexity of all involved operations. We

benchmark our approach with several test beds, and supply the re-

sults in Section 7, with the available literature discussed in Sec-

tion 8. Finally Section 9 sketches some conclusions and future

work.

2. RDF AND SPARQL MODELING
This section is devoted to give a rigorous definition of an ontol-

ogy, with respect to RDF and Semantic Web.

RDF. Data in RDF is built from three disjoints sets I, B, and L
of IRIs, blank nodes, and literals, respectively. All information in

RDF is represented by triples of the form 〈s, p, o〉, where s is called

the subject, p is called the predicate, and o is called the object. To

be valid, it is required that s ∈ I ∪ B; p ∈ I; and o ∈ I ∪ B ∪
L. RDF is a representation of an ontology. An ontology may be

viewed as a set of relations between objects, or more in general, as

a function that, given two entities s and o, and a relation p, returns

a truth value corresponding to the condition of whether or not the

two entities are related.

DEFINITION 1 (ONTOLOGY TENSOR). Let S be the finite set

of subjects, O the finite set of objects, and P the finite set of predi-

cates, the ontology tensor is a rank-3 tensor T : S×P×O −→ B ,

being B a boolean ring.

This general definition of ontology tensor must be related to ex-

isting representations, in particular with RDF. Hence, we can in-

troduce a direct mapping between the sets I, B, L and the above

definition:

DEFINITION 2 (RDF SETS). The finite sets S, P , and O are

defined as follows: S := I ∪ B, P := I, and O := I ∪ B ∪ L.

Let us briefly focus on the fact that, by definition, I, B, and L are

finite and countable. Therefore, their union is a countable set, and

so S, P , and O, consequently. The countability property makes it

possible to relate each set to N via an injective function, i.e., we can

“order” all the elements.

DEFINITION 3 (RDF SET INDEXING). Given the finite count-

able RDF sets S, P , and O, we introduce their respective index-

ing functions S, P, and O of subjects, predicates, and objects:

S : S −→ N, P : P −→ N, and O : O −→ N.
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Figure 2: An example of RDF graph G.

The introduced functions, given the finiteness and countability

properties are not only injective, but also surjective, i.e., we intro-

duced a bijection between a subset of N, and S, P , O. The RDF

set indexing functions map elements of RDF sets to a (subset of)

natural numbers. Let us focus on the ontology graph G given in

Figure 2, constituted of 14 nodes (i.e., 4 resources and 10 literals)

and 7 properties. In this case, we have S(a) = 1, S(b) = 2 S(c) = 3,

P(age) = 1, P(friendOf) = 2, and so on. Their inverse functions

are, being bijections, well defined, e.g., S−1(3) = c.

DEFINITION 4 (RDF TENSOR). Let G be a RDF graph. The

RDF tensor R(G) =: R on G is an ontology tensor such that

R = (rijk) :=

{
1, 〈S−1(i),P−1(j),O−1(k)〉 ∈ G ,

0, otherwise .

Contrary to adjacency matrices, a tensorial representation allows

a simple solution for handling multiple edges between two nodes.

Given a RDF tensor, we observe that the majority of its elements

will be zero, i.e., the originating graph is loosely connected [1]. It

is therefore advisable to employ a rule notation to express a tensor,

instead of listing all its elements. With the rule notation, we will

express a tensor with a list of triples {i, j, k} → rijk, for all rijk 6=
0, and assuming all other elements being zero, if not present in the

triples list.

EXAMPLE 1. Let us consider the RDF graph in Figure 2. The

RDF tensor R of G can be therefore given as shown in Figure 3. In

the Figure, for typographical simplicity, we omitted

0R = (0, 0, 0, 0, 0, 0, 0)t

denoted with a dash. A more concise way of expressing the above

tensors is by employing the rule notation, i.e., assuming zero as the

default value, and listing all non-zero elements:

R = { {1, 3, 1} → 1 , {1, 4, 3} → 1 , . . . , {3, 1, 13} → 1 } .

For instance the element {1, 3, 1} → 1 means that there exists

in G the triple 〈S−1(1),P−1(3),O−1(1)〉, i.e., 〈a, hates, b〉.

SPARQL. Abstractly speaking, a SPARQL query Q mainly is a 5-

tuple of the form 〈qt, RC,DD,GP , SM〉, where: qt is the query

type, RC is the result clause, DD is the dataset definition, GP

is the graph pattern, and SM is the solution modifier. At the

heart of Q there lies the graph pattern GP that searches for spe-

cific subgraphs in the input RDF dataset. Its result is a (multi) set

of mappings, each of which associates variables to elements of

I ∪ B ∪ L. In particular the official SPARQL syntax considers op-

erators UNION, OPTIONAL, FILTER and concatenation via a point

symbol “ . ” to construct graph patterns.

DEFINITION 5 (GRAPH PATTERN). A graph pattern GP is a

4-tuple 〈T, f, OPT,U〉 where

– T is a set of triple patterns {t1, . . . , tn} that may contain

a variable, i.e., a symbolic name starting with a ? and can

match any node (resource or literal) in the RDF dataset;

– f is a FILTER constraint using boolean conditions to filter

out unwanted query results;

– OPT is a set of OPTIONAL statements trying to match T,

but the whole query does not fail if the optional statements

do not match. This set is modeled as GP ;

– U is a set of UNION statements modeled as GP .

The result clause identifies which information to return from the

query. It returns a table of variables (occurring in GP ) and values

that satisfy the query. The dataset definition is optional and spec-

ifies the input RDF dataset to use during pattern matching. If it is

absent, the query processor itself determines the dataset to use. The

optional solution-modifier allows sorting of the mappings obtained

from the pattern matching, as well as returning only a specific win-

dow of mappings (e.g., mappings 1 to 10). The result is a list L of

mappings. The output of the SPARQL query is then determined by

the query-type: SELECT, ASK, CONSTRUCT and DESCRIBE.

EXAMPLE 2. Let us consider the RDF graph shown in Figure 2

and three different SPARQL queries over such graph (i.e., we used

simple terms in place of verbose URIs).

Q1: SELECT ?x ?y1

WHERE { ?x type Person. ?x hobby ’CAR’.

?x name ?y1. ?x mbox ?y2. ?x age ?z.

FILTER (xsd:integer(?z) >= 20) }

Q2: SELECT *
WHERE { {?x name ?y} UNION {?z mbox ?w} }

Q3: SELECT ?z ?y ?w

WHERE { ?x type Person. ?x friendOf ?y. ?x name ?z.

OPTIONAL { ?x mbox ?w. } }

Q1 selects URI and name of persons having the hobby of cars,

a name, a mailbox and an age greater (or equal) than twenty. Q2

selects URI and name of persons united to URI and mailbox of per-

sons. Finally Q3 selects the name and (in case) the mailbox of all

persons having a friend (of which the query returns the URI also).

Referring to Example 2, as illustrated above (in particular refer to

definition 5), for instance we model Q1 as 〈SELECT, {?x}, _, GP , _〉
with GP = 〈T, f, _, _〉, T = {〈?x, type, Person〉, 〈?x, hobby, Car〉,
〈?x, name, ?y1〉, 〈?x,mbox, ?y2〉, 〈?x, age, ?z〉} and f = {?z >=
20}.

In [21], the authors analyzed a log of SPARQL queries harvested

from the DBPedia SPARQL Endpoint from April to July 2010. The

log analysis produced interesting statistics, allowing us to simplify

the features of a SPARQL query. In the following we will consider

a query Q as a 2-tuple of the form 〈RC,GP 〉, i.e. only SELECT

queries with result clause and graph pattern, employing the oper-

ators {AND, FILTER, OPTIONAL, UNION}. This simplification does

not compromise the feasibility and generality of the approach.

3. SPARQL DOF MODELING
This section is devoted to the introduction of our approach to

SPARQL selection query treatment. In the rest of the paper we will

use the term “triple” to indicate also a triple pattern (i.e., a triple

can be considered a triple pattern 〈s, p, o〉, where s, p and o are

constants).

236






































0

0

1

0

0

0

0

































−

































0

0

0

1

0

0

0

































− − − −

































0

0

0

0

0

1

0

































































0

0

0

0

0

0

1

































































0

0

0

0

1

0

0

































































1

0

0

0

0

0

0

































− −

−

































0

1

0

0

0

0

0

































−

































0

0

0

0

0

1

0

































− − − −

































0

0

0

0

0

0

1

































− −

































1

0

0

0

0

0

0

































−

































0

1

0

0

0

0

0

































−

































0

0

0

1

0

0

0

































−

































0

0

0

0

0

1

0

































































0

0

0

0

1

0

0

































































0

0

0

0

1

0

0

































−

































0

0

0

0

0

0

1

































− − −

































1

0

0

0

0

0

0




































.

S S

1 a

2 b

3 c

P P

1 age

2 friendOf

3 hobby

4 hates

5 mbox

6 name

7 type

O O

1 b

2 c

3 Car

4 John

5 Mary

6 m1@ex.com

7 m2@ex.it

8 p@ex.it

9 Paul

10 Person

11 18

12 23

13 28

Figure 3: An example of RDF tensor R and corresponding RDF Sets Indexing S, P and O.

3.1 Triple Analysis
A selection query consists of a SELECT clause, followed by a list

of unbounded variables, i.e., variables whose value is not calculated

yet. A WHERE clause states all the conditions the variables must

meet, conjunctively.

DEFINITION 6 (DEGREE OF FREEDOM). The degree of free-

dom of a triple t, dof : T −→ {+3,+1,−1,−3}, is the function

defined as: dof(t) := v−k, being k and v the number of constants

and variables in t, respectively.

The degree of freedom, or DOF, is a measure of a triple’s explicit

constraints, hence a condition with no constraints (i.e., constituted

by variables) has the highest DOF, while one constituted by only

constants has the lowest DOF.

EXAMPLE 3. Referring to Figure 2, the triple t1 := 〈a, hates, b〉
is constituted by three constants, and no variables: its DOF is

dof(t1) = v − k = 0− 3 = −3. A triple as t2 := 〈a, hates, ?x〉
has two constants, and one variable, namely ?x. Its degree of free-

dom is dof(t2) = v−k = 1−2 = −1. With t3 := 〈?x, hates, ?y〉
we express a constraint constituted by one constant, hates, and two

variables. It follows that dof(t3) = v − k = 2 − 1 = +1. Last,

let t4 := 〈?x, ?y, ?z〉 be a triple: it is composed by three variables,

and no constants. Therefore, dof(t4) = v − k = 3− 0=+3.

3.2 Constraint Solving
Due to the fact that triples may have various degrees of freedom,

i.e., they may or may not be bound to constants, in the following

we shall consider each case, and calculate the results of a triple

within our tensorial framework. In particular we employ the vec-

tor specification of Kroneker tensor, commonly known as Kroneker

delta (δ). For instance, given the RDF tensor Rijk, the notation δ2i
means that each component in a position different from 2 has value

0, while the component in position 2 has value 1. The number of

components in δ2i is equal to the size of the dimension i in Rijk.

Referring to the RDF tensor of Figure 3, δ2i = (0, 1, 0). For the

sake of conciseness, we employ a simplified Einstein’s summation

convention: if two adjoined entities share a common index, a sum-

mation is implicitly intended, e.g., Rijk δ
2
i :=

∑
i
Rijk δ

2
i .

Degree −3. A triple t with dof(t) = −3, is by definition bound

to three constants c1 ∈ S, c2 ∈ P , and c3 ∈ O, and therefore the

constraint is computed as Rijk δ
S(c1)
i δ

P(c2)
j δ

O(c3)
k .

Degree −1. A triple t with dof(t) = −1 possesses two constant

values, c1, and c2, whose domains are associated with their respec-

tive indices i1 and i2. The results are hence given by Rijk δ
K1(c1)
i1

δ
K2(c2)
i2

with K1,K2 ∈ {S,P,O}. The result of such computation is a vec-

tor bound the only variable present in the triple, and, with the rule

notation, it may take the form of a list of values.

Degree +1. A triple t with dof(t) = +1 present two variables,

and a single constant c, with the index ic associated to its do-

main. So, we may compute the constrains as Rijk δ
K(c)
ic

with

K ∈ {S,P,O}. The above equation yields a rank-2 tensor, or in

other words, a matrix, and promptly interpreted as a list of couples

when employing the rule notation.

Degree +3. A triple t with dof(t) = +3 is associated to no con-

stants, and therefore its result is unbounded, i.e., it is computed by

returning Rijk.

3.3 Conjunctive Operations
A list of triples in the set T of a given SELECT query must be

satisfied conjunctively.

DEFINITION 7 (DISJOINED TRIPLES). Let t1, t2 ∈ T be two

triples; t1 and t2 are disjoined if they share no common variables.

With the above definition, we are able now to focus on the only

two cases that may present in a selective SPARQL query.

Disjoined Triples. Given two disjoined triples, their conjunction

is simply the union of their bounded variables. By definition, if a

variable is bound to an empty set, the query yields no results.

Conjoined Triples. Sharing at least one variable, two conjoined

constraints t1 and t2 produce their results by applying the Hadamard

product (element-wise multiplication denoted by ◦) on the com-

mon variables: being u = (ui) and v = (vi) we have z = (zi) =
u ◦ v := (ui · vi).

EXAMPLE 4. With reference to Figure 2, let t1 and t2 be two

conjoined triples, with t1 := 〈?x, friendOf, c〉, and t2 := 〈a, hates, ?x〉.

The first triple will be computed as t1 := Rijk δ
P(friendOf)
j δ

O(c)
k ,
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Figure 4: Triples by their degree of freedom in an execution

graph. From left to right, we have DOFs −3, −1, +1, and +3.

which yields the vector t1 := {{S(b)} → 1}. Analogously, t2

will give the result t2 := Rijk δ
S(a)
i δ

P(hates)
j = {{O(b)} → 1}.

Hence, t1 ◦ t2 = {{S(a)} → 1} is the final result, i.e. t1 and t2
have b in common. Conversely, if we have t2 := 〈a, friendOf, ?x〉,
this will yield no results, since t2 := ∅, and therefore t1 ◦ t2 = ∅.

Anticipating an implementation aspect, we highlight the fact that

conjoined triples may be computed sequentially for each value in a

variable. In other words, if we have a shared variable ?x to which

there is associated the set of values {v1, v2}, the query shall be

processed for v1, and separately for v2.

4. QUERY ANSWERING
Given a query, we may now proceed in describing a suitable

scheduling algorithm for the analysis of all triples.

4.1 Query Scheduling
Let us first recognize that the final purpose of a scheduling is

to determine the order of execution of each triple. In turn, this

will bind all the variables in the query to their respective values, if

any. The degree of freedom of each triple is the primary tool for

determining a sequence in which constraints should be solved: it

indicates the priority of each triple, with lowest DOFs associated to

higher priorities. A directed acyclic graph (DAG) may represent an

algorithm [3], and in our case, will be employed to visually select

all triples for execution.

DEFINITION 8 (EXECUTION GRAPH). Given a set T of triples,

an execution graph on T is a weighted directed acyclic graph EG =
(N,E). N is the set of nodes resulting from Nt ∪Nc ∪Nv , where

Nt is the set of triples in T, Nc and Nv are the sets of constants and

variables associated to the triples of T, respectively. E is the set of

weighted edges connecting triples to their respective constants and

variables, with weights representing the domain (i.e., S, P or O)

of the ending node.

In order to enhance readability, we present the execution graph

in a three-layered fashion, as depicted in Figure 4. The center layer

contains all triples Nt, the top layer the constants Nc, and the bot-

tom layer the variables Nv .

EXAMPLE 5. With reference to the query Q1 of Example 2 and

Figure 4, we rewrite Q1 as follows. The triple t1 := 〈?x, type, Person〉
has DOF −1 and is represented by the second graph of Figure 4,

with c1 = type, c2 = Person, and their respective weights are

w1 = P , w2 = S, and w3 = O. Hence, the computation of t1 is

given by Rijk δ
P(type)
j δ

O(Person)
k , giving birth to a vector of ele-

ments, bound to the variable ?x. The triple t2 := 〈?x, hobby, car〉
has DOF −1 and is represented similarly to t1. Therefore we may

compute t2 as Rijk δ
P(hobby)
j δ

O(car)
k . The triples t3 := 〈?x, name, ?y1〉,

t4 := 〈?x,mbox, ?y2〉, t5 := 〈?x, age, ?z〉 have DOF +1 and are

represented by the third graph of Figure 4. For instance, referring

to t3, we have only one constant c1 = name with weight w2 = P ,

?x

t1

persontype

S

P O

t2

carhobby

S

P O

t3

name

S

P

O

?y1

t4

mbox

S

P

O

?y2

t5

age

S

P

O

?z

Figure 5: An example of execution graph.

and two variables x1 = ?x and x2 = ?y1; their respective weights

are w1 = S, w3 = O. Hence, t3 is computed as Rijk δ
P(name)
j :

the matrix resulting from the computation is the set of couples as-

sociated to the variables ?x and ?y1. Figure 5 shows the final

execution graph built from Q1.

The scheduling for the execution of a SELECT SPARQL query is

therefore dynamically determined. In our framework, given a set T

of triples, the scheduling algorithm can be sketched as follows:

1. Determine the DOF of each triple ti ∈ T;

2. Select the triple t̃ ∈ T with lowest DOF;

3. Execute t̃ as described in Section 3.2;

4. Bind all variables in the triples of T conjunctively;

5. Remove t̃ from the list;

6. If T = ∅ stop; else proceed to step 1.

In the previous scheduling schema, we may encounter triples

with the same DOF. In this case, in Step 2 we shall select the triple

which raises the DOF of the largest numer of triples in a query,

excluding itself. Suppose for instance that our triple patterns are

as follows: ?x name ?y, ?x hobby ?u, ?u color ?z, and finally the

pattern ?u model ?w. In the example we may notice as every triple

has DOF equal to +1. However, analyzing the prospect DOFs, we

notice as the first will promote only the second query through ?u,

both the third and fourth will affect two patterns—the second and

fourth—while the second will affect all queries, and hence it is se-

lected for processing.

EXAMPLE 6. This example will elucidate the process of query

answering via DOF analysis. With reference to the RDF tensor R
described in Figure 3, let the SPARQL query under scrutiny be Q1

= ?x type Person. ?x hobby ’CAR’. ?x name ?y1. ?x mbox ?y2.

?x age ?z.; as discussed above, we have five triples t1, t2, t3, t4,

and t5. Given our five constraints we hence proceed in analyzing

their degrees of freedom, resulting in dof(t1) = dof(t2) = 1, and

dof(t3) = dof(t4) = dof(t5) = +1. We may proceed now in ex-

ecuting the query. First, let us remind that any variable is currently

unbounded, or in other words, unassociated to any value. The first

triple to be computed is between t1 := 〈?x, type, Person〉 and

t2 := 〈?x, hobby, car〉, having the lowest value of DOF, equal to

−1. In this case we start from t1. Therefore we determine the val-

ues associated to this constraint. This triple produces a vector of

values to be bound to ?x:

t1 := Rijk δ
P(type)
j δ

O(person)
k =

= { {S(a)} → 1, {S(b)} → 1, {S(c)} → 1 } .

This computation returns the set X of values {a, b, c} to be as-

sociated to the variable ?x. Therefore we have to reanalyze the
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degree of freedom of the remaining triples. In this case we have

dof(t2) = −3 and dof(t3) = dof(t4) = dof(t5) = −1, i.e., the

variable ?x is promoted to the role of constant. The next triple to

be computed is t2, having the highest value of DOF, equal to −3.

Therefore, for each xz ∈ X , the triple yields the boolean value

t2 := Rijk δ
S(xz)
i δ

P(hobby)
j δ

O(car)
k = 1 .

Since the outcome of the computation is true for xz ∈ {a, c}, the set

X is filtered accordingly, and the query processing may proceed.

Proceeding our scheduling, t3 has to be processed similarly to t1.

This triple produces a vector of values to be bound to ?y1:

t3 := Rijk δ
S(a)
i δ

P(name)
j ∪Rijk δ

S(c)
i δ

P(name)
j =

= { {O(Paul)} → 1, {O(Mary)} → 1 } .

Owing to the non-emptiness of the previous computation, we pro-

ceed to the last triples t4 and then t5 computed as t3 producing the

vectors of values to be bound to ?y2 and ?z, respectively.

t4 := { {O(p@ex.it)} → 1, {O(m1@ex.it)} → 1,

{O(m2@ex.com)} → 1 } .

t5 := { {O(18)} → 1, {O(28)} → 1 } .

In both the triples all values in the set X , i.e., a and c, provide

non-empty results in the computation. Finally we apply the filter

to the values associated to the variable ?z, i.e., ?z ≥ 20. Conse-

quently, we have to filter t5 to {{O(28)} → 1} and then the set

X , i.e., X = {c}. Since all triples were processed, the scheduling

stops. Moreover we bind the set Y 1 of values associated to ?y1 to

X obtaining {Mary}. Because the result clause of Q1 is ?x ?y1,

we return the so-generated X and Y 1.

In the rest of this section we provide an implementation of our

scheduling algorithm to perform both “conjunctive” and “non-conjuncti-

ve” SELECT SPARQL queries.

4.2 Conjunctive Pattern with Filters
The so-called conjunctive pattern with filters (CPF) uses only the

operators AND and FILTER. Therefore our scheduling algorithm

takes as input a set T of triple patterns t1, . . . , tm, a filter f , a set

Xv of result clause variables ?x1, . . . , ?xn and a RDF tensor R, in

terms of sum of p chunks Ri; p is the number of processes on p
hosts, while Ri is the slice of R corresponding to the set of triples

in the i-th host. The output is a set XI of instances X1, . . . , Xn,

that is, each Xi contains values to be associated to the variable

?xi such that all constraints t1, . . . , tm are satisfied. The set XI is

computed as shown in Algorithm 1.

More in detail, we initialize a map V where the keys are all the

variables occurring in the triples of T while to each key we as-

sociate a set of values, i.e. at the beginning an empty set (lines

[1-2]). The procedure getVariables is responsible to extract

all variables from the triple patterns in T. For instance referring

to the query Q1 of Example 2 on the RDF graph of Figure 2, we

have T = {t1, t2, t3, t4, t5} as described above, f = ?z ≥ 20,

Xv = {?x, ?y1} and the RDF tensor R illustrated in Figure 3.

The map V is initialized to {〈?x,∅〉, 〈?y1,∅〉, 〈?y2,∅〉, 〈?z,∅〉}.

We organize T as a priority queue (i.e. high priority corresponds

to low DOF associated to a constraint t). Then we extract a con-

straint t from T until T is not empty and the computation of t pro-

duces a non-empty result (lines [4-12]). In particular, a broadcast

mechanism sends t and V to all hosts, which compute t on the

Algorithm 1: Execution of a SPARQL query

Input : T = {t1, . . . , tm}, f , Xv = {?x1, . . . , ?xn},
R =R1 + . . . +Rp

Output: XI = {X1, . . . , Xn}

V← ∅;1

foreach ?x ∈ getVariables(T) do V.put(?x,∅);2

proceed← true;3

while (T is not empty) ∧ (proceed) do4

t← T.dequeue();5

broadcast(t);6

proceed← reduce(Application(t, V,Ri), OR);7

if (proceed) then8

Update(T, V);9

Filter(V,f);10

foreach ?x ∈ getVariables({t}) do11

reduce(V.get(?x), sum);12

if (proceed) then13

foreach ?x ∈ Xv do XI ← XI ∪ V.get(?x);14

else XI ← ∅;15

return XI ;16

own R〉. The resulting values associated to the variables occur-

ring in t are included in the set V and then filtered by applying f
(i.e., the procedure Filter is responsible of such task) in terms

of a map operation: being u = (ui) and f a suitable function,

v = (vi) = map(f, u) := ( f(ui) ). Consequently, we update the

DOFs of each triple in T (i.e., the procedure Update is responsi-

ble of such task). At the end, if all triples brought result we return

the sets of values associated to the variables in Xv , otherwise we

return an empty set.

Algorithm 2: Tensor application of a triple

Input : t, V = {〈?x1, X1〉, . . . , 〈?xz, Xz〉},R
Output: boolean

if isVariable(t.s) then S ← V.get(t.s);1

else S ← S ∪ {t.s};2

if isVariable(t.p) then P ← V.get(t.p);3

else P ← P ∪ {t.p};4

if isVariable(t.o) then O ← V.get(t.o);5

else O ← O ∪ {t.o};6

switch dof(t,V) do7

case -38

return CASETHREE(t, S, P , O, V,R);9

case -110

return CASEONE(t, S, P , O, V,R);11

case +112

return CASEMINUSONE(t, S, P , O, V,R);13

case +314

V.put(t.s, getValues(Rijk1̄j 1̄k));15

V.put(t.p, getValues(Rijk1̄i1̄k));16

V.put(t.o, getValues(Rijk1̄i1̄j));17

return true;18

otherwise19

return false;20

The computation of a triple t is performed by the procedure

Application. Since we are in a distributed environment, we

exploit a reduce function that takes as input a set of values and

an operator to combine such values. Since Application returns

a boolean value (i.e. true if the tensor application was able to com-

pute t), the reduce function takes all boolean values from each

host and combine them through the OR logic operator (line [7]).

Similarly, if the result of such reduce is true, then we combine

all the values retrieved for each variable ?x in t by the hosts by re-

ducing them though a sum operator, i.e. union, (lines [11-12]).As

shown in Algorithm 2, it takes as input the triple t, the map V and
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the tensor slice R. In this procedure we have to evaluate the DOF

of t: how many constants (or variables to which there exists a non-

empty set associated in V) and how many variables (to which an

empty set is associated in V). We use the notation t.s, t.p and t.o
to access to subject, property and object of a triple t, respectively.

The procedure isVariable evaluates if a component of t is a

variable: we extract all values associated in the previous compu-

tations and we put them in the sets S, P and O. Otherwise S, P
and O contain the constants t.s, t.p and t.o, respectively. W.r.t the

DOF, we call the corresponding procedure implementing the tensor

application on R.

Case −3. The triple t has DOF −3; in this case we have to filter

all s ∈ S, p ∈ P and o ∈ O such that there does not exist a triple

〈s, p, o〉 in R. As illustrated in Algorithm 3, we iterate on S, P and

O to compute the set D of elements to filter. If all S, P and O are

not empty we can proceed with our scheduling.

Algorithm 3: Case with DOF -3

Input : t, S, P , O, V,R
Output: boolean

D ← ∅;1

foreach s ∈ S do2

foreach p ∈ P do3

foreach o ∈ O do4

ifRS(s)P(p)O(o) = 0 then5

D ← D ∪ {s};6

D ← D ∪ {p};7

D ← D ∪ {o};8

else9

D ← D − {s};10

D ← D − {p};11

D ← D − {o};12

S ← S −D;13

P ← P −D;14

O ← O −D;15

if isVariable(t.s) then V.put(t.s,S);16

if isVariable(t.p) then V.put(t.p,P);17

if isVariable(t.o) then V.put(t.o,O);18

return (S 6= ∅ ∧ P 6= ∅ ∧ O 6= ∅);19

Case −1. The triple t has DOF −1; in this case t provides only one

variable. As shown in Algorithm 4, the procedure roleVariable

evaluates which component of t is a variable (i.e., ’s’ for sub-

ject, ’p’ for property, ’o’ for object). We have to compute the

application Rijk δ
K1(c1)
i1

δ
K2(c2)
i2

on the two constants c1 and c2
of t. For instance if roleVariable(t) is ’s’ then we employ

the constants p ∈ P and o ∈ O (i.e., coming from the previous

computations) and we compute Rijk δ
P(p)
j δ

O(o)
k . The procedure

getValues retrieves the values associated to the resulting vector

and put them in the set X . Finally we associate X to the variable

t.s in V. If the resulting set X is not empty we can proceed with

our scheduling.

Case +1. The triple t has DOF +1; in this case t provides only one

constant. As shown in Algorithm 5, the procedure roleConstant

evaluates which component of t is a constant.

We have to compute Rijk δ
K(c)
ic

. For instance if roleConstant(t)

is ’s’, we have to extract all predicates and objects associated to

the elements e ∈ S (coming from the previous computations in

case). Therefore we compute RS(e)jk1̄k and RS(e)jk1̄j ; RS(e)jk

returns a matrix fixing the dimension i to S(e) while 1̄j (1̄k) is a

vector with all components 1 and with length equal to the size of

Algorithm 4: Case with DOF -1

Input : t, S, P , O, V,R
Output: boolean

X ← ∅;1

switch roleVariable(t) do2

case ’s’3

foreach p ∈ P do4

foreach o ∈ O do5

X ← X ∪ getValues(Rijkδ
P(p)
j

δ
O(o)
k

);6

V.put(t.s,X);7

case ’p’8

foreach s ∈ S do9

foreach o ∈ O do10

X ← X ∪ getValues(Rijkδ
S(s)
i

δ
O(o)
k

);11

V.put(t.p,X);12

case ’o’13

foreach s ∈ S do14

foreach p ∈ P do15

X ← X ∪ getValues(Rijkδ
S(s)
i

δ
P(p)
j

);16

V.put(t.o,X);17

otherwise18

return false;19

return X 6= ∅;20

the dimension j (k). All the properties (E1) and objects (E2) are

then associated to t.p and t.o in the map V. If E1 and E2 are non

empty our scheduling can proceed.

Case +3. If the triple t has DOF +3 we have to extract all sub-

jects (Rijk1̄j 1̄k), properties (Rijk1̄i1̄k) and objects (Rijk1̄i1̄j)

from R.

4.3 Non-Conjunctive Pattern with Filters
The so called non conjunctive pattern with filters (non-CPF) em-

ploys OPTIONAL and UNION, beyond AND and FILTER. In this case

our scheduling algorithm has to perform disjoined triples.

Union. Given a query 〈RC,GP 〉 with GP = 〈T, f, _, U〉 (i.e.,

U = 〈TU , fU , _, _〉), we perform our scheduling algorithm on

the triples of both T and TU , separately. Finally we make the

union of all XI . For instance let us consider the query Q2 of

Example 2. We have T = {t1} and TU = {t2}, where t1 :=
〈?x, name, ?y〉 and t2 := 〈?z,mbox, ?w〉. From T we generate

XI = {{a, b, c}, {Paul, John,Mary}} while from TU we have

XI = {{a, c}, {p@ex.it,m1@ex.it,m2@ex.com}}.

The final result is XI = { {a, b, c}, {Paul, John,Mary},
{ p@ex.it, m1@ex.it,
m2@ex.com} }.

Optional. Given a query 〈RC,GP 〉 with GP = 〈T, f, OPT, _〉
(i.e., OPT = 〈TOPT , fOPT , _, _〉), we perform our scheduling al-

gorithm on the triples of both T and T∪TOPT , separately. Finally

we make the union of all XI . For instance let us consider the query

Q3 of Example 2, we have T = {t1, t2, t3} and TOPT = {t4},

where t1 := 〈?x, type, Person〉, t2 := 〈?x, friendOf, ?y〉, t3 :=
〈?x, name, ?z〉 and t4 := 〈?x,mbox, ?w〉. From T we generate

XI = {John,Mary}, {b, c}}, while from T ∪ TOPT we have

XI = {{Mary}, {b}, {m1@ex.it, m2@ex.com}}. The final re-

sult is XI = {{John,Mary}, {b, c}, {m1@ex.it, m2@ex.com}}.

Of course, both the graph patterns U and OPT can be more

complex, i.e. with other UNION or OPTIONAL statements; in this
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Algorithm 5: Case with DOF +1

Input : t, S, P , O, V,R
Output: boolean

E1 ← ∅;1

E2 ← ∅;2

switch roleConstant(t) do3

case ’s’4

foreach e ∈ S do5

E1 ← E1 ∪ getValues(RS(e)jk1̄k);6

E2 ← E2 ∪ getValues(RS(e)jk1̄j);7

V.put(t.p, E1);8

V.put(t.o, E2);9

case ’p’10

foreach e ∈ P do11

E1 ← E1 ∪ getValues(Ri P(e)k1̄k);12

E2 ← E2 ∪ getValues(Ri P(e)k1̄i);13

V.put(t.s, E1);14

V.put(t.o, E2);15

case ’o’16

foreach e ∈ O do17

E1 ← E1 ∪ getValues(Rij O(e)1̄j);18

E2 ← E2 ∪ getValues(Rij O(e)1̄i);19

V.put(t.s, E1);20

V.put(t.p, E2);21

otherwise22

return false;23

return (E1 6= ∅ ∧ E2 6= ∅);24

case we apply the above procedure recursively. Concluding, once

our scheduling algorithm produced XI , we demand to a front-end

task the presentation of results in terms of tuples, conforming to the

result clause of the query.

5. IMPLEMENTATION
Our prime objective is to provide a general storage, in memory

data structures and operators for distributed query processing in our

framework. As detailed in Section 7, we make use of a clustering

file system, i.e., the Lustre [15] file system. In our system we were

not allowed low-level administration, and therefore we could not

tune Lustre for optimal performance by imposing ad-hoc parame-

ters: we therefore chose a file format that could exploit a parallel

distributed access on a shared file system, in particular, we chose

the Hierarchical Data Format version 5, or HDF5. The HDF5 data

format [10] is a binary storage that allows a hierarchical organi-

zation of large datasets. It supports platform-independent binary

data types, multidimensional arrays, and grouping in order to pro-

vide more articulated data structures. In comparison to standard

DBMSs, recent developments in the analysis of biological dataset

highlighted that databases are effective in dealing with string-based

data, whereas management is more difficult for complex numeri-

cal structures (cf. Millard et al., Nature [17]). Limits of HDF5

on the top of a Lustre file system is beyond present-day realistic

constraints: the maximum archive size is imposed by HDF5, 1018

bytes, or 1000 PB.

Permanent Storage. Several data structures have been proposed

for (sparse) tensors, i.e., multidimensional arrays [24]. A common

representation for sparse matrices is the Compressed-Row Storage

format, or briefly CRS, with its dual CCS—Compressed-Column

Storage (cf. [6]). Such matrices with nnz non-zero entries, are rep-

resented by means of three different arrays: one of length nnz rep-

resenting all stored entries, in row-major order for CRS (column-

major for CCS); one array of length equal to the number of rows,

Header

Literals

RDF Tensor

root

...

{s1, p1, o1}

{s2, p2, o2}

S P O

Figure 6: Data storage within the HDF5 file format.

containing the indexes of the first element of each row (or column);

finally, the column index vector of each non-zero element. Liter-

ature describes numerous data structures related to CRS, aimed at

tensor representation: in essence, elements are stored by sorting in-

dexes, and subsequently memorizing index vectors as CRSs, a tech-

nique commonly known as slicing. It is clear as the order of sorting

is crucial: being Rijk a tensor sorted on the i-th coordinate, cal-

culating Rijkvi is optimized, but Rijkvk is not [2]. Moreover, all

CRS descendants suffer from the same drawbacks of their ancestor:

they highly depend on the assumption that elements are evenly dis-

tributed among rows. Moreover, such data structures are bounded

to particular dimensions of a tensor, or in simpler terms, chang-

ing the size of a coordinate—e.g., introducing a new property—is

a burdensome operation (cf. [14]).

We therefore chose another common data format to model RDF

graphs as tensors, the Coordinate Sparse Tensors [2], or CST. This

format, already introduced in Section 2, memorizes tensors as a list

of tuples: we memorize a list of nnz entries, describing the en-

try value and coordinates, parallel to the description illustrated in

Figure 3. The main advantage of this organization is its simplicity

and adaptability: it is order independent with respect to the RDF

tuples, allows fast parallel access to data, requires no particular in-

dex sorting on coordinates, and allows run-time dimension changes

with the addition of new entries.

As previously said, we chose HDF5 as the hierarchical perma-

nent storage medium. The root of the HDF5 storage will contain a

header with pointers to two main data structured: the Literals list

and the RDF tensor itself. The former, as exemplified in Figure 6,

contains the list of all literals needed by a user to identify objects in

the RDF graph: in other words, it incorporates the list of literals and

constants found in RDF groups S, P , and O, hence, it implicitly

defines S, P, and O. The latter group is the RDF tensor, stored as a

list of triples by means of Coordinate Sparse Tensor representation.

By definition if a triple is not present in the list, then its associated

boolean value is false, hence omitted.

Parallel Operations. Our storage exploits the performance boost

obtainable by a binary interface and numerical data. We are able,

therefore, to split data over different processes, so that I/O overhead

may be further ameliorated. The CST data structure does not rely

on any particular ordering, and therefore given p processes, and

being n the number of triples stored in the RDF tensor, we may

simply distribute evenly n/p 3-tuples on each process, owing to the

associative and distributive properties of linear forms. In fact, given

Rijkvℓ, with ℓ ∈ {i, j, k}, it is perfectly licit to obtain the result as

Rijkvℓ =

(
p∑

z=1

Rz
ijk

)
vℓ =

p∑

z=1

(
Rz

ijk vℓ
)
, (1)
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typedef __uint128_t rdft;

// Returns an 128-bit integer from components

inline rdft toStorage(long s, long p, long o)

{

return (static_cast<rdft>(s) << 0x4E) |

(static_cast<rdft>(p) << 0x32) |

(static_cast<rdft>(o));

}

auto it = std::find_if(p.begin(), p.end(),

[](rdft d){ return d &

toStorage(42, 0xFFFFFFF, 256); });

Figure 7: A representative search with 128-bits integer encod-

ing, searching for a triple matching 〈S−1(42), ?x, O−1(256) 〉.

being Rz
ijk the z-th tensor partition, i.e., a set of n/p triples as-

signed to each process. As the reader may perceive, a parallel im-

plementation of all the operators introduced in the previous sections

is straightforward, being inherently data-parallel [3].

We remind that our environment shall handle highly unstable

data-sets, and as such we do not perform any indexing, as said

before. Therefore, each and every computational node in our en-

vironment will read a portion of all RDF triples independently of

any order, i.e., as they appear in the dataset. Having access to the

Lustre distributed file system, each node in the cluster may read its

contiguous portion of data, i.e., z-th processor will read n/p triples,

with offset equal to zn/p, with z ∈ N ≤ p being the processor

unique id, and p being equal to the number of available processes.

Hence, each process will hold a fragment of the whole tensor R,

being the part in itself a valid sparse tensor.

Equation (1) shows that the application of a tensor to a vector

may be conducted independently on each process, multiplying the

partial tensor Rz with the vector v. In order to reconstruct the

complete result R v, we shall sum all the contribution computed

by each process, an operation that, in distributed terms, is named

reduction. The reduction operator combines all data from every

process with an associative operation, in our case, we employ re-

ductions over boolean rings and vector spaces (cf. Algorithm 1),

and are carried on communicating among processes using binary

trees [22].

Tensor Application. Our implementation has the primary objec-

tive of exploiting the underlying hardware for accelerating tensor

applications. This paragraph briefly describes the implementation

of tensor application described in Section 3.2, and leveraged on

each computational node as reported in the previous paragraph.

The tensorial framework we developed relies on the latest ISO

C++11 specification, utilizing an unordered vector as the main com-

putational node in-memory data structure. The vector contains all

triples stored in a single computational node, encoded as a single

128-bit unsigned integer; each integer is decomposed bit-by-bit,

i.e., interpreted as a sequence of bits representing, in order, S, P,

and O. In our implementation, we reserved 50 bits for subject

and object, and 28 bits for the property, as detailed in the function

toStorage in Figure 7. Applying the tensor to a vector falls into

one of the four cases exposed in Section 3.2, dependently on each

triple pattern’s degree of freedom: each DOF case shall multiply

the tensor with one or more Dirac deltas (i.e., it is a generalization

of Kronecker delta). However, we may conduct those operations si-

multaneously by scanning the vector for matching triples, encoded

in a single 128-bit integer.

Scanning the vector, which is guaranteed to be allocated in a

single contiguous block of memory, leverages memory caches and

minimizes cache misses. In other words, the naïve data structure

allows us to employ a simple bit-wise cache-oblivious search al-

gorithm [7]. In order to optimize queries, searching is performed

by utilizing the bit-wise and operator: a SPARQL triple pattern is

encoded as a single 128-bit integer, shifting their numerical values

and or-ing them; free variables, as for instance in Figure 7, are

represented by a sequence of bit set to 1. Our implementation op-

timises further comparisons by exploiting CPU-level SSE2/SSE3

instructions, available on every modern processors, and used as ac-

celerators in several computational fields, as for instance bioinfor-

matics or databases. Hence, a triple 〈s, p, ?x〉 is encoded combin-

ing S
−1(s), P−1(p), and a sequence of 50 bit set in a single 128-bit

integer number, treated via XMM 128-bit capable registers.

6. THEORETICAL ANALYSIS
The ensuing paragraphs analyze the theoretical complexity of

all the operations involved in SPARQL queries, according to Sec-

tions 3 and 4. In the following, we will employ the notation nnz(M),
with M being the rank-3 RDF tensor under analysis, denoting the

number of its non-zero values—analogously nnz(v) yields the num-

ber of non-zero entries of a vector v.

Insertion. The assembly of a sparse tensor requires the basic oper-

ation of inserting an element into the list of non-zero values, if not

present. The operation has therefore a complexity of O (nnz(M)),
and O (nnz(v)) for vectors.

Deletion and Update. Such basic actions mimic the above in-

sertion operation, and therefore have an asymptotic complexity of

O (nnz(M)).

Hadamard Product. The Hadamard product of two vectors u ◦ v
has a complexity of O (nnz(u) nnz(v)).

Tensor Application. For a suitable vector v, the tensor application

on the ℓ-th dimention Mijkvℓ, with ℓ ∈ {i, j, k}, has asymptotic

complexity of O (nnz(M)), as detailed in [2].

Mapping. Mapping a function on a tensor or a vector, i.e., filter-

ing information, has clearly a linear complexity O(nnz(M)) and

O(nnz(v)). All other non-zero element will be mapped once, and

eventually inserted in the result, if the mapping yields a non-false

value.

Scheduling. The naïve scheduler described in Section 4.1 is op-

timal. First, let us consider a (computational) cost function of a

triple pattern. In our environment, where no statistical information

about the SPARQL dataset is available, we may assume the degree

of freedom of each triplet as an indicator of the supposed computa-

tional cost. Let s∗ = {s1, . . . , st} be the optimal scheduled triple

patterns in a SPARQL query, i.e., the scheduling with the minimal

cost; if the actual scheduling s differs from s∗ therefore at least one

step i, the algorithm chose a different triple pattern, i.e., si 6= s∗i ,

with dof(si) > dof(s∗i ). However, this contradicts the step 2 of

the algorithm presented in Section 4.1: if this were the case, the

chosen scheduled triplet would have been s∗i , hence, we have that

necessarily s∗ = s.

7. RESULTS
We implemented our framework into TENSORRDF, a C++ sys-

tem using OpenMPI v1.8 library for answering SPARQL queries

over RDF datasets. We performed a series of experiments aimed at
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Figure 8: Data loading times in seconds (a) and query memory

footprint expressed in MB (b). Light gray bars refer to system

memory overhead, while dark gray ones show data set size.

evaluating the performance of our approach, with the main results

detailed in this section.

Benchmark Environment. We deployed TENSORRDF on a clus-

ter, wherein each machine is supported by 48 GB DDR3 RAM, 16

CPUs 2.67 GHz Intel Xeon (i.e., each with 4 cores and 8 threads),

running Scientific Linux 5.7, with the TORQUE Resource Man-

ager process scheduler. The system is provided with the Lustre

file system v2.1, coupled with HDF5 library v1.8.7. The perfor-

mance of our systems has been measured with respect to data load-

ing, memory footprint, and query execution time with reference

to z processes running on z hosts. We evaluated the performance

of TENSORRDF comparing with centralized triple stores Sesame,

Jena-TDB, and BigOWLIM, and open-source systems BitMat [1]

and RDF-3X [18], as well as distributed MapReduce-RDF-3X [11],

Trinity.RDF [30] and TriAD-SG [8] (i.e., since neither Trinity.RDF

and TriAD are openly available, we will refer to the running times

reported in [30] and [8]).

In our experiments, we employed the popular LUBM synthetic

benchmark (i.e. LUBM-4450 which consists of about 800M triples)

and two real-life datasets: DBPEDIA v3.6, i.e., 200M triples loaded

into the official SPARQL endpoint, and BTC-12, the dataset of

2012 Billion Triples Challenge, that is more than 1000M triples.

For each dataset we involved a set of test queries. For DBPEDIA

we wrote 25 queries of increasing complexity (available at https:

//www.dropbox.com/sh/pz0i67s9ohbpb9t/oEGo-J8yui). Such queries in-

volve SELECT SPARQL queries embedding concatenation “ . ”,

FILTER, OPTIONAL and UNION operators. We use such dataset for

comparison with centralized approaches. In this case, we set up

TENSORRDF on a single machine. Referring to BTC-12, we ex-

ploit the test queries defined in [18]; in both LUBM-4450 and

BTC-12 we have SELECT SPARQL queries involving only con-

catenation. This two last datasets are used for comparison with

distributed approaches.

Loading and Memory Footprint. Referring to data management,

we are able to achieve three main goals. First, we are able to per-

form loading without any particular relational schema, when com-

pared to triple store approaches, where a schema coupled with ap-

propriate indexes have to be maintained by the system. Second,

owing to the flexibility of CST we are capable of modifying sub-

stantially the tensor dimension, i.e., introducing novel literals in ei-

ther RDF sets is a trivial operation: whereas a DBMS must perform

a re-indexing, we may carry this operation without any additional

overhead. As last objective, owing to the distributivity and associa-

tivity properties of our theoretical model, we are able to distribute

data and computational power over different hosts, allowing also

parallel access to the data. In this case, we refer to a 12-server

cluster deployment. Data loading times are 45, 110 and 130 sec-

onds for DBPEDIA, LUBM-4450, and BTC-12, respectively. In

particular, as showed in Figure 8(a), data loading times are 0.395,

6.194, 21.068, and 129.699 seconds, for all examined dimensions

in BTC-12. Another significant advantage of our system relies in

memory consumption. In particular, always referring to a 12-server

cluster deployment, the overall memory overhead needed to main-

tain a distributed tensor representation of RDF data almost con-

stant, and amounts to circa 1 MB of RAM. Referring to BTC-12,

the total distributed memory consumption for our tests were 549.3
MB, 5.391, 44.121, and 332.918 GB for all examined dimensions;

both memory overhead and RAM occupation are depicted in Fig-

ure 8(b). On average, all triple store systems require a data space

10 times greater, BitMat 5 times greater, RDF-3X, Trinity.RDF and

TriAD-SG 2-3 times greater.

Query Analysis. We ran the queries ten times and measured the

average response time (including the I/O times) in ms. On disk-

based systems, we performed both cold-cache and warm-cache ex-

periments. Figure 9 illustrates the response times on DBPEDIA

in a 1-server cluster (i.e., centralized environment). On average,

Sesame and Jena-TDB perform poorly, BigOWLIM and BitMat

better, and RDF-3X is competitive. TENSORRDF outperforms all

competitors, in particular RDF-3X by a large margin. TENSOR-

RDF is 18 times better than RDF-3X, 128 times on the maxi-

mum (i.e., Q21). In particular the queries involving OPTIONAL and

UNION operators (e.g., Q20) require the most complex computa-

tion: triple stores, i.e., BigOWLIM, Sesame and Jena-TDB, de-

pend on the physical organization of indexes, not always matching

the joins between patterns. RDF-3X provides a permutation of all

combinations of indexes on subject, property and object of a triple

to improve efficiency. However queries, embedding OPTIONAL and

UNION operators in a graph pattern with a considerable size, re-

quire complex joins between huge number of triples (i.e., Q20) that

compromises the performance. On the other hand, we exploit the

sparsity of our tensor and compute in parallel map functions, ten-

sor applications, and Hadamard products. Another strong point of

our system is a very low consumption of memory for query execu-

tion, due to the sparse matrix representation of tensors and vectors.

Figure 10 shows the memory usage (KB) to query DBPEDIA in a

1-server cluster. On the average, all queries (also the most com-

plex) require very few bytes of memory (i.e., dozens of KBytes),

whereas all competitors require dozens of MB.

As distributed systems, we measured times for TENSORRDF,

TriAD-SG (i.e., TriAD using Summary Graph), Trinity.RDF and

MapReduce-RDF-3X (simply MR-RDF-3X) on a 12-server cluster

with 1GBit LAN connection for both LUBM-4450 and BTC-12.

We highlight that we used a set of SELECT queries embedding only

concatenation, on which competitors exploit own physical index-

ing in a profitable way. Figure 11 presents the results, showing

that our system performs 9 times better than MR-RDF-3X and 5

times better thanTrinity.RDF for LUBM-4450, while 100 times

better than MR-RDF-3X and 1,5 times better thanTrinity.RDF for

BTC-12. TriAD-SG is the most competitive system: however for

queries non selective (i.e. LUBM-4450) our system is comparable

to TriAD-SG, while for selective queries (i.e. BTC-12) our sys-

tem outperforms TriAD-SG. This is due by exploiting the algebraic

properties of our tensorial representation that allows us to process

in parallel triples in small chunks and by embedding DOF evalua-

tion to speed-up selective triples execution. Referring to memory

consumption, querying LUBM-4450 and BTC-12 presents a be-

havior (i.e., dozens of KBytes) similar to DBPEDIA, while com-

petitors dozens of MB. For space constraints, we do not report the

diagram.
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Figure 10: Memory Usage to query DBPEDIA in KB.

We also performed warm-cache experiments, but we are unable

to report them due to space constraints; however while TENSOR-

RDF improves performance from milliseconds to microseconds

(e.g., from 1 ms to 0.1 µs), the other competitors improves per-

formance in milliseconds magnitude (e.g., from 100 ms to 1 ms).

As last experiment, we tested TENSORRDF’s scalability, reported

in Figure 12 with a limited representative number of queries (i.e.,

Q3, Q6 and Q7 in BTC-12 since they are the most complex). As

the dimension of our problem increases, from 500MB to 300GB,

the time increases from approximately 10−3 ms, to 101 ms for the

largest dimension, i.e., for a number of triples of 109.
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Figure 11: Response Times in ms on LUBM-4450 (a), and

BTC-12 (b), for MR-RDF-3X (in black), Trinity.RDF (in gray),

TriAD-SG (striped filled) and TENSORRDF (in white).
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Figure 12: Scalability on BTC-12: times (ms) are plotted

against number of triples. Solid, dotted and dashed lines re-

fer respectively to Q4, Q7, and Q8.

8. RELATED WORKS
Existing systems for the management of Semantic-Web data can

be discussed according to two major issues: storage and query-

ing. Considering the storage, two main approaches can be iden-

tified: developing native storage systems with ad-hoc optimiza-

tions, and making use of traditional DBMSs (such as relational

and object-oriented). Native storage systems (such as OWLIM,

or RDF-3X [18]) are more efficient in terms of load and update

time, whereas the adoption of mature data management systems

exploit consolidate and effective optimizations. Indeed, native ap-

proaches need re-thinking query optimization and transaction pro-

cessing techniques. However, the number of required self-joins

makes this approach impractical, and the optimizations introduced

to overcome this problem have proven to be query-dependent, or to

introduce significant computational overhead (cf. [4]).

On the querying side, current research in SPARQL pattern pro-

cessing (cf. [18, 8] and [27]) focuses on optimizing the class of so-

called conjunctive patterns (possibly with filters) under the assump-

tion that these patterns are more commonly used than the others.

Nevertheless, a keen observation of SPARQL queries from real-

life logs [12]showed that non-conjunctive queries are employed in

non-negligible numbers, providing detailed statistics. An interest-

ing approach was given in [1] by Atre et al., which start from a

dense (i.e., not sparse) tensorial representation, and generate all

possible combinations of two dimensional matrices of relations,

named BitMats, discarding some pairings such as Object-Property

“since based on [our] experience, usage of those BitMats is rare”;

finally, they compress row-wise with a RLE scheme, amounting on

a total of 2|P| + |S| + |O| matrices. Query computation require
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significant workload and post-processing.

On the other hand, our approach exploits algebraic properties

for both storage and computation, and owing to the DOF sorting,

is able to schedule triplets in an efficient order; additionally, our

framework may deal with non-conjunctive queries and data change.

As illustrated in Section 7, all the above approaches are optimized

for centralized analysis requiring significant amount of resources,

both in terms of memory and storage. In opposite, Trinity.RDF [30]

and TriAD [8] exploit in-memory frameworks to provide efficient

general-purpose query processing on RDF in a distributed environ-

ment. However, as shown in Section 7, the efficiency on such pro-

posals is strictly depending on the logical and physical organization

of data, and on the complexity of the query. Differently from the

other approaches, TENSORRDF provides a general-purpose stor-

age policy for RDF graphs. Our approach exploits linear algebra

and tensor calculus principles to define an abstract model, inde-

pendent from any logical or physical organization, allowing RDF

dataset to change comfortably and to distribute computation over

several hosts, without any a priori knowledge about RDF dataset

or querying statistics.

9. CONCLUSIONS AND FUTURE WORK
We have presented an abstract algebraic framework for the effi-

cient and effective analysis of RDF data. Our approach leverages

tensorial calculus, proposing a general model that exhibits a great

flexibility with queries, at diverse granularity and complexity lev-

els (i.e., both conjunctive and non-conjunctive patterns with filters).

Experimental results proved our method efficient when compared

to recent approaches, yielding the requested outcomes in memory

constrained architectures. For future developments we are investi-

gating the introduction of reasoning capabilities, along with a thor-

ough deployment in highly distributed Cloud environments.

10. REFERENCES
[1] M. Atre, V. Chaoji, M. J. Zaki, and J. A. Hendler. Matrix

"bit" loaded: a scalable lightweight join query processor for

rdf data. In WWW, pages 41–50, 2010.

[2] B. W. Bader and T. G. Kolda. Efficient MATLAB

computations with sparse and factored tensors. SIAM Journal

on Scientific Computing, 30(1):205–231, 2007.

[3] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed

Computation: Numerical Methods. Athena Scientific, 1997.

[4] S. M. D. J. Abadi, A. Marcus and K. Hollenbach. SW-Store:

a vertically partitioned DBMS for semantic web data

management. VLDB J., 18(2):385–406, 2009.

[5] I. N. Davidson, S. Gilpin, O. T. Carmichael, and P. B.

Walker. Network discovery via constrained tensor analysis of

fmri data. In KDD, pages 194–202, 2013.

[6] T. A. Davis. Direct Methods for Sparse Linear Systems.

SIAM, 2006.

[7] M. Frigo, C. Leiserson, H. Prokop, and S. Ramachandran.

Cache-oblivious algorithms. In FOCS, pages 285–297, 1999.

[8] S. Gurajada, S. Seufert, I. Miliaraki, and M. Theobald. Triad:

a distributed shared-nothing rdf engine based on

asynchronous message passing. In SIGMOD, pages

289–300, 2014.

[9] M. Hammoud, D. A. Rabbou, R. Nouri, S. Beheshti, and

S. Sakr. DREAM: distributed RDF engine with adaptive

query planner and minimal communication. PVLDB,

8(6):654–665, 2015.

[10] G. Heber. HDF5 meets, challenges, and complements the

DBMS. In XLDB, 2011.

[11] J. Huang, D. J. Abadi, and K. Ren. Scalable sparql querying

of large rdf graphs. PVLDB, 4(11):1123–1134, 2011.

[12] M. H. K Möller, R. Cyganiak, S. Handschuh, and

G. Grimnes. Learning from linked open data usage: Patterns

& metrics. In Web Science Conference, 2010.

[13] T. G. Kolda and J. Sun. Scalable tensor decompositions for

multi-aspect data mining. In ICDM, pages 363–372, 2008.

[14] C.-Y. Lin, Y.-C. Chung, and J.-S. Liu. Efficient data

compression methods for multidimensional sparse array

operations based on the ekmr scheme. IEEE Trans. Comput.,

52:1640–1646, 2003.

[15] M. W. Margo, P. A. Kovatch, P. Andrews, and B. Banister.

An analysis of state-of-the-art parallel file systems for linux.

In 5th International Conference on Linux Clusters: The HPC

Revolution 2004, 2004.

[16] K. Maruhashi, F. Guo, and C. Faloutsos.

Multiaspectforensics: Pattern mining on large-scale

heterogeneous networks with tensor analysis. In ASONAM,

pages 203–210, 2011.

[17] B. L. Millard, M. Niepel, M. P. Menden, J. L. Muhlich, and

P. K. Sorger. Adaptive informatics for multifactorial and

high-content biological data. Nature Methods, 8(6):487–492,

2011.

[18] T. Neumann and G. Weikum. Scalable join processing on

very large rdf graphs. In SIGMOD, pages 627–640, 2009.

[19] N. Papailiou, D. Tsoumakos, I. Konstantinou, P. Karras, and

N. Koziris. H2rdf+: an efficient data management system for

big RDF graphs. In SIGMOD, pages 909–912, 2014.

[20] J. Pérez, M. Arenas, and C. Gutierrez. Semantics and

complexity of SPARQL. Trans. Database Syst., 34(3), 2009.

[21] F. Picalausa and S. Vansummeren. What are real sparql

queries like? In SWIM - SIGMOD Workshop, page 7, 2011.

[22] R. Rabenseifner. Optimization of collective reduction

operations. In Computational Science-ICCS 2004, pages

1–9. Springer, 2004.

[23] M. Schmidt, M. Meier, and G. Lausen. Foundations of

SPARQL query optimization. In ICDT, pages 4–33, 2010.

[24] M. P. Sears, B. W. Bader, and T. G. Kolda. Parallel

implementation of tensor decompositions for large data

analysis. In SIAM, 2009.

[25] J. Sun, S. Papadimitriou, and P. S. Yu. Window-based tensor

analysis on high-dimensional and multi-aspect streams. In

ICDM, pages 1076–1080, 2006.

[26] J. Sun, D. Tao, and C. Faloutsos. Beyond streams and graphs:

dynamic tensor analysis. In KDD, pages 374–383, 2006.

[27] M.-E. Vidal, E. Ruckhaus, T. Lampo, A. Martínez, J. Sierra,

and A. Polleres. Efficiently joining group patterns in sparql

queries. In ESWC, pages 228–242, 2010.

[28] C. Weiss, P. Karras, and A. Bernstein. Hexastore: sextuple

indexing for semantic web data management. PVLDB,

1(1):1008–1019, 2008.

[29] P. Yuan, P. Liu, B. Wu, H. Jin, W. Zhang, and L. Liu.

Triplebit: a fast and compact system for large scale rdf data.

PVLDB, 6(7):517–528, 2013.

[30] K. Zeng, J. Yang, H. Wang, B. Shao, and Z. Wang. A

distributed graph engine for web scale rdf data. In PVLDB,

pages 265–276, 2013.

[31] S. Zhang, S. Li, and J. Yang. Gaddi: distance index based

subgraph matching in biological networks. In EDBT, pages

192–203, 2009.

245



Motivation-Aware Task Assignment in Crowdsourcing

Julien Pilourdault Sihem Amer-Yahia Dongwon Lee Senjuti Basu Roy
Université Grenoble Alpes, CNRS, LIG, France Penn State University, USA NJIT, USA

firstname.lastname@imag.fr dongwon@psu.edu senjutib@njit.edu

ABSTRACT
We investigate how to leverage the notion of motivation in
assigning tasks to workers and improving the performance
of a crowdsourcing system. In particular, we propose to
model motivation as the balance between task diversity–i.e.,
the difference in skills among the tasks to complete, and
task payment–i.e., the difference between how much a cho-
sen task offers to pay and how much other available tasks
pay. We propose to test different task assignment strategies:
(1) relevance, a strategy that assigns matching tasks, i.e.,
those that fit a worker’s profile, (2) diversity, a strategy
that chooses matching and diverse tasks, and (3) div-pay,
a strategy that selects matching tasks that offer the best
compromise between diversity and payment. For each strat-
egy, we study multiple iterations where tasks are re-assigned
to workers as their motivation evolves. At each iteration,
relevance and diversity assign tasks to a worker from
an available pool of filtered tasks. div-pay, on the other
hand, estimates each worker’s motivation on-the-fly at each
iteration, and uses it to assign tasks to the worker. Our
empirical experiments study the impact of each strategy on
overall performance. We examine both requester-centric and
worker-centric performance dimensions and find that differ-
ent strategies prevail for different dimensions. In particular,
relevance offers the best task throughput while div-pay
achieves the best outcome quality.

1. INTRODUCTION
Crowdsourcing has become a popular framework to solve

problems that are often hard for computers but easy for hu-
mans. Examples of crowdsourcing tasks include sentiment
analysis in text, extracting information from images, and
transcribing audio records. Despite recent successes, how-
ever, one of longstanding challenges in crowdsourcing is task
completion–i.e., some tasks remain only partially completed
or some workers do not work at full capacity. Studies have

c©2017, Copyright is with the authors. Published in Proc. 20th Inter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

indicated that workers’ motivation [25] plays a key role in
task completion, especially since micro-tasks usually have
very small monetary compensation. Therefore, it becomes
increasingly important to understand and model workers’
motivation appropriately in the task assignment step. In this
paper, therefore, we study motivation in crowdsourcing and
how to leverage it to assign tasks to workers. Our goal is
to reach a better understanding of how to model motivation
by studying its impact on different performance dimensions
in crowdsourcing.

Existing literature has extensively studied how to per-
form task assignment to workers on crowdsourcing plat-
forms [8, 17, 18, 23, 26]. Task assignment considers goals
such as maximizing the quality of completed tasks, or min-
imizing task cost and latency to complete tasks. More re-
cently, some research has reported noticeable improvement
in task outcome quality when human factors, such as work-
ers’ skills and expected wage, were used in assigning tasks
to workers [23, 26].

Yet, even when tasks are perfectly matched and assigned
to workers initially, an important longstanding problem is
how to keep motivating workers who are not well-engaged
in completing assigned tasks. A recent ethnomethodological
study on Turker Nation [22] argued that in order to maintain
the attractiveness of crowdsourcing platforms, it is critical
to enable worker-centric optimization. To address this prob-
lem, some existing work focused on incentivizing workers for
long-lasting tasks [5, 19] or entertaining workers during task
completion [7]. Moreover, recent studies have experimen-
tally demonstrated the importance of intrinsic motivation in
task completion [25]. While effective to some extent, these
methods do not perceive task completion as an iterative pro-
cess within which workers’ motivation evolves, neither do
they model that in the task assignment process. In this
work, we advocate the need to account for the evolution of
workers’ motivation as workers complete tasks and capture
that evolution in task assignment.

Our idea. Organization studies have explored worker moti-
vation in physical workplaces since 70’s [14]. Recently, some
new efforts have examined and experimentally explored mo-
tivation on crowdsourcing platforms such as Amazon Me-
chanical Turk (AMT) [20, 25]. They have largely come to
the conclusion that the motivation model developed in phys-
ical workplaces was also applicable in virtual marketplaces
such as AMT.
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Modeling workers’ motivation is not obvious. While some
workers may be driven by fun and enjoyment, others may
look to advance their human capital, or increase their com-
pensation. In fact, there are more than 13 factors that could
be used to model motivation according to [20] (e.g., task
payment, task diversity, task autonomy, task identity, hu-
man capital advancement, pastime). In addition, in a given
session, a worker’s motivation for a task may also depend on
tasks that she has already completed and on other available
tasks. In this work, as a first attempt to model workers’ mo-
tivation and account for it in task assignment, we decided to
focus on two factors: (1) task diversity, that is akin to skill
variety, and (2) task payment. We believe that these two
factors are good representatives of the spectrum of factors.
Other factors will be examined in future.

Our formalization is grounded in the theory of work re-
design [14]. The choice of diversity and payment allows us
to clearly distinguish between “intrinsic” factors (e.g., how
interested a worker is in the task’s content) and “extrin-
sic” factors (e.g., how much the task pays). We can there-
fore use our formalization to verify which of intrinsic or ex-
trinsic factors influence a worker’s performance during task
completion. Our formalization serves as a basis to define
the motivation-aware task assignment (Mata) as a con-
strained optimization problem. Specifically, given a set of
available tasks and a set of workers who are not working at
full capacity, we identify which tasks are to be re-assigned
to which worker, considering the worker’s motivation. The
worker-centric and adaptive nature of our problem make it
novel. Indeed, while learning workers’ skills in a crowdsourc-
ing platform has been addressed before (e.g., [23]), leverag-
ing those factors on-the-fly in a task assignment has not
been addressed. There also exists a range of studies on on-
line (iterative) task assignment but they consider only qual-
ity [8, 17, 18, 29] or budget and deadlines [11] in their ob-
jective. In fact, they rely on measuring the effectiveness of
workers (e.g., in terms of accuracy [8, 29]) to adapt their
assignment policy and do not consider the motivation of
workers.

In contrast, our work considers motivation as a first-class
factor in the objective function. Hence, none of the tech-
niques proposed in the previous studies are applicable to
our problem. To the best of our knowledge, our work is
the first to propose to periodically revisit task assignment
to workers by modeling and monitoring their motivation.

Our contributions. We propose to first formalize motiva-
tion factors that directly affect task completion. We then de-
fine our motivation-aware task assignment problem (Mata).
We show that Mata is NP-hard using a reduction from the
maximum dispersion problem (MaxSumDisp) [6, 10, 16, 24].
To solve our problem and isolate the effect of different di-
mensions on workers’ motivation, we design and compare
three task assignment strategies: (1) relevance, a strategy
that chooses tasks that match a worker’s profile, (2) diver-
sity, a strategy that chooses matching and diverse tasks,
and (3) div-pay, a strategy that selects matching tasks with
the best compromise between diversity and payment. div-
pay requires to observe workers as they complete tasks, es-
timate their motivation dynamically, and suggest the next

most appropriate tasks. div-pay is a 1
2
-approximation algo-

rithm that uses a solution from the maximum diversification
problem (MaxSumDiv), a general case of MaxSumDisp.

For each strategy, we study multiple iterations where tasks
are re-assigned to workers. In order to compare our strate-
gies, we develop a framework to hire workers from AMT and
monitor them during task completion. In order to examine
the effect of task diversity, we select 158, 018 micro-tasks re-
leased by CrowdFlower. Those tasks belong to 22 different
kinds ranging from tweet classification to extracting infor-
mation from news and assessing the sentiment of a piece
of text. We measure common requester-centric dimensions
such as task throughput (i.e., the number of tasks completed
in multiple iterations per unit of time) and outcome quality
with respect to a ground truth. We also measure dimen-
sions that are considered both requester-centric and worker-
centric, namely, worker retention (i.e., the number of work-
ers who completed tasks) and payment. Worker motivation
is measured as a worker-centric dimension.

Our empirical validation shows that different strategies
prevail for different dimensions. relevance outperforms
both div-pay and diversity on task throughput and worker
retention. However, div-pay outperforms the other strate-
gies on outcome quality. Workers completed more tasks and
stayed longer when they were assigned tasks with rele-
vance. That could be explained by the fact that very little
context switching is required from workers in the case of
relevance (since tasks are both relevant to the worker’s
profile and are potentially very similar to each other). di-
versity, on the other hand, is slightly inferior to div-pay.
That leads to the conclusion that diversity alone is not sat-
isfactory as workers also pay attention to payment. The fact
that div-pay achieves the best outcome quality proves the
need to actively monitor workers’ motivation and incorpo-
rate it in task assignment. Indeed, even if they are faster
at completing similar tasks and stay longer in the system
when tasks are relevant and not diverse, workers provide a
higher-quality outcome for tasks that optimize their motiva-
tion, i.e., those chosen to achieve a balance between diversity
and payment. This confirms the need for worker-centric and
adaptive approaches in crowdsourcing.

Paper organization. Section 2 formalizes the problem of
motivation-aware crowdsourcing. Section 3 describes our
three task assignment strategies. Section 4 reports perfor-
mance results. Section 5 contains the related work. Finally,
Section 6 summarizes our findings and their implications,
and discusses possible future directions.

2. DATA MODEL AND PROBLEM
In this section, we first describe our model for tasks and

motivation factors. Then, we formalize the motivation-aware
task assignment problem. Table 1 summarizes important
notations used throughout the paper.

2.1 Tasks and Workers
We consider a set of tasks T = {t1, . . . , tn}, a set of

workers W = {w1, . . . , wp} and a set of skill keywords S =
{s1, . . . , sm}.
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Notation Definition

T a set of tasks {t1, . . . , tn}
W a set of workers {w1, . . . , wp}
S a set of skill keywords {s1, . . . , sm}

d(tk, tl) pairwise task diversity between two tasks

T i
w tasks assigned to worker w at iteration i

TD(T ′) task diversity of a set of tasks T ′ ⊆ T
TP(T ′) task payment of a set of tasks T ′ ⊆ T
αw a worker w’s relative importance between

task diversity and task payment

motivw(T i
w) the expected motivation of worker w

on tasks T i
w

Xmax maximum number of tasks assigned

to a worker

matches(w, t) returns true if the keywords of

worker w match the keywords of task t

Table 1: A summary of important notations.

Tasks. A task t is represented by a vector 〈t(s1), t(s2), . . . ,
t(sm), ct〉. For all j ∈ J1,mK, t(sj) is a Boolean value that
denotes the presence or absence of skill keyword sj in task
t. The reward ct is given to a worker who completes t. In
our model, skill keywords may be interpreted as interests or
qualifications, thereby allowing to capture a variety of tasks.

Workers. A worker w is represented by a vector w = 〈w(s1),
. . . , w(sm)〉. For all j ∈ J1,mK, w(sj) is a Boolean value cap-
turing the interest of w in the skill keyword sj .

Example 1. Table 2 shows an example with 3 tasks, 2 work-
ers and 5 skills. For instance, t1 is characterized by a vector
〈true, true, false, false, false, 0.01〉: it is an audio tran-
scription task with a $0.01 reward, and it is described by
skill keywords “audio” and “English”. w1 is a worker who
expresses interest in tasks that feature the keywords “audio”
and “tagging”. We could suppose that only workers cover-
ing all task skills are qualified to complete a task. In this
example, w1 would only qualify for task t2, while w2 would
qualify for both t1 and t3. 2

2.2 Motivation Factors
Related work from the social sciences [20] on worker mo-

tivation in crowdsourcing includes 13 factors. The 6 most
important ones are Payment, Task Autonomy, Skill Vari-
ety, Task Identity, Human Capital Advancement, Pastime.
In this work, as a first attempt to model workers’ moti-
vation and account for it in task assignment, we focus on
two factors: task payment and task diversity, that is akin
to skill variety. Each factor is computed using a function
that returns a motivation score. The choice of payment and
diversity allows us to clearly distinguish between extrinsic
motivation (payment) and intrinsic motivation (diversity)
and offer enough variety in their values to study subtle dif-
ferences in motivation. In addition, compared to other di-
mensions, only these two dimensions are most relevant in
micro-tasks and in typical labor markets, such as Amazon
Mechanical Turk. How to incorporate the remaining factors

audio English French review tagging reward

($)

t1 X X 0.01

t2 X 0.03

t3 X X 0.09

w1 X X N/A

w2 X X X X N/A

Table 2: Example of tasks and workers

in modeling motivation is left to future work.

Task Diversity. We denote the pairwise task diversity be-
tween two tasks tk and tl by d(tk, tl). Pairwise task diversity
essentially measures the aggregated differences of skills be-
tween two tasks. We ignore task reward in this definition.
In our setting, we use the Jaccard similarity function J() to
define d() as follows:

d(tk, tl) = 1− J(〈tk(s1), . . . , tk(sm)〉, 〈tl(s1), . . . , tl(sm)〉)

d() is a metric and verifies the triangular inequality. We
aim to be general and we do not fix one particular definition
of d() here. Instead, we allow any distance function (e.g.,
Euclidean distance, Jaro distance) as long as it verifies the
triangular inequality. The Task diversity TD(T ′) of a set
of tasks T ′ ⊆ T is captured by aggregating the pairwise
distances in T ′:

TD(T ′) =
∑

(tk,tl)∈T ′
d(tk, tl) (1)

Task Payment. The total task payment of a set of tasks
T ′ ⊆ T is the sum of individual task payments in T ′:

TP(T ′) =
1

maxt∈T ct
×

∑
t∈T ′

ct (2)

The denominator maxt∈T ct normalizes each member of the
sum in the interval [0, 1].

2.3 Modeling a Worker’s Motivation
We advocate a multi-step approach where the set of tasks

assigned to a worker are revisited at each step in order to
best fit the worker’s motivation. At each iteration i, a worker
w is assigned a new set of tasks T i

w. We wish to determine
the best set T i

w at each iteration i.
To capture the expected motivation of worker w on tasks

in T i
w, we define a function motiv i

w as a linear1 combination
of diversity and payment of tasks in T i

w:

motiv i
w(T i

w) =

2αi
w × TD(T i

w) + (|T i
w| − 1)(1− αi

w)× TP(T i
w)

(3)

1Note that we define the function as a linear formula between
diversity and payment of a task, instead of a more complex non-
linear formula, since a linear formula is likely to give rise to algo-
rithms with theoretical guarantees as we show later, and is easier
to interpret/explain.
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αi
w is a worker-specific parameter that reflects the relative

importance between task diversity and task payment. We
normalize the two components of the function with the fac-
tors (|T i

w| − 1) and 2, since the first part of the sum counts
|T i

w|(|T
i
w|−1)

2
numbers and the second part |T i

w| numbers [13].
We aim to accurately compute αi

w that represents the com-
promise a worker w is looking for in choosing tasks to com-
plete at each iteration i.

Example 2. A worker w1 with αi
w = 0.1 would be inter-

ested more in high-paying tasks with similar keywords (i.e.,
less diversity). This worker w1 would choose tasks with a
variety of keywords only if the payment is high enough. On
the other hand, a worker w2 with αi

w = 0.9 would be more
motivated by task diversity. 2

2.4 Problem
Now, we formally define the motivation-aware task assign-

ment problem, Mata, as follows:

Problem 1 (Motivation-Aware Task Assignment) At
each iteration i, and for each worker w ∈ W, choose a subset
of tasks T i

w ⊆ T such that:

max motiv i
w(T i

w)

such that ∀t ∈ T i
w matches(w, t) (C1)

|T i
w | ≤ Xmax (C2)

The function matches(w, t) in constraint C1 returns true if
the task t matches worker w. We can use various definitions
for matches(w, t). For instance, we can define matches(w, t) =
true iff the skill keywords of w and t are identical. In our
setting, we suppose that matches(w, t) captures how well the
skill keywords of w cover the skill keywords of t. This allows
us to capture cases where w matches t only if w expresses in-
terest in at least 50% of the skill keywords of t. Xmax is used
in constraint C2 to avoid assigning too many tasks to work-
ers with varied interests, and reflects the ability of a worker
to explore only a few tasks at a time (akin to limiting Web
search results). Throughout this paper, we will suppose that
each time we solve the Mata problem for a given worker w, w
matches at least Xmax tasks. Thus, given that the objective
function is positive and monotonically increasing, w will be
assigned exactly Xmax tasks. That is a realistic assumption
when Xmax is chosen to be reasonably small (e.g., 20) in a
context where we have a large collection of tasks to assign.

It is also important to note that the Mata problem consid-
ers each worker independently. When a worker w requires
a new set of tasks T i

w, Mata is solved and tasks in T i
w are

dropped from T . Thus, a task is assigned to at most one
worker.

3. OUR APPROACHES
In order to study the effect of different dimensions in our

problem, now, we explore approaches that exploit different
objectives in the Mata problem. First, we design relevance,
a diversity and payment-agnostic strategy. This strategy fo-
cuses on assigning to workers tasks that best match their in-
terests. Second, we present div-pay, that optimizes the ob-
jective function of the Mata problem. div-pay is hence both

Algorithm 1 relevance

Input: T , w,Xmax, i
Output: T i

w

1: T i
w ← ∅

2: Tmatch(w) ← {t ∈ T | matches(w, t)}
3: while |T i

w| < Xmax

4: T i
w ← T i

w ∪ {nextRandomTask(Tmatch(w) \ T i
w)}

return T i
w

diversity and payment-aware. Third, we present diversity,
that focuses only on assigning diverse tasks to workers and
is hence payment-agnostic.

3.1 Relevance strategy
We first propose the relevance approach (Algorithm 1),

that assigns Xmax random tasks that match workers’ inter-
ests. relevance enforces constraints C1 and C2 and ignores
task diversity and task payment. At each iteration i and
for each worker w, relevance (i) filters the tasks Tmatch(w)

that match w and (ii) selects randomly Xmax tasks among
Tmatch(w). In this strategy, a worker’s motivation is therefore
interpreted as matching her interests.

3.2 Diversity and payment-aware strategy
We present div-pay, a strategy that is both diversity and

payment-aware. div-pay relies on both the on-the-fly esti-
mation of a worker’s motivation, and the online iterative
task assignment. The motivation of a worker w is cap-
tured in the value of αi

w, which represents the compromise a
worker w is looking for in choosing tasks to complete at each
iteration i. We first describe our approach to computing αi

w.
We then describe the task assignment algorithm that aims
to solve the complete Mata problem.

3.2.1 Computing αi
w

At each iteration i, we aim to learn αi
w by leveraging tasks

t ∈ T i−1
w completed by worker w. Here, T i−1

w refers to the
tasks that were assigned to w in the previous iteration (i−1)
and that were presented to w as the set of available tasks.
Let us consider the j-th task selected by worker w in T i−1

w .
Each time when a worker selects a task tj , we want to learn
her preference for task diversity and task payment. To that
purpose, we define αij

w to capture the compromise between
skill variety and task payment made by the worker w when
choosing tj during iteration i. Our goal is to leverage a
collection of such “micro-observations”. First, we aim to
capture each αij

w . Then, we aim to aggregate all αij
w to

compute αi
w.

We first show how to capture each αij
w . We start by con-

sidering each motivation factor independently. We suppose
that when worker w chooses task tj , she has already chosen
tasks {t1, . . . , tj−1} where j − 1 ∈ J1, |T i−1

w |K.

Task Diversity. Equation 4 shows how we capture the gain
in task diversity that a worker w seeks when picking a task
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Algorithm 2 div-pay

Input: T , w,Xmax, i, T i−1
w , {t1, . . . , tJ} tasks completed in

iteration i− 1
Output: T i

w

1: αi
w ← avgk∈J1,JK α

ij
w

2: Tmatch(w) ← {t ∈ T | matches(w, t)}
3: T i

w ← greedy(Tmatch(w), Xmax, w)
4: return T i

w

tj in the remaining tasks T i−1
w \ {t1, . . . , tj−1}.

∆TD(tj) =

∑
k∈1,...,j−1

d(tj , tk)

max
tk′∈T

i−1
w \{t1,...,tj−1}

∑
k∈1,...,j−1

d(tk′ , tk)
(4)

The numerator is the marginal gain in diversity when w
selects a task tj . The denominator reflects the maximum
possible marginal gain when w selects a task in the remain-
ing tasks T i−1

w \ {t1, . . . , tj−1}.

Task Payment. We compute the list of all different task
payments in T i−1

w \ {t1, . . . , tj−1} and sort it by descend-
ing order. Suppose that this list counts R elements and
that r(tj) is the rank of ctj in this list (if ctj is the highest
then r(tj) = 1). We define TP-Rank(tj) ∈ [0, 1] such that
TP-Rank(tj) = 1 iff tj has the highest payment (0 if it has
the lowest payment):

TP-Rank(tj) = 1−
r(ctj )− 1

R− 1
(5)

Equation 5 captures the willingness of w to choose tasks that
pay highly among the available tasks.

Example 3. Suppose that T i−1
w \ {t1, . . . , tj−1} = {t5, t6,

t7, t8} with ct5 = $0.03, ct6 = ct7 = $0.02, ct8 = $0.04. A
worker w selects t5, which has the second highest task pay-
ment among the remaining tasks. We obtain TP-Rank(t5) =
1− 2−1

3−1
= 0.5. 2

We have defined how to capture the importance of each
factor. We now need to define αij

w , that captures the compro-
mise between task diversity and task payment that worker
w seeks when selecting task tj . We set:

αij
w =

∆TD(tj) + 1− TP-Rank(tj)

2
(6)

αij
w is defined as the average of ∆TD(tj) and 1−TP-Rank(tj).

The asymmetry comes from the fact that the higher αi
w is,

the lower is the importance of the task payment factor. We
can observe that if both ∆TD(tj) and 1 − TP-Rank(tj) re-
turn the same value, αij

w will be equal to 0.5.
Having defined each αij

w , we are now ready to capture αi
w.

Suppose that during iteration i− 1 worker w chose J tasks
where J ≤ |T i−1

w |. We compute αi
w as the average of all αij

w :

αi
w = avg

k∈J1,JK
αij
w (7)

Algorithm 3 greedy [4]

Input: Tmatch(w), Xmax, w, i
Output: T i

w

1: T i
w ← ∅

2: while |T i
w| < Xmax

3: t← arg max
t′∈Tmatch(w)\T i

w

g(T i
w, t
′)

4: T i
w ← T i

w ∪ {t}
return T i

w

3.2.2 Assigning Tasks
At each iteration i, the div-pay strategy aims to solve the

Mata problem for each worker. We first show that the Mata

problem is NP-hard. Then, we present the div-pay algo-
rithm that returns a solution with an approximation ratio
of 2 for the Mata problem.

Complexity. Intuitively, the Mata problem is difficult since
its objective function includes the sum of pairwise distances,
a common feature in several well-known NP-hard problems.
In particular, Mata is closely related to the maximum dis-
persion problem (MaxSumDisp) [6, 10, 16, 24].

Theorem 1 The motivation-aware task assignment prob-
lem (Mata) is NP-hard.

Proof. At each iteration and for each worker, the decision
version of Mata is as follows. Instance: tasks T , worker w
and her αi

w, Xmax and an objective value Z. Question: is
there a set T i

w ⊆ T such that C1 is satisfied, |T i
w| = Xmax

and motiviw(T i
w) ≥ Z ? Mata ∈ NP since a non-deterministic

algorithm needs only to guess a set Tw and it can verify the
question in polynomial time.

Reduction of Max Dispersion. To prove the NP-hardness, we
consider the maximum sum dispersion problem (MaxSumDisp) [6,
10, 16, 24] (also known as Maximum Edge Subgraph)2. The
decision version of this problem is as follows. Instance:
a complete weighted graph G = (V,E, ω), an integer k ∈
[2, |V |], an objective value Y . Question: Is there V ′ ⊆ V
such that |V ′| = k and

∑
v1,v2∈V ′ ω(v1, v2) ≥ Y ?

Note that MaxSumDisp is well-known to be NP-hard [4,
6, 10, 24] using a reduction from MaxClique [12]. Because
a non-deterministic algorithm can guess a solution V ′ and
easily verify it in polynomial time, MaxSumDisp ∈ NP. Thus,
MaxSumDisp is also NP-Complete. The reduction works as
follows: each vertex v ∈ V is mapped to a task tv ∈ T . The
weight of an edge (v1, v2) ∈ E is mapped to skill variety
between two tasks: ω({v1, v2}) = 2∗d(tv1 , tv2). We consider
that αi

w = 1. We set Xmax = k and Z = Y . This creates an
instance of Mata in polynomial time. This instance has the
objective function 2 ∗

∑
tk,tl∈T i

w
d(tk, tl). MaxSumDisp has a

solution if and only if this instance of Mata has a solution.
This proves the NP-hardness. 2

Algorithm. Because it is an NP-hard problem, Mata is pro-
hibitively expensive to solve on large instances. In our sce-
nario, however, response time is important since Mata has to
2http://www.nada.kth.se/˜viggo/wwwcompendium/
node46.html
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Figure 1: Workflow of our motivation-aware platform

be solved online, at each iteration i. The good news is that
approximation algorithms exist for some related problems,
such as MaxSumDisp [15, 16, 24] if the distance d satisfies
the triangle inequality. The assumption that the distance
obeys triangle inequality is not an overstretch, as many real
world distances satisfy this assumption [3]. We consider that
the pairwise task diversity is a metric and follows triangle
inequality.

We adapt an existing algorithm for the maximum diver-
sification problem MaxSumDiv (which includes MaxSumDisp

as a special case). We design div-pay (Algorithm 2) that
assigns a set of tasks T i

w to a worker w. First, div-pay cap-
tures the motivation of the worker in the value of αi

w. Then
div-pay computes a set of matching tasks (line 2) and runs
greedy that returns T i

w (line 3). greedy (Algorithm 3) is
a 1

2
-approximation algorithm for the MaxSumDiv problem [4].

In the MaxSumDiv problem, the objective is to find a set S
of p elements that maximizes

λ
∑

(u,v)∈S

d(u, v) + f(S)

λ is a weight parameter, f(S) is a normalized, monotone
submodular function measuring the value of S and d() is a
distance function evaluating the diversity between two ele-
ments. Since Mata simplifies to finding a set of size exactly
Xmax, the objective function can be rewritten as:

motiv i
w(T i

w) =

2αi
w × TD(T i

w) + (Xmax − 1)(1− αi
w)× TP(T i

w)

Now, we map our problem to the MaxSumDiv problem by
setting f(T i

w) = (Xmax − 1)× (1− αi
w)× TP(T i

w), λ = 2αi
w

and p = Xmax. It can be easily seen that f is normalized
(f(∅) = 0). f is monotone since ∀T1, T2 ⊆ T s.t. T1 ⊆ T2 we
have f(T1) ≤ f(T2). It is also submodular since ∀T1, T2 ⊆ T
s.t. T1 ⊆ T2 and ∀t ∈ T , we have:

f(T1 ∪ {t})− f(T1) = (Xmax − 1)(1− αi
w)× 1

maxt′∈T ct′
× ct

= f(T2 ∪ {t})− f(T2)

At each iteration, greedy inserts in T i
w the task t that max-

imizes the function g(T i
w, t) = 1

2
(f(T i

w ∪ {t}) − f(T i
w)) +

λ
∑

t′∈T i
w
d(t, t′) which is equal to g(T i

w, t) = (Xmax− 1)(1−
αi
w)TP({t})/2 + 2αi

w

∑
t′∈T i

w
d(t, t′).

Algorithm 4 diversity

Input: T , w,Xmax, i
Output: T i

w

1: αi
w ← 1

2: Tmatch(w) ← {t ∈ T | matches(w, t)}
3: T i

w ← greedy(Tmatch(w), Xmax, w)
4: return T i

w

We run greedy using tasks that verify the constraint C1

(Algorithm 2, line 2), thus the algorithm returns a correct
solution for the Mata problem. Because greedy is a 1

2
-

approximation algorithm for the MaxSumDiv problem, div-
pay is a 1

2
-approximation for the Mata problem. Borodin

et al. [4] observe that the greedy algorithm runs in time
linear in the number of input elements when the desired size
of the set is a constant. In our setting, we can conclude that
div-pay runs in O(Xmax ∗ |T |) time.

One may wish to extend the motivation model used in
Mata. We observe that the performance guarantee and the
running time of greedy holds as long as our objective func-
tion has the form λ

∑
(u,v)∈S d(u, v) + f(S) where f is a

normalized, monotone and submodular function.

3.3 Diversity strategy
We propose diversity (Algorithm 4), a strategy that is

diversity-aware and payment-agnostic. diversity considers
a variant of the Mata problem where the objective includes
only the task diversity sum. diversity employs greedy
as a subroutine with αi

w = 1 at every iteration. We can
follow the same reasoning exposed for Mata: constraint C1

is enforced on line 2 and greedy is a 1
2
-approximation for

the considered problem, so diversity is a 1
2
-approximation

for this variant of the Mata problem.

4. EMPIRICAL VALIDATION

4.1 Workflow
We developed a web application to support motivation-

aware crowdsourcing. Figure 1 illustrates a work session
within our application. First, we get the interests of the
worker w (Figure 1a). Then, we assign w a set of tasks
(Figure 1b). Here, we can employ one of the three strate-
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Figure 2: Example screenshot of user interface – e.g., task grid

gies relevance, div-pay or diversity. Then, the worker is
presented a list of tasks (Figure 1c). She chooses a task and
completes it (Figure 1d). If she has completed less than a
pre-determined number of the Xmax tasks, she is presented
the same set of tasks again, except the tasks that were al-
ready completed. If she has completed enough tasks, an-
other task assignment iteration is executed.The rationale be-
hind imposing a minimum number of completed tasks before
reiteration is to get a sufficient amount of input to accurately
estimate αi

w for each worker.
For the strategies relevance and diversity, we run the

according algorithm at each iteration. For the strategy div-
pay, we need to consider the first iteration (i = 1) where
w arrives for the first time on our platform. In this case,
we cannot compute her α1

w since she has not yet completed
tasks. In this first iteration, task assignment uses rele-
vance as a cold-start assignment strategy. We aim to learn
w’s preference between diversity and payment using a strat-
egy that does not favor any factor. Our rationale is to get an
accurate estimation of α1

w. On the next iterations, since w
has already completed tasks, we run div-pay. We compute
her αi

w and return the new set of tasks T i
w.

4.2 Settings

4.2.1 Tasks
We used a set of 158, 018 micro-tasks released by Crowd-

flower [1]. It includes 22 different kinds of tasks, featuring
for instance tweet classification, searching information on
the web, transcription of images, sentiment analysis, entity
resolution or extracting information from news. Each dif-
ferent kind of task is assigned a set of keywords that best
describe its content and a reward, ranging from $0.01 to
$0.12. Considered tasks are micro-tasks (they took on aver-
age 23s to be completed). We set payment proportional to
the expected completion time.

4.2.2 Task assignment
We conducted experiments with all task assignment strate-

gies, relevance, div-pay, and diversity. We adapted the
relevance strategy because the distribution of tasks is not
uniform in our dataset (there are kinds of tasks that are
over represented). The random task selection was achieved
by first selecting a random kind of task, and then selecting
a random task of this particular kind. We set Xmax = 20
and imposed that 5 tasks must be completed before running
another iteration. We set matches(w, t) = true iff w is in-
terested by at least 10% of the keywords of task t. Workers
were asked to provide at least 6 keywords. We also verified
the response time of our algorithms: any approach returned
a solution in a few milliseconds upon a worker request. This
makes our approaches suitable for an online setting: new
workers and tasks can be easily handled by recomputing as-
signments from scratch.

4.2.3 Workers and Payment
We published 30 HITs on Amazon Mechanical Turk (AMT)

to recruit workers. Each HIT corresponds to a work session
on our platform. When a worker accept a HIT, she is asked
to visit our web application. On our platform, she completes
multiple tasks. When she terminates her work session, she
get a verification code. Then, she paste the code on AMT
and submit the HIT for payment. Each HIT may be sub-
mitted by at most 1 worker. Our HITs were completed by
23 different workers. We assigned 10 HITs for each task
assignment strategy.

The HIT reward was set to $0.1. Each worker was granted
a bonus equivalent to the total reward of the tasks she com-
pleted. To encourage workers who completed many tasks,
we granted them a $0.2 bonus each time they completed 8
tasks. We required workers to have previously completed at
least 200 HITs that were approved, and to have an approval
rate above 80%. We also required HITs to be completed
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within 20 minutes: our rationale is to encourage workers to
choose quickly tasks that they prefer.

4.2.4 User Interface
We conducted a first set of experiments where the T i

w

were displayed as a ranked list. We observed that most
workers selected the top task first, completed it, and walked
down the list in order. This created a bias and defeated our
purpose: observing workers making choices based on their
motivation. In order to reduce the effect of ranking, we
changed the interface by showing a grid with 3 tasks per row
(Figure 2). That mitigated the effect of ranking and workers
stopped choosing the task in their order of appearance. We
used the grid-based presentation in all our experiments.

4.2.5 Evaluation measures
We evaluate our task assignment strategies using vari-

ous measures. First, we consider requester-centric measures.
Those include the total number of completed tasks across all
iterations, and the number of completed tasks per minute,
and task throughput, i.e., the number of completed tasks per
work session. The higher the throughput, the faster a re-
quester can have crowdwork completed. However, this mea-
sure does not reveal the quality of crowdwork. Hence, we
also measure the quality of workers’ contributions. Then,
we consider measures that can be seen as both requester
and worker-centric. That is the case for task payment and
worker retention that quantifies the number of workers who
completed tasks and captures the willingness of workers to
work on our tasks. Finally, we measure worker motivation,
a worker-centric dimension that quantifies workers’ prefer-
ences between task diversity and task payment.

4.3 Results
23 different workers completed 711 tasks in 30 work ses-

sions. On average, each worker spent 13 minutes to submit
the HIT and completed 23.7 tasks. On average, 73% of
workers chose fewer than 10 keywords (6 is the minimum
possible).

4.3.1 Number of Completed tasks
Figure 3a presents the total number of completed tasks.

Overall, relevance clearly outperforms div-pay, which is
slightly better than diversity. Figure 3b details the num-
ber of completed tasks for each work session hk, k ∈ J1, 30K.
We observe that with relevance, 5 sessions had more than
40 completed tasks. With div-pay and diversity, most
workers completed fewer than 30 tasks. Figure 4 presents
task throughput (i.e., number of completed tasks per min).
We considered the total time spent on our application, in-
cluding the time spent selecting a task to complete. The
total time was higher with relevance (157 min) than with
div-pay (127 min). However, workers who were assigned
tasks with relevance were more efficient (2.35 tasks/min vs
1.5 tasks/min). This could be explained by the fact that very
little context switching is required from workers in the case
of relevance (since tasks are both relevant to the worker
and are potentially very similar to each other). diversity
on the other hand, is slightly inferior to div-pay. That leads
us to the conclusion that workers did not necessarily appre-
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Figure 3: Number of completed tasks

ciate diverse tasks, possibly for context-switching reasons.
div-pay slightly outperformed diversity, showing that in-
cluding task payment as a motivating factor improves task
throughput. While task throughput is a good indicator of
the speed at which tasks are completed, it does not reveal
the quality of crowdwork.

4.3.2 Quality
For each kind of task, we sampled 50% of completed tasks

and we manually evaluated their ground truth. We chose
tasks for which defining a ground truth was not controver-
sial (e.g., a task that asks for the presence or not of a pattern
on an image). Then, we compared each worker’s contribu-
tion to a task to its ground truth. Figure 5 presents the
percentage of tasks that were correctly completed for each
strategy. We observe that workers performed better with
div-pay (73% of correct answers) than with other strategies
(diversity: 64%, relevance: 67%). This shows that as-
signing tasks that best match workers’ compromise between
task payment and task diversity encourages them to produce
better answers. We observe that considering only task di-
versity (diversity) is not efficient. Including task payment
is therefore important.

4.3.3 Worker retention
We now evaluate worker retention, a dimension that qual-

ifies as both requester-centric and worker-centric. Figure
6a shows worker retention as the percentage of work ses-
sions (vertical axis) that ended after x tasks were completed
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(horizontal axis). We find that workers stayed longer and
completed more tasks when they were assigned tasks using
relevance, hence this approach clearly outperforms div-
pay and diversity. Figure 6b supports this observation:
more iterations were performed by workers with relevance.
Although the number of completed tasks is roughly the same
with all approaches on the first 2 iterations, this number fell
quickly for div-pay and diversity when i > 2. We also
observe that div-pay has a better worker retention than di-
versity. A plausible explanation is that workers are most
comfortable completing similar tasks in a row. Therefore,
they stay longer. They are least comfortable completing
tasks with very different skills and tend to leave earlier.
However, given that the quality of crowdwork reaches its
best with div-pay, we can say that optimizing for task rele-
vance alone does not provide the best outcome quality even
if workers are retained longer in the system.

4.3.4 Task Payment
Task payment is the other measure that qualifies as both

requester-centric and worker-centric. Indeed, both requesters
and workers look for a fair treatment when it comes to com-
pensation. Requesters look to obtain high-quality contribu-
tions at a reasonable rate, and workers expect to be ade-
quately paid for their efforts. Figure 7 presents the total
task payment and the average payment per completed task
for each strategy. The total payment (Figure 7a) is greater
with relevance than with other approaches. This could
be expected given the number of completed tasks (Section
4.3.1). However, the average task payment (Figure 7b) is the
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Figure 6: Worker retention and number of com-
pleted tasks per iteration.

greatest with div-pay. That is explained by the fact that
div-pay is the only strategy that is payment-aware. Thus, it
is likely to assign higher-paying tasks to workers that prefer
task payment over task diversity.

4.3.5 Workers’ motivation
We now turn to workers and study their motivation in

detail. In order to make a fair comparison, we compute αi
w

for each strategy and for each iteration i ≥ 2 (even if it is
only used by div-pay). Figure 8 shows the values of αi

w

for each work session hk, k ∈ 1 . . . 30. We omit session h13

(with diversity approach) where only 3 tasks were com-
pleted. We observe that in most work sessions, αi

w oscillates
around 0.5. Given the definition of αi

w, this value indicates
that most workers do not steadily favor task diversity over
task payment. This is particularly observable on long work
sessions in Figure 8a, where tasks were assigned using rel-
evance. Figure 9 shows the distribution of αi

w. It supports
our observation: most workers do not make sharp choices.
Most of the computed αi

w values (72%) are in the interval
[0.3, 0.7], meaning that most workers do not favor task di-
versity over task payment, nor do they favor payment over
diversity.

However, we do observe some sharp preferences for some
workers. For instance, the worker in session h2 (Figure 8b)
clearly favored high-paying tasks. She completed 1.6 dif-
ferent tasks at each iteration (maximum possible: 5) that
have an average reward of $0.11 (maximum possible reward:
$0.12). Hence, her αi

w was close to 0. Since she was assigned
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tasks using div-pay, she received high-paying tasks. On the
other hand, the worker in session h25 (Figure 8a) favored
task diversity (her αi

w is close to 0.8). She completed 4.12
different tasks at each iteration, that paid $0.05 on aver-
age. This shows that our formulation allowed to accurately
capture workers’ preferences between task diversity and task
payment.

4.4 Summary of Results and Discussion
We now summarize our results and provide a rationale

for why different strategies prevail for different measures.
Let us first consider requester-centric measures. We observe
that relevance is the strategy that provides the best task
throughput. This could be explained by the fact that rel-
evance requires less effort from workers than diversity
and div-pay. Indeed, since relevance is based on selecting
tasks that best match a worker’s profile and since a worker’s
profile is quite homogeneous, tasks recommended by rele-
vance are quite similar to each other. Therefore, a worker
does not do much context switching between tasks and is
hence faster overall. We also observe that div-pay slightly
outperforms diversity on task throughput. That shows
the importance of task payment as an incentive. Results
are different if we consider crowdwork quality. div-pay is
the strategy that obtains the best quality, followed by rel-
evance. div-pay is the only strategy that is both adaptive
and motivation-aware: this contributes to providing a better
incentive to workers. Quality comes at a price though: div-
pay is the strategy where the average task payment among
completed tasks is the highest and it does not provide the
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highest task throughput (it is better than diversity but
worse than relevance). Thus, depending on the platform,
one should study trade-offs between these strategies when
designing task assignment algorithms.

If we consider worker-centric measures, we observe that
div-pay is the best strategy for task payment since it re-
warded workers higher. This could be expected since it is
the only payment-aware strategy. However, worker reten-
tion is better with relevance. Workers performed longer
work sessions with relevance than with other strategies.
This finding is related to the fact that most workers do
not have a clear preference for task diversity or task pay-
ment. They prefer tasks that match their interests and re-
quire fewer context switching, hence they did not necessarily
stay longer when task diversity or task payment were favored
(with div-pay or diversity). We also observe workers’ mo-
tivation and we notice that some workers carefully choose
task diversity or task payment. In that case, we could accu-
rately capture their preferences with appropriate αi

w values.
That allowed div-pay to slightly outperform diversity on
both task throughput and worker retention.

5. RELATED WORK

Task Assignment in Crowdsourcing. Task assignment in
crowdsourcing was largely studied. Previous studies notably
include the design of adaptive algorithms, that focus on max-
imizing the quality of crowdwork [8, 17, 18, 29]. For in-
stance, Fan et al. [8] leverage the similarity between tasks
and the past answers of workers to design an adaptive algo-
rithm that aims at maximizing the accuracy of crowdwork.
Ho et al. [17] study an online setting, where the workers who
are going to arrive on the platform have unknown skill. They
design an algorithm where the skill level of sampled workers
is observed and is leveraged to assign all other workers to
tasks. None of these studies includes motivation factors in
their model. Other investigations focused on dynamically
adjusting the task reward [9, 11] so as to satisfy a dead-
line or a budget constraint. They modeled the willingness
of a worker to choose a task as a task acceptance probabil-
ity featuring task reward as a parameter. These studies do
not focus on task assignment as workers self-appoint them-
selves to tasks and they do not include task diversity in
their model. Recently, Rahman et al. [23] focused on as-
signing tasks to groups of diverse workers in collaborative
crowdsourcing. Moreover, Wu et al. aim at finding sets of
workers with diverse opinions [28]. None of those studies
assigns diverse tasks to workers or includes motivation fac-
tors. Moreover, Rahman et al. [23] consider a setting which
is not adaptive: task assignment does not leverage previous
answers to improve the main objective.

Motivating Workers. A range of studies point out the im-
portance of suitably motivating workers in crowdsourcing [2,
21, 22]. Obviously, reward is an important factor, and crowd-
sourcing platform should follow some guidelines that would
solve wage issues [2]. Kittur et al. [21] underlines the inter-
est of designing frameworks that include incentive schemes
other than financial ones. In particular, they notice that
a system should “achieve both effective task completion and

worker satisfaction”. Worker motivation was first studied
in physical workplaces [14]. Recent studies [20] investigated
the importance of 13 motivation factors for workers on Ama-
zon Mechanical Turk. Although task payment remains the
most important factor, Kaufmann et al. [20] point out that
workers are also interested in skill variety or task autonomy.

Some efforts were driven towards experimenting motiva-
tion factors in crowdsourcing [5, 7, 25, 27]. In a recent
study [7], Dai et al. inserted diversions in the workflow
such that workers were presented with some entertainment
contents between two task completions. Dai et al. showed
that such a motivational scheme improved worker retention.
Chandler and Kapelner [5] conducted experiments show-
ing that workers perceiving the “meaningfulness” of task
improved throughput without degrading quality. Another
study [25] assessed the effect of extrinsic and intrinsic moti-
vation factors. They demonstrated that workers were more
accurate on meaningful tasks posted by a non-profit organi-
zation than on tasks posted by a private firm and less explicit
about their outcome. This suggested that intrinsic factors
help improve quality of crowdwork. Shaw et al. [27] assessed
14 incentives schemes and found that incentives based on
worker-to-worker comparisons yield better crowdwork qual-
ity. None of the above studies leverages motivation factors
to optimize task assignment, and thus they do not tackle the
motivation-aware task assignment problem.

6. CONCLUSION AND FUTURE WORK
In this paper, we presented three different formulations of

task assignment algorithms and compared three motivation-
aware task assignment strategies: relevance, diversity,
and div-pay. Both relevance and diversity are based
on matching tasks to a worker’s interests, while div-pay re-
lies on assigning tasks to workers based on their observed
motivation. This work builds on the premise that workers
may look for a balance between intrinsic motivation, mod-
eled as task diversity, and extrinsic motivation, modeled as
task payment.

In practice, our experiments show that different strate-
gies prevail. relevance offers the best task throughput
and worker retention since it requires less context switch-
ing for workers (i.e., all tasks are similar). div-pay, how-
ever, has the best outcome quality, since it allows workers
to achieve the best compromise between fun and compensa-
tion. This last observation is important as it confirms that
even when workers are slower at executing tasks and when
they spend less time on a platform, optimizing for their mo-
tivation impacts task outcome quality positively. There are
also a few cases where div-pay outperforms diversity on
task throughput and worker retention, implying the need
to account for payment in addition to diversity. Those are
the cases of workers whose preference between diversity and
payment are sharply expressed as they choose tasks to com-
plete. Our results highlight the importance to understand
the evolving motivation of workers on a crowdsourcing plat-
form and the importance to measure both requester-centric
and worker-centric dimensions.

In the future, we would like to investigate the possibility
of making the platform transparent by showing to workers
what the system learned about them and letting them pro-
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vide explicit feedback. We will also investigate the impact
of other motivation factors such as “social signaling” and
“advancing human capital” with respect to measures such as
task throughput and worker retention.
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ABSTRACT

Estimating all pairs of distances among a set of objects
has wide applicability in various computational problems
in databases, machine learning, and statistics. This work
presents a probabilistic framework for estimating all pair dis-
tances through crowdsourcing, where the human workers are
involved to provide distance between some object pairs. Since
the workers are subject to error, their responses are consid-
ered with a probabilistic interpretation. In particular, the
framework comprises of three problems : (1) Given mul-
tiple feedback on an object pair, how do we combine and
aggregate those feedback and create a probability distribu-
tion of the distance? (2) Since the number of possible pairs
is quadratic in the number of objects, how do we estimate,
from the known feedback for a small numbers of object pairs,
the unknown distances among all other object pairs? For
this problem, we leverage the metric property of distance,
in particular, the triangle inequality property in a probabilis-
tic settings. (3) Finally, how do we improve our estimate by
soliciting additional feedback from the crowd? For all three
problems, we present principled modeling and solutions. We
experimentally evaluate our proposed framework by involv-
ing multiple real-world and large scale synthetic data, by
enlisting workers from a crowdsourcing platform.

1. INTRODUCTION
In this paper we investigate the following problem: how to

obtain pairwise distance values between a given set of objects
by using feedback from a crowdsourcing platform? This prob-
lem lies at the core of a plethora of computational problems
in databases, machine learning, and statistics, such as top-
k query processing, indexing, clustering, and classification
problems. We consider an approach where feedback from the
crowd is solicited in the form of simple pair-wise comparison
questions. As an example, given two images (a, b), workers
are asked to rate (in a scale of [0, 1]) how dissimilar these
two images are. The worker response may be interpreted as
the distance between the two images. Although the number
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of pairwise questions is quadratic in the number of objects,
the main idea in this paper is to only involve the workers in
answering a small number of key pair-wise questions, and to
estimate the remaining pair-wise distances using the metric
properties of the distance function, in particular the triangle
inequality property [19] - a property that is true for distance
functions that arise in many common applications.
Our iterative crowdsourcing distance estimation frame-

work has three key probabilistic components. When we
solicit distance information for a specific object pair from
multiple workers, we recognize that due to the subjectivity
of the task involved, workers may disagree on their feedback,
or may even be uncertain about their own estimate. Thus we
develop a probabilistic model for aggregating multiple work-
ers feedback to create a single probability distribution of the
distance learned about that object pair. Next, given that we
have learned the distance distributions of several object pairs
from the crowd, we estimate the probability distributions of
the remaining pairwise distances by leveraging the trian-
gle inequality property of the distances. Finally, if there is
still considerable “uncertainty” in the learned/estimated dis-
tances and we have an opportunity to solicit additional feed-
back, we investigate which object pair should we choose to so-
licit the next feedback on. This iterative procedure is contin-
ued until all pair-wise distances have been learned/estimated
with a desired target certainty (or alternatively, the budget
for soliciting feedback from the crowd has been exhausted).

Novelty: There have been a few prior works that have
studied computational problems using crowdsourcing that
require distance computations. For example, entity resolu-
tion [25, 26, 5] problems investigate entity disambiguation,
and [22] study top-k and clustering problems in a crowd-
sourced settings. However, these works have developed their
formalism and solutions tightly knit to their specific appli-
cations of interest, and do not offer any obvious extension
to solve other distance-based applications. For example,the
work in [24] is focused on determining whether two objects
are the same or not, and not on the broader notion of quan-
tifying the amount of distance between them. In contrast,
our proposed framework offers a unified solution to all these
computational problems, as they all can leverage our dis-
tance estimation framework to obtain the distance between
any pair of objects. Please note that once all pair distances
are computed, finding the top-k objects, or finding the clus-
ters of the objects is easier to compute. Hence, our problem
is more general than the above mentioned body of works.
We discuss related work more thoroughly in Section 7.

Challenges and Technical Highlights: There are sub-
stantial challenges in formalizing and solving the key prob-
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lems that arise in our three probabilistic components. Per-
haps the most straightforward is the first component, i.e.,
how to aggregate the feedbacks received from multiple work-
ers into a single pdf that describes the distance between two
objects. There has been several prior works on reconcil-
ing the answers from multiple workers, which range from
simple majority voting to sophisticated matrix factorization
techniques [7, 14] on binary data, or opinion pooling [12, 8,
4] on categorical data. However these methods are largely
focused on aggregating Boolean/categorical feedback (e.g.,
“are these two entities the same?”), whereas in our case we
need to merge the potentially diverging and uncertain nu-
meric (distance) feedback from multiple workers into a single
probability distribution.

The most challenging aspect of our framework is the sec-
ond component. Knowing distance distributions of some of
the object pairs from the crowd, we have to estimate the
probability distributions of the distances of the remaining
object pairs, by leveraging the metric property of the dis-
tance. While the intuitive idea is simple (e.g., “if a is close to
b, and b is close to c, then a and c cannot be too far apart”),
the problem is challenging because (a) the known distances
themselves are distributions rather than deterministic quan-
tities, and (b) the metric property imposes interdependence
between all the pairwise distances in a complex manner. In
fact, since there are n(n − 1)/2 pair-wise distances (where
n is the number of objects), each such distance can be as-
sumed to be a random variable such that all distances are
jointly distributed in a high dimensional (n(n− 1)/2) space
with interdependencies governed by the triangle inequality.
In principle, this joint distribution must be first computed,
and then the (marginal) pdfs computed as estimates of the
unknown distances. The unknown pairs cannot be estimated
in isolation, as a small change in one pdf is likely to disrupt
the joint distribution and the triangle inequality property
impacting the other pdfs.

We argue that in certain cases, computing the joint distri-
bution may require us to solve a mixture of over and under-
constrained nonlinear optimization system, whereas in other
cases it may reduce to solving an under-constrained system
with many feasible solutions ([2]). For the former cases, we
formalize the optimization problem as a combination of least
squares and maximum entropy formulation and present al-
gorithm LS-MaxEnt-CG that adopts a conjugate gradient ap-
proach [27, 10] to iteratively compute the joint distribution.
For the latter cases, the problem reduces to that of max-
imizing entropy, and we present an algorithm MaxEnt-IPS

that leverages the idea of iterative proportional scaling [23,
21] to efficiently converge to an optimal solution. Both of
these solutions, while ideal, only work for small to moderate
problem instances since they are exponential in the dimen-
sionality of the joint distribution being estimated. Conse-
quently, we also present a heuristic solution Tri-Exp that
scales much better and can handle larger problem instances.

In the third component, our task is to decide, from among
the remaining unknown object pairs, which one to select for
soliciting distance feedback from the crowd. Intuitively, the
selected object pair should be the one whose distance (after
being learned from the crowd) is likely to reduce the “over-
all” uncertainty of the remaining unknown distance pdfs the
most, i.e., minimize the aggregated variance of the remaining
pdfs. To solve this problem in a meaningful way, it is crit-
ical to be able to model how workers are likely to respond
to a solicitation, because their anticipated feedback needs to

be taken into account for selecting the most effective pair.
Finally, we also recognize that this approach of resolving
one object pair at a time by the crowd may be sub-optimal
and slow to converge. Thus, we also describe an extension
where we “look ahead” and select multiple promising unre-
solved object pairs, and engage the crowd in simultaneously
providing feedback for these pairs.

Summary of Contributions: In summary, we make the
following contributions in this paper:

• We consider the novel problem of all-pairs distance es-
timation via crowdsourcing in a probabilistic settings.

• We identify three key sub-components of our itera-
tive framework, and present formal definitions of prob-
lems and the solutions for each of the component (Sec-
tions 2,3,4,5).

• We experimentally evaluate our framework using both
real world and synthetic datasets to demonstrate its
effectiveness (Section 6).

2. DATA MODEL AND PROBLEM FORMU-

LATIONS
We first describe the data model and then formalize the

problems considered in this paper.

2.1 Data Model

Objects and Actual Distances: We are given a set O
of n objects, with no two objects being the same. Objects
could be images, restaurants, movies, etc. Let d(i, j) be the
actual distance between objects i and j. Assume that all dis-
tances are normalized within the interval [0, 1], where larger
values denote larger distances, and that metric properties
are satisfied, in particular the triangle inequality [19] or re-
laxed triangle inequality [9] property, as we define below. We
are interested in using this property for learning all the

(

n

2

)

pairs of distances.

Triangle Inequality Property: For every three objects
(i, j, k) that comprise a triangle △i,j,k, d(i, j) ≤ d(i, k) +
d(k, j) and d(i, j) ≥

∣

∣d(i, k)− d(k, j)
∣

∣.

To lift the strict notion of triangle inequality, one can con-
sider relaxed triangle inequality, that assumes d(i, j) ≤ c.(d(i, k)+
d(k, j)), where c is a known constant that is not too large.
Indeed, the relaxed triangle inequality [9] property allows us
to effectively incorporate subjective human feedback from
crowd workers.

Question: A question Q(i, j) to a worker requests feedback
on her estimate of d(i, j). The same question Q is directed
to m different workers in the available workers pool, in order
to gather multiple feedback.

Feedback: Let f(i, j) represents a worker’s feedback for
the distance. The worker could either give a single value,
or a range/distribution of values (if she is uncertain about
the distance).1 Even if the worker gives a single value, if
it is known from past history of her performance that this
worker is prone to making errors and is only correct with a
certain probability p (say, 80%) (referred to as correctness

1The latter type of feedback is common in experts opinion
aggregation problems [13], where a worker has partial knowl-
edge on a particular topic and her answer reflects that with
a distribution over the possible answers.
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Notation Interpretation
O set of n objects
d(i, j) distance between objects i and j
Q(i, j) asking distance on an object pair

(i, j) in [0− 1] scale
f(i, j) feedback on object pair (i, j)
△i,j,k triangle formed by objects (i, j, k)
dk(i, j), du(i, j) known and unknown distance be-

tween an object pair (i, j), respec-
tively

Dk, Du known and unknown set of dis-
tances, respectively

D distance vector
Pr(D) joint probability distribution of D
W vector representing all buckets of

the multi-dimensional histogram of
Pr(D)

m m different feedbacks on the same
question

A a Boolean matrix of constraints

Table 1: Notations

probability), then her single-value feedback can be converted
to a more general probability distribution (pdf) over the
range [0, 1] (e.g.,using techniques described in Section 3).
We henceforth assume that the “raw” feedback of the worker
has been appropriately processed into a pdf over [0, 1].

Known and Unknown Distances: Once a distance ques-
tion Q(i, j) has been answered by multiple workers, their
respective feedbacks needs to be aggregated into a single pdf
representing how the crowd has estimated the distance be-
tween i and j. Exactly how this aggregation is done is the
first of the three key challenges of this paper, and is de-
scribed in detail in Section 3. We denote the random vari-
able described by this pdf as dk(i, j), where the superscript
k denotes that the distance is now “known”. Note that it
still may not be the actual deterministic distance d(i, j), un-
less the crowd’s responses are completely error free, which
is often not the case in practice.

Of the
(

n

2

)

distances, let Dk represent the set of known
distances, i.e., the ones for which feedback has been ob-
tained from the crowd. Let Du represent the remaining set
of “unknown” distances, i.e., distances between those pair of
objects for which feedback has not been explicitly obtained
from the crowd. Consider du(i, j) ∈ Du. Even though no
information about this distance has yet been solicited, some
distributional information about this distance can be de-
rived since it depends on other pairwise distances in a com-
plex manner (due to the triangle inequality property). We
discuss this issue next.

Joint Distribution of All Pairs Distances: Consider
the set of all distances Dk ∪ Du. We may view this set as
a distance vector D of length

(

n

2

)

, whose every entry is a
random variable representing the distance between the re-
spective two objects (i, j). The space of all instances of D

is [0, 1](
n

2
), however since the

(

n

2

)

distances are interdepen-
dent upon each other due to the metric properties, the valid
instances are those that satisfy the triangle property, i.e.,
for the triangle △i,j,k defined by any three objects (i, j, k),
the three corresponding distances should satisfy the triangle
inequality.

Edges #Feedback Valuesሺ, ሻ 1 0.55

2 0.8

3 0.6ሺ, ሻ 1 0.1

2 0.05

3 0.1ሺ, ሻ 1 0.09

2 0.12

3 ,0.15  , ,  , ሺ, ሻ <no feedback> Needs 

estimation

Known 

Unknown

݈݇
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(a) Illustration of Example 1݈݇
j�

?
?

?

0.750.25

1.0

0.750.25

1.0

0.750.25

1.0

0.0

0.0
0.0

(b) Distances as Distri-
butions (Histograms with
ρ = 0.5)

Figure 1: Illustrative Example.

Let Pr(D) represent the joint probability distribution of
D. Our task is to estimate Pr(D) such that the marginal
distribution for a known random variable dk(i, j) should cor-
respond to the pdf learned from the crowd. We note that
once we have an accurate estimation of Pr(D), we can get
estimates of the distributions of the unknown random vari-
ables du(i, j) by computing their marginals. In the next
subsection we formalize the problems considered in this pa-
per.
Table 1 summarizes the notations used in the paper.

Example 1. Image indexing for K-nearest neighbor queries:
Our proposed framework is apt to process K-nearest neigh-
bor queries over an image database, where, given a query
image, the objective is to obtain an ordered list of images
from the database, ordered by how closely they match the
query image. To handle such queries faster, one potential
avenue is to pre-process the image database and create an
index that will cluster the images according to their distance
among themselves. Then, as an example, if we have found
that a query image I is far from a database image i and
and if the indexes inform us that another image j is close
enough to i, then, we may never need to actually compute
the distance between I and j.

With such an application in mind, consider a toy image
database in Figure 1(a) with n = 4 images (i, j, k, l), where
our eventual goal is to find the distances between all pairs of
images. Assume that out of six possible pairs of distances,
three are known: (i, j), (j, k), and (i, k). I.e., for each of
these pairs, we have solicited feedback from several workers
in the crowd, and aggregated the feedbacks to obtain a single
probability distribution to describe the distance. The dis-
tances of the remaining three pairs are unknown and need
to be estimated, again as probability distributions. Further-
more, if we need to solicit further feedback on a question,
i.e., get the crowd to provide distance for an unknown pair,
we intend to find what is the best question (best pair) to ask.
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2.2 Problem Formulations
Recall from Section 1 that the iterative distance estima-

tion framework involves three probabilistic components, which
gives rise to three problems that need to be solved: (a) how
to aggregate feedbacks from multiple workers for a specific
distance question, (b) given some of the learned distances,
how to estimate the remaining unknown distances, and (c)
which object pair to select next for soliciting feedback from
the crowd. In the remainder of this section, we provide for-
mal definitions of these problems, and offer some insights
into their complexities.

2.2.1 Problem 1: Aggregation of Workers Feedback
for a Specific Object Pair

The first problem may be specified as follows:

Problem 1. Given a set of m feedbacks for the distance
question Q(i, j), where each feedback could be a pdf, aggre-
gate those feedback to create a single pdf for the random
variable dk(i, j).

Using Example 1, this is akin to aggregating three dif-
ferent feedbacks from three different workers to compute
dk(i, j).

2.2.2 Problem 2: Estimation of Unknown Distances

In this problem we need to leverage the known aggre-
gated distances in Dk to estimate the remaining unknown
distances Du. Obviously, if the distances are completely ar-
bitrary, the unknown distances cannot be computed from
the known distances. However, if the distances are metrics,
in particular satisfying the triangle inequality property, then
this property can be leveraged in making better estimates of
the unknown distances. Many well known distances are met-
ric, such as, ℓ2, ℓ1, ℓ∞, while other popular distances such as,
Jaccard distance and Cosine distance could be transformed
to metrics. For us, the challenge is to investigate how this
property can be used in the case when the distances are
probability distributions rather than fixed deterministic val-
ues.

Recall that D is a random vector representing all the
(

n

2

)

distances, and Pr(D) represents the joint distribution of
D. We now describe some important properties that Pr(D)
should possess.

The space of all instances of D, i.e., [0, 1](
n

2
), may be di-

vided into two as follows: (a) Valid instances, i.e., any in-
stance of D such that all triangles △i,j,k satisfy the triangle
inequality, and (b) Invalid instances, i.e., any instance of D
such that there exists a triangle △i,j,k that does not satisfy
the triangle inequality. Thus Pr(D) should be a function
constrained such that the cumulative probability mass over
all valid (respectively invalid) instances of D should be 1
(respectively 0).

Additionally, Pr(D) should be constrained such that the
marginal distributions corresponding to the individual ran-
dom variables in Dk (i.e. the known distances) should agree
with the corresponding distance pdfs learned from the crowd.
However, this constraint may not be always possible to sat-
isfy, as crowd feedback is inherently an error-prone human
activity, which can result in inconsistent feedback that vi-
olates the triangle inequality. Thus our task will be to es-
timate Pr(D) such that the marginal distributions corre-
sponding to individual random variables in Dk are “as close
as possible” to the pdfs learned from the crowd.

Once such a Pr(D) has been constructed, the pdfs of the
unknown distances can estimated by computing the marginal
distributions of each variable in Du.
In the rest of this subsection, we provide more details of

the problem formulation.

Discretization of the pdfs using Histograms: For com-
putational convenience, for the rest of the paper we assume
that (single or multi-dimensional) probability distributions
are represented as discrete histograms, as is common in
databases [17]. In particular, we assume that the [0, 1] inter-
val is discretized into equi-width intervals of width ρ (where
ρ is a predefined parameter). A r-dimensional pdf is thus
represented by a r-dimensional histogram with ( 1

ρ
)
r
buck-

ets. Each bucket contains a probability mass representing
the probability of occurrence of its center value, and the sum
of the probabilities of all buckets equals 1.
For the running example in Figure 1(a), we use ρ = 0.5.

Thus a one-dimensional pdf is represented by a 2-bucket
histogram, where the first bucket is between [0 − 0.5] with
center at 0.25 and the second bucket is [0.5− 1.0] with cen-
ter at 0.75. Figure 1(b) of the running example shows how
each known distance (known edge) is represented as a one-
dimensional histogram after discretizing and aggregating in-
puts from multiple users, where the feedback values are re-
placed by the corresponding bucket centers (we describe de-
tails of our techniques for input aggregation, i.e., Problem
1, in Section 3).

Estimating Pr(D): Once we have the histograms for each
individual known edge, the joint distribution Pr(D) needs to

be estimated as a multi-dimensional histogram with ( 1
ρ
)(

n

2
)

buckets. Our task is to estimate the probability mass of
each of these buckets. Using the running example, there are
26 buckets, whose centers range from [0.25, 0.25, 0.25, 0.25,
0.25, 0.25] to [0.75, 0.75, 0.75, 0.75, 0.75, 0.75]. Computing
the probability mass of a specific bucket, e.g.,
Pr(0.25, 0.27, 0.25, 0.25, 0.25, 0.75), is equivalent of comput-
ing the probability of the simultaneous events d(i, j) = 0.25
& d(j, k) = 0.27 & d(i, k) = 0.25 & d(i, l) = 0.25 & d(k, l) =
0.25 & d(j, l) = 0.75. The computation of Pr(D) can be

modeled as a linear system with ( 1
ρ
)(

n

2
) unknowns, where

each unknown represents the probability mass of a bucket.
These unknowns have to satisfy three types of linear con-
straints:

(1) Constraints imposed by the known pdfs: Pr(D) should be
such that its marginal for any known distance dk(i, j) should
satisfy the corresponding one-dimensional pdf learned from
the crowd. Thus, each bucket of each known marginal pdf
will generate a linear constraint. In our running example, a
one-dimensional bucket such as Pr(d(i, k) = 0.25) will gen-
erate a linear equation of the form

∑

Pr(∗, ∗, 0.25, ∗, ∗, ∗) =
Pr(d(i, k) = 0.25).

(2) Constraints due to triangle inequality: Some of the buck-
ets in the joint distribution must have zero probability mass
if they violate triangle inequality constraints. In our run-
ning example, consider any of the 8 bucket of the form
(0.75, 0.25, 0.25, ∗, ∗, ∗). The probability mass of each such
bucket has to be set to 0, since d(i, j) = 0.75, d(j, k) = 0.25
and d(i, k) = 0.25 does not satisfy the triangle inequality
(this happens irrespective of any combination of the values
for the remaining three edges, hence they are represented as
‘*’).

(3) Probability axiom constraint: A final constraint requires
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that the sum of all the buckets of the joint distribution
adds up to 1. In our running example, this implies that
Pr(0.25, 0.25, 0.25, 0.25, 0.25, 0.25)+Pr(0.25, 0.25, 0.25, 0.25,
0.25, 0.75)+ . . .+ Pr(0.75, 0.75, 0.75, 0.75, 0.75, 0.75) = 1.

If W represents the vector of ( 1
ρ
)(

n

2
) unknowns, and M

represents the set of constraints, then the linear system may
be expressed as AW = b, where A is a Boolean matrix of

size |M | × ( 1
ρ
)(

n

2
), and b is a vector of length |M |. Interest-

ingly, as the following discussion shows, solving this linear
system is not a straightforward task.

Scenario 1: Over-Constrained Case: In general, an
over-constrained linear system AW = b is one which has
no feasible solution [15]. In our case, it is indeed possible
that the marginal distributions corresponding to the individ-
ual random variables in Dk (i.e. the known distances) that
are learned from the crowd gives rise to an over-constrained
scenario. This is because crowd feedback is inherently an
error-prone human activity, which can result in inconsistent
feedback that violates the triangle inequality. For example,
△i,j,k in Example 1 has only one deterministic instance with
edge weights d(i, j) = 0.75, d(j, k) = 0.25 and d(i, k) = 0.25.
Clearly, △i,j,k does not satisfy the triangle inequality, since
d(i, j) > d(i, k) + d(j, k). Hence, there is no valid joint dis-
tribution Pr(D) which can estimate the known pdfs.In such
cases, we estimate Pr(D) such that the marginal distribu-
tions corresponding to individual random variables in Dk

are “as close as possible” (using least squares principle) to
the pdfs learned from the crowd. More formally, given A
and b, we estimate W such that ||AW−b||2 is minimized.

Scenario 2: Under-Constrained Case: In general, an
under-constrained linear system AW=b is one which has
multiple feasible solutions [15]. In our case, while esti-
mating W, we may also encounter under-constrained sce-
narios. Using Example 1 and considering triangle △i,j,l,
we note that any of the following solutions are feasible:
d(i, l) = 0.75, d(l, j) = 0.75, or d(i, l) = 0.75, d(l, j) = 0.25,
or d(i, l) = 0.25, d(l, j) = 0.75. In such cases, maximum
entropy principles [23] are used to choose a solution that is
consistent with all the constraints but otherwise is as uni-
form as possible. More formally, the objective is to solve
the linear system AW=b that maximizes the entropy of the
joint distribution −∑

w∈W
Pr(w) logPr(w).

Scenario 3: Combined Case: Since our problem in-
stances may involve both over and under-constrained sce-
narios, we unify both into a single minimization problem
using a weighted linear combination, where the weight λ can
be used to tune the solution to ensure better least square or
higher uniformity. Our final problem is described as follows:

Problem 2. Estimate the joint distribution vector W such
that f(W) = λ×||AW−b||2+(1−λ)×

∑

w∈W
Pr(w) logPr(w)

is minimized.

Before we move to our next problem definition, we point
out an interesting issue. The exponential size of Problem 2
(the number of buckets in the multi-dimensional histogram is
intractably large for most real-world instances) suggests that
a complete solution of Problem 2 is prohibitive. Fortunately,
we observe that computing the joint distribution is merely
a intermediate (and not strictly necessary) objective - our
eventual objective is to estimate the one-dimensional pdfs
of the unknown distances du(i, j). This issue is discussed in
more detail in Section 4, and in particular we present heuris-
tics to directly compute the unknown one-dimensional pdfs

without having to compute the intermediate joint distribu-
tion.

2.2.3 Problem 3: Asking the Next Best Question

Recall that our overall approach is an iterative process. If
we have the need to solicit further feedback from the crowd,
we have to select an object pair from Du, as human work-
ers have not yet been involved in providing feedback about
such pairs. Our objective is to select the most promising
pair, i.e., that is most likely to reduce the “uncertainty” of
the remaining unknown distances the most. We measure
uncertainty by aggregating the variances of the remaining
unknown distance pdfs (the variance of du(i, j) with mean
µ is measured as σ2

du(i,j) =
∑

∀q pq ∗ (q − µ)2).

Problem 3. From the set Du of the candidate object pairs,
choose the next best question Q(i, j) to solicit feedback from
the human workers, such that, upon receiving the feedback,
the aggregated variance over the remaining unknown dis-
tances is minimized.

Aggregated variance, AggrVar is formalized in one of the
two natural ways, average variance or largest variance:
(1) Average variance over the remaining unknown distances:

∑

σ2
du(i′,j′)

|Du| − 1
, du(i′, j′) ∈ {Du − du(i, j)}. (1)

(2) Largest variance over the remaining unknown distances:

max
du(i′,j′)

σ2
du(i′,j′), d

u(i′, j′) ∈ {Du − du(i, j)}. (2)

Considering Example 1, this problem will seek to choose
the next best question (i.e., edge or object pair) from Du =
{(i, l), (j, l), (k, l)}.

3. PROBLEM 1: AGGREGATION OF WORK-

ERS FEEDBACK
In this section, we describe our proposed solution Conv-

Inp-Aggr of aggregating multiple feedbacks on a single ob-
ject pair (i.e., an edge).
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Figure 2: Worker Feedback Aggregation
In general, given a set of m different feedbacks

f1(i, j), f2(i, j), . . . fm(i, j), where each feedback is a ran-
dom variable describing distance on an object pair (i, j),
such that the set of random variables are independently dis-
tributed, our objective is to define a new random variable
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whose distribution represents the average of the underlying

input pdfs, i.e., pdf of f1(i,j)+f2(i,j)+...+fm(i,j)
m

. The inde-
pendence assumption allows us to use the prior technique of
sum-convolution [1] to obtain the sum of the input pdfs and
then averaging that convolved pdf to obtain the average.

Algorithm 1 Conv-Inp-Aggr

1: Input: Set of m feedbacks for (i, j).
2: Perform a sequence of m− 1 Sum-convolutions over the

feedback pdfs.
3: Calculate dk(i, j) by re-calibrating the resultant pdf of

previous step into pre-specified adjusted range. This
step require averaging over the bucket values and real-
locate the probability masses accordingly.

4: return dk(i, j)

We illustrate this approach using the first two feedbacks
for the pair (i, j) in our running example in Figure 1(a).
The first worker’s feedback (denoted as f1(i, j)) of 0.55 is
converted into a pdf. This is shown in Figure 2(a) as a 4-
bucket histogram (i.e., with ρ = 0.25, buckets with bound-
aries [0−0.25], [0.25−0.5], [0.5−0.75], [0.75−1.0], and centers
at 0.125, 0.375, 0.625, 0.875 respectively). As the feedback
value 0.55 is in [0.5−0.75], we can assign a probability mass
of 1 to this bucket, and 0 to all other buckets. However,
if we have prior information that the worker is only correct
80% of the time (correctness probability p = 0.8), we can as-
sign a probability mass of 0.8 to the bucket [0.5− 0.75], and
distribute the remaining probability mass uniformly among
the remaining three buckets. This latter approach is used
to generate the pdf illustrated in Figure 2(a). Similarly,
Figure 2(b) shows the pdf for feedback 2 of (i, j).
The sum-convolution of these two pdfs is presented in Fig-

ure 2(c). Since the centers of the buckets of each of the indi-
vidual pdf are between [0.125, 0.875], their sum can be any
value between [0.25, 1.75]. For each discrete value x between
[0.25, 1.75], the probability of f1(i, j)+f(2(i, j) equal to x is
calculated by computing the joint probability of f1(i, j) = x′

and f2(i, j) = x”, such that, x′ + x” = x.
With m = 2 feedbacks, the bucket values are then reas-

signed to the centers as follows: 0.25 → 0.125, 0.5 → 0.25,
. . ., 1.75 → 0.875. After this is done, if we have a trans-
formed bucket center with non-zero probability that does
not correspond to any of the input buckets, then the mass
of that bucket is redistributed to its closest bucket. When
two buckets are equally close, the mass is equally divided
between the two buckets. As an example, since 1.0 → 0.5
after averaging, but 0.5 does not correspond to any bucket
center , the probability mass of Pr(f1(i, j) + f2(i, j) = 1.0)
gets uniformly split between its two closest centers 0.375 and
0.625. The resultant distribution is given in Figure 2(d).
Figure 1(b) shows the aggregation results for (i, j) of Fig-

ure 1(a) with worker being completely accurate (p = 1.0)
and with ρ = 0.5.
Running Time: If each pdf is approximated using an

equi-width histogram of width ρ, the time to perform aver-
age convolution involvingm different pdfs is O(m×1/ρ2) [1].

4. PROBLEM 2: ESTIMATION OF UNKNOWN

DISTANCES
In this section, we present our proposed solutions of the

problem 2- i.e., how to estimate the distance of the unknown

object pairs from the given known distances. Using Ex-
ample 1, this step is to estimate three unknown distances
Du = {(i, l), (j, l), (k, l)}, by leveraging the three known dis-
tances. We present two alternative solutions - an optimal
solution by computing joint distribution that is exponential
to the number of object pair

(

n

2

)

, and a much faster heuristic
alternative.

4.1 Algorithms for Optimal Solution
Recall our proposed formulation in Section 2.2 and note

that the optimal solution of computing the unknown dis-
tances is to first produce a joint distribution Pr(D) on a
high-dimensional space over all

(

n

2

)

object pairs. This is due
to our underlying abstraction that assumes that all objects
are connected to each other which gives rise to a complete
graph - hence the distribution of an unknown edge can not
simply be learned in isolation. Once the joint distribution is
obtained, the unknown pdfs are to be computed as marginals
from the joint distribution. We investigate and design algo-
rithms for the following two scenarios:

(1) As demonstrated in Example 1, our problem can unfor-
tunately be both over as well as under-constrained. In fact,
when the known pdfs are inconsistent (i.e., do not satisfy
triangle inequality), there may not be any feasible solution
to compute Pr(D) that satisfies all the known pdfs. At the
same time, a part of our solution space may still be under-
constrained, especially the part that involves the unknown
pdfs where multiple feasible solutions may exist.

(2) For the special case when the known pdfs are consistent,
the scenario is merely under-constrained and may have mul-
tiple feasible solutions, as we describe in Section 4.1.2.

4.1.1 Combined Case

For this scenario, the problem of computing the joint dis-
tribution is formalized as an optimization problem (Prob-
lem 2) with the objective to minimize a weighted linear
combination of least square and negative entropy (notice
−Pr(w) logPr(w) is the entropy), i.e., f(W) = α×||AW−
b||2 + β ×∑

w∈W
Pr(w) logPr(w) is to be minimized. The

first part of the formulation is designed for the over-constrained
settings, i.e., we satisfy the known pdfs as closely as possi-
ble if there is no feasible solution, whereas the second part
of the formulation is to handle under-constrained nature of
the problem through maximum entropy modeling that will
choose the joint distribution model that is consistent with
all the constraints but otherwise is as uniform as possible.
From the joint distribution Pr(D), we obtain the unknown
distance pdfs by computing appropriate marginals.

Lemma 1. f(W) is convex.

Proof. (Sketch) It can be shown that the linear aggre-
gation of two convex functions is always convex [3], which
proves the above lemma.

Algorithm LS-MaxEnt-CG: Based on Lemma 1 f(W) is
convex. We propose Algorithm LS-MaxEnt-CG, by appropri-
ately adapting nonlinear conjugate gradient algorithms [27,
10] that are popular iterative algorithms to solve such non-
linear convex optimization problems. The overall pseudo-
code is presented below in Algorithm 2.
Using Example 1 with ρ = 0.5, the joint distribution pro-

duces the probability for each of the 26 buckets that sum
up to 1. From this joint distribution, the marginal distribu-
tions can be computed for the three unknown edges. (i, l) :
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Algorithm 2 LS-MaxEnt-CG

1: Input: matrix A, constraint vector b, vector W with
1
ρ

(n
2
) unknown variables, tolerance error η.

2: Initialize W with the steepest direction in the first iter-
ation ∆W0 = −∇Wf(W0)

3: In the i-th iteration, compute β′
i using Fetcher-Reeves

method [11].
4: Update the conjugate direction: si = ∆Wi + β′

isi−1.
5: Perform a line search to obtain α′

i, α
′
i = argmin

α′

f(Wi+

α′si).
6: Update the position: Wi+1 = Wi + α′

isi
7: Repeat Steps 3− 7 to until the error ≤ η.
8: return f(W)

[0.25 : 0.366, 0.75 : 0.634],(j, l) : [0.25 : 0.366, 0.75 : 0.634],
(k, l) : [0.25 : 0.366, 0.75 : 0.634].

Running Time: It has been shown in [10] that conjugate
gradient has a running time complexity of O(m′√κ), where
m′ is the number of non-zero entries in the matrix A and κ
is the number of iteration before convergence. However, in
our case, as described in Section 2.2, the size of the input
matrix A itself is exponential to the number of object pairs.

4.1.2 Under-Constrained Case

For the under-constrained settings, the optimization func-
tion becomes simpler, with the objective to maximize en-
tropy f(W) = −

∑

w∈W
Pr(w) logPr(w), while satisfying

the known constraints. Each constraint Ci is a restriction

on some subset of these possible ( 1
ρ
)(

n

2
) cells to sum up to

some observed value p(Ci). More specifically, each Ci =
∑

(wi × Ii,j), where Ii,j = 1 if j-th cell is included in the
constraint Ci, and 0 otherwise.

Algorithm MaxEnt-IPS: It has been shown that the ob-
jective function always has a unique solution as long as the
constraints are consistent [21]. Of course, this problem can
be solved using a general purpose optimization algorithm.
However, we propose MaxEnt-IPS, an iterative proportional
scaling (or IPS) algorithm [23, 21] that exploits the struc-
tural property of the objective function and uses the obser-
vation that the optimal wi values can be expressed in the
following product form.

wµ
j = µ0ΠCi

µi
Ii,j

For each constraint Ci, there is a constraint µi that gets
updated inside the IPS algorithm and µ0 is a normalization
constant to ensure that all cells add up to 1. This algorithm
iteratively updates the µi’s and the cell values wi’s. It is
guaranteed to converge to the optimal solution as long as
all constraints are consistent. Once the histogram buckets
W and hence the joint distribution Pr(D) is computed, the
unknown marginals are obtained similarly as before. We
omit further details and the pseudo-code for brevity but refer
to [23, 21] for for more information on the IPS method.
MaxEnt-IPS does not converge for the input presented in

Example 1 (b), as it is over-constrained. However, if we
modify the example such that the aggregated feedback for
(j, k) is 0.75 instead of 0.25, then the following outputs are
obtained for the three edges: (i, l) : [0.25 : 0.333, 0.75 :
0.667],(j, l) : [0.25 : 0.333, 0.75 : 0.667], (k, l) : [0.25 :
0.333, 0.75 : 0.667].

Running Time: The maximum entropy modeling is known

to be NP-hard [18]. The MaxEnt-IPS algorithm terminates
based on the convergence of all the µ’s. In each iteration it
makes updates to all the buckets in the joint distribution,

which is exponential in size (O( 1
ρ
)(

n

2
))). If MaxEnt-IPS re-

quires κ iterations to converse, the asymptotic complexity

of this algorithm is exponential, i.e., O(κ× ( 1
ρ
)(

n

2
)).

4.2 Efficient Heuristic Algorithm
Both the problem variants and their respective solutions

studied in Sections 4.1.1 and 4.1.2 first compute the joint
distribution over an

(

n

2

)

-dimensional space as optimization
problems. After that, the unknown distributions are com-
puted from the joint distribution. Even with n = 5 objects
and ρ = 0.5, the joint distribution is to be computed on

an 2(
5

2
) = 210 dimensional space. Due to its exponential

nature, computing the joint distribution is practically im-
possible as n increases. As a realistic alternative, we next
present Tri-Exp, an efficient heuristic algorithm that avoids
computing the entire joint distribution, but explores the in-
dividual triangles in a greedy manner to estimate the pdfs of
the unknown edges. The pseudo-code is presented in Algo-
rithm 3. ݈݇

j� 0.750.25

1.0
?

?

?

?

0.25

1.0

0.75

0.0

0.0

Figure 3: Example to Illustrate Tri-Exp

While Algorithm Tri-Exp avoids computing the joint dis-
tribution and instead performs a greedy exploration over the
individual triangles one-by-one, there are still considerable
challenges - each unknown object pair (edge) is involved in
n − 2 different triangles (with different triangle inequality
constraints) and the algorithm must be adapted to estimate
the pdf of the unknown edge such that it satisfies all the
triangles. In particular, it encounters two scenarios.

Scenario 1: During execution, the algorithmmay encounter
some triangles which have two edges already known and only
the third edge is to be estimated. For such cases, the algo-
rithm will greedily select that unknown edge that completes
the highest number of triangles, once estimated. When an
unknown edge is involved in multiple triangles with two
edges known for each triangle, then the final estimated pdf
must satisfy the triangle inequality property of all the tri-
angles. We first estimate the pdf of the unknown edge con-
sidering each triangle, following which the final pdf is com-
puted by performing the sum-convolution and averaging the
convolved pdf (recall Section 3), such that the triangle in-
equality property is satisfied for all the triangles.

Scenario 2: Another scenario that is likely to occur is when
there only exists triangles with two unknown edges. In such
cases, both of the unknown edges are jointly estimated, by
relying on the known edge.

Solution Considering Scenario 1: As an example, con-
sider Figure 3 and note that based on this greedy selection,
at the very first iteration, it will select (i, k) for estimation,
as that will complete at least one triangle △i,k,l (because,
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the two edges of this triangle are already known and the
third edge is to be estimated), whereas none of the other
unknown edges will complete any triangle. Considering tri-
angle △i,j,k, the algorithm will have to apply the triangle
inequality property to select the possible ranges of values
that (i, j) is allowed to take.

Our method will estimate the pdf of (i, k) as Pr((i, k) =
0.25) = 0.0, Pr((i, k) = 0.75) = 1.0 considering △i,j,k. Af-
ter that, (i, k) should also be estimated considering another
triangle △i,l,k. The final pdf of (i, k) must satisfy the trian-
gle inequality property of both of these triangles.

Algorithm 3 Tri-Exp: heuristic distance estimation algo-
rithm

1: Input: known and unknown distance edges.
2: if There exists triangles with one unknown and two

known edges then
3: Greedily select that unknown edge and estimate it

such that it results in the maximum number of tri-
angles with all known edges

4: else
5: When no such triangle is found, consider a triangle

and estimate two unknown edges jointly
6: end if
7: Perform sum convolution and averaging for all associ-

ated triangles such that triangle inequality is satisfied
8: Repeat steps 2− 7 until all edges are estimated
9: return distance edges

Solution Considering Scenario 2: Consider Figure 3
again and assume that (i, k) is estimated in iteration one.
Even after that, both △i,j,l and △j,k,l have two unknown
edges.

In △j,k,l, where both (k, l) and (j, l) are unknowns and are
to be estimated using the pdf of the known edge (j, k). With-
out further knowledge, we calculate the joint distribution for
(j, l) and (k, l) by assigning uniform probability to each of
these possible values. Once, we get the joint distribution,
we calculate the pdfs for both (j, k) and (j, l) which will be
exactly equal to each other, which is {0.25 : 0.5, 0.75 : 0.5}.
As before, when multiple triangles are involved with an un-
known edge, the pdf of that edge needs to be estimated
considering triangle inequality property of all the involved
triangles.
Tri-Exp outputs the following pdfs for the example in Fig-

ure 3 (i, k) : [0.25 : 0.5, 0.75 : 0.5], (k, l) : [0.25 : 0.61, 0.75 :
0.39], (j, l) : [0.25 : 0.43, 0.75 : 0.57], (i, l) = [0.25 : 0.4, 0.75 :
0.6]
Running Time: Time complexity of Tri-Exp isO(|Du|(n×

1
ρ

2
+ log(|Du|)), where |Du| is the number of unknown pairs,

ρ is the histogram-width, and n is the number of objects. At
worst case, |Du| = O(n2); in such cases, the algorithm takes
cubic time to run. Nevertheless, this analysis shows that
the running time of Tri-Exp is substantially superior than
its exponential counterparts, LS-MaxEnt-CG or MaxEnt-IPS.

5. PROBLEM 3: ASKING THE NEXT BEST

QUESTION
If there is still considerable “uncertainty” in the learned

/ estimated distances and we have an opportunity to solicit
additional feedback, we investigate (in this third problem)
which object pair should we choose to solicit the next feed-

back on. There are several variants of this problem. In the
online variant, we have the liberty of asking one question at
a time and continue the process until all initially unknown
pdfs converges “satisfactorily”, or a budget B expires. The
budget could be used to specify a limit on the number of
questions to be asked, or the maximum number of workers
to be involved. In the offline variant, we need to decide all
questions ahead of time so that the fixed budget expired.
In the hybrid variant, we could solicit workers feedbacks for
several batches of say k questions per iteration. In this pa-
per we mainly focus on the online variant, but also present
a simple extension to solve the offline problem.

Modeling Possible Worker feedback: Recall the defini-
tion of Problem 3 and note that from a given candidate set
of questions Du (where each question is on an object pair),
the problem is to select that question which minimizes the
aggregated variance AggrVar most. The challenge, however,
is to be able to anticipate possible workers responses that
is currently unknown, to be able to guide the optimization
problem. A question Q(i, j) ∈ Du is essentially a random
variable whose distribution has been estimated already by
solving Problem 2. Without any further information, the
framework has the following limited options to make guesses
about future responses of the workers:

(1) The response pdf from the m workers, when aggre-
gated, will be the same as the current estimated pdf of
du(i, j). Under this scenario, the framework does not learn
anything new about d(i, j) and hence AggrVar remains un-
changed. We therefore do not use this option in our algo-
rithm.

(2) The aggregated response of the worker will be iden-
tical to some measures of the current pdf that dictates its
central tendency; for example the mean µ of the current pdf
can used as the anticipated value of the future aggregated
feedback.

In this latter case, the pdf of du(i, j) changes (its variance
becomes 0), and it is also likely to affect the pdfs of other
edges (i.e., the joint distribution changes). More intuitively,
when a pdf is represented by its mean, the other pdfs (edges)
involved with it are likely to demonstrate lower divergence,
hence tighter distribution. As described later, this option is
used in our algorithm for selecting the next best question.

Consider a very simple example with 3 objects (i, j, k)
that satisfy triangle inequality such that (i, j) : Pr(d(i, j) =
0.125) = 1; (i, k) : Pr(d(i, k) = 0.125) = 0.9, P r(d(i, k) =
0.375) = 0.1. To satisfy triangle inequality, the pdf of the
third edge (j, k) must be between [0.0, 0.5]. However, if we
substitute (i, k) with its mean 0.15 (considering it as a can-
didate question), the pdf of (j, k) becomes tighter and only
between [0, 0.275]. It is easy to notice that the latter pdf
of (j, k) will result in a smaller variance in comparison with
the former one.

Algorithm Next-Best-Tri-Exp: The algorithm for com-
puting the next best question runs in iteration and considers
each candidate question Q(i, j) in turn. Then, it considers
the impact of changing the current pdf of the object pair to
its mean (to emulate workers’ feedback). This is done by
re-estimating the pdfs in Du − du(i, j). For that, it uses a
sub-routine to solve Problem 2, described in Section 4 using
any of LS-MaxEnt-CG, MaxEnt-IPS, or Tri-Exp algorithms.
Once the unknown pdfs in {Du − du(i, j)} are re-estimated,
it computes AggrVar using either Equation 1 or 2 and main-
tains the so-far best question by choosing the minimum.
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Once all the candidates are evaluated, the best candidate
is the one that results in the smallest AggrVar. The pseudo-
code is presented in Algorithm 4. Using Example 1, this

Algorithm 4 Next-Best-Tri-Exp: Selecting the next best
question

1: Input: known and estimated distance edges.
2: for du(i, j) ∈ Du do
3: Replace the distribution of du(i, j) by its mean
4: Select du(i, j) = argmax∀du(i,j)∈Du

AggrVar(du(i, j))
as the candidate question

5: end for
6: return du(i, j)

returns (i, l) as the next best question, as that minimizes
the AggrVar based on both formulation of aggregated vari-
ance. Running time: To choose the next best question,

this algorithms has to evaluate each candidate question in
Du. The primary computation time in each candidate ques-
tion is taken to invoke an algorithm to solve Problem 2 as a
subroutine. Therefore, the running time of this algorithm is
asymptotically O(|Du|× running time of the sub-routine).

Extension to the Offline Problem: If we need to decide
how to spend all the budget B ahead of time, we need to
decide all the questions offline, we note that the problem be-
comes computationally more challenging, as there will be an
exponential number of possible choices (

(

|Du|
B

)

, assuming the
budget allows for B questions) and the ordering of the ques-
tions also matters in reducing aggregate variance. However,
a simple extension to our current algorithm can effectively
solve this offline problem, where we run our online solution
B times to select the best B questions greedily. We present
experiments on this regard and show that our proposed so-
lution can be effective in solving the offline problem.

6. EXPERIMENTAL EVALUATION
Our development and test environment uses python 2.7 on

a Linux Ubuntu 14.04 machine, with Intel core i5 2.3 GHz
processor and a 6-GB RAM. All values are calculated as the
average of three runs.

6.1 Datasets Description
We use three real world datasets and one synthetic dataset

for our experiments. (1) Image: The real world dataset is
obtained from the PASCAL database2. A total of 24 images
of 3 different categories are extracted. We generate 3 subsets
of size 10, 5, 5 for which we have solicited all pair distance
information. Each pair is set up as a HIT (human intel-
ligence task) in Amazon Mechanical Turk (AMT) and we
solicit 10 different workers’ feedback on the similarity of the
images. A total of 50 different workers are involved in this
study. (3) SanFrancisco: We choose 72 locations from the
city of San Francisco and crawl traveling distances (both-
ways) among all pair of locations (2556 pairs) using google
api3. The purpose this dataset is to validate the scalabil-
ity of our algorithms. Here, we use the traveling distances
as worker feedback instead of explicitly soliciting the work-
ers’ feedback. (2) Cora: This is a real world publication
dataset of 1838 records, 190 real world entities. We use this

2http://host.robots.ox.ac.uk/pascal/VOC/databases.html
3https://developers.google.com/maps/

dataset to compare our algorithms with Entity Resolution
algorithms in [24]. We choose 3 random instances of this
dataset with 20 records, which constitutes of 190 edges. We
apply our algorithms in these instances and present our re-
sults. (4) Synthetic: We generate a large scale synthetic
dataset for performing efficiency experiments. Here, we vary
from 100 to 400 objects which gives rise from 4950 to 79800
object pairs.Additionally, another small synthetic dataset of
5 objects with 10 edges is generated.

6.2 Implemented Algorithms

(1) Worker Feedback Aggregation: We consider the
following algorithms:
(i) Conv-Inp-Aggr: This is our proposed convolution based

solution to aggregate workers feedback that is described in
Section 3.
(ii) BL-Inp-Aggr: We implement a baseline algorithm that

creates aggregated pdf by calculating the average probability
over each discrete bucket center of the input pdfs. Here we
ignore the ordinal nature of the feedback scale and treat each
bucket as a categorical value.

(2) Estimation of Unknown Edges: We are unaware of
any related works that study distance estimation in proba-
bilistic settings.
(i) Tri-Exp: This algorithm is described in Section 4.2.
(ii) LS-MaxEnt-CG: This algorithm is designed to estimate

the unknown edges considering both over and under con-
strained settings, described in section 4.1.1.
(iii) MaxEnt-IPS: This algorithm, described in section 4.1.2,

refers to the optimal estimation of unknown edges consider-
ing only under-constrained settings.
(iv) BL-Random: We design a baseline algorithm that is

similar to Tri-Exp. It estimates the unknown edges con-
sidering triangles; however, unlike Tri-Exp (which first at-
tempts to consider the edges that complete the highest num-
ber of triangles), BL-Random arbitrarily chooses unknown
edges and estimates them.

(3) Asking the Next Best Question: These algorithms
are designed to demonstrate the effectiveness of the next
best question in reducing AggrVar, as described in Section 5.
As LS-MaxEnt-CG and Maxent-IPS are computationally pro-
hibitive, we implement Tri-Exp and BL-Random as subrou-
tines to decide the next best questions. We divide these
algorithms into two parts - Online and Offline.

Online Algorithms: Here we solicit one question at a time
to the crowd (i) Next-Best-Tri-Exp: This is our proposed
solution in Section 5 that uses Tri-Exp at each iteration
as the subroutine to re-estimate the unknown edges. (ii)
Next-Best-BL-Random: This is again our proposed solution
in Section 5 that uses BL-Random at each iteration as the
subroutine.

Offline Algorithms: Here we solicit a set of questions ahead
of time. (i) Offline-Tri-Exp: This is the offline variant of
Next-Best-Tri-Exp described in Section 5.

(4) Entity Resolution(ER): As discussed in Section 7
on related works, under certain circumstances the problem
of entity resolution, in particular the techniques proposed
in [24], may be considered a special case of the distance
estimation problem considered in this paper. Consequently,
we experiment with the following algorithms:
(i) Next-Best-Tri-Exp-ER: This is a modified vesion of

Next-Best-Tri-Exp algorithm where we find the number of
questions that need to be asked so that Aggr-Var is zero.
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(ii) Rand-ER : We implement the Random algorithm from
[24]. We call this algorithm Rand-ER. This algorithm has
a proven complexity of O(nk), where n denotes the num-
ber of objects and k denotes the number of clusters/similar
entities.

6.3 Experimental Set up

Parameter Settings: Unless otherwise mentioned, we as-
sume ρ = 0.25. In other words, there are 4 equi-width buck-
ets with bucket range [0.0− 0.25), [0.25− 0.5), [0.5− 0.75),
[0.75 − 1.0) with centers at 0.125, 0.375, 0.625 and 0.875.
Depending on the value of p (worker correctness), the dis-
tribution of the known edges are created. For example, if a
worker provides a feedback of 0.8, with p = 60%, that edge
is created by assigning probability of 60% on distance 0.875,
and the remaining 40% probability is uniformly assigned to
the other buckets. In practice, correctness probability can
be obtained by asking a set of screening questions and then
by averaging their accuracy. The weight of λ is set to 0.5
(unless otherwise stated) for Problem 2.

Quality Experiments:(i)Worker Feedback Aggregation: We
use real data for this experiment as this dataset contains
multiple workers feedback. We consider each triangle in iso-
lation where all the edge distances are known. Hence, for
each edge with 10 different feebacks, we know the ground
truth distribution. We use Conv-Inp-Aggr and BL-Inp-Aggr

for aggregating two out of the three edges. Based on our re-
spective algorithm, we estimate the third edge. We then
compute the ℓ2 error of our estimated edge from the ground
truth distribution for the third edge. (ii) Unknown Edge Es-
timation: Since LS-MaxEnt-CG, MaxEnt-IPS are exponential
in the number of object pairs (i.e., S

nC2), we have to limit
our settings to a very small dataset with n = 5 nodes and
10 edges. We use the small Synthetic dataset, as well as a
subset of real world dataset for this experiment. For the
Synthetic dataset, we consider MaxEnt-IPS as the optimal
solution, and compare the effectiveness of the other three
algorithms by calculating the average ℓ2 error over the un-
known edges, compared to the optimal. Out of the 10 edges,
we randomly mark 4 edges as known (and create their dis-
tribution as described before), and estimate the remaining 6
unknown edges. For the Image dataset, all ground truth dis-
tributions are known for the selected 5 objects. Like above,
we mark 4 randomly chosen edges to be known and esti-
mate the remaining 6 edges by considering the 4 different
algorithms. As before, we present the average ℓ2 error - but
this time in comparison with the ground truth. (iii)Asking
the Next Best Question: We use the SanFrancisco dataset
for which we have all pair of ground truth information. At
each step, we replace the step of asking a question to the
crowd by the ground truth information. The default value
of p is 1.0 and the default budget B = 20 questions. Number
of known edges is is set to 90% of the total edges.

Application to ER: We use Cora dataset to perform com-
parison with ER methods. We assume that each edge is
described by a pdf with two ordinal buckets 0 (duplicate)
and 1 (not duplicate). We use number of questions as our
metric which is widely used in ER literature. This value
describes the number of questions to be asked before all the
entities are resolved. We use 3 random smaller instances of
size 20 Cora dataset to evaluate our algorithm.
Scalability Experiments: We use the large scale syn-

thetic dataset for the scalability experiments. We vary the

following 4 parameters: (i) number of objects n. (ii) num-
ber of buckets b′ to approximate the pdfs. (iii) number of
unknown edges |Du|. (iv) worker correctness p.When one of
these aforementioned parameters is varied, the other three
are kept constant. The default values for these 4 parame-
ters are, n = 100, |Du| = 40% of all edges, b′ = 4, p = 0.8.
Please note that we primarily present the scalability results
for Tri-Exp and BL-Random, as LS-MaxEnt-CG and MaxEnt-

IPS takes 1.5 days to converge even when n = 6.
6.4 Results
6.4.1 Summary of Results

Quality Experiments: Our first experiment on aggregat-
ing feedback suggests the superiority of Conv-Inp-Aggr over
BL-Inp-Aggr. For unknown edge estimation, the results in-
dicate that both Tri-Exp and LS-MaxEnt-CG perform better
than the baseline BL-Random. For both of them, we ob-
serve that with higher worker accuracy (correctness) p, the
error increases for all these competing algorithms. While
this may appear counter-intuitive, our post-analysis indi-
cates that this is due to the probabilistic nature of our pro-
posed framework and the algorithms, which are most ef-
fective, when the workers responses are truly probabilistic.
For the third problem, with more questions asked, the Ag-

grVar reduces. In both of these aforementioned scenarios,
Next-Best-Tri-Exp convincingly outperforms Next-Best-

BL-Random.

Application to ER: Our result demonstrates that Rand-ER
outperforms Next-Best-Tri-Exp-ER. This is expected since
our method is designed to solve a more general problem
than ER methods - the ER method assumes no worker un-
certainty (i.e., workers are always 100% accurate), and it
is dependent on the notion of transitive closure, which is a
very special case of triangle inequality.

Scalability Experiments: We show that Tri-Exp per-
forms reasonably well with the increasing number of objects,
buckets, known edges, or worker correctness. The computa-
tion time of BL-Random is similar to that of Tri-Exp, while
Tri-Exp is qualitatively superior. Therefore, we only present
the results of Tri-Exp in these experiments. The algorithms
that rely on computing joint distribution LS-MaxEnt-CG,
MaxEnt-IPS do not converge beyond a very small number of
objects (n = 5) even in days.
6.4.2 Quality Experiments

(i) Worker feedback aggregation: Figure 4(a) shows that
Conv-Inp-Aggr consistently outperforms the baseline.

(ii) Estimating Unknown Edges: We present the results for
estimating unknown edges in Figure 4(b) and 4(c). For
the synthetic data, LS-MaxEnt-CG is superior to the other
two methods, while Tri-Exp outperforms BL-Random. The
pattern remains the same for the real data as both LS-

MaxEnt-CG and MaxEnt-IPS exhibit superiority over BL-

Random. Tri-Exp peforms reasonably well for real data. The
fact that LS-MaxEnt-CG is the best performing algorithm for
the real data demonstrates that, in reality, workers may in-
deed provide inconsistent feedback that do not obey triangle
inequality, hence our proposed optimization model is appro-
priate to capture that settings.

(iii)Asking the Next Best Question: We first compare our
online algorithms Next-Best-Tri-Exp and Next-Best-BL-

Random.
(a) Varying p: We vary p and present AggrVar considering

maximum variance. Figure 6(a) presents the results for this
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Figure 5: Experiments for validating Offline algorithms
and Entity Resolution

experiment. While the maximum variance for Next-Best-

BL-Random and Next-Best-Tri-Exp decreases with increas-
ing worker accuracy, latter performs better than the former.
For average variance, we encounter the same pattern. Hence,
we omit the results for brevity.

(b) Varying B: Our goal here is to test how AggrVar re-
duces with the increasing number of questions (budget B).
Figure 6(b) and Figure 6(c) present the outcome of these
experiments. It is interesting to observe that with a fairly
small number of questions, the AggrVar reduces drastically
and the system reaches a stable state.

(c) Online vs Offline Experiment: Figure 5(a) presents
the result. As expected, Next-Best-Tri-Exp performs bet-
ter than the Offline-Tri-Exp, but with very small margin.
This result proves that Offline-Tri-Exp is very suitable for
traditional crowdsourcing framework as online algorithms
have high latency.

iv) Entity Resolution: Figure 5(b) shows the results for En-
tity Resolution. Although Next-Best-Tri-Exp-ER performs
a little worse than Rand-ER, we argue that our method is not
optimized for finding duplicate entities. Please notice that
our method can be applied to find duplicate entities while
it is not possible vice versa.

6.4.3 Scalability Experiments

(i) Worker feedback aggregation: We observe that the time
to aggregate workers feedback is akin to the triangle com-
putation time of Tri-Exp. For brevity, we omit the details.
(ii)Unknown Edge Estimation: We observe that both heuris-
tic algorithms are equally efficient. Hence, we just present
the results of Tri-Exp. (a) Varying n: Figure 7(a) presents
these results and indicates that Tri-Exp converges in a rea-
sonable time, even for higher values of n.
(b) Varying b′: Figure 7(b) presents these results and indi-
cates that Tri-Exp scales well with increasing b′.
(c) Varying |Dk|: Figure 7(c) presents these results and
shows that Tri-Exp is scalable with increasing number of
unknown edges and takes lesser time, as |Dk| increases.
(d) Varying p: Figure 7(d) indicates that the running time
of Tri-Exp is not affected by p.

(iii)Asking the Next Best Question: The running time of

Next-Best-Tri-Exp and Next-Best-BL-Random are similar
and dominated by the size of |Du|. These results are similar
to that of Figure 7(c) and omitted for brevity.

7. RELATED WORK

User Input Aggregation: Aggregation of opinions is stud-
ied in several prior works in AI [12, 8, 4]. An opinion is
described as a pdf over a set of categorical values. Since,
their methods do not consider the notion of distance, they
do not offer an easy extension to our problem. Aggrega-
tion of binary feedback(Yes/No) in crowdsourcing is studied
in [7, 14]. Their proposed models estimate both worker
accuracy and the true answer considering a bipartite graph
of workers and tasks. They do not extend beyond binary
feedback while we assume a numeric feedback model. [20]
study how to find the ranking of a tuple, where tuple scores
are given by probability distributions. While this problem
is fundamentally different from our first problem, their pro-
posed approach nevertheless justifies our proposed way of
convolving multiple pdfs for aggregation.

Distance Estimation: Distance estimation using crowd-
sourcing has gained a significant interest recently for solv-
ing a variety of computational problems that require dis-
tance estimation, such as top-k, clustering, entity resolution
(ER), etc [28, 26, 22]. In most of these works, the de-
pendency on distances is only indirect, as these works are
based on asking users to resolve Boolean similarity or rank-
ing questions, e.g., whether two objects are similar or not, or
whether one object should be ranked higher than the other.
In contrast, our work is the first to directly solicit, from
the crowd, the broader notion of numeric distances between
objects. In [28], the authors propose a crowdsourced clus-
tering method by leveraging matrix completion techniques,
where human workers are involved to annotate objects in a
deterministic settings. Entity resolution using crowdsourc-
ing have been studied in [25, 26, 24]. The closest related
work is that of [24]. The main differences between this work
and ours are: (a) the are only concerned with the Boolean
notion of objects equivalency, whereas we try to learn nu-
meric distances between objects, (b) they assume that the
crowd can make no mistake, which is unrealistic for distance
computations, and (c) they leverage the notion of transitive
closure, which is a much simpler notion compared to that of
triangle inequality. Therefore their main focus has been on
determining the optimal set of questions to ask the crowd,
whereas our focus has been on even more basic issues such
as how to aggregate uncertain user feedbacks and update
the probabilistic distribution models of the distances.
Asking Next Best Question: Our third problem for-

mulation borrows motivation from [16, 26, 6]. [16] describes
the problem of finding the maximum item from paiwise com-
parisons, [26] tackles entity resolution, and [6] studies top-k
queries in uncertain database. They all designed algorithms
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Figure 7: Scalability Experiments: 4 different parameters are varied. Our default settings is n = 100, p = 0.8, |Du| = 50%, b′ = 4.

for finding the next best question which maximize the ex-
pected accuracy for their respective problems. Both [16] and
[26] prove that finding next best question is NP-Complete.
In [6], authors construct a Tree of Possible Ordering(TPO)
in order to find the next best question. Although we em-
ploy the similar settings, our unique problem formulation
requires us to design novel solutions.

8. CONCLUSION
We present a probabilistic distance estimation framework

in crowdsourcing platforms that has wide applicability in
different domains. One of the novel contributions of the
work is to consider worker feedback with probabilistic inter-
pretation and describe the overall framework with three key
components.The effectiveness of our proposed solutions are
validated empirically using both real and synthetic data.
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ABSTRACT
We study the potential flow of information in interaction
networks, that is, networks in which the interactions be-
tween the nodes are being recorded. The central notion in
our study is that of an information channel. An informa-
tion channel is a sequence of interactions between nodes
forming a path in the network which respects the time or-
der. As such, an information channel represents a poten-
tial way information could have flown in the interaction
network. We propose algorithms to estimate information
channels of limited time span from every node to other
nodes in the network. We present one exact and one more
efficient approximate algorithm. Both algorithms are one-
pass algorithms. The approximation algorithm is based
on an adaptation of the HyperLogLog sketch, which al-
lows easily combining the sketches of individual nodes in
order to get estimates of how many unique nodes can be
reached from groups of nodes as well. We show how the
results of our algorithm can be used to build efficient influ-
ence oracles for solving the Influence maximization prob-
lem which deals with finding top k seed nodes such that
the information spread from these nodes is maximized.
Experiments show that the use of information channels is
an interesting data-driven and model-independent way to
find top k influential nodes in interaction networks.

Keywords
Influence Maximization, Influence estimation, Informa-
tion flow mining

1. INTRODUCTION
In this paper, we study information propagation by

identifying potential “information channels” based on in-
teractions in a dynamic network. Studying the propa-
gation of information through a network is a fundamen-
tal and well-studied problem. Most of the works in this
area, however, studied the information propagation prob-
lem in static networks or graphs only. Nevertheless, with
the recent advancement in data storage and processing,
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Figure 1: (a) An example Interaction graph. (b)
The interaction in reverse order of time.

it is becoming increasingly interesting to store and ana-
lyze not only the connections in a network but the com-
plete set of interactions as well. In many networks not
only the connections between the nodes in the network
are important, but also and foremost, how the connected
nodes interact with each other. Examples of such net-
works include email networks, in which not only the fact
that two users are connected because they once exchanged
emails is important, but also how often and with whom
they interact. Another example is that of social networks
where people become friends once, but may interact many
times afterward, intensify their interactions over time, or
completely stop interacting. The static network of inter-
actions does not take these differences into account, even
though these interactions are very informative for how in-
formation spreads. To illustrate the importance of taking
the interactions into account, Kempe et al. [12] showed
how the temporal aspects of networks affect the properties
of the graph.

Figure 1a gives an example of a toy interaction network.
As can be seen, an interaction network is abstracted as a
sequence of timestamped edges. A central notion in our
study is that of an information channel ; that is, a path
consisting of edges that are increasing in time. For in-
stance, in Figure 1a, there is an information channel from
a to e, but not from a to f . This notion of an informa-
tion channel is not new, and was already studied under
the name time-respecting path [12] and is a special case of
temporal paths [26].In contrast to earlier work on informa-
tion channels we additionally impose a constraint on the
total duration of the information channel, thus reflecting
the fact that in influence propagation the relevance of the
message being propagated may deteriorate over time. To
the best of our knowledge, our paper is the first one to
study the notion of temporal paths with time constraints
in influence propagation on interaction networks.
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We propose a method to identify the most influential
nodes in the network based on how many other nodes they
could potentially reach through an information channel of
limited timespan. As such, the information channels form
an implicit propagation model learned from data. Most
of the related work in the area of information propaga-
tion in interaction or dynamic networks uses probabilis-
tic models like the independent cascade(IC) model or the
Linear Threshold(LT) model, and tries to learn the influ-
ence probabilities that are assumed to be given by these
models [13, 4, 3, 6]. Another set of recent work focuses
on deriving the hidden diffusion network by studying the
cascade information of actions [10, 11] or cascade of in-
fection times [8, 24]. These paper, however, use a very
different model of interactions. For example, the work by
Goyal et al. [10, 11], every time an activity of a node a
is repeated within a certain time span by a node b that
is connected to a in the social graph, this is recorded as
an interaction. Each user can execute each activity only
once, and the strength of influence of one user over the
other is expressed as the number of different activities
that are repeated. While this model is very natural for
certain social network settings, we believe that our model
is much more natural for networks in which messages are
exchanged, such as for instance email networks because
activities such as sending an email can be executed repeat-
edly and already include the interaction in itself. Further-
more, [11] is not based on information channels, but on
the notion of credit-distribution, and [10] does not include
the time-respecting constraint for paths.

One of the key differentiators of the techniques intro-
duced here and earlier work is that next to an exact algo-
rithm, we also propose an efficient one-pass algorithm for
building an approximate influence oracle that can be used
to identify top-k maximal influencers. Our algorithm is
based on the same notion as shown in so-called sliding
window HyperLogLog sketch [15] leading to an efficient,
yet approximate solution. Experiments on various inter-
action networks with our algorithm show the accuracy
and scalability of our approximate algorithm, as well as
how it outperforms algorithms that only take into account
the static graph formed by the connected nodes.

The contribution of this paper are as follows.

• Based on the notion of an Information Channel, we
introduce the Influence Reachability Set of a node
in a interaction network.

• We propose an exact but memory inefficient algo-
rithm which calculates the Influence Reachability
Set of every node in the network in one pass over
the list of interactions.

• Next to the exact algorithm, an approximate sketch-
based extension is made using a versioned Hyper-
LogLog sketch.

• With the influence reachability sets of the nodes
in our interaction network, we identify top-k influ-
encers in a model-independent way.

• We propose a new Time Constrained Information
Cascade Model for interaction networks derived from
the Independent Cascade Model for static networks.

• We present the results of extensive experiments on
six real world interaction network datasets and demon-
strate the effectiveness of the time window based in-
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Figure 2: Interaction network example with mul-
tiple information channels between node c and f

fluence spread maximization over static graph based
influence maximization.

2. PRELIMINARIES
Let V be a set of nodes. An interaction between nodes

from V is defined as a triplet (u, v, t), where u, v ∈ V ,
and t is a natural number representing a time stamp. The
interaction (u, v, t) indicates that node u interacted with
node v at time t. Interactions are directed and could
denote, for instance, the sending of a message. For a
directed edge u → v, u is the source node and v is the
destination node. An interaction network G(V, E) is a set
of nodes V , together with a set E of interactions. We
assume that every interaction has a different time stamp.
We will use n = |V | to denote the number of nodes in
the interaction network, and m = |E| to denote the total
number of interactions.

Time Constrained Information Cascade Model: For
interaction networks, influence models such as the Inde-
pendent Cascade Model or Linear Threshold Model no
longer suffice as they do not take the temporal aspect
into account and are meant for static networks. To ad-
dress this shortcoming, we introduce a new model of Infor-
mation Cascade for Interaction networks. The Time Con-
strained Information Cascade Model (TCIC) is a variation
of the famous Independent Cascade Model. This model
forms the basis of our comparison with other baselines
SKIM [6], PageRank and High Degree. We say a node is
infected if it is influenced. For a given set of seed nodes
we start by infecting the seed nodes at their first inter-
action in the network and then start to spread influence
to their neighbors with a fixed probability. The influence
spread is constrained by the time window(ω) specified;
i.e, once a seed node is infected at time stamp t it can
spread the infection to another node via a temporal path
only if the interaction on that path happens between time
t and t + ω. For sake of simplicity we use a fixed infec-
tion probability in our algorithms to simulate the spread
nevertheless node specific probabilities or random proba-
bilities could easily be used as well. In Algorithm 1 we
present the algorithm for the TCIC model.

In order to Find highly influential nodes under the TCIC
model we introduce the notion of Information Channel.

Definition 1. (Information Channel) Information Chan-
nel ic between nodes u and v in an interaction network
G(V, E), is defined as a series of time increasing inter-
actions from E satisfying the following conditions: ic =
(u, n1, t1), (n1, n2, t2), ...(nk, v, tk) where t1 < t2 < .. <
tk. The duration of the information channel ic is dur(ic) :=
tk − t1 + 1 and the end time of the information channel
ic is end(ic) := tk. We denote the set of all information
channels between u and v as IC(u, v), and the set of all
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Algorithm 1 Simulation with a given seed set and win-
dow

Input: G(V,E) the interaction graph given as a time-
ordered list `G of (u, v, t), ω, and S the seed set. p is
the probability of infection spread on interaction.
Output: Number of nodes influenced by the seed.
Initially all nodes are inactive and for all activateTime
is set to -1.
for all (u, v, t) ∈ `G do

if u ∈ S then
u.isActive=true
u.activateTime=t

end if
if u.isActive & (t− u.activateT ime) ≤ ω then

With probability p
v.isActive=true
if u.activateTime > v.activateTime then

v.activateTime=u.activateTime
end if

end if
end for
Return: Count of nodes for which isActive is true.

information channels of duration ω or less as ICω(u, v).

Notice that there can exist multiple information channels
between two nodes u and v. For example, in Fig 2 there
are 2 information channels from a to f . The intuition
of the information channel notion is that node u could
only have sent information to node v if there exists a
time respecting series of interactions connecting these two
nodes. Therefore, nodes that can reach many other nodes
through information channels are more likely to influence
other nodes than nodes that have information channels to
only few nodes. This notion is captured by the influence
reachability set.

Definition 2. (Influence reachability set) The Influence
reachability set (IRS) σ(u) of a node u in a network
G(V, E) is defined as the set of all the nodes to which u
has an information channel:

σ(u) := {v ∈ V | IC(u, v) 6= ∅} .

Similarly, the influence set for a given maximal duration
ω is defined as

σω(u) = {v ∈ V | ∃ic ∈ IC(u, v) : dur(ic) ≤ ω} .

The IRS of a node may change depending on the maximal
duration ω. For example, in Figure 2 σ3(a) = {b, c, d} and
σ5(a) = {b, c, d, f}. This is quite intuitive because as the
maximal duration increases, longer paths become valid,
hence increasing the size of the influence reachability set.
Once we have the IRS for all nodes in a interaction net-
work for a given window we can efficiently answer many
interesting queries, such as finding top k influential nodes.
Formally, the algorithms we will show in the next section
solve the following problem:

Definition 3. (IRS-based Oracle Problem) Given an in-
teraction network G(V, E), and a duration threshold ω,
construct a data structure that allows to efficiently an-
swer the following type of queries: given a set of nodes
V ′ ⊆ V , what is the cardinality of the combined influence
reachability sets of the nodes in V ′; that is:

∣∣⋃
v∈V ′ σω(v)

∣∣.

First we will present an exact but memory inefficient so-
lution that will maintain the sets σω(v) for all nodes v.
Clearly this data structure will allow to get the exact car-
dinality of the exact influence reachability sets, by tak-
ing the unions of the individual influence reachability sets
and discarding duplicate elements. The approximate al-
gorithm on it’s turn will maintain a much more memory
efficient sketch of the sets σω(v) that allows to take unions
and estimate cardinalities.

3. SOLUTION FRAMEWORK
In this section, we present an algorithm to compute

the IRS for all nodes in an interaction network in one
pass over all interactions. In the following all definitions
assume that an interaction network G(V, E) and a thresh-
old ω have been given. We furthermore assume that the
edges are ordered by time stamp, and will iterate over the
interactions in reverse order of time stamp. As such, our
algorithm is a one-pass algorithm, as it treats every in-
teraction exactly once and, as we will see, the time spent
per processed interaction is very low. It is not a streaming
algorithm because it can not process interactions as they
arrive. The reverse processing order of the edges is essen-
tial in our algorithm, because of the following observation.

Lemma 1. Let G(V, E) be an interaction network, and
let (u, v, t) be an interaction with a time stamp before
any time stamp in E ; i.e., for all interactions (u′, v′, t′) ∈
E , t′ > t. G′(V, E ∪ {(u, v, t)}) denotes the interaction
network that is obtained by adding interaction (u, v, t) to
G. Then, for all w ∈ V \ {u}, IRSω(w) is equal in G and
G′.

Proof. Suppose that IRSω(w) changes by adding (u, v, t)
to E . This means that there must exist an information
channel ic from w to another node in G′ that did not
yet exist in G. This information channel hence necessar-
ily contains the interaction (u, v, t). As t was the earliest
time in the interaction network G′, (u, v, t) has to be the
first interaction in this information channel. Therefore w
must be u and thus w 6∈ V \ {u}.

This straightforward observation logically leads to the
strategy of reversely scanning the list of interactions. Ev-
ery time a new interaction (u, v, t) is added, only the IRS
of the source node u needs to be updated. Notice that
there is no symmetric definition for the forward scan of a
list of interactions; if a new interaction arrives with a time
stamp later than any other time stamp in the interaction
network, potentially the IRS of every node in the network
changes, leading to an unpredictable and potentially un-
acceptable update time per interaction.

In order to exploit the observation of Lemma 1, we keep
a summary of the interactions processed so far.

Definition 4. (IRS Summary) For each pair u, v ∈ V ,
such that ICω(u, v) 6= ∅, λ(u, v) is defined as the end time
of the earliest information channel of length ω or less from
u to v. That is:

λ(u, v) := min({end(ic) | ic ∈ ICω(u, v)})

The IRS summary ϕω(u) is now defined as follows:

ϕω(u) = {(v, λ(u, v)) | v ∈ IRSω(u)} .

That is, we will be keeping for every node u the list
of all other nodes that are reachable by an information
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channel of duration at most ω. Furthermore, for ev-
ery such reachable node v, we keep the earliest time it
can be reached from u by an information channel. The
IRS of a node u can easily be computed from ϕω(u) as
σω(u) = {v | ∃t : (v, t) ∈ ϕ(u)}. On the other hand, the
information stored in the summary consisting of ϕ(u) for
every u is sufficient to efficiently update it whenever we
process the next edge in the reverse order as we shall see.

Example 1. In Figure 2, ϕ3(a) = {(b, 1), (d, 2), (c, 4)}
and ϕ3(c) = {(f, 5), (e, 3)}. There are 2 information chan-
nels between c and f , one with dur(ic) = 1 and end(ic) =
8 and another with dur(ic) = 3 and end(ic) = 5 and
hence λ(c, f) = 5.

3.1 The Exact algorithm
We illustrate our algorithm using the running example

in Figure 1a. Table 1b shows all the interactions for the
graph reverse ordered by time stamp. Recall that we pro-
cess the edges in time decreasing order. The algorithm
is detailed in Algorithm 2. First, we initialize all ϕ(u) to
the empty set. Then, whenever we process an interaction
(u, v, t), we know from Lemma 1 that only the summary
ϕ(u) may change. The following lemma explains how the
summary ϕ(u) changes:

Lemma 2. Let G(V, E) be an interaction network, and
let (u, v, t) be an interaction with a time stamp before
any time stamp in E ; i.e., for all interactions (u′, v′, t′) ∈
E , t′ > t. G′(V, E ∪ {(u, v, t)}) denotes the interaction
network that is obtained by adding the interaction (u, v, t)
to G. Let ϕ′(u) denote the summary of u in G′ and ϕ(u)
that in G. Then, ϕ′(u) =↓ ({(v, t)} ∪ ϕ(u) ∪ {(z, t′) ∈
ϕ(v) | t′ − t+ 1 ≤ ω}), where ↓ (A) denotes A \ {(v, t) ∈
A | ∃(v, t′) ∈ A : t′ < t}.

Proof. Let ic be an information channel of duration
maximally ω from u to z in G′ that minimizes end(ic).
Then there are three options: (1) ic is the information
channel from u to v formed by the single interaction (u, v, t)
that was added. The end time of this information chan-
nel is t. (2) ic was already present in G, and hence
(z, end(ic)) ∈ ϕ(u), or (3) ic is a new information channel.
Using similar arguments as in the proof of Lemma 1, we
can show that ic needs to start with the new interaction
and that the remainder of ic forms an information channel
ic′ from v to z in G with end(ic′) = end(ic). In that case
(z, end(ic)) ∈ ϕ(v). Given the constraint on duration we
furthermore need to have end(ic) − t + 1 ≤ ω. Hence,
ϕ′(u) needs to be a subset of {(v, t)} ∪ ϕ(u) ∪ {(z, t′) ∈
ϕ(v) | t′ − t + 1 ≤ ω}, and we can obtain ϕ′(u) by only
keeping those pairs that are not dominated.

Example 2. Figure 1a represents a small interaction net-
work and Table 1b shows the edges in order of time. For
ω = 3 the Influence Summary Set will update as follows:

a b c d e f

ϕ {} {} {} {} {} {}
(b,c,8)−→ a b c d e f

ϕ {} (c,8) {} {} {} {}
(e,c,7)−→ a b c d e f

ϕ {} (c, 8) {} {} (c,7) {}
(b,e,6)−→ a b c d e f

ϕ {} (c,7)(e,6) {} {} (c, 7) {}

(a,b,5)−→

a b c d e f

ϕ
(b,5)
(c,7)
(e,6)

(c,7)
(e,6)

{} {} (c, 7) {}

(e,b,4)−→

a b c d e f

ϕ
(b,5)
(c,7)
(e,6)

(c,7)
(e,6)

{} {} (c,7)
(b,4)

{}

(d,e,3)−→

a b c d e f

ϕ
(b,5)
(c,7)
(e,6)

(c,7)
(e,6)

{} (e,3)
(b,4)

(c,7)
(b,4)

{}

(e,f,2)−→

a b c d e f

ϕ
(b,5)
(c,7)
(e,6)

(c,7)
(e,6)

{} (e,3)
(b,4)

(c,7)
(b,4)
(f ,2)

{}

(a,d,1)−→

a b c d e f

ϕ

(b,5)
(c,7)
(e,3)
(d,1)

(c,7)
(e,6)

{} (e,3)
(b,4)

(c,7)
(b,4)
(f,2)

{}

While processing the edge (b, e, 6), first we add (e, 6) in
the summary of d and then add (c, 7) from the summary of
e in summary of b. As the summary of b already had (c, 8),
the value will be updated. Next, during the processing of
edge (a, b, 5) the summary of a is updated first by adding
(b, 5) then while merging the summary of b in a we will
ignore (e, 8) because the duration of the channel is 4 and
the permitted window length is 3. The only addition is
hence (c, 7).

Theorem 1. Algorithm 2 updates the IRS summary
correctly.

Proof. This proof follows by induction. For the empty
list of transactions, the algorithm produced the empty
summary. This is our base case. Then, for every in-
teraction that is added in the for loop, it follows from
Lemma 1 and Lemma 2 that the summaries are correctly
updated to form the summary of the interaction graph
with one more (earlier) interaction. After all interactions
have been processed, the summary is hence that of the
complete interaction graph.

Lemma 3. Algorithm 2 runs in time O(mn) and space
O(n2), where n = |V | and m = |E|.

Proof. Each edge in E is processed exactly once and
for each edge, both Add and Merge are called once. We
assume that the summary sets ϕ(u) are implemented with
hash tables such that looking up the element (v, t) for a
given v takes constant time only. Under this assumption,
the Add function has constant complexity. The Merge
function calls Add for every item in ϕ(v) at least once.
The number of items in ϕ(v) is upper bounded by n and
hence the time complexity of one merge operation is at
most O(n). This leads to the upper bound O(mn) in
total.

For the space complexity, note that in the worst case
for each node there is an information channel to every
other node of duration at most ω. In that case, the size
of the individual summary ϕ(v) of every node v is O(n)
which leads to a space complexity of O(n2) in total.

As we can see from Lemma 3 the memory requirements
for the exact algorithm is in worst case quadratic in the
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Algorithm 2 Influence set with Exact algorithm

Input: Interaction graph G(V, E). `G is the list of inter-
actions reversely ordered by time stamp
Threshold ω (maximum allowed duration of an influ-
ence channel)

Output: ϕ(u) for all u ∈ V

function Add(ϕ(u),(v, t))

if ∃t
′

: (v, t
′
) ∈ ϕ(u) then

. There is at most one such entry

if t < t
′

then
ϕ(u) = (ϕ(u) \ (v, t

′
)) ∪ (v, t)

end if
else

ϕ(u) = ϕ(u) ∪ {(v, t)}
end if

end function

function Merge(ϕ(u),ϕ(v),t,ω)
for all (x, tx) ∈ ϕ(v) do

if tx − t < ω then Add(ϕ(u),(x, tx))
end if

end for
end function

Initialize: ϕ(u)← ∅ ∀u ∈ V
for all (u, v, t) ∈ `G do

Add(ϕ(u),(v, t))
Merge(ϕ(u),ϕ(v),t,ω)

end for

number of nodes of the graph. This will not scale well
for large graphs as we want to keep this data structure in
memory for efficient querying. Hence in the next section
we will present an approximate but more memory and
time efficient version of the algorithm.

3.2 Approximate Algorithm
Algorithm presented in the previous section computes

the IRS exactly, albeit at the cost of high space com-
plexity and update time. In this section, we describe an
approximate algorithm which is much more efficient in
terms of memory requirements and update time. The
approximate algorithm is based on an adaptation of the
HyperLogLog sketch [9].

3.2.1 HyperLogLog Sketch
A HyperLogLog (HLL) sketch [9] is a probabilistic data

structure for approximately counting the number of dis-
tinct items in a stream. Any exact solution for counting
the number of distinct items in a stream would require
O(N) space with N the cardinality of the set. The HLL
sketch, however, approximates this cardinality with no
more than O(log(log(N))) bits. The HLL sketch is an
array with β = 2k cells (c1, . . . , cβ), where k is a constant
that controls the accuracy of the approximation. Initially
all cells are 0. Every time an item x in the stream ar-
rives, the HLL sketch is updated as follows: the item x is
hashed deterministically to a positive number h(x). The
first k bits of this number determines the 0-based index of
the cell in the HLL sketch that will be updated. We de-
note this number ι(x). For the remaining bits in h(x), the
position of the least significant bit that is 1 is computed.
This number is denoted ρ(x). If ρ(x) is larger than cι(x),
cι(x) will be overwritten with ρ(x).

For example, suppose that we use a HLL sketch with
β = 22 = 4 cells. Initially the sketch is empty:

0 0 0 0

Suppose now item a arrives with h(a) = 1110100110010110b.
The first 2 bits are used to determine ι(a) = 11β = 3. The
rightmost 1 in the binary representation of h(a) is in posi-
tion 2, and hence c3 becomes 2. Suppose that next items
arrive in the stream with (cι(x), ρ(x)) equal to: (c1, 3),
(c0, 7), (c2, 2), and (c1, 2), then the content of the sketch
becomes:

7 3 2 2

It is clear that duplicate items will not change the sum-
mary. Furthermore, for a random element x, P (ρ(x) ≥
`) = 2−`. Hence, if d different items have been hashed
into cell cι, then P (cι ≥ `) = 1 − (1 − 2−`)d. This prob-
ability depends on d, and all ci are independent. Based
on a clever exploitation of these observations, Flajolet et
al. [9] showed how the number of distinct items in a stream
can be approximated from the HLL sketch. Last but not
least, two HLL sketches can easily be combined into a sin-
gle sketch by taking for each index the maximum of the
values in that index of both sketches.

3.2.2 Versioned HLL Sketch
The HLL sketch is an excellent tool for our purpose; ev-

ery time an edge (a, b) needs to be processed (recall that
we process the edges in reverse chronological order), all
nodes reachable by an information channel from b, are also
reachable by an information channel from a. Therefore,
if we keep the list of reachable nodes as a HLL sketch,
we can update the reachable nodes from a by unioning
in the HLL sketch of the reachable nodes from b into the
HLL sketch of those reachable from a. One aspect, how-
ever, that is not taken into account here is that we only
consider information channels of length ω. Hence, only
those nodes reachable from b by an information channel
that ends within time window ω should be considered.
Therefore, we developed a so-called versioned HLL sketch
vHLL. The vHLL maintains for each cell ci of the HLL
a list Li of ρ(x)-values together with a timestamp and is
updated as follows: let tcurrent be the current time; peri-
odically entries (r, t) with t−tcurrent+1 > ω are removed
from vHLL. Whenever an item x arrives, ρ(x) and ι(x)
are computed, and the pair (ρ(x), tcurrent) is added to the
list Lι(x). Furthermore, all pairs (r, t) such that r ≤ ρ(x)
are removed from Lι(x). The rationale behind the update
procedure is as follows: at any point in time tcurrent we
need to be able to estimate the number of elements x that
arrived within the time interval [tcurrent, tcurrent+ω−1].
Therefore it is essential to know the maximal ρ(x) of all x
that arrived within this interval. We keep those pairs (r, t)
in Lι such that r may, at some point, become the maxi-
mal value as we shift the window further back in time. It
is easy to see that any pair (r, t) such that r ≤ ρ(x) for a
newly arrived x at tcurrent will always be dominated by
(ρ(x), tcurrent). On the other hand, if ρ(x) < r we still do
have to store (ρ(x), tcurrent) as (r, t) will leave the window
before (ρ(x), tcurrent) will.

Example 3. Suppose that the elements e, d, c, a, b, a have
to be added to the vHLL. Recall that we process the
stream in reverse order, hence the updates are processed
in the following order: (a, t6), (b, t5), (a, t4), (c, t3), (d, t2),
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(e, t1). Let ι and ρ be as follows for the elements in V :

item a b c d e
ι 1 3 3 2 2
ρ 3 1 2 2 1

The subsequent vHLL sketches are respectively the fol-
lowing:

{} {} {} {}
(a,t6)−→ {} (3, t6) {} {}
(b,t5)−→ {} (3, t6) {} (1, t5)
(a,t4)−→ {} (3, t4) {} (1, t5)
(c,t3)−→ {} (3, t4) {} (2, t3)
(d,t2)−→ {} (3, t4) (2, t2) (2, t3)
(e,t1)−→ {} (3, t4) (2, t2), (1, t1) (2, t3)

Notice that also two vHLL sketches can be easily com-
bined by merging them. For each cell ι, we take the union
of the respective lists Lι and L′ι and remove all pairs (r, t)
in the result that are dominated by a pair (r′, t′) that
came from the other list with t′ < t and r′ ≥ r. If the
lists are stored in order of time, this merge operation can
be executed in time linear in the length of the lists.

Example 4. Consider the following two vHLL sketches:

{} (3, t4) (1, t1), (2, t2) (2, t3)

{(5, t1)} (3, t2) (4, t3) (1, t4)

The result of merging them is:

{(5, t1)} (3, t2) (1, t1), (2, t2), (4, t3) (2, t3)

Note that adding versioning to the HLL sketch comes
at a price.

Lemma 4. The expected space for storing a vHLL sketch
for a window length ω is O(β(log(ω)2)).

Proof. The size of each pair (r, t) stored in a list Lι is
dominated by t and takes space O(log(ω)). In worst case,
all elements in the window xcurrent, . . . , xcurrent+ω−1 are
different and all arrive into the same cell cι. In that case,
the expected number of pairs in Lι is E[X1 +X2 + . . .+
Xω−1] where Xi denotes the following statistical vari-
able: Xi equals 1 if (ρ(xi), tcurrent+i−1) is in Lι and
0 otherwise. This means that Xi = 1 if and only if
ρ(xi) > max{ρ(x1), . . . , ρ(xi−1))}. As each ρ(xj), j ≤ i
has the same chance to be the largest, P (Xi = 1) ≤ 1

i
.

Hence we get:

E[|Lι|] ≤ E[X1 + . . .+Xω−1] ≤
ω∑
i=1

1

i
= O(log(ω)) .

3.2.3 vHLL-Based Algorithm
The approximate algorithm is very similar to the ex-

act algorithm 2; instead of using exact sets we use the
more compact versioned HyperLogLog sketch. Add and
Merge are the only functions which need to be updated
as per the new sketch everything else will remain the
same as shown in algorithm 2. We will just present the
ApproxAdd and ApproxMerge functions in Algorithm 3.

Lemma 5. The expected time complexity for Algorithm 3
is O(mβ(log(ω))2), where n = |V | and m = |E|.

Algorithm 3 Approximate Algorithm for IRS

function ApproxAdd(ϕ(u),(ρ(v), t),ι(v))

if ∃(ρ, t
′
) ∈ Lι : (ρ, t

′
) dominates (ρ(v), t) then

Ignore (ρ(v), t)
else

if ∃(ρ, t
′
) ∈ Lι : (ρ(v), t) dominates (ρ, t

′
) then

remove (ρ, t
′
) from Lι

end if
Append (ρ(v), t) in Lι

end if
end function
function ApproxMerge(ϕ(u),ϕ(v),t,ω)

while i < β do
for all (x, tx) ∈ Li do . Iterate over ϕ(v)

if tx − t < ω then
ApproxAdd(ϕ(u),(x, tx), i)

end if
end for
i+ +

end while
end function

Proof. In the ApproxMerge function the while loop
will run for β iterations and the inner for loop will run for
an expected of log(ω) items(from Lemma 4). Hence time
complexity would be O(β log(ω)O(ApproxAdd)).

Now in the ApproxAdd function there are at-most
log(ω) comparisons, hence O(ApproxAdd) = O(log(ω)).
For each edge ApproxAdd and ApproxMerge are called
only once. Hence O(mβ(log(ω))2) is the expected time
complexity.

Lemma 6. The expected space complexity for the Al-
gorithm 3 is O(nβ(log(ω))2), where n = |V | and m = |E|.

Proof. From Lemma 4 the expected size of one vHLL
sketch is O(β(log(ω))2). There will be only one vHLL
sketch for each node, hence, expected space complexity is
O(nβ(log(ω))2).

4. APPLICATIONS

4.1 Influence Oracle:
Given the Influence Reachability Set of an interaction

network computing the influence spread of a given seed
set, S ⊆ V is straightforward. The influence spread for
seed set S is computed as:

Inf (S) =
⋃
u∈S

σ(u) (1)

HyperLogLog sketch union requires taking the maximum
at each bucket index ι which is very efficient, so the the
time complexity would be O(|S|`).

4.2 Influence Maximization:
Influence Maximization deals with the problem of find-

ing top k seed nodes which will maximize the influence
spread. After the pre processing stage of computing IRS
we can use a greedy approach to find the top-k seed nodes
by using the Influence oracle. First we show the complex-
ity of the top-k most influential nodes problem is NP-
hard and then show that the Influence oracle function is
monotone and submodular. Hence we can use a greedy
approximation approach.
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Lemma 7. Influence maximization under the Influence
Reachability Set model is NP-hard.

Proof. Given the Influence Reachability Set for all the
nodes the problem of finding a subset of k nodes such that
the union is maximum is a problem which is similar to the
problem of maximum coverage problem. As the later is
a NP-hard problem we deduce that the given problem is
NP-hard.

Lemma 8. The influence function σ(S) is submodular
and monotone.

Proof. First we will prove that Inf (S) is a submodu-
lar function. Let S and T be two sets of seed nodes such
that S ⊂ T . Let x be another node not in T . Now,
let the marginal gain of adding x in S, i.e., Inf(S +
x) − Inf(S) = P . P is the set of those nodes for which
there is no path from S and hence these should belong
to Inf(x). Let the marginal gain of adding x in T ,i.e.,
Inf(T+x)−Inf(T ) = P ′. It is clear that P ′ ⊆ P , as oth-
erwise there will be a node u for which there is a path from
S but not from T and this is not possible given S ⊂ T .
Hence Inf(S + x)− Inf(S) ≥ Inf(T + x)− Inf(T ).

It is obvious to see the that Inf is monotone as it is
a increasing function, adding a new node in the seed set
will never decrease the influence, and hence if S ⊂ T then
Inf (S) ≤ Inf (T )

Greedy Approach for Influence Maximization:
Algorithm 4 outlines the details for the greedy approach.

We start by first sorting the nodes based on the size of the
Influence Reachability Set. The node with maximum IRS
set size becomes the most influential node and is taken as
the first node in seed set. Next at each stage we iterate
through the sorted list and check the gain by using in-
fluence oracle of the already selected nodes and the new
node. The node which results in maximum gain is added
into the seed set.

Algorithm 4 Influence Maximization using IRS

Input: The Influence set σu∀u ∈ V and the number of
seed nodes to find is k
initialize selected← ∅ ∧ covered← ∅
Sort u ∈ V descending with respect to |σu|. Save this
sorted list as `
while selected < k do

gain = 0 ; us = ∅
for all u ∈ ` do

if |covered ∪ σu| − |covered| > gain then
gain = |covered ∪ σu| − |covered|
us = {u}

end if
if gain > σu then

break;
end if

end for
selected← selected ∪ us; covered← covered ∪ σus

end while

5. RELATED WORK
The problem of Influence Maximization and Influence

spread prediction is a well know problem. Broadly, the
work in this area can be categorized into two main cate-
gories. The first category is based on static graphs [7, 23,

13, 6] where the underlying graph is already given and
the probability of a node getting influenced is derived
from probabilistic simulations. The second category is
data driven, where the underlying influence graph is de-
rived based on a relationship such as friendship between
two users or common action within a specified time [24,
8, 11, 10]. The static graph approaches do not capture
the dynamics of real networks such as social media and
hence the data driven approaches are more suitable.

Static graph.
The Influence Maximization problem in social network

was first studied by Richardson et al. [7, 23] where they
formalized the problem with a probabilistic model. Later
Kempe et al. [13] proposed a solution using discrete op-
timization. They proved that the Influence Maximiza-
tion problem is NP-hard and provided a greedy algo-
rithm to select seed sets using maximum marginal gain.
As the model is based on Monte Carlo simulations, it is
not scalable for large graphs. Later improvements were
proposed by Chen et al. [4] using the DegreeDiscoun-
tand prefix excluding maximum influence in-arborescence
(PMIA) [3] algorithms. Both algorithms are heuristic-
based. Leskovec et al. proposed the Cost-Effective Lazy
Forward (CELF) [17] mechanism to reduce the number
of simulations required to select seeds. All of the above-
mentioned studies focus on static graph and do not take
the temporal nature of the interactions between different
nodes into consideration. The latest work on the static
graph Influence Maximization problem by Cohen et al. [6]
is the fastest we have come across which scales to very
large graphs. We compare our seed sets and their in-
fluence spread with the seeds selected by their algorithm
SKIM. Related work on information flow mining on static
graph may be found in [14, 17, 19, 22, 21]. Lie et al.
in [20] and Chen et al. in [2] independently proposed
the first time constrained Influence Maximization solu-
tions for static graph. Their work considers the concept
of time delay in information flow. They assign this delay
at individual node level based on different probabilistic
models and not the information channels or pathways be-
tween the nodes.

Data Driven approach.
There are a few recent work which consider the tempo-

ral aspect of the graph and are based on real interaction
data. Goyal et al. [11] proposed the first data based ap-
proach to find influential users in a social network by con-
sidering the temporal aspect in the cascade of common
actions performed by users, instead of using just static
simulation of the friendship network. However, their work
does not consider the time constraint in the information
flow. In [10] they do use a time window based approach
to determine true leaders in the network. However, the
time window they consider is for direct influence only,
i.e., once a user performs an action how many of his/her
friends repeat that action in that time window. They
have some additional assumptions like information prop-
agation is non-cyclic and if one user performs an action
more then once, they use only the time stamp of the first
action. Our approach does not make such assumptions
and identifies influential nodes without any constraints
on the number of times a user performs an action or that
the propagation graph needs to be a DAG. The time con-
straints we impose are on the path of information flow
from the start of the action. Also, our proposed solu-
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Table 1: Comparison of related work on different parameters
Gomez-
Rodriguez
[24]

Cohen
[6]

Du,N
[8]

Tang
[25]

Goyal
[11,
10]

Kempe
[13]

Lei
[20]

IRS

Static Graph(S), Data or Cascade (C),
Interaction Network (I)

C S C S C S S I

Considers information channel or path-
ways?

Yes No Yes No Yes No No Yes

Time window constrained Yes No Yes No Yes No No Yes
Approx sketching or sampling Yes Yes Yes Yes No No Yes Yes
One Pass algorithm No Yes No No Yes No Yes Yes

tion just needs a single pass over the propagation graph
whereas Goyal’s work do a single pass over the action log
but multiple passes on the social network to find the child
nodes. Our sketch based approximation further improves
the time and space complexity.

There are a few more recent works on data driven ap-
proach by Gomez-Rodriguez et al. [24] and Du et al. [8].
These works try to derive the underlying hidden influence
network and the influence diffusion probabilities along ev-
ery edge from a given cascade of infection times for each
node in the network. Du et al. [8] proposed a scalable
algorithm called ConTinEst, which finds most influential
nodes from the derived influence network. ConTinEst
uses an adaption of a randomized neighborhood estima-
tion algorithm [5] to find the most influential node in the
network. But getting the cascade data of infection times
for every network is not always possible. For example in
an email or a messaging network, we may have access only
to interactions between the users and not to the actual in-
dividual infection time. To the best of our knowledge our
work is the first to try to predict and maximize influence
in a network in which only the interaction data is avail-
able and no other action cascade or relationship between
users is provided.

In Table 1 we give a brief comparison matrix of our IRS
approach with some of the other works in Influence Max-
imization. We compare against the type of input each
approach considers; i.e, a static graph (S), action cascade
or infection time based event cascades (C) or interaction
network based (I). We also compare if in the modeling
of the information propagation in the approach considers
information pathways or channels to do influence max-
imization and if the pathways have time window based
constrains. For performance comparison, we see if they
do use some sampling or sketching techniques to improve
performance and if the algorithm is a one pass algorithm.

6. EXPERIMENTAL EVALUATION
In this section, we address the following questions:
Accuracy of Approximation. How accurate is the

approximation algorithm for the Oracle problem? In other
words, how well can we estimate the size of the IRS set
based on the versionned HLL sketch?

Efficiency. How efficient is the approximate algorithm
in terms of processing time per activity, and how does
the window length ω impact the efficiency? How long
does it take to evaluate an Oracle query based on the IRS
summary?

Effectiveness. How effective is the identification of in-
fluential nodes using IRS to maximize the influence spread
under the Time-Constrained Information Cascade Model?
To this end, we compare our algorithm to a number of

competitors:

• SKIM is the only algorithm which scale to large
datasets in few minutes time. We ran SKIM us-
ing the same parameters Cohen et al. [6] use in their
paper for all the experiments. SKIM is from the cat-
egory of algorithms which considers a static graph
and takes input in the form of a DIAMICS format
graph. Hence we convert the interaction network
data into the required static graph format by re-
moving repeated interactions and the time stamp of
every interaction.

• ConTinEst(CTE) [8] is the latest data driven al-
gorithm which works on static networks where the
edge weights corresponds to the associated trans-
mission times. The edge weight is obtained from a
transmission function which in turn is derived from
an cascade of infection time of every node. As we
assume that only the interaction between different
nodes of a network is being observed and no other in-
formation such as the Infection time cascade is avail-
able, we transform the interactions into a static net-
work with edge weights as required by ConTinEst.
The first time a node u appears as the source of
an interaction we assign the infection time ui for
the source node as the interaction time. Then each
interaction (u, v, t) is transformed into an weighted
edge (u, v) with the edge weight as the difference of
the interaction time and the time when the source
gets infected, i.e, t − ui. We ran the same code as
published by the authors with the default settings
on the transformed data.

• The popular baselines PageRank(PR) and High De-
gree(HD)[13]. Here we select the k nodes with re-
spectively the highest PageRank and out-degree. No-
tice that for PageRank we reversed the direction of
the interaction edges, as PageRank measures incom-
ing “importance” whereas we need outgoing “influ-
ence.” By reversing the edges this aspect is cap-
tured. To make a fair comparison with our algo-
rithm that takes into account the overlap of the in-
fluence of the selected top-influencers, we developed
a version of HD that takes into account overlap.
That is, we select a set of nodes that together have
maximal outdegree. In our experiments we call this
method the Smart High Degree approach (SHD).
Notice that SHD is actually a special case of our
IRS algorithm, where we set ω = 0.

We also ran some performance experiments comparing
the competitors to our IRS algorithm. In the interpre-
tation of these results, however, we need to take into ac-
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Table 2: Characteristics of interaction network
along with the time span of the interactions as
number of days.

Dataset |V|[.103] |E|[.103] Days
Enron 87.3 1,148.1 8,767
Lkml 27.4 1,048.6 2,923
Facebook 46.9 877.0 1,592
Higgs 304.7 526.2 7
Slashdot 51.1 140.8 978
US-2016 4,468 44,638 16

count that the static methods require the graph to be pre-
processed and takes as input the flattened non-temporal
graph, which is in some cases significantly smaller as it
does not take repetitions of activities into account.

6.1 Datasets and Setup
We ran our experiments on real-world datasets obtained

from the SNAP repository [18] and the koblenx network
collection [16]. We tested with social (Slashdot, Higgs,
Facebook) and email (Enron, Lkml) networks. As the real
world interaction networks available from previous works
were not large enough to test the scalability of our al-
gorithm, we created another dataset by tracking tweets
related to the US Election 2016. We follow the same
technique used to create the Higgs data set of the SNAP
repository. Statistics of these data sets are reported in
Table 2. These datasets are available online, sorted by
time of interaction. We kept the datasets in this order, as
our algorithm assumes that the interactions are ordered
by time. This assumption is reasonable in real scenarios
because the interactions will always arrive in increasing
order of time and it is hence plausible that they are stored
as such. The overall time span of the interactions varies
from few days to many years in the data sets. There-
fore, in our experiments we express the window length
as a percentage of the total time span of the interaction
network.

The performance results presented in this section are
for the C++ implementation of our algorithm. All ex-
periments were run on a simple desktop machine with
an Intel Core i5-4590 CPU @3.33GHz CPU and 16 GB
of RAM, running the Windows 10 operating system. For
the larger dataset US-2016 the memory required was more
than 16 GB. hence, we ran the experiments for the US-

2016 dataset on a Linux system with 64 GB of RAM.

6.2 Accuracy of the Approximation
In order to test the accuracy of the approximate algo-

rithm, we compared the algorithm with the exact version.
We compute the average relative error in the estimation
of the IRS size for all the nodes, in function of the num-
ber of buckets (β = 2k). Running the exact algorithm
is infeasible for the large datasets due to the memory re-
quirements, and hence, we test only on the Slashdot and
Higgs datasets to measure accuracy. We tested accuracy
at different window lengths. The results are reported in
Table 3. As expected from previous studies, the accuracy
increases with β. There is a decrease in accuracy with
increasing window length because as the window length
increases, the number of nodes with larger IRS increases
as well, resulting in a higher average error. β values be-
yond 512 yield only modest further improvement in the

Table 3: Average relative error in the estimation
of the IRS size for all the nodes as a function of b
for different window length.

Dataset β
window %

1 10 20

Higgs

16 0.075 0.116 0.113
32 0.044 0.081 0.053
64 0.026 0.056 0.046
128 0.008 0.015 0.017
256 0.005 0.008 0.009
512 0.002 0.006 0.007

Slashdot

16 0.048 0.055 0.105
32 0.023 0.044 0.042
64 0.013 0.022 0.33
128 0.011 0.04 0.05
256 0.01 0.026 0.025
512 0.005 0.019 0.02

Table 4: Memory used in MB to process all the
interactions at different window length ω

Datasets ω = 1 ω = 10 ω = 20

Slashdot 194.9 385.4 431.5
Higgs 1008.6 1138.3 1229.8
Enron 416.3 426 426.3
Facebook 247.4 470 496.2
Lkml 228.5 282.5 295.2
US-2016 50,449 56,829 59,104

accuracy. Therefore, we used β = 512 as default for all of
the next experiments.

6.3 Runtime and Memory usage of the Ap-
proximation Algorithm

We study the runtime of the approximation algorithm
on all the datasets for different window lengths ω. The
runtime increases with the increasing window length, as
expected given that the number of nodes in the IRS in-
creases, resulting in more elements in the vHLL to be
merged. We study the processing time in function of the
time window ω. Here we vary ω from 1% to 100%. The
results are reported in Figure 3. It is interesting to see
in Figure 3 that the processing time becomes almost con-
stant as soon as the window length reaches 10%. This
is because the IRS does not change much once the time
window is large enough. This behavior indicates that at
higher window lengths the analysis of the interaction net-
work becomes similar to that of the underlying static net-
work. As the algorithm is one pass it scales linearly with
the input size. For the largest data set US-2016 with
approx 45 million interactions the algorithm was able to
parse all the interactions in just 8 min.

As shown in Table 4, we observe that the space con-
sumption is essentially dependent on the number of nodes
and not on the number of interactions on the network. For
example, on Enron dataset the total space requirement is
just 295 MB for ω = 20%, whereas for Higgs the mem-
ory requirement is 1229 MB, as the number of nodes for
this data set is 4 times that of Enron. It is natural to see
a slight increase in the space requirement with window
length ω as the lists in the vHLL sketches become larger.

6.4 Influence Oracle Query Efficiency
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Figure 4: Influence spread prediction query time
in milliseconds for window length, ω = 20% as a
function of the seed set size.

Now, we present the query time for the Influence Oracle
using IRS. After the pre-processing step of computing the
IRS for all nodes, querying the data structure is very
efficient. We pick seed nodes randomly and query the data
structure to calculate their combined influence spread. In
Figure 4 we report the average query time for randomly
selected seeds. We observe that, irrespective of the graph
size the query time is mostly the same for all graphs. This
is because the complexity of the versionned HyperLogLog
union is independent of the set size. As expected, query
time increases with the number of seed nodes. Even for
numbers of seed nodes as large as 10, 000, the query time
is just few milliseconds.

6.5 Influence Maximization
Our next goal is to study how the Influence Reachability

Set could be used to solve the problem of Influence Max-
imization. First we do an effectiveness analysis and then
an efficiency comparison with the baseline approaches.

Effectiveness analysis:
We compare the influence spread by running the Time

Constrained Information Cascade Model with infection
probabilities of 50% and 100%. We compare our sketch
based algorithm with the latest sketch based probabilis-
tic approach SKIM [6] and ConTinEst(CTE) [8]. As Both
SKIM and ConTinEst require a specific input format of
the underlying static graph we ran a pre-processing phase
to generate the required graph data from the interac-
tion network. We ran both SKIM and ConTinEst using
the code published by the respective authors. We also

Table 5: Common seeds between different win-
dow length for top 10 seeds

Datasets 1% - 10% 1% - 20% 10% - 20%

Slashdot 0 0 7
Higgs 3 1 3
Enron 0 0 6
Facebook 4 4 9
Lkml 1 0 5
US-2016 6 6 10

compare with other popular baselines PageRank(PR) and
High Degree(HD)[13] by selecting top k nodes with high-
est page rank and highest out degree. We used 0.15 as
the restart probability and a difference of 10−4 in the L1
norm between two successive iterations as the stopping
criterion. We also introduced a variation of High Degree
called Smart High Degree(SHD) in which instead of select-
ing top k nodes with highest degree we select nodes using
a greedy approach to maximize the distinct neighbors.

The results of our comparison are reported in Figure 5.
We observe that in all the datasets the influence spread
by simulation through the seed nodes selected by our
IRS exact algorithm is consistently better than that of
other baselines. The IRS approx approach results in lesser
spread but still it is best for Lkml dataset and is close
to other baselines in other datasets. In other datasets
like Enron or Facebook the nodes with highest degree are
the same node for which the longer temporal paths ex-
ists hence the spread is similar. SKIM and ConTinEst
both perform worst at smaller windows but with higher
window lengths their performance increases; this is be-
cause for higher window lengths there is less pruning of
the information channels resulting in a very small change
in the Influence reachability set size. Hence, the behav-
ior is the same as the analysis of the static graph and
the time window does not have much effect on the Influ-
ence Reachability Set. The Smart High Degree approach
out-performs High Degree in all of the cases. For smaller
values of k the spread is very similar because of common
seeds, for example 4 out of 5 seeds are common in Slash-

dot as nodes with highest page Rank is the also the node
with highest degree and highest IRS set size at ω = 1%.
But as k increases IRS performs much better.

Efficiency analysis:
Next, we compared the time required to find the top

50 seeds. The results are reported in Table 6. For IRS
we report time taken by the more efficient IRS approx
approach. The IRS approach takes more time for Enron

and Lkml as compare to other baselines because the IRS
approach depends on the number of interactions. While
IRS is slower than Page Rank and Smart High Degree for
smaller datasets it scales linearly with the size and takes
8 times less time for the US-2016 dataset with millions
of nodes and interactions. For SKIM the time required
to find top k seeds is quite low. However, it requires
preprocessed data in the DIMACS graph format [1] and
the pre-processing step takes up to 10 hours for the US-

2016 dataset. ConTinEst does not scale so well for large
graphs and is the slowest in all dataseta. For the US-

2016 dataset the memory requirements were so high that
it could not even finish the processing. IRS provides a
promising tradeoff between efficiency and effectiveness,
especially for smaller window lengths when the tempo-
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Figure 5: Comparing the spread of the influence of top k seeds using Simulation Algorithm for different
seed size at different window length ω at Infection probability 50%(a-f) and 100%(g-l) respectively.

Table 6: Time in seconds to find top 50 seeds by
IRS(approx) and all other baseline approach.

Datasets IRS SKIM PR HD SHD CTE

Slashdot 1.1 1.2 21.9 0.9 2.1 694
Higgs 2.2 4.3 29.8 0.7 1.5 3,802
Enron 93.7 2.2 49.4 0.4 8.1 1,349
Facebook 10.3 1.1 35.6 0.5 2.9 790
Lkml 117.9 1.7 29.8 0.5 22.9 733
US-2016 498 23.6 4,261 47.4 3,338.4 -

ral nature of the graph has a higher role in determining
the influential nodes.

Effect of window on top k seeds:

To see the effect of the time window on the most in-
fluential nodes we study the common seeds between dif-
ferent window lengths. We observed that the top k seeds
change drastically as we change the window length, espe-
cially when the window length is small. But for window
lengths greater than 10% the top k seeds do not change
much. For US-2016 the top 10 seeds are exactly the same
for the 10% and 20% window. In Table 5 we have re-
ported the common seeds among different top 10 seeds
at different window lengths. There are no common seeds
between the top 10 seeds found for window lengths of 1%
and 10% for Slashdot and Enron and only 3− 4 common
seeds for Higgs, Facebook and Lkml. This shows that for
different window lengths there are different nodes which
become most influential and hence it is necessary to con-
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sider window length while doing Influence maximization.

7. CONCLUSION
We studied the problem of information propagation in

an interaction network—a graph with a sequence of time
stamped interactions. We presented a new time con-
strained influence channel based approach for Influence
Maximization and Information Spread Prediction. We
presented an exact algorithm, which is memory inefficient,
but it set the stage for our main technique, an approxi-
mate algorithm based on a modified version of Hyper-
LogLog sketches, which requires logarithmic memory per
network node, and has fast update time. One interesting
property of our sketch is that the query time of the Influ-
ence Oracle is almost independent of the network size. We
showed that the time taken to do influence maximization
by a greedy approach on our sketch is very time efficient.
We also showed the effect of the time window on the in-
fluence spread. We conclude that smaller window lengths
have very high impact on the Information propagation
and hence it is important to consider the spread window
to do Influence maximization.
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[9] Flajolet, P., Fusy, É., Gandouet, O., Meunier, F.:
Hyperloglog: the analysis of a near-optimal
cardinality estimation algorithm. DMTCS
Proceedings (2008)

[10] Goyal, A., Bonchi, F., Lakshmanan, L.V.:
Discovering leaders from community actions. In:
Proceedings of the 17th ACM conference on
Information and knowledge management. pp.
499–508. ACM (2008)

[11] Goyal, A., Bonchi, F., Lakshmanan, L.V.: A
data-based approach to social influence
maximization. Proceedings of the VLDB
Endowment 5(1), 73–84 (2012)

[12] Kempe, D., Kleinberg, J., Kumar, A.: Connectivity
and inference problems for temporal networks. In:
Proceedings of the thirty-second annual ACM
symposium on Theory of computing. pp. 504–513.
ACM (2000)

[13] Kempe, D., Kleinberg, J., Tardos, É.: Maximizing
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ABSTRACT
While traditional algorithms for multiway join are based on re-
ordering binary joins, more recent approaches have instantiated a
new breed of “worst-case-optimal” in-memory algorithms wherein
all relations are scanned simultaneously. Veldhuizen’s Leapfrog
Trie Join (LFTJ) is an example. An important advantage of LFTJ is
its small memory footprint, due to the fact that intermediate results
are full tuples that can be dumped immediately. However, since the
algorithm does not store intermediate results, recurring joins must
be reconstructed from the source relations, resulting in excessive
memory traffic. In this paper, we address this problem by incorpo-
rating caches into LFTJ. We do so by adopting recent developments
in join optimization, tying variable ordering to a tree decomposi-
tion of the query. While the traditional usage of tree decomposition
computes the entire result for each bag, our proposed approach in-
corporates caching directly into LFTJ and can dynamically adjust
the size of the cache. Consequently, our solution balances between
memory usage and repeated computation. Our experimental study
over the SNAP dataset compares between various (traditional and
novel) caching policies, and shows significant speedups over state-
of-the-art algorithms on both join evaluation and join counting.

CCS Concepts
•Information systems → Join algorithms; Query optimization;
Main memory engines;

Keywords
Databases, trie joins, tree decomposition, caching

1. INTRODUCTION
Traditional optimization of multiway joins has been based on de-

composing the query into smaller join queries, and combining in-
termediate relations. This approach has roots in Selinger’s pairwise-
join enumeration [26], and it includes the application of the algo-
rithm of Yannakakis [30] over a tree decomposition of the query [13,
14]. Recent approaches have developed a new breed of in-memory
algorithms wherein all relations are scanned simultaneously [1, 10,

c©2017, Copyright is with the authors. Published in Proc. 20th Inter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

15,16,21,28,29], featuring the complexity guarantee of worst-case
optimality. This yardstick of efficiency has been introduced by Ngo
et al. [21], and it states that for every join query, no algorithm can
be asymptotically faster on the space of all databases; in that work
they presented the first worst-case optimal algorithm, later termed
NPRR [21]. Effectively, the running time is bounded by the AGM
bound [5] that determines the maximal number of tuples in the mul-
tiway join of relations with given sizes.

Leapfrog Trie Join (LFTJ) [29] is another worst-case-optimal al-
gorithm, introduced by LogicBlox and implemented in the com-
pany’s product [3]. It operates in a manner of variable elimination
where there is a linear order over the variables, and query results
are generated one by one by incrementally assigning values to each
variable in order. Trie-structured indices over the relations allow
to efficiently determine whether the next variable in consideration
can be assigned a value that is consistent with the assignments to
the previous variables. (We give a detailed description of LFTJ in
Section 2). Beyond being worst-case optimal, LFTJ has two impor-
tant features. First, it avoids the potential generation of intermedi-
ate results that may be substantially larger than the final output size
(which is a key property in guaranteeing worst-case optimality).
Second, LFTJ is very well suited for in-memory join evaluation,
since besides the trie indices it has a close to zero memory con-
sumption. Of course, memory is required for buffering the tuples
in the final result, but these are never read and can be safely dumped
to higher storage upon need. Moreover, these tuples are not even
needed in the case of common aggregate queries (e.g., count the
number of tuples in the result).

Yet, intermediate results have the advantage that their tuples can
be reused, and this is especially substantial in the presence of a sig-
nificant skew. In our experiments, we have found that LFTJ often
loses its advantage to the built-in caching of intermediate results of
the traditional approaches, and in particular, LFTJ is often required
to apply many repetitions of computations. The repeated traversals
back and fourth on the trie index generate excessive memory traffic,
which has detrimental impact on the performance of database sys-
tems [2]. For example, our analysis of the memory load induced by
LFTJ found that running a single count 5-cycle query on the SNAP
ca-GrQc dataset generates over 45 ·109 memory accesses, whereas
running the same query using tree decomposition and Yannakakis’s
join generates less than 16 · 109 accesses. (The implementation of
both algorithms is discussed in Section 5.)

Our goal in this work is to accelerate LFTJ by incorporating
caching in a way that (a) allows for computation reuse, and (b)
does not compromise its key advantages. In particular, our goal
is to incorporate caching in LFTJ so that it can utilize whatever
memory it has at its disposal towards memoization. However, it is
not clear how LFTJ can cache intermediate results (without com-
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puting and storing full results of subqueries as done in other algo-
rithms [1, 28]). Intuitively, the challenge lies in the fact that every
iteration involves a different partial assignment, and variables are
interdependent through the query structure. Our solution is inspired
by recent developments in the theory of join optimization, relating
to worst-case optimality and tree decomposition [15, 16, 28]. But
unlike existing work, we do not apply the join algorithm on each
bag independently (which would result in high memory consump-
tion due to intermediate results), but rather execute LFTJ as origi-
nally designed.

Specifically, to enable effective caching our approach applies the
following steps. We first build a Tree Decomposition (TD) for the
query, in a manner that we discuss later on. Intuitively, a TD trans-
forms the query into a tree structure by grouping together several
relations, where each group is called a bag. We then execute LFTJ
as usual, but throughout the execution we use caches (deploying
a caching/eviction policy) for partial assignments. More formally,
each bag of the TD is assigned a cache, and the application of the
cache happens when the iteration over the variables enters a new
bag. The correctness of the cache usage (i.e., the fact that the inter-
mediate assignments are consistent with the current assignment in
construction) is crucially based on two properties.

1. The variable ordering is required to be compatibile with the
TD. Intuitively, compatibility means that the variable order is
consistent with the preorder of the TD. (The formal definition
is in Section 2.)

2. Each cache applies to partial assignments only for the vari-
ables it contains (for evaluation) or the subtree underneath
(for counting).

For TD computation, there is a plethora of algorithms with differ-
ent quality guarantees. The classical graph-theoretic measure refers
to the maximal size of a bag, and a generalization to hypergraphs
is based on the notion of a hypertree width. The optimal values of
those (i.e., realizing the tree width and the hypertree width, respec-
tively) are both NP-hard problems [4, 13], and efficient algorithms
exist for special cases and different approximation guarantees [8].
Other notions include decompositions that approximate the mini-
mal fractional hypertree width [15,19]. In our case, a TD defines a
caching scheme, and various factors determine the effectiveness of
this scheme. Caches are more reusable in the presence of skewed
data, and hence, data statistics can be used to estimate the good-
ness of a TD. Importantly, our caches correspond to the adhesions
(parent-child intersections); in order to better capture opportunities
of a high skew (and a high hit rate), we give precedence to keys
from a domain of a smaller dimension, and hence, we favor smaller
adhesions. Due to these arguments, we chose not to use any specific
algorithm that generates a single tree decomposition, but rather to
explore a large space of such decompositions. We devise a heuris-
tic algorithm for enumerating TDs, tailored primarily towards small
adhesions. Once such a collection of TDs are generated, we deploy
a cost function that takes various factors into account, including the
skew-based cost model of Chu et al. [10].

We experiment on three types of queries: paths, cycles and ran-
dom. In par with recent studies on join algorithms, we base our ex-
periments on datasets from the SNAP [18] and IMDB workloads.
We explore several attributes of our cached LFTJ, such as the cache
size and the eviction policy. We also experiment with the count ver-
sion of the queries. Our experiments compare among LFTJ, with
and without caching, and Yannakakis’s algorithm over the TD (as
in DunceCap [24,28]), as well as other various systems and engines
(LogicBlox [3], PostgreSQL [27] and EmptyHeaded [1]). The re-
sults show consistent improvement compared to LFTJ (in orders
of magnitude on large queries), as well as general improvement

Figure 1: Mass-count disparity plots for value accesses on the
evaluation of a 5-path (left) and a 5-cycle (right) over the SNAP
ca-GrQc dataset; the double-headed arrows indicate that 80%
of the accesses are applied to just 20% (left) and 5% (right) of
the nodes

compared to the examined algorithms and systems. The only al-
ternative that outperforms our implementation on a large portion
of the count queries is EmptyHeaded, as it implements a parallel
implementation using the Single Instruction Multiple Data (SIMD)
parallelization model (while our implementation applies standard
sequential computation). We defer hardware utilization of this sort
to future research.

While retaining the inherent features of LFTJ, our caching dra-
matically reduces the memory accesses. For illustration, running
a 5-cycle count query generates only 1.4 · 109 memory accesses,
which is over 30× fewer accesses than vanilla LFTJ (and over 10×
fewer accesses than TD with Yannakakis’s algorithm). Figure 1
provides some intuition on why we are able to establish such a
dramatic improvement with a modest memory usage. The figure
depicts mass-count disparity plots [11] for value accesses on the
evaluation of a 5-path (left) and a 5-cycle (right) over the SNAP ca-
GrQc dataset, which has a graph structure. The x-axis corresponds
to the number of accesses. A tick at number n refers to the nodes
that are accessed at most n times by our algorithm (node popular-
ity); the dashed curve shows the fraction of such nodes among all
nodes, and the solid curve shows the fraction of accesses to such
nodes among all accesses. On the left plot we can see, for example,
that 80% of the accesses are directed to around 20% of the most
popular nodes (as indicated by the double-headed arrow), and on
the right one we can see that 80% of the accesses are applied to 5%
of the most popular nodes!

To summarize, our contributions are as follows. First, we extend
LFTJ with caching, without compromising the key benefits. Our
caching is executed alongside LFTJ, and its size can be determined
dynamically according to memory availability. This is achieved
by combining LFTJ with a TD, a suitable variable ordering, and a
suitable set of target variables for each cache. Second, we devise
a heuristic approach to enumerating tree decompositions of a CQ;
this approach favors small adhesions, and is based on enumerat-
ing graph separating sets by increasing size. Third, we present a
thorough experimental study that evaluates the effect of caching on
LFTJ, on both evaluation and counting, and compares the results to
state-of-the-art join algorithms.

2. BACKGROUND
In this section we give preliminary definitions and notation that

we use throughout the paper.

2.1 Conjunctive Queries
We study the problem of evaluating a Conjunctive Query (CQ),

and the problem of counting the number of tuples in the result of
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a CQ. As in recent work on worst-case optimal joins [21, 22, 29],
we focus here on full CQs, which are CQs without projection. For-
mally, a full CQ is a sequence ϕ1, . . . , ϕm where each ϕi is a sub-
goal of the formR(τ1, . . . , τk) withR being a k-ary relation name
and each τj being either a constant or a variable. In the remainder
of this paper, we say simply “CQ” instead of “full CQ.” We denote
by vars(ϕj) the set of variables that occur in ϕj , and we denote by
vars(q) the union of the sets vars(ϕj) over all atoms ϕj in q (i.e.,
the set of all variables appearing in q).

Let q be a CQ. A partial assignment for q is function µ that maps
every variable in vars(q) to either a constant value or null (denoted
⊥). If µ is a partial assignment for q, then we denote by q[µ] the CQ
that is obtained from q by replacing every variable x with µ(x), if
µ(x) 6= ⊥, and leaving x intact if µ(x) = ⊥. If X is a subset of
vars(q), then we denote by µ|X the restriction of µ to X; that is,
µ|X is defined only over X , and µ|X(x) = µ(x) for all x ∈ X .

For a CQ q, a partial assignment that maps every variable to a
(nonnull) constant is called a complete assignment. Let D be a
database over the same relation names as q. Evaluating q over D is
the task of producing the set q(D), which consists of all complete
assignments µ such that all the ground subgoals of q[µ] are facts
(tuples) of D; such an assignment is also called an answer (for q
over D). Counting q over D is the task of computing the number
of answers, that is, |q(D)|.

The Gaifman graph of a CQ q is the undirected graph that has
vars(q) as its node set and an edge between every two variables that
co-occur in a subgoal of q.

EXAMPLE 2.1. Our running example uses the following CQ q
over a single binary relation R.

R(x1, x2), R(x2, x3), R(x2, x4), R(x3, x4), R(x3, x5), R(x4, x6)

Observe that q does not have constant terms. This CQ is illustrated
in the graph of Figure 2(a); in this case the graph is also the Gaif-
man graph of q (since q is binary). The graph is also the Gaifman
graph of the following CQ:

R(x1, x2), S(x2, x3, x4), R(x3, x4), R(x3, x5), R(x4, x6)

Let µ be the partial assignment that maps x1 and x2 to the constants
1 and 2, respectively, and the other variables to ⊥. Then q[µ] is

R(1, 2), R(2, x3), R(2, x4), R(x3, x4), R(x3, x5), R(x4, x6) .

Our example database D, depicted in Figure 2(b), consists of a
single relation. It can verified that q(D) contains the following
assignments µ1 and µ2:
• µ1: x1 7→ 1, x2 7→ 2, x3 7→ 1, x4 7→ 2, x5 7→ 3, x6 7→ 1
• µ2: x1 7→ 1, x2 7→ 2, x3 7→ 2, x4 7→ 1, x5 7→ 1, x6 7→ 3

If we remove from µ1 and µ2 the assignments for x1 and x2, then
we get answers in q[µ](D) for the above defined µ.

2.2 Ordered Tree Decompositions
Let q = ϕ1, . . . , ϕm be a CQ. A Tree Decomposition (TD) of q

is a pair 〈t, χ〉 where t is a tree and χ is a function that maps every
node of t to a subset χ(v) of vars(q), called a bag, such that both
of the following hold.
• For each ϕj there is a node v of t with vars(ϕj) ⊆ χ(v).
• For each x in vars(q), the nodes v with x ∈ χ(v) induce a

connected subtree of t.
An ordered TD of a CQ q is pair 〈t, χ〉 defined similarly to a TD,

except that t is a rooted and ordered tree. We denote the root of
t by root(t). Let v be a node of t. We denote by t|v the subtree
of t that is rooted at v and contains all of the descendants of v. If

x1

x5 x6

x4x3

x2

(a)

R
1 2
1 3
2 1
2 2
3 1

(b)

x2x1

x2

x4x3

x6x4x5x3

x4x2

v

x3

(c)

Figure 2: (a) Example of a CQ q; (b) A databaseD with a single
relation; (c) An ordered tree decomposition of q

v is a non-root node, then the parent adhesion of v (or simply the
adhesion of v) is the set χ(p) ∩ χ(v) where p is the parent of v,
and is denoted by adhesion(v). Every set adhesion(u), where u
is a non-root node of t, is called an adhesion of 〈t, χ〉.

EXAMPLE 2.2. We continue with our running example. Fig-
ure 2(c) depicts an ordered tree decomposition 〈t, χ〉 of the query q
of Figure 2(a). The tree t has four nodes, and the order is top down,
left to right. The root is the top node with the bag {x1, x2}. To
verify that it is indeed a tree decomposition of q, the reader needs
to check that every edge in Figure 2(a) is contained in some bag of
〈t, χ〉. The adhesions of 〈t, χ〉 are shown in the gray boxes. Let v
be the node of t with χ(v) = {x2, x3, x4}. The parent adhesion of
v, which we denote by adhesion(v), is the singleton {x2}.

Let q be a CQ, and let 〈t, χ〉 be an ordered TD of q. The preorder
of t is the order ≺ over the nodes of t such that for every node v
with a child c preceding another child c′, and nodes u and u′ in
t|c and t|c′ , respectively, we have v ≺ u ≺ u′. We denote the
preorder of t by ≺pre. For a variable x in vars(q), the owner bag
of x, denoted owner(x), is the minimal node v of t, under ≺pre,
such that x ∈ χ(v). For a node v of t, we denote by owned(v)
the set of variables x that have v as the owner. We say that 〈t, χ〉
is compatible with an ordering 〈x1, . . . , xn〉 if i < j whenever
owner(xi) ≺pre owner(xj). We may also say that the ordering
〈x1, . . . , xn〉 is compatible with 〈t, χ〉 if the latter is compatible
with the former.

EXAMPLE 2.3. Consider the given ordering 〈x1, . . . , x6〉 of the
variables in our running example (Figure 2), and the TD 〈t, χ〉 of
Figure 2(c). The preorder of t is given by {x1, x2}, {x2, x3, x4},
{x3, x5}, {x4, x6}. We have owner(x3) = owner(x4) = v, and
owned(v) = {x3, x4}. Note that owner(x2) 6= v since x2 occurs
already in the root of t (and therefore owner(x2) = root(t)).

2.3 Trie Join
We now describe the Leapfrog Trie Join (LFTJ) algorithm [29].

Our description is abstract enough to apply to the tributary join of
Chu et al. [10]. Let q = ϕ1, . . . , ϕm be a CQ. The execution of
LFTJ is based on a predefined ordering 〈x1, . . . , xn〉 of vars(q).
The correctness and theoretical efficiency of LFTJ are guaranteed
on every order of choice, but in practice the order may have a sub-
stantial impact on the execution cost [10]. Moreover, in our instan-
tiation of LFTJ we will use orderings with specific properties.

For every subgoal ϕk, LFTJ maintains a trie structure on the
corresponding relation r. Each level i of the trie corresponds to
a variable xj in vars(ϕk), and holds values that can be matched
against xj . Whenever xj is in a level above xj′ it holds that j < j′.
Moreover, every path from root to leaf corresponds to a unique
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Figure 3: The trie structures for subgoals R(x1, x2) and
R(x2, x3), respectively, in the running example

tuple of r and vice versa. Sibling values in the trie are stored in a
sorted manner.

EXAMPLE 2.4. Figure 3 depicts two of the tries used for eval-
uating the CQ q of Example (2.1), of our running example. The
left trie is for R(x1, x2) and R(x2, x3). (The reader should ignore
the gray triangles for now; we discuss them in the next example.)
In this case, the tries are identical (as they index the same rela-
tion), but they are used differently during query evaluation. Each
level of the trie corresponds to a variable and a corresponding at-
tribute. The path root→1→2 corresponds to the tupleR(1, 2), and
root→2→1 corresponds to R(2, 1).

LFTJ applies a sequence of unary joins, called leapfrog joins, as
follows. Each trie holds an iterator, initialized by pointing to the
root. A mapping µ, which is initialized with nulls, is maintained
throughout the execution. First, all the subgoals that contain x1
advance their iterators in the first level until a matching value a
is found (i.e., all iterators point to a), and µ(x1) is set to a. The
matching value is found efficiently in a technique referred to as
leapfrogging [29]. The algorithm then proceeds recursively1 with
the CQ q[µ] by proceeding to the next matching value, and so on,
until all variables are assigned values (and then µ is printed) or
no matching values are found; then backtracking takes place by
advancing the previous iterator. A balanced-tree storage of the sib-
ling collections in the tries guarantees that alignment of the iterators
on matching attributes is done efficiently (in an amortized sense),
which in turn guarantees that LFTJ is worst-case optimal [21].

EXAMPLE 2.5. Continuing Example 2.4, the gray triangles in
Figure 3 show a possible positioning of the pointers on the tries
during the execution. Here, the pointer for x1 is set on 2, the point-
ers of x2 in both tries is set on 1 (which is a matching value found),
and next a matching value for x3 will be sought in under the pointed
node in the right trie (and the other tries).

We refer the reader to the original publication [29] for more de-
tails on LFTJ. In this paper, it suffices to regard LFTJ abstractly as
depicted in Figure 4. We call the algorithm of Figure 4 trie join
and denote it by TrieJoin. This algorithm updates the global partial
assignment µ using the subroutine RJoin (Recursive Join).

3. CACHING IN TRIE JOIN
In this section we devise an algorithm that incorporates caching

within TrieJoin (Figure 4). We first discuss the intuition.

3.1 Intuition
The general idea is as follows. Let q be the evaluated CQ, and let
〈x1, . . . , xn〉 be vars(q) in the order of iteration. Consider a point
in the iteration where we complete the assignment for x1, . . . , xj
(j < n), and suppose that we have already encountered the assign-
ment for xi, . . . , xj in the past for some i such that 1 < i < j. We
1The actual algorithm of [29] is not recursive, but rather applies a
single procedure call. Recursion simplifies our presentation.

Algorithm TrieJoin(q, 〈x1, . . . , xn〉, T )

1: for d = 1, . . . , n do
2: µ(xd) := ⊥
3: RJoin(1)

Subroutine RJoin(d)

1: if d = n+ 1 then
2: print µ
3: return
4: for all matching values a for xd in T do
5: position T on xd 7→ a
6: µ(xd) := a
7: RJoin(d+ 1)
8: reset xd pointers in T

Figure 4: Trie join

would like to be able to reuse the past assignments, at least for a few
of the next variables, say xj+1, . . . , xk, instead of searching again
for matches. Integrating simple memoization in the algorithm will
not suffice. The problem is that the assignments for xj+1, . . . , xk
may depend not just on those for xi, . . . , xj , but rather on the as-
signments for variables in x1, . . . , xi−1, and so reusing past assign-
ments may lead to incorrect results (false assignments).

The above problem is avoided as follows. First, we deploy an
ordered TD 〈t, χ〉, and use an ordering 〈x1, . . . , xn〉 that is com-
patible with 〈t, χ〉 (as defined in Section 2.2). Second, cache keys
are assignments to sequences xi, . . . , xj of variables only if the set
{xi, . . . , xj} is an adhesion of some node v of t. Finally, we cache
assignments only for the variables xj+1, . . . , xk that are owned by
v. Due to the nature of the TD, we can rest assured that the as-
signments to xj+1, . . . , xk are independent of the assignments to
x1, . . . , xi−1 (once we know the assignments for xi, . . . , xj).

EXAMPLE 3.1. Consider again our running example around Fig-
ure 2. At some point in the execution of TrieJoin we construct the
assignment µ with µ(x1) = 1 and µ(x2) = 2, and then continue
to the rest of the variables in order. The next assignments we con-
struct are x3 7→ 1 and x4 7→ 2. Once we are done with the com-
plete assignments for the extended µ, we construct the assignments
x3 7→ 2 and x4 7→ 1, and later on x3 7→ 2 and x4 7→ 2. Later
in the execution, we encounter the assignment µ′ with µ(x1) = 2
and µ(x2) = 2. Since adhesion(x) = {x2}, we check to see
whether there is a cache for x2 7→ 1, and if so, then it tells us ex-
actly where to position the pointers for x3 and x4 (which are the
variables owned by v) in each of the possibilities (which are (1, 2),
(2, 1), (2, 2) and nothing else). We may similarly have a cache for
{x3} (lower left adhesion) and for {x4} (lower right adhesion).

Caching could be obtained by computing the complete join for
every bag (using TrieJoin), and then joining the intermediate re-
sults using an algorithm for acyclic joins such as Yannakakis [30],
as done in DunceCap [24, 28]. However, we wish to control the
memory consumption and avoid storing the complete joins of sub-
queries. Our algorithm executes TrieJoin ordinarily, yet caches re-
sults during the execution based on a deployed caching policy.

COMMENT 3.2. Compatibility of the variable ordering with the
TD has implications on the trie structures, which need to be consis-
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Algorithm CacheTrieJoin(q, 〈x1, . . . , xn〉, 〈t, χ〉, T )

1: for d = 1, . . . , n do
2: µ(xd) := ⊥
3: for all nodes v of t do
4: cachev := ∅
5: CacheRJoin(1)

Subroutine CacheRJoin(d)

1: if d = n+ 1 then
2: print µ
3: return
4: v := owner(xd)
5: {xl, xl+1, . . . , xk} := owned(v)
6: α := adhesion(v)
7: if v 6= root(t) and d = l then
8: if µ|α is a cache hit in cachev then
9: for all cached entries µ′ in cachev(µ|α) do

10: for i = l, . . . , k do
11: µ(xi) := µ′(xi)
12: AdjustTries(T , µ′)
13: CacheRJoin(k + 1)
14: reset xl, . . . , xk pointers in T
15: return
16: for all matching values a for xd in T do
17: position T on xd 7→ a
18: µ(xd) := a
19: CacheRJoin(d+ 1)
20: if v 6= root(t) and d = k then
21: ApplyCachePolicy(cachev, µ|α, µ|owned(v))
22: reset xd pointers in T

Figure 5: TrieJoin with caching

tent with the variable ordering [29]. Therefore, similarly to Empty-
Headed [15], the design of our tries depends on the TD. As building
the trie may take considerable time, our approach matches the sce-
nario where the join is known in advance, but not the data (which
is common in Web applications where queries arise due to user
interaction with the UI). Another matching scenario is where the
relations are narrow (e.g., graphs), and then we can compute in ad-
vance multiple trie structures (which is the design choice of Emp-
tyHeaded [15]) and load the proper ones upon need.

3.2 Algorithm
We now turn to a more formal description of our algorithm,

which we call CacheTrieJoin, and is depicted in Figure 5. The
algorithm extends upon the algorithm of Figure 4 in the sense that
when no caching takes place, the two algorithms coincide. The al-
gorithm takes as input a CQ q, a variable ordering 〈x1, . . . , xn〉,
an ordered TD 〈t, χ〉 that is compatible with 〈x1, . . . , xn〉, and a
trie structure T for a database D. The algorithm prints all tuples
in q(D). The algorithm uses a cache, denoted cachev , for every
node v of t, for caching computed assignments for the variables
owned by v. The algorithm CacheTrieJoin simply initializes a
global partial assignment µ and each cachev , and calls the sub-
routine CacheRJoin (the caching version of RJoin of Figure 4),
which we describe next.

The first part of the algorithm, lines 1–3, tests whether we are
done with the variable scan (that is, the algorithm is called with the
index n + 1) and, if so, prints µ. Now assume that d ≤ n. So the
currently iterated variable is xd. We denote by v the owner of xd,
and by α the adhesion of v (as defined in Section 2). Moreover,
we assume that the nodes owned by v are xl, . . . , xk in ascend-
ing indices. Observe that owned(v) is indeed a consecutive set of
variables, since the order is compatible with t.

In lines 8–15 we handle the case where we have just entered v
from a different node of t, which means that xd is the first node xl
owned by v, and v is not the root (that is, v > 1). From our con-
struction, the adhesion of v is already assigned values in µ (again
due to compatibility), and we check whether there is a cache hit for
µ|α (the restriction of µ to α) in cachev . If indeed there is a cache
hit, then in lines 9–15 we scan the cache that contains all assign-
ments µ′ that we have already computed for µ|α. For each such µ′,
we extend µ with µ′ and adjust the trie structure T according to µ′.
By adjusting T we consider every variable xi in xl, . . . , xk and if
xi is later used for a join, then we position the pointer precisely
where it should have been if we scanned the trie and got to µ′(xi);2

and if xi is not used for a future join, then we do nothing. As an
example, in our running example (Figure 2), we ignore x5 if we
have a cached assignment for it.

Lines 16–22 are executed in the case where we have not just
entered v, or we do but had a cache miss on line 8. In this case, we
continue exactly as in RJoin (Figure 4), but we also test whether xd
is the last variable owned by v (i.e., xd is xk). If so, we either cache
or do not cache the assignment µ|owned(v) based on the underlying
caching policy for µ|α. Observe that this action may lead to an
eviction of a previously stored entry for some µ′|α.

EXAMPLE 3.3. We will now show how the scenario of Exam-
ple 3.1 is realized in the algorithm CacheTrieJoin, where we con-
sider again our running example (Figure 2). The algorithm first
calls CacheRJoin(1), and the execution is the same as in RJoin, all
the way until we reach the call to CacheRJoin(3) where we have
µ(x1) = 1 and µ(x2) = 2. Observe that owner(x3) = v, which is
a non-root node, owned(v) = {x3, x4} (hence, l = 3 and k = 4).
Also note that adhesion(v) = {x2}. The test of line 7 is true, but
that of line 8 is false since cachev is empty at that point. So, we
continue to lines 16–19 and apply the different assignments for x3,
starting with x3 7→ 1. We then call CacheRJoin(4), where we find
the assignment x4 7→ 2. The test of line 20 is true, since x4 is the
last owned by v. Therefore, we may decide (based on the applied
caching policy) to cache the entry x2 7→ 2 in cachev , and then we
store there the assignment (x3, x4) 7→ (1, 2). We later store in that
entry the assignment (x3, x4) 7→ (2, 2).

Later in the execution, we call CacheRJoin(3) when we have
µ(x1) = 2 and µ(x2) = 2. We may then find out that in cachev
we have cached the entry of x2 7→ 2, and we simply use the two
tuples µ′ that maps (x3, x4) to (1, 2) and to (2, 2), as in lines 9–
13. However, if there is a cache miss then we repeat the above first
execution of CacheRJoin(3).

The following theorem states the correctness of the algorithm
CacheTrieJoin. The proof is by a fairly straightforward application
of the basic separation properties of a tree decomposition.

THEOREM 3.4. Let q be a CQ, 〈x1, . . . , xn〉 an ordering of
vars(Q) and 〈t, χ〉 a TD compatible with 〈x1, . . . , xn〉. Let D
be a database, and T a trie structure for TrieJoin. Algorithm
CacheTrieJoin(q, 〈x1, . . . , xn〉, 〈t, χ〉, T ) prints q(D).
2Technically, this is done by storing the position with µ′ in cachev .
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3.3 Counting
We now describe a variation of CacheTrieJoin (Figure 5) for

counting the number of tuples in q(D). The counting algorithm,
which we refer to as CacheTJCount, is depicted in Figure 5. The
input is the same as that of CacheTrieJoin, and the flow is very sim-
ilar. There are, however, a few key differences, and our explanation
(next) will focus on these.

The algorithm CacheTJCount uses some new global variables
and data structures. The variable total counts the joined tuples
throughout the execution, and in the end stores the required number.
For every non-root node v of t we have a counter intrmd(v) that
stores the intermediate count of the assignments to the variables
owned by the nodes in t|v (i.e., the subtree of t that consists of v
and all of its descendants), given the assignment to adhesion(v) in
the current iteration. More precisely, let i be the maximal num-
ber such that xi is in the adhesion of v, and consider a partial
assignment µ that is nonnull on precisely x1, . . . , xi. In an iter-
ation where µ is constructed, intrmd(v) will eventually hold the
number of assignments µ′ that TrieJoin can assign to the variables
owned by the nodes in t|v . As 〈t, χ〉 is compatible with the or-
dering 〈x1, . . . , xn〉, this number is the same for all assignments µ
that agree on the adhesion α of v. The counter intrmd(v) holds
the correct value once we are done with the variables owned by v.
Another fundamental difference from CacheTJCount is that now
cachev stores a natural number (rather than a collection of assign-
ments) for each assignment µα; this number is precisely the value
of intrmd(v) once we are done with the variables in t|v .

Following the initialization, the algorithm calls the subroutine
CacheRJoinCount, which is the counting version of CacheRJoin.
The input takes not only the variable index d, but also a factor f
that aggregates cached intermediate counts. When we are done
scanning all of the variables (i.e., we reach line 2), the factor f is
added to total . When we are at the first node owned by the current
non-root owner v (lines 7–13), we reset the counter intrmd(v). If
we have a cache hit for µ|α in cachev , then we copy the number
cachev(α) into intrmd(v), multiply f by this number, and jump
directly to the first index outside of t|v (line 12). This skipping
is where compatibility is required, since it ensures that the nodes
owned by t|v constitute a consecutive interval in 〈1, . . . , n〉.

As previously, lines 14–20 are executed in the case where we
have not just entered v, or experience a cache miss. We then con-
tinue as in RJoin. However, if xd is the last variable owned by v,
then we update the intermediate count by adding the product of the
intermediate results intrmd(c) of the children c of v. (Note that
this product is 1 when v is a leaf.) Finally, in lines 22–23 we con-
sider again the case where we have just entered a node v. Then,
we are about to go back to the previous node, and so we apply the
caching policy to possibly cache the number intrmd(v) for µ|α in
cachev . (This is why we maintain intrmd(v) to begin with.)

EXAMPLE 3.5. We illustrate CacheTJCount on our running
example (Figure 2). On CacheRJoinCount(1, 1) we set (in lines 16–
17) µ(x1) = 1 and call CacheRJoinCount(2, 1), where we set
µ(x2) = 2 and call CacheRJoinCount(3, 1). We reach line 8 and
initialize intrmd(v) to 0. We have a cache miss (as the cache is
empty), and we reach line 14, where CacheRJoinCount(4, 1) is
called with µ(x3) = 1. From there we call CacheRJoinCount(5, 1)
with µ(x4) = 2. Let cl and cr be the left and right children of v,
respectively. When the call returns, we have intrmd(cl) = 2 and
intrmd(cr) = 2, as x5 can be mapped to 2 and 3 and x6 can be
mapped to 1 and 2. At this point total is equal to 4, since the scan
has ended four times. We then reach line 18 (since x4 is the last
owned by v) and set intrmd(v) = 0 + 2× 2 = 4. Similarly, after

Algorithm CacheTJCount(q, 〈x1, . . . , xn〉, 〈t, χ〉, T )

1: for d = 1, . . . , n do
2: µ(xd) := ⊥
3: for all nodes v of t do
4: cachev := ∅
5: intrmd(v) := 0
6: total := 0
7: CacheRJoinCount(1, 1)
8: return total

Subroutine CacheRJoinCount(d, f)

1: if d = n+ 1 then
2: total := total + f
3: return
4: v := owner(xd)
5: {xl, xl+1, . . . , xk} := owned(v)
6: α := adhesion(v)
7: if v 6= root(t) and d = l then
8: intrmd(v) := 0
9: if µ|α is a cache hit in cachev then

10: intrmd(v) := cachev(µ|α)
11: m := max{i | owner(xi) is in t|v}
12: CacheRJoinCount(m+ 1, f · cachev(µ|α))
13: return
14: for all matching values a for xd in T do
15: position T on xd 7→ a
16: µ(xd) := a
17: CacheRJoinCount(d+ 1, f)
18: if v 6= root(t) and d = k then
19: let c1, . . . , ck be the children of v in t
20: intrmd(v) := intrmd(v) +

∏k
i=1 intrmd(ci)

21: reset xd pointers in T
22: if v 6= root(t) and d = l then
23: ApplyCachePolicy(cachev, µ|α, intrmd(v))

Figure 6: Cached count over trie join

the call to CacheRJoinCount(4, 1) with µ(x3) = 2 there will be
a call with µ(x4) = 1 and intrmd(v) will be incremented by an-
other 4, and so will be the case with µ(x4) = 2. So, when we reach
line 23 for d = 3, we may cache the number 12 as cachev(µα).

The next time CacheRJoinCount(3, 1) is called with µ(x2) =
2 (i.e., when µ(x1) = 2), we check cachev and may find that
cachev(µα) exists (i.e., cache hit) with cachev(µα) = 12. If so,
we reach line 12 and call CacheRJoinCount(7, 1×12). As 7 > n,
we skip to line 2 and add 12 to total . If there is a cache miss
for µα in cachev , there might still be a cache hit when we call
CacheRJoinCount(5, 1) with µ(x3) = 2, and then we immedi-
ately call CacheRJoinCount(6, 1× 2) on line 12, as 6 is the mini-
mal index outside the subtree of cl (which contains only cl).

The following theorem states the correctness of the algorithm
CacheTJCount.

THEOREM 3.6. Let q be a CQ, 〈x1, . . . , xn〉 an ordering of
vars(Q) and 〈t, χ〉 a TD that is compatible with 〈x1, . . . , xn〉. Let
D be a database, and T a trie structure for TrieJoin. Algorithm
CacheTJCount(q, 〈x1, . . . , xn〉, 〈t, χ〉, T ) computes |q(D)|.
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Figure 7: 4-cycle (top) and 6-cycle (bottom) queries on IMDB,
each with two isomorphic TDs

The proof is more involved than Theorem 3.4, and has two steps.
We first prove, by induction on time, that whenever we complete
iterating the variables of v, the number intrmd(v) is correct (i.e.,
it is the number of intermediate results for t|v given the assignment
for adhesion(v)). In the second step we show that every unit added
to total accounts for a unique tuple in q(D) and vice versa.

4. DECOMPOSITION
We now discuss the challenge of finding a TD 〈t, χ〉 and a com-

patible variable ordering. A typical TD algorithm aims at opti-
mising some specific cost function such as generalized/fractional
hypertree width [12, 15]. In our case, an important factor in the ef-
fectiveness of the caches in our algorithms is their dimensionality,
which is determined by the size of the adhesions. To better cap-
ture opportunities of a high skew and hit rate, we give precedence
to keys from a domain of a smaller dimension, and hence, we fa-
vor smaller adhesions. There are, however, additional criteria be-
yond the topological properties of the TD. For example, we would
like to use adhesions such that their corresponding subqueries have
high skews in the data, and then caching a small number of in-
termediate results can save a lot of repeated computation. More-
over, we would like to have a TD that is compatible with an order
that is estimated as good to begin with. For a (rather extreme) il-
lustration, Figure 7 depicts two TDs of two queries, 4-cycle and
6-cycle, over the IMDB dataset (see Section 5), where m and p de-
note movie and person identifiers, respectively. The left TD favors
persons for caching and the right favors movies for caching. While
the decompositions are isomorphic, their performance of counting
varies greatly: 4-cycle took around 40 seconds with the left TD,
and around 4,000 with the right one; and 6-cycle took around 600
seconds and 27,000 on the left and right TDs, respectively.

We take the approach of generating many TDs, estimating a cost
on each, and selecting the one with the best estimate. In our imple-
mentation (described in the next section), we deploy a heuristic cost
function that ranks TDs based on three criteria, in a lexicographic
manner: the maximal size over the adhesions (lower is better), the
number of bags (higher is better), the sum of adhesions (lower is
better), and the cost function of Chu et al. [10] for some variable
ordering that is compatible with the TD.

4.1 Enumerating TDs
We now describe our technique for enumerating ordered TDs. In

future work we plan to compare our enumeration to a recent one

Subroutine GenericTD(g, C)

1: 〈S,U〉 ← ConstrainedSep(g, C)
2: if S = ⊥ then
3: return the singleton decomposition of g
4: 〈t0, χ0〉 := RecursiveTD(g[S ∪ U ], C ∪ S)
5: let V1, . . . , Vk be the connected comps. of g − (S ∪ U)
6: for i = 1, . . . , k do
7: 〈ti, χi〉 := RecursiveTD(g[S ∪ Vi], S)
8: let t be obtained from t0, t1, . . . , tk by connecting the root

of t0 to the root of ti for all i > 1
9: χ := ∪ki=0χi

10: return (t, χ)

Figure 8: Tree decomposition via adhesion selection

by Carmeli et al. [9]. We begin with a simple method for gener-
ating a single TD. The two common heuristics to generating TDs
are graph separation and elimination ordering [7]. We adopt the
former, as it will later allow us to plug in an algorithm for enumer-
ating separating sets of a graph. The algorithm calls a method for
solving the side-constrained graph separation problem, or just the
constrained separation problem for short, which is defined as fol-
lows. The input consists of an undirected graph g and a set C of
nodes of g. The goal is to find a separating set S of g, that is, a
set S of nodes such that g−S (obtained by removing from g every
node of S) is disconnected. In addition, S is required to have the
property that at least one connected component in g− S is disjoint
from C. Hence, S is required to separate C from some nonempty
set of nodes. We call S a C-constrained separating set. We denote
a call for a solver of this problem by ConstrainedSep(g, C). We
later discuss an actual solver. For convenience, we assume that a
solver returns the pair 〈S,U〉, where U is the set of all nodes in the
connected components of g − S that intersect with C.

The algorithm, called GenericTD(g, C), is depicted in Figure 8.
It takes as input a graph g and a set C of nodes that is empty on the
first call. The algorithm returns an ordered TD of g with the prop-
erty that the root bag contains all nodes inC. So, the algorithm first
calls ConstrainedSep(g, C). Let 〈S,U〉 be the result. It may be the
case that the subroutine decides that no (good) C-constrained sep-
arating set exists, and then the returned S is null (⊥). In this case,
the algorithm returns the TD that has only the nodes of g as the
single bag. This case is handled in lines 1–3. Suppose now that the
returned 〈S,U〉 is such that S is a C-constrained separating set.
Denote by V1, . . . , Vk the connected components of g − (S ∪ U).
The algorithm is then applied recursively to construct several or-
dered TDs. First, an ordered tree decomposition 〈tU , χU 〉 of the
induced subgraph of S ∪ U , which we denote by g[S ∪ U ], such
that the root contains C ∪ S (line 4). Second, for i = 1, . . . , k, an
ordered tree decomposition 〈ti, χi〉 of g[S∪Vi] (the induced graph
of S ∪ Vi) such that the root bag contains S (lines 5–7). Finally,
in lines 8–10 the algorithm combines all of the tree decompositions
into a single tree decomposition (returned as the result), by con-
necting the root of each 〈ti, χi〉 to 〈tU , χU 〉 as a child of the root.

The algorithm GenericTD(g, C) of Figure 8 generates a sin-
gle ordered TD. We transform it into an enumeration algorithm by
replacing line 1 with a procedure that efficiently enumerates C-
constrained separating sets, and then executing the algorithm on
every such set. A key feature of the enumeration is that it is done
by increasing size of the separating sets, and hence, if we stop the
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enumeration of separating sets after k sets have been generated (to
bound the number of the generated TDs), it is guaranteed that we
have seen the k smallest C-constrained separating sets.

We are then left with the task of enumerating the C-constrained
separating sets by increasing size. For that, we have devised an
algorithm that establishes the following complexity result.

THEOREM 4.1. The S-constrained separating sets of a graph
g can be generated by increasing size with polynomial delay.

Our algorithm uses the well known technique for ranked enumer-
ation with polynomial delay, namely the Lawler-Murty’s proce-
dure [17, 20]3 that reduces a general ranked (or sorted) enumera-
tion problem to an optimization problem with simple constraints.
Roughly speaking, to apply the procedure to a specific setting, one
needs just to design an efficient solution to a constrained optimiza-
tion problem. Due to lack of space, we omit the details and defer
them to the long version of the paper.

5. EXPERIMENTAL STUDY
Our experimental study examines the performance benefits of

our approach and algorithms. We compare our implemented al-
gorithms to state-of-the-art solutions, and explore the effect of a
number of key parameters and design choices.

5.1 Algorithms and Systems Evaluated
Our evaluation compares between implementations of several

join algorithms, as listed below. All implementations were com-
piled using g++ 4.9.3 with the -O3 flag.

Our algorithms are CacheTrieJoin for CQ evaluation (Figure 5)
and CacheTJCount for CQ counting (Figure 6). These implemen-
tations extend the vanilla implementation of LFTJ [29], which we
describe below. We refer to the implementations by the acronyms
CTJ-E and CTJ-C, respectively. The caches are implemented using
STL’s unordered_map. The computation of a TD is as described
in Section 4. If no bound is mentioned for the cache size, then no
eviction takes place (and every partial assignment is cached). We
compare against the following alternatives.

LFTJ: We use a vanilla implementation of LFTJ [29]. Our imple-
mentation uses C++ STL map as the underlying Trie data structure.
Notably, this implementation adheres to the complexity require-
ments of LFTJ.

YTD: This algorithm combines Yannakakis’s acyclic join algo-
rithm [30] with a TD, as described by Gottlob et al. [14]. The
implementation is based on DunceCap [24]. For each intermediate
join (bag) a worst-case optimal algorithm is used. The complex-
ity requirement for the indices seekLowerBound is provided by a
binary search, enabled through the use of the cascading vectors for
the Trie. We use the query compiler from EmptyHeaded [1] (which
uses a YTD-like algorithm) to generate the TD and variable order-
ing. For queries with only two bags we use a regular join since,
in this case, the Yannakakis reduction stage generates an unneces-
sary overhead. Moreover, for count queries whose TDs yield more
than two bags, we save the relevant result for the matching join at-
tributes (rather than storing full intermediate results). Notably, we
have experimented with alternative YTD implementations, but they
all proved inferior to the one described above.

YTD-Par: EmptyHeaded [1] is a state-of-the-art graph query en-
gine that operates as a parallel implementation of DunceCap [24],

3Lawler-Murty’s procedure is a generalization of Yen’s algo-
rithm [31] for finding the k shortest simple paths of a graph.

Dataset #Nodes #Edges Category

ca-GrQc 5,242 14,496 Collaboration net
p2p-Gnutella04 10,876 39,994 P2P net
ego-Facebook 4,039 88,234 Social net
wiki-Vote 7,115 103,689 Social net
ego-Twitter 81,306 1,768,149 Social net
imdb-Actresses 2,714,695 4,700,000 Movies
imdb-Actors 3,539,013 7,000,000 Movies

Table 1: Dataset (SNAP) statistics

with optimizations for graph databases. We view it as a query en-
gine rather than a pure algorithm, since the implementation is tied
to the hardware: it parallelizes the execution through the Single-
Instruction Multiple-Data (SIMD) model. Parallel operations are
executed using the vector unit available on modern Intel proces-
sor cores. Specifically, each core on our test platform (Intel Xeon
E5-2630 v3) includes a 256-bit vector unit that executes 8 integer
(4-byte) operations in parallel.

In addition to pure algorithms, we also experiment with full sys-
tems. Pure algorithm implementations avoid the overhead associ-
ated with a full DBMS. We make this comparison simply to provide
a context for the recorded running times.

LB-LFTJ: LogicBlox (LB) 4.3.18 [3]: A commercial DBMS con-
figured to use LFTJ as an its join engine.

LB-FAQ: LogicBlox (LB) 4.3.18 configured to use InsideOut [16]
as its join engine.

PGSQL: PostgreSQL [27] is an open-source relational DBMS (ver-
sion 9.3.4). For query evaluation (as opposed to count), we use the
curser API of PGSQL to avoid storage of join results in memory.

Other popular DBMSs and graph engines were compared to the
above systems in a previous study [22], and were shown to be in-
ferior in performance. Hence, we omit the other DBMSs from our
experimental study. We further emphasize that our experiments ex-
plicitly restricted all algorithms and systems to utilize only a single
core on the test machine, which does not affect YTD-Par SIMD
parallelization.

5.2 Methodology
The setup and methodology we adopted in our experimental study

are as follows.

Workloads. In par with other studies on join algorithms our eval-
uation is based, for the most part, on datasets from the SNAP col-
lection [18], similarly to Nguyen et al. [22]. The datasets consist
of wiki-Vote, p2p-Gnutella04, ca-GrQc, ego-Facebook and ego-
Twitter. Table 1 gives some basic statistics on the datasets. As
the distribution of values in SNAP dataset is highly skewed, we
also use IMDB to explore the effect of datasets that are less skewed
and whose data skew is not uniform across attributes. To this end,
we partition IMDB’s cast_info table into a male_cast and a fe-
male_cast tables, each with attributes (person_id and movie_id).
We exclude the TPC-C and TPC-H benchmarks as the join queries
in these benchmarks are small.

Queries. Our datasets can be viewed as graphs, and so, we ex-
periment using 3 types of CQs (again, consistently with Nguyen et
al. [22]). The first type, denoted n-path for n = 3, . . . , 7, finds all
paths of length n. For example, the 4-path CQ is

E(x, y), E(y, z), E(z, w) .
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Figure 9: The speedups obtained with CTJ-E over LFTJ and
YTD for full query evaluation. Bars that represent executions
that timed out are marked as gray.

The second type is n-cycle, where n = 3, . . . , 6, and the query
finds cycles of length 3 to 6. For example, the 4-cycle CQ is

E(x, y), E(y, z), E(z, w), E(w, x) .

The third type consists of random CQs. We generate such CQs
by forming a graph pattern using the Erdös-Reyni generator. The
generator takes n nodes and adds an edge between every two nodes,
independently, with a specified probability p. The graph is undi-
rected and without self loops. We use only connected graphs with
n = 5 and n = 6, and with p = 0.4 and p = 0.6. Random graph
queries are denoted as n-rand(p). For each set of parameters we
generate four different graphs. We do not examine clique queries
as these cannot be decomposed, and hence our algorithms are the
same as LFTJ in this case.

Hardware and system setup. Our experimental platform uses Su-
permicro 2028R-E1CR24N servers. Each server is configured with
two Intel Xeon E5-2630 v3 processors running at 2.4 GHz, 64GB
of DDR3 DRAM, and is running a stock Ubuntu 14.0.4 Linux.

Testing protocol. Each experiment was run three times, and the
average runtime is reported. We set an execution timeout of 10
hours. Executions that timed out are highlighted.

5.3 Experimental Results
We start by experimenting with unlimited caches on query eval-

uation of CQs. Next, we compare different cache sizes, caching
policies and other cache attributes.

Query evaluation produces all the tuples in the result of the query.
We focus our exploration of query evaluation on computing the ma-
terialized result rather than storing it. With the help of the related
parties, the algorithms and systems were configured to ignore the
final result and not store it. The only exception is YTD-Par, for
which we could not disable the materialization of the final result. It
is therefore not shown in our examination of query evaluation.

Figure 9 presents the results for running query evaluation of 5-
path and 5-cycles queries. The figure shows that for 5-path queries,
CTJ-E outperforms YTD by 4× and LFTJ by over 9×. The per-
formance gap is attributed to CTJ-E’s caching, which captures fre-
quently used intermediate results. CTJ-E’s caching eliminates re-
dundant scans of the Trie structure that occur in LFTJ. CTJ-E also
outperforms YTD by up to 4.6× (3.2× on average), because the
computation of YTD becomes memory bound in the final join stages
due to the memory complexity of the Yannakakis joins.

For 5-cycle queries, Figure 9 shows that CTJ-E is faster than
LFTJ by an average of 8× for ca-GrQc, twitter and wiki datasets.

Query Algorithms Systems

CTJ-E YTD LFTJ LB-FAQ LB-LFTJ PGSQL

3-path 23 2× 1.3× 46× 34× 10116×
4-path 133 4× 5× 17× 26× 27679×
5-path 2222 4× 8× 23× 19× t/o
6-path 78528 4× 10× 23× 23× t/o
7-path 3265542 4× 10× t/o t/o t/o

4-cycle 558 1.1× 1.9× 9× 5× 4409×
5-cycle 4125 41× 8× 11× 19× 11526×
6-cycle 84248 9× 14× 40× 37× 564×

Query Algorithms Systems

CTJ-E YTD LFTJ LB-FAQ LB-LFTJ PGSQL

3-path 72 1.5× 3× 14× 17× 18355×
4-path 791 4× 9× 23× 21× 59157×
5-path 29458 4× 11× 26× 24× t/o
6-path 1.33e+06 4× 11× 26× t/o t/o
7-path t/o t/o t/o t/o t/o t/o

4-cycle 2192 0.7× 1.7× 5× 4× 2312×
5-cycle 27855 11× 6× 3× 14× t/o
6-cycle 415783 4× 17× 5× 44× t/o

Figure 10: CTJ-E runtimes (in msecs) for {3–7}-path and {4–
6}-cycle queries and relative runtimes for compared solutions
(i.e.,m×meansm times slower than CTJ-E), for ca-GrQc (top)
and Wiki (bottom) datasets. Timeout (t/o) means over 10 hours.
YTD-Par is omitted from the comparison as it always stores the
materialized result.

For the facebook and p2p-Gnutella04 datasets, however, CTJ-E ex-
periences a small slowdown. Finally, CTJ-E outperforms YTD by
26× on average. The reason is that YTD’s Yannakakis and the
worst-case optimal join algorithm used by YTD, favor the opposite
attributes order, which dramatically affects its performance.

CTJ-E also delivers performance benefits for sparse random pat-
tern queries. Figure 9 shows the results for representative graphs
(which are consistent with the results for the other graphs). Specif-
ically, for 5-rand(0.4) queries, CTJ-E outperforms LFTJ by 5× on
average. CTJ-E is also consistently 3–4× faster than YTD, with the
exception of p2p-Gnutella04 for which the results are comparable.
These trends are consistent for denser 5-rand(0.6) random graphs.
Here too, the results demonstrate the effectiveness of CTJ-E, whose
runtime is, on average, 10× faster than LFTJ and 7× than YTD
(CTJ-E and LFTJ runtimes are comparable for p2p-Gnutella04).

Figure 10 presents the results of query evaluation for {3–7}-path
and {4–6}-cycle queries over the ca-GrQc (top) and Wiki (bottom)
datasets for different algorithms and systems. For brevity, we show
the results for only two datasets: ca-GrQc and Wiki. These results
are consistent with the results obtained for the other SNAP datasets.

The figure shows that the performance benefits of CTJ-E over
LFTJ increase with the size of the query. CTJ-E is 10× faster than
LFTJ for 7-path queries and 14× for 6-cycle queries. Compared
to YTD, CTJ-E speedup is 4× for 7-path queries and 4–9× for 6-
cycle queries. The only case where CTJ-E is slower than another
algorithm is the small 4-cycle query, for which YTD is faster by
30% on the Wiki dataset. Importantly, these results are consistent
across the other datasets, excluding p2p-Gnutella04 for which the
algorithms are comparable.

Figure 10 also compares the performance of our algorithms to
that of full DBMSs (PGSQL, LB-LFTJ, and LB-FAQ). We observe
that the speedups are even larger (as expected, due to system over-
head). Notably, the ratio between the performance of LFTJ and
LB-LFTJ is more or less constant, showing that the system over-
head here accounts for around 2× slowdown.
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5-path 5-cycle
dataset 25% 10% 1% 25% 10% 1%

ca-GrQc 1.7× 3× 18× 1.9× 3× 5×
p2p-Gnutella04 4× 5× 6× 1.3× 1.3× 1.3×
ego-twitter 6× 9× 18× 2× 2× 2×
wiki-Vote 1.2× 1.3× 3× 4× 4× 4×

Table 2: Slowdown due to cache sizes with LRU, over unlimited
cache size for 5-path and 5-cycle query evaluation

On average, CTJ-E is over 20× faster than LB-FAQ and LB-
LFTJ for all path queries, and 3-44× faster for all cycle queries. An
even more extreme speedup is evident when comparing to PGSQL,
where CTJ-E is consistently 3–5 orders of magnitude faster.

To conclude, we have shown that CTJ-E is substantially faster
than the alternatives. Furthermore, the performance benefits of
CTJ-E increase with the size of the query.

5.3.1 Cache Parameters
Tuning the parameters of the CTJ-E cache (e.g., cache size, evic-

tion policy, cache partitioning) do not affect the correctness of the
CTJ-E. Instead, these parameters only affect the caching efficiency
of CTJ-E and, by proxy, the performance of the algorithm. The
caching of partial results in CTJ-E thus presents a tradeoff between
memory consumption and performance. Interestingly, LFTJ and
YTD represent the two extremes of this classic tradeoff. On one
hand, LFTJ caches no partial or intermediate results but rather re-
peatedly scans the Trie to regenerate partial results. On the other
hand, YTD must maintain all intermediate results generated by the
individual joins on each bag. As a result, its memory consumption
is even higher than CTJ-E with an unbounded cache.

In this section we explore the memory-performance tradeoff by
examining the impact of the different cache parameters on the per-
formance of LFTJ. Unless stated otherwise, the memory allocated
for the cache is evenly partitioned across the individual caches.

Cache size. The size of the CTJ-E cache is, naturally, the pri-
mary parameter that affects caching performance. We explore this
parameter’s impact on performance by bounding the cache size to
1%, 10%, and 25% of the size needed to store all partial results.
For example, a 5-cycle query running on the twitter dataset re-
quires 476MB to cache all partial results. We thus examine CTJ-E
performance when bounding the total cache size to 4.76MB (1%),
47.6MB (10%) and 119MB (25%). In this experiment, all bounded
caches use the least-recently-used (LRU) eviction policy.

Table 2 presents the performance of CTJ-E with bounded cache
size for representative queries and datasets. The performance is
presented as the slowdown over a run with an unbounded cache.

As expected, the table shows that performance degrades when
reducing the cache size. For example, the performance of a 5-
path query on the ca-GrQc dataset (0.4MB unbounded cache) slows

dataset 5-path 5-cycle

ego-twitter 1.8× 11×
ca-GrQc 1.3× 2×
p2p-Gnutella04 1.3× -1.3×
wiki-Vote -1.1× 4×

Table 3: Speedup for LRU over RANDOM on cache bounded
to 10% for 5-path and 5-cycle query evaluation

5-path 5-cycle
dataset 1x 2x 5x 1x 2x 5x

ca-GrQc 11.6× 3.4× 3× 10.4× 9.2× 8.3×
wiki-Vote 2.3× 1.5× 1.6× 5.5× 5× 5×
p2p-Gnutella04 5× 5× 5× 1.3× 1.3× 1.3×
ego-twitter 14× 8× 5.5× 2.4× 2.4× 2.4×

Table 4: Slowdown due to different cache partitioning with
LRU bounded to 5% of the full cache capacity, over unlimited
cache size for 5-path and 5-cycle query evaluation)

down by 1.7× when bounding the cache to 25% of full capacity, by
2.5× with 10% of full capacity, and by 18.4× with 1% of full ca-
pacity. The performance degradation is less acute in other cases.
A 5-cycle query running on ca-GrQc (8.8MB unbounded cache)
slows down by 1.9×, 3×, and 5× for caches bounded at 25%,
10%, and 1%, respectively, of full capacity. In other cases, the
performance impact of a bounded cache is fairly constant regard-
less of the bound. For example, running a 5-cycle query on the
twitter dataset (476MB unbounded cache) results in a slowdown of
2.4–2.5× for caches bounded at 1–25% of full capacity.

In summary, Table 2 shows that bounding the cache size to 25%
of its full capacity only yields an average slowdown of ∼3× over
an unbounded CTJ-E run. Bounding the cache size even further
to 10% of an unbounded cache results in an average slowdown of
∼2.7× over the performance obtained with an unbounded cache.
Notably, the performance obtained with a 10% bound is still supe-
rior to LFTJ, as well as to YTD 5-cycle queries, and comparable to
YTD for 5-path queries.

Eviction policy. We now turn to examine the impact of the cache
eviction policy on overall CTJ-E performance. Specifically, we
compare the performance obtained with both LRU and Random
eviction policies (the Random policy, as its name suggests, ran-
domly selects a cache entry to evict with uniform distribution). We
note that we have experimented with other eviction and insertion
policies, some based on statistical analysis of the datasets, but none
provided much better results than the classic LRU policy.

Table 3 presents the LRU performance as speedup over Random.
For brevity, we only show results for a 10% cache bound. The table
shows that for path queries LRU outperforms Random by 1.4× on
average. This is because most cached values will be effective in
path queries on the datasets we tested, and due to the overhead of
the LRU bookkeeping. On cycle queries, LRU outperforms Ran-
dom by 4.5× on average. We therefore choose to use the LRU
eviction policy with bounded CTJ-E caches.

Cache partitioning. The final parameter we explore is the allo-
cation of memory among caches. We test the LRU performance
speedup for bounded cache size, which is partitioned between the
caches in three different configurations. The first configuration
(1×) divides the allocated memory equally between the caches.
The second (2×), divides the allocated memory between the caches,
such that each level is bounded to 2× of the size of the level above
it. Here, a cache level means the position in the pre-order of the
TD. As an example, for the 5-cycle query on the twitter dataset,
we allocate a total of 476MB. In the second configuration, the first
cache will be bounded to 1/3 (158MB) and the second cache will
be bounded to 2/3 (317MB). The last configuration (5×) is similar
to the previous, but with a scale of 5× instead of 2×.

Table 4 shows the results for CTJ-E with LRU eviction, bounded
to 5%, over the different partitioning configurations. The results
show that for small caches of equal size, the caches can become
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Figure 11: Runtimes for count queries using the different algorithms. Gray bars represent executions that timed out.

ineffective due to thrashing. The results also show that a differ-
ent cache partitioning that allocates more memory to greater level
caches, such as 2× and 5×, can improve the performance by 10%-
3×. With these configurations CTJ-E outperforms LFTJ even with
very small memory allocation. The reason we observed is that a
cache in a greater level is accessed more often, and therefore ac-
counts for a larger portion of the recurring joins. Note that differ-
ent cache partitions do not affect queries on p2p-Gnutella04, since
CTJ-E caches are less effective for this dataset. This crude alloca-
tion depicts the importance of dynamically allocating the memory
between the caches, which we plan to pursue in future research.

Summary. We conclude that bounded caches enable CTJ-E to
benefit from both worlds. On one hand, it delivers substantial speed-
ups over LFTJ while preserving the bounded memory footprint
property. On the other hand, it can execute in settings where tra-
ditional join algorithms, which store all intermediate results, either
cannot execute or suffer substantial slowdowns due to disk I/O.

5.4 Results on Count Queries
We now examine the performance benefits of CTJ-C for count

queries. Figure 11 presents the runtime of 5-path, 5-cycle, and 5-
rand queries on different datasets. It shows that CTJ-C executes
the queries substantially faster than the alternatives for all datasets
except p2p-Gnutella04. CTJ-C is faster than LFTJ by over an or-
der of magnitude. When compared to YTD, CTJ-C is typically 2–
5× faster, with the exception of 5-rand(0.4) over p2p-Gnutella04,
where CTJ-C results in a marginal slowdown.

The distinction between the datasets is rooted in their value dis-
tribution. Skewed value distributions are more amenable to caching.
Specifically, when some values appear frequently in multiple tu-
ples, caching partial walks through the LFTJ Trie will likely pre-
vent redundant walks over the Trie. For example, the ego-Twitter
dataset exhibits such skew. For this dataset, CTJ-C is consistently
2–5× faster than YTD and orders of magnitude faster than LFTJ.

On the other hand, when the distribution of values across the
dataset is not skewed, as is the case with p2p-Gnutella04, caching
partial values have little benefit. Indeed, for this dataset the per-
formance benefits of CTJ-C are moderate (for 5-rand queries, both
YTD and LFTJ even marginally outperform CTJ-C). The results
demonstrate the effectiveness of CTJ-C when running on datasets
whose value distribution is skewed.

Figure 11 compares the algorithms when running two represen-
tative 5-rand random graph queries. Comparing CTJ-C with the
LFTJ algorithm, we see that CTJ-C is consistently faster by or-
ders of magnitude. The only exception is the p2p-Gnutella04 that,
as discussed above, exhibits a balanced value distribution. When

comparing CTJ-C to YTD, we observe an average speedup of∼8×.
Again, the only exception is the p2p-Gnutella04 dataset. Notably,
the results for 6-rand (not shown) are consistent with 5-rand.

The performance benefits of CTJ-C are consistent across differ-
ent query sizes. Figure 12 presents the runtimes for {3–7}-path and
{3–6}-cycle queries. For brevity, we show the results for only two
of the datasets. (The figure also shows the performance of DBMSs,
which is discussed below.) The figure shows that for path queries
CTJ-C is consistently 3× faster than YTD. Moreover, CTJ-C is or-
ders of magnitude faster than LFTJ, and the performance benefits
only increase with the size of the query.

For {3–7}-cycle queries, Figure 12 shows that CTJ-C outper-
forms LFTJ and YTD, especially on larger cycle queries. Inter-
estingly, we see little difference in the running times for 3-cycle
queries. The reason for that is there is no tree decomposition for
triangles, and CTJ-C effectively behaves like LFTJ. Similarly, the
performance of CTJ-C and YTD is comparable for 3-cycle queries.

When comparing the benefits of CTJ-C over large cycle and path
queries (Figure 12), we see that CTJ-C delivers better speedups for
paths. This is attributed to the cache dimension property (the size of
adhesions). Therefore, the cache dimension for paths is set to one,
and for cycles it is set to two. Notably, a cache whose dimension
is one is shown to be much more effective. 5-cycle queries present
another interesting result. For these queries YTD performs worse
than LFTJ (and CTJ-C). The reason is that YTD’s Yannakakis and
the worst-case optimal join algorithm used by YTD, favor the op-
posite attributes order, which dramatically affects its performance.

Figure 12 shows that the performance benefit of CTJ-C and YTD
over LFTJ increase with the query size at an exponential rate. More-
over, while CTJ-C and YTD have similar scaling trends for path
queries, CTJ-C is an order of magnitude faster for {5–6}-cycle.

Comparison to systems and engines. To explore the scaling
trends of the pure algorithms compared to those of DBMSs, we ran
the queries on PGSQL (using pairwise join), LB-LFTJ, LB-FAQ
(worst-case optimal join algorithms) and YTD-Par (parallel imple-
mentation of YTD). For brevity, we show the results for only two
datasets: Wiki-Vote and ego-Facebook. Notably, these are consis-
tent with the results obtained for the other SNAP datasets.

Figure 12 shows the results for {3–7}-path count queries. The
first thing to note in the table is that the scaling of vanilla LFTJ
and LB-LFTJ are correlated. We attribute the 4–10× ratio in per-
formance between the two to overheads associated with running a
full DBMS vs. a pure algorithm. A comparison between YTD-Par
and YTD shows that YTD-Par is much faster than YTD. This to be
expected, as YTD-Par engine is a parallel implementation of YTD
pure algorithm, using the processor’s wide vector unit. Due to the
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Algorithms Systems and engines

query CTJ-C YTD LFTJ LB-FAQ LB-LFTJ PGSQL YTD-Par

3-path 36 3× 5× 9× 54× 19× 0.08×
4-path 58 3× 133× 5× 615× 364× 0.05×
5-path 78 3× 4362× 8× 21113× 11161× 0.09×
6-path 97 3× 157691× 7× t/o 402735× 0.10×
7-path 119 4× t/o 7× t/o t/o 0.13×

3-cycle 24 1× 1× 13× 13× 41× 0.21×
4-cycle 1474 0.85× 3× 7× 7× 3× 0.16×
5-cycle 9401 16× 16× 1.66× 43× 13× 2×
6-cycle 28615 11× 235× 1× 617× 242× 0.90×

Algorithms Systems and engines

query CTJ-C YTD LFTJ LB-FAQ LB-LFTJ PGSQL YTD-Par

3-path 26 5× 4× 14× 39× 22× 0.12×
4-path 48 4× 62× 10× 308× 174× 0.06×
5-path 94 4× 818× 7× 7973× 2116× 0.07×
6-path 119 3× 15086× 6× t/o 56534× 0.08×
7-path 150 3× t/o 6× t/o t/o 0.09×

3-cycle 48 1.1× 1× 12× 12× 42× 0.13×
4-cycle 569 1.31× 1× 5× 5× 4× 0.12×
5-cycle 1785 74× 8× 3× 37× 26× 12×
6-cycle 4639 54× 81× 3× 366× 208× 5×

Figure 12: CTJ-C runtimes (in msecs) for {3–7}-path and {3–
6}-cycle count queries and relative runtimes for compared so-
lutions (i.e.,m×meansm times slower than CTJ-C), shown for
Wiki (top) and Facebook (bottom) datasets. t/o indicates run-
time over 10 hours (timeout).

parallel implementation, YTD-Par is also faster than CTJ-C and
LFTJ on path queries. Nevertheless, the sequential CTJ-C imple-
mentation is comparable to YTD-Par for {5–6}-cycles queries (and
is even faster on some datasets).

On average, CTJ-C is over 39× faster than LB-LFTJ for all path
queries, and 5-208× faster for all cycle queries. CTJ-C speedup
over LB-FAQ is 7× and 4× on average for path and cycle queries,
respectively. Compared to PGSQL, CTJ-C is consistently 3–5 or-
ders of magnitude faster for big cycle and path queries.

6. CONCLUDING REMARKS
We have studied the incorporation of caching in LFTJ by tying

an ordered tree decomposition to the variable ordering. The re-
sulting scheme retains the inherent advantages of LFTJ (worst case
optimality, low memory footprint), but allows it to accelerate per-
formance based on whatever memory it decides to (dynamically)
allocate. Our experimental study shows that the result is consis-
tently faster than LFTJ, by orders of magnitude on large queries,
and usually faster than other state of the art join algorithms.

This work gives rise to several directions for future work. These
include further exploration of different caching strategies, different
TD enumerations and cost functions, extension to general aggre-
gate operators (e.g., based on the work of Joglekar et al. [15] and
Khamis et al. [16]), and generalizing beyond joins [29]. A highly
relevant work is that on factorized representations [6,23,25], which
we can incorporate in two manners. First, our caches can hold fac-
torized representations instead of flat tuples. Second, the final result
can be factorized by itself, and in that case our caching is likely to
become even more effective, since it will save the cycles then we
effectively spend on de-factorizing our cached results.
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ABSTRACT
Given a set of objects and a set of top-k queries on these ob-
jects, we are interested in adjusting some object’s attribute
values to meet some requirements under certain cost con-
straints. We call such an adjustment an improvement strat-
egy. Searching for cost-efficient improvement strategies is
crucial for applications like product marketing, where top-
k queries are used to model users’ preference. We propose
two types of Improvement Queries (IQs). A Min-Cost IQ
finds the improvement strategy that makes selected objects
hit a desired number of queries with the minimal cost, while
a Max-Hit IQ searches for the improvement strategy that
makes selected objects hit as many queries as possible with
a given budget. We show that answering IQs is NP-hard
and develop a suite of heuristic algorithms. Our key idea is
to interpret objects as functions and treat each top-k query
as an input to the functions. The geometric relationship
among the function intersections is then leveraged for effi-
cient query processing. We implement the proposed algo-
rithms as an analytic tool and integrate it with a DBMS,
and they exhibit excellent performance on both synthetic
and real-world data in experiments.

1. INTRODUCTION
Top-k query [7, 6, 11, 26] is widely used in applications

like e-commerce for users to find objects (e.g., products)
that best match their preference. A user’s preference is rep-
resented by a utility function which computes a “score” for
each object, and a top-k query retrieves the k objects with
the highest/lowest scores. When an object appears in a
query result, we say the object hits the query. Given a set of
objects and a set of top-k queries, adjusting an object’s at-
tribute values could result in changing the number of queries
it hits. In this paper, we refer to such an adjustment as an
improvement strategy. We are interested in querying the
improvement strategies for objects of interested under some
cost constraint. We consider two variations of Improvement
Query (IQ):

c©2017, Copyright is with the authors. Published in Proc. 20th Inter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

• Min-Cost IQ: Given a cost function, this type of IQ
finds the most cost-efficient improvement strategy for an
object to hit a given minimum number of top-k queries.
Here a cost function is defined by the query issuer to mea-
sure the cost of adjusting attribute values of objects. The
idea of modeling costs as math functions is a common ap-
proach [19, 4]. We allow query issuers to define their own
cost functions.

• Max-Hit IQ: Given a cost function and a budget, this
type of IQ returns the improvement strategy for an object
to hit the maximal number of top-k queries under the
condition that the total cost does not exceed the budget.

The problem of finding improvement strategies arises from
a variety of applications. For example, a camera manu-
facturer may want to improve its product for more market
shares. Here an improvement is a change of the product’s
features such as camera’s resolution and price. Likewise, in
a presidential election, it is imperative for the candidates to
evaluate their campaign strategies from time to time, and
adjust if needed, in order to appeal themselves to more vot-
ers. In these examples, there are a set of objects (e.g., prod-
ucts, presidential candidates) and a set of top-k queries, each
representing the preference of a user (e.g., customer, voter),
and we want to improve one or more objects (called targets)
to hit as many queries as possible. Existing queries such
as reverse top-k query [21], maximal rank query [14], and
reverse k-ranks query [25] have been developed to provide
information concerning an object’s competitiveness in top-
k selection. These queries, however, do not allow one to
identify an improvement strategy, the focus of this paper.

The problem of processing IQs can be formulated as con-
strained optimization problems and we prove it is NP-hard.
As such, finding accurate query results is computation inten-
sive even for moderate size datasets. We address this prob-
lem by proposing a suite of heuristic algorithms. At the core
of the proposed algorithms is a novel indexing technique.
Our key idea is to 1) interpret each object as a function,
and 2) treat each top-k query as an input to these functions.
The intersection of two functions formulates a hyperplane
in their domain. Given a set of functions, their intersection
hyperplanes partition the domain into a number of subdo-
mains. We observe that the rank of an object must be the
same for all queries that fall in one subdomain. Applying
an improvement strategy to an object will cause the bound-
ary of some subdomains to change, but it will affect the
result of a top-k query only if the query falls into a different
subdomain. This observation allows us to develop a highly
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efficient algorithm for IQ processing. We summarize our
main contributions as follows:

• To our knowledge, this is the first to study the problem
of object improvement, defined as adjusting the attribute
values of the objects of interest. We prove the inherent in-
tractability of the minimal cost/maximal hit improvement
strategy searching problem.

• We propose the notion of Improvement Query (IQ), which
supplements the existing top-k query with the key infor-
mation needed to develop effective improvement strate-
gies. We propose two types of IQs: Min-Cost IQ and
Max-Hit IQ. Given a user-defined cost function, the for-
mer IQ finds the most cost-efficient improvement strat-
egy that achieves desired number of hits, while the latter
one finds the improvement strategy that hits the maximal
number of top-k queries with a given budget. We design
efficient IQ processing algorithms based on a novel query
indexing technique and an important observation.

• We implement the proposed techniques as an analytic tool
and integrate it with the Database Management System
(DBMS). The tool is thoroughly evaluated over synthetic
and real-world data. The results show that our techniques
demonstrate good performance, and the tool is scalable for
large-scale users and objects.

The rest of the paper is organized as follows. We discuss
related work in Section 2. In Section 3, we formally define
the problem and give an overview of our solution. The pro-
posed techniques for basic cases and complex scenarios are
presented in Section 4 and Section 5 respectively. In Sec-
tion 6, we describe our system implementation and present
experiment results. We conclude the paper in Section 7.

2. RELATED WORK
Our work is closely related to the top-k query and other

rank-aware queries. We briefly discuss some representative
works as follows.

Top-k query: Several indexing techniques have been pro-
posed for efficient processing of top-k queries. View-based
techniques (e.g., [11, 8]) employs materialized views to re-
trieve top k, where objects are ranked according to arbitrary
utility functions. Layer-based technique ( [6]) computes the
convex hulls of data points, and organizes them in layers.
Top-k queries are then processed from the outmost layer,
which contains objects that are most likely to be in top-
k. The state-of-the-art technique is [26], which exploits the
dominant relationship between objects. More specifically,
an object pi is said to dominate another object pj if there
exists no linear utility functions that ranks pi lower than
pj . Thus there is no way for pj to be include in a query
result unless pi is included first. As such, objects can be
organized into groups based on their dominant relationship.
This allows efficient processing of top-k queries. These tech-
niques, however, are all limited to linear utility functions.
The problem of non-linear utility function top-k selection is
studied in [24] as k-constrained optimization problem, and
addressed with a state-space indexing technique.

Other rank-aware queries: Top-k query has inspired a
rich family of rank-aware queries, which are closely related
to our research. Given a set of objects and a set of top-k

queries, a reverse top-k query [20, 21] retrieves the queries
whose result contains a selected object. For less popular ob-
jects, a useful variant of reverse top-k query is the reverse
k-ranks query, which can find the k queries whose rank of an
object is the highest among all queries. A maximum rank
query [14] computes the highest possible rank an object can
achieve for any utility function. Unlike our work, the max-
imum rank is not achieved by adjusting attributes of the
object itself, but by exploring different utility functions. It
can find the maximum rank one object can get with respect
to any query, but cannot provide information on how to in-
crease the number of queries that an object hits. This makes
it fundamentally different from our problem. These existing
queries help one understand the current competitiveness of
an object among its peers, but not improve the object to
make it more competitive.

Another related work is [13]. It considers how to find
the k objects from a dataset that can be upgraded with
minimal cost. The goal of upgrade is to make the object
appear on skyline of the dataset. An object is said to be
on skyline if it is not worse in all dimensions than another
object in the dataset. Each dimension is compared inde-
pendently and no function is computed, therefore making
an object to be on skyline is straightforward, and the ma-
jor challenge addressed in [13] is how to efficiently find the
k objects with lowest upgrading cost without traversing all
objects. In contrast, finding optimal improvement strategy
for even one object is NP-hard. Their proposed algorithm
cannot solve our problem. A similar work [22] discusses how
to efficiently create new products that appear on skyline of
a given dataset. But it does not consider improving existing
objects, thus less related to our work.

3. PRELIMINARIES

3.1 Problem Definition
Consider a dataset D with n objects. Each object pi

is a point in the d-dimensional space, where each dimen-
sion represents a numerical attribute of the object. We

use p
(j)
i to denote its j-th dimension’s value. Each dimen-

sion can be continuous or discrete, finite or infinite. Let
Q = {q1, q2, ..., qm} denote a set of m top-k queries. Each
query qi (1 ≤ i ≤ m) specifies a k value (i.e., the number
of object to return) and a utility function which computes a
score for each object. Together they represent a user’s pref-
erence. The number of top-k queries hit by pi is denoted by
H(pi). We define improvement strategy as follows:

Definition 1 (Improvement Strategy). An improve-
ment strategy s for an object pi is a d-dimensional vector s =
{s1, s2, ..., sd}, where si ∈ R specifies how the i-th attribute
is to be adjusted, i.e., applying s to pi will replace pi with a

new object p′i, where p
′(j)
i = p

(j)
i + sj (1 ≤ j ≤ d).

To illustrate, consider a camera dataset showed in Fig-
ure 1. Each camera has three discrete attributes resolution,
storage, and price. Together they determine the camera’s
rank for a given top-k query. Let s = {5, 2,−50} be an
improvement strategy. Applying s on a camera means to
increase the camera’s resolution by 5 Megapixel, increase its
storage by 2 GB, and decrease its price by $50. For ex-
ample, applying s on camera p1 will result in a new object
p′1 = {15, 4, 200}. Note that after the improvement, p′1’s
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Cameras

ID resolution (Megapixel) storage (GB) price ($)
p1 10 2 250
p2 12 4 340
· · · · · · · · · · · ·

⇓ Applying s = {5, 2,−50} to p1

ID resolution (Megapixel) storage (GB) price ($)
p′1 15 4 200
p2 12 4 340
· · · · · · · · · · · ·

Top-k queries represent users’ preference for camera

ID Utility function top-k
q1 5.0*resolution + 3.5*storage - 0.05*price k = 1
q2 2.5*resolution + 7.0*storage - 0.08*price k = 1
· · · · · · · · ·

Figure 1: Example of improvement strategy for cameras

rank becomes higher than that of p2 for both queries q1 and
q2.

For ease of presentation, we will simply use p′i = pi + s to
denote the improved object p′i that is derived by applying
s on pi. An improvement strategy aims to make a target
object appear in more query results. Given an improvement
strategy s, we measure its effectiveness in improving object
pi as the number of top-k queries hit by p′i = pi + s, denoted
by H(p′i). A larger H(p′i) means more effective that s is in
improving pi.

Improving an object requires resources such as time and
money. We let the query issuer specify such resource re-
quirements using a cost function Costpi(s), which computes
the cost of applying strategy s to object pi. There is rich lit-
erature on how to model product costs using math functions
and interested readers are referred to [19, 4, 2] for details.
Here we simply assume the cost functions are provided by
the query issuer. Our research is aimed at finding two kinds
of improvement strategies:

Definition 2 (Min-Cost Improvement Strategy).
Given an improvement goal that is to hit at least τ ∈ I
queries, an improvement strategy s for pi is a minimal cost
improvement strategy w.r.t. some cost function Costpi if
H(pi + s) ≥ τ and Costpi(s) is minimized.

Definition 3 (Max-Hit Improvement Strategy).
Given a budget β ∈ R, an improvement strategy s for pi is
a maximal hit improvement strategy w.r.t. some cost
function Costpi if Costpi(s) ≤ β and H(pi + s) is maxi-
mized.

Accordingly, we define two types of Improvement Queries
(IQs). A Min-cost IQ let user query minimal cost improve-
ment strategies for selected objects. Similarly, a Max-Hit
IQ returns the maximal hit improvement strategies. We
will show later in Section 4 that searching for the two types
of improvement strategies are NP-Hard even for one target
object, and the problem becomes more complex when trying
to improving multiple target objects. As such, our goal is
to develop highly efficient heuristic algorithms.

3.2 Interpreting Objects as Functions
Our key idea is to interpret each object as a function and

treat each top-k query as a function input. This is different
from existing works where queries are considered as utility
functions and objects as their input. We use the most com-
mon linear utility functions[7, 6, 11, 26] as an example to
explain our idea.

For linear utility functions, each query qi ∈ Q is a d-

dimensional vector qi = {q(1)i , q
(2)
i , ..., q

(d)
i } that assigns

a weight to each attribute of an object and computes the
weighted sum. For simplicity, we use the same assump-
tion as existing works that all queries are normalized, i.e.,

q
(j)
i ∈ [0, 1] for any dimension j. In our solution, we treat

each object pi as a linear function fi, where p
(j)
i is the j-th

coefficient. It takes a query q as input and computes the
ranking score of pi:

fi(q) =
∑d

j=1 q
(j)p

(j)
i (1)

Note that the ranking score is the same as the weighted sum.
The difference is that a query is now treated as a function
parameter while the object attribute values are treated as
function coefficients. As such, the set of objects D is in-
terpreted as a set of functions D = {f1, f2, ..., fn}. When
causing no ambiguity, we will use pi and fi interchangeably
to refer to the same object. To evaluate a top-k query q,
we compute f1(q), f2(q), ..., fn(q) and select the k functions
with lowest output values.

The intersection of two functions fi and fj creates a hyper-
plane in the d-dimensional domain space. The intersection
partitions the domain into two subdomains, namely above
and below. For any input q falls in the above subdomain,
we have fi(q) ≥ fj(q), and for any input q in the below
subdomain, we have fi(q) < fj(q). The intersections of all
functions partition the domain space D into a number of
subdomains, and the functions can be strictly sorted in each
of these subdomains. That is, if there exists a query point
q in a subdomain such that fi(q) > fj(q) (or fi(q) < fj(q)),
then for any other query point p in the same subdomain, we
have fi(p) > fj(p) (or fi(p) < fj(p)). As a result, the rank
of a function fi remains the same for any two queries qx and
qy as long as they fall in the same subdomain.

Applying an improvement strategy s to pi will cause the
intersections involving fi to tilt towards some direction de-
termined by s. The boundaries of some subdomains will
also move. As showed in Figure 2, it may cause some query
points to move to a different subdomain (e.g., move from
above to below some intersections). We have two important
conclusions.

Fact 1. An improvement strategy s affects the result of
a query q if and only if q is moved to a different subdomain
after applying s to pi. Thus, if no query point is moved to
a different subdomain, we have H(pi + s) = H(pi).

Fact 2. The rank of two functions fi and fj must be
switched in the ranking result of some query q, if and only if
q is moved from above (or below) to below (or above) of the
intersection of fi and fj.

The proofs of the two conclusions are straightforward.
Due to limited space, we refer readers to [9, 16] for proof
details. These facts suggest an efficient way to evaluate a
given improvement strategy s. First, we apply s to pi and
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Before applying s After applying s
q1, q2 [f1, f2] [f1, f2]
q3, q4 [f1, f2] [f2, f1]
q5 [f2, f1] [f2, f1]

Figure 2: An improvement strategy affects subdomain
boundaries and query results

find all the query points that are moved to a different sub-
domain. Then, for each query point found, check if pi ap-
pears in its result and update H(pi + s) accordingly. The
challenge now is, how to efficiently determine (without tra-
verse all query points or subdomains) which query points
are moved to which subdomains before and after applying
an improvement strategy, and then compute their results.
We discuss this approach in detail in the next section.

4. PROPOSED SOLUTION
We first introduce an Efficient Strategy Evaluation (ESE),

which group query points by subdomains and index them us-
ing multidimensional data structures such as R-tree [10] or
X-tree [3]. We will then discuss how to use ESE as a build-
ing block for efficiently processing of IQs. Here we consider
only one target object with linear utility functions. Never-
theless, our techniques allow users to select multiple objects
as targets, use different cost functions for each object, and
query improvement strategies with non-linear utility func-
tions, which we will discuss later in Section 5.

4.1 Efficient Strategy Evaluation (ESE)
Given an improvement strategy s for pi, we need to com-

pute its effectiveness in improving pi, i.e., counting the num-
ber of top-k queries that include p′i = pi + s in their re-
sult. For this purpose, existing solutions such as Reverse
top-k Threshold Algorithm (RTA) [21] can be used. These
schemes, however, support only linear utility functions. In
particular, they are less efficient when a less number of
queries include the object in their result. When H(pi + s)
increases, their performance will drop significantly. Here we
present an approach that works better for our purpose.

Given the intersection of two functions fi and fl:∑d
j=1 q

(j)(p
(j)
i − p

(j)
l ) = 0 (2)

Equation 3 represents the new intersection hyperplane after
some improvement strategy s is applied to pi.∑d

j=1 q
(j)(p

(j)
i + sj − p(j)l ) = 0 (3)

The area bounded between the old and new intersection hy-
perplanes represented by Equation 2 and 3 formulates a sub-
space (e.g., the shadow area showed in Figure 2) inside the
function domain space. We define this subspace as the af-
fected subspace of s. It contains all the query points whose
result are affected by applying s to pi. To efficiently retrieve
and evaluate such queries, we group all queries by their sub-
domains and index them with an R-tree.

Algorithm 1 FindSubdomains(I,Q)

1: d← newSubdomain()
2: Subdomains.add(d)
3: for all q ∈ Q do
4: q.subdomain← d
5: end for
6: for all Ii ∈ I do
7: for all Subdomain d ∈ Subdomains such that d over-

laps Ii do
8: dabove ← newSubdomain()
9: dabove.boundaries.add(Ii, above)

10: dbelow ← newSubdomain()
11: dbelow.boundaries.add(Ii, below)
12: for all q falls in d do
13: if q falls above Ii then
14: q.subdomain← dabove
15: else
16: q.subdomain← dbelow
17: end if
18: end for
19: if dabove contains query then
20: Subdomains.add(dabove)
21: end if
22: if dbelow contains query then
23: Subdomains.add(dbelow)
24: end if
25: end for
26: end for
27: Return Subdomains

Group query points by subdomain: Subdomains are
partitioned using intersection hyperplanes of functions in
D. Thus we need first to find the intersections created by
the functions. This can be efficiently done using intersec-
tion discovery algorithms such as the plane sweeping algo-
rithm [15]. We then partition the function domain into sub-
domains gradually, by considering function intersections one
at a time.

Let I = {I1, I2, ..., Im} be the set of all function intersec-
tions. An intersection hyperplane Ii partitions the domain
space into two subdomains: subdomain above and subdo-
main below the intersection. As such, it also partitions the
query points Q into two groups, above and below. Note that
queries fall on the intersection hyperplane can be treated as
above it with no affect on the proposed algorithm. Whether
a query point q falls above or below Ii is checked as fol-
lows. Let Ii be the intersection of some functions fa and
fb. A query q falls above Ii if and only if fa(q)− fb(q) ≤ 0.
Otherwise q is below Ii. These two groups of queries can
then be further partitioned by considering another inter-
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section. We repeat this binary space partitioning process
until no group can be further partitioned. At the end, for
each query, we add an attribute Subdomain that contains
a unique subdomain ID, recording the subdomain that con-
tains the query point. If all query points in a sub-tree have
the same Subdomain value, then we can mark this on the
root-node of the sub-tree, instead of storing the same in-
formation for each query point. Note that we can also find
which intersection serves as a boundary of a subdomain dur-
ing this process. Finally, to save space, all the subdomains
that contain no query point are simply discarded. A more
formal description of this process is given in Algorithm 1.

Once the index is in place, computing H(pi+s) is straight-
forward. We only need to evaluate (or re-evaluate, if it is al-
ready evaluated) all queries falling in the affected subspaces.
To check whether a query point q falls in the affected sub-
space, it is not necessary to solve the system of Equation 2
and 3. It is determined by two boundary conditions:∑d

j=1 q
(j)(p

(j)
i − p

(j)
l ) ≥ 0 (4)∑d

j=1 q
(j)(p

(j)
i + sj − p(j)l ) < 0 (5)

which is equivalent to a range query over the R-tree index,
where the query range is the affected subspace (ruled by
the boundaries of the function domain, if any). However,
evaluating queries in the affected subspace may still be ex-
pensive if the affected subspace is large. Here we propose
two methods to avoid complete re-evaluation of any query.

First, by Fact 2, if q falls in the affected subspace after s
is applied, the new ranking result of q can be generated by
simply switching the rank of fi and fl in the original ranking
result. If q is not in the affected subspace, its result must
remain the same. Additionally, if fl was not in the top-k
result of q, it indicates that after applying the improvement
strategy, fi cannot be in the top-k of the q because it only
switches order with fl. As such, we can rapidly eliminate
unaffected queries.

Second, all query points fall in the same subdomain share
exactly the same ranking result. Thus at most one query
needs to be evaluated per subdomain. Recall that we have
already grouped query points by their subdomains in the
indexing step, and marked for each query which subdomain
contains it. Let TP (pi) ⊆ Q denote the set of queries hit
by pi. The pseudocode of this ESE approach is given in
Algorithm 2.

We first find all the affected subspace(s) for the given
strategy s. This is done by checking all function intersections
involving fi among the intersections found in the indexing
stage. For each query point that falls in an affected sub-
space of s, we check its query result. If the query has not
been evaluated yet, then evaluate it and cache the result for
future use (note that at most one query result needs to be
cached per subdomain). Otherwise, use the aforementioned
function-switching method to rapidly generate its result. For
each subdomain, only one query needs to be evaluated, and
the result can be shared for all other queries. In ESE, each
top-k query needs to be evaluated for at most once, and the
result of a large proportion of queries can be generated by
re-using the result of their nearby queries, given that they
fall in the same subdomain.

4.2 Improvement Strategy Searching

4.2.1 Min-Cost Improvement Strategy

Algorithm 2 EfficientStrategyEvaluation(pi, s)

1: H(pi + s)← |TP (pi)|
2: for all fl ∈ D intersects fi and fl 6= fi do
3: Find the affected subspace
4: for all q falls in the affected subspace do
5: if q is not evaluated then
6: evaluate q
7: end if
8: Switch the rank of fi and fl;
9: for all qj falls in the same subdomain as q do

10: if qj /∈ TP (pi) and qj ∈ TP (pi + s) then
11: H(pi + v) + +;
12: else if qj ∈ TP (pi) and qj /∈ TP (pi + s) then
13: H(pi + v)−−;
14: end if
15: end for
16: end for
17: end for
18: Return H(pi + s)

Let pi be the object to be improved. Given an improve-
ment strategy s, we have the improved object p′i = pi + s.
We use pj,k to denote the k-th ranked object of query qj . In
order for p′i to be in the result of qj , the following condition
must hold:

f ′i(qj) < fj,k(qj) (6)

That is, the ranking score of p′i must be less than that of qj,k.
Here fj,k is pj,k’s corresponding function and f ′i that of p′i.
We have variable xj = 1 if p′i appears in the result of qj and
xj = 0 otherwise. For the min-cost improvement strategy,
the goal is to minimize the cost under the condition that p′i
can hit at least τ queries. This problem can be formulated
as a constrained optimization problem:

minimize Costpi(s) (7)

subject to

m∑
j=1

xj ≥ τ (8)

f ′i(qj) < fj,k(qj) + (1− xj)C ∀j ∈ [1,m] (9)

xj ∈ {0, 1} ∀j ∈ [1,m] (10)

where C denotes a very large number that exceeds the high-
est score of all objects. Constraint 8 guarantees that the
improved object hits at least τ queries, while Constraint 9
ensures that Equation 6 is satisfied for each hit query. Note
that the improvement strategy must also be Valid. That
is, all attribute values of the improved object must not ex-
ceed the allowed range. For simplicity, here we assume pi
is defined on Rd, thus the trivial condition pi + s ∈ Rd is
omitted in the above formulation. Nevertheless, in the case
where this certain limitation on the value of the i-th at-
tribute, additional constraints on si can be added to reflect
such requirements for valid improvement strategies. For ex-
ample, if the user does not allow value of the i-th attribute
of the target object to be adjusted at all, we can simply add
a constraint si = 0.

The formulated problem is an integer linear programming
problem [23], which has been studied extensively and no ef-
ficient algorithm is known. The problem of searching for
the min-cost improvement strategy actually is NP-hard. We
prove it with a reduction from the Minimal Set Cover prob-
lem, which is known to be NP-hard.
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Definition 4 (Minimal Set Cover). Given a set U =
{u1, u2, ..., un} and S = {S1, S2, ..., Sm} where Si ⊆ U . Find
the minimal number of subsets in S whose union is U .

Reduction from Minimal Set Cover to Min-cost Im-
provement Strategy: An instance of minimal set cover
problem can be converted to an instance of the min-cost
improvement strategy problem as follows: Create a top-1
query qi for each element ui ∈ U with utility function:

ui(p) = wi1 ∗ p(1) + wi2 ∗ p(1) + ...+ wim ∗ p(m) (11)

and set weight wij to 1 if ui ∈ Sj , and wij = 0 if otherwise.
Suppose the objects are ranked by their utility scores in
non-increasing order. Create two m-dimensional objects p0
and p1, such that all attributes of p0 are set to 0 and all
attributes of p1 are set to 1/(m + 1). Therefore H(p0) = 0
and H(p1) = n. The goal is to improve p0 such that H(p0) =
τ = n. We impose a simple linear cost function:

Costp0(s) = s1 + s2 + ...+ sm (12)

such that the cost of adjusting any attribute of p1 is equally
expensive. Additionally, each attribute of p0 is discrete and
can only be 0 or 1. Note that covering an element ui ∈ U is
equivalent to hitting query qi with p0. In order to do so, an
improvement strategy must adjust at least one attribute p(j)

of p from 0 to 1 where wij = 1, which indicates that subset
Sj should be selected to cover ui. The total improvement
cost is equal to the number of selected subsets. As such,
a min-cost improvement strategy for the converted instance
can be translated into a minimal set cover for the original
instance.�

We now propose a heuristic algorithm (Algorithm 3) which
leverages the proposed ESE algorithm to search for the sub-
optimal strategy. The algorithm consists of multiple iter-
ations. In each iteration, it first computes for each query
qj ∈ Q, a strategy sj such that p′i = pi+sj can hit it with the
minimal cost. This step generates a set of S of candidate im-
provement strategies. Then we apply to pi the strategy s ∈ S
with the minimal cost per hit query Costp′i(s)/H(p′i + s).

Repeat this process until p′i hits at least τ queries. In each
iteration, we call the ESE algorithm as a subroutine to com-
pute H(p′i + sj).

Algorithm 3 MinCostIQ(pi, τ, Costpi)

1: p′i ← pi
2: while H(p′i) < τ do
3: S ← ∅
4: for each query qj ∈ Q and /∈ TP (p′i) do
5: sj ← arg minCostp′i(s) such that qj ∈ TP (p′i + s)

6: Compute H(p′i + sj)
7: S.add(sj)
8: end for
9: Find s ∈ S with minimal Costp′i(s)/H(p′i + s)

10: if H(p′i + s) ≤ τ then
11: p′i = p′i + s
12: else
13: Return s ∈ S with minimal Costp′i(s) and H(p′i +

s) ≥ τ
14: end if
15: end while
16: Return s = p′i − pi

Note that the algorithm requires to find the minimal cost

strategy sj that hits a query qj . It formulates a single-
constraint optimization problem:

minimize Costpi(s) (13)

subject to f ′i(qj) < fj,k(qj) (14)

which can be efficiently solved using standard math tools
like [12].

The proposed algorithm can be considered a greedy one,
since it always selects the improvement strategy with max-
imal efficiency-cost ratio at each step. The rational behind
the algorithm is based on the following observation: The
average cost per hit query is minimized in a min-cost im-
provement strategy, comparing with any other improvement
strategies that hit the same number of queries. The pro-
posed algorithm tries to minimize the average cost per hit
query at each iteration. This greedy method reduces size of
the searching space to O(m) per iteration, and the number
of iterations is bounded by τ . In comparison, exhaustive
search takes at least O(2m) steps.

Similar to other greedy algorithms, our algorithm may
terminate with a local optimum. Nevertheless, our experi-
ment shows the algorithm is efficient enough to answer users’
IQs interactively (i.e., a user hardly feels waiting time) with
a regular desktop computer. Although the cost of the im-
provement strategy found may be sub-optimal, it greatly
outperforms other methods such as simple greedy search
(i.e., always try to hit the query with the least cost, repeat
until hit enough queries) and random search (i.e., return a
randomly generated improvement strategy), which we will
discuss later. To sum up, this algorithm offers a good trade-
off between improvement cost and feasibility.

Processing Min-Cost IQs: To issue a min-cost IQ, the
query issuer first defines a cost function Costpi for the se-
lected target pi and specifies a desired τ . The system then
uses Algorithm 3 to find the improvement strategy that sat-
isfies the desired number of hits. For query issuers who
indeed want the optimal strategy, we also provide them
with the option of exhaustively strategy searching, which
uses mathematical optimization tools (e.g., [12]) to solve
the above optimization problem. However, due to the in-
tractability of the problem, this algorithm is only feasible
for very small datasets.

4.2.2 Max-Hit Improvement Strategy
Recall that the goal of maximal hit improvement strategy

is to maximize the number of queries hit by the improved
object with the constraint that the total cost does not ex-
ceed a given budget β. Similarly, we formulate the following
optimization problem.

maximize H(pi + s) (15)

subject to Costpi(s) ≤ β (16)

f ′i(qj) < fj,k(qj) + (1− xj)C ∀j ∈ [1,m] (17)

xj ∈ {0, 1} ∀j ∈ [1,m] (18)

The target function computes the hit number of the im-
proved object, while Constraint 16 corresponds to the lim-
ited budget. The meaning of Constraint 17 is the same as
the minimal cost improvement strategy problem. It is easy
to see that searching for maximal hit improvement strat-
egy is also NP-Hard, because the minimal cost improvement
strategy problem reduce to it.

Reduction from Min-Cost Improvement Strategy to
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Max-Hit Improvement Strategy: Let MaxHit (pi, β,
Costpi) be a subroutine that finds the maximal hit improve-
ment strategy. We show how to find the minimal cost im-
provement strategy for pi with desired hit τ by calling the
subroutine. Let xmax be the cost required to hit all top-k
queries, which can be treated as a constant. The minimal
cost that we are looking for must fall in [0, xmax], so we can
search for the minimal cost strategy with a binary searching
process. We start by setting β to an initial value x such that
xmax ≥ x ≥ 0, and use the subroutine to find s such that
pi + s hit the maximal number of queries. If H(pi + s) ≥ τ ,
it means the minimal cost required to hit τ queries is no
greater than x. Thus we refine the searching range by set-
ting β to a new value in [0, x] and repeat the process. Simi-
larly, if H(pi +s) < τ , it indicates the minimal cost required
must be larger than x and thus we set β to a new value in
[x, xmax]. Regardless of the initial value, this binary search-
ing process can find the minimal cost improvement strategy
within log xmax attempts (i.e., by calling MaxHit(pi, β) for
at most log xmax times, which is linear).�

The above proof demonstrates that the two improvement
strategies, namely min-cost and max-hit, are closely related
to each other. The two types of improvement strategies
share a similar characteristic: the cost per hit query is min-
imized for a max-hit improvement strategy, comparing with
any other improvement strategies with the same cost. As
such, we modify the greedy searching Algorithm 3 to pro-
cess max-hit IQs. The algorithm uses a similar searching
method which looks for the most cost-efficient improvement
strategy in each iteration, and the iterations terminate when
all budget is used, or there is not enough budget to cover
more queries.

Algorithm 4 MaxHitIQ(pi, β, Costpi)

1: p′i ← pi
2: s∗ ← 0
3: while Cost(pi)(s∗) < β do
4: S ← ∅
5: for each query qj ∈ Q and /∈ TP (p′i) do
6: sj ← arg minCostp′i(s) such that qj ∈ TP (p′i + s)

7: Compute H(p′i + sj); S.add(sj)
8: end for
9: Find s ∈ S with minimal Costp′i(s)/H(p′i + s)

10: if Cost(pi)(s∗) + Cost(pi)(s) ≤ β then
11: s ∗+ = s
12: else
13: for each s ∈ S, sorted by cost do
14: if Cost(pi)(s∗) + Cost(pi)(s) ≤ β then
15: s ∗+ = s
16: end if
17: end for
18: Break
19: end if
20: end while
21: Return s∗

Processing Max-Hit IQs: A max-hit IQ consists of tar-
get object(s), corresponding cost function(s), and a budget
β. The improvement strategy that satisfies the budget con-
straint is then returned to the user by Algorithm 4. For
convenience, we will refer to Algorithms 3 and 4 together as
the Efficient-IQ algorithm. Similarly, we also provide the

exhaustive search option in our implementation.

4.3 Data updating
Add/Remove a query: When a query point is added to
or removed from Q, the R-tree needs to be updated. Adding
or removing an indexed point on R-tree is easy. However,
when a new query point is added, we need to find which
subdomain contains it. We can use Algorithm 1 but only
on the newly added query point to find its subdomain. This
is usually not necessary. We observe that, if a new query
point q falls closely to a group of other query points which
are all in a subdomain d, then it is very likely that q also
falls in d. Fortunately, we can quickly check if q falls in d
by verifying the above/below relations between q and the
boundary intersections of d as in Algorithm 1. Based on
this observation, we propose to use the subdomain(s) of the
k-Nearest Neighbour of q as candidate subdomain of q, and
use Algorithm 1 only if q is not in any of these candidates.

Add/Remove an object: Adding or removing an object
will cause the boundary of subdomains to change. Thus,
similar to applying an improvement strategy, some query
points may move to a different subdomain. We discuss how
to update subdomain of affected queries as follows. When a
new object is added, we first find all the newly created inter-
sections and then rerun Algorithm 1 with these intersections
to update the queries. Similarly, when an object is removed,
we find all existing intersections that involve the object, and
then locate all subdomains whose boundaries include one of
the involved intersections. Then, if the subdomain is above
the intersection, we merge it with the subdomain that is be-
low it, and vice versa. This is to reflect the fact the once the
object is removed, this intersection no longer exists, and the
two subdomains that were separated by it should be merged
as one subdomain. To facilitate this process, we implement a
bloom filter to index the subdomains based on their bound-
aries, allowing us to quickly check if a subdomain uses an
intersection as its boundary.

5. EXTENSION

5.1 Improving Multiple Target Objects
So far we have considered improving a single object. In

this section, we extend our proposed techniques to enable
users to query strategies that improve multiple objects. Here
a user wants to select a set of objects Dt ⊆ D as targets, and
query the min-cost improvement strategy such that the total
number of hits of the targets is no less than certain threshold
τ , while the total improving cost is minimized. Each target
can be associated to a different cost function, or share the
same one. We assume that if one query is hit by two dif-
ferent target objects in Dt, the query is counted only once.
We consider two Combinatorial Object Improvement
problems.

Definition 5. Given a set of target objects Dt ⊆ D and
their corresponding cost functions, the Combinatorial Min-
Cost Improvement Strategy for Dt is a set of improve-
ment strategies St, where si ∈ St is an improvement strat-
egy for pi ∈ Dt, such that

∑
pi∈Ds

H(pi + si) ≥ τ and∑
pi∈Ds

Costpi(si) is minimized.

Definition 6. Given a set of target objects Dt ⊆ D and
their corresponding cost functions, the Combinatorial Max-
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Hit Improvement Strategy for Dt is a set of improve-
ment strategies St, where si ∈ St is an improvement strat-
egy for pi ∈ Dt, such that

∑
pi∈Ds

Costpi(si) ≤ β and∑
pi∈Ds

H(pi + si) is maximized.

The two problems are both NP-hard, since the single-
object improvement strategy problems are their special cases.
We can slightly modify the algorithms proposed in Sec-
tion 4.2 to handle the combinatorial improvement strategy
searching problems. To search for the combinatorial mini-
mal cost improvement strategy, we can modify Algorithm 3
as follows: First finds the min-cost improvement strategies
that can hit each query, and uses them as candidates. The
algorithm then selects the candidate strategy with minimal
cost per hit query. This process is repeated until at least the
desired number of queries are hit. A more formal description
is given as follows:

• Step 1: For each query q and each target object pi, find
the minimal-cost improvement strategy that makes pi hits
q. All such improvement strategies are used as candidates.

• Step 2: Find and apply the candidate strategy s with min-
imal cost per hit query. If the total number of hit queries
after applying the strategy is larger than τ , then instead
of s, we should apply the candidate strategy that hits at
least τ queries with minimal cost. This is to avoid over-
achieving the desired number of hits, and thus increase
the total cost.

• Step 3: If the number of query hit by the improved objects
is less than τ , repeat step 1 and 2.

Similarly, for max-hit IQ, we modify Algorithm 4 to make
it applicable for multiple target objects.

• Step 1: For each query q and each target object p, find the
minimal-cost improvement strategy that makes pi hits q.
All such improvement strategies are used as candidates.

• Step 2: Filter out the candidate strategies whose cost ex-
ceeds the remaining budget. If the candidate set is not
empty, then select the candidate strategy with minimal
cost per hit query, and apply it to the corresponding ob-
ject. Update the remaining budget accordingly. If the
candidate set is empty, then terminate.

• Step 3: If there is still available budget, repeat step 1 and
2.

5.2 Complex Utility Functions
We now discuss how to handle the case when the utility

functions used in top-k queries are non-linear. Regardless
of its complexity, a utility function f(pi) can always be seen
as a function fpi(q) for object pi, in which the attribute
values of pi are treated as constants of the function, while
the variable q consists of the other parameters of the top-k
query (e.g., attribute weights as in linear utility functions).
We explain the idea with a complex utility function example,
applied on a Car dataset with three attributes (Table 1),
where w1 and w2 are user-specified weights.

u(Car c) =
√
w1 ∗ c.Price+ w2

c.Capacity

c.MPG
(19)

As showed in the table, each car object can be seen as a
non-linear function, by treating its Price, MPG (Mileage
Per Gallon gas), and Capacity as constants. The function

Table 1: Car dataset and the corresponding functions

ID Price MPG Capacity u(w1, w2)

1 15000 30 4
√

15000w1 + w2
4
30

2 20000 28 6
√

20000w1 + w2
6
28

3 8000 35 2
√

8000w1 + w2
2
35

has input variables (w1, w2). The intersection of non-linear
functions can take a more complex form. Generally, the in-
tersection of two d-variable functions formulates a surface in
the d-dimensional domain space. Nevertheless, our observa-
tion that these functions are sortable in subdomains parti-
tioned by their intersection is still valid. Thus the proposed
Efficient-IQ algorithm works as well over complex functions.
Our concern is, however, for certain complex functions, the
number of subdomains partitioned by intersections can be
very large 1, which may result in a high indexing cost.

To mitigate this problem, we propose to convert non-
linear functions into linear functions through variable sub-
stitution, i.e., replacing complex components of an equation
with one variable to simplify the equation. After converting
non-linear functions into linear ones, we can then apply the
same techniques introduced in Section 4 for efficient process-
ing of IQs. Consider an example of top-k queries with poly-
nomial utility function, applied on a 4-dimensional dataset
D:

u(p) = w1(p(1))3 + w2(p(2) ∗ p(3)) + w3(p(4))2 (20)

which contains three high degree terms. It can be converted
into an equivalent linear function:

u∗(p) = w1p
(5) + w2p

(6) + w3p
(7) (21)

where p(5) = (p(1))3, p(6) = p(2) ∗ p(3), and p(7) = (p(4))2 are

used to substitute p(1)-p(4). As such, each object becomes
7-dimensional. Nevertheless, in this example, attributes 1 4
are no longer used in the converted utility function, thus
the dataset can be treated as 3-dimension. The value of
each augmented attributed is computed using the original
attribute values of the object, thus they do not need to be
computed and stored in advance. Instead, we simple store
the conversion process as math formulas, and compute their
values on the fly to avoid storage redundancy.

Variable substitution can be used to convert other forms
of complex functions into linear ones as well. Consider func-
tion:

u(p) =
√

(w1 − p(1))2 + (w2 − p(2))2 (22)

which computes the Euclidean distance between a data point
and a given location {w1, w2}. We can make the following
conversion:

u∗(p) =(w1 − p(1))2 + (w2 − p(2))2 (23)

u∗(p) =(w2
1 + w2

2)− 2w1p
(1) − 2w2p

(2) (24)

+ p(3) + p(4) (25)

where p(3) = (p(1))2 and p(4) = p(2))2 are the two augmented
attributes. Note that u∗(p) = u(p)2. Since distance is al-
ways positive, the ranking result of the converted function

1For linear functions, the number of such subdomains is
bounded by O(nd) where n is the number of objects and
d the number of variables [17]. While for some high-degree
functions, the number can be O(2n).
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remains the same.

5.3 Heterogeneous Utility Functions
Since IQ allows users to apply complex utility functions,

it is possible that each user defines a utility function with
a completely different form. For example, to query the Car
dataset (Table 1), some users may express their preference
as a different utility function:

v(Car c) =
c.MPG

w1 ∗ c.Price
+ w2(c.Capacity)2 (26)

In this case, we cannot simply use the value of (w1, w2) to
differentiate different top-k queries. Because even for the
same (w1, w2), the two functions 19 and 26 may compute
different values, as they represent two evaluation methods
over the same dataset. The default way to handle hetero-
geneous utility function is to add another column v(w1, w2)
to the Car dataset, and use function outputs in this column
to sort the objects when considering the top-k queries with
v(Car c). However, this will significantly increase the in-
dexing cost, because we need to find subdomains for two
different sets of functions, each has the same size of the ob-
ject set.

To address this problem, we propose constructing a“generic”
function in such a way that all the user-defined utility func-
tions are special cases of this one function. Let’s continue
with the Car dataset example. Construct the following generic
function for functions 19 and 26 by adding them up:

G(Car c) =u(Car c) + v(Car c) (27)

=
√
w1 ∗ c.Price+ w2

c.Capacity

c.MPG
(28)

+
c.MPG

w3 ∗ c.Price
+ w4(c.Capacity)2 (29)

Now we can differentiate two queries by the value of (w1, w2,
w3, w4) as in the linear case. Our solution works because
if a query uses function 19 as utility function, it must set
w3, w4 to 0. While for queries with function 26, w1, w2 is 0.
As such, we unify the domain of the two functions into one
domain space, and are able to interpret each object as only
one function.

6. IMPLEMENTATION AND EVALUATION

6.1 System Implementation

Figure 3: Graphic User Interface for Improvement Query

We have implemented the proposed techniques as an ana-
lytic tool and integrated it with the Database Management
System (DBMS). The tool allows users to issue IQs in an in-
teractive way via a Graphic User Interface (GUI) showed in
Figure 3. Users can select target objects manually from the
object dataset or via an SQL select statement. For the tar-
get objects, users specify which attributes can be adjusted
and in what range, and also the cost function to be used
for each object. Our system is implemented using C++ and
C# on a Windows server with Intel Xeon 64-bit 8-core CPU
running on 2.93GHz and 32GB RAM. An R-tree is used to
index the queries. For comparison purpose, we implement
four IQ processing schemes in our experiments.

• Efficient-IQ: This is the proposed heuristic algorithm,
which uses the ESE algorithm for improvement strategy
evaluation.

• RTA-IQ: This implementation uses the RTA algorithm,
designed for reversed top-k query, to evaluate improve-
ment strategies in each iteration, instead of the proposed
ESE algorithm. Note that RTA supports only linear util-
ity functions.

• Greedy: This implementation uses simple greedy algo-
rithm. It always finds the query point that can be hit by
any target object with the minimal cost, then repeats the
process until the desired number of queries are hit (for
Min-Cost IQs), or there is no budget left (for Max-Hit
IQs).

• Random: This scheme randomly generates improvement
strategies until it finds an improvement strategy that sat-
isfies the improvement goal (i.e., hits the desired number
of queries, or total cost less than the budget), and returns
it as the answer to user’s IQ.

6.2 Data Preparation
We test our system over four types of object datasets,

namely Independent (IN), Correlated (CO), Anti-correlated
(AC), and Real-world. IN, CO, and AC are synthetic datasets
generated with the method described in [5]. Specifically, in
IN, all attributes of an object are generated independently
with a uniform distribution, while in CO and AC, attribute
values of the an object is correlated or anti-correlated, re-
spectively. Each generated object has 10 numerical attributes
in range [0, 1]. We use two real-world datasets: VEHICLE
and HOUSE. VEHICLE [1] contains 37051 vehicle models
with attributes including year, weight, horse power, mileage
per gallon (MPG), and annual cost. HOUSE is extracted
from [18], including 100,000 records with four attributes
house value, household income, number of person, and monthly
mortgage payment. We normalize attributes of the real-
world datasets to [0, 1].

We generate two sets of top-k queries, namely UN and
CL. Both sets of queries use polynomial utility functions,
while the distribution of function coefficients (weights) are
uniform and independent in UN but clustered in CL. Details
of how to generate such queries are given in [21]. The degree
of each term in the function is randomly chosen from [1, 5]
and the top-k value is randomly selected from [1, 50]. The
default experiment setting is given in table 2.

6.3 Experiment Results
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Table 2: Experiment Setting

Parameter Default Range
|D| 100,000 50,000 - 200,000
|Q| 10,000 5,000 - 15,000
τ 250 100 - 500
β 50 10 - 100

Dimensionality 3 1 - 5

6.3.1 Data Indexing
We first evaluate the indexing cost of the proposed tech-

niques, which involve the cost of building an R-tree over
the query points and grouping them by subdomains. To
better understand the scale of this cost, we compare in-
dexing structure size (showed as percentage to the original
dataset) and the total indexing time of the proposed tech-
nique (Efficient-IQ) with two benchmarks: 1) the cost of
building only an R-tree on the query points (R-tree), and 2)
the cost of building a Dominant Graph (DominantGraph) [26]
for the objects, which is the state-of-the-art indexing tech-
nique for top-k query with linear utility functions.
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Figure 4: Scalability to the object set size
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Figure 5: Scalability to the query set size

We adjust the number of objects and report the corre-
sponding indexing time and size of the proposed technique
and DominantGraph (Figure 4). In order for Dominant
Graph to work, we use only linear utility functions for top-k
queries. For each test point, we generate 100 different utility
functions and report the average indexing costs. We observe
that the indexing cost on different types of synthetic data is
almost the same, thus we report the average cost over all the
types of datasets to save space. The dimension (i.e., number
of variables) of the utility functions is uniformly picked in
[1, 5]. The indexing time of DominantGraph is similar to our
technique in general while Efficient-IQ incurs slightly higher
storage overhead (less than 5% of the data size). However,
our technique is unique in being able to support efficient
processing of IQ.
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Figure 6: Indexing cost of real-world datasets

We then adjust the number of queries and compare the
proposed technique with building only an R-tree (Figure 5).
This time we allow non-linear utility functions. For the same
set of queries, the proposed Efficient-IQ requires about 20%
- 25% more indexing time comparing with building only an
R-tree. The extra time is used to find subdomains for each
query point, in order to facilitate the ESE algorithm. The
final index size, nevertheless, is only about 10% larger than
an R-tree. This is because many adjacent query points fall
in the same subdomain and thus we do not need to store
the subdomain information for each of them. In general,
the propose technique shows good scalability, in terms of in-
dexing cost, with respect to both the number of objects and
queries. Experiment over real-world datasets is consistent
with that on synthetic data.

6.3.2 IQ Processing
For query processing, we are interested in two metrics: 1)

Average query processing time, and 2) Quality of the im-
provement strategy returned to the user. For Min-Cost IQ,
the quality of an improvement query can be measured by its
total cost. While for Max-Hit IQ, it’s the total number of
query hit by the improved objects. We use an unified quality
measurement for both types of queries, i.e., the average cost
per hit query of an improvement strategy, the lower the bet-
ter. If multiple target objects hit the same query, we count
them as only one hit. Our experiment shows that, even for
the smallest dataset, exhaustive search takes more than 4
hours to process a query in average. Thus we compare only
the 4 aforementioned schemes. For RTA-IQ to work, we
limit the type of utility functions to linear with attribute
weights normalized to 1. We use the following cost function
for all objects:

Cost(s) =
√∑d

i=1 s
2
i (30)
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Figure 7: Query processing on the IN object dataset

We evaluate the scalability of the proposed techniques
with regard to the size of D and Q respectively. The re-
sults on different data sets are showed in Figure 7-13. For
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Figure 8: Query processing on the CO object dataset
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Figure 9: Query processing on the AC object dataset
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Figure 10: Query processing on the UN query dataset

each test point, we issue 100 Min-Cost IQs and 100 Max-Hit
IQs, and report the average performance of the compared
schemes. The parameters of these IQs are randomly and
uniformly selected from the ranges given in Table 2. For
each real-world dataset, we use a randomly generate query
set that is one third of its size.

It is not surprising that Random is the fastest scheme
in processing IQs, but it also yields the worst improvement
strategy quality. The simple greedy algorithm has better
strategy quality than Random, but is still very poor when
compared with the proposed techniques. The Efficient-IQ
achieves both good running time and high strategy quality.
It outperforms RTA-IQ significantly in querying processing
time, while achieving the best improvement strategy qual-
ity. (Note that RTA-IQ uses the same strategy-searching
approach as Efficient-IQ, thus the quality of the strategies
found by the two schemes is the same). The result shows
that the good performance of the proposed technique is due
to the combination of an efficient strategy searching method
and a fast evaluation algorithm used in each searching iter-
ation.

Finally, we evaluate the scalability of the proposed tech-
nique with respect to dimensionality of the functions (i.e.,
the number of variables in the interpreted functions). Since
RTA only works on linear function, in this experiment we
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Figure 11: Query processing on the CL query dataset
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Figure 12: Query processing on the real-world datasets
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Figure 13: Scalability to the number of variables in
functions

plot only the result of Efficient-IQ. The result (Figure )
shows as the number of variables increases, the query pro-
cessing time increases too, but in a sub-linear way. That
means the query processing time becomes less sensitive to
dimensionality as it increases, which is a desired feature.

7. CONCLUSION
We live in a society that is competitive in nature. Daily we

face the challenges of improving something to make it more
competitive against its peers. In this paper, we consider
the problem of finding improvement strategies. We propose
a new type of query called Improvement Query (IQ) that
has two variants. A Min-Cost IQ retrieves the improvement
strategy with minimal cost for some target object to hit a
desired number of top-k queries, and a Max-Hit IQ tries
to find an improvement strategy that maximize the num-
ber of hit queries with a given budget. Here the cost of
an improvement strategy is modeled by a user-defined cost
function. We show that finding the exact answers to both
queries are NP-Hard and propose a suite of heuristic solu-
tions. Our key idea is to interpret each object as a function
and treat each top-k query as as its input. As such, the set
of functions can be strictly sorted by their output in each
subdomain partitioned by their intersections. The geomet-
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rical relations among then function intersections can then
be leveraged for efficient processing of IQs. We implement
the proposed techniques as an analytic tool and integrated
it with the DBMS. In our extensive evaluation, it demon-
strates excellent performance.
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ABSTRACT
In Rank-aware query processing, reverse rank queries have
already attracted significant interests. Reverse rank queries
can find matching customers for a given product based on
individual customers’ preference. The results are used in
numerous real-life applications, such as market analysis and
product placement. Efficient processing of reverse rank queries
is challenging because it needs to consider the combination
on the given data set of user preferences and the data set of
products.

Currently, there are two typical reverse rank queries: Re-
verse top-k and reverse k-ranks. Both prefer top-ranking
products and the most efficient algorithms for them have a
common methodology that indexes and prunes the data set
using R-trees. This kind of tree-based algorithms suffers the
problem that their performance in high-dimensional data de-
clines sharply while high-dimensional data are significant for
real-life applications. In this paper, we propose an efficient
scan algorithm, named Grid-index algorithm (GIR), for pro-
cessing reverse rank queries efficiently. GIR algorithm uses
an approximate values index to save computations in scan-
ning and only requires a little memory cost. Our theoretical
analysis guarantees the efficiency and the experimental re-
sults confirm that GIR has superior performance compared
to tree-based methods in high-dimensional applications.

CCS Concepts
•Theory of computation → Database query process-
ing and optimization (theory);
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21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

Figure 1: Example for RTK and RKR queries. (a): the top-
2 cell phones appreciated by users. (b): the RT-2 of each
phone. (c): the rank list and the R1-R of each phone.

Keywords
Reverse Rank Queries; High-dimensional Data Querying;

1. INTRODUCTION
Top-k queries retrieve top-k products based on a given

user preference. As a user-view model, top-k queries are
widely used in many applications as shown in [3, 8]. As-
suming that there is a dataset of user preferences, reverse
rank queries (RRQ) have been proposed to retrieve the user
preference that causes a given product to match the query
condition. From the perspective of manufacturers, RRQ
are essential to identify customers who may be interested in
their products and to estimate the visibility of their fprod-
ucts based on different user preferences. Not limited to the
field of product (user) recommendations for e-commerce,
this concept of user-product can be extended to a wider
range of applications, such as business reviewing, dating and
job hunting.

Reverse top-k (RTK) [13, 14] and reverse k-ranks (RKR)
[22] are two typical RRQ queries. Figure 1 shows an exam-
ple of RTK and RKR queries. In this example, five different
cell phones are scored on how “smart” they are and the “rat-
ing”. Also, there is a preferences database for three users.
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Figure 2: Performance of tree-base algorithms (BBR, MPA)
and Simple scan on varying d (2-20).

These preferences are based on a series of weights for each
attribute. The score of a cell phone based on a user’s pref-
erence is found by a weighted sum function that computes
the inner product of the cell phone attributes vector and
the user preferences vector. Without loss of generality, we
assume that minimum values are preferable.

From the values in Figure 1, Tom’s score for cell phone p1

is 0.6 × 0.8 + 0.7 × 0.2 = 0.62. All cell phones’ scores are
calculated in the same way and ranked. If a cell phone is in
the top-k of a user’s rank list, then the user is in the result
of the RTK query for that specific cell phone. In Figure
1 (b), the RT-2 results for each cell phone are shown. We
can see that p2’s RT-2 results are Tom, Jerry and Spike,
meaning that all users consider p2 as an element of their
top-2 favorites. Notice that p1 and p4 have empty RT-2
result sets, which means that every user prefers at least two
other phones. [22] believed that it was not useful to return
an empty answer and proposed RKR query, which find the
top-k user preferences whose rank for the given product is
highest among all users. In Figure 1(c), p1 is ranked 3rd
by Tom, 5th by Jerry, and 3rd by Spike. In other words,
Tom (Spike) ranks p1 higher than other users, so he is in
the answer of the R1-R of p1.

1.1 Notations and Problem Definition
Each product p in the data set P is a d-dimensional vector,

where each dimension is a numerical non-negative scoring
attribute. p can be represented as a point p = (p[1], ..., p[d]),
where p[i] is an attribute value on ith dimension of p. The
data set of preferences, W , is defined in a similar way. w
is a user preference vector for products where w ∈ W , and
w[i] is the user defined weight value for the attribute on ith

dimension, where w[i] ≥ 0 and
∑d
i=1 w[i] = 1. The score is

defined as an inner product of w and p, which is expressed as
fw(p) =

∑d
i=1 w[i] · p[i]. Notations are summarized in Table

1. The definitions of top-k query and of the two reverse rank
queries [13,22] are re-used here.

Definition 1. (Top-k query): Given a positive integer
k, a point set P and a user-defined weighting vector w,
the resultant set TOPk(w) of the top-k query is a set of
points such that TOPk(w) ⊆ P , |TOPk(w)| = k and ∀pi, pj:
pi ∈ TOPk(w), pj ∈ P − TOPk(w). Therefore, it holds that
fw(pi) ≤ fw(pj).

Definition 2. (RTK query): Given a query point q and
k, as well as P and W (dataset of points and weighting vec-
tors respectively), a weighting vector wi ∈ W belongs to the
reverse top-k result set of q, if and only if ∃p ∈ TOPk(wi)
such that fwi(q) ≤ fwi(p).

Symbol Description

d Data dimensionality
P Data set of products (points)
W Data set of weighting vectors
q Query point

fw(p) The score of p based on w, fw(p) =
∑d
i=1(w[i] · q[i]).

p[i] Value of a point p ∈ P on i′th dimension

p(a) Approximate index vector of a point p

P (A) Approximate index vectors set ∀p ∈ P
n Number of partitions of value range
Grid Grid-index
L[fw(p)] Lower bound of score of p on w
U [fw(p)] Upper bound of score of p on w
q ≺w p q precedes p based on w

Table 1: Notations and symbols

Definition 3. (RKR query): Given a query point q and
k, as well as P and W , reverse k-ranks returns a set S, where
S ⊆ W and |S| = k, such that ∀wi ∈ S,∀wj ∈ (W − S),
rank(wi, q) ≤ rank(wj , q).

The rank(w, q) is defined as the number of points with a
smaller score than q for a given w.

1.2 Motivation and Challenges
To the best of our knowledge, the most efficient algorithm

for processing RTK is the Branch-and-Bound (BBR) algo-
rithm [17], and the most efficient algorithm for RKR is the
Marked-Pruning-Approach (MPA) algorithm [22]. Both al-
gorithms use a tree-based methodology, which uses an R-tree
to index the data set and prune unnecessary entries through
the use of MBRs (Minimum Bounding Rectangles). How-
ever, as pointed out by [2, 4, 19], the use of R-tree or any
other spatial indexes suffer from similar problems: When
processing high-dimensional data sets, the performance de-
clines to even worse than that of linear scan.

Figure 2 shows the comparison of performance between
tree-based algorithms (BBR, MPA) and the simple scan
(SIM, linear scan). According to the results, SIM outper-
forms these tree-based algorithms when processing RRQ in
high dimensions. The reason for that inefficiency is that
tree-based algorithms cannot divide data correctly in high
dimensions, causing most of the MBRs to intersect with each
other. Thus, even a small range query can overlap with a
major proportion of the MBRs.

Figure 3 shows a geometric view of processing RTK queries.
In this example, suppose that we treat p4 as the query point
q, then a line that crosses q is perpendicular to Tom’s weight
vector. The points in the gray area have a greater rank than
q. Tree-based methodology filters entries that are entirely
in the gray area and counts the number of points contained
in filtered entries to record the rank of q. However, because
q is within overlapping parts of MBRs, the tree-based algo-
rithm cannot filter any parts of MBRs containing the Tom
or Jerry’s preferences. As a result, it has to go through most
entries one by one and compute the scores. In these cases,
traversal of the tree-based spatial index is not an efficient
method.

For real-world applications, it is a natural requirement to
process RRQ for high dimensional data (more than 3). Both
the product’s attributes and user’s preferences are likely to
be high-dimensional. For example, cell phones consumers
care about many features, such as price, processor, storage,
size, battery life, camera, etc. As another example, DIAN-
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Figure 3: Tree-base methodology processing RTK and
search space (gray).

PING 1, a Chinese business-reviewing website, ranks restau-
rants by users’ reviews on overall rate, food flavor, cost,
service, environment, waiting time, etc. Therefore, process-
ing RRQ with a high-dimensional data set is a significant
problem, and due to the so-called “curse of dimensionality”,
simple scan offers a better performance than R-tree to solve
it.

Despite its performances advantages on high-dimensional
queries, there are challenges in processing RRQ with the
simple scan. RRQ are more complicated queries than sim-
ple similarity searches such as the top-k query or the nearest
neighbor search, and the time complexity of a naive simple
scan method is O(|P | × |W |). RRQ require that every com-
bination between P and W is checked before obtaining an
answer. And this incurs a large number of pairwise com-
putations. A comparison of 10K cell phones and 10K user
preferences would necessitate 10K × 10K = 100M compu-
tations. As a result, the enormous computational require-
ments cause the CPU cost to outweigh the I/O cost, which is
the opposite of what happen in normal situations. We hold
a preliminary experiment to confirm this by measuring the
elapsed time for reading different sizes of data, for process-
ing RRQ queries and for the pairwise computations in the
inner product. Table 2 shows that the time taken to read
different sizes of data file is almost negligible in the RRQ
processing. Rather, the major cost of processing RRQ is
the pairwise computations. We also found that the propor-
tion of pairwise computations in processing RRQ grew from
about 50% in 6-dimensional data to 90% in 100-dimensional
data. In conclusion, in contrast to the usual strategy of sav-
ing I/O cost in other simple similarity searches, saving CPU
computations is the key to process high-dimensional RRQ
efficiently.

For the above reasons, we develop an optimized version
of the simple scan, called the Grid-index algorithm (GIR)
which reduces the amount of multiplication of inner product
in the processing. First, We pre-compute some approximate
multiplication values and store them into a 2d array named
Grid-index. Then we pre-process the data P and W and
create the approximate vectors P (A) and W (A) which in-
dicate the index. In the GIR algorithm, we first scan the
approximate vectors P (A) and W (A), then use them with
the Grid-index to assemble upper and lower bounds, which
help to filter most data without multiplications. After the
filtering, we only need to refine few remaining data. In the

1http://www.dianping.com

hhhhhhhhhhhhhhElapsed time(ms)
Data size

1K 10K 100K

Reading data 5 26 146
Processing RRQ 240 9311 624318
−Pairwise computations 103 5321 352511

Table 2: Time cost for reading data and processing reverse
rank queries with 6-dimensional data.

worst case, it costs the I/O time for reading the P (A) and

W (A), which is much less than original data and insignificant
as concluded above.

1.3 Contributions
The contributions of this paper are as follows:

• We elucidate that the simple scan is an appropriate
way to process RRQ when processing high-dimensional
data. We also demonstrate that CPU cost is the ma-
jority cost and that it is much larger than I/O pro-
cessing. We are the first to conclude that a better
approach for processing RRQ is to optimize the scan
method.

• We propose a Grid-index, which uses pre-calculated
score bounds to reduce multiplications in the simple
scan. Based on Grid-index, we propose GIR algo-
rithm which processes RTK and RKR queries more
efficiently. Our method outperforms tree-based algo-
rithms in almost all cases and all data sets, except for
those in very low (less than 4) dimensional cases.

• We analyze the filter performance of tree-based al-
gorithms and establish the GIR performance model.
Theoretical analysis clarifies the limitation of the tree-
based methods. The performance model of proposed
GIR guarantees the efficiency of the Grid-index method
is achieved at a negligible memory cost.

The rest of this paper is organized as follows: Section
2 summarizes the related work. Section 3 states the Grid-
index concept and how to construct upper and lower bounds.
In Section 4, we present the formal description of the GIR
algorithm. Section 5 analyzes the performance of tree-based
algorithms and gives a performance model for the Grid-
index. Experimental results are shown in Section 6, and
Section 7 concludes the paper.

2. RELATED WORK
For top-k queries, one possible approach to the top-k prob-

lem is the Onion technique [3]. This algorithm precomputes
and stores convex hulls of data points in layers like an onion.
The evaluation of a linear top-k query is accomplished by
starting from the outermost layer and processing these lay-
ers inwardly. [8] proposed a system named PREFER that
uses materialized views of top-k result sets that are very
close to the scoring function in a query.

Reverse rank queries (RRQ) are the reverse version of
the top-k queries. A typical query of RRQ is the reverse
top-k query. [13,14] introduced the reverse top-k query and
presented two versions, namely monochromatic and bichro-
matic, and proposed a reverse top-k Threshold Algorithm
(RTA). [5] indexed a dataset with a critical k-polygon for
monochromatic reverse top-k queries in two dimensions. [17]
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propose a tree-base, branch-and-bound (BBR) algorithm which
is the state-of-the-art approach for reverse top-k query. BBR
indexes both data sets P and W in two R-trees, and points
and weighting vectors are pruned through the branch-and-
bound methodology. For applications, reverse top-k query
was used in [16] to identified the most influential products,
and in [15] to monitor the popularity of locations based on
user mobility.

However, the reverse top-k query has a limitation that re-
turns an empty result for an unpopular product. [22] intro-
duced the reverse k-ranks query to ensure that any product
in the data set can find their potential customers. Then pro-
posed a tree-base algorithm named MPA (Marked Pruning
Approach), which uses a d-dimensional histogram to index
W and an R-tree to index P . Dong et al. [7] indicated
that both reverse top-k and reverse k-rank queries were de-
signed for only one product and cannot handle the product
bundling. So they defined an aggregate reverse rank query
that finds the top-k users for multiple query products.

Other works also considered a given data point and aimed
at finding the queries that have this data point in their re-
sult set, such as the reverse (k) nearest neighbor (RNN or
RKNN) [10, 20] that finds points that consider the query
point as the nearest neighbor. RKNN may looks similar to
RRQ, but they are actually very different. RKNN evaluates
relative Lp distance in one Euclid space with between two
certain points. On the other hand, RRQ focus on the abso-
lute ranking value over all products, and the ranking scores
are found through inner products of user preferences and
products, from two different data spaces.

For other reverse queries, the reverse furthest neighbor
(RFN) [21] and its extension RKFN (reverse k furthest neigh-
bor) [18] find points that consider a query point as their
furthest neighbor. The reverse skyline query uses the ad-
vantages of products to find potential customers based on
the dominance of competitors products [6,11]. However, re-
verse skyline query uses a desirable product data to describe
the preference of a user. But in the definition of RRQ, the
preference is described as a weighting vector.

For the space-partition tree-based structure, R*-tree [1],
a variation on R-tree, improves pruning performance by
reducing overlap in the tree construction. [9] used Hilbert
space-filling curves to impose a linear ordering on the data
rectangles in R-tree and improve the performance. [2] in-
vestigated and demonstrated the deficiencies of R-tree and
R*-tree when dealing with high-dimensional data. As an
improvement, a superior index structure named X-tree was
proposed. X-tree uses a split algorithm to minimize over-
lap and utilizes the concept of super-nodes. In our opinion,
X-tree can be seen as a middle approach between the R-
tree and simple scan methods, because it uses the spatial
tree structure to process the disjoint parts, and uses linear
scan with the overlapping parts. For high-dimensional data,
there are very few disjoint parts, causing there to be almost
no advantage to the construction and look-up features of the
X-tree.

It is well known that the overlapping nodes in high-dimensional
space, is a shortcoming of tree structure. R. Weber et al. [19]
proved that tree-based like [1, 2] is worse than linear scan
in high-dimensional data and proposed a VAFILE filtering
strategy. They divided the data space into buckets equally
and use these buckets’ upper and lower bounds to filter can-
didates. The goal of using VAFILE is to save I/O cost by

Figure 4: Equally dividing value range into 4 partitions,
allocating real values into approximate intervals and getting
the approximate vector p(a) and w(a).

Figure 5: 4×4 Grids for points and weighting vectors, map-
ping p(a) and w(a) onto Grids.

scanning the bit-compressed file of buckets. However, we
purpose to save the CPU computing in RRQ. [4] proposed
a technique by “indexing the function” that pre-computing
some key values of the Lp-distance function to avoid the
expensive computing in high-dimensional nearest neighbour
search.

3. GRID-INDEX
According the statement in Section 1.2, it stands to reason

that using a simple scan with high-dimensional data is the
most efficient approach. However, in this method, the multi-
plications of inner products take most of the processing time.
We were inspired to study a method that could enhance the
efficiency of the simple scan by avoiding multiplications for
the inner product. In this section, we introduce the concept
of Grid-index, which stores pre-calculated approximate mul-
tiplication values. The approximate values can form upper
and lower bounds of a score and can be used in a filtering
step for the simple scan approach.

3.1 Approximate Values in Grid-index
Concept of Grids. To confirm that the resultant score

of the weighted sum function (inner product) is fair, all val-
ues in p must be in the same range, so must all values in w.
We use this feature to allocate values into value ranges. As
Figure 4 shows, in this example we partition the value range
into 4 equal intervals. For the given p = (0.62, 0.15, 0.73),
the first attribute p[1] = 0.62 falls into the third partition
[0.5, 0.75]. The second, p[2] = 0.15, falls into the first parti-
tion [0, 0.25]. We will store the partition numbers as an ap-

proximate vector, denoted as p(a) and w(a), so p(a) = (2, 0, 2)

and w(a) = (0, 2, 1).
Since the inner product is the sum of pairwise multipli-
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cations of p[i] and w[i], we combine the ranges of p and w
to form the grids. Figure 5 illustrates the 4 × 4 grids in
this example. We can map an arbitrary pair of (p[i], w[i])
onto a certain grid, and different (p[i], w[i]) pairs may share
the same grid location. The purpose of mapping the pairs
onto the grid is to use the grids’ corners to estimate the
score of p[i] ·w[i]. By taking advantage of values having the
same range, these grids can be re-used for mapping all pairs
(p[i], w[i]), i ∈ [1, d], p ∈ P and w ∈W .

Construction of Grid-index. Assume that we divide
the value range of p and w into n = 2b partitions, and the po-
sition information of all elements in a vector are represented
by a (n+1)-element vector αp for points and αw for weights.
In the example of Figure 4, αp = αw = (0, 0.25, 0.5, 0.75, 1).
The Grid-index, denoted as Grid, is a 2-dimensional array
and saves all multiplication results of all combinations be-
tween αp and αw:

Grid[i][j] = αp[i] · αw[j], i, j ∈ [0, n] (1)

Score Bounds and Precedence. According to the
above Grid partition, we pre-store all approximate vectors
for P and W , denoted as P (A) and W (A). The approximate
vector p(a) for a given p is calculated by p(a)[i] = bp[i] ·n/rc,
where r is the range of p[i]’s attribute value. w(a) is calcu-
lated from w in the same way. Clearly, for a pair (p[i], w[i])

in the ith dimension, Grid[p(a)[i]][w(a)[i]] is the lower bound

and Grid[p(a)[i] + 1][w(a)[i] + 1] is the upper bound. In

the example, p[1] = 0.62, w[1] = 0.12 and p(a)[1] = 2,

w(a)[1] = 0. Based on Equation (1), Grid[2][0] = 0.5 × 0,
Grid[2+1][0+1] = 0.75×0.25, meaning 0.5×0 ≤ p[1]·w[1] ≤
0.75× 0.25.

For the inner product fw(p) =
∑d
i=1 p[i] · w[i], based on

properties of the inner product and features of the Grid-
index, we know that:

L[fw(p)] ≤ fw(p) ≤ U [fw(p)] (2)

where L[fw(p)] and U [fw(p)], denoting the lower bound and
the upper bound of fw(p), are given by

L[fw(p)] =

d∑
i=1

Grid[p(a)[i]][w(a)[i]] (3)

U [fw(p)] =

d∑
i=1

Grid[p(a)[i] + 1][w(a)[i] + 1] (4)

The relationship between p and q can be classified into
three cases with the help of L[fw(p)] and U [fw(p)]:

• Case 1 (p ≺w q): If U [fw(p)] < fw(q), p precedes q, p
has a higher rank than q with w.

• Case 2 (q ≺w p): If L[fw(p)] > fw(q), q precedes p, p
does not affect the rank of q with w.

• Case 3 (p � q): Otherwise, p and q are incomparable,
i.e., L[fw(p)] ≤ fw(q) ≤ U [fw(p)]. The Grid-index
cannot define whether p or q ranks higher with w.

Filtering Strategy. We scan the approximate vectors
first, then use the Grid-index to obtain L[fw(p)] and U [fw(p)],
and filter points that satisfy either Case 1 or Case 2 above.
After scanning, if necessary, we carry out a refining phase,
and compute the real score for all points in Case 3. Notice

Figure 6: 6-bit string for compressing the p to p(a).

that throughout this process, we only calculated the sum
and retrieved L[fw(p)] and U [fw(p)] of Equations (3) and
(4). If a point p is in Case 1 or Case 2, we do not need
to compute the real score fw(p), thus saving computational
costs with multiplications to find the inner product.

3.2 Compress the Approximate Vectors
Storing all approximate vectors incurs extra storage costs

for data sets P and W . To compress this storage, each ap-
proximate vector can be presented by a bit-string describing
the interval which its elements fall. Figure 6 shows an ex-
ample where the approximate vector p(a) is saved as a 6-bit
string (100010), because 2 bits are needed to define 4 par-
titions for each of the 3 dimensions. Generally, if we divide
the value range into 2b partitions, then a (b × d)-bit string
is needed to store an approximate vector. According to the
analysis in Section 5.3, b = 6 is enough for a good filter-
ing performance. Usually, the original data is a 64-bit float
value, so the storage overhead by the compressed 6-bit data
is less than 1/10 of the original data 2. This kind of bit-
string compressing technique is also used in [19].

Reading approximate vectors with bit-string binary com-
pression only has half the time costs compared to regular
I/O operations. However, the superiority of I/O cost can be
ignored because the CPU cost is far greater than the I/O
cost in RRQ, as discussed in Section 1.2.

It may be argued that it would be the most efficient to
store all the scores of each p and w directly. In reality,
storing that amount of data is impossible due to the immense
cost. For example, assume that there are 10K products and
10K weight vectors. For Grid-index, 20K tuples are needed
to store the approximate vectors, but it would take 10K ×
10K = 100M tuples to store all the scores. The storage
overhead for storing all scores is thousands of times of the
approximate vectors in the proposed Grid-index method.

4. THE GIR ALGORITHM
Next, we use the Grid-index methodology to propose two

versions of Grid-indexing algorithm for RTK and RKR queries.
The two algorithms can be implemented easily by using the
GInTop-k function that efficiently obtains the rank of query
point q on a certain input w.

4.1 GInTop-k Function Based on Grid-index
Algorithm 1 describes the GInTop-k function based on

Grid-index. GInTop-k scans each approximate vector p
(a)
j ∈

P (A) − Domin. Domin is a global variable denoting a buffer

2When n = 2b, then the storage cost for the approximate
vectors are |P (A)| = b

64
|P | and |W (A)| = b

64
|W |, if P and

W ’s attributes are float values.
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Algorithm 1 Grid-index checking q’s rank (GInTop-k)

Require: P (A), w
(a)
i , q, k,Grid, Domin

Ensure: -1: discard wi, rnk: include wi
1: Cand ← ∅
2: rnk ← Domin.size
3: for each p

(a)
j ∈ P (A)− Domin do

4: Calculate U [fw(pj)] by Eq. (4)
5: if U [fwi(pj)] ≤ fwi(q) then
6: rnk ++ // (pj ≺w q)
7: if pj ≺ q then
8: Domin ← Domin ∪ {pj}
9: if rnk ≥ k then

10: return −1
11: else
12: Calculate L[fw(pj)] by Eq. (3)
13: if L[fwi(pj)] ≤ fwi(q) ≤ U [fwi(pj)] then
14: Cand ← Cand ∪ {pj} // (pj � q)
15: Refine Cand : compare real score and updating rnk.
16: if rnk ≥ k then
17: return −1
18: else
19: return rnk

recording dominating points. If p is in Domin, then ev-
ery attribute of a point p is smaller than the correspond-
ing attribute in q (∀p[i], i ∈ (0, d) : p[i] < q[i]). Once q is
given, points in Domin always rank better than q. During
scanning, the number of points that rank better than q are
counted by rnk, which is initialized by the size of Domin
(line 2). The upper bound for the score is obtained using
Grid-index (line 4). If the upper bound is smaller than the
score of q (Case 1, line 5), then pj must have a better rank
than q for the weighting vector wi, hence rnk increases by
1 (line 6). Anytime pj is found dominating q, denoted by
pj ≺ q, pj will be appended to Domin (line 7-8). Whenever
rnk reaches k (line 9), there are at least k points that rank
better than q, thus the current wi is not a result of RTK of q
(−1 is returned). Otherwise, we get a lower bound from the
Grid-index (line 12). If q′s score is between the lower bound
and upper bound of pj ’s score (in Case 3, line 13), then pj is
added to Cand for further refinement(line 14). After scan-

ning P (A), if the algorithm did not return a decision, then a
refinement step is necessary to establish (line 15). We check
the original data of the points held in Cand and refine rnk
in the same way, terminating immediately when it reaches
k.

Computing fw(p) requires d multiplication operations and
d addition operations. However, to find U [fw(p)] and L[fw(p)],
it is only necessary to carry out d addition operations. There-
fore, our approach will save d times of multiplication if
U [fw(p)] ≤ fw(q) and the algorithm uses the branch at
lines 5-10. When U [fw(p)] ≥ fw(q), our approach requires
another d addition operations to find L[fw(p)], that is, an
equivalent amount of additions to replace the multiplication
operations in the evaluation of fw(p). In conclusion, using
this method will save computational cost if any point can
be filtered by the Grid-index. Section 5.3 proves that a low
cost Grid-index can be used to filter over 99% of points.

4.2 Grid-index Algorithm
Now we introduce how Grid-index is applied to RRQ. Al-

gorithm 2 and Algorithm 3 give the implementation of RTK
and RKR.

For each approximate vector of w
(a)
i ∈W (A), Algorithm 2

receives the result of filtering performed by GInTop-k (line
4). If the current wi ranks q in its top-k, then wi will be
added into the result set of RTOPk(q) (Line 5-6). If there
exists more than k dominating points of q, the algorithm
returns an empty set because q cannot be part of the top-k
for any weighting vector w (line 7-8).

Unlike RTK, a heap structure of size k, denoted by heap,
and a value minRank are introduced in Algorithm 3 for pro-

cessing the RKR. For each w
(a)
i ∈W (A), function GInTop-k

is called first, minRank is passed to GInTop-k and used for
filtering (line 5). If q ranks in the top-minRank (line 6),
we insert wi and rnk into the heap. The last rank of heap
is pushed out after it holds more than k elements (line 7).
Meanwhile, minRank is updated by the current last rank of
heap (line 8). This ensures a self-refined bound and keeps
the current k best results from W in heap. Finally, when
the algorithm terminates, heap is returned as the result set.

Algorithm 2 Grid-index Reverse top-k (GIRTop-k)

Input: P (A),W (A), q, k
Output: RTK result set RTOPk(q)
1: create Grid (Grid-index)
2: Domin ← {∅}
3: for each w

(a)
i ∈W (A) do

4: rnk ← GInTop-k(P (A), w
(a)
i , q, k,Grid, Domin)

5: if rnk 6= −1 then
6: RTOPk(q)← RTOPk(q) ∪ {wi}
7: if Domin.size ≥ k then
8: return {∅}
9: return RTOPk(q)

Algorithm 3 Grid-index Reverse k-ranks (GIRk-Rank)

Input: P (A),W (A), q, k
Output: heap = RKR result set
1: create Grid (Grid-index)
2: heap ← {∅}, Domin ← {∅}
3: minRank ←∞
4: for each w

(a)
i ∈W (A) do

5: rnk ← GInTop-k(P (A), w
(a)
i , q, minRank, Grid,

Domin)
6: if rnk 6= −1 then
7: heap.insert (wi, rnk)
8: minRank ← heap’s last rank.
9: return heap

5. PERFORMANCE ANALYSIS
In this section, we first analyze the weakness of tree-based

algorithms for RRQ. We then build a cost model for Grid-
index that finds the ideal number of grids (n × n), guaran-
teeing that specified filtering performance.

5.1 The Difficulty of Space-division in High
Dimensional Data

We first observe the influence of the number of divisions
through a space-division index. According to [22], MPA
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Figure 7: Two kinds of Filtering areas (gray) of R-tree.

uses a d-dimensional histogram to group all weighting vec-
tors W into buckets. Each dimension is partitioned into c
equal-width intervals, in total, there are cd buckets. As [22]
suggests, c = 5, If |W | = 100K with the 3-dimensional data,
W is grouped in 53 = 125 buckets. However, if d = 10, then
there are 510 ≈ 9 million buckets. It is not logical to filter
only 100K weight vectors by testing the upper and lower
bounds of such a huge number of buckets. In this case, scan-
ning one by one would be more efficient.

5.2 Analysis of R-tree Filtering Performance
We test some range queries (within 1% area of the data

space) over different d with an R-tree and observe the MBRs.
Table 3 shows the average value of accessed MBRs’ attributes.
Not surprisingly, when d > 6, all (100%) of MBRs overlap
in the query range, which means that all entries will be ac-
cessed during processing. As mentioned in Section 1.2, it
is a shortcoming of tree-based algorithms that the MBRs
will always overlap with each other when the data is high-
dimensional.

Besides the shortcoming from the tree-based index itself,
we also found that the filterable space of RRQ with tree-
based methodology reduces as the dimensionality increases.
This conclusion is supported by the following estimation.

Consider a tree-based algorithm that constructs an R-tree
for the products P and assume that Rp is a MBR of this R-
tree. In query processing, for each group of w’s (denoted
as Wgroup), points within Rp are checked. The upper and
lower bounds of fWgroup(Rp) are determined by the borders
of Wgroup and Rp. As Figure 7 shows, The gray area is the
safely filtered space. The shape of the gray area can be a
hyper-prism, a hyper-tetra or a combination of the two. It
means that in some of the dimensions (denoted as g) the
area will be a triangle, while a trapezoid in others. Assume
that the two kinds of shapes are separated clearly; then the
proportion of filtered values can be obtained by measuring
the volume:

V ol = V olTetraX · V olPrismX + V olTetraY · V olPrismY (5)

To give an analytical result, we assume that Rp is in the
centroid, so the two filtering areas are equal (V olTetraX =
V olTetraY ). Then the volume becomes

V ol = 2 · V olTetra · V olPrism (6)

Firstly, the volume of hyper-tetra is: 3

V olTetra =
1

g!
(

g∏
i=1

xi) =
1

g!
(1− γ)g (7)

then, the volume of the hyper-prism (the area in Figure 7
(a)) is:

Si =
1

2
(xi + x′i) ·H ≤ (

1− γ
2

) ≤ 1

2
(8)

where H = 1 is the length of the side. Imagine a 3 dimen-
sional trapezoidal prism in the figure, the volume is:

V olPrism3d =
1

3
(S1 + S2 +

√
S1S2) ·H ≤ 1

2
(9)

This result holds for higher dimensional trapezoidal prisms.
Consequently, the maximum volume gives the filtered area.

V olmax = 2 · 1

g!
(1− γ)g · 1

2
=

1

g!
(1− γ)g (10)

It is reasonable to assume that in half of the dimensions
the filtered area is hyper-tetra in shape. We will consider a
dataset of d = 10, g = 5, according to Equation (10), R-tree
based methods can only filter at most 1

5!
=0.8% of the data

space.
This clearly shows that the space filtered by R-trees in

RRQ becomes very small when encountering high-dimensional
data. For all points in the space which can not be filtered,
each w[i] · p[i] must be calculated and compared with that
of the query point.

5.3 The Performance Model of Grid-index
To build a model of our Grid-index, we make the following

assumption about the d-dimensional point data set: Values
in all dimensions are independent of each other, and the
sub-score in each dimension (w[i] · p[i]) follows a uniform
distribution. Both value ranges of P and W are divided
into n partitions for the Grid-index.

Let the probability of a score S falling into a certain in-
terval (a, b) be Prob(a < S < b), where (a, b) is created by
Grid-index. Data points with scores outside of (a, b) can be
filtered. We denote the filtering performance F by:

F (a, b) = 1− Prob(a < S < b). (11)

For example, if the probability of a point falling in an inter-
val is 5%, then we say that the filter performance is 95%.

Obviously, F (a, b) from Grid-index depends on the den-
sity of the grids (n × n). More partitions n lead to smaller
Prob(a < S < b) and better filtering performance. However,
larger n requires more memory, so it is important to find a
suitable n that balances these factors. For this purpose, we
first establish specific score properties and then define the
relationship between F and n.

For the case of one dimension, dividing the range into
equally n2 partitions, the probability of a point p’s score
falling into a certain interval is obviously:

Prob(
k

n2
< w · p < k + 1

n2
) =

1

n2
, k = 1, 2, ..., n2. (12)

3Recall that the area of a right triangle is s = x1x2
2

, and a
tetrahedron has volume v = x3s

3
= x1x2x3

3·2 . if for (d-1) dim,

the volume is Vd−1 ∼ cxd−1 then Vd =
∫
Vd−1dx ∼ cxd

d
.
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Dimensionality 3 6 9 12 15 18 21 24

#MBR 1501 1480 1470 1470 1439 1479 1458 1456
diagonal length 4057.7 11744.3 19559.1 23807.9 31010.9 33717.1 36979.2 40515
Shape∗ 24.9 13.8 8.9 6.4 4.8 4.6 4.7 4.4
Overlaps in Query(1%) 30% 99.8% 100% 100% 100% 100% 100% 100%

Volume 2.89× e9 1.39× e21 3.65× e33 1.72× e45 1.08× e58 5.31× e69 2.16× e81 2.28× e93

∗ Shape is the ratio of the longest edge against the shortest one of an MBR.

Table 3: Observation of accessed MBRs of R-tree in query. 100K points indexed in R-tree, each MBR has 100 entries.
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Figure 8: Grid-index scores distribution in dimension d = 4,
partitions n = 4, |P | = 100K, |W | = 100K.

Now, we want to estimate the probability of p’s score (
∑d
i=1 w[i]·

p[i]) falling in a score range obtained by Grid-index. For the
discrete d dimension case:

Prob(

d∑
i=1

(w[i] · p[i]) = s) (13)

This probability can be found by the so called ”Dice Prob-
lems”: Rolling d n2-sided dice and find the probability of
obtaining s score. In this problem, a n2-sided die corre-
sponds to the score range of a single dimension which is
equally partitioned in n2 parts by Grid-index. The number
of dice corresponds to the number of dimensions d, and the
scores by rolling d dice becomes the point’s score.

The number of ways obtaining score s is the coefficient of
xs in:

t(x) = (x1 + x2 + ...+ xn
2

)d (14)

By [12], the probability of obtaining s score on d n-sided
dice is

Prob(s, d, n) =
1

n2d

b(s−d)/n2c∑
k=0

(−1)k
(
d

k

)(
s− n2k − 1

d− 1

)
(15)

The filtering performance of Grid-index can be presented
by 1−Prob(s, d, n). However, it is difficult to analyse the re-
lationship between n and the filtering performance by Equa-
tion (15). On the other hand, we found that the distribution
of scores approaches a normal distribution, even in low di-
mensional cases, such as 4. Figure 8 shows the observation
of distribution of scores computed by Grid-index with n = 4
partitions, and the dimension d = 4. This encourages us to
approximate the feature by normal distribution.

For a point p, p[i] ·w[i] obeys a uniform distribution with
range [0, r), average value µ and standard deviation σ, where

µ =
1

2
r σ =

1

2
√

3
r (16)

The average score value of a point p is

p · w =
1

d

d∑
i=1

(p[i] · w[i]) (17)

By the central limit theorem, we have the following ap-
proximation when d is sufficiently large.

Lemma 1. (Score Distribution). The following random
variable

Z =

√
d

σ
(p · w − µ) (18)

follows the standard normal distribution (SND). In other
words, Z ∼ N(0, 1), where µ and σ are as in Equation (16).

Note that d · p · w is the score of point p. Representing
it by a random variable S, S follows a normal distribution
with mean µ′ = µd and standard deviation σ′ = σ

√
d. By

Equation (16),

µ′ =
1

2
rd σ′ =

√
d

2
√

3
r (19)

From Lemma 1 and (11), we may now estimate the filter-
ing performance.

Lemma 2. (Filtering performance). The filtering perfor-
mance of Grid-index, F , is given by

F (x, x+ ∆) = 1− Prob(x < S < x+ ∆)

= 1−
∫ x+∆

x

f(x)dx
(20)

where

f(x) =
1

σ′
√

2π
exp(− (x− µ′)2

2σ′2
) (21)

is the probability density function of N(µ′, σ′).

It is difficult to calculate the integral, but by rewriting Z
in Lemma 1, The above equation can be:

Z =
d · p · w − µd

σ
√
d

=
S − µ′

σ′
(22)

we can map S to Z ∼ N(0, 1) and need only to look up the
SND table.

We are now ready to estimate the filtering performance of
the Grid-index methodology. Recall that the score of a point
is the sum of d addends. The score’s range in each dimension
is [0, r), and it is equally divided into n2 partitions. Thus,
the value range computed by Grid-index of a d-dimensional
points corresponds to range ∆:

∆ =
r

n2
d (23)
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Figure 9: (a): The normal distribution of point scores
N(µ′, σ′) and the largest probability interval (gray). (b):
Φ(·) of the SND showing 1−

∫ α
−α · = 2Φ(α).

Our purpose is to find the number of partitions n which
guarantees a certain filtering performance F in Lemma 2. To
do this, it is sufficient to show the worst case. By Lemma
2, scores that fall within the interval illustrated by the gray
part in Figure 9(a) which is located on either side of µ, have
the largest probability and thus gives the worst F . Concen-
trating on this worst interval [µ′ − ∆

2
, µ′ + ∆

2
], by Equation

(22) and Equation (19), we find that S∆ = µ′ ± ∆
2

corre-
sponds to

Z∆ =
S∆ − µ′

σ′
=
µ′ ± ∆

2
− µ′

σ′
= ±
√

3d

n2
(24)

From Lemma 1, Z ∼ N(0, 1), the filtering performance in
the worst case can be given by

F (x, x+∆) > Fworst(x, x+∆) = 1−
∫ µ′+ ∆

2

µ′−∆
2

f(x)dx = 2Φ(

√
3d

n2
)

(25)
where Φ(·) is the area shown in Figure 9 (b).

The above discussion leads to the following result.

Theorem 1. Given ε < 1, the filtering performance of n
partitions is guaranteed to be above 1- ε in Grid-index such
that

n >

√
2
√

3d

δ
(26)

where δ is determined by looking up the SND table at (1−
ε)/2, that is,

Φ(
δ

2
) =

1− ε
2

(27)

Proof. By Equation (26), δ
2
>
√

3d
n2 . Since Φ is a mono-

tonically decreasing function (Figure 9), Φ(
√

3d
n2 ) > Φ( δ

2
).

Combining Equation (25) and Lemma 2, we have F > 2Φ( δ
2
) =

1− ε

Example. To ensure that Grid-index filters out over 99%

data, we set ε = 1% ( (1−ε)
2

= 0.495), thus the filtering per-
formance is guaranteed to be better than Fworst(δ) = 99%.
Looking up this value in the SND table, we have Φ(0.0125) =
0.495, hence, δ = 0.025. By Theorem 1, the sufficient num-
ber of partitions n is calculated by

√
3d

n2
< δ = 0.0125 −→ n >

√
2
√

3d

δ
=

√
80
√

3d (28)

HHH
HHW
P

Uniform Normal Exponential

Uniform 99.3% 98.3% 99.0%
Normal 98.8% 96.5% 98.7%

Exponential 99.2% 97.5% 98.9%

Table 4: Filtering performance of Grid-index with different
distributions. |P | = 100K, |W | = 100K, d = 6, n = 32

.

Parameter Values

Data dimensionality d 2 ∼ 50, 6
Distribution of data set P UN,CL,AC,RE
Data set cardinality |P | 50K,100K,1M,2M,5M
Distribution of data set W UN,CL,RE
Data set cardinality |W | 50K,100K,1M,2M,5M
Experiment times 1000

Number of clusters 3
√
|P |, 3

√
|W |

Variance σ2
W ,σ2

P 0.12

Number of grids, n2 42,82,162,322,642,1282

k (top-k and k-ranks) 100,200,300,400,500

Table 5: Experimental parameters and default values(in
bold) .

If d = 20 then n = 32 satisfies Equation (28) hence a 32 ×
32 Grid-index is enough for filtering over 99% data. The
necessary memory is less than 8 K (32× 32× 8) Bytes.

Theorem 1 is still true when w[i] · p[i] follows other dis-
tributions. The only difference is that a new µi and σi√

d

would have to be estimated, which would lead to a differ-
ent partition n. We observed the filtering performance on
some typical distributions, including the normal distribution
(σ = 10%) and exponential distribution (λ = 2). The filter-
ing power of the Grid-index is shown in Table 4. Different
σ between these distributions lead to slight differences in
filtering power. But the filtering power is always efficient.

6. EXPERIMENT
In this section, we present the experimental evaluation.

All algorithms are implemented in C++ and experiments
are run on a Mac with a 2.6 GHz Intel Core i5 processor,
8GB RAM, 500GB flash storage space. We pre-read the R-
tree, data sets P and W , approximated vectors PA and WA

and the Grid-index into memory. According to Table 2, the
I/O time is not relevant, so we focus on comparing our work
only in terms of CPU processing time.

6.1 Experimental Setup
Data sets. For data set P , both real data (RE) and syn-

thetic data sets are employed. Synthetic data sets are uni-
form (UN), anti-correlated (AC), and clustered (CL), with
an attribute value range of [0, 10K). The details on gener-
ating UN, AC, and CL data are in related research [13, 17].
To create weighting vectors W , there is additional UN and
CL data that is generated in the same way. There are
three real data sets, HOUSE, COLOR and DIANPING.
HOUSE (Household) consists of 201,760 6-d tuples, repre-
senting the distribution percentages of an American family’s
annual payment on gas, electricity, water, heating, insurance
and property tax. COLOR consists of 68,040 9-d tuples and
describes features of images in the HSV color space. HOUSE
and COLOR were also used in related works [13, 17]. DI-
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Figure 10: GIR vs BBR (a, b, c) for RTK, GIR vs MPA (d, e, f) for RKR. Performance on synthetic data with varying d
(2-8), |P | = |W | = 100K, top-k = 100, k-ranks = 100, n = 32.
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(d) P ,W : UN, d (10-50).

Figure 11: Performance on synthetic data with high dimen-
sional d (10− 50), |P | = |W | = 100K, top-k = 100, k-ranks
= 100, n = 32.

ANPING is a 6-d real world data set from a famous Chinese
online business-reviewing website. It includes 3,605,300 re-
views by 510,071 users on 209,132 restaurants about rate,
food flavor, cost, service, environment and waiting time.
We use the average scores of the reviews by the same user as
his/her preference (w), and the average scores of the reviews
on a restaurant as its attributes (p). RRQ can be anticipated
to help to find target users for these restaurants.

Algorithms. We implemented BBR, MPA and Simple
Scan algorithms (SIM). In BBR [17], both data sets P and
W are indexed by R-tree, points and weighting vectors are
pruned through the branch-and-bound methodology. MPA
[22] uses an R-tree to index P and a d-dimensional histogram
to group W in order to avoid checking every weighting vec-
tor. In SIM, for each w, all points in P are scanned and used
to compute the score. SIM also maintains a Domin buffer
to avoid unnecessary computing and terminates when cur-
rent rank does not satisfy the conditions for RTK or RKR.
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(b) P : HOUSE, W : UN d = 6.
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(c) P,W : DIANPING, d = 6.
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(d) P,W : DIANPING, d = 6.

Figure 12: GIR vs Tree-base with RE data on varying ”k”,
for RTK and RKR queries. n = 32.

In conclusion, the only difference between SIM and GIR is
that SIM computes a score for each p and w directly rather
than using Grid-index for filtering.

Parameters. Parameters are shown in Table 5 where the
default values are d = 6, |P |=100K, |W |=100K, k=100, the
number of Grids is 322, and both P and W are UN data.

Metrics. We did each experiment over 1000 times, and
present the average value. The query point q is randomly
selected from P . Besides the query execution time required
by each algorithm, we also observe the number of pairwise
computations and the percentage of accessed data.

6.2 Experimental Results
Synthesis data with varying d. Figure 10 shows the

performance of P (UN, AC, CL) and W (UN, CL) on syn-
thetic data sets, with |P |=100K and |W |=100K, k=100, n
= 32. Figures 10a, 10b and 10c show the CPU time and cost
comparisons for RTK in low dimensions (2 to 8). GIR out-
performs BBR in all distributions (UN,CL,AC) when data
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Figure 13: Scalability for all algorithms with varying |P |
(a,b) and |W | (c,d), top-k = 100, k-ranks = 100, n = 32, d
= 6.

has over 4 dimensions. SIM outperforms BBR when data
has more than 6 dimensions, with the exception of CL data,
since R-tree can group and prune more points when the data
set is clustered. GIR always exceeds SIM at least 2 times be-
cause GIR uses score bounds from Grid-index to skip most
data without doing multiplications. The results of RKR are
shown in Figures 10d, 10e, 10f, GIR outperforms simple scan
SIM at all times and outperforms the tree-based MPA with
4 to 8-dimensional data.

In high-dimensions (10-50), as shown in Figures 11a and
11c, the query time taken by tree-based method increases
rapidly for the two reasons we presented in Sections 1.2 and
5.2: overlapping MBRs and little space to prune. Figure
11b, 11d present the number of pairwise computations for
all algorithms, both BBR and MPA use more computations
than the simple scan. Notice that the computation numbers
for GIR and SIM are equal and are both titled “SCAN” in
the figures. On the other hand, GIR is the most stable
method and only grows slightly. This confirms that GIR is
only slightly affected by increasing dimensionality.

Real data with varying “k”. For the performance of
these algorithms on real data sets (RE) with varying k. No-
tice that k has a different meaning, it is a query condition
in RTK and a result size in RKR. Figures 12a, 12b show the
results from data set HOUSE and COLOR, and data set W
is generated as UN data. We process COLOR with RTK and
HOUSE with RKR. Clearly, GIR is consistently superior to
tree-based algorithms (BBR and MPA) and SIM, though all
are stable for various k values. For the DIANPING dataset,
P and W contain the average scores vectors from the reviews
of users and restaurants. We peform RTK and RKR queries
on DIANPING data and the Figures 12c and 12d show the
comparison results. As we expected, the GIR algorithm is
the most efficient for this real-world application data set.

Scalability with varying |P | and |W |. According Fig-
ure 13, as the cardinality of data set increases P (Figures
13a and 13b) or W (Figures 13c and 13d), GIR becomes
significantly superior to tree-based algorithms (BBR, MPA)
and SIM. n = 32 is sufficient to filter more than 99% of
points for a 6-d dataset based our Theorem 1. Thus, the
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Figure 14: GIR vs Tree-base with varying k, for RTK and
RTK queries. P , W : UN, n = 32, d = 6.
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Figure 15: (a) Visited data for all algorithms on varying d,
(b) Filtering data (%) of Grid-index on varying n. |P | =
100K, |W | = 100K. P , W : UN.

CPU cost increased only slightly as the scale increased.
Effect on “k”. Figures 12, 14 also show the performance

changes when k increases from 100 to 500. All algorithms
are insensitive to k because k � |P | and k � |W |.

Accessed data points. Figure 15a shows the percentage
of visited data in the leaf nodes of the R-tree and original
data points on UN data. As predicted by our analysis, R-
tree degenerated to a simple scan through all leaf nodes with
high-dimensional data. However, GIR accesses a relatively
small amount of data after filtering with Grid-index.

Effect on value range partitions n. Figure 15b shows
the percent of 20-d data which can be filtered with Grid-
index with various Grid numbers (n×n). We created Grid-
index with different n from 4 to 128 and observed the filter-
ing of data points. The results confirm the analytical result
guaranteed by Theorem 1. n = 32 is enough to guarantee a
high Grid-index efficiency.

7. CONCLUSION
Reverse rank queries are useful in many applications. In

marketing analysis, they can be used to help manufactur-
ers recognize their consumer base by matching their prod-
uct features with user preferences. The state-of-the-art ap-
proaches for both reverse top-k (BBR) and reverse k-ranks
(MPA) are tree-based algorithms, and are not designed to
deal with high-dimensional data. In this paper, we pro-
posed the Grid-index and the GIR algorithm to overcome
the cost of high-dimensional computing when processing re-
verse rank queries. Theoretical analysis and experimental
results confirmed the efficiency of the proposed algorithm
when compared to the tree-based algorithms especially in
high-dimensional cases.

In future work, there are two extensions for GIR algo-
rithm. The first is to find a heuristic method to adapt GIR to
different data distributions by using non-equal-width Grid-
index. This is easy to implement by merging and splitting
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some grids of the equal-width Grid-index based on the dis-
tributions of the given P and W . The challenging point is
the model of filtering performance with varied distributions
in different dimensions. The second extension is to do opti-
mization when the user preferences data w ∈ W has many
zero entry, i.e., when W is sparse. Since in practice, a user
is normally interested in a few attributes of the products.
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ABSTRACT

Advanced queries that combine spatial constraints with tex-
tual relevance to retrieve objects of interest have attracted
increased attention recently due to the ever-increasing rate
of user-generated spatio-textual data. Motivated by this
trend, in this paper, we study the novel problem of parallel
and distributed processing of spatial preference queries using
keywords, where the input data is stored in a distributed way.
Given a set of keywords, a set of spatial data objects and a
set of spatial feature objects that are additionally annotated
with textual descriptions, the spatial preference query using
keywords retrieves the top-k spatial data objects ranked ac-
cording to the textual relevance of feature objects in their
vicinity. This query type is processing-intensive, especially
for large datasets, since any data objects may belong to the
result set while the spatial range defines the score, and the
k data objects with the highest score need to be retrieved.
Our solution has two notable features: (a) we propose a de-
liberate re-partitioning mechanism of input data to servers,
which allows parallelized processing, thus establishing the
foundations for a scalable query processing algorithm, and
(b) we boost the query processing performance in each par-
tition by introducing an early termination mechanism that
delivers the correct result by only examining few data ob-
jects. Capitalizing on this, we implement parallel algorithms
that solve the problem in the MapReduce framework. Our
experimental study using both real and synthetic data in a
cluster of sixteen physical machines demonstrates the effi-
ciency of our solution.

1. INTRODUCTION
With the advent of modern applications that record the

position of mobile users by means of GPS, and the exten-
sive use of mobile smartphones, we have entered the era of
Big Spatial Data. The fact that an increasing amount of
user-generated content (e.g., messages in Twitter, photos in
Flickr, etc.) is geotagged also contributes to the daily cre-
ation of huge volumes of location-based data. Apart from

c©2017, Copyright is with the authors. Published in Proc. 20th Inter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

spatial locations, the data typically contain textual descrip-
tions or annotations. Analyzing and exploiting such tex-
tually annotated location-based data is estimated to bring
high economic benefits in the near future.

In order to extract useful insights from this wealth of Big
Spatial Data, advanced querying mechanisms are required
that retrieve results of interest from massively distributed
spatio-textual data. In this paper, we study an advanced
query type that retrieves data objects based on the textual
relevance of other (feature) objects in their spatial neigh-
borhood. In particular, given a keyword-based query, a set
of spatial data objects and a set of spatial feature objects
that are additionally annotated with textual descriptions,
the spatial preference query using keywords retrieves the top-
k spatial data objects ranked according to the textual rel-
evance of feature objects in their vicinity. This query is
generic, as it can be used to retrieve locations of interest
based on the relevance of Tweets in their vicinity, based on
popular places (bars, restaurants, etc.), and/or based on the
comments of other people in the surrounding area.

However, processing this query raises significant challenges.
First, due to the query definition, every data object is a po-
tential result and cannot be pruned by spatial or textual
constraints. Second, the distribution of data raises the need
to find a way to parallelize computation by assigning units of
work that can be processed independently from others. In
this paper, we address these technical challenges and pro-
vide the first solution to parallel/distributed processing of
the spatial preference query using keywords. Our approach
has two notable features: (a) we propose a method to paral-
lelize processing by deliberately re-partitioning input data,
in such a way that the partitions can be processed in parallel,
independently from each other, and (b) within each parti-
tion, we apply an early termination mechanism that eagerly
restricts the number of objects that need to be processed in
order to provide the correct result set.

In more detail, we make the following contributions in this
paper:

• We formulate and address a novel problem, namely
parallel/distributed evaluation of spatial preference queries
using keywords over massive and distributed spatio-
textual data.

• We propose a grid-based partitioning method that uses
careful duplication of feature objects in selected neigh-
boring cells and allows independent processing of sub-
sets of input data in parallel, thus establishing the
foundations for a scalable, parallel query evaluation
algorithm.
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• We further boost the performance of our algorithm by
introducing an early termination mechanism for each
independent work unit, thereby reducing the process-
ing cost.

• We demonstrate the efficiency of our algorithms by
means of experimental evaluation using both real and
synthetic datasets in a medium-sized cluster.

The remainder of this paper is structured as follows: Sec-
tion 2 presents the preliminary concepts and necessary back-
ground. Section 3 formally defines the problem under study
and explains the rationale of our approach along with a brief
overview. The proposed query processing algorithm that re-
lies on the grid-based partitioning is presented in Section 4.
Section 5 presents the algorithms that use early termina-
tion. Section 6 analyzes the complexity of the proposed
algorithms. Then, in Section 7, we present the results of
our experimental evaluation. Related research efforts are
outlined in Section 8. Finally, in Section 9, we provide con-
cluding remarks.

2. PRELIMINARIES
In this section we give a brief overview of MapReduce and

HDFS, and define the type of queries we will focus on.

2.1 MapReduce and HDFS
Hadoop is an open-source implementation of MapReduce [4],

providing an environment for large-scale, fault-tolerant data
processing. Hadoop consists of two main parts: the HDFS
distributed file system and MapReduce for distributed pro-
cessing.
Files in HDFS are split into a number of large blocks which

are stored on DataNodes, and one file is typically distributed
over a number of DataNodes in order to facilitate high band-
width during parallel processing. In addition, blocks can be
replicated to multiple DataNodes (by default three replicas),
in order to ensure fault-tolerance. A separate NameNode is
responsible for keeping track of the location of files, blocks,
and replicas thereof. HDFS is designed for use-cases where
large datasets are loaded (“write-once”) and processed by
many different queries that perform various data analysis
tasks (“read-many”).
A task to be performed using the MapReduce framework

has to be specified as two steps. TheMap step as specified by
a map function takes some input (typically from HDFS files),
possibly performs some computation on this input, and re-
distributes it to worker nodes (a process known as “shuffle”).
An important aspect of MapReduce is that both the input
and output of the Map step is represented as key-value pairs,
and that pairs with same key will be processed as one group
by a Reducer. As such, the Reduce step receives all values
associated with a given key, from multiple map functions, as
a result of the re-distribution process, and typically performs
some aggregation on the values, as specified by a reduce
function.
It is important to note that one can customize the re-

distribution of data to Reducers by implementing a Parti-
tioner that operates on the output key of the map function,
thus practically enforcing an application-specific grouping
of data in the Reduce phase. Also, the ordering of values
in the reduce function can be specified, by implementing a
customized Comparator. In our work, we employ such cus-

Symbol Description

O Set of data objects
p Object in O, p ∈ O

F Set of feature objects
f Feature object in F , f ∈ F

f.W Keywords associated with feature object f

q(k, r,W) Query for top-k data objects
w(f, q) Textual relevance of feature f to query q

w(f, q) Upper bound of w(f, q)
dist(p, f) Spatial distance between p and f

τ(p) Score of data object p

τ Score of the k-th best data object
R Number of Reduce tasks
C = {C1, . . . , CR} Grid cells

Table 1: Overview of symbols.

tomizations to obtain a scalable and efficient solution to our
problem.

2.2 Spatial Preference Queries
The spatial preference query belongs to a class of queries

that rank objects based on the quality of other (feature) ob-
jects in their spatial neighborhood [12, 16, 17]. Inherently a
spatial preference query assumes that two types of objects
exist: the data objects, which will be ranked and returned
by the query, and the feature objects, which are responsi-
ble for ranking the data objects. As such, the feature ob-
jects determine the score of each data object according to
a user-specified metric. Spatial preference queries find more
applications in the case of textually annotated feature ob-
jects [14], where the score of data objects is determined by
a textual similarity function applied on query keywords and
textual annotations of feature objects. This query is known
as top-k spatio-textual preference query [14]. In this paper,
we study a distributed variant of this query.

3. PROBLEM STATEMENT AND OVERVIEW

OF SOLUTION

3.1 Problem Formulation
Consider an object dataset O of spatial objects p ∈ O,

where p is described by its coordinates p.x and p.y. Also,
consider a feature dataset F of spatio-textual objects f ∈ F ,
which are represented by spatial coordinates f.x and f.y,
and a set of keywords f.W.

The spatial preference query using keywords returns the
k data objects {p1, . . . , pk} from O with the highest score.
The score of a data object p ∈ O is defined by the scores
of feature objects f ∈ F in its spatial neighborhood. As
already mentioned, each feature object f is associated with
a set of keywords f.W. A query q consists of a neighborhood
distance threshold r, a set of query keywords q.W for the
feature set F , and the value k that determines how many
data objects need to be retrieved. For a quick overview of
the basic symbols used in this paper, we refer to Table 1.

Given a query q(k, r,W) and a feature object f ∈ F , we
define the non-spatial score w(f, q) that indicates the good-
ness (quality) of f as the similarity of sets q.W and t.W.
In this work, we employ Jaccard similarity for this purpose.
Obviously, the domain of values of w(f, q) is the range [0, 1].
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Figure 1: Example of spatial preference query using
keywords (SPQ).

Definition 1. (Non-spatial score w(f, q)): Given a query
q and a feature object f ∈ F , the non-spatial score w(f, q)
determines the textual relevance between the set of query key-
words q.W and the keywords f.W of f using Jaccard simi-
larity:

w(f, q) = |q.W∩f.W|
|q.W∪f.W|

The score τ(p) of a data object p is determined by the fea-
ture objects that are within distance r from p. More specif-
ically, τ(p) is defined by the maximum non-spatial score
w(f, q) of any feature object f in the r-neighborhood of p.
This range-based neighborhood condition is typically used
in the related work [12, 14, 16, 17]. Formally,

Definition 2. The score τ(p) of p based on feature dataset
F , given the range-based neighborhood condition r is defined
as:

τ(p) = max{w(f, q) | f ∈ F : d(p, f) ≤ r}

Example 1. Figure 1 depicts an example. The spatial
area contains both data objects (denoted as pi) and feature
objects (denoted as fi). The data objects represent hotels and
the feature objects represent restaurants. Assume a user is-
sues the following query: Find the best (top-k) hotels that
have an Italian restaurant nearby. Let us assume that k=1
and“nearby” is translated to r = 1.5 units of distance. Then,
the query is expressed as: Find the top-1 data object for
which a highly ranked feature object exists based on the key-
word “italian” and at a distance of at most 1.5 units.
Table 2 lists the locations and descriptions of both data

and feature objects. Only feature objects f1, f4 and f7 have
a common term with the user specified query (the keyword
“italian”). Thus, only f1, f4 and f7 will have a Jaccard score
other than 0. In the last column of Table 2 the Jaccard score
for all feature objects is shown. The score of each data object
is influenced only by the feature objects within a distance of
at most 1.5 units. In Figure 1 the circles with radius 1.5
range units and center each data object include the feature
objects that are nearby each data object and influence its
score. The actual score of a data object is the highest score
of all nearby feature objects. Data object p4 has a score of
0.5 due to feature object f1, data object p1 has a score of 1

Object X Y Keywords Jaccard

p1 4.6 4.8 - -
p2 7.5 1.7 - -
p3 8.9 5.2 - -
p4 1.8 1.8 - -
p5 1.9 9.0 - -
f1 2.8 1.2 italian,gourmet 0.5
f2 5.0 3.8 chinese,cheap 0
f3 8.7 1.9 sushi,wine 0
f4 3.8 5.5 italian 1
f5 5.2 5.1 mexican,exotic 0
f6 7.4 5.4 greek,traditional notInRange
f7 3.0 8.1 italian,spaghetti 0.5
f8 9.5 7.0 indian 0

Table 2: Example of datasets and scores for query
q.W = {italian}.

because of feature object f4 and data object p5 has a score of
0.5 due to feature object f7. Hence, the top-1 result is object
p1.

In the parallel and distributed setting that is targeted in
this paper, datasets O and F are horizontally partitioned
and distributed to different machines (servers), which means
that each server stores only a fraction (partition) of the en-
tire datasets. In other words, a number of partitions Oi ∈ O

and Fi ∈ F of datasets O and F respectively exists, such
that

⋃
Oi = O, Oi

⋂
Oj = ∅ for i 6= j, and

⋃
Fi = F ,

Fi

⋂
Fj = ∅ for i 6= j. Due to horizontal partitioning, any

(data or feature) object belongs to a single partition (Oi or
Fi respectively). We make no assumption on the number
of such partitions nor on having equal number of data and
feature object partitions. Also, no assumptions are made on
the specific partitioning method used; in fact, our proposed
solution is independent of the actual partitioning method
employed, which makes it applicable in the most generic
case.

Problem 1. (Parallel/Distributed Spatial Preference Query
using Keywords (SPQ)) Given an object dataset O and a fea-
ture dataset F , which are horizontally partitioned and dis-
tributed to a set of servers, the parallel/distributed spatial
preference query using keywords returns the k data objects
{p1, . . . , pk} from O with the highest τ(pi) scores.

3.2 Design Rationale
The spatial preference query using keywords (SPQ) tar-

geted in this paper is a complex query operator, since any
data object p may belong to the result set and the spa-
tial range cannot be used for pruning the data space. As a
result, the computation becomes more challenging and effi-
cient query processing mechanisms are required that can ex-
ploit parallelism and the availability of hardware resources.
Parallelizing this query is also challenging because any given
data object p and all feature objects within the query range
r from p must be assigned to the same server to ensure the
correct computation of the score τ(p) of p. As such, a re-
partitioning mechanism is required in order to assign (data
and feature) objects to servers in a deliberate way that al-
lows local processing at each server. To achieve the desired
independent score computation at each server, duplication
of feature objects to multiple servers is typically necessary.
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Based on this, we set the following objectives for achieving
parallel, scalable and efficient query processing:

• Objective #1: parallelize processing by breaking the
work into independent parts, while minimizing feature
object duplication. In addition, the union of the results
in each part should suffice to produce the final result
set.

• Objective #2: avoid processing the input data in its
entirety, by providing early termination mechanisms
for query processing.

To meet the above objectives, we design our solution by
using the following two techniques:

• a grid-partitioning of the spatial data space that uses
careful duplication of feature objects in selected neigh-
boring cells, in order to create independent work units
(Section 4), and

• sorted access to the feature objects in a deliberate or-
der along with a thresholding mechanism that allows
early termination of query processing that guarantees
the correctness of the result (Section 5).

4. GRID-BASED PARTITIONING AND INI-

TIAL ALGORITHM
In this section, we present an algorithm for solving the

parallel/distributed spatial preference query using keywords,
which relies on a grid-based partitioning of the 2-dimensional
space in order to identify subsets of the original data that
can be processed in parallel. To ensure correctness of the
result computed in parallel, we re-partition the input data
to grid cells and deliberately duplicate some feature objects
in neighboring grid cells. As a result, this technique lays the
foundation for parallelizing the query processing and leads
to the first scalable solution.

4.1 Grid-based Partitioning
Consider a regular, uniform grid in the 2-dimensional data

space that consists of R cells: C = {C1, . . . , CR}. Our ap-
proach assigns all data and feature objects to cells of this
grid, and expects each cell to be processed independently of
the other cells. In MapReduce terms, we assign each cell
to a single processing task (Reducer), thus all data that is
mapped to this cell need to be sent to the assigned Reducer.
The re-partitioning mechanism operates in the following

way. Based on its spatial location, an object (data or feature
object) is assigned to the cell that encloses it in a straight-
forward way. However, some feature objects must be addi-
tionally assigned to other cells (i.e., duplicated), in order to
ensure that the data in each cell can indeed be processed
independently of the other cells and produce the correct re-
sult. More specifically, given a feature object f ∈ Cj and any
grid cell Ci (Ci 6= Cj), we denote by MINDIST (f, Ci) the
minimum distance between feature object f and Ci. This
distance is defined as the distance of f to the nearest edge
of Ci, since f is outside Ci. When this minimum distance is
smaller than the query radius r, i.e., MINDIST (f, Ci) ≤ r,
then it is possible that f is within distance r from a data
object p ∈ Ci. Therefore, f needs to be assigned (dupli-
cated) also to cell Ci. The following lemma guarantees the
correctness of the afore-described technique.
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Figure 2: Example of grid partitioning.

Lemma 1. (Correctness) Given a parallel/distributed spa-
tial preference query using keywords with radius r, any fea-
ture object f ∈ Cj must be assigned to all other grid cells
Ci(Ci 6= Cj), if MINDIST (f, Ci) ≤ r.

Figure 2 illustrates the same dataset as in Figure 1 and a
4x4 grid (the numbering of the cells is shown in the figure).
Consider a query with radius r = 1.5, and let us examine
feature object f7 as an example. Assuming that f7 has at
least one common term in its keyword set (f7.W) with the
user specified query (q.W), then f7 may affect neighboring
cells located near cell with identifier C14. It is fairly easy to
see that f7 needs to be duplicated to cells C9, C10, and C13,
for which MINDIST (f7, Ci) ≤ r, thus the score of data
objects located in these cells may be determined by f7.

Before presenting the algorithm that exploits this grid par-
titioning, we make a note on how to select an appropriate
grid size, as this affects the amount of duplication required.
It should also be noted that in our approach the grid is de-
fined at query time, after the value of r is known. Let α

denote the length of the edge of a grid cell. For now, we
should ensure that α ≥ r, otherwise excessive replication to
neighboring cells would be performed. Later, in Section 6,
we provide a thorough analysis on the effect of the grid cell
size to the amount of duplicated data.

4.2 Parallel Algorithm
We design a parallel algorithm, termed pSPQ, that solves

the problem in MapReduce. The Map phase is responsible
for re-partitioning the input data based on the grid intro-
duced earlier. Then, in the Reduce phase, the problem of
reporting the top-k data objects is solved in each cell inde-
pendently of the rest. This is the part of the query that
dominates the processing time; the final result is produced
by merging the k results of each of the R cells and returning
the top-k with the highest score. However, this last step can
be performed in a centralized way without significant over-
head, given that the number of these results is small because
k is typically small.

In more detail, in the Map phase, each Map task (Mapper)
receives as input some data objects and some feature objects,
without any assumptions on their location. Each Mapper is
responsible for assigning data and feature objects to grid
cells, including duplicating feature objects. Each grid cell
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Algorithm 1 pSPQ : Map Function

1: Input: q(k, r,W), grid cells C = {C1, . . . , CR}
2: function MAP (x: input object)
3: Ci ← {Ci : Ci ∈ C and x enclosed in Ci}
4: if x is a data object then
5: x.tag ← 0
6: output 〈(i, x.tag), x〉
7: else
8: x.tag ← 1
9: if (x.W ∩ q.W 6= ∅) then
10: output 〈(i, x.tag), x〉
11: for (Cj ∈ C, such that MINDIST (x,Cj) ≤ r) do
12: output 〈(j, x.tag), x〉
13: end for
14: end if
15: end if
16: end function

corresponds to a single Reduce task, which will take as input
all objects assigned to the respective grid cell. Then, the
Reducer can accurately compute the score of any data object
located in the particular grid cell and report the top-k.

4.2.1 Map Phase

Algorithm 1 shows the pseudo-code of the Map phase,
where each call of the Map function processes a single ob-
ject denoted by x, which can be a data object or a feature
object. First, in line 3, the cell Ci that encloses object x is
determined. Then, if x is a data object, it is tagged (x.tag)
with the value 0, otherwise with the value 1. In case of a
data object, x is output using a composite key that consists
of the cell id i and the tag as key, and as value the entire
data object x. In case of a feature object, we apply a simple
pruning rule (line 9) to eliminate feature objects that do not
affect the result of the query. This rule practically eliminates
from further processing any feature object that has no com-
mon keyword with the query keywords, i.e., q.W∩f.W = ∅.
The reason is that such feature objects cannot contribute to
the score of any data object, based on the definition of our
query. This pruning rule can significantly limit the num-
ber of feature objects that need to be sent to the Reduce
phase. For the remaining feature objects that have at least
one common keyword with the query, they are first output
with the same composite key as above, and value the entire
feature object x. In addition, we identify neighboring cells
Cj that comply with Lemma 1, and replicate the feature ob-
ject in those cells too. In this way, we have partitioned the
initial data to grid cells and have performed the necessary
duplication of feature objects.
The output key-values of the Map phase are grouped by

cell id and assigned to Reduce tasks using a customized Par-
titioner. Also, in each Reduce task, we order the objects
within each group by their tag, so that data objects pre-
cede feature objects. This is achieved through the use of
the composite keys for sorting. As a result, it is guaranteed
that each Reducer accesses the feature objects after it has
accessed all data objects.

4.2.2 Reduce Phase

As already mentioned, a Reduce task processes all the
data assigned to a single cell and reports the top-k data
objects within the respective cell. The pseudo-code of the

Algorithm 2 pSPQ : Reduce Function

1: Input: q(k, r,W)
2: function REDUCE(key, V : objects assigned to cell

with id key)
3: Lk ← ∅
4: for (x ∈ V ) do
5: if x is a data object then
6: Load x in memory Oi

7: score(x)← 0 // initial score
8: else
9: if w(x, q) > τ then
10: for (p ∈ Oi) do
11: if d(p, x) ≤ r then
12: score(p)← max{score(p), w(x, q)}
13: update list Lk of top-k data objects and τ

14: end if
15: end for
16: end if
17: end if
18: end for
19: for p ∈ Lk do
20: output 〈p, score(p)〉 // at this point:score(p) = τ(p)
21: end for
22: end function

Reduce function is depicted in Algorithm 2. First, all data
objects are accessed one-by-one and loaded in memory (Oi).
Moreover, a sorted list Lk of the k data objects pi with
higher scores τ(pi) is maintained. Let τ denote the k-th
best score of any data object so far. Then, for each feature
object x accessed, its non-spatial score w(x, q) (i.e., textual
similarity to the query terms) is compared to τ . Only if the
non-spatial score w(x, q) is larger than τ (line 9), may the
top-k list of data objects be updated. Therefore, in this case
we test all combinations of x with the data objects p kept in
memory Oi. If such a combination (x, p) is within distance r
(line 11), then we check if the temporary score of p denoted
by score(p) can be improved based on x (i.e., w(x, q)), and
if that is the case we check whether p has obtained a score
that places it in the current top-k list of data objects (Lk).
Line 12 shows how the score can be improved, however we
omit from the pseudo-code the check of score improvement
of p for sake of simplicity. Then, in line 13, the list Lk is
updated. As explained, this update is needed only if the
score of p is improved. In this case, if p already exists in
Lk we only update its score, otherwise p is inserted into Lk.
After all feature objects have been processed, Lk contains
the top-k data objects of this cell.

4.2.3 Limitations

The above algorithm provides a correct solution to the
problem in a parallel manner, thus achieving Objective #1.
However, in each Reducer, it needs to process the entire
set of feature objects in order to produce the correct re-
sult. In the following section, we present techniques that
overcome this limitation, thereby achieving significant per-
formance gains.

5. ALGORITHMS WITH EARLY TERMI-

NATION
Even though the technique outlined in the previous section
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Algorithm 3 eSPQlen: Map Function (Section 5.1)

1: Input: q(k, r,W), grid cells C = {C1, . . . , CR}
2: function MAP (x: input object)
3: Ci ← {Ci : Ci ∈ C and x enclosed in Ci}
4: if x is a data object then
5: output 〈(i, 0), x〉
6: else
7: if (x.W ∩ q.W 6= ∅) then
8: output 〈(i, |x.W|), x〉
9: for (Cj ∈ C, such that MINDIST (x,Cj) ≤ r) do
10: output 〈(j, |x.W|), x〉
11: end for
12: end if
13: end if
14: end function

enables parallel processing of independent partitions to solve
the problem, it cannot guarantee good performance since it
requires processing both data partitions in a cell in their
entirety (including duplicated feature objects). To alleviate
this shortcoming, we introduce two alternative techniques
that achieve early termination, i.e., report the correct result
after accessing all data objects but only few feature objects.
This is achieved by imposing a deliberate order for accessing
feature objects in each cell, which in turn allows determining
an upper bound for the score of any unseen feature object.
When this upper bound cannot improve the score of the
current top-k object, we can safely terminate processing of
a given Reducer.

5.1 Accessing Feature Objects by Increasing
Keyword Length

The first algorithm that employs early termination, termed
eSPQlen, is based on the intuition that feature objects f

with long textual descriptions that consist of many key-
words (|f.W|) are expected to produce low scores w(f, q).
This is due to the Jaccard similarity used in the definition
of w(f, q) (Defn. 1), which has |q.W

⋃
f.W| in the denom-

inator. Based on this, we impose an ordering of feature
objects in each Reducer by increasing keyword length, aim-
ing at examining first feature objects that will produce high
score values w(f, q) with higher probability.
In more details, given the keywords q.W of a query q, and

a feature object f with keywords f.W, we define a bound
for the best possible Jaccard score that this feature object
can achieve as:

w(f, q) =

{
1 , |f.W| < |q.W|
|q.W|
|f.W|

, |f.W| ≥ |q.W|
(1)

Given that feature objects are accessed by increased key-
word length, this bound is derived as follows. As long as
feature objects f are accessed that satisfy |f.W| < |q.W|,
it is not possible to terminate processing, thus the bound
takes the value of 1. The reason is that when |f.W| < |q.W|
holds, it is possible that a subsequent feature object f ′ with
more keywords than f may have higher Jaccard score than
f . However, as soon as it holds that |f.W| ≥ |q.W| the
bound (best possible score) equals:

min{|q.W|, |f.W|}

min{|q.W|, |f.W|}+ |f.W| − |q.W|
=
|q.W|

|f.W|

Algorithm 4 eSPQlen: Reduce Function with Early Ter-
mination (Section 5.1)

1: Input: q(k, r,W)
2: function REDUCE(key, V : objects assigned to cell

with id key)
3: Lk ← ∅
4: for (x ∈ V ) do
5: if x is a data object then
6: Load x in memory Oi

7: score(x)← 0 // initial score
8: else
9: if τ ≥ w(x, q) then
10: break
11: end if
12: if w(x, q) > τ then
13: for (p ∈ Oi) do
14: if d(p, x) ≤ r then
15: score(p)← max{score(p), w(x, q)}
16: update list Lk of top-k data objects and τ

17: end if
18: end for
19: end if
20: end if
21: end for
22: for p ∈ Lk do
23: output 〈p, score(p)〉 // at this point:score(p) = τ(p)
24: end for
25: end function

because in the best case the intersection of sets q.W and
f.W will be equal to: min{|q.W|, |f.W|}, while their union
will be equal to: min{|q.W|, |f.W|}+ |f.W| − |q.W|.

Recall that τ denotes the k-th best score of any data object
so far. Then, the condition for early termination during
processing of feature objects by increasing keyword length,
can be stated as follows:

Lemma 2. (Correctness of Early Termination eSPQlen)
Given a query q and an ordering of feature objects based on
increasing number of keywords, it is safe to stop accessing
more feature objects as soon as a feature object f is accessed
with:

τ ≥ w(f, q)

Based on this analysis, we introduce a new algorithm that
follows the paradigm of Section 4, but imposes the desired
access order to feature objects and is able to terminate early
in the Reduce phase.

5.1.1 Map Phase

Algorithm 3 describes the Map phase of the new algo-
rithm. The main difference to the algorithm described in
Section 4 is in the use of the composite key when objects
are output by the Map function (lines 8 and 10). The com-
posite key contains two parts. The first part is the cell id,
as previously, but the second part is a number. The second
part corresponds to the value zero in the case of data ob-
jects, while it corresponds to the length |f.W| of the keyword
description in the case of a feature object f . The rationale
behind the use of this composite key is that the cell id is
going to be used to group objects to Reducers, while the
second part of the key is going to be used to establish the
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Algorithm 5 eSPQsco: Map Function (Section 5.2)

1: Input: q(k, r,W), grid cells C = {C1, . . . , CR}
2: function MAP (x: input object)
3: Ci ← {Ci : Ci ∈ C and x enclosed in Ci}
4: if x is a data object then
5: output 〈(i, 2), x〉
6: else
7: if (x.W ∩ q.W 6= ∅) then
8: output 〈(i, w(x, q)), x〉
9: for (Cj ∈ C, such that MINDIST (x,Cj) ≤ r) do
10: output 〈(j, w(x, q)), x〉
11: end for
12: end if
13: end if
14: end function

ordering in the Reduce phase in increased order of the num-
ber used. In this sorted order, data objects again precede
feature objects, due to the use of the zero value. Between
two feature objects, the one with the smallest length of key-
word description (i.e., fewer keywords) precedes the other in
the sorted order.

5.1.2 Reduce Phase

As already mentioned, feature objects with long keyword
lists are expected to result in decreased textual similarity
(in terms of Jaccard value). Thus, our hope is that after
accessing feature objects with few keywords, we will find a
feature object that has so many keywords that all remaining
feature objects in the ordering cannot surpass the score of
k-th best data object thus far.
Algorithm 4 explains the details of our approach. Again,

only the set of data objects assigned to this Reducer is main-
tained in memory, along with a sorted list Lk of the k data
objects with best scores found thus far in the algorithm. The
condition for early termination is based on the score τ of the
k-th object in list Lk and the best potential score w(f, q) of
the current feature object f (line 9).

5.2 Accessing Feature Objects by Decreasing
Score

In this section, we introduce an even better early termi-
nation algorithm, termed eSPQsco. The rationale of this
algorithm is to compute the Jaccard score in the Map phase
and use this score as second part of the composite key. In
essence, this can enforce a sorted order in the Reduce phase
where feature objects are accessed from the highest scoring
feature object to the lowest scoring one.
To explain the intuition of the algorithm, consider the

feature object with highest score. Any data object located
within distance r from this feature object is guaranteed to
belong to the result set, as no other data object can acquire a
higher score. This observation leads to a more efficient algo-
rithm that can (in principle) produce results when accessing
even a single feature object. As a result, the algorithm is
expected to terminate earlier, by accessing only a handful
of feature objects. This approach incurs additional process-
ing cost at the Map phase (i.e., computation of the Jaccard
score), but the imposed overhead to the overall execution
time is minimal.

Lemma 3. (Correctness of Early Termination eSPQsco)

Algorithm 6 eSPQsco: Reduce Function with Early Ter-
mination (Section 5.2)

1: Input: q(k, r,W)
2: function REDUCE(key, V : objects assigned to cell

with id key)
3: for (x ∈ V ) do
4: if x is a data object then
5: Load x in memory Oi

6: else
7: if ∃p ∈ Oi : d(p, x) ≤ r then
8: output 〈p, w(x, q)〉 // here: w(x, q) = τ(p)
9: cnt++
10: if (cnt = k) then
11: break
12: end if
13: end if
14: end if
15: end for
16: end function

Given a query q and an ordering of feature objects {fi} based
on decreasing score w(fi, q), it is safe to stop accessing more
feature objects as soon as k data objects are retrieved within
distance r from any already accessed feature object.

5.2.1 Map Phase

Algorithm 5 describes the Map function, where the only
modifications are related to the second part of the composite
key (lines 5, 8, and 10). In the case of data objects, this
must be set to a value strictly higher than any potential
Jaccard value, i.e., it can be set equal to 2, since the Jaccard
score is bounded in the range [0, 1]. Thus, data objects
will be accessed before any feature object. In the case of
a feature object f , it is set to the Jaccard score w(f, q) of
f with respect to the query q. Obviously, the customized
Comparator must also be changed in order to enforce the
ordering, from highest scores to lowest scores.

5.2.2 Reduce Phase

Algorithm 6 details the operation of the Reduce phase.
After all data objects are loaded in memory, the feature ob-
jects are accessed in decreasing order of their Jaccard score
to the query. For each such feature object f , any data object
located within distance r is immediately reported as a result
within the specific cell. As soon as k data objects have been
reported as results, the algorithm can safely terminate.

6. THEORETICAL RESULTS
In this section, we analyze the space and time complexity

in the Reduce phase, which relate to the number of cells and
the number of duplicate objects.

6.1 Complexity Analysis
Let R denote the number of Reducers, which is also equiv-

alent to the number of grid cells. Further, let Oi and Fi

denote the subset of the data and feature objects assigned
to the i-th Reducer respectively. Notice that Fi contains
both the feature objects enclosed in the cell corresponding
to the i-th Reducer, as well as the duplicated feature objects
that are located in other neighboring cells. In other words,
it holds that

⋃R

i=1 |Fi| ≥ |F |.
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A4

Figure 3: Breaking a cell in areas based on the num-
ber of duplicates.

In the case of the initial parallel algorithm that does not
use early termination (Section 4), a Reducer needs to store
in memory the data objects |Oi| and the list of k data ob-
jects with best scores, leading to space complexity: O(|Oi|)
since |Oi| >> k. On the other hand, the time complexity is:
O(|Oi| · |Fi|), since in worst case for all data objects and for
each feature object the score is computed. In practice, when
using the early termination the processing cost of each Re-
ducer is significantly smaller, since only few feature objects
need to be examined before reporting the correct result set.
If we make the simplistic assumption that the work is

shared fairly in the R Reducers (e.g., assuming uniform dis-
tribution and a regular uniform grid), then we can replace

in the above formulas: |Oi| =
|O|
R

. Let us also consider
the duplication factor df of the feature dataset F , which is
a real number that is grid-dependent and data-dependent,
such that:

⋃R

i=1 |Fi| = df · |F |. Then, we can also replace in

the above formulas: |Fi| =
df ·|F |

R
. Thus, the processing cost

of a Reducer is proportional to: |Oi| · |Fi| =
|O|
R
·
df ·|F |

R
.

6.2 Estimation of the Duplication Factor
In the following, we assume that the size a of each side of

a grid cell is larger than twice the query radius, i.e., a ≥ 2r,
or equivalently r ≤ a

2
. This is reasonable, since we expect r

to be smaller than the size of a grid cell.
Depending on the area where a feature object is posi-

tioned, different number of duplicates of this object will be
created. Figure 3 shows an example of a grid cell. Given a
feature object enclosed into a cell, we identify four different
cases. If the feature object has a distance smaller than or
equal to r from any cell corner then the feature object is
enclosed in the area A1 that is depicted as the dotted area.
In this case, the feature object must be duplicated to all
three neighboring cells to the corner of the cell. If the fea-
ture object has a distance smaller than or equal to r from
two cell borders but not from a cell corner then the feature
object is enclosed in area A2. This area is depicted with
solid blue color defined by the four rectangles, but does not
include the circles. If located in A2, then only 2 duplicates
will be created (not on the diagonal cell). The third area is
A3 depicted as dashed area and corresponds to the feature
object that have a distance smaller than or equal to r from
only one border of the cell. In this case, only one duplicate
is needed. Finally, if the feature object is enclosed in the
remaining area of the cell (white area, called area A4), no
duplication is needed.

Obviously, since it holds r ≤ a
2
any feature object that

belongs to a cell is located in only one of these four areas.
Let |Ai| denote the surface of area Ai, and A denote the
area of the complete cell. Then:

• |A1| = 4 · πr2

4
= πr2

• |A2| = 4 · r2 − |A1| = (4− π)r2

• |A3| = 4 · (a− 2r)r

• |A4| = a2 − |A1| − |A2| − |A3| = (a− 2r)2

• |A| = a2

Let P (Ai) denote the probability that a feature object
belongs to area Ai. Then, if we assume uniform distribu-
tion of feature objects in the space, we obtain the following

probabilities: P (Ai) =
|Ai|
|A|

. Based on this, given n feature

objects enclosed in a cell, we can calculate the total number
of feature objects (including duplicates), denoted by n̂, of
the n feature points:

n̂ = 3 · n · P (A1) + 2 · n · P (A2) + n · P (A3) + n

and we can calculate the duplication factor df for this cell:
df = n̂

n
=

3 · P (A1) + 2 · P (A2) + P (A3) + 1 =

3πr2

a2 + 2 (4−π)r2

a2 + 4·(a−2·r)r

a2 + 1 =
πr2

a2 + 4·r
a

+ 1
Based on the above formula, we conclude that the worst
value of df is 3+ π

4
for the case of a = 2 · r and it holds that

1 ≤ df ≤ 3 + π
4
for any query range r such that a ≤ 2 · r.

Also, the duplication factor depends only on the ratio of the
cell size to the query range, under the assumption of uniform
distribution. Moreover, the formula shows that smaller cell
size α (compared to the query range r) increases the number
of duplicated feature objects. Put differently, a larger cell
size α reduces the duplication of feature objects.

6.3 Analysis of the Cell Size
Even though using a larger cell size α reduces the total

number of feature objects, it also has significant disadvan-
tages. First, it results in fewer cells thus reducing paral-
lelism. Second, the probability of obtaining imbalanced par-
titions in the case of skewed data is increased. Let us assume
that all R cells can be processed in a single round, i.e., the
hardware resources are sufficient to launch R Reduce tasks
in parallel1. In this case, the total processing time depends
on the performance of one Reducer, which as mentioned be-

fore depends on |Oi| · |Fi| =
|O|
R
·

df ·|F |

R
= |O| · |F | ·

df

R2 . If
we normalize the dataset in [0, 1] × [0, 1], then α ≤ 1 and
R = 1

a
. Then, |Oi| · |Fi| = |O| · |F | · df · a

4. In order to
study the performance of one Reducer while varying a, it
is sufficient to study df · a

4 since the remaining factors are
constant.

Based on the estimation of df in the previous section,

df · a
4 = (πr2

a2 + 4·r
a

+ 1) · a4 = π · r2 · a2 + 4 · r · a3 + a4.
If we consider r as a constant, then for increasing positive
values of a, the value of the previous equation increases,
which means that the complexity of the algorithm increases.
Thus, a smaller cell size α increases the number of cells

1We make this assumption to simplify the subsequent anal-
ysis, but obviously the number of cores can be smaller than
the number of grid cells, and in this case a Reducer will
process multiple cells.
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(a) Flickr (FL). (b) Twitter (TW). (c) Clustered (CL).

Figure 4: Illustration of spatial distribution of datasets.

and parallelism, and also reduces the processing cost of each
Reducer.

7. EXPERIMENTAL EVALUATION
In this section, we report the results of our experimental

study. All algorithms are implemented in Java.

7.1 Experimental Setup
Platform. We deployed our algorithms in an in-house

CDH cluster consisting of sixteen (16) server nodes. Each
of the nodes d1-d8 has 32GB of RAM, 2 disks for HDFS
(5TB in total) and 2 CPUs with a total of 8 cores running
at 2.6 GHz. The nodes d9-d12 have 128GB of RAM, 4 disks
for HDFS (8TB in total) and 2 CPUs with a total of 12
cores (24 hyperthreads) running at 2.6 GHz. Finally, each
of the nodes d13-d16 is equipped with 128GB RAM, 4 disks
for HDFS (8TB in total), and 2 CPUs with a total of 16
cores running at 2.6GHz. Each of the servers in the cluster
function as DataNode and NodeManager, while one of them
in addition functions as NameNode and ResourceManager.
Each node runs Ubuntu 12.04. We use the CDH 5.4.8.1
version of Cloudera and Oracle Java 1.7. The JVM heap
size is set to 1GB for Map and Reduce tasks. We configure
HDFS with 128MB block size and replication factor of 3.
Datasets. In order to evaluate the performance of our

algorithms we used four different large-scale datasets. Two
real datasets are included, a dataset of tweets obtained from
Twitter and a dataset of images obtained from Flickr. The
Twitter dataset (TW) was created by extracting approxi-
mately 80 million tweets which requires 5.7GB on disk. Be-
sides a spatial location, each tweet contains several keywords
extracted from its text, with 9.8 keywords on average per
tweet, while the size of the dictionary is 88,706 keywords.
The Flickr dataset (FL) contains metadata of approximately
40 million images, thus capturing 3.5GB on disk. The aver-
age number of keywords per image is 7.9 and the dictionary
contains 34,716 unique keywords.
In addition, we created two synthetic datasets in order

to test the scalability of our algorithms with even larger
datasets. The first synthetic dataset consists of 512 mil-
lion spatial (data and feature) objects that follow a uniform
(UN) distribution in the data space. Each feature object is
assigned with a random number of keywords between 10 and
100, and these keywords are selected from a vocabulary of
size 1,000. The total size of the file is 160GB. The second
synthetic dataset follows a clustered (CL) distribution. We
generate 16 clusters whose position in space is selected at

Parameter Values

Datasets Real: {TW, FL}
Synthetic: {UN, CL}

Query keywords (|q.W|) 1, 3, 5, 10
Query radius (r) 5%, 10%, 25%, 50%
(% of side α of grid cell)
Top-k 5, 10, 50, 100

Grid size (FL, TW) 35x35, 50x50, 75x75, 100x100
Grid size (UN, CL) 10x10, 15x15, 50x50, 100x100

Table 3: Experimental parameters (default values in
bold).

random. All other parameters are the same. The total size
of the generated dataset is 160GB, as in the case of UN.
Figure 4 depicts the spatial distribution of the datasets em-
ployed in our experimental study. In all cases, we randomly
select half of the objects to act as data objects and the other
half as feature objects.

Algorithms. We compare the performance of the follow-
ing algorithms that are used to compute the spatial prefer-
ence query using keywords in a distributed and parallel way
in Hadoop:

• pSPQ : the parallel grid-based algorithm without early
termination (Section 4),

• eSPQlen: the parallel algorithm that uses early termi-
nation by accessing feature objects based on increasing
keyword length (Section 5.1), and

• eSPQsco: the parallel algorithm that uses early termi-
nation by accessing feature objects based on decreasing
score (Section 5.2).

For clarification purposes, we note that centralized process-
ing of this query type is infeasible in practice, due to the size
of the underlying datasets and the time necessary to build
centralized index structures.

Query generation. Queries are generated by selecting
various values for the query radius r and a number of random
query keywords q.W from the vocabulary of the respective
dataset2.
2We also explored alternative methods for keyword selection
instead of random selection, such as selecting from the most
frequent words or the least frequent words, but the execution
time of our algorithms was not significantly affected.
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Figure 5: Experiments for Flickr (FL) dataset.

 50

 100

 150

 200

 250

 300

 350

 400

35 50 75 100

T
im

e
 (

s
e

c
)

Grid size

pSPQ
eSPQlen
eSPQsco

(a) Varying grid size.

 0

 100

 200

 300

 400

 500

1 3 5 10

T
im

e
 (

s
e

c
)

Query keywords

pSPQ
eSPQlen
eSPQsco

(b) Varying number of query
keywords.

 0

 100

 200

 300

 400

 500

 600

 700

10 25 50 100

T
im

e
 (

s
e

c
)

Range (percentage of cell size)

pSPQ
eSPQlen
eSPQsco

(c) Varying query radius.

 50

 100

 150

 200

 250

 300

 350

 400

5 10 50 100

T
im

e
 (

s
e

c
)

top-k parameter

pSPQ
eSPQlen
eSPQsco

(d) Varying k.

Figure 6: Experiments for Twitter (TW) dataset.

Parameters. During the experimental evaluation a num-
ber of parameters were varied in order to observe their effect
on each algorithm’s runtime. These parameters, reported in
Table 3, are: (i) the radius of the query, (ii) the number
of keywords of the query, (iii) the size of the grid that we
use to partition the data space, (iv) the number of the k

results that the algorithm returns, and (v) the size of the
dataset. In all cases, the number of Reducers is set equal to
the number of cells in the spatial grid.
Metrics. The algorithms are evaluated by the time re-

quired for the MapReduce job to complete, i.e., the job ex-
ecution time.

7.2 Experimental Results

7.2.1 Experiments with Real Data: Flickr

Figure 5 presents the results obtained for the Flickr (FL)
dataset. First, in Figure 5(a), we study the effect of grid size
to the performance of our algorithms. The first observation
is that using more grid cells (i.e., Reduce tasks) improves the
performance, since more, yet smaller, parts of the problem
need to be computed. The algorithms that employ early ter-
mination (eSPQlen, eSPQsco) are consistently much faster
than the grid-based algorithm pSPQ. In particular, eSPQsco
improves pSPQ up to a factor of 6x. Between the early ter-
mination algorithms, eSPQsco is consistently faster due to
the sorting based on score, which typically needs to access
only a handful of feature objects before reporting the correct
result. Figure 5(b) shows the effect of varying the number
of query keywords (|q.W|). In general, when more keywords
are used in the query more feature objects are passed to
the Reduce phase, since the probability of having non-zero
Jaccard similarity increases. This is more evident in pSPQ,
whose cost increases substantially with increased query key-
word length. Instead, eSPQsco is not significantly affected
by the increased number of keywords, because it still man-
ages to find the correct result after examining only few fea-

ture objects. This experiment demonstrates the value of the
early termination criterion employed in eSPQsco. In Fig-
ure 5(c), we gradually increase the radius of the query. In
principle, this makes query processing more costly as again
more feature objects become candidates for determining the
score of any data object. However, the early termination
algorithms are not significantly affected by increased values
of radius, as they can still report the correct result after ex-
amining few feature objects only. Finally, in Figure 5(d),
we study the effect on increased values of top-k. The chart
shows that all algorithms are not particularly sensitive to
increased values of k, because the cost of reporting a few
more results is marginal compared to the work needed to
report the first result.

7.2.2 Experiments with Real Data: Twitter

Figure 6 depicts the results obtained in the case of the
Twitter (TW) dataset. In general, the conclusions drawn
are quite similar to the case of the FL dataset. The algo-
rithms that employ early termination, and in particular eS-
PQsco, scale gracefully in all setups. Even in the harder se-
tups of many query keywords (Figure 6(b)) and larger query
radius (Figure 6(c)), the performance of eSPQsco is not sig-
nificantly affected. This is because as soon as the first few
feature objects with highest scores are examined, the algo-
rithm can safely report the top-k data objects in the cell. In
other words, the vast majority of feature objects assigned to
a cell are not actually processed, and exactly this character-
istic makes the algorithm scalable both in the case of more
demanding queries as well as in the case of larger datasets.

7.2.3 Experiments with Uniform Data

In order to study the performance of our algorithms for
large-scale datasets, we employ in our study synthetic datasets.
Figure 7 presents the results obtained for the Uniform (UN)
dataset. Notice the log-scale used in the y-axis. A general
observation is that eSPQsco that uses early termination out-
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Figure 7: Experiments for Uniform (UN) dataset.

performs pSPQ by more than one order of magnitude. This
is a strong indication in favor of the algorithms employing
early termination, as their performance gains are more ev-
ident for larger datasets, such as the synthetic ones. Also,
the general trends are in accordance with the conclusions
derived from the real datasets. It is noteworthy that the per-
formance of eSPQsco remains relatively stable in the harder
setups consisting of many query keywords (Figure 7(b)) and
larger query radius (Figure 7(c)).
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Figure 8: Scalability of all algorithms.

Moreover, Figure 8 shows the results obtained when we
vary the dataset size. This experiment aims at demon-
strating the nice scaling properties of our algorithms. In
particular, pSPQ scales linearly with increased dataset size,
which is already a good result. However, the algorithms that
employ early termination perform much better, since they
only examine few feature objects regardless of the increase
of dataset size. The experiment also shows that the gain of
the algorithms that employ early termination compared to
pSPQ increases for larger datasets.

7.2.4 Experiments with Clustered Data

Figure 9 presents the results obtained for the Clustered
(CL) dataset. It should be noted that such a data distri-
bution is particularly challenging as: (a) it is hard to fairly
assign the objects to Reducers, thus typically some Reduc-
ers are overburdened, and (b) excessive object duplication
can occur when a cluster is located on grid cell boundaries.
For the CL dataset, we observed that pSPQ results in ex-
tremely high execution time, thus it is not depicted in the
charts. For instance, for the default setup, it takes approx-
imately 48 hours for pSPQ to complete. This is due to the
fact that some Reducers are assigned with too many feature
objects and pSPQ has to perform O(|Oi| · |Fi|) score compu-
tations before termination. Still, the algorithms employing
early termination perform much better in all cases. Again,

when eSPQsco is considered, its performance is the best
among all algorithms, and it remains quite stable even in
the case of more demanding queries. This experiment veri-
fies the nice properties of eSPQsco, even for the combination
of large-scale dataset with a demanding data distribution.

8. RELATED WORK
In this section, we provide a brief overview of related re-

search efforts.
Spatial Preference Queries. The spatial preference

query has been originally proposed in [16] and later extended
in [17]. Essentially, this query enables the retrieval of inter-
esting spatial locations based on the quality of other facilities
located in their vicinity. Rocha et al. [12] propose efficient
query processing algorithms based on a mapping in score-
distance space that enables the materialization of sufficient
pairs of data and feature objects. Ranking of data objects
based on their spatial neighborhood without supporting key-
words has also been studied in [7, 15]. As already mentioned,
none of these approaches support keyword-based retrieval.

Spatio-textual Queries. Object retrieval based on a
combination of spatial and textual information is a highly
active research area recently. We refer to [3] for an inter-
esting overview of query types along with an experimental
comparison. The query studied in this paper has similari-
ties to spatio-textual joins. Spatio-textual similarity join in
a centralized setting is studied in [1], while a ranked version
of this join which does not require thresholds from the user
is studied in [10]. Partitioning strategies that also support
multi-threaded processing of spatio-textual joins are exam-
ined in [11]. The spatial group keyword query [2] retrieves a
group of objects located near the query location, such that
the union of their textual descriptions covers the query key-
words. In [5], the best keyword cover query is introduced,
which retrieves a set of spatial objects that together cover
the query keywords and additionally are located nearby. The
most relevant query to our work is the ranked spatio-textual
preference query proposed in [14]; in this paper, we study a
distributed variant of this query. Nevertheless, all the above
works target centralized environments, and their adaptation
to distributed, large-scale settings is not straightforward.

Spatio-textual Queries at Scale. The current trend
for scalable query processing is to employ a parallel process-
ing solution based on MapReduce. For a survey on query
processing in MapReduce we refer to [6]. To the best of
our knowledge, the area of spatio-textual query processing
at scale is not explored yet. Existing systems for parallel
and scalable data processing in the context of MapReduce
include SpatialHadoop [8]. However, SpatialHadoop targets
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Figure 9: Experiments for Clustered (CL) dataset.

spatial data and is not optimized for spatial data annotated
with textual descriptions. Spatial joins (binary and multi-
way joins) in a MapReduce context are also studied in [18, 9]
respectively, but again no provision for textual annotations
exists. In [19], an approach for spatio-textual similarity join
in MapReduce is presented, where pairs of spatio-textual ob-
jects located within a user-specified distance and having tex-
tual similarity over a user-specified threshold are retrieved.
However, the query in [19] targets a single dataset (essen-
tially a self-join) without ranking and without keywords
as user input. Another substantial difference to our work
is that their solution requires multiple MapReduce phases
(jobs), whereas our algorithms consist of a single MapRe-
duce job. Finally, a recent work on ranked query processing
(top-k joins) in MapReduce is presented in [13], which em-
ploys early termination in a different way (in the Map phase)
from this work (in the Reduce phase).

9. CONCLUSIONS
In this paper we study the problem of parallel/distributed

processing of spatial preference queries using keywords. We
propose scalable algorithms that rely on grid-based
re-partitioning of input data in order to generate partitions
that can be processed independently in parallel. To boost
the performance of query processing, we employ early termi-
nation, thus reporting the correct result set after examining
only a handful of the input data points. Our experimental
study shows that our best algorithm consistently outper-
forms the remaining ones, and its performance is not signif-
icantly affected even in the case of demanding queries.
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ABSTRACT
Time series data is ubiquitous but often incomplete, e.g., due to
sensor failures and transmission errors. Since many applications
require complete data, missing values must be imputed before fur-
ther data processing is possible.

We propose Top-k Case Matching (TKCM) to impute missing
values in streams of time series data. TKCM defines for each time
series a set of reference time series and exploits similar historical
situations in the reference time series for the imputation. A situa-
tion is characterized by the anchor point of a pattern that consists
of l consecutive measurements over the reference time series. A
missing value in a time series s is derived from the values of s
at the anchor points of the k most similar patterns. We show that
TKCM imputes missing values consistently if the reference time
series pattern-determine time series s, i.e., the pattern of length
l at time tn is repeated at least k times in the reference time se-
ries and the corresponding values of s at the anchor time points
are similar to each other. In contrast to previous work, we support
time series that are not linearly correlated but, e.g., phase shifted.
TKCM is resilient to consecutively missing values, and the accu-
racy of the imputed values does not decrease if blocks of values
are missing. The results of an exhaustive experimental evaluation
using real-world and synthetic data shows that we outperform the
state-of-the-art solutions.

1. INTRODUCTION
Time series data appears in many application domains, e.g., me-

teorology, sensor networks, the financial world, and network mon-
itoring. Often time series data is incomplete with values missing
because of sensor failures, transmission errors, etc. Many applica-
tions require complete data, hence missing values must be recov-
ered before further data processing is possible.

Our research is motivated by the problem of missing values in
the data collected by the Südtiroler Beratungsring für Obst- und
Weinbau (SBR). The SBR monitors and analyzes meteorological
data streams in real time and alerts wine and apple farmers of po-
tential harvest threats, such as frost, apple scab, and fire blight. The
SBR operates a network of more than 130 weather stations in South

©2017, Copyright is with the authors. Published in Proc. 20th Inter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

Tyrol, each of which records approximately 20 meteorological pa-
rameters at a sample rate of five minutes. The measurements date
back to 2007 with a total of 88.9M measurements. For illustration
purposes, we use the temperature taken at one meter above ground
level, which ranges from −20.3°C to +40.3°C and has a total of
7.8M (= 8%) missing values. Currently, missing values are manu-
ally imputed by domain experts, based on the values at neighboring
stations.

Various works have observed that time series are correlated and
imputation techniques have been proposed that exploit the informa-
tion of co-evolving time series [12, 13, 14, 16, 25]. Popular solu-
tions include SVD based matrix decomposition techniques [11, 12],
multivariate autoregression analysis [25], and PCA (principal com-
ponent analysis) guided data summarization [16, 17, 23]. These
approaches perform well if the time series are linearly correlated
according to the Pearson correlation. The imputation accuracy de-
teriorates if the time series are shifted and have a Pearson correla-
tion close to zero.

In this paper, we propose Top-k Case Matching (TKCM) to im-
pute missing values in streams of non-linearly correlated time se-
ries. TKCM defines for each time series s a small set Rs of ref-
erence time series. If the value in s at the current time tn is miss-
ing, TKCM defines a query pattern P (tn) that is anchored at tn
and composed of the l most recent measurements of the reference
time series. Then, the k most similar non-overlapping patterns to
the query pattern within a given time window are determined. The
missing value is derived from the values of time series s at the an-
chor points of the kmost similar patterns. This process is illustrated
in Fig. 1, where the value of the time series s at the current time tn
is missing (small circle on the right). There are two reference time
series of s, i.e., Rs = {r1, r2}. The query pattern P (tn) is com-
posed of the snippets of the reference time series in the black frame.
The k = 2 most similar patterns to the query pattern are anchored
at ti and tj and are shown as dashed rectangles. The missing value
of s is derived from the values of s at the anchor points ti and tj
(small circles).

TKCM exploits two common properties of time series. First,
time series often exhibit (not necessarily regularly) repeating pat-
terns, also referred to as seasonal patterns. Second, time series are
(not necessarily linearly) correlated in the sense that, whenever a
pattern in a set of reference time series repeats, time series s ex-
hibits similar values. If these two properties are satisfied we say
that at time tn the reference time series Rs pattern-determine time
series s, denoted by Rs, tn

pd−→ s. In other words, whenever simi-
lar patterns occur in Rs, the values of time series s are similar to
each other, too. In contrast to previous work, this property allows
not only linearly correlated reference time series but permits phase
shifts. For instance, in Fig. 1 the two (shifted) reference time se-
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Figure 1: Imputation of a missing value of s at time tn.

ries Rs = {r1, r2} pattern-determine time series s at time tn. We
show that TKCM imputes missing values consistently if the time
series are pattern determining.

The paper makes the following technical contributions:

• We present and formalize Top-k Case Matching (TKCM) to
impute missing values in streams of pattern-determining time
series, which covers non-linear relationships between time
series.

• We show that TKCM computes correct results for shifted
time series that are not linearly correlated. We use a pattern
of length l > 1 to exploit several consecutive measurements
to find similar historical situations.

• We propose a dynamic programming scheme to find the k
non-overlapping patterns that minimize the sum of dissimi-
larities with respect to the query pattern.

• We empirically show on real-world and synthetic datasets
that TKCM: (a) outperforms state-of-the-art solutions, (b)
can impute values in time series with phase shifts, and (c)
is resilient to large blocks of consecutively missing values.

The paper is structured as follows. Section 2 discusses related
works. After the preliminaries in Section 3 we describe our ap-
proach in Section 4. Section 5 analyzes the properties of TKCM
and works out the differences between linear and non-linear cor-
relations. In Section 6 we provide an implementation of TKCM
that uses a dynamic programming solution to find the k non-
overlapping patterns that are most similar to the query pattern. We
continue with the experimental evaluation in Section 7 before we
conclude this paper and present future research directions in Sec-
tion 8.

2. RELATED WORK
The need to recover missing data arises in many applications,

ranging from meteorology [18, 26], to social science [20], machine
learning [2], motion capture systems [14] and DNA microarray
analysis [24]. Imputing a missing value means to recover it with
a good estimate that is derived from intrinsic relationships in the
underlying dataset.

Simple imputation techniques include mean and mode imputa-
tion [2], which replace the missing value with the mean or mode of

the same attribute. Interpolation techniques, such as linear interpo-
lation and spline interpolation, estimate the missing value from im-
mediately preceding and succeeding values of the same attribute. If
the gap is long, i.e., if many consecutive values are missing, these
interpolation techniques perform badly. For instance, if an entire
period of a sine wave is missing, linear interpolation would replace
the gap with a straight line. Regression methods [25] estimate the
missing value of a time series (e.g., temperature in Zurich) based
on the value of other time series (e.g., temperature in Bern and
Basel). Paulhus et al. [18] observed that nearby weather stations
have similar values and computed a missing value at one station as
the average of the values of nearby stations. Yozgatligil et al. [26]
give a recent survey of imputation methods for meteorological time
series and cover approaches based on neural networks and multiple
imputation [19].

The ARIMA model [4] is a popular time series forecasting model
that is a generalization of the auto-regressive (AR) model. ARIMA
assumes a linear dependency of unknown future values on known
past values of the time series. Finding the proper values for p, d, q
in an ARIMA(p, d, q) model is tedious, complex and involves man-
ual analysis, known as the Box-Jenkins methodology [4].

Batista et al. [2] study the problem of missing data in the context
of machine learning algorithms and present the k-Nearest Neigh-
bor Imputation (kNNI) method to recover these values. For a
multi-attribute object (e.g., breast cancer test with multiple mea-
surements) that has a missing value for one attribute A, the kNNI
approach looks for k objects with similar values for the other at-
tributes according to a distance metric that is not specified. The
missing value is derived from the values of attribute A in these ob-
jects. Troyanskaya et al. [24] extend kNNI to weight the k most
similar items according to their similarity. Our approach, TKCM,
uses the concept of nearest neighbors (k most similar patterns),
but is designed for time series streams and uses a two-dimensional
query pattern for which the k most similar non-overlapping pat-
terns according to the Euclidean distance are searched.

Khayati et al. [11] propose REBOM to recover blocks of miss-
ing values in irregular time series with non-repeating trends. The
algorithm builds a matrix which stores the incomplete time series
and the n most linearly correlated time series according to Pear-
son correlation. Missing values are first initialized, e.g., using lin-
ear interpolation. Then the matrix is iteratively decomposed using
the Singular Value Decomposition (SVD) method, where the least
significant singular values are truncated. Due to the quadratic run-
time complexity, REBOM does not scale to long time series. Next,
Khayati et al. [12] present a solution with linear space complexity
based on the Centroid Decomposition (CD), which is an approxi-
mation of SVD. Unlike our approach, SVD and CD assume a lin-
ear correlation between an incomplete time series and its reference
time series. If time series are not linearly correlated, the imputation
accuracy deteriorates since these trends are captured by the trun-
cated least significant singular values. Khayati et al. [13] show that
CD imputes more accurately than SVD when some reference time
series are shifted and hence lowly linearly-correlated, because CD
prioritizes highly linearly-correlated reference time series. Never-
theless, their experiments show that adding more lowly-correlated
reference time series has a negative impact on CD’s accuracy.

Sorjamaa et al. [15, 22] propose an imputation method based on
a Self-Organizing-Map (SOM), which is an unsupervised learning
technique based on neural networks. A combination of SVD and
SOM [22] uses SVD for the imputation after initializing missing
values in the matrix by a SOM classifier, whereas [15] combines
two SOM classifiers for the imputation. Both methods are only
evaluated on linearly correlated time series.
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DynaMMo [14] is used for mining, summarizing, and imput-
ing time series extracted from human motion capture systems. It
is based on Kalman filters, which, similar to SVD, assume a lin-
ear correlation between time series to accurately estimate unknown
values. Moreover, unlike our approach, DynaMMo allows only one
reference time series, which often is insufficient for an accurate im-
putation.

The works most similar to our approach are MUSCLES [25] and
SPIRIT [16, 17, 23], which focus on the online imputation of miss-
ing values in streams of time series data. Both algorithms use vari-
ants of auto-regressive (AR) models and exploit linear correlations
between data streams. When the linear correlation diminishes, as in
the case of shifted time series, none of the two approaches performs
well.

MUSCLES [25] is an online algorithm that is based on a mul-
tivariate auto-regression model, whose parameters are incremen-
tally updated using the Recursive Least Squares method. Besides
past values of the incomplete time series, MUSCLES takes also the
most recent values of co-evolving and linearly correlated time se-
ries into account that are within a window p. How to choose p is not
discussed; in the experiments p = 6 is used. After p consecutive
missing values, MUSCLES relies exclusively on imputed values
for the incomplete time series. Since small imputation inaccuracies
accumulate over a long stretch of missing values, MUSCLES ac-
curacy deteriorates. Additionally, MUSCLES does not scale well
to a large number of streams, unless an expensive offline subset
selection on the time series is performed [17].

SPIRIT [16, 17, 23] uses an online Principal Component Analy-
sis (PCA) to reduce a set of n co-evolving and correlated streams
to a small number of k hidden variables that summarize the most
important trends in the original data. For each hidden variable,
SPIRIT fits one AR model on past values, which is incrementally
updated as new data arrives. If a value is missing, the AR models
are used to forecast the current value of each variable, from which
an estimate of the missing value is derived. The imputed value,
along with the non-missing values, is then used to update the fore-
casting models. Updating the models with imputed models incurs
similar problems as MUSCLES since inaccuracies are propagated.
Since PCA and SVD are based on the same underlying principle,
PCA shares SVD’s weaknesses for shifted time series.

From an implementation perspective, TKCM needs to find sim-
ilar patterns in time series. This problem has been studied exten-
sively for a single time series, yielding different dimensionality re-
duction techniques, e.g., Discrete Fourier Transform [6], Piecewise
Aggregate Approximation [7], and iSAX [21]. Keogh et al. [10]
present a fast approach to find a subsequence (i.e., one-dimensional
pattern), termed shapelet, of a time series that is most representa-
tive for a set of time series. Finding patterns in our approach is
more complex. We seek patterns that span several time series, and
we have to select the k most similar non-overlapping patterns. The
main focus of this work is not performance, but an accurate impu-
tation of shifted time series streams.

3. PRELIMINARIES
Consider a set S = {s1, s2, . . .} of streaming time series. Each

time series reports values from a sensor measured at time points
. . . , tn−2, tn−1, tn, where tn denotes the current time, i.e., the time
of the latest measurement. The value of a time series s ∈ S at
time ti is denoted as s(ti). We write s(tn) = NIL to denote that
the current value of s is missing. W = {tn−L+1, . . . , tn−1, tn}
denotes the L time points in our streaming window for which we
keep measurements in main memory. We assume that the streaming
window W is long enough to include the query pattern and k non-

overlapping similar patterns.
For each time series s ∈ S there exists an ordered sequence
〈r1, r2, . . .〉 of candidate reference time series, where ri ∈ S\{s}.
They have been identified by domain experts and are consulted if
the current value in s is missing and must be recovered. The candi-
date reference time series of s are ranked according to how suitable
they are for imputing a missing value in s. A single reference time
series does not yield a robust method to estimate a missing value.
Instead the d best candidate reference time series that do not have
a missing value at the current time tn are used. Let s ∈ S be an
incomplete time series with s(tn) = NIL. The reference time se-
ries Rs for s at the current time tn are the first d time series in the
ordered sequence for which r(tn) 6= NIL.

Note that there can be multiple incomplete time series with a
missing value at tn. For each incomplete time series si its miss-
ing value si(tn) is imputed individually using the respective set of
reference time series Rsi .

Example 1. As a running example, we use the four time se-
ries in Table 2. The current time is tn = 14:20. Time se-
ries s is incomplete, hence the missing value at 14:20 must be
imputed. We assume a sliding window of one hour, containing
L = 12 measurements. For all time points before tn the val-
ues either have been reported by the sensor or have been imputed,
e.g., r2(13:40) = 1̂8.8°C. The candidate reference time series are
〈r1, r2, r3〉. At the current time tn = 14:20, the d = 2 reference
time series for s are Rs = {r1, r2}. When the current time was
tn = 13:40, we had Rs = {r1, r3} since r2(13:40) was missing.
2

Notation Description
tn Current time
S = {s1, s2, . . . } Set of time series
s(tn) = NIL Missing value of time series s at time tn
ŝ(tn) 6= NIL Imputed value of time series s at time tn
d Number of reference time series
Rs = {r1, . . . , rd} Set of d reference time series for s
W = {. . . , tn} Time points in streaming window
L Length of streaming window W
l Pattern length
P (ti) Pattern anchored at time ti
k Number of anchor points
A = {ti1 , . . . , tik} k most similar anchor points

Table 1: Summary of notation.

4. TOP-K CASE MATCHING (TKCM)

4.1 Approach
For the recovery of a missing value in an incomplete time series

we look for patterns in the past when the values of the reference
time series were similar to the current values.

Definition 1. (Pattern) Let Rs = {r1, . . . , rd} be the reference
time series for an incomplete time series s. The pattern P (ti) of
length l > 0 over Rs that is anchored at time ti is defined as a d× l
matrix P (ti) as follows:

P (ti) = ((r1(ti−l+1), . . . , r1(ti)),
...

...
(rd(ti−l+1), . . . , rd(ti))).
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Time t · · · 13:25 13:30 13:35 13:40 13:45 13:50 13:55 14:00 14:05 14:10 14:15 14:20
s · · · 22.8°C 21.4°C 21.8°C 2̂3.1°C 23.5°C 22.8°C 21.2°C 21.9°C 23.5°C 22.8°C 21.2°C NIL
r1 · · · 16.5°C 17.2°C 17.8°C 16.6°C 15.8°C 16.2°C 17.4°C 17.7°C 15.3°C 16.3°C 17.1°C 17.5°C
r2 · · · 20.3°C 19.8°C 18.6°C 1̂8.8°C 2̂0.0°C 2̂0.5°C 19.8°C 18.2°C 20.1°C 20.2°C 19.9°C 18.2°C
r3 · · · 14.0°C 14.8°C 13.6°C 13.0°C 14.5°C 14.3°C 14.0°C 15.0°C 13.0°C 14.5°C 14.3°C 14.6°C

Table 2: Time series s with a missing value at time tn = 14:20 and the three reference time series r1, r2 and r3.

A pattern is anchored at a time point ti and consists of the values
from ti−l+1 to ti of each reference time series. Each row repre-
sents a subsequence of a reference time series, and each column
represents the values of the reference time series at a time point.
The pattern contains for each reference time series only the values
at time ti, if l = 1. The pattern includes additionally the preceding
l − 1 values, and hence captures the trend, if l > 1.

Example 2. Figure 2 shows two patterns over the reference time
series Rs = {r1, r2} in our running example (cf. Table 2). Both
patterns have length l = 3 and are anchored at time points 14:00
and 14:20, respectively. Pattern P (14:00) contains one imputed
value, namely r2(13:50) = 2̂0.5°C. Since l > 1 the pattern cap-
tures the current trend of the time series. 2

16.2 17.4 17.7

2̂0.5 19.8 18.2

13:50 13:55 14:00

r1

r2

l = 3

d = 2

(a) P (14:00)

16.3 17.1 17.5

20.2 19.9 18.2

14:10 14:15 14:20

r1

r2

l = 3

d = 2

(b) P (14:20)

Figure 2: Two patterns of length l = 3 over d = 2 reference time
series.

The pattern that is anchored at the current time is termed query
pattern P (tn). We search in the reference time series for the k
patterns that are most similar to P (tn) using the L2 norm.

Definition 2. (Pattern Dissimilarity) Let s be an incomplete
time series with reference time series Rs at time tn. The dissimi-
larity, δ, between two patterns P (tm) and P (tn) is defined as

δ(P (tm), P (tn)) =

√ ∑
ri∈Rs

∑
0≤j<l

(ri(tm−j)− ri(tn−j))2.

Example 3. The dissimilarity between the two patterns in
Figure 2 is computed as follows: δ(P (14:00), P (14:20)) =√

(17.7− 17.5)2 + (17.4− 17.1)2 + (16.2− 16.3)2 + . . . =
0.43. 2

The dissimilarity measure is used to determine the kmost similar
patterns to query pattern P (tn). The anchor time points of these k
patterns are referred to as the k most similar anchor points A.

Definition 3. (k Most Similar Anchor Points) Let P (tn) be the
query pattern for incomplete time series s at time tn with reference
time series Rs, and L be the length of the streaming time window.
The k most similar anchor points to tn are a set A ⊆ W , with
|A| = k, for which the following holds:

∀t ∈ A : tn−L+l ≤ t ≤ tn−l (1)

∀t, t′ ∈ A : t 6= t′ → |t− t′| ≥ l (2)

∀A′ : (1) ∧ (2) ∧ |A′| = k →∑
ti∈A

δ(P (ti), P (tn)) ≤
∑

ti∈A′
δ(P (ti), P (tn)) (3)

The first condition states that all patterns are within the time win-
dow and do not overlap P (tn). The second condition states that the
patterns do not overlap each other. The third condition ensures that
the patterns that are anchored at the time points in A minimize the
sum of the dissimilarities with respect to query pattern P (tn).

We pick only non-overlapping patterns to avoid near duplicates
[5, 8]. Our experiments have shown that if overlapping patterns
were allowed, the k most similar anchor points for some pattern
P (ti) are frequently time points ti+1 and ti−1, which anchor the
first and second most similar patterns, etc. This is clearly not de-
sired. Instead, non-overlapping patterns guarantee that we find a
diverse set of patterns on which the imputation is based.

The missing value in the incomplete time series s is the average
of the values of s at the most similar time points.

Definition 4. (Imputed Value) Let s be a time series with refer-
ence time series Rs at tn and missing value s(tn). Furthermore,
let A be the k most similar time points to the current time. The
imputed value ŝ(tn) for time series s at time tn is

ŝ(tn) =
1

k

∑
t∈A

s(t). (4)

Example 4. Figure 3 shows a graphical representation of our
running example (cf. Table 2). The value of s at time tn = 14:20
is missing and must be imputed. The query pattern P (14:20) is
framed in black. The two patterns most similar to the query pat-
tern are shown as dashed rectangles and are anchored at time 14:00
and 13:35, respectively. Thus, A = {14:00, 13:35} are the anchor
points. The missing value is computed as the average of the val-
ues s(14:00) and s(13:35): ŝ(14:20) = (21.9°C + 21.8°C)/2 =
21.85°C. 2
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Figure 3: The k = 2 most similar non-overlapping patterns for
query pattern P (14:20) are P (14:00) and P (13:35).
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5. ANALYSIS

5.1 Correlation
A salient property of TKCM is its ability to handle time series

that are shifted and hence not linearly correlated. The Pearson cor-
relation, the most common correlation measure, quantifies the de-
gree of linear correlation between time series s and r, as

ρ(s, r) =

∑
t∈W (s(t)− s̄)(r(t)− r̄)√∑

t∈W (s(t)− s̄)2
√∑

t∈W (r(t)− r̄)2
,

where s̄ and r̄ are the means of, respectively, s and r in windowW .
Pearson correlation ranges from −1 to 1, indicating total negative
and positive correlation, respectively. Thus, s and r are linearly
correlated if |ρ(s, r)| is high. If ρ(s, r) = 0 time series s and r are
not linearly correlated.

Intuitively, a linear correlation ensures that (a) if one time series
has close values for two time points, also the other has close values
for these two time points and (b) if one time series has far apart
values for two time points, also the other has far apart values for
these two time points.

Example 5. Consider Figure 4a with time series s(t) = sind(t)
and r1(t) = 1.5 × sind(t) + 1, having different amplitudes and
offsets. The value of r1 at t = 840 is r1(840) = 2.3, and the same
value r1(t) appears for time points t ∈ {780, 480, 420, 120, 60}.
Figure 4a illustrates that these are exactly the time points for which
s has the same value of s(840) = 0.86. Thus, the time series
are perfectly linearly correlated. Figure 4b uses a scatterplot to
display the correlation between s and r1. The scatterplot displays
for each time point t the point (r1(t), s(t)). For instance, at time
t = 840 we have r1(840) = 2.3 and s(840) = 0.86 and the point
(2.3, 0.86) is displayed in the scatterplot. The more the scatter-
plot resembles a line with a non-zero slope, the higher the linear
correlation and hence Pearson correlation. 2

s

r1

−1

0

1

2

0 180 360 540 720 840

−1

0

1

2

t [minutes]
(a) Time series s and r1
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(b) Scatterplot of linear correlation

Figure 4: Linearly correlated time series s(t) = sind(t) and
r1(t) = 1.5× sind(t) + 1.

Example 5 illustrates how the imputation for linearly correlated
time series works. If s(tn) is missing, we know that whenever time
series r1 observes value r1(tn) (e.g., 2.3), time series s observes
the same value s(t) (e.g., 0.86). Hence we can use value s(t) for
any t where r1(t) = 2.3 to impute value s(tn).

In contrast, if the Pearson correlation approaches zero, s can
have very different values although the reference time series has
the same value. This is illustrated in Example 6.

Example 6. Figure 5a depicts the time series s(t) = sind(t) and
r2(t) = sind(t−90). The two time series have the same amplitude
and offset but they are phase shifted. Time series r2 has the value
r2(840) = 0.5 also for time points t ∈ {600, 480, 240, 120}.

However, s has different values, i.e., value s(t) = 0.86 for time
points t ∈ {480, 120} and value s(t) = −0.86 for time points
t = {600, 240}. The scatterplot in Figure 5b shows that the data
points do not cluster around a line, which means that they are non-
linearly correlated. Their Pearson correlation is −0.0085. Note
that for the same value of r2(t) we can have two different values
for s(t). For instance, for r2(t) = 0.5 we have either s(t) = 0.86
or s(t) = −0.86. 2
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Figure 5: Non-linearly correlated time series s(t) = sind(t) and
r2(t) = sind(t− 90)

Example 6 illustrates the key problem with non-linear correla-
tions: the values of one time series can no longer be used to reli-
ably determine a missing value in another time series. In the exper-
iments we will see that this leads to imputations with a high root
mean square error.

5.2 Pattern Length
The previous section illustrated that shifted time series that are

not linearly correlated are difficult to handle. Intuitively, for shifted
time series it is not sufficient to consider a single point in time. In-
stead it is necessary to consider a pattern that includes neighboring
time points to correctly relate time series. This section illustrates
that a pattern with a length l > 1 improves the imputation for non-
linear correlations. We write Pl(t) to denote a pattern of length l
anchored at time t.

Example 7. Figure 6 displays s and, for each time point t, the
pattern dissimilarity of the pattern anchored at r1(t) to the query
pattern P (840), i.e., δ(P (t), P (840)). Figure 6a does this for pat-
tern length l = 1. The pattern dissimilarity is zero whenever the
value of s is equal to s(840). Figure 6b shows what happens if we
increase the pattern length to l = 60. Also for this case whenever
the pattern dissimilarity for the reference time series r1 is zero, i.e.,
for 480 and 120, we have value 0.86 for time series s. Observe that
for increasing values of l less patterns with distance zero exist (e.g.,
two in Fig. 6b instead of 5 in Fig. 6a). But the patterns with l > 1
at distance zero describe the situation better: s(840) is located at a
down-slope, and in Fig. 6b values of s where the pattern distance
is zero only exist at down-slopes, while in Fig. 6a we have such
values at both up- and down-slopes. 2

Example 8. For shifted time series a pattern length l > 1 in ad-
dition captures the trend of time series and yields a more accurate
imputation. First, Figure 7a illustrates s and the pattern dissimilar-
ity to r2 for l = 1. Figure 7b shows the same setting with l = 60.
With l > 1 the pattern dissimilarity reaches zero only for time
points 480 and 120, where time series s has value 0.86, which is
the expected value for missing value s(840). This illustrates that
by increasing l, TKCM finds anchor points where the incomplete
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Figure 6: A longer pattern reduces the number of patterns that are
identical to the query pattern.

time series s has similar values and trends. Consequently, TKCM
uses pattern length l to effectively deal with shifted time series that
are not linearly correlated. 2
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Figure 7: For shifted time series a longer pattern finds historical
situations that are similar in value and trend.

LEMMA 5.1. (Monotonicity in Pattern Length) The number of
patterns that are within a distance τ to query pattern P (tn) de-
creases as the pattern length l increases:

|{tm|δ(Pl+1(tm), Pl+1(tn))≤τ}| ≤ |{tm|δ(Pl(tm), Pl(tn))≤τ}|

PROOF. Let ∆ = δ(Pl(tm), Pl(tn)). If pattern
length l is increased we get δ(Pl+1(tm), Pl+1(tn)) =√

∆2 +
∑

ri∈Rs(ri(tm−l)− ri(tn−l))2. Observe that both
terms under the square root are non-negative, hence δ is mono-
tonically increasing as l increases. It follows that the number of
patterns with distance ≤ τ decreases as l grows.

5.3 Consistent Imputation

Definition 5. (Pattern-Determining at time tn) At time tn the
reference time series Rs pattern-determine time series s, written
Rs, tn

pd−→ s, if for the k most similar anchor points A (cf. Def. 3)
and patterns of length l the following holds for a small value ε:

∀ti, tj ∈ A : |s(ti)− s(tj)| ≤ ε

Example 9. In our running example (cf. Fig. 3), the query
pattern P (tn=14:20) is based on the two reference time series
Rs = {r1, r2}. The k = 2 most similar anchor points are
A = {14:00, 13:35}, and the values of s at these two anchors are
21.9°C and 21.8°C, respectively. The two reference time series
Rs pattern-determine s at time tn (written Rs, 14:20 pd−→ s) with
ε = |21.9°C− 21.8°C| = 0.1°C. 2

Pattern-determining time series guarantee that for a missing
value s(tn) we find in the sliding window at least k similar pat-
terns P (ti1), . . . , P (tik ) to P (tn) and the missing value s(tn) is
similar to the observed values s(ti).

Definition 6. (Consistent Time Series) Let s be a time series with
missing value s(tn) = NIL. Let ŝ be a time series where the
missing value s(tn) has been imputed, that is ŝ(tn) 6= NIL and
∀t ∈ W \ {tn} : ŝ(t) = s(t). Time series ŝ is consistent if
∀t ∈ A : |ŝ(t)− ŝ(tn)| ≤ ε.

When TKCM imputes an incomplete time series s, we get an
imputed time series ŝ. Intuitively, ŝ is consistent if its value at the
current time tn is similar to past values when the reference time
series observed a similar pattern.

LEMMA 5.2. Let s be an incomplete time series with a missing
value s(tn) = NIL and Rs its reference time series. Let ŝ be the
imputed time series produced by TKCM. If (a) Rs, tn

pd−→ s and (b)
s(tn) is imputed as defined in Eq. 4, ŝ is a consistent time series.

PROOF. Let P (tn) be the query pattern that TKCM constructs
for the reference time series in Rs with pattern length l. TKCM
looks for the k most similar anchor points A with respect to P (tn).
Since the reference time series Rs pattern-determine s at time tn,
we have that ∀t, t′ ∈ A : |s(t) − s(t′)| ≤ ε. The imputed value
ŝ(tn) is the average of s at the anchor points (cf. Eq. 4). Since all
values of s at A are similar among each other within a distance of
ε, their mean ŝ(tn) is equally similar within an ε distance to all of
them, i.e. ∀t ∈ A : |ŝ(t)− ŝ(tn)| ≤ ε. Consequently the imputed
time series ŝ is consistent.

Next, we give an example of pattern-determining time series to
illustrate what kind of phenomena TKCM can handle. Specifically,
we show that sine waves of the form f(t) = A × sind(t 360

P
+

φ) + o with amplitude A, period P , offset o, and phase shift φ are
pattern-determining and that TKCM achieves consistent imputation
on these series. The experiments in Section 7 confirm that this also
holds for real world time series.

LEMMA 5.3. Assume s(t) = A1 × sind(t 360
P

+ φ1) + o1 and
r(t) = A2 × sind(t 360

P
+ φ2) + o2. Then Rs = {r} is pattern-

determining s at time tn for l > 1, k ≥ 1 and L ≥ kP + l.

PROOF. Observe that for l > 1, pattern P (tn) occurs exactly
once every full period, i.e., P (t) = P (tn) only if t = tn−iP for
every i ∈ N. Since L ≥ kP + l we know there are k patterns P (t),
such that P (t) = P (tn). Since s has the same periodicity as r, we
know that ∀t, t′ ∈ A : |s(t)− s(t′)| ≤ 0 = ε.

6. IMPLEMENTATION OF TKCM

6.1 Overview
To impute a missing value in a time series s at the current time

tn, TKCM performs three steps:

1. Pattern Extraction: Extract the anchor points of all candidate
patterns from the streaming windowW and compute the dis-
similarity of these patterns to query pattern P (tn) (cf. Defi-
nition 2).

2. Pattern Selection: Select from the anchor points determined
in step 1 the subset A of the time points that anchor the k
most similar non-overlapping patterns (cf. Definition 3).
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3. Value Imputation: Impute the missing value at tn using an-
chor points A (cf. Definition 4).

In step 2, TKCM must find the k patterns that neither overlap
each other nor P (tn), and that minimize the sum of dissimilarities
with respect to P (tn). A simple greedy algorithm that sorts the an-
chor points according to dissimilarity and picks the first k ones that
do not overlap fails to minimize the sum of dissimilarities. There-
fore, we propose a dynamic programming scheme that exploits an
optimal sub-structure of this problem. Let D[j] denote the dissimi-
larity between the jth pattern in the window and the query pattern,
and M [i, j] denote the sum of dissimilarities of the i most simi-
lar non-overlapping patterns from among the first j patterns in W ,
where i ≤ j. M [i, j] = 0 if i = 0, because no patterns have to
be chosen. Similarly, M [i, j] = ∞ if i > j because we cannot
possibly find i non-overlapping patterns if we have only j < i to
choose from. Otherwise, we have two options: either (a) we omit
the jth pattern and pick i patterns that possibly overlap it; or (b)
we pick the jth pattern having dissimilarity D[j] and have space
left for i−1 patterns that do not overlap it. In the latter case, the
first pattern to no longer overlap the jth pattern, if one exists, is the
(j − l)th pattern.

This yields the following recurrence that minimizes the sum of
dissimilarities:

M [i, j]=


0 if i = 0,
∞ if i > j,

min

{
M [i, j−1]
D[j] +M [i−1, j − l]

otherwise
(5)

The sum of dissimilarities of the k most similar anchor points is
given by M [k, L−2l+1], since L−2l+1 is the number of anchor
points when we exclude the l − 1 first and l last time points in W
(cf. Def. 3).

6.2 Algorithm
The implementation uses one ring buffer of length L for each

time series s and an offset O into the ring buffers to efficiently
update the streaming window. The value at time tn is located at
s[O] and the oldest value at s[(O+1)%L], where % is the modulo
operator. TKCM’s pseudo code is listed in Algorithm 1. The input
parameters are the ring buffer for the incomplete time series s with
a missing value at s[O], d ring buffers R for the reference time
series, the window size L, the pattern length l, and the number of
anchor points k. The algorithm stores the imputed value in s[O]
and returns it.

For processing, the algorithm uses an array D to store pattern
dissimilarities, a (k+1)× (L−2l+2) matrix M to store the result
for the dynamic programming algorithm, and an array A of size k
to store the k most similar anchor points.

Lines 1–7 correspond to step 1, where the dissimilarities of all
patterns in W are computed and stored in array D. The first
l−1 and the last l time points are ignored as described above.
In step 2, the algorithm finds the k most similar anchor points
(Lines 8–23). Lines 8–14 implement the recurrence in Equation 5.
max(j−l, 0) computes the predecessor of the jth pattern, yield-
ing j = 0 if no such predecessor exists. Once matrix M is filled,
M [k, L−2l+1] contains the sum of dissimilarities of the k most
similar anchor points A. Finally, TKCM backtracks in lines 15–23
to find the anchor points A. The algorithm starts in the lower-
right most cell M [k, L−2l+1] and applies the recurrence back-
wards. If for a cell M [i, j] we have M [i, j] = M [i, j−1] the jth
anchor point is skipped as it is not part of the optimal solution,
and the algorithm proceeds at cell M [i, j−1]. Otherwise, the jth

Algorithm 1: TKCM
Input: Ring buffer s, Array R of d ring buffers, window size L,

pattern length l, and k.
Output: Imputed value in s[O].

1 for j ← 1 to L−2∗l+1 do
2 D[j]← 0;
3 for i← 0 to d−1 do
4 for x← 0 to l−1 do
5 y ← l+j−x−1;
6 D[j]← D[j]+(R[i][(O+y)%L]−R[i][(O−x)%L])2;

7 D[j]← sqrt(D[j]);

8 for j ← 0 to L−2∗l+1 do
9 M [0][j]← 0;

10 for i← 1 to k do
11 if i > j then
12 M [i][j]←∞;
13 else
14 M [i][j]←min(M [i][j−1], D[j]+M [i−1][max(j−l, 0)]);

15 i← k;
16 j ← L−2∗l+1;
17 while i > 0 do
18 if M [i][j] = M [i][j−1] then
19 j−−;
20 else
21 A[i−1]← j;
22 i−−;
23 j ← max(j−l, 0);

24 s[O]← 0;
25 for i← 0 to k−1 do
26 s[O]← s[O] + (s[(O+l+A[i]−1)%L]/k);

27 return s[O];

anchor point is added to A and the algorithm proceeds with cell
M [i−1,max(j−l, 0)] until i reaches 0, indicating that k anchor
points have been chosen. Finally, in lines 24–27, which correspond
to step 3, the algorithm imputes the missing value using the k most
similar anchor points according to Definition 4.

Example 10. The top of Fig. 8 shows a streaming window of
length L = 10 with current time tn = t13. The query pat-
tern of length l = 3 and all extracted patterns are shown as red
and black intervals, respectively. The first (i.e., j = 1) pattern
is P (t6) and the last pattern is P (t10). The lower left table lists
the patterns in the streaming window, their index j, predecessor,
and dissimilarity with respect to query pattern P (t13). For in-
stance, P (t8) with index j = 3 has no non-overlapping prede-
cessor, hence max(j − l, 0) = 0. The right table shows the matrix
M computed by Algorithm 1. For instance, M [1, 1] is the result
of computing min(D[1] +M [1−1,max(1−3, 0)],M [1, 1−1]) =
min(0.5+0,∞) = 0.5. M [2, 5] = 1.2 in the lower-right corner
contains the minimum sum of dissimilarity. To retrieve the k most
similar non-overlapping patterns, the algorithm starts at M [2, 5]
and follows the highlighted path through the matrix: gray means
that a pattern was omitted and green means that a pattern is part of
the final result. For instance, M [2, 5] is equal toM [2, 4], hence the
j = 5th pattern P (t10) is not part of the solution. M [2, 4], in turn,
is the result of D[4]+M [1, 1] = 0.7+0.5 = 1.2, hence j = 4th
pattern P (t9) is part of the solution. Continuing with M [1, 1] we
find another match before reaching M [0, 0]. The algorithm finds
the k = 2 anchor points A = {t6, t9} and computes the imputed
value ŝ(t13) = 1/2(s(t6) + s(t9)).
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i = 0

1

2

P (t) j max(j−l, 0) D[j]

P (t6) 1 0 0.5
P (t7) 2 0 0.3
P (t8) 3 0 2.1
P (t9) 4 1 0.7
P (t10) 5 2 4.0

Figure 8: Dynamic programming algorithm to compute the time
points of the top k = 2 non-overlapping patterns of length l = 3
that minimize the sum of dissimilarities.

6.3 Complexity Analysis

LEMMA 6.1. When the current time tn advances, TKCM needs
O(1) time per stream s to update the corresponding ring buffer of
size O(L).

PROOF. When tn advances, a new value replaces an old value
in the time series, requiring O(1) time in a ring buffer of size L.

LEMMA 6.2. The time complexity of TKCM to impute a missing
value is O((l × d+ k)× L).

PROOF. Initially TKCM computes the dissimilarity of O(L)
patterns, each of size l × d, having an overall time complexity of
O(l× d×L). Next the algorithm iterates over the O(k×L) sized
dynamic programming matrixM . Hence the overall time complex-
ity is O(l × d× L+ k × L).

LEMMA 6.3. The space complexity of TKCM to impute a miss-
ing value is O(k × L).

PROOF. The pattern extraction phase requires O(L) space to
store the dissimilarities of all patterns. TKCM needs O(k × L)
space for matrix M .

7. EXPERIMENTAL EVALUATION
In the experiments we simulate large blocks of consecutively

missing values (e.g. one week). We repeatedly call TKCM to im-
pute each missing value. This simulates a common sensor failure
that requires a technician to reach a faulty weather station and re-
place the broken sensor. As accuracy measure we use the root mean
square error (RMSE), defined as

RMSE =

√
1

|T |
∑
tn∈T

(s(tn )− ŝ(tn))2,

where T is the set of missing time points. The experiments are
conducted on a Linux server, running Ubuntu 14.04 server edition.
It is powered by an Intel Xeon X5650 CPU with a frequency of
2.67GHz and 24GB of main memory. TKCM is implemented in C
and compiled with Clang 3.4-1, based on LLVM 3.4.

7.1 Datasets and Setup
We use both real-world and synthetic datasets in our experimen-

tal evaluation. First, we use the SBR dataset of meteorological time
series in South Tyrol (cf. Sec. 1). Second, we shift the time series

of the SBR data set by a (different) random amount up to one day
and call this dataset SBR-1d. Third, we use the Flights dataset [3]
that consists of eight time series, each of length 8801 (6 days). A
time series describes at time t the number of airplanes that departed
from a given airport and are in the air at time t. Fourth, we use the
publicly available Chlorine dataset [1] used by SPIRIT [16]. This
synthetic dataset was generated by a simulation of a drinking water
distribution system; it describes the chlorine concentration at 166
junctions over a time frame of 4310 time points (15 days) with a
sample rate of 5 minutes. The propagation of the chlorine level
in the system causes phase shifts in the dataset. Fig. 9 shows an
excerpt of three sample time series from each dataset. Each time
series has different amplitudes, phase shifts, and trends.
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Figure 9: Three sample time series from each dataset.

We compare TKCM to three competitors: CD [13] (provided by
the author), MUSCLES [25] (implemented in Matlab), and SPIRIT
[23] (obtained from [1], Matlab code). SPIRIT’s Matlab code
does not impute missing values, hence we extended the code to
use one autoregressive model per hidden variable as described in
[23]. SPIRIT automatically adds or removes hidden variables as
the streams evolve. When a hidden variable appears, a new autore-
gressive model of order p = 6 needs to be fitted, which requires
at least p values of the new hidden variable before it can be used.
If in that time a value needs to be imputed, the model is not yet
ready. Consequently we fixed the number of hidden variables at
two, which gave generally the best results in our experiments. For
MUSCLES and SPIRIT we use a tracking window size of p = 6 as
recommended by the authors [23, 25]. Contrary to the author’s rec-
ommendation we set the exponential forgetting factor λ to 1 rather
than to 0.96 ≤ λ ≤ 0.98. We found that for λ < 1 the accuracy de-
creases, because the algorithms “forget” the old non-imputed (and
accurate) values and adapt more to the new imputed (and inaccu-
rate) values. CD has no parameters to tune. The code for our MUS-
CLES, SPIRIT, and TKCM implementations is available online1.

1http://www.ifi.uzh.ch/en/dbtg/Staff/wellenzohn/dasa.html
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7.2 Calibration
We begin with an initial calibration of TKCM’s parameters d,

k, and L. Unless otherwise noted we set the parameters to the
following default values; d = 3 reference time series, k = 5 most
similar anchor points, a streaming window of L = 1 year, and
pattern length l = 72.

In the left column of Fig. 10 we show TKCM’s accuracy for
increasing values of d on three datasets; for brevity we omit the
SBR dataset as it shows identical behavior to the SBR-1d dataset.
TKCM’s accuracy significantly increases (that is the RMSE de-
creases) as d increases up to d = 3 reference time series, while
d > 3 does not provide significantly better accuracy. Since the
Flights dataset has only 8 time series, we can set d at most to 7.
The right column of Fig. 10 shows the impact of parameter k on
TKCM’s accuracy. In general we tend to pick small values of k,
e.g., k ∈ [3, 10] to get the best possible (most similar) patterns
from the window. Larger values of k may add less similar patterns,
in particular for short streaming windows. We observed that for
the two small datasets Flights and Chlorine k = 5 is sufficient.
TKCM’s accuracy noticeably decreases on the Flights dataset for
k > 5, because the dataset contains only measurements for 6 days
and if one day is missing we try to find more than 5 similar situa-
tions within 5 days, which makes no sense. For the larger (1 year)
SBR and SBR-1d datasets we found that there is a marginal accu-
racy increase even from k = 5 to k = 10, after which the accuracy
remains stable. Therefore, our recommendation is to use a small
value of k, e.g. k = 5, and if the dataset is large, one can safely
double k.
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Figure 10: Calibration shows that d = 3 and k = 5 are good
default values.

For the small Flights and Chlorine datasets (6 and 15 days, re-
spectively) we use in our experiments the entire time range as
streaming window length L. For the SBR and SBR-1d datasets
we use a streaming window length L = 105120 (1 year), be-
cause one year covers the whole temperature range and contains
each pattern several times. This choice is conservative; we found
that already a window size of 6 months gives a good accuracy of
RMSE = 1.8°C, which only dropped to 1.7°C for a 5 year win-
dow. In general, larger window sizes L provide only a slightly
superior accuracy.

7.3 Accuracy

7.3.1 Pattern Length l

For shifted time series, the pattern length l is the key to an accu-
rate and robust imputation. In Fig. 11, we evaluate l by varying the
pattern length l from 1 to 144 (i.e., a pattern that spans 12 hours).
As expected, for the (non-shifted) SBR dataset l has close to no im-
pact on TKCM’s accuracy, because there is a high linear correlation
between the incomplete time series and its d = 3 reference time
series. For the SBR-1d dataset the RMSE drops by about 0.5°C
(25%) by increasing l to 72. On the flight dataset we observe an
improvement of 50% for l = 72 and 60% for l = 144. The reason
why we see an improvement beyond l = 72 is the different sample
rate of 1 minute of the Flights dataset as opposed to the 5 minutes
in the SBR dataset. While l = 72 yields a pattern that spans 6 hours
in the SBR dataset, it only spans 1 hour in the Flights dataset. On
the Chlorine dataset we observe an accuracy increase of 60% with
pattern length l = 72, after which the accuracy slightly decreases.
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Figure 11: Pattern length l evaluated on each dataset.

To put these raw numbers into perspective and see the real impact
of l, we compare TKCM’s recovery of an incomplete time series s
in Fig. 12 with pattern length l = 1 (left column) and l = 72
(right column). Observe how much TKCM’s recovery oscillates
with l = 1 and how well TKCM adapts to the assumed missing
time series s with l = 72. Even for the SBR dataset there is a slight
oscillation, albeit minimal compared to the three shifted datasets.
The reason for this strong oscillation when l = 1 is that with a
short pattern, the reference time series do not pattern-determine
the incomplete time series. The difference in dissimilarity between
“good” patterns and “bad” patterns is too small for TKCM to de-
tect, as explained in Sec. 5.1. Put differently, in the presence of
shifts, time series are no longer linearly correlated; whenever a ref-
erence time series observes a very similar value, the incomplete
time series has very different values.

Fig. 13a shows the scatterplot of an incomplete time series s
in the Chlorine dataset against one of its reference time series
r1. There is clearly no strong linear correlation (ρ(s, r1) =
0.5): e.g. for r1(t) = 0.1, s(t) has two different values (0 and
0.15). Fig. 13b shows that the average ε (cf. Def. 5) decreases
as l increases on the Chlorine dataset with k = 5. Value ε =
maxt,t′∈A |s(t)− s(t′)| essentially describes the range of the val-
ues of s at the k most similar anchor points A. The lower ε gets, the
less the values of s differ at the most similar anchor points, which
indicates that the reference time series strongly pattern determine s
for k and l. Notice that the average ε increases after l = 72, which
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Figure 12: The reason for the strong oscillation in TKCM’s recov-
ery with l = 1 are shifts in the reference time series. Increasing the
pattern length l helps TKCM to detect shifts.

coincides with our observations in Fig. 11d.
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Figure 13: Left: Scatterplot of s against the reference time series
r1. Right: Range of s at the k anchor points (Chlorine dataset).

7.3.2 Missing Block Length
In Fig. 14 we study TKCM’s accuracy in terms of the length of

the missing block, i.e., the number of consecutively missing values
that TKCM needs to impute. First, we use our large dataset SBR-1d
and simulate sensor failures of up to several weeks. Fig. 14a shows
that the accuracy of TKCM only slightly decreases by 0.2°C as the
block length grows from 1 to 4 weeks, after which the accuracy
plateaus. Next, we increase the missing block length for the small
dataset Chlorine from 10% to 80% of the dataset size. We start with
the remaining 90% to 20% of the dataset in the streaming window
of length L = 4310 and impute the rest of the dataset as missing
values. Fig. 14b shows that also for this case the accuracy decreases
only slowly.

7.3.3 Comparison with Competitors

SBR. We first perform a baseline comparison of all algorithms on
the SBR dataset that has no phase shifts. Fig. 15a shows an excerpt
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Figure 14: Impact of the missing block length on the accuracy
(Chlorine dataset).

of the experiment where we assume a block of values is missing in
time series s, and impute the missing values with each approach.
TKCM, SPIRIT, MUSCLES, and CD perform virtually equally
well. Observe that the last valley in the temperature curve shows
a higher temperature than the previous valleys. While TKCM and
CD are able to capture this trend, MUSCLES and SPIRIT impute a
too low value. The most likely reason is that the models that MUS-
CLES and SPIRIT build are not able to adapt quickly enough to
the new behavior of the time series, while TKCM adapts instanta-
neously to the changing behavior.

SBR-1d. Next we impute the same block of missing values in the
SBR-1d dataset that has shifted time series. Observe how TKCM’s
accuracy only slightly decreases in Fig. 15b; TKCM slightly misses
the second last downwards slope, but the last valley is again accu-
rately imputed. SPIRIT completely misses the amplitude; its re-
covered peaks are too low and its valleys are too high in tempera-
ture. Moreover, the overall trend of the missing block is not well
recovered. MUSCLES recovery is borderline at best; the overall
periodicity of the signal is recovered, but MUSCLES was not able
to recover any feature of s. Moreover, s has a slightly increas-
ing temperature trend, but MUSCLES’ recovery has a decreasing
trend. CD’s recovery is shifted with respect to s, as also indicated
by the discontinuous imputation at the very beginning of the miss-
ing block.

Flights. On the Flights dataset we observe a similar behavior
as in the previous experiment. Fig. 15c shows that TKCM cap-
tures each peak and valley accurately, while SPIRIT’s accuracy de-
creases over time. Initially, the trend of s is vaguely captured, but
after the highest peak, the trend of SPIRIT’s imputation is inverse
(i.e., peaks and valleys are swapped) with respect to the true sig-
nal. Again, MUSCLES produces an extremely smoothed signal,
that does not resemble the true time series; peaks and valleys are
not recovered. CD’s recovery is only partially shown as many re-
covered values are negative. Most likely, the large block of missing
values (ca. 20% of the dataset) is the reason.

Chlorine. In the Chlorine dataset TKCM captures the trend of
s generally well, the valleys are almost perfectly recovered, while
the peaks are slightly less accurate. SPIRIT’s recovery does not
capture the amplitude of s, and also the trend of the recovery does
not match that of s. MUSCLES completely misses the first peak,
imputing it with a valley instead; also the general trend of MUS-
CLES’ recovery does not resemble s. In this dataset we found
MUSCLES and SPIRIT to perform with widely differing accura-
cies, sometimes their imputations is good, sometimes worse than
in this example. There is no clear pattern when either approach
works or fails. CD’s recovered signal has a very small amplitude
and also the trend does not capture that of s.
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Figure 15: Imputation of incomplete time series s with different
imputation techniques on four different datasets.

Summary. Fig. 16 shows the RMSE for all compared algorithms
on each dataset. In this comparison we impute 4 time series per data
set; with missing block lengths per time series of 1 week in the SBR
and SBR-1d datasets, and 20% of the dataset size for Flights and
Chlorine. All algorithms are given the same amount of data (L
measurements per time series). We use L = 6 months for the SBR
and SBR-1d datasets, because of CD’s prohibitively large runtime
for L = 1 year (our default) and the default L for the remain-
ing datasets. The experiments show that only for the non-shifted
SBR dataset all algorithms provide a comparable accuracy. For
the remaining three shifted datasets, TKCM clearly outperforms
its competitors both in terms of perceived accuracy (Fig. 15) and
raw RMSE (Fig. 16). Our general observation is that non-shifted
linearly-correlated data poses no significant challenge to any al-
gorithm. As soon as shifts are present in the data, the accuracy
of state-of-the-art solutions is largely unpredictable, ranging from
good to unusable.

7.4 Runtime
As discussed in Sec. 6.3, TKCM’s time complexity is linear with

respect to all parameters (l, d, k, and L) as confirmed by Fig. 17.
In this experiments on the SBR-1d dataset we vary each parameter,
leaving the other three parameters at their defaults (l = 72, d = 3,
k = 5 and L = 1 year). Fig. 17a and Fig. 17b show TKCM’s run-
time with respect to the size of the query pattern P (tn), Fig. 17c
shows the impact of the number of anchor points k, and Fig. 17d
shows the impact of the streaming window size L on the runtime.
Parameter L has the largest impact on TKCM’s runtime, followed
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Figure 16: Comparison of TKCM, SPIRIT, MUSCLES, and CD
for each dataset.

by l and d with similar impact. Parameter k is relatively cheap –
even if set to very large values, e.g., k > 50. For our default pa-
rameter settings we observe a runtime of approximately 2 seconds
to impute a single missing value.
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Figure 17: Runtime experiments. TKCM’s time complexity is
linear with respect to all its parameters l, d, k, and L (SBR-1d
dataset).

Performance breakdown. As described in Sec. 6 the two
main phases of TKCM are pattern extraction (PE) and pattern se-
lection (PS). In our default setup, the PE-phase accounts for 92% of
TKCM’s overall runtime. If we further subdivide the PE-phase, we
see that 82% of the overall runtime are required to fetch data from
main memory and 10% are used to compute the pattern dissimilar-
ity δ. If we increase k to 300 we see the runtime of the PS-phase
climbing from 8% up to 25%. Thus, for the default value of k, the
runtime incurred by the PS-phase is outweighed by the PE-phase.
Hence, to improve TKCM’s performance, future research must fo-
cus on speeding up the pattern extraction phase.

Comparison. A direct comparison of the runtimes of the con-
sidered approaches is not meaningful, because the systems are im-
plemented in different programming languages (TKCM in C, CD
in Java, MUSCLES and SPIRIT in Matlab). To give a rough feeling
for the overall performance we consider each approach in turn. CD
is an offline algorithm and not applicable to streams. CD’s matrix
decomposition lasted in our experiments roughly 20 minutes per
execution and is hence not applicable to streaming environments.
Both SPIRIT and MUSCLES required one millisecond to impute
one missing value, TKCM requires roughly 2 seconds.
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8. CONCLUSION AND FUTURE WORK
We studied the problem of missing values in meteorological

streams of time series data and presented an algorithm, termed
TKCM, to accurately impute missing values in a streaming envi-
ronment. If the current value in a time series s is missing, TKCM
determines a two-dimensional query pattern over the last l mea-
surements of d reference time series. It then retrieves the anchor
points of the k most similar non-overlapping patterns to the query
pattern. The missing value is computed from the values of s at
these k anchor points. We show that TKCM achieves consistent
imputation if the reference time series pattern-determine s, which
covers non-linear relationships between time series such as phase
shifts. An extensive experimental evaluation using four real-world
and synthetic datasets confirms that TKCM is accurate and outper-
forms state-of-the-art competitors.

Future work points in several directions. First, we will work on
the efficiency of TKCM, in particular the pattern extraction phase,
which proved to be the most time-consuming component. In partic-
ular, we plan to reduce the number of extracted patterns by pruning
patterns that cannot possibly belong to an optimal solution. Sec-
ond, we plan to investigate how to automatically determine the best
candidate reference time series, although in many application do-
mains (and especially in meteorology) we can rely on human ex-
perts. Third, we plan to compare different dissimilarity functions δ
(e.g. L1-norm, DTW [9], etc.). Moreover, it would be interesting
to compute an alignment between shifted time series (e.g., using
DTW [9]) and to compare TKCM’s accuracy on the aligned time
series using a pattern length l = 1 to the accuracy on the shifted
time series using l > 1.
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ABSTRACT
Ensuring Boyce-Codd Normal Form (BCNF) is the most
popular way to remove redundancy and anomalies from
datasets. Normalization to BCNF forces functional depen-
dencies (FDs) into keys and foreign keys, which eliminates
duplicate values and makes data constraints explicit. De-
spite being well researched in theory, converting the schema
of an existing dataset into BCNF is still a complex, manual
task, especially because the number of functional dependen-
cies is huge and deriving keys and foreign keys is NP-hard.

In this paper, we present a novel normalization algorithm
called Normalize, which uses discovered functional depen-
dencies to normalize relational datasets into BCNF. Nor-
malize runs entirely data-driven, which means that redun-
dancy is removed only where it can be observed, and it
is (semi-)automatic, which means that a user may or may
not interfere with the normalization process. The algorithm
introduces an efficient method for calculating the closure
over sets of functional dependencies and novel features for
choosing appropriate constraints. Our evaluation shows that
Normalize can process millions of FDs within a few min-
utes and that the constraint selection techniques support the
construction of meaningful relations during normalization.

1. FUNCTIONAL DEPENDENCIES
A functional dependency (FD) is a statement of the form

X → A with X being a set of attributes and A being a single
attribute from the same relation R. We say that the left-
hand-side (Lhs) X functionally determines the right-hand-
side (Rhs) A. This means that whenever two records in an
instance r of R agree on all their X values, they must also
agree on their A value [7]. More formally, an FD X → A
holds in r, iff ∀t1, t2 ∈ r : t1[X] = t2[X]⇒ t1[A] = t2[A]. In
the following, we consider only non-trivial FDs, which are
FDs with A /∈ X.

Table 1 depicts an example address dataset for which
the two functional dependencies Postcode→City and Post-
code→Mayor hold. Because both FDs have the same Lhs, we

c©2017, Copyright is with the authors. Published in Proc. 20th Inter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

Table 1: Example address dataset
First Last Postcode City Mayor

Thomas Miller 14482 Potsdam Jakobs
Sarah Miller 14482 Potsdam Jakobs
Peter Smith 60329 Frankfurt Feldmann

Jasmine Cone 01069 Dresden Orosz
Mike Cone 14482 Potsdam Jakobs

Thomas Moore 60329 Frankfurt Feldmann

can aggregate them to the notation Postcode→City,Mayor.
The presence of this FD introduces anomalies in the data-
set, because the values Potsdam, Frankfurt, Jakobs, and
Feldmann are stored redundantly and updating these values
might cause inconsistencies. So if, for instance, some Mr.
Schmidt was elected as the new mayor of Potsdam, we must
correctly change all three occurrences of Jakobs to Schmidt.

Such anomalies can be avoided by normalizing relations
into the Boyce-Codd Normal Form (BCNF). A relational
schema R is in BCNF, iff for all FDs X → A in R the Lhs
X is either a key or superkey [7]. Because Postcode is neither
a key nor a superkey in the example dataset, this relation
does not meet the BCNF condition. To bring all relations of
a schema into BCNF, one has to perform six steps, which are
explained in more detail later: (1) discover all FDs, (2) ex-
tend the FDs, (3) derive all necessary keys from the extended
FDs, (4) identify the BCNF-violating FDs, (5) select a vio-
lating FD for decomposition (6) split the relation according
to the chosen violating FD. The steps (3) to (5) repeat un-
til step (4) finds no more violating FDs and the resulting
schema is BCNF-conform. We find several FD discovery
algorithms, such as Tane [14] and HyFD [19], that serve
step (1), but there are, thus far, no algorithms available to
efficiently and automatically solve the steps (2) to (6).

For the example dataset, an FD discovery algorithm would
find twelve valid FDs in step (1). These FDs must be ag-
gregated and transitively extended in step (2) so that we
find, inter alia, First,Last→Postcode,City,Mayor and Post-
code→City,Mayor. In step (3), the former FD lets us derive
the key {First, Last}, because these two attributes function-
ally determine all other attributes of the relation. Step (4),
then, determines that the second FD violates the BCNF
condition, because its Lhs Postcode is neither a key nor su-
perkey. If we assume that step (5) is able to automatically
select the second FD for decomposition, step (6) decom-
poses the example relation into R1(First, Last,Postcode) and
R2(Postcode,City,Mayor) with {First, Last} and {Postcode}
being primary keys and R1.Postcode→R2.Postcode a foreign
key constraint. Table 2 shows this result. When again check-
ing for violating FDs, we do not find any and stop the nor-
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Table 2: Normalized example address dataset
First Last Postcode

Thomas Miller 14482
Sarah Miller 14482
Peter Smith 60329

Jasmine Cone 01069
Mike Cone 14482

Thomas Moore 60329

Postcode City Mayor

14482 Potsdam Jakobs
60329 Frankfurt Feldmann
01069 Dresden Orosz

malization process with a BCNF-conform result. Note that
the redundancy in City and Mayor has been removed and the
total size of the dataset was reduced from 36 to 27 values.

Because memory became a lot cheeper in the last years,
there is a trend of not normalizing datasets for performance
reasons. Normalization is, hence, today often claimed to be
obsolete. This claim is false and ignoring normalization is
dangerous for the following reasons [8]:

1. Normalization removes redundancy and, in this way, de-
creases error susceptibility and memory consumption. While
memory might be relatively cheep, data errors can have se-
rious and expensive consequences and should be avoided at
all costs.

2. Normalization does not necessarily decrease query perfor-
mance; in fact, it can even increase the performance. Some
queries might need some additional joins after normaliza-
tion, but others can read the smaller relations much faster.
Also, more focused locks can be set, increasing parallel ac-
cess to the data, if the data has to be changed. So the
performance impact of normalization is not determined by
the normalized dataset but by the application that uses it.

3. Normalization increases the understanding of the schema
and of queries against this schema: Relations become
smaller and closer to the entities they describe; their com-
plexity decreases making them easier to maintain and ex-
tend. Furthermore, queries against the relations become eas-
ier to formulate and many mistakes are easier to avoid. For
instance, aggregations over columns with redundant values
are hard to formulate correctly.

In summary, normalization should be the default and
denormalization a conscious decision, i.e., ”we should de-
normalize only at a last resort [and] back off from a fully
normalized design only if all other strategies for improving
performance have failed, somehow, to meet requiremnts“,
C. J. Date, p. 88 [8].

The objective of this work is to normalize a given rela-
tional instance into Boyce-Codd Normal Form. Note that
we do not aim to recover a certain schema nor do we aim to
design a new schema using business logic. To solve the nor-
malization task, we propose a data-driven, (semi-)automatic
normalization algorithm that removes all FD-related redun-
dancy while still providing full information recoverability.
Being data-driven means that all FDs used in the normal-
ization process are extracted directly from the data and
that all decomposition proposals are based solely on data-
characteristics. In other words, we consider only redundancy
that can actually be observed in a given relational instance.

The advantage of a data-driven normalization approach
over state-of-the-art schema-driven approaches is that it can

use the data to expose all syntactically valid normalization
options, i.e., functional dependencies with evidence in the
data, so that the algorithm (or the user) must only decide for
a normalization path and not find one. The number of FDs
can, indeed, become large, but we show that an algorithm
can effectively propose the semantically most appropriate
options. Furthermore, knowing all FDs allows for a more
efficient normalization algorithm as opposed to having only
a subset of FDs.

Research challenges. In contrast to the vast amount of
research on normalization in the past decades, we do not
assume that the FDs are given, because this is almost never
the case in practice. We also do not assume that a human
data expert is able to manually identify them, because the
search is difficult by nature and the actual FDs are often
not obvious. The FD Postcode→City from our example, for
instance, is commonly believed to be true although it is usu-
ally violated by exceptions where two cities share the same
postcode; the FD Atmosphere→Rings, on the other hand, is
difficult to discover for a human but in fact holds on various
datasets about planets. For this reason, we automatically
discover all (minimal) FDs. This introduces a new challenge,
because we now deal with much larger, often spurious, but
complete sets of FDs.

Using all FDs of a particular relational instance in the
normalization process further introduces the challenge of
selecting appropriate keys and foreign keys from the FDs
(see Step (5)), because most of the FDs are coincidental,
i.e., they are syntactically true but semantically false. This
means that when the data changes these semantically invalid
FDs could be violated and, hence, no longer work as a con-
straint. So we introduce features to automatically identify
(and choose) reliable constraints from the set of FDs, which
is usually too large for a human to manually examine.

Even if all FDs are semantically correct, selecting ap-
propriate keys and foreign keys is still difficult. The deci-
sions made here define which decompositions are executed,
because decomposition options are often mutually exclu-
sive: If, for instance, two violating FDs overlap, one split
can make the other split infeasible. This happens, because
BCNF normalization is not dependency preserving [12]. In
all these constellations, however, some violating FDs are se-
mantically better choices than others, which is why violating
FDs must not only be filtered but also ranked by such qual-
ity features.

Another challenge, besides guiding the normalization pro-
cess in the right direction, is the computational complexity
of the normalization. Beeri and Bernstein have proven that
the question “Given a set of FDs and a relational schema
that embodies it, does the schema violate BCNF?” is NP-
complete in the number of attributes [3]. To test this, we
need to check that the Lhs of each of these FDs is a key or
a super key, i.e., if each Lhs determines all other attributes.
This is trivial if all FDs are transitively fully extended, i.e.,
they are transitively closed. For this reason, the complex-
ity lies in calculating these closures (see Step (2)). Because
no current algorithm is able to solve the closure calculation
efficiently, we propose novel techniques for this sub-task of
schema normalization.

Overall, the number of functional dependencies in datasets
is typically much greater than a human expert can manually
cope with [18]. A normalization algorithm must, therefore,
be able to handle such very large inputs automatically.
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Contributions. We propose a novel, instance-based
schema normalization algorithm called Normalize that can
perform the normalization of a relational dataset automati-
cally or supervised by an expert. Being able to put a human
in the loop enables the algorithm to combine its analytical
strengths with the domain knowledge of an expert. With
Normalize and this paper, we make the following contri-
butions:

a) Schema normalization. We show how the entire schema
normalization process can be implemented as one algorithm,
which no previous work has done before. We discuss each
component of this algorithm in detail. The main contribu-
tion of our (semi-)automatic approach is to incrementally
weed out semantically false FDs by focusing on those FDs
that are most likely true.

b) Closure calculation. We present two efficient closure al-
gorithms, one for general FD result sets and one for complete
result sets. Their core innovations include a more focused ex-
tension procedure, the use of efficient index-structures, and
parallelization. These algorithms are not only useful in the
normalization context, but also for many other FD-related
tasks, such as query optimization, data cleansing, or schema
reverse-engineering.

c) Violation detection. We propose a compact data struc-
ture, i.e., a prefix tree, to efficiently detect FDs that violate
BCNF. This is the first approach to algorithmically improve
this step. We also discuss how this step can be changed to
discover violating FDs for normal forms other than BCNF.

d) Constraint selection. We contribute several features to
rate the probability of key and foreign key candidates for
actually being constraints. With the results, the candidates
can be ranked, filtered, and selected as constraints during
the normalization process. The selection can be done by
either an expert or by the algorithm itself. Because all pre-
vious works on schema normalization assumed all input FDs
to be correct, this is the first solution for a problem that has
been ignored until now.

e) Evaluation. We evaluate our algorithms on several
datasets demonstrating the efficiency of the closure calcu-
lation on complete, real-world FD result sets and the feasi-
bility of (semi-)automatic schema normalization.

The remainder of this paper is structured as follows: First,
we discuss related work in Section 2. Then, we introduce the
schema normalization algorithm Normalize in Section 3.
The following sections go into more detail explaining the
closure calculation in Section 4, the key derivation in Sec-
tion 5, and the violation detection in Section 6. Section 7,
then, introduces assessment techniques for key and foreign
key candidates. The normalization algorithm is finally eval-
uated in Section 8 and we conclude in Section 9.

2. RELATED WORK
Normal forms for relational data have been extensively

studied since the proposal of the relational data model it-
self [6]. For this reason, many normal forms have been pro-
posed. Instead of giving a survey on normal forms here, we
refer the interested reader to [10]. The Boyce-Codd Nor-
mal Form (BCNF) [7] is the most popular normal form, be-
cause it removes most kinds of redundancy from relational
schemata. This is why we focus on this particular normal
form in this paper. Most of the proposed techniques can,

however, likewise be used to create other normal forms. The
idea for our normalization algorithm follows the BCNF de-
composition algorithm proposed in [12] and many other text
books on database systems. The algorithm eliminates all
anomalies related to functional dependencies while still guar-
anteeing full information recoverability via natural joins.

Schema normalization and especially the normalization
into BCNF are well studied problems [3, 5, 16]. Bernstein
presents a complete procedure for performing schema syn-
thesis based on functional dependencies [4]. In particular,
he shows that calculating the closure over a set of FDs is a
crucial step in the normalization process. He also lays the
theoretical foundation for our paper. But like most other
works on schema normalization, Bernstein takes the func-
tional dependencies and their semantic validity as a given –
an assumption that hardly applies, because FDs are usually
hidden in the data and must be discovered. For this reason,
existing works on schema normalization greatly underesti-
mate the number of valid FDs in non-normalized datasets
and they also ignore the task of filtering the syntactically
correct FDs for semantically meaningful ones. These reasons
make those normalization approaches inapplicable in prac-
tice. In this paper, we propose a normalization system that
covers the entire process from FD discovery over constraint
selection up to the final relation decomposition. We show
the feasibility of this approach in practical experiments.

There are other works on schema normalization, such as
the work of Diederich and Milton [9], who understood that
calculating the transitive closure over the FDs is a compu-
tational complex task that becomes infeasible facing real-
world FD sets. As a solution, they propose to remove so
called extraneous attributes from the FDs before calculat-
ing the closure, which reduces the calculation costs signifi-
cantly. However, if all FDs are minimal, which is the case
in our normalization process, then no extraneous attributes
exist, and the proposed pruning strategy is futile.

One important difference between traditional normaliza-
tion approaches and our algorithm is that we retrieve all
minimal FDs from a given relational instance to exploit
them for closure calculation (syntactic step) and constraint
selection (semantic step). The latter has received little at-
tention in previous research. In [2], Andritsos et al. proposed
to rank the FDs used for normalization by the entropy of
their attribute sets: The more duplication an FD removes,
the better it is. The problem with this approach is that it
weights the FDs only for effectiveness and not for semantic
relevance. Entropy is also expensive to calculate, which is
why we use different features. In fact, we use techniques
inspired by [20], who extracted foreign keys from inclusion
dependencies.

Schema normalization is a sub-task in schema design and
evolution. There are numerous database administration
tools, such as Navicat1, Toad2, and MySQL Workbench3,
that support these overall tasks. Most of them transform
a given schema into an ER-diagram that a user can manip-
ulate. All manipulations are then translated back to the
schema and its data. Such tools are partly able to support
normalization processes, but none of them can automatically
propose normalizations with FDs retrieved from the data.

1https://www.navicat.com/
2http://www.toadworld.com/
3http://www.mysql.com/products/workbench/
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In [3], the authors propose an efficient algorithm for the
membership problem, i.e., the problem of testing whether
one given FD is in the cover or not. This algorithm does
not solve the closure calculation problem, but the authors
propose some improvements in that algorithm that our im-
proved closure algorithm uses as well, e.g., testing only for
missing attributes on the Rhs. They also propose derivation
trees as a model for FD derivations, i.e., deriving further FDs
from a set of known FDs using Armstrong’s inference rules.
Because no algorithm is given for their model, we cannot
compare our solution against it.

As stated above, the discovery of functional dependencies
from relational data is a prerequisite for schema normaliza-
tion. Fortunately, FD discovery is a well researched problem
and we find various algorithms to solve it. In this work, we
utilize the HyFD algorithm, which is the most efficient FD
discovery algorithm at the time [19]. This algorithm discov-
ers – like almost all FD discovery algorithms – the complete
set of all minimal, syntactically valid FDs in a given rela-
tional dataset. We exploit these properties, i.e., minimality
and completeness in our closure algorithm.

3. SCHEMA NORMALIZATION
To normalize a schema into Boyce-Codd Normal Form

(BCNF), we implement the straightforward BCNF decom-
position algorithm shown in most textbooks on database sys-
tems, such as [12]. The BCNF-conform schema produced by
this algorithm is always a tree-shaped snowflake schema, i.e.,
the foreign key structure is hierarchical and cycle-free. For
this reason, our normalization algorithm is not designed to
(re-)construct arbitrary non-snowflake schemata. It, how-
ever, removes all redundancy related to functional depen-
dencies from the relations. If other schema design decisions
that lead to alternative schema topologies are necessary, the
user must (and can!) interactively choose different decom-
positions other than the ones our algorithm can propose.

In the following, we propose a normalization process that
takes an arbitrary relational instance as input and returns a
BCNF-conform schema for it. The input dataset can contain
one or more relations, and no other metadata than the data-
set’s schema is required. This schema, which is incremen-
tally changed during the normalization process, is globally
known to all algorithmic components. We refer to a dataset’s
schema as its set of relations, specifying attributes, tables,
and key/foreign key constraints. For instance, the schema of
our example dataset in Table 2 is {R1(First, Last,Postcode),
R2(Postcode,City,Mayor)}. Underlined attributes represent
keys and same attribute names represent foreign keys.

Figure 1 gives an overview of the normalization algorithm,
which we call Normalize. In contrast to other normaliza-
tion algorithms, such as those proposed in [4] or [9], Nor-
malize does not have any components responsible for min-
imizing FDs or removing extraneous FDs. This is because
the set of FDs on which we operate, is not arbitrary; it con-
tains only minimal and, hence, no extraneous FDs due to
the FD discovery step. We now introduce the components
step by step and discuss the entire normalization process.

(1) FD Discovery. Given a relational dataset, the first
component is responsible for discovering all minimal func-
tional dependencies. Any known FD discovery algorithm,
such as Tane [14] or Dfd [1], can be used, because all these
algorithms are able to discover the complete set of minimal

Figure 1: “Normalize” and its components.

FDs in relational datasets. We make use of our HyFD [19]
algorithm here, because it is the most efficient algorithm for
this task and it offers special pruning capabilities that we
can exploit later in the normalization process. In summary,
the first component reads the data, discovers all FDs, and
sends them to the second component. For more details on
this discovery step, we refer to [19].

(2) Closure Calculation. The second component calcu-
lates the closure over the given FDs. The closure is needed
by subsequent components to infer keys and normal form
violations. Formally, the closure X+

F over a set of attributes
X given the FDs F is defined as the set of attributes X
plus all additional attributes Y that we can add to X us-
ing F and Armstrong’s transitivity axiom [9]. If, for ex-
ample, X = {A,B} and F = {A → C, C → D}, then
X+

F = {A,B,C,D}. We now define the closure F+ over a
set of FDs F as a set of extended FDs: The Rhs Y of each
FD X → Y ∈ F is extended such that X∪Y = X+

F . In other
words, each FD in F is maximized using Armstrong’s tran-
sitivity axiom. Because, as Beeri et al. have shown [3], this
is an NP-hard task with respect to the number of attributes
in the input relation, we shall propose an efficient FD exten-
sion algorithm that finds transitive dependencies via prefix
tree lookups. This algorithm iterates the set of FDs only
once and is able to parallelize its work. It exploits the fact
that the given FDs are minimal and complete (Section 4).

(3) Key Derivation. The key derivation component col-
lects those keys from the extended FDs that the algorithm
requires for schema normalization. Such a key X is a set of
attributes for which X → Y ∈ F+ and X ∪ Y = Ri with Ri

being all attributes of relation i. In other words, if X deter-
mines all other attributes, it is a key for its relation. Once
discovered, these keys are passed to the next component.
Our method of deriving keys from extended functional de-
pendencies does not reveal all existing keys in the schema,
but we prove in Section 5 that only the derived keys are
needed for BCNF normalization.

(4) Violating FD Identification. Given the extended
FDs and the set of keys, the violation detection component
checks all relations for being BCNF-conform. Recall that
a relation R is BCNF-conform, iff for all FDs X → A in
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that relation the Lhs X is either a key or superkey. So
Normalize checks the Lhs of each FD for having a (sub)set
in the set of keys; if no such (sub)set can be found, the FD
is reported as a BCNF violation. Note that one could setup
other normalization criteria in this component to accomplish
3NF or other normal forms. If FD violations were identified,
these are reported to the next component; otherwise, the
schema is BCNF-conform and can be sent to the primary
key selection. We propose an efficient technique to find all
violating FDs in Section 6.

(5) Violating FD Selection. The violating FD selection
component is called with a set of violating FDs, if some
relations are not yet in BCNF. In this case, the compo-
nent scores all violating FDs for being good foreign key con-
straints. With these scores, the algorithm creates a ranking
of violating FDs for each non-BCNF relation. From each
ranking, a user picks the most suitable violating FD for nor-
malization; if no user is present, the algorithm automatically
picks the top ranked FD. Note that the user, if present, can
also decide to pick none of the FDs, which ends the normal-
ization process for the current relation. This is reasonable if
all presented FDs are obviously semantically incorrect, i.e.,
the FDs hold on the given data accidentally but have no real
meaning. Such FDs are presented with a relatively low score
at the end of the ranking. Eventually, the iterative process
automatically weeds out most of the semantically incorrect
FDs by selecting only semantically reliable FDs in each step.
We discuss the violating FD selection together with the key
selection in Section 7.

(6) Schema Decomposition. Knowing the violating FDs,
the actual schema decomposition is a straight-forward task:
Each relation R, for which a violating FD X → Y is given,
is split into two parts – one part without the redundant at-
tributes R1 = R\Y and one part with the FD’s attributes
R2 = X ∪ Y . Now X automatically becomes the new pri-
mary key in R2 and a foreign key in R1. With these new re-
lations, the algorithm goes back into step (3), the key selec-
tion, because new keys might have appeared in R2, namely
those keys Z for which Z → X holds. Because the decompo-
sition itself is straightforward, we do not go into more detail
for this component in this paper.

(7) Primary Key Selection. The primary key selection is
the last component in the normalization process. It makes
sure that every BCNF-conform relation has a primary key
constraint. Because the decomposition component already
assigns keys and foreign keys when splitting relations, most
relations already have a primary key. Only those relations
that had no primary key at the beginning of the normal-
ization process are processed by this component. For them,
the algorithm assigns a primary key in a (semi-)automated
way: All keys of the respective relation are scored for being
a good primary key; then the keys are ranked by their score
and either a human picks a primary key from this ranking,
or the algorithm automatically picks the highest ranked key
as the relation’s primary key. Section 7 describes the scoring
and selection of keys in more detail.

Once the closure of all FDs is calculated, the compo-
nents (3) to (6) form a loop: This loop drives the normal-
ization process until component (4) finds the schema to be
BCNF-conform. Overall, the proposed components can be
grouped into two classes: The first class includes the compo-

nents (1), (2), (3), (4), and (6) and operates on a syntactic
level; the results in this class are well defined and the focus is
set on performance optimization. The second class includes
the components (5) and (7) and operates on a semantic level;
the computations here are easy to execute but the choices
are difficult and the quality of the result matters.

4. CLOSURE CALCULATION
Armstrong formulated the following three axioms for func-

tional dependencies on attribute sets X, Y , and Z [3]:

1. Reflexivity : If Y ⊆ X, then X → Y .
2. Augmentation: If X → Y , then X ∪ Z → Y ∪ Z.
3. Transitivity : If X → Y and Y → Z, then X → Z.

For schema normalization, we are given a set of FDs F and
need to find a cover F+ that maximizes the right hand side
of each FD in F . The maximization of FDs is important
to identify keys and to decompose relations correctly. In
our running example, for instance, we might be given Post-
code→City and City→Mayor. A correct decomposition with
foreign key Postcode requires Postcode→City,Mayor; other-
wise we would lose City→Mayor, because the attributes City
and Mayor would end up in different relations. Therefore,
we apply Armstrong’s transitivity axiom on F to calculate
its cover F+.

The closure F+ extends each FD using Armstrong’s re-
flexivity and transitivity axioms. Augmentation need not
be used, because this rule generates new, non-minimal FDs
instead of extending existing ones. The decomposition steps
require the FDs’ Lhs to be minimal, i.e., removing any at-
tribute from X would invalidate X → Y , because X should
become a minimal key after decomposition.

The reflexivity axiom adds all Lhs attributes to an FD’s
Rhs. To reduce memory consumption, we make this exten-
sion only implicit: We assume that Lhs attributes always
also belong to an FD’s Rhs without explicitly storing them
on that side. For this reason, we apply the transitivity axiom
for attribute sets W , X, Y , and Z as follows: If W → X,
Y → Z, and Y ⊆ W ∪X, then W → Z. So if, for instance,
the FD First,Last→Mayor is given, we can extend the FD
First,Postcode→Last with the Rhs attribute Mayor, because
{First, Last} ⊆ {First, Postcode} ∪ {Last}.

In the following, we discuss three algorithms for calculat-
ing F+ from F : A naive algorithm, an improved algorithm
for arbitrary sets of FDs, and an optimized algorithm for
complete sets of minimal FDs. While the second algorithm
might be useful for closure calculation in other contexts,
such as query optimization or data cleansing, we recommend
the third algorithm for our normalization system. All three
algorithms store F , which is transformed into F+, in the
variable fds.

4.1 Naive closure algorithm
The naive closure algorithm, which was already intro-

duced as such in [9], is given as Algorithm 1. For each
functional dependency in fds (Line 3), the algorithm iter-
ates all other FDs (Line 4) and tests if these extend the
current FD (Line 5). If an extension is possible, the cur-
rent FD is updated (Line 6). These updates might enable
further updates for already tested FDs. For this reason, the
naive algorithm iterates the FDs until an entire pass has not
added any further extensions (Line 8).
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Algorithm 1: Naive Closure Calculation

Data: fds
Result: fds

do1

somethingChanged ← false;2

foreach fd ∈ fds do3

foreach otherFd ∈ fds do4

if otherFd.lhs ⊆ fd.lhs ∪ fd.rhs then5

fd.rhs ← fd.rhs ∪ otherFd.rhs;6

somethingChanged ← true;7

while somethingChanged ;8

return fds;9

4.2 Improved closure algorithm
There are several ways to improve the naive closure algo-

rithm, some of which have already been proposed in similar
form in [9] and [3]. We now present an improved closure
algorithm that solves the following three issues: First, the
algorithm should not check all other FDs when extending
one specific FD, but only those that can possibly link to a
missing Rhs attribute. Second, when looking for a miss-
ing Rhs attribute, the algorithm should not check all other
FDs that can provide it, but only those that have a subset-
relation with the current FD, i.e., those that are relevant for
extensions. Third, the change-loop should not iterate the
entire FD set, because some FDs must be extended more
often than others so that many extension tests are executed
superfluously.

Algorithm 2 shows our improved version. First, we remove
the nested loop over all other FDs and replace it with index
lookups. The index structure we propose is a set of prefix-
trees, aka. tries. Each trie stores all FD Lhss that have the
same, trie-specific Rhs attribute. Having an index for each
Rhs attribute allows the algorithm to check only those other
FDs that can deliver a link to a Rhs attribute that a current
FD is actually missing (Line 8).

The lhsTries are constructed before the algorithm starts
extending the given FDs (Lines 1 to 4). Each index-lookup
must then not iterate all FDs referencing the missing Rhs
attribute; it instead performs a subset search in the accord-
ing prefix tree, because the algorithm is specifically looking
for an FD whose Lhs is contained in the current FD’s Rhs
attributes (Line 9). The subset search is much more effec-
tive than iterating all possible extension candidates and has
already been proposed for FD generalization lookups in [11].

As a third optimization, we propose to move the change-
loop inside the FD-loop (Line 6). Now, a single FD that
requires many transitive extensions in subsequent iterations
does not trigger the same number of iterations over all FDs,
which mostly are already fully extended.

4.3 Optimized closure algorithm
Algorithm 2 works well for all sets of FDs, but we can

further optimize the algorithm with the assumption that
these sets contain all minimal FDs. Algorithm 3 shows this
more efficient version for complete sets of minimal FDs.

Like Algorithm 2, the optimized closure algorithm also
uses the Lhs tries for efficient FD extensions, but it does
not require a change-loop so that it iterates the missing Rhs
attributes of an FD only once. The algorithm also checks

Algorithm 2: Improved Closure Calculation

Data: fds
Result: fds

array lhsTries size | schema.attributes | as trie;1

foreach fd ∈ fds do2

foreach rhsAttr ∈ fd.rhs do3

lhsTries[rhsAttr ].insert (fd.lhs);4

foreach fd ∈ fds do5

do6

somethingChanged ← false;7

foreach attr /∈ fd.rhs ∪ fd.lhs do8

if fd.lhs ∪ fd.rhs ⊇ lhsTries[attr] then9

fd.rhs ← fd.rhs ∪ attr ;10

somethingChanged ← true;11

while somethingChanged ;12

return fds;13

only the Lhs attributes of an FD for subsets and not all
attributes of a current FD (Line 7). These two optimizations
are possible, because the set of FDs is complete and minimal
so that we always find a subset-FD for any valid extension
attribute. The following lemma states this formally:

Lemma 1. Let F be a complete set of minimal FDs. If
X → Y ∈ F and X → A with A /∈ Y is valid, then there
must exist an X ′ ⊂ X so that X ′ → A ∈ F .

Proof. If X → A and X → A /∈ F , then X → A is not
minimal and a minimal FD X ′ → A with X ′ ⊂ X must exist.
If X ′ → A /∈ F , then F is not a complete set of minimal
FDs, which contradicts the premise that F is complete.

The fact that all minimal FDs are required for Algorithm 3
to work correctly has the disadvantage that complete sets of
FDs are usually much larger than sets of FDs that have
already been reduced to meaningful FDs. Reducing a set
of FDs to meaningful ones is, on the contrary, a difficult
and use-case specific task that becomes more accurate if the
FDs’ closure is known. For this reason, we perform the
closure calculation before the FD selection and accept the
increased processing time and memory consumption.

The increased processing time is hardly an issue, because
the performance gain of Algorithm 3 over Algorithm 2 on
same sized inputs is so significant that larger sets of FDs
can still easily be processed. We show this in Section 8. The

Algorithm 3: Optimized Closure Calculation

Data: fds
Result: fds

array lhsTries size | schema.attributes | as trie;1

foreach fd ∈ fds do2

foreach rhsAttr ∈ fd.rhs do3

lhsTries[rhsAttr ].insert (fd.lhs);4

foreach fd ∈ fds do5

foreach attr /∈ fd.rhs ∪ fd.lhs do6

if fd.lhs ⊇ lhsTries[attr] then7

fd.rhs ← fd.rhs ∪ attr ;8

return fds;9
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increased memory consumption, on the other hand, becomes
a problem if the complete set of minimal FDs is too large to
be held in memory or maybe even too large to be held on
disk. We then need to prune FDs, but which FDs can be
pruned so that Algorithm 3 still computes a correct closure
on the remainder? To fully extend an FD X → Y , the
algorithm requires all subset-FDs X ′ → Z with X ′ ⊂ X to
be available. So if we prune all superset-FDs with larger
Lhs than |X|, the calculated closure for X → Y and all its
subset-FDs X ′ → Z would still be correct. In general, we
can define a maximum Lhs size and prune all FDs with a
larger Lhs size while still being able to compute the complete
and correct closure for the remaining FDs with Algorithm 3.
This pruning fits our normalization use-case well, because
FDs with shorter Lhs are semantically better candidates
for key and foreign key constraints as we argue in Section 7.
Normalize achieves the maximum Lhs size pruning for free,
because it is already implemented in the HyFD algorithm
that we proposed using for the FD discovery.

All three closure algorithms can easily be parallelized by
splitting the FD-loops (Lines 3, 2, and 5 respectively) to dif-
ferent worker threads. This is possible, because each worker
changes only its own FD and changes made to other FDs
can, but do not have to be seen by this worker.

Considering the complexity of the three algorithms with
respect to the number of input FDs, the naive algorithm is
in O(|fds|3), the improved in O(|fds|2) and the optimized
in O(|fds|). But because the number of FDs potentially in-
creases exponentially with the number of attributes, all three
algorithms are NP-complete in the number of attributes. We
compare the algorithms experimentally in Section 8.

5. KEY DERIVATION
Keys are important in normalization processes, because

they do not contain any redundancy due to their unique-
ness. Hence, they do not cause anomalies in the data. Keys
basically indicate normalized schema elements that do not
need to be decomposed, i.e., decomposing them would not
remove any redundancy in the given relational instance. In
this section, we first discuss how keys can be derived from
extended FDs. Then, we prove that the set of derived keys
is sufficient for BCNF schema normalization.

Deriving keys from extended FDs. By definition, a
key is any attribute or attribute combination whose values
uniquely define all other records [6]. In other words, the
attributes of a key X functionally determine all other at-
tributes Y of a relation R. So given the extended FDs, the
keys can easily be found by checking each FD X → Y for
X ∪ Y = R.

The set of keys that we can directly derive from the
extended FDs does, however, not necessarily contain all
minimal keys of a given relation. Consider here, for
instance, the relations Professor(name, department, salary),
Teaches(name, label), and Class(label, room, date) with
Teaches being a join table for the n:m-relationship between
Professor and Class. When we denormalize this schema
by calculating R = Professor ./ Teaches ./ Class, we get
R(name, label, department, salary, room, date) with primary
key {name, label}. This key cannot directly be derived
from the minimal FDs, because name,label→A is not a
minimal FD for any A ∈ Ri; the two minimal FDs are
name→department,salary and label→room,date.

Skipping missing keys. The discovery of missing keys is
an expensive task, especially when we consider the number
of FDs that can be huge for non-normalized datasets. The
BCNF-normalization, however, only requires those keys that
we can directly derive from the extended FDs. We can basi-
cally ignore the missing keys, because the algorithm checks
normal form violations only with keys that are subsets of an
FD’s Lhs (see Section 6) and all such keys can directly be
derived. The following lemma states this more formally:

Lemma 2. If X ′ is a key and X → Y ∈ F+ is an FD
with X ′ ⊆ X, then X ′ can directly be derived from F+.

Proof. Let X ′ be a key of relation R and let X → Y ∈
F+ be an FD with X ′ ⊆ X. To directly derive the key X ′

from F+, we must prove the existence of an FD X ′ → Z ∈
F+ with Z = R \X ′.
X must be a minimal Lhs in some FD X → Y ′ with

Y ′ ⊆ Y , because X → Y ∈ F+ and F is the set of all
minimal FDs. Now consider the precondition X ′ ⊆ X: If
X ′ ⊂ X, then X → Y 6∈ F+, because X is a key and, hence,
it determines any attribute A that X could contain more
than X ′. Therefore, X = X ′ must be true. At this point,
we have that X → Y ′ ∈ F+ and X = X ′. So X ′ → Y ′ ∈ F+

must be true as well, which also shows that Y ′ = Y = Z,
because X ′ is a key.

The key derivation component in Normalize in fact dis-
covers only those keys that are relevant for the normalization
process by checking X ∪ Y = R for each FD X → Y . The
primary key selection component in the end of the normal-
ization process must, however, discover all keys for those re-
lations that did not receive a primary key from any previous
decomposition operation. For this task, we use the DUCC
algorithm by Heise et al. [13], which is specialized in key
discovery. The key discovery is an NP complete problem,
but because the normalized relations are much smaller than
the non-normalized starting relations, it is a fast operation
at this stage of the algorithm.

6. VIOLATION DETECTION
Given the extended fds and the keys, detecting BCNF vi-

olations is straightforward: Each FD whose Lhs is neither a
key nor a super-key must be classified as a violation. Algo-
rithm 4 shows how this can be efficiently done again using
a prefix tree for subset searches.

At first, the violation detection algorithm inserts all given
keys into a trie (Lines 1 to 3). Then, it iterates the fds
and, for each FD, it checks if the FD’s Lhs contains a null

value ⊥. Such FDs do not need to be considered for de-
compositions, because the Lhs becomes a primary key con-
straint in the new, split off relation and SQL prohibits null
values in key constraints. Note that there is work on possi-
ble/certain key constraints that permit ⊥ values in keys [15],
but we continue with the standard for now. If the Lhs con-
tains no null values, the algorithm queries the keyTrie for
subsets of the FD’s Lhs (Line 8). If a subset is found, the
FD does not violate BCNF and we continue with the next
FD; otherwise, the FD violates BCNF.

To preserve existing constraints, we remove all primary
key attributes from a violating FD’s Rhs, if a primary key is
present (Line 11). Not removing the primary key attributes
from the FD’s Rhs could cause the decomposition step to
break the primary key apart. Some key attributes would
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Algorithm 4: Violation Detection

Data: fds, keys
Result: violatingFds

keyTrie ← new trie;1

foreach key ∈ keys do2

keyTrie.insert (key);3

violatingFds ← ∅;4

foreach fd ∈ fds do5

if ⊥ ∈ fd.lhs then6

continue;7

if fd.lhs ⊇ keyTrie then8

continue;9

if currentSchema.primaryKey 6= null then10

fd.rhs ← fd.rhs − currentSchema.primaryKey ;11

if ∃ fk ∈ currentSchema.foreignKeys:12

(fk ∩ fd.rhs 6= ∅) ∧ (fk 6⊆ fd.lhs ∪ fd.rhs) then13

continue;14

violatingFds ← violatingFds ∪ fd ;15

return violatingFds;16

then be moved into another relation breaking the primary
key constraint and possible foreign key constraints referenc-
ing this primary key. Because the current schema might also
contain foreign key constraints, we test if the violating FD
preserves all such constraints when used for decomposition:
Each foreign key fk must stay intact in either of the two
new relations or otherwise we do not use the violating FD
for normalization (Line 12). The algorithm finally adds each
constraint preserving violating FD to the violatingFds result
set (Line 15). In Section 7 we propose a method to select
one of them for decomposition.

When a violating FD X → Y is used to decompose a
relation R, we obtain two new relations, which are R1(R\Y ∪
X) and R2(X ∪ Y ). Due to this split of attributes, not all
previous FDs hold in R1 and R2. It is obvious that the FDs
in R1 are exactly those FDs V →W for which V ∪W ⊆ R1

and V → W ′ ∈ F+ with W ⊆ W ′, because the records
for V → W are still the same in R1; R1 just lost some
attributes that are irrelevant for all V → W . The same
observation holds for R2 although the number of records
has been reduced:

Lemma 3. The relation R2(X ∪Y ) produced by a decom-
position on FD X → Y retains exactly all FDs V →W , for
which V ∪W ⊆ R2 and V →W is valid in R.

Proof. (1) Any valid V → W of R is still valid in R2:
Assume that V → W is valid in R but invalid in R2. Then
R2 must contain at least two records violating V → W .
Because the decomposition only removes records in V ∪W
and V ∪W ⊆ R2 ⊆ R, these violating records must also exist
in R. But such records cannot exist in R, because V → W
is valid in R; hence, the FD must also be valid in R2.

(2) No valid V → W of R2 can be invalid in R: Assume
V →W is valid in R2 but invalid in R. Then R must contain
at least two records violating V → W . Because these two
records are not completely equal in their V ∪W values and
V ∪W ⊆ R2, the decomposition does not remove them and
they also exist in R2. So V → W must also be invalid in
R2. Therefore, there can be no FD valid in R2 but invalid
in R.

Assume that, instead of BCNF, we would aim to assure
3NF, which is slightly less strict than BCNF: In contrast
to BCNF, 3NF does not remove all FD-related redundancy,
but it is dependency preserving. Consequently, no decom-
position may split an FD other than the violating FD [4].
To calculate 3NF instead of BCNF, we could additionally
remove all those groups of violating FDs from the result of
Algorithm 4 that are mutually exclusive, i.e., any FD that
would split the Lhs of some other FD. To calculate stricter
normal forms than BCNF, we would need to have detected
other kinds of dependencies. For example, constructing 4NF
requires all multi-valued dependencies (MVDs) and, hence,
an algorithm that discovers MVDs. The normalization al-
gorithm, then, would work in the same manner.

7. CONSTRAINT SELECTION
During schema normalization, we need to define key and

foreign key constraints. Syntactically, all keys are equally
correct and all violating FDs form correct foreign keys, but
semantically the choice of primary keys and violating FDs
makes a difference. Judging the relevance of keys and FDs
from a semantic point of view is a difficult task for an algo-
rithm – and in many cases for humans as well – but in the
following, we define some quality features that serve to au-
tomatically score keys and FDs for being “good” constraints,
i.e., constraints that are not only valid on the given instance
but are true for its schema.

The two selection components of Normalize use these
features to score the key and foreign-key candidates, respec-
tively. Then, they sort the candidates by their score. The
most reasonable candidates are presented at the top of the
list and likely accidental candidates appear at the end. By
default, Normalize uses the top-ranked candidate and pro-
ceeds; if a user is involved, she can choose the constraint or
stop the process. The candidate list can, of course, become
too large for a full manual inspection, but (1) the user al-
ways needs to pick only one element, i.e., she does not need
to classify all elements in the list as either true or false, (2)
the candidate list becomes shorter in every step of the al-
gorithm as many options are implicitly weeded out, and (3)
the problem of finding a split candidate in a ranked enumer-
ation of options is easier than finding a split without any
ordering, as it would be the case without our method.

7.1 Primary key selection
If a relation has no primary key, we must assign one from

the relation’s set of keys. To find the semantically best key,
Normalize scores all keys X using the following features:

(1) Length score: 1
|X|

Semantically correct keys are usually shorter than random
keys (in their number of attributes |X|), because schema
designers tend to use short keys: Short keys can more effi-
ciently be indexed and they are easier to understand.

(2) Value score: 1
max(1,|max(X)|−7)

The values in primary keys are typically short, because they
serve to identify records and usually do not contain much
business logic. Most relational database management sys-
tems (RDBMS) also restrict the maximum length of values
in primary key attributes, because primary keys are indexed
by default and indices with too long values are more diffi-
cult to manage. So we downgrade keys with values longer
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than 8 characters using the function max(X) that returns
the longest value in attribute (combination) X; for multiple
attributes, max(X) concatenates their values.

(3) Position score: 1
2
( 1
|left(X)|+1

+ 1
|between(X)|+1

)

When considering the order of attributes in their relations,
key attributes are typically located left and without non-key
attributes between them. This is intuitive, because humans
tend to place keys first and logically coherent attributes to-
gether. The position score exploits this by assigning de-
creasing score values to keys depending on the number of
non-key attributes left left(X) and between between(X) key
attributes X.

The formulas we propose for the ranking reflect only our
intuition. The list of features is most likely also not com-
plete, but the proposed features produce good results for
key scoring in our experiments. For the final key score, we
simply calculate the mean of the individual scores. The per-
fect key with one attribute, a maximum value length of 8
characters and position one in the relation, then, has a key
score of 1; less perfect keys have lower scores.

After scoring, Normalize ranks the keys by their score
and lets the user choose a primary key amongst the top
ranked keys; if no user interaction is desired (or possible),
the algorithm automatically selects the top-ranked key.

7.2 Violating FD selection
During normalization, we need to select some violating

FDs for the schema decompositions. Because the selected
FDs become foreign key constraints after the decomposi-
tions, the violating FD selection problem is similar to the
foreign key selection problem [20], which scores inclusion
dependencies (INDs) for being good foreign keys. The view-
points are, however, different: Selecting foreign keys from
INDs aims to identify semantically correct links between ex-
isting tables; selecting foreign keys from FDs, on the other
hand, is about forming redundancy-free tables with appro-
priate keys.

Recall that selecting semantically correct violating FDs
is crucial, because some decompositions are mutually exclu-
sive. If possible, a user should also discard violating FDs
that hold only accidentally in the given relational instance.
Otherwise, Normalize might drive the normalization a bit
too far by splitting attribute sets – in particular sparsely
populated attributes – into separate relations.

In the following, we discuss our features for scoring vio-
lating FDs X → Y as good foreign key constraints:

(1) Length score: 1
2
( 1
|X| + 1

|Y |·(|R|−2)
)

Because the Lhs X of a violating FD becomes a primary
key for the Lhs attributes after decomposition, it should be
short in length. The Rhs Y , on the contrary, should be long
so that we create large new relations: Large right-hand sides
not only raise the confidence of the FD to be semantically
correct, they also make the decomposition more effective.
Because the Rhs can be at most |R| − 2 attributes long
in relation R (one attribute must be X and one must not
depend on X so that X is not a key in R), we weight the
Rhs’s length by this factor.

(2) Value score: 1
max(1,|max(X)|−7)

The value score for a violating FD is the same as the value
score for a primary key X, because X becomes a primary
key after decomposition.

(3) Position score: 1
2
( 1
|between(X)|+1

+ 1
|between(Y )|+1

)

The attributes of a semantically correct FD are most likely
placed close to one another due to their common context.
We expect this to hold for both the FD’s Lhs and Rhs. The
space between Lhs and Rhs attributes, however, is only a
very weak indicator, and we ignore it. For this reason, we
weight the violating FD anti-proportionally to the number
of attributes between Lhs attributes and between Rhs at-
tributes.

(4) Duplication score: 1
2
(2− |uniques(X)|

|values(X)| −
|uniques(Y )|
|values(Y )| )

A violating FD is well suited for normalization if both Lhs
X and Rhs Y contain possibly many duplicate values and,
hence, much redundancy. The decomposition can, then, re-
move many of these redundant values. As for most scoring
features, a high duplication score in the Lhs values reduces
the probability that the FD holds by coincidence, because
only duplicate values in an FD’s Lhs can invalidate the FD
and having many duplicate values in Lhs X without any vi-
olation is a good indicator for its semantic correctness. For
scoring, we estimate the number of unique values in X and
Y with |uniques()|; because exactly calculating this number
is computationally expensive, we create a Bloom-filter for
each attribute and use their false positive probabilities to
efficiently estimate the number of unique values.

We calculate the final violating FD score as the mean of
the individual scores. In this way, the most promising vio-
lating FD is one that has a single Lhs attribute determining
almost the entire relation with short and few distinct val-
ues. Like for the key scoring, the proposed features reflect
our intuitions and observations; they might not be optimal
or complete, but they produce reasonable results for a dif-
ficult selection problem: In our experiments the top-ranked
violating FDs usually indicate the semantically best decom-
position points.

After choosing a violating FD for becoming a foreign key
constraint, we could in principle decide to remove indovid-
ual attributes from the FD’s Rhs. One reason might be that
these attributes also appear in another FD’s Rhs and can be
used in a subsequent decomposition. So when a user guides
the normalization process, we present all Rhs attributes that
are also contained in other violating FDs. He/she can then
decide to remove such attributes. If no user is present, noth-
ing is removed.

8. EVALUATION
In this section, we evaluate the efficiency and effective-

ness of our normalization algorithm Normalize. At first,
we introduce our experimental setup. Then, we evaluate the
performance of Normalize and in particular its closure cal-
culation component. In the end, we assess the quality of the
normalization output.

8.1 Experimental setup
Normalize has been implemented using the Metanome

data profiling framework (www.metanome.de), which defines
standard interfaces for different kinds of profiling algo-
rithms [17]. In particular, Metanome provided the imple-
mentation of the HyFD FD discovery algorithm. Common
tasks, such as input parsing, result formatting, and perfor-
mance measurement, are standardized by the framework and
decoupled from the algorithm itself.
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Table 3: The datasets, their characteristics, and their processing times
Name Size Attr. Records FDs FD-Keys FD Disc. Closureimpr Closureopt Key Der. Viol. Iden.
Horse 25.5 kB 27 368 128,727 40 4,157 ms 1,765 ms 486 ms 40 ms 246 ms
Plista 588.8 kB 63 1000 178,152 1 9,847 ms 6,652 ms 857 ms 49 ms 55 ms
Amalgam1 61.6 kB 87 50 450,020 2,737 3,462 ms 745 ms 333 ms 7 ms 25 ms
Flight 582.2 kB 109 1000 982,631 25,260 20,921 ms 132,085 ms 1,662 ms 77 ms 93 ms
MusicBrainz 1.2 GB 106 1,000,000 12,358,548 0 2,132 min 215.5 min 1.4 min 331 ms 26 ms
TPC-H 6.7 GB 52 6,001,215 13,262,106 347,805 3,651 min 3.8 min 0.5 min 163 ms 4093 ms

Hardware. We ran all our experiments on a Dell Pow-
erEdge R620 with two Intel Xeon E5-2650 2.00 GHz CPUs
and 128 GB DDR3 RAM. The server runs on CentOS 6.7
and uses OpenJDK 64-Bit 1.8.0 71 as Java environment.

Datasets. We primarily use the synthetic TPC-H 4 dataset
(scale factor one), which models generic business data, and
the MusicBrainz 5 dataset, which is a user-maintained ency-
clopedia on music and artists. To evaluate the effectiveness
of Normalize, we denormalized the two datasets by join-
ing all their relations into a single, universal relation. In this
way, we can compare the normalization result to the original
datasets. For MusicBrainz, we had to restrict this join to
eleven selected core tables, because the number of tables in
this dataset is huge. We also limited the number of records
for the denormalized MusicBrainz dataset, because the asso-
ciative tables produce an enormous amount of records when
used for complete joins.

For the efficiency evaluation, we use four additional
datasets, namely Horse, Plista, Amalgam1, and Flight. We
provide these datasets and more detailed descriptions on our
web-page6. In our evaluation, each dataset consists of one
relation with the characteristics shown in Table 3; the input
of Normalize can, in general, consist of multiple relations.

8.2 Efficiency analysis
Table 3 lists six datasets with different properties. The

amount of minimal functional dependencies in these datasets
is between 128 thousand and 13 million, and thus too great
to manually select meaningful ones. The column FD-Keys
counts all those keys that we can directly derive from the
FDs. Their number does not depend on the number of FDs
but on the structure of the data: Amalgam1 and TPC-H
have a snow-flake schema while, for instance, MusicBrainz
has a more complex link structure in its schema.

We executed Normalize on each of these datasets and
measured the execution time for the components (1) FD
Discovery, (2) Closure Calculation, (3) Key Derivation, and
(4) Violating FD Identification. The first two components
are parallelized so that they fully use all 32 cores of our
evaluation machine. The necessary discovery of the com-
plete FD set still requires 36 and 61 hours on the two larger
datasets, respectively.

First of all, we notice that the key derivation and vio-
lating FD identification steps are much faster than the FD
discovery and closure calculation steps; they usually finish
in less than a second. This is important, because the two
components are executed multiple times in the normaliza-
tion process and a user might be in the loop interacting
with the system at the same time. In Table 3, we show only
the execution times for the first call of these components;

4http://tpc.org/tpch
5https://musicbrainz.org
6https://hpi.de/naumann/projects/repeatability

subsequent calls can be handled even faster, because their
input sizes shrink continuously. The time needed to deter-
mine the violating FDs depends primarily on the number of
FD-keys, because the search for Lhs generalizations in the
trie of keys is the most expensive operation. This explains
the long execution time of 4 seconds for the TPC-H dataset.

For the closure calculation, Table 3 shows the execution
times of the improved (impr) and optimized (opt) algorithm.
The naive algorithm already took 13 seconds for the Amal-
gam1 dataset (compared to less than 1 s for both impr
and opt), 23 minutes for Horse (<2 s and <1 s for impr
and opt, respectively), and 41 minutes for Plista (<7 s and
<1 s). These runtimes are so much worse than the improved
and optimized algorithm versions that we stopped testing
it. The optimized closure algorithm, then, outperforms the
improved version by factors of 2 (Amalgam1) to 159 (Mu-
sicBrainz), because it can exploit the completeness of the
given FD set. The more extensions of right-hand sides the
algorithm must perform, the higher this advantage becomes.
The average Rhs size for Amalgam1 FDs, for instance, in-
creases from 32 to 56, whereas the average Rhs size for Mu-
sicBrainz FDs increases from 3 to 40. For TPC-H, the av-
erage Rhs size increases from 10 to 23. The runtimes of the
optimized closure calculation are, overall, acceptable when
compared to the FD discovery time. Therefore, it is not
necessary to filter FDs prior to the closure calculation.

Because closure calculation is not only important for nor-
malization but for many other use cases as well, Figure 2
analyses the scalability of this step in more detail. The
graphs show the execution times of the improved and the
optimized algorithm for an increasing number of input FDs.
The experiment takes these input FDs randomly from the 12
million MusicBrainz FDs; the number of attributes is kept
constant to 106. We again omit the naive algorithm, because
it is orders of magnitude slower than both other approaches.

Figure 2: Scaling the number of input FDs for clo-
sure calculation.
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Figure 3: Relations after normalizing TPC-H.

Both runtimes in Figure 2 appear to scale almost linearly
with the number of FDs, because the extension costs for each
single FD are low due to the efficient index lookups. Never-
theless, the index lookups become more expensive with an
increasing number of FDs in the indexes (and they would
also become more numerous, if we would increase the num-
ber of attributes as well). Because the improved algorithm
performs the index lookups more often than the optimized
version (i.e. changed loop) and with larger search keys (i.e.
Lhs and Rhs), the optimized version is faster and scales bet-
ter with the number of FDs: It is from 4 to 16 times faster
in this experiment.

8.3 Effectiveness analysis
For a fair effectiveness analysis, we perform the normal-

ization automatically, i.e., without human interaction. Un-
der human supervision, better (but possibly also worse)
schemata than presented below can be produced. For the fol-
lowing experiments, we focus on TPC-H and MusicBrainz,
because we denormalized these datasets before so that we
can use their original schemata as gold standards for their
normalization results.

Figure 3 shows the BCNF normalized TPC-H dataset.
The color coding indicates the original relations of the dif-
ferent attributes. So we first notice that Normalize almost
perfectly restored the original schema: We can identify all
original relations in the normalized result. The automati-
cally selected constraints, i.e., keys and foreign keys are all
correct w.r.t. the original schema, which is possible because
the original schema was snow-flake shaped.

Nevertheless, we also observe two interesting flaws in the
automatically normalized schema: First, Normalize de-
composed the LINEITEM relation a bit too far; syntacti-
cally, the result is correct and perfectly BCNF-conform, but
semantically, the splits with only one dependent and more
than three foreign key attributes are not reasonable. Second,
the attribute shippriority originally belongs to the ORDERS
relation but was placed into the REGION relation. This is
syntactically a good decision, because the region also deter-
mines the shipping priority and putting the attribute into
this relation removes more redundant values than putting it
into the ORDERS relation.

Figure 4 shows the BCNF-normalized MusicBrainz data-
set. Although MusicBrainz has originally no snow-flake
schema, Normalize was still able to reconstruct almost all
original relations. Only ARTIST CREDIT NAME was not
reconstructed and its attributes now lie in the semantically

Figure 4: Relations after normalizing MusicBrainz.

related ARTIST relation. Because MusicBrainz is originally
not snow-flake shaped, the normalization produced a new
top-level relation that represents all many-to-many relation-
ships between artists, places, release labels, and tracks. This
top-level relation can be likened to a fact table.

Most mistakes are made for the ARTIST CREDIT rela-
tion, which was the first proposed split. This split took
away some attributes from other relations, because these
attributes do not contain many values and assigning them
to the ARTIST CREDIT relation makes syntactically sense.
A human expert, if involved, would have likely avoided that,
because Normalize does report to the user that these at-
tributes are also dependent on other violating FDs Lhs at-
tributes. Overall, however, the normalization result is quite
satisfactory, keeping in mind that no human was involved in
creating it.

We also tested Normalize on various other datasets with
similar findings: If datasets have been de-normalized be-
fore, we can find the original tables in the proposed schema;
if sparsely populated columns exist, these are often moved
into smaller relations; and if no human is in the loop, some
decompositions become detailed. All results were BCNF-
conform and semantically understandable.

9. CONCLUSION
We proposed Normalize, an instance-driven, (semi-) au-

tomatic algorithm for schema normalization. The algorithm
has shown that functional dependency profiling results of
any size can efficiently be used for the specific task of schema
normalization. We also presented techniques for guiding
the BCNF decomposition algorithm in order to produce se-
mantically good normalization results that also conform to
changes of the data.

Our implementation is publicly available at http://hpi.
de/naumann/projects/repeatability. It is currently console-
based, offering only basic user interaction. Future work
shall concentrate on emphasizing the user-in-the-loop, for
instance, by employing graphical previews of normalized re-
lations and their connections. We also suggest research on
other features for the key and foreign key selection that may
yield even better results. Another open research question is
how normalization processes should handle dynamic data
and errors in the data.
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ABSTRACT
Entity Matching (EM) identifies pairs of records referring to the
same real-world entity. In practice, this is often accomplished by
employing analysts to iteratively design and maintain sets of match-
ing rules. An important task for such analysts is a “debugging”
cycle in which they make a modification to the matching rules,
apply the modified rules to a labeled subset of the data, inspect
the result, and then perhaps make another change. Our goal is to
make this process interactive by minimizing the time required to
apply the modified rules. We focus on a common setting in which
the matching function is a set of rules where each rule is in con-
junctive normal form (CNF). We propose the use of “early exit”
and “dynamic memoing” to avoid unnecessary and redundant com-
putations. These techniques create a new optimization problem,
and accordingly we develop a cost model and study the optimal
ordering of rules and predicates in this context. We also provide
techniques to reuse previous results and limit the computation re-
quired to apply incremental changes. Through experiments on six
real-world data sets we demonstrate that our approach can yield a
significant reduction in matching time and provide interactive re-
sponse times.

1. INTRODUCTION
Entity matching (EM) identifies pairs of records that refer to

the same real-world entity. For example, the records (Matthew
Richardson, 206-453-1978) and (Matt W. Richardson, 453 1978)
may refer to the same person, and (Apple, Cupertino CA) and (Ap-
ple Corp, California) refer to the same company. Entity matching
is crucial for data integration and data cleaning.

Rule-based entity matching is widely used in practice [2, 13].
This involves analysts designing and maintaining sets of rules. An-
alysts typically follow an iterative debugging process, as depicted
in Figure 1. For example, imagine an e-commerce marketplace
that sells products from different vendors. When a vendor submits
products from a new category, the analyst writes a set of rules de-
signed to match these products with existing products. He or she
then applies these rules to a labeled subset of the data and waits
for the results. If the analyst finds errors in the matching output,

c©2017, Copyright is with the authors. Published in Proc. 20th Inter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

title: Sony Black Cyber-shot RX100 II with 
20.2 Megapixels and 3.6x Zoom
modelno: DSCRX100
price: $555

title: Sony DSC-RX100 20.2 MP Exmor
CMOS Sensor Camera with 3.6x Zoom
modelno: DSCRX100/B
price: $448

Record id: A20

Sample records to be matched

Jaccard(title, title) ≥ 0.9 ∧
Jaro(modelno, modelno) ≥ 0.9 
⇒Match

W3-A20 
do not match

Add rule
Normalize data

W3-A20
should be 
matched!

Write initial rules Run EM Analyze Refine

Matching workflow

Record id: W3

Figure 1: A typical matching workflow for analysts.

he or she will refine the rules and re-run them, repeating the above
process until the result is of sufficiently high quality.

Our goal is to make this process interactive. This naturally intro-
duces two challenges:

• Efficiency. The time that an analyst is idle in the “Run EM”
step has to be short. Research shows that when interacting
with software, if the response time is greater than one second,
the analyst’s flow of thought will be interrupted, and if it is
greater than 10 seconds, the user will turn their attention to
other tasks [12]. Therefore, it is imperative to reduce the idle
“waiting” time as much as possible.

• Maintainability. The refinement made by the analyst is con-
ceivably incremental. It is therefore desirable for an interac-
tive rule-based entity matching system to maintain matching
states between consecutive runs of “Run EM.” Although a
“stateless” system is easier to implement, e.g., it could just
rerun the whole matching algorithm again from the scratch
upon each refinement of the rules, it is clearly suboptimal in
terms of both runtime efficiency and resource utilization.

In this paper, we take a first step towards interactive debugging of
rule-based entity matching. Typically, rule-based entity matching is
accomplished by evaluating a boolean matching function for each
candidate record pair (for example, B1 in Figure 2). In this paper,
we follow the approach we have encountered in practice in which
this matching function is in Disjunctive Normal Form (DNF). Each
disjunction is a rule, and each rule is a conjunction of a set of pred-
icates that evaluate the similarity of two records on one or more
attributes, using a similarity function (such as Jaccard or TF-IDF).
For example, Jaccard(a.name, b.name) > 0.7 is a predicate,
where Jaccard(a.name, b.name) is a feature. A record pair is
a match if it matches at least one rule.

As was pointed out by Benjelloun et al. [2], and confirmed in
our experiments, computing similarity function values dominates
the matching time. In view of this, our basic idea is to minimize
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the number of similarity function computations as the analyst de-
fines new rules and/or refines existing rules. Specifically, we save
all computed similarity function values in memory to avoid redun-
dant computation. We then exploit natural properties of DNF/CNF
rule sets that enable “early exit” evaluation to eliminate the need
for evaluating many rules and/or predicates for a given candidate
pair of records. Moreover, we use “dynamic memoing”: we only
compute (and save the result of) a feature (i.e., a similarity score) if
that predicate result is required by the matching function. (Because
of early exit, not all features need to be computed.) This “lazy fea-
ture computation” strategy can thus save significant computation
cost when there are many possible features but only a few of them
are really required by the rule set/data set under consideration.

Although techniques such as “early exit” and “dynamic memo-
ing” are straightforward and ubiquitous in computer science, their
application in the context of rule-based entity matching raises an
interesting, challenging issue: different evaluation orders of the
predicates and rules may lead to significant differences in computa-
tional cost. It is then natural to ask the question of optimal ordering
of predicates and rules. We further study this problem in detail. We
show that the optimization problem under our setting is NP-hard,
and we propose two greedy solutions based on heuristic optimiza-
tion criteria. In our experiments with six real-world datasets, we
show that the greedy solutions can indeed produce orderings that
significantly reduce runtime compared to random ones.

So far, we have been focusing on the “efficiency” aspect of in-
teractive entity matching. Since the elements (e.g., features, pred-
icates, or rules) involved in matching change frequently as the an-
alyst iteratively refines the rule set, the “maintainability” aspect
is of equal importance. We therefore further develop incremen-
tal matching techniques to avoid rerunning matching from scratch
after each change. Specifically, we discuss four fundamental cases:
add/remove a predicate and add/remove a rule. We show how easy
it is to integrate incremental matching into our framework. We
also show via experiments that our incremental solutions can re-
duce matching time by orders of magnitude.

1.1 Related Work
Our work differs from previous work in several ways. Previous

work on efficiently running rule-based entity resolution [2] assumes
that each predicate is a black box, and thus memoing of similarity
function results is not possible. In our experience in an industrial
setting, these predicates are often not black boxes — rather, they
are explicitly presented in terms of similarity functions, attributes,
and thresholds. On the other hand, the traditional definition of the
EM workflow, as described in [3, 5], assumes that all similarity val-
ues for all pairs are precomputed before the matching step begins.
This makes sense in a batch setting in which a static matching func-
tion has been adopted, and the task is to apply this function to a set
of candidate record pairs. However, in this paper we are concerned
with the exploratory stage of rule generation, where at the outset
the matching function is substantially unknown. In such settings
the combinatorial explosion of potential attributes pairs, potential
similarity functions, and candidate pairs can render such full pre-
computation infeasible.

Even in small problem instances in which full precomputation
may be feasible, it can impose a substantial lag time between the
presentation of a new matching task and the time when the analyst
can begin working. This lag time may not be acceptable in practical
settings where tens of matching tasks may be created every day [7]
and the analyst wants to start working on high priority tasks im-
mediately. Finally, during the matching process, an analyst may
perform cleaning operations, normalization, and attribute extrac-

Id	 Name	 Street	 Zip	 Phone	

a1	 John	 Dayton	 54321	 123-4567	

a2	 Bob	 Regent	 53706	 121-1212	

Table	A	
Id	 Name	 Street	 Zip	 Phone	

b1	 John	 Dayton	 54321	 987-6543	

b2	 John	 Bascom	 11111	 258-3524	

Table	B	

B1:	(p1name	∧	pzip)	∨	(pphone	∧	p2name)	→		
B2:	(p1name	∧	pzip	∧	pstreet)	∨	(pphone	∧	p2name)	

Matching	func>on	evolu>on	

Figure 2: Tables A, B to be matched and example matching func-
tions. Function B1 evolves to B2.

tions on the two input tables. The analyst might also introduce new
similarity functions. In any of these situations, it is not possible to
precompute all features a priori.

Previous work on incrementally evaluating the matching func-
tion when the logic evolves assumes that we evaluate all predicates
for all pairs and materialize the matching result for each predi-
cate [15]. Because we use early exit, our information about the
matching results for each predicate is not complete. As a result,
this solution is not directly applicable in our setting.

In other related work, Dedoop (abbreviation for “Deduplication
with Hadoop”) [9] seeks to improve performance for general, large,
batch entity matching tasks through the exploitation of parallelism
available in Hadoop. By contrast, our work focuses on interactive
response for rule-based entity matching where the matching func-
tion is composed of many rules that evolve over time. Exploring
the application of parallelism as explored in Dedoop to our context
is an interesting area for future work.

Our work is also related to [14]. In that work, the user provides a
set of rule templates and a set of labeled matches and non-matches,
the system then efficiently searches a large space of rules (that in-
stantiate the rule templates) to find rules that perform best on the
labeled set (according to an objective function). That work also ex-
ploits the similarities among the rules in the space. But it does so
to search for the best set of rules efficiently. In contrast, we exploit
rule similarities to support interactive debugging.

Finally, our work is related to the Magellan project, also at UW-
Madison [10]. That project proposes to perform entity matching in
two stages. In the development stage, the user iteratively experi-
ments with data samples to find an accurate EM workflow. Then in
the production stage the user executes that workflow on the entirety
of data. If the user has decided to use a rule-based approach to EM,
then in the development stage he or she will often have to debug the
rules, which is the focus of this paper. This work thus fits squarely
into the development stage of the Magellan approach.

In the following we start with a motivating example, describe our
approach to try to achieve interactive response times, and present
experimental results of our techniques on real world data sets.

2. MOTIVATING EXAMPLE
To motivate and give an overview of our approach, consider the

following example. Our task is to match Table A and Table B
shown in Figure 2 to find records that refer to the same person. We
have four candidate pairs of records: {a1b1, a1b2, a2b1, a2b2}.
Assume our matching function is B1. Intuitively, B1 says that
if the name and zipcode of two records are similar, or if the phone
number and name of two records are similar, then they match. Here
p1name and p2name, for example, compute the similarity score
Jaccard(a.name, b.name) and then compare this value to differ-
ent thresholds, respectively, as we will see below.1 For this ex-
1In practice we often compute Jaccard over the sets of q-grams of
the two names, e.g., where q = 3; here for ease of exposition we
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ample, B1 will return true for a1b1 and false for the rest of the
candidate pairs.

A simple way to accomplish matching is to evaluate every pred-
icate for every candidate pair. To evaluate a predicate, we compute
the value of the similarity function associated with that predicate
and compare it to a threshold. For the candidate pair a2b1, we
would compute 4 similarity values.

This is unnecessary because once a predicate in a rule evaluates
to false, we can skip the remaining predicates. Similarly, once a
rule evaluates to true, we can skip the rest of the rules and there-
fore finish matching for that pair. We call this strategy “early exit,”
which saves unnecessary predicate evaluations. For instance, con-
sider the candidate pair a2b1 again. Suppose that the predicate
p1name is

Jaccard(a.name, b.name) ≥ 0.9.

Since the Jaccard similarity of the two names is 0, p1name will
return false for this candidate pair. Further assume that pphone per-
forms an equality check and thus returns 0 as well. We then do not
need to evaluate pzip and p2name to make a decision for this pair.
Therefore, for this candidate pair, “early exit” reduces the number
of similarity computations from 4 to 2.

Since the same similarity function may be applied to a candidate
pair in multiple rules and predicates, we “memo” each similarity
value once it has been computed. If a similarity function appears in
multiple predicates, only the first evaluation of the predicate incurs
a computation cost, while subsequent evaluations only incur (much
cheaper) lookup costs. We call this strategy “dynamic memoing.”
Continuing with our example, suppose p2name is

Jaccard(a.name, b.name) ≥ 0.7.

Then for a1b2 this predicate only involves a lookup cost.
When using early exit and dynamic memoing, different orders of

the predicates/rules will make a difference in the overall matching
cost. Once again consider the candidate pair a2b1. If we change
the order of predicates in B1 to

(p1name ∧ pzip) ∨ (p2name ∧ pphone),

the output of the matching function will not change. However, it
reduces the matching cost to one computation for p1name plus one
lookup for p2name. This raises a novel optimization problem that
we study in Section 5.

Finally, we take into account the fact that, as the matching func-
tion’s logic evolves, the changes to the function are often incremen-
tal. We can then store results of a previous EM run, and as the EM
logic evolves, use those to save redundant work for the next EM
iterations. As an example, imagine the case where the matching
function B1 evolves to B2. Since B2 is stricter than B1, we only
need to evaluate pstreet for the pairs that were matched by B1 to
verify if they still match. For our example, this means that we only
need to evaluate B1 for a1b1 among the four pairs.

3. PRELIMINARIES
The input to the entity matching (EM) workflow is two tables A,

B with a set of records {a1 . . . an}, {b1 . . . bm} respectively. The
goal of EM is to find all record pairs aibj that refer to the same
entity. Given table A with m records and table B with n records,
there arem×n potential matches. Even with moderate-size tables,
the total number of potential matches could be very large. Many
potential matches obviously do not match and can be eliminated

will assume that Jaccard scores are computed over the set of words
of the two names.

from consideration easily. That is the purpose of a blocking step,
which typically precedes a more detailed matching phase.

For example, suppose that each product has a category attribute
(e.g., clothing or electronics). We can assume that products from
different categories are non-matches. This reduces the task to find-
ing matching products within the same category. We refer to the
set of potential matches left after the blocking step as the candidate
record pairs or candidate pairs in the rest of this paper.

Each candidate record pair is evaluated by a Boolean matching
function B, which takes in two records and returns true or false.
We assume that B is commutative, i.e.,

∀aibj , B(ai, bj) = B(bj , ai).

We assume that each matching function is in disjunctive normal
form (DNF). We refer to each disjunct as a rule. For example, our
matching function B1 (Figure 2) is composed of two rules.

Such a matching function is composed of only “positive” rules,
as they say what matches, not what does not match. In our ex-
perience, this is a common form of matching function used in the
industry. Reasons for using only positive rules include ease of rule
generation, comprehensibility, ease of debugging, and commutativ-
ity of rule application.

Each rule is a conjunction of a set of predicates. Each predicate
compares the value of a feature for a candidate pair with a thresh-
old. A feature in our context is a similarity function computed over
attributes from the two tables. Similarity functions can be as simple
as exact equality, or as complex as arbitrary user-defined functions
requiring complex pre-processing and logic.

The matching result is composed of the return value of the match-
ing function for each of the candidate pairs. In order to evaluate
the quality of matching, typically a sample of the candidate pairs
is chosen and manually labeled as match or non-match based on
domain knowledge. The matching results for the sample is then
compared with the correct labels to get an estimate of the quality of
matching (e.g., precision and recall).

4. EARLY EXIT + DYNAMIC MEMOING
In this section, we first briefly present the details of early exit

and dynamic memoing. Although the ideas are pretty straightfor-
ward, we choose to describe them in an algorithmic way for clarity.
The notation used in describing these algorithms will also be used
throughout the rest of the paper when we discuss optimal predi-
cate/rule ordering and incremental algorithms. To analyze the costs
of various algorithms covered in this section, we further develop a
cost model. It is also the basis for the next section when we study
the optimal predicate/rule ordering problem.

4.1 Baselines
We study two baseline approaches in this subsection. In the fol-

lowing, for a given rule r, we use predicate(r) and feature(r) to
denote the set of predicates and features r includes.

4.1.1 The Rudimentary Baseline
The first baseline algorithm simply evaluates every predicate in

the matching function for every candidate pair. Each predicate is
considered as a black box and any similarity value used in the pred-
icate is computed from scratch. The results of the predicates (true
or false) are then passed on to the rules, and the outputs of the rules
passed on to the matching function to determine the matching sta-
tus. Algorithm 1 presents the details of this baseline.
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Algorithm 1: The rudimentary baseline.
Input: B, the matching function; C, candidate pairs
Output: {(c, x)}, where c ∈ C and x ∈ {M,U} (M means a

match and U means an unmatch)
1 LetR be the CNF rules in B;
2 Mark all c ∈ C with U ;
3 foreach c ∈ C do
4 foreach r ∈ R do
5 foreach p ∈ predicate(r) do
6 Evaluate p;
7 end
8 Evaluate r =

∧
p∈predicate(r) p;

9 end
10 Mark c with M if B =

∨
r∈R r is true;

11 end

4.1.2 The Precomputation Baseline
This algorithm precomputes all feature values involved in the

predicates before performing matching. Algorithm 2 presents the
details. As noted in the introduction, full precomputation may not
be feasible or desirable in practice, but we present it here as a point
of comparison. We store precomputed values as a hash table map-
ping pairs of attribute values to similarity function outputs.

Algorithm 2: The precomputation baseline.
Input: B, the matching function; C, candidate pairs
Output: {(c, x)}, where c ∈ C and x ∈ {M,U} (M means a

match and U means an unmatch)
1 LetR be the CNF rules in B;
2 Let F =

⋃
r∈R feature(r);

3 Let Γ = {(c, f, v)} be a |C| × |F| array that stores the value v
of each f ∈ F for each c ∈ C;

4 foreach c ∈ C do
5 foreach f ∈ F do
6 Compute v and store (c, f, v) in Γ;
7 end
8 end
9 Run Algorithm 1 by looking up feature values from Γ when

evaluating predicates;

4.2 Early Exit
Both baselines discussed above ignore the properties of the match-

ing function B. Given that B is in DNF, if one of the rules returns
true, B will return true. Similarly, because each rule in B is in
CNF, a rule will return false if one of its predicate returns false.
Therefore, we do not need to evaluate all the predicates and rules.
Algorithm 3 uses this idea. The “breaks” in lines 8 and 12 are the
“early exits” in this algorithm.

4.3 Dynamic Memoing
We can combine the precomputation of the second baseline with

early exit. That is, instead of precomputing everything up front,
we postpone the computation of a feature until it is encountered
during matching. Once we have computed the value of a feature,
we store it so following references of this feature only incur lookup
costs. We call this strategy “dynamic memoing,” or “lazy feature
computation.” Algorithm 4 presents the details.

4.4 Cost Modeling and Analysis
In this subsection, we develop simple cost models to use in rule

and predicate ordering decisions studied in Section 5. In the fol-

Algorithm 3: Early exit.
Input: B, the matching function; C, candidate pairs
Output: {(c, x)}, where c ∈ C and x ∈ {M,U} (M means a

match and U means an unmatch)
1 LetR be the CNF rules in B;
2 Mark all c ∈ C with U ;
3 foreach c ∈ C do
4 foreach r ∈ R do
5 r is true;
6 foreach p ∈ predicate(r) do
7 if p is false then
8 r is false; break;
9 end

10 end
11 if r is true then
12 Mark c with M ; break;
13 end
14 end
15 end

lowing discussion, we use cost(p) to denote the cost of evaluating
a predicate p. Let C be the set of all candidate pairs. Moreover,
let F be the set of all features involved in the matching function,
and we use cost(f) to denote the computation cost of a feature f .
Furthermore, we use δ to represent the lookup cost.

4.4.1 The Rudimentary Baseline
The cost of Algorithm 1 can be represented as:

C1 =
∑

c∈C

∑
r∈R

∑
p∈predicate(r)

cost(p).

In our running example in the introduction, the cost of making a
decision for the pair a1b2 is then

cost(p1name) + cost(pzip) + cost(pphone) + cost(p2name).

4.4.2 The Precomputation Baseline
Suppose that each feature f appears freq(f) times in the match-

ing function. Then the cost of the precomputation baseline (Algo-
rithm 2) is

C2 =
∑

c∈C

∑
f∈F

(cost(f) + freq(f)δ).

In our running example this means that, for pair a1b2 and match-
ing functionB1, we would need to precompute three similarity val-
ues and look up four. Note that this requires knowing cost(f) —
in our implementation, as discussed in our experimental results, we
use an estimate of cost(f) obtained by evaluating f over a sample
of the candidate pairs.

4.4.3 Early Exit
To compute the cost of early exit (Algorithm 3), we further in-

troduce the probability sel(p) that the predicate p will return true
for a given candidate pair (i.e., the selectivity of p). In our imple-
mentation, we use an estimate of sel(p) obtained by evaluating p
over a sample of the candidate pairs.

Given this estimate for sel(p), suppose that we have a rule r
withm predicates p1, ..., pm. The expected cost of evaluating r for
a (randomly picked) candidate pair is then

cost(r) = cost(p1) + sel(p1) cost(p2) + · · · (1)

+ sel(
∧m−1

j=1
pj) cost(pm),
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Algorithm 4: Early exit with dynamic memoing.
Input: B, the matching function; C, candidate pairs
Output: {(c, x)}, where c ∈ C and x ∈ {M,U} (M means a

match and U means an unmatch)
1 LetR be the CNF rules in B;
2 Let Γ be the feature values computed; Γ← ∅;
3 Mark all c ∈ C with U ;
4 foreach c ∈ C do
5 foreach r ∈ R do
6 r is true;
7 foreach p ∈ predicate(r) do
8 Let f be the feature in p;
9 if f 6∈ Γ then

10 Compute f ; Γ← Γ ∪ {f};
11 else
12 Read the value of f from Γ;
13 end
14 if p is false then
15 r is false; break;
16 end
17 end
18 if r is true then
19 Mark c with M ; break;
20 end
21 end
22 end

because we only need to evaluate pj if p1, ..., pj−1 are all evaluated
to be true. Similarly, we can define the selectivity of the rule r as

sel(r) = sel(
∧m

j=1
pj).

Suppose that we have n rules r1, ..., rn. The expected cost of the
early exit strategy (Algorithm 3) is then

C3 = cost(r1) + (1− sel(r1)) cost(r2) + · · ·

+(1− sel(
∨n−1

i=1
ri)) cost(rn).

4.4.4 Early Exit with Dynamic Memoing
The expected cost of early exit with dynamic memoing (Algo-

rithm 4) can be estimated in a similar way. The only difference
is that we need to further know the probability that a feature is
present in the memo. Specifically, suppose that a feature can ap-
pear at most once in a rule. Let α(f, ri) be the probability that a
feature f is present in the memo after evaluating ri. The expected
cost of computing f when evaluating ri is then

E[cost(f)] = (1− α(f, ri−1) cost(f) + α(f, ri−1)δ. (2)

The expected cost C4 of Algorithm 4 is obtained by replacing all
cost(p)’s in Equation 1 by their expected costs in Equation 2.

Let prev(f, ri) be the predicates in the rule ri that appear before
f . We then have

α(f, ri) = (1− α(f, ri−1)) sel(
∧

p∈prev(f,ri)
p) + α(f, ri−1).

Based on our assumption, different predicates in the same rule con-
tain different features. If we further assume that predicates with
different features are independent, it then follows that

α(f, ri) = (1− α(f, ri−1))
∏

p∈prev(f,ri)
sel(p) + α(f, ri−1).

Notation Description
cost(X) cost of X (X is a feature/predicate/rule)
δ the lookup cost
freq(f) frequency of feature f
predicate(r) predicates of rule r
feature(X) features of X (X can be a predicate/rule)
sel(X) selectivity of X (X can be a predicate/rule)
prev(f, r) features/predicates in rule r before feature f
predicate(f, r) predicates in rule r that have feature f
reduction(r) overall cost reduction by execution of rule r
cache(f, r) chance that f is in the memo after running r

Table 1: Notation used in cost modeling and optimal rule ordering.

Note that the initial condition satisfies

α(f, r1) =
∏

p∈prev(f,r1)
sel(p).

We therefore have obtained an inductive procedure for estimating
α(f, ri) (1 ≤ i ≤ n). Clearly, α(f, ri) = α(f, ri−1) if f 6∈
feature(ri−1). So we can focus on the rules that contain f .

5. OPTIMAL ORDERING
Our goal in this section is to develop techniques to order rule and

predicate evaluation to minimize the total cost of matching function
evaluation. This may sound familiar, and indeed it is — closely
related problems have been studied previously in related settings
(see, for example, [1, 8]). However, our problem is different and
unfortunately more challenging due to the interaction of early exit
evaluation with dynamic memoing.

5.1 Notation
Table 1 summarizes notation used in this section. Some of the

notation has been used when discussing the cost models.

5.2 Problem Formulation
We briefly recap an abstract version of the problem. We have a

set of rulesR = {r1, ..., rn}. Each rule is in CNF, with each clause
containing exactly one predicate. A pair of records is a match if any
rule inR evaluates to true. Therefore,R is a disjunction of rules:

R = r1 ∨ r2 ∨ · · · ∨ rn.

Consider a single rule

r = p1 ∧ p2 ∧ · · · ∧ pm.

We are interested in the minimum expected cost of evaluating r
with respect to different orders (i.e., permutations) of the predicates
p1, ..., pm.

Given a specific order of the predicates, the expected cost of r
can be expressed as

cost(r) = cost(p1) + sel(p1) cost(p2) + · · · (3)

+ sel(
∧m−1

j=1
pj) cost(pm).

Similarly, given a specific order of the rules, the expected cost of
evaluating R, as was in Section 4.4.3, is

cost(R) = cost(r1) + (1− sel(r1)) cost(r2) + · · · (4)

+(1− sel(
∨n−1

i=1
ri)) cost(rn).

We want to minimize cost(R).

358



5.3 Independent Predicates and Rules
The optimal ordering problem is not difficult when independence

of predicates/rules holds. We start by considering the optimal or-
dering of the predicates in a single rule r. If the predicates are
independent, Equation 3 reduces to

cost(r) = cost(p1) + sel(p1) cost(p2) + · · ·
+ sel(p1) · · · sel(pm−1) cost(pm).

The following lemma is well known for this case (e.g., see Lemma
1 of [8]):

LEMMA 1. Assume that the predicates in a rule r are indepen-
dent. cost(r) is minimized by evaluating the predicates in ascend-
ing order of the metric:

rank(pi) = (sel(pi)− 1)/ cost(pi) (for 1 ≤ i ≤ m).

We next consider the optimal ordering of the rules by assuming
that the rules are independent. We have the following similar result.

THEOREM 1. Assume that the predicates in all the rules are
independent. cost(R) is minimized by evaluating the rules in as-
cending order of the metric:

rank(rj) = − sel(rj)

cost(rj)
= −

∏
p∈predicate(rj) sel(p)

cost(rj)
.

Here cost(rj) is computed by using Equation 3 with respect to the
order of predicates specified in Lemma 1.

PROOF. By De Morgan’s laws, we have

R = r1 ∨ · · · ∨ rn = ¬(r̄1 ∧ · · · ∧ r̄n).

Define r′j = r̄j for 1 ≤ j ≤ n and R′ = ¬R. It follows that

R′ = r′1 ∧ · · · ∧ r′n.

This means, to evaluate R, we only need to evaluate R′, and
then take the negation. Since R′ is in CNF, based on Lemma 1, the
optimal order is based on

rank(r′j) = (sel(r′j)− 1)/ cost(r′j) (for 1 ≤ j ≤ n).

We next compute sel(r′j) and cost(r′j). First, we have

sel(r′j) = 1− sel(rj) = 1−
∏

p∈predicate(rj)
sel(p),

by the independence of the predicates. Moreover, we simply have
cost(r′j) = cost(rj), because we can evaluate r′j by first evaluat-
ing rj and then taking the negation. Therefore, it follows that

rank(rj) = rank(r′j) = − sel(rj)

cost(rj)
= −

∏
p∈predicate(rj) sel(p)

cost(rj)
.

This completes the proof of the theorem.

Recall that in our implementation we compute feature costs and
selectivity by sampling a set of record pairs and compute the costs
and selectivities on the sample. So far, we have implicitly assumed
that memoing is not used.

5.4 Correlated Predicates and Rules
We now consider the question when memoing is used. This in-

troduces dependencies so Lemma 1 and Theorem 1 no longer hold.
Let us start with one single rule r. We introduce a canonical form

of r by “grouping” together predicates that share common features.

Formally, for a predicate p, let feature(p) be the feature it refers
to. Furthermore, define

feature(r) = ∪p∈predicate(r){feature(p)}.

Given a rule r and a feature f ∈ feature(r), let

predicate(f, r) =
∧

p∈predicate(r)∧feature(p)=f
p.

We can then write the rule r as

r =
∧

f∈feature(r)
predicate(f, r). (5)

Since we only consider predicates of the form A ≥ a or A ≤ a
where A is a feature and a is a constant threshold, it is reason-
able to assume that each rule does not contain redundant predi-
cates/features. As a result, each group predicate(f, r) can contain
at most one predicate of the form A ≥ a and/or A ≤ a. Based on
this observation, we have the following simple result.

LEMMA 2. cost(predicate(f, r)) is minimized by evaluating
the predicates in ascending order of their selectivities.

PROOF. Remember that predicate(f, r) contains at most two
predicates p1 and p2. Note that, the costs of the predicates follow
the pattern c, c′ if memoing is used, regardless of the order of the
predicates in predicate(f, r). Here c and c′ are the costs of directly
computing the feature or looking it up from the memo (c > c′).
As a result, we need to decide which predicate to evaluate first.
This should be the predicate with the lower selectivity. To see this,
without loss of generality let us assume sel(p1) < sel(p2). The
overall cost of evaluating p1 before p2 is then

C1 = c+ sel(p1)c′,

whereas the cost of evaluating p2 before p1 is

C2 = c+ sel(p2)c′.

Clearly, C1 < C2. This completes the proof of the lemma.

Since the predicates in different groups are independent, by ap-
plying Lemma 1 we get the following result.

LEMMA 3. cost(r) is minimized by evaluating the predicate
groups in ascending order of the following metric:

rank(predicate(f, r)) =
sel(predicate(f, r))− 1

cost(predicate(f, r))
.

Here cost(predicate(f, r)) is computed by using Equation 3 with
respect to the order of predicates specified in Lemma 2.

Now let us move on to the case in which there are multiple rules
whose predicates are not independent. Unfortunately, this opti-
mization problem is in general NP-hard. We can prove this by
reduction from the classic traveling salesman problem (TSP) as fol-
lows. Let the rules be vertices of a complete graphG. For each pair
of rules ri and rj , define the cost c(i, j) of the edge (ri, rj) to be
the execution cost of rj if it immediately follows ri. Note that here
we have simplified our problem by assuming that the cost of rj
only depends on its predecessor ri. Under this specific setting, our
problem of finding the optimal rule order is equivalent to seeking
a Hamiltonian cycle with minimum total cost in G, which is NP-
hard. Moreover, it is known that a constant-factor approximation
algorithm for TSP is unlikely to exist unless P equals NP (e.g., see
Theorem 35.3 of [4]). Therefore, in the following we seek heuristic
approaches based on various greedy strategies.
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Algorithm 5: A greedy algorithm based on expected costs of
rules.

Input: R = {r1, ..., rn}, a set of CNF rules
Output: Rπ , execution order of the rules

1 Let Q be a priority queue 〈(cost(r), r)〉 of the rules;
2 Rπ ← ∅;
3 foreach r ∈ R do
4 Order predicate(r) according to Lemma 3;
5 Compute cost(r) based on this order;
6 Insert (cost(r), r) into Q;
7 end
8 while Q is not empty do
9 rmin ← ExtractMin(Q);

10 Add rmin intoRπ;
11 foreach (cost(r), r) ∈ Q do
12 Update cost(r) by assuming that r immediately

follows rmin;
13 end
14 end
15 returnRπ;

5.4.1 Greedy Algorithms
We now need to further order the rules by considering the over-

head that can be saved by memoing. By Lemma 3, the predicates
in each rule can be locally optimally ordered. Note that each or-
der of the rules induces a global order over the (bag of) predicates.
However, the selectivities of the predicates are no longer indepen-
dent, because predicates in different rules may share the same fea-
ture. Furthermore, the costs of predicates are no longer constants
due to memoing. In fact, they even depend on the positions of the
predicates in their global order. In other words, the costs of pred-
icates depend on the order of the rules (recall the cost model in
Section 4.4.4). Hence we are not able to apply Lemma 1 or Theo-
rem 1 in this context.

Nonetheless, intuitively, a predicate should tend to have priority
if it is very selective (returns true for very few pairs) and small cost,
since it will eliminate many pairs cheaply. On the other hand, a rule
should tend to have priority if it is not very selective (returns true
for many candidate pairs) and small cost, since it contributes many
matches cheaply. Our first algorithm then uses this intuition in a
greedy strategy by picking the rule with the minimum expected
cost. The details of this algorithm are presented in Algorithm 5.
Note that when we update cost(r) at line 12, we use the cost model
developed in Section 4.4.4, which considers the effect of memoing,
by assuming that r will be the immediate successor of rmin.

Algorithm 5 only considers the expected costs of the rules if they
are the first to be run among the remaining rules. Some rules may
have slightly high expected costs but significant long-term impact
on overall cost reduction. Algorithm 5 does not consider this and
thus may overlook these rules. We therefore further consider a dif-
ferent metric that is based on the rules that can be affected if a rule
is executed. This gives our second greedy algorithm.

In the following, we use reduction(r) to represent the over-
all cost that can be saved by the execution of the rule r, and use
cache(f, r) to represent the probability that a feature f is in the
memo after the execution of r. For two features f1 and f2 in r,
we write f1 < f2 if f1 appears before f2 in the order of predicate
groups specified by Lemma 3. Following Section 4.4.4, we redefine
prev(f, r) to be the features that appear before f in r, namely,

prev(f, r) = {f ′ ∈ feature(r) ∧ f ′ < f}.

If we write r as it is in Equation 5, then

sel(prev(f, r)) =
∏

f ′∈prev(f,r)
sel(predicate(f ′, r)) (6)

is the selectivity of (conjunction of) the predicates appearing before
f in r. Here we have abused notation because prev(f, r) is a set
of features rather than a predicate. Basically, sel(prev(f, r)) is the
chance that the feature f needs to be computed (by either direct
computation or cache lookup) when executing r. We further define
prev(r) to be the rule executed right before r. It then follows that

cache(f, r) = (1− cache(f,prev(r))) sel(prev(f, r))

+ cache(f,prev(r)).

Next, define contribution(r′, r) to be the reduced cost of r′ by
executing the rule r before the rule r′. Define contribution(r′, r, f)
to be the reduced cost due to the feature f . Let feature(r′, r) =
feature(r′) ∩ feature(r). Clearly,

contribution(r′, r) =
∑

f∈feature(r′,r)
contribution(r′, r, f).

We now consider how to compute contribution(r′, r, f). If we do
not run r before r′, the expected cost of evaluating f in r′ is then

cost1(f, r′) = sel(prev(f, r′))
[

cache(f,prev(r))δ

+(1− cache(f,prev(r))) cost(f)
]
,

whereas if we run r before r′ the cost becomes

cost2(f, r′) = sel(prev(f, r′))
[

cache(f, r)δ

+(1− cache(f, r)) cost(f)
]
.

It then follows that

contribution(r′, r, f) = cost1(f, r′)− cost2(f, r′)

= sel(prev(f, r′))∆(cost(f)− δ),

where ∆ = cache(f, r)− cache(f,prev(r)).
Based on the above formulation, we have

reduction(r) =
∑

r′ 6=r
contribution(r′, r).

Our second greedy strategy simply picks the rule r that maximizes
reduction(r) as the next rule to be executed. Algorithm 6 presents
the details of the idea. It is more costly than Algorithm 5 because
update of reduction(r) at line 21 requires O(n) rather than O(1)
time, where n is the number of rules.

Note that the computations of cost(r) and reduction(r) are still
based on local decisions, namely, the immediate effect if a rule is
executed. The actual effect, however, depends on the actual order-
ing of all rules and cannot be estimated accurately without finishing
execution of all rules (or, enumerating all possible rule orders).

5.4.2 Discussion
If we only employ early exit without dynamic memoing, the op-

timal ordering problem remains NP-hard when the predicates/rules
are correlated. However, we can have a greedy 4-approximation al-
gorithm [1, 11]. The difference in this context is that the costs of the
predicates no longer depend on the order of the rules. Rather, they
are constants so approximation is easier. One might then wonder if
combining early exit with precomputation (but not dynamic mem-
oing) would make the problem even tractable, for now the costs of
the predicates become the same (i.e., the lookup cost). Unfortu-
nately, the problem remains NP-hard even for uniform costs when
correlation is present [6].
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Algorithm 6: A greedy algorithm based on expected overall
cost reduction.

Input: R = {r1, ..., rn}, a set of CNF rules
Output: Rπ , execution order of the rules

1 Let Q be a priority queue 〈(reduction(r), r)〉 of the rules;
2 Rπ ← ∅;
3 foreach r ∈ R do
4 Order predicate(r) according to Lemma 3;
5 end
6 foreach r ∈ R do
7 reduction(r)← 0;
8 foreach r′ ∈ R such that r′ 6= r do
9 foreach f ∈ feature(r′) do

10 if f ∈ feature(r) then
11 reduction(r)←

reduction(r) + contribution(r′, r, f);
12 end
13 end
14 end
15 Insert (reduction(r), r) into Q;
16 end
17 while Q is not empty do
18 rmax ← ExtractMax(Q);
19 Add rmax intoRπ;
20 foreach (reduction(r), r) ∈ Q do
21 Update reduction(r) by assuming that r immediately

follows rmax;
22 end
23 end
24 returnRπ;

5.4.3 Optimization: Check Cache First
We have proposed two greedy algorithms for ordering rules and

predicates in each rule. The order is computed before running any
rule and remains the same during matching. However, the greedy
strategies we proposed are based on the “expected” rather than ac-
tual costs of the predicates. In practice, once we start evaluating
the rules, it becomes clear that a feature is in the memo or not.
One could then further consider dynamically adjusting the order
of the remaining rules based on the current content of the memo.
This incurs nontrivial overhead, though: we basically have to re-
run the greedy algorithms each time we finish evaluating a rule.
So in our current implementation we do not use this optimization.
Nonetheless, we are able to reorder the predicates inside each rule
at runtime based on the content of the memo. Specifically, we first
evaluate predicates for which we have their features in the memo,
and we still rely on Lemma 3 to order the remaining predicates.

5.5 Putting It All Together
The basic idea in this section is to order the rules such that we can

decide on the output of the matching function with lowest compu-
tation cost for each pair. To order the rules we use a small random
sample of the candidate pairs and estimate feature costs and selec-
tivities for each predicate and rule. We then use Algorithm 5 or
Algorithm 6 to order the rules. These two algorithms consider two
different factors that affect the overall cost: 1) the expected cost of
each rule, and 2) the expected overall cost reduction that executing
this rule will have if the features computed for this rule are repeated
in the following rules. We further evaluate the performance of both
algorithms in our experiments.

6. INCREMENTAL MATCHING
So far we have discussed how to perform matching for a fixed

set of fixed rules. We now turn to consider incremental matching
in the context of an evolving set of rules.

6.1 Materialization Cost
To perform incremental matching, we materialize the following

information during each iteration:

• For each pair: For each feature that was computed for this
pair, we store the calculated score. Note that because we use
lazy feature computation, we may not need to compute all
feature values.

• For each rule: Store all pairs for which this rule is true.

• For each predicate: Store all pairs for which this predicate
evaluated to false.

We show in our experiments that if we use straightforward tech-
niques such as storing bitmaps of pairs that pass rules or predicates,
the total memory needed to store this information for our data sets
is less than 1GB.

6.2 Types of Matching Function Changes
An analyst often applies a single change to the matching func-

tion, re-runs EM, examines the output, then applies another change.
We study different types of changes to the matching function and
present our incremental matching algorithm for each type.

6.2.1 Add a Predicate / Tighten a Predicate

Algorithm 7: Add a predicate.
Input: R, the set of CNF rules; r, the rule that was changed;

p, the predicate added to r
1 Let M(r) be the previously matched pairs by r;
2 Let X be the unmatched pairs by p; X ← ∅;
3 foreach c ∈M(r) do
4 if p returns false for c then
5 X ← X ∪ {c};
6 end
7 end
8 LetR′ be the rules inR after r;
9 foreach c ∈ X do

10 Mark c as an unmatch;
11 foreach r′ ∈ R′ do
12 if r′ returns true for c then
13 Mark c as a match; break;
14 end
15 end
16 end

If a matching result contains pairs that should not actually match,
the analyst can make the rules that matched such a pair more “strict”
by either adding predicates, or making existing predicates more
strict. For example, consider the following predicate

Jaccard(a.name, b.name) ≥ 0.7.

We can make this more strict by changing it to

Jaccard(a.name, b.name) ≥ 0.8.

In this case, we can obtain the new matching results incrementally
by evaluating this modified predicate only for the pairs that were
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evaluated and matched by the rule we made stricter. Consider such
a previously matched pair:

• If the modified predicate returns true, the pair is still matched.

• If the modified predicate returns false, the current rule no
longer matches this pair. However, other rules in the match-
ing function may match this pair, so we must evaluate the
pair with the other rules until either a rule returns true or all
rules return false.

We can use the same approach for adding a new predicate to a rule,
because that can be viewed as making an empty predicate that al-
ways evaluates to true more strict. Algorithm 7 illustrates the pro-
cedure for adding a predicate.

6.2.2 Remove a Predicate / Relax a Predicate

Algorithm 8: Make a predicate less strict.
Input: r, the rule that was changed; p, the predicate of r that

was made less strict
1 Let U(p) be the pairs for which p returned false;
2 Let Y be the pairs p now returns true; Y ← ∅;
3 foreach c ∈ U(p) and c was an unmatch do
4 if p returns true for c then
5 Y ← Y ∪ {c};
6 end
7 end
8 foreach c ∈ Y do
9 Mark c as a match;

10 foreach p′ ∈ predicate(r) and p′ 6= p do
11 if p′ returns false for c then
12 Mark c as an unmatch; break;
13 end
14 end
15 end

In the case where pairs that should match are missing from the
result, we might be able to fix the problem by either removing a
predicate or making an existing predicate less strict. Consider again
the predicate

Jaccard(a.name, b.name) ≥ 0.7.

We can make it less strict by changing it to

Jaccard(a.name, b.name) ≥ 0.6.

In both cases, all pairs for which this predicate returned false need
to be re-evaluated. Consider such a previously unmatched pair:

• If the new predicate is false, the pair remains unmatched.

• If the new predicate is true, we will evaluate the other pred-
icates in the rule.2 If any of these predicates returns false,
then the pair remains a non-match. Otherwise, this rule will
return true for this pair, and it will be declared a match.

Algorithm 8 illustrates the details of the procedure for updating
the matching result after making a predicate less strict. Removing
a predicate follows similar logic and is omitted for brevity.

6.2.3 Remove a Rule
2Note that, because we use the “check-cache-first” optimization,
the order of the predicates within the rule is no longer fixed. In
other words, different pairs may observe different orders. So we
cannot just evaluate predicates that “follow” the changed one.

Algorithm 9: Remove a rule.
Input: R, the set of CNF rules; r, the rule removed

1 Let M(r) be the previously matched pairs by r;
2 LetR′ be the rules inR after r;
3 foreach c ∈M(r) do
4 Mark c as an unmatch;
5 foreach r′ ∈ R′ do
6 if r′ returns true for c then
7 Mark c as a match; break;
8 end
9 end

10 end

We may decide to remove a rule if it returns true for pairs that
should not match. In such a case, we can re-evaluate the matching
function for all pairs that were matched by this rule. Either another
rule will declare this pair a match or the matching function will
return false. Algorithm 9 illustrates this procedure.

6.2.4 Add a Rule

Algorithm 10: Add a rule.
Input: R, the set of CNF rules; r, the rule added

1 Let U(r) be the previously unmatched pairs byR;
2 foreach c ∈ U(r) do
3 Mark c as a match;
4 foreach p ∈ predicate(r) do
5 if p returns false for c then
6 Mark c as an unmatch; break;
7 end
8 end
9 end

One way to match pairs that are missed by a current matching
function is to add a rule that returns true for them. In this case,
inevitably, all non-matched pairs need to be evaluated by this rule.
However, note that only the newly added rule will be evaluated for
the non-matched pairs, which can be substantial savings over re-
evaluating all rules. Algorithm 10 demonstrates this procedure.

7. EXPERIMENTAL EVALUATION
In this section we explore the impact of our techniques on the

performance of various basic and incremental matching tasks. We
ran experiments on a Linux machine with eight 2.80 GHz proces-
sors (each with 8 MB of cache) and 8 GB of main memory. We
implemented our algorithms in Java. We used six real-world data
sets as described below.

7.1 Datasets and Matching Functions
We evaluated our solutions on six real-world data sets. One data

set was obtained from an industrial EM team. The remaining five
data sets were created by students in a graduate-level class as part
of their class project, where they had to crawl the Web to obtain,
clean, and match data from two Web sites. Table 2 describes these
six data sets. For ease of exposition, and due to space constraints,
in the rest of this section we will describe experiments with the first
(and largest) data set. Experiments with the remaining five data sets
show similar results and are therefore omitted.

We obtained the Walmart/Amazon data set used in [7] from the
authors of that paper. The dataset domain is electronics items from
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Data set Source 1 Source 2 Table1 size Table2 size Candidate pairs Rules Used features Total features

Products Walmart Amazon 2554 22074 291649 255 32 33

Restaurants Yelp Foursquare 3279 25376 24965 32 21 34

Books Amazon Barnes & Noble 3099 3560 28540 10 8 32

Breakfast Walmart Amazon 3669 4165 73297 59 14 18

Movies Amazon Bestbuy 5526 4373 17725 55 33 39

Video games TheGamesDB MobyGames 3742 6739 22697 34 23 32

Table 2: Real-world data sets used in the experiments.
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Figure 3: (A) Run time for different sizes of matching function for rudimentary baseline (R), early exit (EE), production precomputation
baseline + early exit (PPR + EE), full precomputation baseline + early exit (FPR + EE), and dynamic memoing + early exit (DM + EE).
(B) Zoom-in of A to compare methods that use precomputation/dynamic memoing. (C) Run time for different orderings of the set of
rules/predicates: Random ordering, order by Algorithm 5, and order by Algorithm 6.

Function Walmart Amazon µs

Exact Match modelno modelno 0.2

Jaro modelno modelno 0.5

Jaro Winkler modelno modelno 0.77

Levenshtein modelno modelno 1.22

Cosine modelno title 3.37

Trigram modelno modelno 4.79

Jaccard modelno title 6.75

Soundex modelno modelno 8.77

Jaccard title title 10.54

TF-IDF modelno title 12.18

TF-IDF title title 18.92

Soft TF-IDF modelno title 21.89

Soft TF-IDF title title 66.06

Table 3: Computation costs for features in the products data set

Walmart.com and Amazon.com. After the blocking step, we have
291, 649 candidate pairs. Gokhale et al. [7] have generated the
ground truth for these pairs.

We generated 33 features using a variety of similarity functions
based on heuristics that take into account the length and type of
the attributes. Table 3 shows a subset of these features and their
associated average computation times. The computation times of
features vary widely.

Using a combination of manual and semi-automatic approaches,
analysts from the EM team that originally created the data set have

R1 Jaro Winkler(m, m) ≥ 0.97 ∧ Jaro(m, m) ≥ 0.95
∧ Soft TF-IDF(m, t) < 0.28
∧ TF-IDF(m, t) < 0.25 ∧ Cosine(t, t) ≥ 0.69

R2 Jaccard(t, t) < 0.4 ∧ TF-IDF(t, t) < 0.55
∧ Soft TF-IDF(t, t) ≥ 0.63 ∧ Jaccard ≥ 0.34
∧ Levenshtein(m, m) < 0.72
∧ Jaro Winkler(m, m) < 0.05

Figure 4: Sample rules extracted from the random forest. m, t
stand for modelno and title respectively.

created a total of 255 matching rules. We will use this rule set as
a basis from which to create and evaluate a variety of matching
functions. Figure 4 shows two sample rules for this data set.

7.2 Early Exit + Dynamic Memoing
Figure 3A shows the effect of early exit and precomputing (mem-

oing) feature values on matching time as we use an increasingly
larger rule set. For example, to generate the data point correspond-
ing to 20 rules, we randomly selected 20 rules and measured the
time to apply them to the data set. For each data point we report
the average running time over three such random sets of rules.

We compare the run time for baseline, early exit, production
precomputation + early exit, full precomputation + early exit, and
dynamic memoing + early exit. For production precomputation,
which we described as one of our baselines in Section 4.1.2, we
assume that we know all the features used in the rules. We call this
“production precomputation” because it is feasible only if the set
of rules for matching is already finalized. In full precomputation,
we know a superset of features that the analyst will choose from
to make the rule set. In such a case, we may precompute values
for features that will never be used. We compare these approaches
with dynamic memoing + early exit proposed in this paper.
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We can see that the rudimentary baseline has a very steep slope,
and around 20 rules, it takes more than 10 minutes to complete. The
early exit curve shows significant improvement over baseline, how-
ever, it is still slow compared to either the precomputation base-
line or early exit with dynamic memoing. Figure 3B zooms in
and shows the curves for the full and production precomputation
baselines and dynamic memoing. We can see that using dynamic
memoing + early exit can significantly reduce matching time.

In this subsection, we have not considered the optimal ordering
problem, and we ran dynamic memoing with a random ordering of
the rules and predicates in each rule. In the next subsection, we fur-
ther study the effectiveness of our greedy algorithms on optimizing
orderings of predicates/rules.

7.3 Optimal Ordering
Figure 3C shows runtime as we increase the number of rules for

“dynamic memoing + early exit” with random ordering of pred-
icates/rules, as well as that with orderings produced by the two
greedy strategies presented in Algorithm 5 and Algorithm 6. Each
data point was generated using the same approach described in the
previous subsection. We used a random sample consisting of 1%
of the candidate pairs for estimating feature costs and predicate se-
lectivities. We can see that the orderings produced by both of these
algorithms are superior to the random ordering.

We further observe that Algorithm 6 is faster than Algorithm 5,
perhaps due to the fact that its decision is based on a global opti-
mization metric that considers the overall cost reduction by placing
a rule before other rules. As the number of rules increases, the
impact is less significant, because most of the features have to be
computed. Nonetheless, matching using Algorithm 6 is still faster
even when we use 240 rules in the matching function.

7.4 Memory Consumption
We store the similarity values in a two dimensional array. We as-

sign each pair an index based on their order in the input table. Sim-
ilarly, we assign each feature a random order and an index based
on the order. In the case of the precomputation baseline, this memo
is completely filled with feature values before we start matching.
In the case of dynamic memoing, we fill in the memo as we run
matching and the analyst makes changes to the rule set. Therefore,
the memory consumption of both approaches is the same. For this
dataset, if we use all rules, the two-dimensional array takes 22 MB
of space, which includes the space for storing the actual floats as
well as the bookkeeping overhead for the array in Java. For incre-
mental matching, we store a bitmap for each rule as well as for each
predicate. In our implementation, we use a boolean array for each
bitmap. For this dataset, we have 255 rules and a total of 1, 688
predicates. These bitmaps occupy 542 MB.

For our dataset, the two-dimensional array and bitmaps fit com-
fortably in memory. For a data set where this is not true, one could
consider avoiding an array and using a hash-map for storing simi-
larity values. Since we do not compute all the feature values, this
would lead to less memory consumption, although the lookup cost
for hash-maps would be more expensive.

7.5 Cost Modeling and Analysis
To illustrate accuracy of our cost models, in Figure 5A we com-

pare the actual run time of “dynamic memoing + early exit” versus
run time estimated by the cost model for random ordering of rules
as well as rules ordered by Algorithm 6. The two curves follow
each other closely.

To compute the selectivity of each predicate, we select a sample
of the candidate pairs, evaluate each predicate for the pairs in the

sample and compute the percentage of pairs that pass each predi-
cate. In our experiments, we observed that using a 1% sample can
give relatively accurate estimates of the selectivity, and increasing
the sample size did not change the rule ordering in a major way.
We used the same small sample approach to estimate feature costs.

Figure 5B shows the actual matching time when we use all the
rules for the data set as we increase number of pairs. As we as-
sumed in our cost modeling, the matching cost increases linearly
as we increase number of pairs. Given this increase proportional to
the number of pairs (which is itself quadratic in the number of in-
put records), the importance of performance enhancing techniques
to achieve interactive response times increases with larger data sets.

7.6 Incremental Entity Matching
Our first experiment examines the “add rule” change. Adding a

rule can be expensive for incremental entity matching because we
need to evaluate the newly added rule for all the unmatched pairs.

To test how incremental matching performs for adding a new
rule, we conducted the following experiment. We start from an
empty matching function without any rules. We then add the first
rule to the matching function, run matching with this single-rule
matching function, and materialize results. Next, we add the sec-
ond rule and measure the time required for incremental matching.
In general, we run matching based on k rules, and then run incre-
mental matching for the (k+1)-th rule when it is added. We repeat
this for 1 ≤ k ≤ 240.

We consider two variations of incremental algorithm. In the pre-
computation variation, all the rules in the matching function are
evaluated. Note that we use early exit and the optimization dis-
cussed in Section 5.4.3 with this variation to reduce unnecessary
lookups. The second variation is fully incremental. In this case we
not only lookup the stored feature values, but also only evaluate
part of the matching function for the subset of candidate pairs that
will be affected by this operation. In particular, for the “add rule”
operation, all the non-matched pairs need to be evaluated by just the
new rule that is added, and all the rules in the matching function do
not need to be evaluated.

Figure 5C shows the results for the add-rule experiment. We
can see that in the first iteration, both variations are slow. This
is because there is no materialized result to use (i.e. the memo
is empty). However, from the second iteration onwards we can
see that the cost of the precomputation baseline steadily increases
whereas the cost of fully incremental is mostly constant and signifi-
cantly smaller than that of the precomputation baseline. This is be-
cause the precomputation baseline performs unnecessary lookups
and evaluates all the rules in the matching function. The incremen-
tal approach just evaluates the newly added rule and thus it does
not slow down as the number of rules increases.

In certain runs both of the variations experience a sudden in-
crease in the running time. These are the cases in which the new
rule requires many feature computations, because either there was
a new feature, or the feature was not in the memo, and this feature
was “reached” in the rule evaluation (it might not be reached, for
example, if a predicate preceding the feature evaluates to false.)

Figure 6 shows run time of incremental EM for different changes
to the matching function. To illustrate how the numbers were gen-
erated, assume that we want to measure the incremental run time
for adding a predicate. We randomly selected 100 predicates, re-
moved the predicate, ran EM and materialized the results, then
added the predicate to the rule, and measured the run time. The
rest of the numbers in the table were generated in a similar manner.

For tightening the thresholds, we randomly selected a predicate,
and for that predicate we randomly chose one of the values in
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{0.1, 0.2, 0.3, 0.4, 0.5} that could be applied to the predicate. For
example, assume that the predicate is Jaccard(a.name, b.name) ≥
0.6. To tighten the threshold, we add a random value to the thresh-
old from {0.1, 0.2, 0.3, 0.4}, because adding 0.5 makes the thresh-
old larger than 1. If the predicate uses a ≥ operation we add the
value to the current threshold, and if it uses a ≤ operation we sub-
tract the value from the current threshold. The procedure is similar
for relaxing thresholds.

We can see that making the matching function more strict by
adding a predicate, tightening the threshold, and removing a rule
on average takes no more than about 6 milliseconds. On the other
hand, making the function less strict could take up to 34 millisec-
onds on average. This cost is due to the fact that we may need to
calculate new features for a fraction of candidate pairs.

8. CONCLUSIONS
We have focused on scenarios where an analyst iteratively de-

signs a set of rules for an EM task, with the goal of making this pro-
cess as interactive as possible. Our experiments with six real-world
data sets indicate that “memoing” the results of expensive similarity
functions is perhaps the single most important factor in achieving
this goal, followed closely by the implementation of “early-exit”
techniques that stop evaluation as soon as a matching decision is
determined for a given candidate pair.

In the context of rule creation and modification it may not be de-
sirable or even possible to fully precompute similarity function re-
sults in advance. Our just-in-time “memoing” approach solves this
problem, dynamically storing these results as needed; however, the

interaction of the on-demand memoing and early-exit evaluation
creates a novel rule and predicate ordering optimization problem.
Our heuristic algorithms to solve this problem provide significant
further reductions in running times over more naive approaches.

Finally, in the context of incremental rule iterative development,
we show that substantial improvements in running times are pos-
sible by remembering the results of previous iterations and on the
current iteration only computing the minimal delta required by a
given change.

From a broader perspective, this work joins a small but growing
body of literature which asserts that for matching tasks, there is of-
ten a “human analyst in the loop,” and rather than trying to remove
that human, attempts to make him more productive. Much room for
future work exists in integrating the techniques presented here with
a full system and experimenting with its impact on the analyst.
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ABSTRACT

One of the primary challenges in graphical models is in-
ference, or re-constructing a marginal probability from the
graphical model’s factorized representation. While tractable
for some graphs, the cost of inference grows exponentially
with the graphical model’s complexity, necessitating approx-
imation for more complex graphs. For interactive applica-
tions, latency is the dominant concern, making approximate
inference the only feasible option. Unfortunately, approxi-
mate inference can be wasteful for interactive applications,
as exact inference can still converge faster, even for mod-
erately complex inference problems. In this paper, we pro-
pose a new family of convergent inference algorithms (CIAs)
that bridge the gap between approximations and exact solu-
tions, providing early, incrementally improving approxima-
tions that become exact after a finite period of time. We
describe two specific CIAs based on a cryptographic tech-
nique called linear congruential generators, including a novel
incremental join algorithm for dense relations called Leaky
Joins. We conclude with experiments that demonstrate the
utility of Leaky Joins for convergent inference: On both syn-
thetic and real-world probabilistic graphical models, Leaky
Joins converge to exact marginal probabilities almost as fast
as state of the art exact inference algorithms, while simul-
taneously achieving approximations that are almost as good
as state of the art approximation algorithms.

1. INTRODUCTION
Probabilistic graphical models (PGMs) are a factorized

encoding of joint (multivariate) probability distributions.
Even large distributions can often be compactly represented
as a PGM. A common operation on PGMs is inference, or
reconstructing the marginal probability for a subset of the
variables in the full joint distribution. Existing inference
algorithms are either exact or approximate. Exact algo-
rithms [9] like variable elimination and belief propagation
produce exact results, but can be slow. On the other hand,
approximate algorithms [44,45] like Gibbs sampling generate

c©2017, Copyright is with the authors. Published in Proc. 20th Inter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

estimates within any fixed time bounds, but only converge
asymptotically to exact results.
Over the past decade, a class of model database systems

have begun to add support for probabilistic graphical models
(PGMs) within database engines, allowing graphical models
to be queried through SQL [13,36,42], combined with other
data for joint analysis [20, 22], or used for analytics over
messy data [29,40,41].
Model database systems typically employ approximate in-

ference techniques, as model complexity can vary widely
with different usage patterns and responsiveness is typically
more important than exact results. However, exact infer-
ence can sometimes produce an exact result faster than it
takes an approximate algorithm to converge, even for mod-
erately complex inference problems. Furthermore, in inter-
active settings, the user may be willing to wait for more
accurate results. In either case, the choice of whether or
not use an exact algorithm must wait until the system has
already obtained an approximation.
In this paper, we explore a family of convergent inference

algorithms (CIAs) that simultaneously act as both approx-
imate and exact inference algorithms: Given a fixed time
bound, a CIA can produce a bounded approximate infer-
ence result, but will also terminate early if it is possible
to converge to an exact result. Like a file copy progress
bar, CIAs can provide a “result accuracy progress bar” that
is guaranteed to complete eventually. Similar to online-
aggregation [18] (OLA), CIAs give users and client appli-
cations more control over accuracy/time trade-offs and do
not require an upfront commitment to either approximate
or exact inference.
We propose two specific CIAs that use the relationship

between inference and select-join-aggregate queries to build
on database techniques for OLA [18]. Our algorithms spe-
cialize OLA to two unique requirements of graphical infer-
ence: dense data and wide joins. In classical group-by ag-
gregate queries, the joint domain of the group-by attributes
is sparse: Tables in a typical database only have a small por-
tion of their active domain populated. Furthermore, classi-
cal database engines are optimized for queries involving a
small number of large input tables. Conversely, in graphical
inference, each “table” is small and dense and there are usu-
ally a large number of tables with a much more complicated
join graph.
The density of the input tables (and by extension, all in-

termediate relations) makes it practical to sample directly
from the output of a join, since each sample from the active
domain of the output relation is likely to hit a row that is
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present and non-zero. Hence, our first, naive CIA samples
directly from the output of the select-join component of the
inference query, using the resulting samples to predict the
aggregate query result. To ensure convergence, we leverage
a class of pseudorandom number generators called Linear
Congruential Generators [31, 34] (LCGs). The cyclicity of
LCGs has been previously used for coordinating distributed
simulations [6]. Here, we use them to perform random sam-
pling from join outputs without replacement, allowing us
to efficiently iterate through the join outputs in a shuffled
order. These samples produce bounded-error estimates of
aggregate values. After the LCG completes one full cycle,
every row of the join has been sampled exactly once and the
result is exact.

Unfortunately, the domain of the join output for an in-
ference query can be quite large and this naive approach
converges slowly. To improve convergence rates, we propose
a new online join algorithm called Leaky Joins that produces
samples of a query’s result in the course of normally evaluat-
ing the query. Systems for relational OLA (e.g., [15,18,21])
frequently assume that memory is the bottleneck. Instead,
Leaky Joins are optimized for small input tables that make
inference more frequently compute-bound than IO-bound.
Furthermore, the density of the input (and intermediate)
tables makes it possible to use predictable, deterministic
addressing schemes. As a result, Leaky Joins can obtain
unbiased samples efficiently without needing to assume a
lack of correlation between attributes in the input.

The Leaky Joins algorithm starts with a classical bushy
query plan. Joins are evaluated in parallel, essentially “leak-
ing”estimates for intermediate aggregated values —marginal
probabilities in our motivating use case — from one inter-
mediate table to the next. One full cycle through a LCG is
guaranteed to produce an exact result for joins with exact
inputs available. Thus, initially only the intermediate tables
closest to the leaves can produce exact results. As sampling
on these tables completes a full cycle, they are marked as
stable, sampling on them stops, and the tier above them is
permitted to converge. In addition to guaranteeing conver-
gence of the final result, we are also able to provide confi-
dence bounds on the approximate results prior to conver-
gence. As we show in our experiments, the algorithm sat-
isfies desiderata for a useful convergent-inference algorithm:
computation performance competitive with exact inference
on simple graphs, and progressive accuracy competitive with
approximate inference on complex graphs.

Our main motivation is to generate a new type of inference
algorithm for graphical inference in databases. Nevertheless,
we observe that Leaky Joins can be adapted to any aggregate
queries over small but dense tables.

Specifically, our contributions include: (1) We propose a
new family of Convergent Inference Algorithms (CIAs) that
provide approximate results over the course of inference,
but eventually converge to an exact inference result, (2) We
cast the problem of Convergent Inference as a specialization
of Online Aggregation, and propose a naive, constant-space
convergent inference algorithm based on Linear Congruen-
tial Generators, (3) We propose Leaky Joins, a novel Online
Aggregation algorithm specifically designed for Convergent
Inference, (4) We show that Leaky Joins have time complex-
ity that is no more than one polynomial order worse than
classic exact inference algorithms, and provide an ǫ−δ bound
to demonstrate that the approximation accuracy is competi-
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Figure 1: A simple Student Bayesian network

tive with common approximation techniques, (5) We present
experimental results on both synthetic and real-world graph
data to demonstrate that (a) Leaky Joins gracefully degrade
from exact inference to approximate inference as graph com-
plexity rises. (b) Leaky Joins have exact inference costs com-
petitive with classic exact inference algorithms, and approx-
imation performance competitive with common sampling
techniques, (6) We discuss lessons learned in our attempts to
design a convergent inference algorithm using state-of-the-
art incremental view maintenance systems [4, 25].

2. BACKGROUND AND RELATED WORK
In this section, we introduce notational conventions that

we use throughout the paper and briefly overview proba-
bilistic graphical models, inference and on-line aggregation.

2.1 Bayesian Networks
Complex systems can often be characterized by multiple

interrelated properties. For example, in a medical diag-
nostics system, a patient might have properties including
symptoms, diagnostic test results, and personal habits or
predispositions for some diseases. These properties can be
expressed for each patient as a set of interrelated random
variables. We write sets of random variables in bold (e.g.,
X = {Xi}). Denote by p(X) the probability distribution of
Xi ∈ X and by p(x) the probability measure of the event
{Xi = x}. Let X\Y denote the set of variables that belong
to X but do not belong to Y.
A Bayesian network (BN)1 represents a joint probability

distribution over a set of variables X as a directed acyclic
graph. Each node of the graph represents a random variable
Xi in X. The parents of Xi are denoted by pa(Xi), the
children of Xi are denoted by ch(Xi).
A Bayesian network compactly encodes a joint probabil-

ity distribution using the Markov condition: Given a vari-
able’s parents, the variable is independent of all of its non-
descendants in the graph. Thus, the full joint distribution
is given as:

P (X) =
∏

i

P (Xi|pa(Xi))

Every random variable Xi is associated with a conditional
probability distribution P (Xi|pa(Xi)). The joint probability
distribution is factorized into a set of P (Xi|pa(Xi)) called
factors denoted by φi or factor tables if Xi is discrete. De-
note by scope(φi) the variables in a factor φi. Finally, we
use attrs(φi) = scope(φi) ∪ {pφi

} to denote the attributes

1Although our focus here is inference on directed graphical
models (i.e. Bayesian networks), the same techniques can be
easily adapted for inference in undirected graphical models.
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of the corresponding factor table: the variables in the fac-
tor’s scope and the probability of a given assignment to Xi

given fixed assignments for its parents. A full BN can then
be expressed as the 2-tuple B = (G(X),Φ), consisting of the
graph and the set of all factors.

Example 1. Consider four random variables Intelligence,
Difficulty, Grade, SAT, and Job in a Student Bayesian net-
work. The four variables I, D, S, J have two possible val-
ues, while G has 3. A relation with 2 · 2 · 2 · 2 · 3 = 48
rows is needed to represent this joint probability distribution.
Through the Markov condition, the graph can be factorized
into the smaller Bayesian network given in Figure 1. For a
graph with a large number of variables with large domains,
factorization can reduce the size significantly.

2.2 Inference
Inference in BNs usually involves computing the posterior

marginal for a set of query variables Xq given a set of ev-
idence, denoted by E. For example, E = {X1 = x1, X3 =
x3} fixes the values of variables X1 and X3. Denote by XE

the set of observed variables (e.g., XE = {X1, X3}). The
posterior probability of Xq given E is

P (Xq|E) =
P (Xq, E)

P (E)
=

∑

X\{Xq ,XE} P (X)
∑

X\XE
P (X)

.

The marginalization of X1 . . . Xi over a joint probabil-
ity distribution is equivalent to a select-join-aggregate query
computed over the ancestors of X1 . . . Xi:

SELECT X_1 ,...,X_i ,
SUM(p_1 * ... * p_N) AS prob

FROM factor_1 NATURAL JOIN ...
NATURAL JOIN factor_N

WHERE E_1 = e_1 AND ... AND E_k = e_k
GROUP BY X_1 ,...,X_i;

Applying evidence to a graphical model is computation-
ally straightforward and produces a strictly simpler graphi-
cal model. As a result, without loss of generality, we ignore
evidence and focus exclusively on straightforward inference
queries of the form P(Xq).

2.2.1 Exact Inference

Variable Elimination. Variable elimination mirrors ag-
gregation push-down [10], a common query optimization
technique. The idea is to avoid the exponential blowup in
the size of intermediate, joint distribution tables by push-
ing aggregation down through joins over individual factor
tables. As in query optimization, join ordering plays a cru-
cial role in variable elimination, as inference queries often
have join graphs with high hypertree width. Intermediate
materialized aggregates in VE are typically called separa-
tors (denoted S), intermediate (materialized) joins are called
cliques (C), variables aggregated away between a clique and
the following separator are called clique variables (denoted
var(C)), and their inputs are called clique factors.

Example 2. The marginal probability distribution of J in
Figure 1 can be expressed by p(J) =

∑

D,I,S,G p(D, I, S,G, J).
We choose to first marginalize out D by constructing CD’s
separator SD:

SD[G, I] =
∑

D

CD[D,G, I] =
∑

D

φD[D] ⊲⊳D φG[D,G, I]

G,I,S J,G,S

      p(D),

       p(G|D)
p(I),

p(S|I)
p(J|G,S)C1: C2: C3:

SD(I,G)=

ΣΣD C1

SI(G,S)=

ΣΣ I C2SD(I,G)

SI(I,G)=

ΣΣS C2SJ(G,S)

G,S

X1=D X2=I X3=G,S

SJ(G,S)=ΣΣJ C3

I,GD,I,G

Figure 2: Clique tree for Student BN graph in Figure 1

Next, we marginalize out I by computing

SI [G,S] =
∑

I

CI [G, I, S] =
∑

I

SD[G, I] ⊲⊳I φI [I] ⊲⊳ φS [I, S]

The marginalization of G and S follows a similar pattern,
leaving us with Cq = SS [J ] = p(J).

The limiting factor in the computational cost of obtaining
a separator is enumerating the rows of the clique. Assuming
that the distribution over each variable Xi has N possible
outcomes (|dom(Xi)| = N), the cost of computing separator

S with clique C will be O(N |scope(C)|). Tree-width in graph-
ical models (related to query hypertree width) is the size of
the largest clique’s scope (maxC(|scope(C)|)), making vari-
able elimination exponential-cost in the graph’s tree-width.
Belief Propagation. Belief propagation generalizes vari-
able elimination by allowing information to flow in both
directions along the graph, messages are sent along each
cluster’s separator by summing out all uncommon variables
between the two clusters. The process creates, for each vari-
able in the graph, its full conditional probability given all
other variables in the graph. Figure 2 shows the message
passing process for the graph in Figure 1. Although belief
propagation is more efficient for performing multiple simul-
taneous inference operations in parallel, for singleton tasks
it is a factor of two slower than variable elimination. Thus,
in this paper we use variable elimination as a representative
example of exact inference.

2.2.2 Approximate Inference

Markov Chain Monte Carlo Inference. MCMC is
a family of sampling techniques that generate sequences of
samples. Intuitively, the first element in the sequence is
drawn from the prior and successive samples are drawn from
distributions that get increasingly closer to the posterior.
For example, we might draw one assignment of values in
X with each variable Xi following the conditional probabil-
ity distribution p(Xi|pa(Xi)) in the topological order of the
graph. Then, we iteratively re-sample one variable’s value at
a time according to its factor table, given the current assign-
ments for its parents and children. The longer we continue
re-sampling, the less the sample is biased by its initial value.
We use Gibbs sampling as a representative MCMC infer-
ence algorithm.
Loopy Belief Propagation. Loopy belief propagation
is the same as belief propagation, but operates on a loopy
cluster graph instead of a clique tree. This change makes the
cluster smaller than those in clique tree and makes message
passing steps less expensive. There is a trade-off between
cost and accuracy in loopy-belief propagation, as join graphs
that allow fast propagation may create a poor approxima-
tion of the result. This tradeoff is antithetical to our goal
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of minimizing heuristic tradeoffs, making loopy-belief prop-
agation a poor fit for our target applications. As a result
we focus on Gibbs sampling as a representative example of
approximate inference.

2.3 Online Aggregation
Starting with work by Hellerstein et.al. [18], Olken [30],

and others, a large body of literature has been developed for
so-called online aggregation (OLA) or approximate query
processing (AQP) systems. Such systems replace pipeline-
blocking operators like join and aggregate with sampling-
based operators that permit approximate or partial results
to be produced immediately, and iteratively refined the longer
the user is willing to wait. The work most closely related
to our own efforts is on OLA [16, 17, 18]. OLA systems use
query evaluation strategies that estimate and iteratively re-
fines the output of aggregate-joins. Given enough time, in
most systems, the evaluation strategy eventually converges
to a correct result. As in random sampling, ǫ − δ bounds
can be obtained, for example using Hoeffding’s inequality.
A key challenge arising in OLA is how to efficiently gener-
ate samples of source data. Sampling without replacement
allows the algorithm to converge to the correct result once
all samples have been exhausted, but has high space require-
ments, as it is necessary to keep track of the sampling order.
Conversely, sampling with replacement is not guaranteed to
ever converge to the correct answer. One of our key contri-
butions in this paper is a specialization of OLA to graphi-
cal models called Cyclic Sampling, which permits sampling
without replacement using only constant-space. Numerous
other systems have since adapted and improved on the idea
of OLA. Aqua [1] uses key constraints for improved strati-
fied sampling. BlinkDB [2, 3] and Derby [23] maintain pre-
materialized stratified samples to rapidly answer approxi-
mate queries. GLADE [33] and DBO [15, 21] exploit file
buffering to opportunistically generate samples of a query
result in the course of normal query evaluation.

3. CONVERGENT INFERENCE
Running-time for variable elimination O(N |scope(C)|), is

dominated by tree-width, and strongly depends on the elim-
ination ordering (already an NP -hard problem [26]). Since
the running time grows exponentially in the size of largest
clique cluster Cmax, the running complexity can have high
variance depending on the order. Because the cost is ex-
ponential, even a small increase in complexity can change
the runtime of variable elimination from seconds to hours,
or even days. In short, predicting whether an exact solution
is feasible is hard enough that most systems simply rely
exclusively on approximation algorithms. On other hand,
approximate inference may get asymptotically close to an
answer, but it will never fully converge. Thus, most appli-
cations that benefit from exact results must rely on either
human intuition to decide.

The goal and first contribution of this paper is to introduce
convergent inference, a specialized form of approximate in-
ference algorithm that is guaranteed to eventually converge
to an exact result. In this section, we develop the idea of
convergent inference and propose several convergent infer-
ence algorithms, or CIAs. A CIA eventually produces an
exact result, but can be interrupted at any time to quickly
produce a bounded approximation. More precisely, a CIA
should satisfy the following conditions: (1) After a fixed pe-

riod of time t, a CIA can provide approximate results with
ǫ − δ error bounds, such that P (|Pt − Pexact| < ǫ) > 1 − δ;
and (2) A CIA can will obtain the exact result Pexact in a
bounded time texact.
Ideally, we would also like a CIA to satisfy two additional

conditions: (3) The time complexity required by a good CIA
to obtain an exact result should be competitive with vari-
able elimination; and (4) The quality of the approximation
produced by a good CIA should be competitive with the ap-
proximation produced by a strictly approximate inference
algorithm given the same amount of time.
We first introduce a fundamental algorithm called cyclic

sampling which performs pseudo-random sampling without
replacement from the joint probability distribution of the
graph. This algorithm is guaranteed to converge, but re-
quires an exponential number of samples to do so. We then
present an improved CIA based on classical aggregate-join
query processing that relies on a novel “leaky join” opera-
tor. Finally, we discuss lessons learned in a failed attempt
to combine cyclic sampling with state-of-the-art techniques
for incremental view maintenance.
All three of our approaches draw on the relationship be-

tween graphical inference and aggregate query processing.
However, though the problems are similar, we re-emphasize
that there are several ways in which graphical inference
queries violate assumptions made in classical database query-
processing settings. First, conditional probability distribu-
tions are frequently dense, resulting in many-many rela-
tionships on join attributes. Correlations between variables
are also common, so graphical models often have high tree
widths. By comparison, the common case for join and ag-
gregation queries is join graphs with a far smaller number of
tables, simpler (e.g., foreign key) predicates, and typically
low tree widths.
Finally, we note that although we use graphical models

as a driving application, similar violations occur in other
database applications (e.g., scientific databases [39]). The
algorithms we present could be adapted for use in these set-
tings as well.

3.1 Cyclic Sampling
We first discuss a naive form of convergent inference called

cyclic sampling that forms the basis for each of our ap-
proaches. Recall that each intermediate table (the sepa-
rator) is an aggregate computed over a join of factor tables
(the clique), and that the domain of the clique is (or is very
nearly) a cartesian product of the attributes in its scope. In
principle, one could compute an entire separator table by
scanning over the rows of its clique.
We note that input factor tables and the separator ta-

bles are typically small enough to remain in memory. Thus,
using array-indexed storage for the clique tables is feasible
and the cost of accessing one row of the clique is a con-
stant. Consequently, efficient random sampling on the joint
probability distribution is possible, and the marginal prob-
abilities of interest can be incrementally approximated as in
OLA [18].
The key insight of cyclic sampling is that if this random

sampling is performed without replacement, it will eventu-
ally converge to an exact result if we reach a point where
each row of the clique has been sampled exactly once. Unfor-
tunately, sampling without replacement typically has space
complexity linear in the number of items to be sampled,
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which is exponential in the number of variables. Fortu-
nately for graphical inference, a there exists a class of so-
called cyclic pseudorandom number generators that itera-
tively construct pseudorandom sequences of non-repeating
integers in constant space.

A cyclic pseudorandom number generator generates a se-
quence of non-repeating numbers in the range [0,m) for
some given period m with members that exhibit minimal
pairwise correlation. We use Linear Congruential Gener-
ators (LCGs) [31, 34], which generate a sequence of semi-
random numbers with a discontinuous piecewise linear equa-
tion defined by the recurrence relation:

Xn = (aXn−1 + b) mod m (1)

Here Xn is the nth number of the sequence, and Xn−1 is
the previous number of the sequence. The variables a, b and
m are constants: a is called the multiplier, b the increment,
and m the modulus. The key, or seed, is the value of X0,
selected uniformly at random between 0 and m. In general,
a LCG has a period no greater than m. However, if a, b,
and m are properly chosen, then the generator will have
a period of exactly m. This is referred to as a maximal
period generator, and there have been several approaches to
choosing constants for maximal period generators [24,28]. In
our system, we follow the Hull-Dobell Theorem [38], which
states that an LCG will be maximal if

1. m and the offset b are relatively prime.

2. a− 1 is divisible by all prime factors of m.

3. a− 1 is divisible by 4 if m is divisible by 4.

LCGs are fast and require only constant memory. With a
proper choice of parameters a, b and m, a LCG can produce
maximal period generators and pass formal tests for ran-
domness. Parameter selection is outlined in Algorithm 1.

Algorithm 1 InitLCG(totalSamples)

Require: totalSamples: the total number of samples
Ensure: a, b, m: LCG Parameters
1: m← totalSamples
2: S ← prime factors of m
3: for each s in S do

4: a← a× s
5: if m = 0 mod 4 and a 6= 0 mod 4 then

6: a← 4a+ 1
7: b← any coprime of m smaller than m

The cyclic sampling process itself is shown in Algorithm 2.
Given a Bayesian network B=(G(X),Φ), and a marginal
probability query Q = p(Xq), we first construct the LCG
sampling parameters (lines 1-5): a, b and m according to
Hull-Dobell Theorem for the total number of samples in the
joint probability distribution p(X). The sampling process
(starts at Line 16) constructs an index by obtaining the next
value from the LCG (line 7) and decomposes the index into
an assignment for each variable (line 10). We calculate the
joint probability of p(X) for this assignment (line 13) add
this probability to the corresponding result row, and incre-
ment the sample count.

At any point, the algorithm may be interrupted and each
individual probability in p(Xq) may be estimated from the

accumulated probability mass p(x):

p(Xq) =

∏

Xj∈X
|dom(Xj)|

countx
· p(x)

Cyclic sampling promises to be a good foundation for
CIA, but must satisfy the two constraints. First, it needs
to provide an epsilon-delta approximation in a fixed period
of time. In classical OLA and some approximate inference
algorithms, samples generated are independently and iden-
tically distributed. As a result, Hoeffding’s inequality can
provide accuracy guarantees. In CIAs, samples are gener-
ated without replacement. We need to provide an ǫ − δ
approximation under this assumption. Second, cyclic sam-
pling needs to eventually converge to an exact inference re-
sult. This requires that we sample all the items in the joint
probability distribution exactly once and the samples should
be sampled randomly.

Algorithm 2 CyclicSampling(B, Q)

Require: A bayes net B=(G(X),Φ)
Require: A conditional probability query: Q=P (Xq)
Ensure: Probabilities for each ~q: {p~q = P (Xq) = ~xq)}
Ensure: The number of samples for each ~q: {count~q}
1: totalSamples← 1
2: for each φi in Φ do

3: totalSamples = totalSamples ∗ |dom(Xi)|
4: index1 ← rand_int() mod totalSamples
5: a, b,m← InitLCG(totalSamples)
6: for each k ∈ 0 . . . totalSamples do

7: assignment← indexk
8: /* De-multiplex the variable assignment */

9: for each j ∈ 0 . . . n do

10: xj ← assignment mod |dom(Xj)|
11: assignment← assignment÷ |dom(Xj)|
12: /* probability is a product of the factors */

13: prob←
∏

i φi

(

πscope(φi)(〈x1, . . . , xn〉)
)

14: /* assemble return values */

15: ~q ← πXq
( ~x ); p~q ← p~q + prob; count~q ← count~q + 1

16: /* step the LCG */

17: indexk+1 ← (a ∗ indexk + b) mod m

Computation Cost. Let n be the number of random
variables in B, as a simplification assume w.l.o.g. that each
random variable has domain size dom. Calculating the pa-
rameters for LCG takes constant time. The sampling pro-
cess takes O(|N |) time, where |N | is the total number of
samples in the reduced joint probability distribution P (X).
N can be as large as domn, that is exponential in the size
of the graph.
Confidence Bound. Classical approximate inference
and OLA algorithms use random sampling with replace-
ment, making it possible to use well known accuracy bounds.
For example one such bound, based on Hoeffding’s inequal-
ity [19] establishes a tradeoff between the number of samples
needed n, a probabilistic upper bound on the absolute error
ǫ, and an upper bound on probably that the bound will be
violated δ. Given two values, we can obtain the third.
Hoeffding’s inequality for processes that sample with re-

placement was extended by Serfling et al. [37] for sampling
without replacement. Denote by N the total number of sam-
ples, P(x) is the true probability distribution after seeing all
the samples N. Denote by Pn(x) the approximation of P(x)
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after n samples. From [37], and given that probabilities are
in general bounded as 0 ≤ p ≤ 1, we have that:

Pn (Pn(x) /∈ [P (x)− ǫ, P (x) + ǫ]) ≤ δ ≡ exp

[

−2nǫ2

1− ( n−1
N−1

)

]

(2)
In other words, after n samples, there is a (1− δ) chance

that our estimate Pn(x) is within an error bound ǫ.

3.2 Leaky Joins
In Cyclic Sampling, samples are drawn from an extremely

large joint relation and require exponential time for conver-
gence. To address this limitation, we first return to Variable
Elimination as described in Section 2.2.1. Recall the clique
tree representation in Figure 2 for the BN in Figure 1, where
the marginal for the goal variable (J) is produced by clique
cluster C3. Each clique focuses on a single clique variable
Xi, and the clique cluster is a product of the separator table
to the clique’s left and all remaining factor tables containing
Xi. As a result, each factor φ in B=(G(X),Φ) belongs to ex-
actly one clique cluster. Variable Elimination (the process
below the red line) mirrors classical blocking aggregate-join
evaluation, computing each separator table (aggregate) fully
and passing it to the right.

The key idea is to create a clique tree as in Variable Elim-
ination, but to allow samples to gradually “leak” through
the clique tree rather than computing each separator table
as a blocking operation. To accomplish this, we propose a
new Leaky Join relational operator. A single Leaky Join
computes a group-by aggregate over one or more Natural
Joins, “online” using cyclic sampling as described above. As
the operator is given more cpu-time, its estimate improves.
Crucially, Leaky Joins are composable. During evaluation,
all Leaky Joins in a query plan are updated in parallel. Thus
the quality of a Leaky Join operator’s estimate is based not
only on how many samples it has produced, but also on the
quality of the estimates of its input tables.

Algorithm 3 gives an evaluation strategy for inference
queries using Leaky Joins. Abstractly, an evaluation plan
consists of a set of intermediate tables for each clique Ci ∈ C

(i.e., each intermediate join), and for each separator Si ∈ S

(i.e., each intermediate aggregate). Queries are evaluated
volcano-style, iterating over the rows of each clique and sum-
ming over the product of probabilities as described in Sec-
tion 2.2. As in Cyclic Sampling, the iteration order is ran-
domized by a LCG (lines 9-13). For each clique Ci, the algo-
rithm samples a row ~x (lines 9-12), computes the marginal
probability for that row (line 14), and adds it to its run-
ning aggregate for the group ~q that ~x belongs to (line 20).
It is necessary to avoid double-counting samples in the sec-
ond and subsequent cycles of the LCG. Consequently, the
algorithm updates the separator using the difference δprob
between the newly computed marginal and the previous ver-
sion (lines 16-19).

In order to determine progress towards convergence, the
algorithm also tracks a sample count for each row of the
clique and separator tables (lines 15, 17), as well as the
total, aggregate count for each separator table (line 21). In-
formally, this count is the number of distinct tuple lineages
represented in the current estimate of the probability value.
For a given clique table Ci the maximum value of this count
is the product of the sizes of the domains of all variables
eliminated (aggregated away) in Ci (line 3). For example,

Algorithm 3 EvaluateLeakyJoins(B, Q)

Require: A bayes net B = (G(X),Φ)
Require: An inference query Q = P (Xq)
Ensure: The result separator Starget = P (Xq)
1: 〈S,C〉 ← assemblePlan(B,Xq)
2: for each i ∈ 1 . . . |S| do
3: samplesi ← 0; maxSamplesi = |dom(desc(Si))|
4: ai, bi,mi ← initLCG(|dom(Ci)|)
5: indexi ← rand_int() mod mi

6: Fill Si and Ci with 〈 prob : 0.0 , count : 0 〉
7: while there is an i with samplesi < maxSamplesi do
8: for each i where samplesi < maxSamplesi do
9: /* Step the LCG */

10: indexi ← (ai ∗ indexi + bi) mod |dom(ψi)|
11: /* Demux index as Alg. 2 lines 9-11 */

12: Get ~x from indexi
13: /* Get the joint probability as Alg. 2 line 13

and get the joint sample count similarly */

14: prob←
∏

φ∈factors(Ci)

(

φ
[

πscope(φ)( ~X)
]

.prob
)

15: count←
∏

φ∈factors(Ci)

(

φ
[

πscope(φ)( ~X)
]

.count
)

16: /* Compute update deltas */

17: 〈δprob, δcount〉 = 〈 prob, count 〉 − Ci[~x]
18: /* Apply update deltas */

19: Ci[~x] = Ci[~x] + 〈δprob, δcount〉
20: ~q = πscope(Si)(~x); Si[~q] = Si[~q] + 〈δprob, δcount〉
21: samplesi = samplesi + δcount

in Figure 2, no variables have been eliminated in C1 so each
row of C1 contains at most one sample. By C2, the variable
D has been eliminated, so each row of C2 can represent up
to |dom(D)| = 2 samples. Similarly each row of C3 repre-
sents up to |dom(D)| · |dom(I)| = 4 samples. The algorithm
uses the sample count as a termination condition. Once a
table is fully populated, sampling on it stops (line 8). Once
all tables are fully populated, the algorithm has converged
(line 7).

In short, Leaky Joins work by trickling samples down
through each level of the join graph. The cyclic sampler
provides flow control and acts as a source of randomization,
allowing all stages to produce progressively better estimates
in parallel. With each cycle through the samples, improved
estimates from the join operator’s input are propagated to
the next tier of the query.

Example 3. As an example of Leaky Joins, consider a
subset of the graph in Figure 1 with only nodes D, I,G and
an inference query for p(G). Using classical heuristics from
variable elimination, the Leaky Joins algorithm elects to elim-
inate D first and then I, and as a result assembles the in-
termediate clique cluster C and clique separator S tables as
shown in Figure 3. Samples are generated for each interme-
diate clique cluster one at a time, following the join order:
First from C1(D, I,G) and then C2(I,G). As shown in Fig-
ure 3b, the first sample we obtain from C1 is 〈0, 0, 1〉

φD(D = 0) · φG(D = 0, I = 0, G = 1) = 0.6 · 0.3 = 0.18

S1(I,G) is correspondingly updated with the tuple 〈0, 1〉 with
aggregates 〈1, 0.18〉. Then the second sample is drawn from
C2(I,G). For this example, we will assume the random sam-
pler selects 〈0, 1〉, which has probability:

S1(I = 0, G = 1) · φI(I = 0)
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(b) After 1 Iteration(a) Join Graph (c) After 12 Iterations (d) After 18 Iterations

Figure 3: Leaky Joins example join graph (a) and the algorithm’s state after 1, 12, and 18 iterations (b-d). In the 12-iteration
column (c), incomplete sample counts are circled.

Although we do not have a precise value for S1 we can still
approximate it at this time and update S2 accordingly. After
12 samples, C1 has completed a round of sampling and is
ready to be finalized. The state at this point is shown in Fig-
ure 3c. Note that the approximation of S2 is still incorrect
— The approximation made in step 1 and several following
steps resulted in only partial data for ψ2(I = 1, G = 1) (cir-
cled counts in Fig. 3c). However, this error will only persist
until the next sample is drawn for C2(0, 1), at which point
the system will have converged to a final result.

Cost Model. We next evaluate the cost of reaching an
exact solution using the Leaky Join algorithm. Assume we
have k random variables X1, ..., Xk, and the corresponding k
factors φX1 , ..., φXk

. Furthermore, assume the variables are
already arranged in the optimal elimination order, and we
wish to marginalize out variables X1, . . . , Xj . Leaky joins
generates exactly the same set of j cliques and separators
as Variable Elimination. Like variable elimination, we can
measure the computation complexity by counting multipli-
cation and addition steps. The primary difference between
Variable Elimination and Leaky Joins is that some aggrega-
tion steps will base on approximations and must be repeated
multiple times. Let V denote the cost of constructing the
largest joint factor in Variable Elimination (i.e., the time
complexity of Variable Elimination is O(V )). After V iter-
ations, the lowest level of the join tree is guaranteed to be
finalized. After a successive V iterations, the second level
of the tree is guaranteed to be finalized, and so forth. The
maximum depth of the join tree is the number of variables k,
so a loose bound for the complexity Leaky Joins is O(kV ).
Confidence Bound. In Section 3.1, we showed an ǫ-
δ bound for random sampling without replacement (For-
mula (2)). Here, we extend this result to give a loose bound
for Leaky Joins. The primary challenge is that, in addition
to sampling errors in the Leaky Join itself, the output can
be affected by cumulative error from the join’s inputs. We
consider the problem recursively. The base case is a clique
that reads from only input factors — the lowest level of joins
in the query plan. Precise values for inputs are available im-
mediately and Formula (2) can be used as-is.

Next, consider a clique C2 computed from only a single
leaky join output. Thus, we can say that C2 = S1 ⊲⊳ φ,
where φ is the natural join of all input factors used by C2.
There are |dom(S1)| rows in S1, so after n sampling steps,
each row of S1 will have received n

|dom(S1)|
samples. Denote

the maximum number of samples per row of S1 by N1 =
|dom(S1)|
|dom(C1)|

. Then, by (2), all rows in S1 will have error less

than ǫ with probability:

δ1 ≡ δ
|dom(S1)| = exp

[

−2nǫ2 · (N1 − 1)

N1 −
n

|dom(S1)|

]

(3)

Let us consider a trivial example where the cumulative error
in each row of S1 is bounded by ǫ:

S1 X1 p
1 p1 ± ǫ
2 p2 ± ǫ

φ X1 p
1 p3
2 p4

Here, the correct joint probabilities for rows of C2 are p1 ·p3
and p2 ·p4 respectively. Thus a fully-sampled S2 (projecting
away X1) will be approximated as (p1 ± ǫ)p3 + (p2 ± ǫ)p4.
The cumulative error in this result is (p3 + p4)ǫ, or using a
pessimistic upper bound of 1 for each pi, at worst 2ǫ. Gen-
eralizing, if one row of S2 is computed from k rows of C1,
the cumulative error in a given row of S2 is at most kǫ.
Repeating (3), sampling error on S2 after n rounds will be

bounded by ǫ with probability δ|dom(S2)|. After n rounds of
sampling, each row of S2 will have received n

|dom(S2)|
rows of

C2, so the cumulative error on one row is n
|dom(S2)|

ǫ. Com-

bining (2) and (3), we get that for one row of S2:

P

[

|p− En,x| <

(

1 +
n

|dom(S2)|

)

ǫ

]

≤

exp

[

−2 n
|dom(S2)|

ǫ2 · (N2 − 1)

N2 −
n

|dom(S2)|

]

· δ1 (4)

The joint probability across all rows of S2 is thus:

exp

[

−2nǫ2(N2 − 1)

N2 −
n

|dom(S2)|

]

· δ
|dom(S2)|
1 ≡ δ2 · δ

|dom(S2)|
1
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Generalizing to any left-deep plan, an error ǫ′ defined as:

ǫ′ = ǫ ·

|X|
∏

i=2

(

1 +
n

|dom(Si)|

)

(5)

is an upper bound on the marginal in S|X| with probability:

|X|
∏

i=1

δ
(
∏i−1

j=1 |dom(Sj)|)
i =

|X|
∏

i=1

e

(

(
∏i−1

j=1 |dom(Sj)|)
−2nǫ2(Nj−1)

Nj−
n

|dom(Sj)|

)

(6)
Consider a slightly more complicated toy example clique

C4 = S3 ⊲⊳ S1, where both S3 and S1 both have bounded
error ǫ1 and ǫ3 respectively.

C1 X1 p
1 p1 ± ǫ1
2 p2 ± ǫ1

C3 X1 p
1 p3 ± ǫ3
2 p4 ± ǫ3

As before, the correct joint probability is p1 · p3 + p2 · p4.
Given an ǫ′ = max(ǫ1, ǫ3), the estimated probability will be
p1 ·p3+p2 ·p4+

(
∑4

i=1 piǫ
′
)

+ ǫ′2. As before, using an upper
bound of 1 for each p1 . . . p4 bounds the error by:

(|dom(S1)| · |dom(S3)|)ǫ
′ + ǫ′2

More generally, the predicted value across m source tables is
a sum of terms of the form (p+ǫ′), and the overall cumulative
error per element of C1 is bounded as:

ǫcum =

m−1
∑

i=1

(m C i)ǫm−i

where m C i is the combinatorial operator m choose i. Thus
re-using Equation (4), we can solve the recursive case of
a separator with m leaky join inputs that each have error
bounded by ǫ′ with probability δcum =

∏m
i δi. Then the

total error on one row of the separator can be bounded by
ǫ+ ǫcum with probability:

exp

[

−2 n
|dom(S2)|

ǫ2 · (N2 − 1)

N2 −
n

|dom(S2)|

]

· δ (7)

The joint error is computed exactly as before. To estimate
the error on the final result, we apply this formula recursively
on the full join plan.

4. LESSONS LEARNED FROM IVM
Materialized views are the precomputed results of a so-

called view query. As the inputs to this query are updated,
the materialized results are updated in kind. Incremental
view maintenance (IVM) techniques identify opportunities
to compute these updates more efficiently than re-evaluating
the query from scratch. Incremental view maintenance has
already seen some use in Monte Carlo Markov Chain infer-
ence [43], and recent advances — so called recursive IVM
techniques [4, 25] have made it even more efficient.

Our initial attempts at convergent inference were based on
IVM and recursive IVM in particular. It eventually became
clear that there was a fundamental disconnect between these
techniques and the particular needs of graphical inference.
In the interest of helping others to avoid these pitfalls, we
use this section to outline our basic approach and to explain
why, perhaps counter-intuitively, both classical and recur-
sive IVM techniques are a poor fit for convergent inference
on graphical models.

4.1 The Algorithm
Our first approach at convergent inference used IVM to

compute and iteratively revise an inference query over a pro-
gressively larger fraction of the input dataset. That is, we
declared the inference query as a materialized view using
exactly the query defined in Section 2.2. The set of fac-
tor tables was initially empty. As in Cyclic Sampling, we
iteratively insert rows of the input factor tables in a shuf-
fled order. A backend IVM system updates the inference
result, eventually converging to a correct value once all fac-
tor rows have been inserted. This process is summarized in
Algorithm 4.

Algorithm 4 SimpleIVM-CIA(B, Q)

Require: A bayes net B=(G(X),P)
Require: A conditional probability query: Q=P (Xq)
Ensure: The set retXq

= P (Xq)
1: for each φi ∈ G(X) do
2: index0,i = rand_int() mod |dom(Xi)|
3: ai, bi,mi ← InitLCG(|dom(Xi)|)
4: φ′

i ← ∅
5: Compile IVM Program Q′ to compute P (Xq) from {φ

′
i}

6: for each k ∈ 1 . . .maxi(|dom(Xi)|) do
7: for each φi ∈ G(X) do
8: if k ≤ |dom(Xi)| then
9: indexk,i ← (a ∗ indexk−1,i + b) mod mi

10: Update Q′ with row φ′
i[indexk,i]← φi[indexk,i]

11: retXq
← the output of Q′

While naive cyclic sampling samples directly from the out-
put of the join, IVM-CIA constructs the same output by it-
eratively combining parts of the factor tables. The resulting
update sequence follows a pattern similar to that of multi-
dimensional Ripple Joins [17], incrementally filling the full
sample space of the join query. As in naive cyclic sampling,
this process may be interrupted at any time to obtain an
estimate of P (Y) by taking the already materialized partial
result and scaling it by the proportion of samples used to
construct it. This proportion can be computed by adding a
COUNT(*) aggregate to each query. IVM-CIA uses the under-
lying IVM engine to simultaneously track both the estimate
and the progress towards an exact result.

4.2 Post-Mortem
For our first attempt at an IVM-based convergent infer-

ence algorithm, we used DBToaster [25], a recursive IVM
compiler. DBToaster is aimed at relational data and uses a
sparse table encoding that, as we have already mentioned, is
ill suited for graphical models. Recognizing this as a bottle-
neck, we decided to create a modified version of DBToaster
that used dense array-based table encodings. Although this
optimization did provide a significant speed-up, the resulting
engine’s performance was still inferior: It converged much
slower than variable elimination and had a shallower result
quality ramp than the approximation techniques (even cyclic
sampling in some cases).
Ultimately, we identified two key features of graphical

models that made them ill-suited for database-centric IVM
and in particular recursive IVM. First, in Section 3, we noted
that nodes in a Bayesian Network tend to have many neigh-
bors and that the network tends to have high hypertree-
width. The size of intermediate tables is exponential in the
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hypertree-width of the query — rather large in the case of
graphical models. Recursive IVM systems like DBToaster
are in-effect a form of dynamic programming, improving
performance by consuming more space. DBToaster in par-
ticular maintains materialized copies of intermediate tables
for all possible join plans. As one might imagine, the space
required for even a BN of moderate size can quickly outpace
the available memory.

The second, even more limiting factor of IVM for graphi-
cal models is the fan-out of joins. Because of the density of
a graphical model’s input factors and intermediate tables,
joins are frequently not just many-many, but all-all. Thus a
single insertion (or batch of insertions) is virtually guaran-
teed to affect every result row. In recursive IVM, the prob-
lem is worse, as each insertion can trigger full-table updates
for nearly every intermediate table (which as already noted,
can be large). Batching did improve performance, but not
significantly enough to warrant replacing cyclic sampling.

Our approach of Leaky Joins was inspired, in large part,
by an alternative form of recursive IVM initially described
by Ross et. al., [32], which only materializes intermediates
for a single join plan. Like this approach, Leaky Joins mate-
rializes only a single join plan, propagating changes through
the entire query tree. However, unlike the Ross recursive
join algorithm, each Leaky Join operator acts as a sort of
batching blocker. New row updates are held at each Leaky
Join, and only propagated in a random order dictated by
the LCG.

5. EVALUATION
Recall in Section 3, we claimed CIAs should satisfy four

properties. In this section we present experimental results
to show that they do. Specifically, we want to show: (1,2)
Flexibility: CIAs are able to provide both approximate re-
sults and exact results in the inference process. (3)Approx-

imation Accuracy: Given the same amount of time, CIAs
can provide approximate results with an accuracy that is
competitive with state-of-the-art approximation algorithms.
(4) Exact Inference Efficiency: The time a CIA takes to
generate an exact result is competitive with state-of-the-art
exact inference algorithms.

5.1 Experimental Setup and Data
Experiments were run on a 12 core, 2.5 GHz Intel Xeon

with 198 GB of RAM running Ubuntu 16.04.1 LTS. Our
experimental code was written in Java and compiled and
run single-threaded under the Java HotSpot version 1.8 JD-
K/JVM. For experiments, we used five probabilistic graph-
ical models from publicly available sources, including the
bnlearn Machine Learning Repository [35] to compare the
available algorithms. Visualizations of all five graphs are
shown in Figure 4.
Student. The first data set is the extended version of the
Student graphical model from [26]. This graphical model
contains 8 random variables. All the random variables are
discrete. In order to observe how CIAs are influenced by
exponential blowup of scale, we use this graph as a micro-
benchmark by generating synthetic factor tables for the Stu-
dent graph. In the synthetic data, we vary the domain size
of each random variable from 2 to 25. Marginals were com-
puted over the Happiness attribute.
Child. The second graphical model captures the symp-
toms and diagnosis of Asphyxia in children [12]. The number

of random variables in the graph is 20. All the random vari-
ables are discrete with different domain sizes. There are 230
parameters in factors. The average degree of nodes in the
graph is 3.5 and the maximum in-degree in the graph is 4.
Marginals were computed over the sick variable.
Insurance. The third graphical model we used models
potential clients for car insurance policies [8]. It contains
27 nodes. All the random variables are discrete with dif-
ferent domain sizes. There are 984 parameters in factors.
The average number of degree is 3.85 and the maximum in-
degree in the graph is 3. Marginals were computed over the
PropCost variable.
Barley. The fourth graphical model is developed from
a decision support system for mechanical weed control in
malting barley [27]. The graph contains 48 nodes. All the
random variables are discrete with different domain sizes.
There are 114005 parameters in factors. The average degree
of nodes in the graph is 3.5 and the maximum in-degree in
the graph is 4. Marginals were computed over the ntilg

variable.
Diabetes. The fifth graphical model is a very large graph
that captures a model for adjusting insulin [5]. The number
of random variables in the graph is 413. All the random
variables are discrete with different domain sizes. There
are 429409 parameters in factors. In average, there are
2.92 degrees and the maximum in-degree in the graph is
2. Marginals were computed over the bg_5 variable.

5.2 Inference Methods
We compare our two convergent inference algorithms with

variable elimination (for exact inference results) and Gibbs
sampling (for approximate inference). We are interested in
measuring runtime for exact inference and accuracy for ap-
proximate inference. We assign an index for each node in the
Bayes net following the topological order. We assume that
for each factor φi, the variables are ordered by the follow-
ing conventions: pa(X) ≺ X, where X={Xi, . . . , Xj , . . . } is
ordered increasingly by index. The domain values in each
random variable is ordered increasingly.
Variable Elimination. Variable elimination is the clas-
sic exact inference algorithm used for graphical models, as
detailed in Section 2. As is standard in variable elimination,
intermediate join results are streamed and never actually
materialized. To decide on an elimination (join) ordering,
we adopt the heuristic methods in [26]. At each point, the
algorithm evaluates each of the remaining variables in the
Bayes net based on a heuristic cost function. The cost cri-
teria used for evaluating each variable is Min-weight, where
the cost of a node is the product of weights, where weight is
the domain cardinality of the node’s neighbors. For exam-
ple, using Min-weight, the selected order for the extended
student graph in Figure 4a is: C, D, S, I, L, J , G. H is the
target random variable.
Gibbs Sampling. As discussed in Section 2, Gibbs sam-
pling first generates the initial sample with each variable Xi

in B = (G(X),Φ) following the conditional probability dis-
tribution p(Xi|pa(Xi)). Then, we randomly fix the value for
some random variable Xj and use it as evidence to gener-
ate next sample. With more and more samples collect, the
distribution will get increasingly closer to the posterior. We
skip the first hundred samples for small graphs 4a, 4b and
4c, and thousand samples for larger graphs 4d and 4e at
the beginning of the sample process. The target probability

374



Grade

Letter

Job

Happy

Coherence

SAT

IntelligenceDifficulty

(a) Extended Student (b) Child (c) Insurance (d) Barley (e) Diabetes

Figure 4: Visualizations of five graphical models from [35] used in our experiments.
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(c) Running time to convergence

Figure 5: Microbenchmarks on the synthetic, extended Student graph (Figure 4a)

distribution is calculated by normalizing the sum of sample
frequencies for each value in the target variables Xq.
Cyclic Sampling. Cyclic Sampling is our first CIA, de-
scribed in Section 3.1 and in Algorithm 2. Note that cyclic
sampling does not materialize the joint probability distri-
bution, but rather constructs rows of the joint distribution
dynamically using a LCG (Equation 1). This process takes
constant time for a fixed graph.
Leaky Joins. Leaky Joins, our second CIA, were de-
scribed in Section 3.2. We use the same elimination (join)
order as in variable elimination algorithm to construct the
clique tree and materialize intermediate tables, Clique’s clus-
ters C and Clique’s seperator S. Then we conduct the“pass-
ing partial messages” process according to Algorithm 3.

5.3 Flexibility
We first explore the flexibility of CIAs by comparing the

accuracy of different algorithms (both exact and approxi-
mate) within a finite cutoff time. We imitate the situation
that time is the major concern for user and the goal is to
provide an accurate inference result at a given time. We
compute the marginal probability, cutting each algorithm
off after the predefined period, and average the fractional
error across each marginal “group”.

Figure 5a shows the average fractional error for each in-
ference algorithm on the student graph with a cutoff of 10
seconds. We vary the factor size from 10 to 70 to simulate
small and large graphs. Variable elimination provides an
exact inference result for variables with domain size smaller
than 50. On larger graphs, it times out, resulting in a 100%
error. Gibbs sampling can always provide an approximate
result, but produces results that are inaccurate, even when
variable elimination can produce an exact result. Leaky
joins provide exact inference results when the domain size is
smaller than 40, but when the domain size passes 40, it still
provides approximate results with a lower error than Gibbs
sampling. This graph shows that, with leaky joins, the same
algorithm can support both the exact inference and approxi-

mate inference cases; neither users or inference engines need
to anticipate which class of algorithms to use.

5.4 Approximate Inference Accuracy
Figure 5b compares each algorithm’s approximate accu-

racy relative to time spent on the student graph with a
node size of 35. At each time t, the average fractional error
of leaky joins is smaller than that of Gibbs sampling. In
addition, leaky join converges to exact result, which Gibbs
sampling will never do. The steep initial error in leaky joins
at the start stems from the first few sampling rounds for
each intermediate table Ci being based on weak preliminary
approximations; The algorithm needs some burn-in time to
have samples to cover their domains to provide approximate
results. Gibbs sampling algorithm also has burn-in process.
The sharp curve for Gibbs sampling is because it takes more
samples for Gibbs sampling to cover corner cases, and gener-
ate samples with less probabilities. Figure 6a, Figure 6b and
Figure 6d show the approximate accuracy result for child
and insurance graph. Gibbs sampling performs well in this
two graph for that the domain of the target variables Xq

are small (the domain of sick node for child graph is two
and propcost for insurance is 4). There will be less corner
cases and by Chernoff’s bound [11], the number of samples
to required decreases as the probability of P(Xq) increases.

Pest(Pest(Xq) /∈ P (Xq)(1± ǫ)) ≤ 2e−NP (Xq)ǫ
2/3 ≤ δ.

The result shows that even in this situation, the approximate
result of leaky joins is still comparable to Gibbs sampling.
Of these four graphs, the “Diabetes” graph was the most
complex, and only Leaky Joins produced meaningful results.
For comparison with the accuracy results in Figure 6,

Variable Elimination produces exact results for “Child” in
19 ms, for “Insurance” in 49 ms, for Barley in approximately
1.4 hours, and for Diabetes in approximately 1.5 hours.
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(a) The “Child” Graph (Figure 4b)
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(b) The “Insurance” Graph (Figure 4c)
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(c) The “Barley” Graph (Figure 4d)
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(d) The “Diabetes” Graph (Figure 4e)

Figure 6: Approximation accuracy for real-world graphs
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Figure 7: JVM Memory use for Cyclic Sampling. Note that
at startup, Java has already allocated roughly 2 GB.

5.5 Convergence Time
Figure 5c shows the exact running time for variable elim-

ination and leaky joins. Recall that the running complexity
of variable elimination and leaky join is dominated by the
size of the clique’s cluster, O(k|Cmax|), where |Cmax| is the
size of largest clique’s cluster. The difference is that leaky
join has a constant k. As the factor size increases, Cmax in-
creases and both algorithms get slower at equivalent rates.

5.6 Memory
Unlike variable elimination and many of the approximate

algorithms, leaky joins does continuously maintain material-
ized intermediate results. To measure memory use, we used
the JVM’s Runtime.totalMemory() method, sampling im-
mediately after results were produced, but before garbage
collection could be run. Figure 7 shows Java’s memory us-
age with leaky joins for the “Student” micro benchmark.
The actual memory needs of leaky joins are comparatively
small: The two largest intermediate results have roughly 20-
thousand rows, with 5 columns each. Overall, Leaky Joins
only forms a small portion of Java’s overall footprint.

6. CONCLUSIONS AND FUTURE WORK
We introduced a class of convergent inference algorithms

(CIAs) based on sampling without replacement using lin-
ear congruential generators. We proposed CIAs built over
incremental view maintenance and a novel aggregate join al-
gorithm that we call Leaky Joins. We evaluated both IVM-
CIA and Leaky Joins, and found that Leaky Joins were able
to approximate the performance of Variable Elimination on
simple graphs, and the accuracy of state-of-the-art approxi-
mation techniques on complex graphs. As graph complexity
increased, the bounded-time accuracy of Leaky Joins de-
graded gracefully.
Our algorithms has one limitation which represents op-

portunities for future work. Our algorithm didn’t consider
scalability. In the era of Big Data, distributed inference in
graphical model is necessary for performance. Similar to
works for parallelizing existing inference algorithms [7, 14],
our algorithm is possible to run in parallel.
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ABSTRACT

The discrete Fréchet distance (DFD) captures perceptual and geo-
graphical similarity between discrete trajectories. It has been suc-
cessfully adopted in a multitude of applications, such as signature
and handwriting recognition, computer graphics, as well as ge-
ographic applications. Spatial applications, e.g., sports analysis,
traffic analysis, etc. require discovering the pair of most similar
subtrajectories, be them parts of the same or of different input tra-
jectories. The identified pair of subtrajectories is called a motif.
The adoption of DFD as the similarity measure in motif discov-
ery, although semantically ideal, is hindered by the high computa-
tional complexity of DFD calculation. In this paper, we propose a
suite of novel lower bound functions and a grouping-based solution
with multi-level pruning in order to compute motifs with DFD ef-
ficiently. Our techniques apply directly to motif discovery within
the same or between different trajectories. An extensive empirical
study on three real trajectory datasets reveals that our approach is 3
orders of magnitude faster than a baseline solution.

1. INTRODUCTION
Spatial trajectories are prevalent in many applications, e.g., mov-

ing object analysis, traffic estimation and prediction systems. In
this paper, we study motif discovery on spatial trajectories (i.e.,
finding the pair of most similar subtrajectories). Trajectory motifs
are used in many applications, e.g., sports sense analysis [11], traf-
fic analysis [15], or used as a building block for other trajectory
mining and analysis methods [16, 31, 12]. As an example, Fig-
ure 1(a) visualizes a pedestrian’s GPS trajectory from the GeoLife
trajectory dataset [32], by a 3D plot with timestamp number at the
horizontal axis. The motif corresponds to the most similar pair of
subtrajectories (in red and blue). Figure 1(b) illustrates the mo-
tif (i.e., the two subtrajectories) on a map, which could be used in
human behavior analysis.

It is important to choose a suitable similarity measure for motif
discovery. The Fréchet metric is amongst the most popular mea-
sures for trajectory similarity [24, 10]. Generally speaking, the
Fréchet distance between two spatial trajectories, Sa and Sb, is the
length of the shortest leash needed to walk a dog when the person

c©2017, Copyright is with the authors. Published in Proc. 20th Inter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0
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(a) A pedestrian’s trajectory (b) Discovered motif
April 10-12, 2009 red: 07:33-7:48, April 10, 2009

blue: 07:33-7:50, April 12, 2009

Figure 1: Subtrajectory motif discovered in a trajectory from

the GeoLife trajectory dataset

walks along Sa and the dog walks along Sb. In the geographic
information handbook [10], the authors conclude that “The most

successful fundamental distance measure to this date is probably

the Fréchet metric, which is one of the most natural measures to

calculate the similarity between two trajectories”. The Fréchet
distance and its variants have been successfully used in a num-
ber of application domains, such as handwriting recognition [22],
bioinformatics [27], computational geometry [5], as well as geo-
graphic applications [2]. In the literature, many recent systems
have adopted the discrete Fréchet distance (DFD) to measure the
distance between discrete trajectories (or the Fréchet distance for
continuous curves) [2, 10, 3, 12, 25]. In addition, as we will elabo-
rate in Section 2, DFD is particularly suitable for real-world spatial
trajectories, which often exhibit the following properties: (i) non-
uniform/varying sampling rate, and (ii) missing samples at some
time points. For example, the GeoLife dataset [32], a real spatial
trajectory dataset collected by Microsoft, has all the above proper-
ties.

In this paper, we discover motifs in spatial trajectories with DFD
as the similarity measure. This problem is computationally chal-
lenging for two reasons:
(I) The computation of DFD between two subtrajectories takes
O(ℓ2) time [11], where ℓ denotes the subtrajectory length. There
have been attempts to speed up DFD computation by using
GPUs [12] or a faster algorithm (with O(ℓ2 · log log ℓ

log ℓ
) time com-

plexity) [1]. In contrast, we take an orthogonal research direction
to reduce the number of DFD computations for motif discovery,
e.g., by using various types of pruning on DFD computations and
subtrajectory pairs.
(II) The problem involves O(n4) pairs of subtrajectories, where
n is the length of the input trajectory/ies. The fact that DFD ex-
hibits non-monotonicity (cf. Section 4.1) precludes us from apply-
ing efficient algorithmic paradigms (like binary search) to reduce
the number of candidate pairs.

To overcome these challenges, we exploit the properties of DFD
and devise lower bound functions that incur low computation time.
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These lower bound functions serve for two purposes: first, prun-
ing unpromising pairs of subtrajectories without invoking expen-
sive DFD computation; second, guiding the search to discover the
motif as soon as possible. Our lower bound functions are novel;
nothing similar has been used in previous work. Additionally, they
can be computed in amortized O(1) time.

Furthermore, we propose a grouping-based solution with multi-
level pruning. This solution (i) divides the input trajectory into
groups, (ii) prunes dissimilar pairs of groups, and then (iii) ag-
gressively processes the surviving pairs of groups until the result
is found. At the heart of this approach lies a suite of lower bound
functions to prune unpromising pairs of groups.

All our techniques apply directly to motif discovery within the
same or between different input trajectories. Importantly, besides
motif discovery, they can be incorporated readily to other applica-
tions [2, 3] which employ DFD as the similarity measure.

2. RELATED WORK
In this section, we survey previous work but, due to the strict

page limit, we focus only on the most relevant pieces. First, we
present alternative similarity measures and pinpoint the advantages
offered by the Fréchet metric that render it the ideal choice for
(sub)trajectory similarity [10]. Next, we overview existing mo-
tif discovery approaches and juxtapose them to ours. Finally, we
provide an outlook of other practically relevant trajectory analysis
techniques.

Trajectory similarity measures: Several similarity measures have
been proposed for trajectories, e.g., Euclidean Distance (ED), Dis-
crete Fréchet Distance (DFD) [8, 1], Dynamic Time Warping
(DTW) [28], Longest Common Subsequence (LCSS) [26], Edit
Distance on Real Sequence (EDR) [6]. Real-world trajectories
(e.g., those in GeoLife dataset) exhibit two key characteristics,
namely, non-uniform/varying sampling rate and missing samples
for some time points. Thus, a desirable similarity measure would
account for both these characteristics. In Table 1, we summarize
the properties of the aforementioned trajectory similarity measures
and their computation cost, expressed in terms of (sub)trajectory
length ℓ. Local time shifting refers to the ability of tolerating short-
term discrepancies (e.g., missing samples, measurement errors) in
aligning two trajectories [6].

Distance metric Non-uniform/varying Local Computation
sampling rate time shifting cost

ED O(ℓ)

DTW
√

O(ℓ2)

LCSS
√

O(ℓ2)

EDR
√

O(ℓ2)

DFD
√ √

O(ℓ2)

Table 1: Distance measures and their characteristics

We will use examples to illustrate the advantages of discrete
Fréchet Distance (DFD) over typical alternatives (e.g., ED, DTW).
We first apply two different measures (ED and DFD) to compute
motifs on the GeoLife trajectory dataset [32]. Figures 2(a) and 2(b)
show the most similar pair of subtrajectories by ED and DFD, re-
spectively. Observe that the result of DFD (in Figure 2(b)) captures
much better a human’s interpretation. The reason is that ED mea-
sures spatial proximity only, and dismisses the movement pattern.

In Figure 3, we demonstrate the effect of non-uniform sam-
pling in real-world data using DTW and DFD between trajecto-
ries Sa, Sb and Sa, Sc. Trajectories Sa (black color) and Sb (blue
color) are uniformly sampled, while trajectory Sc (red color) is

Scale ratio = 15 Scale ratio = 14 

(a) Most similar pair in ED (b) Most similar pair in DFD
ED: 8.71 m; DFD: 0.09 m ED: 19.42 m; DFD: 0.08 m

Figure 2: ED and DFD

Figure 3: DTW and DFD; Sc is non-uniformly sampled

non-uniformly sampled. Intuitively, trajectory Sc is more simi-
lar to Sa than Sb, i.e., DFD(Sa, Sc) < DFD(Sa, Sb), however,
DTW(Sa, Sc) > DTW(Sa, Sb). The reason is DTW requires each
point to be matched to another (and adds up all distances between
matched pairs) thus being sensitive to non-uniform sampling.

In summary, ED is the fastest metric to compute but it is not
robust to local time shifting. More robust measures, such as
DTW [28], LCSS [26], EDR [6], are defined as the sum of point-to-
point distances, which makes them sensitive to the sampling rate.
As shown in Table 1, only DFD [8, 1], also known as the “dog-
man” distance, can tolerate non-uniform/varying sampling rate [11,
24, 12]. Other distance measures require that points along the tra-
jectories are uniformly and densely sampled, which is rarely the
case in real settings [11]. For more details on trajectory similarity
measures, we refer the reader to surveys [10, 24, 7].

The parallel computing [12] and computational geometry [1]
communities have proposed some techniques to speed up DFD
computation. In contrast, in our work we take an orthogonal ap-
proach to accelerate DFD computations for trajectory motif dis-
covery via novel pruning techniques.

Trajectory motif discovery techniques: For spatial trajectories,
most of the motif discovery techniques adopt the symbolic ap-

proach [17, 11, 20]. This approach employs symbols to represent
pre-defined movement patterns; some example symbols and pat-
terns are illustrated in Figure 4(a). To convert a trajectory into
a string of symbols, it first partitions a trajectory into fragments,
and then maps each fragment to a symbol (i.e., pre-defined move-
ment pattern). After that, it applies substring matching techniques
to discover motifs [30, 14]. Unfortunately, this approach may pro-
duce similar strings even if their original trajectories are far apart.
For example, we illustrate two trajectories of Uber drivers (in two
different cities) in Figures 4(b) and 4(c). Although these two tra-
jectories are geographically far apart (in two different cities), both
of them are mapped to string ‘RVLH’. Since this approach cannot
capture the spatial distance between trajectories, we dismiss it.

Motifs have also been studied for time series data [19, 18]. How-
ever, these techniques are tailored to time series with Euclidean
distance, and are not suitable for spatial trajectories with DFD.

Other trajectory analysis techniques: Besides motif discovery,
there are many other spatial trajectory analysis problems, e.g., con-
voy discovery [13], outlier detection [29, 17], trajectory cluster-
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symbol movement pattern

V vertical long straight
H horizontal long straight
L left turn
R right turn

(a) Pre-defined movement patterns and symbols

(b) A trajectory in Beijing; (c) A trajectory in Shenzhen;
string: RVLH string: RVLH

Figure 4: Example of the symbolic approach

ing [16, 11, 12], etc. We refer the interested reader to a recent
survey [31].

3. PROBLEM STATEMENT
In this section, we introduce the problem and present a baseline

solution, starting with several basic definitions.

DEFINITION 1 (SPATIAL TRAJECTORY & SUBTRAJECTORY).
A spatial trajectory S = 〈· · · , si, · · · 〉 is a sequence of points. We

denote its trajectory length by n = |S|.
Given a trajectory S, we denote a subtrajectory of S as Si,ie =

S[i..ie] , where 0 ≤ i < ie ≤ n− 1.

Let T (S) = 〈· · · , ti, · · · 〉 be a sequence of ascending times-

tamps, where ti is the timestamp of location si in S. The times-

tamps may be non-uniform.

We assume each point si is a latitude-longitude (ϕi, λi) pair. We
measure the ground distance between two trajectory points si =
(ϕi, λi), sj = (ϕj , λj) as the great circle distance on Earth [21]:

dG(i, j) = 2R arcsin

√

sin2
(ϕj − ϕi

2

)

+ cosϕi cosϕj sin
2
(λj − λi

2

)

where R is the radius of the earth. Nevertheless, our methods are
directly applicable to higher dimensions (e.g., 3-d data points) and
other types of ground distance (e.g., Euclidean).

As discussed in Section 2, we adopt the discrete Fréchet distance
(DFD) to measure the distance between two subtrajectories Si,ie

and Sj,je , defined as:

dF (i, ie, j, je) =max



















dG(ie, je)

min











dF (i, ie − 1, j, je),

dF (i, ie, j, je − 1),

dF (i, ie − 1, j, je − 1)

For ie = i and je = j, dF (i, i, j, j) = dG(i, j), and the DFD
computation recursion terminates at ie = i and je = j.

We study the motif discovery problem within a single input tra-
jectory or between different trajectories; for simplicity, we focus
presentation on single input trajectory but also elaborate on (and
evaluate) the latter variant too. To produce a meaningful trajectory
motif (Si,ie ,Sj,je), we require that: (i) subtrajectories Si,ie and
Sj,je are sufficiently long (e.g., each has length at least ξ), and (ii)
their timestamp intervals do not overlap.

PROBLEM 1 (TRAJECTORY MOTIF DISCOVERY PROBLEM).
Given a trajectory S and a minimum motif length ξ, return the pair

of subtrajectories Si,ie and Sj,je with the smallest DFD distance

dF (i, ie, j, je) among all pairs of non-overlapping subtrajectories

(that is, i < ie < j < je) with length at least ξ (that is,

ie > i+ ξ, je > j + ξ).

As mentioned previously, a variant of Problem 1 is to discover
a motif between different trajectories. I.e., considering two trajec-
tories S and T , to return the pair of subtrajectories Si,ie and Tj,je

whose DFD is the smallest among all possible pairs of their subtra-
jectories.

With Problem 1 in mind, a straightforward solution is to enu-
merate all pairs of subtrajectories (Si,ie ,Sj,je) and then compute
the DFD value for each pair. Its time complexity is O(n6), as
there are O(n4) pairs of subtrajectories and each call to DFD takes
O(ℓ2) = O(n2) time. Even if we implement each call to DFD
by [1], the time complexity is still O(n6 · log logn

logn
).

We observe that, for all subtrajectory pairs (Si,ie ,Sj,je) with the
same start point (i, j), their DFD computation can be shared via
dynamic programming. By incorporating this idea into the above
solution, we obtain BruteDP (Algorithm 1) – a brute force algo-
rithm that uses dynamic programming. A further optimization is to
eliminate redundant calls of the ground distance function dG(·, ·).
We propose to precompute all pairs of ground distances, and store
them in matrix dG[·][·] for quick access.

Algorithm 1 BruteDP (Trajectory S, minimum length ξ)

Input: trajectory S, length n, minimum motif length ξ
Output: subtrajectory pair bpair = (Si,ie ,Sj,je )

1: bsf ← +∞; bpair ← ∅
2: for i← 0 to n− 2ξ + 1 do

3: for j ← i+ ξ to n− ξ + 1 do
4: dF [i][j]← dG(i, j) ⊲ initialization
5: for t← i+ 1 to n do

6: dF [i][t]← max(dG(i, t), dF [i][t-1])
7: dF [t][j]← max(dG(t, j), dF [t-1][j])

8: for ie ← i+ 1 to j − 1 do ⊲ share DFD computation
9: for je ← j + 1 to n do

10: tmp← min(dF [ie-1][je-1], dF [ie][je-1], dF [ie-1][je])
11: dF [ie][je]← max(dG(ie, je), tmp)
12: if ie > i+ ξ, je > j + ξ and dF [ie][je] < bsf then

13: bsf ← dF [ie][je]; bpair ← (Si,ie ,Sj,je )

14: return bpair

Algorithm 1 can be adapted to motif discovery between different
trajectories easily, i.e., with Sj,je playing the role of a subtrajectory
in the second input trajectory, and by incrementing i until n−ξ+1
(instead of n− 2ξ + 1) at Line 2, and j starting from 0 (instead of
i+ξ) at Line 3 (because this variant considers separate trajectories,
thus not imposing the constraint i < ie < j < je).

Analysis: With all pairs of ground distances available in matrix dG,
the time complexity of Algorithm 1 is O(n4), which is attributed
to the nested for-loops for variables i, j (at Lines 2-3) and vari-
ables ie, je (at Lines 8-9). The space complexity of the algorithm
is O(n2), as it employs two 2-dimensional matrices: (i) dF [·][·] for
implementing dynamic programming, and (ii) dG[·][·] for holding
all-pair ground distances.

Before we proceed to our advanced techniques, we summarize
frequently used notation in Table 2.

4. BOUNDING-BASED SOLUTION
We first analyze the properties of DFD (in Section 4.1). Then

we exploit these properties to devise novel lower bound functions
for DFD (in Section 4.2). Our lower bounds can be computed in
amortized O(1) time, and guarantee no false negatives (in Section
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Symbol Meaning

S input trajectory

S[i] (ϕi, λi), the ith point of S
Si,ie the subtrajectory of S starting at S[i] and ending at S[ie]
n the length of trajectory S
ξ the minimum motif length

dG(i, j) the ground distance between S[i] and S[j]
dF (i, ie, j, je) the DFD between subtrajectories Si,ie and Sj,je

Table 2: Notation

4.3). Finally, we propose a bounding-based solution that applies
our lower bound functions to prune unpromising pairs of trajecto-
ries and reduce the number of DFD computations (in Section 4.4).

4.1 Properties of DFD

4.1.1 Non-monotonicity

Typical sequence/string mining algorithms exploit the monotone
property to develop efficient Apriori-style algorithms. An example
of the monotone property would be: “given a string S, if qα is a
substring of qβ , then the frequency of qα in S cannot be smaller
than the frequency of qβ in S.” It would be tempting to adapt such
an idea to solve our problem efficiently. Unfortunately, the DFD
metric does not satisfy the monotone property. Formally:

DEFINITION 2 (CONTAINMENT ⊆). Si,ie is said to contain

Si′,i′e
, denoted as Si′,i′e

⊆ Si,ie , iff i′ ≥ i and i′e ≤ ie.

LEMMA 1 (NON-MONOTONICITY). Let (Si,ie , Sj,je) be a

subtrajectory pair of S. Let Si′,i′e
,Sj′,j′e

be subtrajectories that

satisfy Si′,i′e
⊆ Si,ie ,Sj′,j′e

⊆ Sj,je . It holds that, dF (i, ie, j, je)
is neither monotone increasing nor monotone decreasing with re-

spect to dF (i
′, i′e, j

′, j′e).

We provide a counter-example to demonstrate the non-
monotonicity as follows.

Example: We illustrate Lemma 1 using a trajectory S with length
n = 12. Figure 5 shows the ground distance for each pair
(S[i], S[j]). Consider three subtrajectories S0,2 ⊆ S0,3 ⊆ S0,4

and their DFD distances from S6,9. Using Algorithm 1, we can
compute these DFD values: dF (0, 2, 6, 9) = 4, dF (0, 3, 6, 9) = 1,
dF (0, 4, 6, 9) = 7. When comparing S0,2 and S0,3, the DFD value
(from S6,9) decreases from 4 to 1. However, when comparing S0,3

and S0,4, the DFD value (from S6,9) increases from 1 to 7. I.e.,
DFD does not satisfy the monotone property.
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5 6 7 6 8 6 6 6 8 1 

2 2 4 1 7 6 8 7 7  

3 1 1 2 5 7 3 4    

1 3 2 3 6 5 6    

1 2 3 2 5 9    

3 4 5 6 4    

3 5  3 2  

2 1 5    

2 3    

1 

F/E 0     1     2     3     4     5     6     7     8      9    10    11  

 0
  
  
1
  
  
 2

  
  
  
3
  
  
4
  
  
 5

  
  
 6

  
  
7
  
  
 8

  
  
 9

  
  
1
0
  
 1

1
  

Figure 5: Example of dG matrix

4.1.2 Crucial Observation

Non-monotonicity aside, we make a crucial observation which
is quintessential to our approach. Specifically, the computation of
DFD by recurrence is equivalent to a path finding problem in the
dG matrix.

OBSERVATION 1. The DFD between Si,ie and Sj,je must be

contributed by a path from (i, j) to (ie, je) such that: (i) the path

travels along non-decreasing positions, (ii) the worst-case ground

distance along the path is minimized.

We illustrate using two subtrajectories S0,3 and S6,9. Figure 6(a)
shows the ground distance dG for each pair of points from S0,3 and
S6,9 (note that only the relevant part of the dG matrix from Figure 5
is shown). We compute the dF value for each pair of points, as
illustrated in Figure 6(b). The DFD distance is dF (0, 3, 6, 9) = 1,
which is contributed by the path of gray cells from (0, 6) to (3, 9),
that minimizes the maximum ground distance among the cells it
visits.
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(a) Relevant part of dG (b) dF computation as a path in dG

Figure 6: DFD computation for S0,3 and S6,9

4.2 Pattern-based Lower Bounds
Based on Observation 1, we devise novel lower bound functions

for DFD by accessing/traversing the dG matrix according to differ-
ent patterns (e.g., a single cell, cells in a cross, cells in a band).

Specifically, assuming that matrix dG is precomputed and that
bsf is the DFD of the best subtrajectory pair encountered so far in
the search process, we propose a set of lower bound functions that
apply to candidate subtrajectory pairs, or entire groups of candidate
pairs, such that if the bound is greater than bsf , the candidates
are safe to prune, i.e., to disqualify without further consideration,
because they are guaranteed not to be the motif.

4.2.1 Cell-based Lower Bound

We refer to a subtrajectory pair (Si,ie ,Sj,je) as candidate
(i, ie, j, je). We define a candidate subset CSi,j to represent all
candidates with the same start positions i and j. This compact no-
tation, using a pair (i, j), allows us to represent O(n2) candidates.

DEFINITION 3 (CANDIDATE SUBSET). Given two start po-

sitions i and j, the candidate subset is defined as CSi,j =
{(i, ie, j, je) : ie > i ∧ je > j}.

The following holds for any CSi,j .

OBSERVATION 2. For every (i, ie, j, je) ∈ CSi,j , the path

leading to dF (i, ie, j, je) must start from cell (i, j).

For example, in Figure 6(a), for each candidate in CSi,j , the path
leading to DFD must start at cell (0, 6). We thus derive our first
bound, which applies to any candidate in CSi,j :

LBcell(i, j) = dG(i, j) (1)
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For every (i, ie, j, je) ∈ CSi,j , LBcell(i, j) ≤ dF (i, ie, j, je).

Example: In Figure 5, for candidate subset CS5,9 (i.e., for all can-
didate pairs that start at the red cell), we obtain LBcell(5, 9) =
dG(5, 9) = 6. This is a lower bound for the DFD of any candi-
date pair in CS5,9. E.g., for pair (S5,6,S9,11), the exact DFD is
dF (5, 6, 9, 11) = 7.

4.2.2 Cross-based Lower Bound

If a candidate subset is not pruned using LBcell, we attempt to
prune it with tighter lower bounds.

OBSERVATION 3. For every (i, ie, j, je) ∈ CSi,j , the path

leading to dF (i, ie, j, je) must pass through the (i+ 1)-th column

and (j + 1)-th row.

Example: In Figure 5, consider candidate (4, 6, 8, 10) in the can-
didate subset CS4,8. For this candidate, any path from the start-cell
(4,8) to the end-cell (6,10) must pass through the 5-th column and
9-th row; otherwise, the path cannot reach the end-cell (6,10). We
thus define the following lower bounds.

LBrow(i, j) = min
i′∈[i,j−1]

{dG(i
′, j + 1)} (2)

LBcol(i, j) = min
j′∈[j,n−1]

{dG(i+ 1, j′)} (3)

For every (i, ie, j, je) ∈ CSi,j , it holds that LBrow(i, j) ≤
dF (i, ie, j, je) and that LBcol(i, j) ≤ dF (i, ie, j, je). Thus, we
combine the two into the cross-based lower bound below:

LBstart
cross(i, j) = max (LBrow(i, j), LBcol(i, j)) (4)

For every (i, ic, j, jc) ∈ CSi,j , LBstart
cross(i, j) ≤ dF (i, ic, j, jc).

Example: Consider cell (4,8) in Figure 7(a), and assume that n =
12. LBstart

cross(4, 8) is computed over the gray cells as follows:

LBstart
cross(4, 8) = max(LBrow(4, 8), LBcol(4, 8))

= max
(

min
i′∈[4,7]

{dG(i
′, 9)}, min

j′∈[8,11]
{dG(5, j

′)}
)

= max(6, 6) = 6

(a) LBstart
cross(4, 8) (b) LBend

cross(3, 9)

Figure 7: Examples of cross-based bounds

4.2.3 Band-based Lower Bound

Our problem definition considers only subtrajectories with
length at least ξ. Based on that, we extend Observation 3 to:

OBSERVATION 4. For every (i, ie, j, je) ∈ CSi,j that satisfies

the constraint ie > i + ξ and je > j + ξ, the path leading to

dF (i, ie, j, je) must pass through columns i+1 to i+ξ and through

rows j + 1 to j + ξ.

Hence, we define the following band-based lower bounds:

LBrow
band(i, j) = max

j′∈[j,j+ξ−1]
{LBrow(i, j

′)} (5)

LBcol
band(i, j) = max

i′∈[i,i+ξ−1]
{LBcol(i

′, j)} (6)

For every (i, ie, j, je)∈ CSi,j where ie > i+ ξ and je > j + ξ it
holds that:

LBrow
band(i, j) ≤ dF (i, ie, j, je) (7)

and LBcol
band(i, j) ≤ dF (i, ie, j, je) (8)

If LBrow
band(i, j) ≥ bsf or LBcol

band(i, j) ≥ bsf we can safely prune
CSi,j .

(a) LBrow
band

(1, 6) (b) LBcol
band

(1, 8)

Figure 8: Example of band-based bound

Example: Consider candidate subset CS1,6 in Figure 8(a). Sup-
pose the minimum motif length is ξ = 4 and n = 12. By
the definition of LBrow(i, j), the minimum values in the 7-th,
8-th, 9-th and 10-th row are 2, 1, 1 and 6, respectively. Hence,
LBrow

band(1, 6) = max(2, 1, 1, 6) = 6. Similarly, consider candi-
date subset CS1,8 in Figure 8(b). By the definition of LBcol(i, j),
the minimum value of the 2-nd, 3-rd, 4-th and 5-th column are
1, 1, 5 and 6, respectively, as shown in Figure 8(b). Hence,
LBcol

band(1, 8) = max(1, 1, 5, 6) = 6.

4.2.4 Pruning within Candidate Subset

The bounds presented so far prune entire candidate subsets. If a
candidate subset CSi,j survives these bounds, we need to consider
candidate pairs inside of it. To avoid considering all candidate pairs
in CSi,j , here we introduce a cross-based bound that prunes candi-
date pairs within CSi,j .

As introduced in Section 3, for all candidate pairs (i.e.,
Si,ie ,Sj,je ) in candidate set CSi,j , their DFD computation can be
shared via dynamic programming. Assume that at some point, the
dynamic programming reaches end-cell (ie, je), where ie − i > ξ,
je − j > ξ and bsf = dF (i, ie, j, je). We define the following
cross-based lower bound for the end-cell:

LBend
cross(ie, je) = max (LBrow(ie, je), LBcol(ie, je)) (9)

If (i, ic, j, jc) is a candidate in CSi,j where ic > ie and jc >
je, it holds that LBend

cross(ie, je) ≤ dF (i, ic, j, jc). Hence, if
LBend

cross(ie, je) ≥ bsf , we can safely avoid expanding cell
(ie, je), i.e., eliminate paths within CSi,j that pass via cell (ie, je).

Example: In Figure 7(b), suppose ξ = 2, i = 0, j = 6, ie = 3
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and je = 9. LBend
cross(ie, je) is computed over the gray cells:

LBend
cross(3, 9) = max(LBrow(3, 9), LBcol(3, 9))

= max
(

min
i′e∈[3,8]

{dG(i
′

e, 10)}, min
j′e∈[9,11]

{dG(4, j
′

e)}
)

= max(6, 7) = 7

If LBend
cross(3, 9) ≥ bsf , we prune the candidates (i.e., subtrajec-

tory pairs) in CS0,6 whose end-cells fall in the red dotted box.

4.3 Relaxed Lower Bounds
If we follow the aforementioned equations directly, a cross-based

bound takes O(n) time to compute and a band-based bound takes
O(ξn) time. Although both of them are more efficient than raw
DFD computation (i.e., O(n2)), in this section, we drop their amor-
tized time complexity to O(1) by relaxing them slightly. These
relaxed bounds incur no false negatives, i.e., they are guaranteed
not to miss the motif. Due to the space limit, we illustrate our re-
laxation approach for band-based bounds only. The relaxation of
cross-based bounds follows the same lines.

The key idea is to employ one parameter per bound, and keep
them in matrices for rapid access. First, we compute the minimum
value for each column i and each row j:

Cmin[i] = min
j′∈[0,j−1]

(dG(i+ 1, j′)) (10)

Rmin[j] = min
i′∈[i,n−1]

(dG(i
′, j + 1)) (11)

This step takes O(2 · n · n) = O(n2) time.
We define the relaxed version of cross-based bounds as:

rLBstart
cross(i, j) = max{Cmin[i], Rmin[j]} (12)

rLBend
cross(ie, je) = max{Cmin[ie], Rmin[je]} (13)

In turn, the relaxed band-based bounds are defined as:

rLBrow
band(j) = max

j′∈[j,j+ξ−1]
{Rmin[j

′]} (14)

rLBcol
band(i) = max

i′∈[i,i+ξ−1]
{Cmin[i

′]} (15)

We compute the relaxed version of cross-based bounds by com-
puting Cmin[i] and Rmin[j] for each column i and each row j.
This step takes O(n) time per column/row. Similarly, we com-
pute relaxed band-based bounds for each column i and each row
j. This step takes O(ξn) time per row/column. Thus, the total
computation time of cross-based and band-based lower bounds is
O(n ·n) = O(n2) and O(ξn ·n) = O(n2), respectively. By amor-
tizing the computation time over all candidate subsets CSi,j (i.e.,
O(n2) of them), the computation time per CSi,j for each relaxed
bound is only O(n2/n2) = O(1).

The following lemma proves the correctness of the relaxed band-
based bounds. The proof for the relaxed cross-based bounds fol-
lows the same lines and is omitted for brevity.

LEMMA 2. It holds that:

rLBrow
band(j) ≤ LBrow

band(i, j) and rLBcol
band(i) ≤ LBcol

band(i, j)

PROOF.

min
i′∈[0,j−1]

(dG(i
′, j + 1)) ≤ min

i′∈[i,j−1]
(dG(i

′, j + 1))

⇒ Rmin[j] ≤ LBrow(i, j)

⇒ max
j′∈[j,j+ξ−1]

{Rmin[j
′]} ≤ max

j′∈[j,j+ξ−1]
{LBrow(i, j

′)}

⇒ rLBrow
band(j) = LBrow

band(i, j)

Similarly, rLBcol
band(i) ≤ LBcol

band(i, j).

In the experiments, we compare the effectiveness of the original
bounds with the relaxed ones. We summarize the time requirements
of all lower bounds in Table 3.

Lower bound Time Relaxed bound Time

LBcell(i, j) O(1)
LBstart

cross(i, j) O(n) rLBstart
cross(i, j) O(1)

LBend
cross(ie, je) O(n) rLBend

cross(ie, je) O(1)
LBrow

band
(i, j) O(ξn) rLBrow

band
(j) O(1)

LBcol
band

(i, j) O(ξn) rLBcol
band

(i) O(1)

Table 3: Summary of lower bounds

4.4 Optimized Solution

Combining all bounds: Given a candidate subset CSi,j , we com-
pute a tighter lower bound for CSi,j , denoted by CSi,j .LB, using:

max{LBcell(i, j), rLB
start
cross(i, j), rLB

row
band(j), rLB

col
band(i)}.

This lower bound takes O(1) time because each term can be ob-
tained in O(1) time, as shown in Table 3.

Prioritizing search order: To support effective pruning of CSi,j

by lower bounds, it is desirable to obtain a small bsf (i.e., a good
temporary motif) as early as possible. Intuitively, a candidate sub-
set with small CSi,j .LB tends to contain a candidate with small
DFD value. Thus, we propose to process CSi,j in ascending order
of CSi,j .LB.

Putting it all together: Algorithm 2 presents the pseudocode for
bounding-based trajectory motif (BTM), which incorporates all
above ideas to solve the trajectory motif discovery problem.

Algorithm 2 BTM (Trajectory S, minLength ξ)

Input: trajectory S, length n, minimum motif length ξ
Output: subtrajectory pair bpair = (Si,ie ,Sj,je )

1: bsf ← +∞; bpair ← ∅; jend ← n
2: Compute { LBcell, rLB

start
cross, rLB

end
cross, rLB

row
band

, rLBcol
band

}
3: Construct a list A with one element a per candidate subset
4: Sort A in ascending order of a.LB
5: for each a in A with bsf > a.LB do

6: for ie ← a.i+ 1 to a.j do

7: for je ← a.j + 1 to jend do
8: tmp← min(dF [ie-1][je-1], dF [ie][je-1], dF [ie-1][je])
9: dF [ie][je]← max(dG(ie, je), tmp)

10: if ie > a.i+ ξ, je > a.j + ξ and dF [ie][je] < bsf then

11: bsf ← dF [ie][je]; bpair ← (Si,ie ,Sj,je )

12: if bsf ≤ rLBend
cross(bpair.ie, bpair.je) then

13: jend ← bpair.je ⊲ Pruning by LBend
cross(ie, je) from

Equation 9

14: return bpair

At Line 2, we first compute all lower bounds (and store them
in matrices). Then, we insert each candidate subset CSi,j with
its bound CSi,j .LB into a list (at Line 3), and sort that list (at
Line 4). Next, we process the elements of the list in the sorted
order. For each candidate subset, we examine its candidates via
nested loops (at Lines 6-7), and compute the DFD of each candi-
date (at Line 8-9). Finally, we update bsf and the temporary motif
pair (at Lines 10-11). Note that Lines 12-13 implement pruning
by LBend

cross(ie, je), as defined in Equation 9; this essentially per-
forms pruning within the candidate subset currently considered, by
disqualifying some of the candidate pairs it contains.

The lower bounds presented in this section are also applicable
to motif discovery between different trajectories. Hence, similarly
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to Algorithm 1, Algorithm 2 is readily applicable to that problem
variant too.

Analysis: The time complexity of Algorithm 2 is O(n4) in the
worst case, which is attributed to the nested for-loops for variables
a [that is, O(n2) iterations], ie [that is, O(n) iterations] and je
[that is, O(n) iterations] at Lines 5-7. The space complexity of
Algorithm 2 is O(n2).

Algorithm 2 follows the best-first search paradigm with several
effective lower bounds. As we will show in the experimental eval-
uation, it outperforms Algorithm 1 by two orders of magnitude.

5. GROUPING-BASED SOLUTION
In this section, we enhance the scalability of our techniques for

long trajectories. Inspired by trajectory indexing methods [4, 9],
we organize trajectory points into groups, then attempt pruning un-
promising pairs of groups, before applying our solution from Sec-
tion 4. To enable pruning, we design novel bounding functions for
DFD on groups.

Figure 9: Grouping-based computation framework

We outline our grouping-based computation framework in Fig-
ure 9. First, we divide a trajectory into groups of τ samples (where
τ is a tunable parameter), and compute a ground distance bound
for each group pair (Steps 1 and 2, in Section 5.1). Next, we
apply O(1)-time lower bounds (Step 3, in Section 5.2) to prune
group pairs, before using tighter bounds for pruning (Step 4, in Sec-
tion 5.3). For the surviving group pairs, we repeat the above steps
by halving the group size, until τ reaches 1. Finally, we compute
the exact DFD of candidates in the surviving groups (Step 5).

By combining the advantages of all techniques in Section 4 and
in the current one, our grouping based computation framework out-
performs the baseline solution by over 3 orders of magnitude. Im-
portantly, all our techniques conduct only safe pruning, meaning
that they produce exact answers (motifs).

5.1 Grouping Trajectory Points
We employ a group size parameter τ in order to partition a long

trajectory into small groups. We proceed to define a group and the
ground distances between groups.

DEFINITION 4 (τ -GROUPING). Given the group size τ , we

define the u-th group as the interval gu = [uτ, (u+ 1)τ − 1].
For two groups gu and gv , we define the minimum and the maxi-

mum ground distance between them as:

dmin
G (gu, gv) = min

i∈gu,j∈gv
dG(i, j) (16)

dmax
G (gu, gv) = max

i∈gu,j∈gv
dG(i, j) (17)

By Definition 4, the ground distances between two groups satisfy
the following property:

COROLLARY 1. For every i ∈ gu, j ∈ gv , it holds that:

dmin
G (gu, gv) ≤ dG(i, j) ≤ dmax

G (gu, gv)

We utilize this property to devise lower bound functions in Sec-
tions 5.2, 5.3.

Example: Consider a trajectory S with n = 12 points. Given τ =
2, we obtain six groups: g0, g1, g2, g3, g4, g5, as illustrated in Fig-
ure 10(a). For example, for groups g2 = [4, 5] and g5 = [10, 11],
we compute the minimum ground distance as dmin

G (g2, g5) =
min(dG(4, 10), dG(4, 11), dG(5, 10), dG(5, 11)) = 6, and the
maximum ground distance as dmax

G (g2, g5) = max(8, 9, 6, 7) =
9. We show the minimum and maximum ground distances for
group pair g2 and g5 in Figure 10(b).
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Figure 10: Example of 2-grouped trajectory

5.2 Pattern-based Bounds for Groups
To enable pruning on unpromising pairs of groups, we adapt

our proposed lower bounds in Section 4 to groups. We denote the
corresponding lower bounds with prefix G, i.e., GLBcell(u, v),
GLBstart

cross(u, v), GLBend
cross(ue, ve), GLBrow

band(u, v), and
GLBcol

band(u, v). Later, we discuss their O(1)-time implementa-
tion.

Cell-based lower bound: We first define the cell-based lower
bound for groups, denoted by GLBcell, as follows:

GLBcell(u, v) = dmin
G (gu, gv) (18)

In Figure 10(b), GLBcell(2, 5) = dmin
G (2, 5) = 6. For any i ∈ u

and j ∈ v, it holds that GLBcell(u, v) ≤ dF (i, ie, j, je).

Cross-based lower bounds: Next, we show that the cross-
based lower bounds for groups can be expressed in terms of
GLBcell(u, v). We demonstrate using an example, rather than pre-
senting ugly definitions and lemmas.

We denote the row and column based lower bounds for
groups as GLBrow(u, v) and GLBcol(u, v), respectively. In
Figure 11(a), assuming n = 16 and τ = 2, we obtain
GLBrow(1, 4) = minu′∈[1,3](GLBcell(u

′, 5)) = min(2, 5, 7) =
2. Similarly, GLBcol(1, 4) = min(5, 5, 6, 5) = 5. The
cross-based lower bound for start-cell (1,4) is GLBstart

cross(1, 4) =
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max(GLBrow(1, 4),GLBcol(1, 4)) = max(2, 5) = 5.
GLBend

cross(ue, ve) is defined similarly to GLBstart
cross(u, v).

(a) GLBstart
cross(1, 4) (b) GLBrow

band
(0, 4)

Figure 11: Grouping based lower bounds

Band-based lower bounds: We also present band-based lower
bounds for groups using an example. In Figure 11(b), we il-
lustrate GLBrow

band(0, 4). We compute it as GLBrow
band(0, 4) =

maxv′∈[4,5](GLBrow(0, v
′)) = max(2, 5) = 5. GLBcol

band(u, v)
is defined similarly to GLBrow

band(u, v).

Relaxed lower bounds for groups: The concept of relaxed lower
bounds, introduced in Section 4.3, can be adapted directly to the
above pattern-based bounds for groups. This allows us to obtain
relaxed lower bounds for groups in O(1) time.

5.3 Bounding by DFD Computation
By exploiting the recurrence of DFD, we devise a tighter lower

bound and a tighter upper bound for pairs of groups. While the
lower bound is used to prune unpromising pairs of groups, the up-
per bound can be used to tighten bsf and thus improve the effec-
tiveness of pruning.

Below we define a subtrajectory group, together with group-
based DFD bounds.

DEFINITION 5 (GROUP-BASED DFD). Let subtrajectory

group Gt,te correspond to the interval [tτ, (te + 1)τ − 1], i.e., it

covers group t to group te.

Given two subtrajectory groups Gu,ue and Gv,ve , we de-

fine the group-based DFD bounds dFmin(u, ue, v, ve) and

dFmax(u, ue, v, ve) as:

dFmin(u, ue, v, ve) = max



















dmin
G (gue , gve)

min











dFmin(u, ue − 1, v, ve)

dFmin(u, ue − 1, v, ve − 1)

dFmin(u, ue, v, ve − 1)

dFmax(u, ue, v, ve) = max



















dmax
G (gue , gve)

min











dFmax(u, ue − 1, v, ve)

dFmax(u, ue − 1, v, ve − 1)

dFmax(u, ue, v, ve − 1)

The following lemma proves the bounding property of
dFmin(u, ue, v, ve) and dFmax(u, ue, v, ve).

LEMMA 3. Let Gu,ue and Gv,ve be two subtrajectory groups. If

a pair of subtrajectories Si,ie ,Sj,je satisfies i ∈ gu, j ∈ gv, ie ∈
gue and je ∈ gve , it holds that:

dFmin(u, ue, v, ve) ≤ dF (i, ie, j, je) ≤ dFmax(u, ue, v, ve)

PROOF. ∀u′ ∈ [u, ue], ∀v
′ ∈ [v, ve] and i′ ∈ gu′ , j′ ∈

gv′ , according to Corollary 1, we have dmin
G (gu′ , gv′) ≤

dG(i
′, j′). By Observation 1, dFmin(u, ue, v, ve) is attributed

to a path among dmin
G (gu′ , gv′) values, and dF (i, ie, j, je) to a

path among dG(i
′, j′) values. Hence, for i ∈ gu, j ∈ gv, ie ∈

gue , je ∈ gve , it holds that dFmin(u, ue, v, ve) ≤ dF (i, ie, j, je).
dFmax(u, ue, v, ve) ≥ dF (i, ie, j, je) is proven similarly.

Example: Consider two subtrajectory groups G1,2 and G4,5 in
Figure 12(a) and assume that n = 12. Their DFD bounds
are dFmin(1, 2, 4, 5) = 5 and dFmax(1, 2, 4, 5) = 8, respec-
tively. In Figure 12(b), the pair of subtrajectories S3,5,S8,10 has
dF (3, 5, 8, 10) = 7. In accordance with Lemma 3, this distance
falls indeed into range [5, 8].

(a) DFD bounds on groups (b) DFD on original trajectory

Figure 12: Illustration of DFD bounds

Recall that our problem definition enforces a minimum motif
length ξ. To comply with it, we define the following lower and
upper bounds between two groups gu and gv:

GLBDFD(u, v) = min
ue,ve

{dFmin(u, ue, v, ve) : (19)

ue − u >
ξ

τ
∧ ve − v >

ξ

τ
}

GUBDFD(u, v) = min
ue,ve

{dFmax(u, ue, v, ve) : (20)

ue − 1− u >
ξ

τ
∧ ve − 1− v >

ξ

τ
}

The following lemma shows their correctness. It is derived by ap-
plying the minue,ve function to both sides of Lemma 3.

LEMMA 4. ∀ i ∈ gu, ∀ i ∈ gv , and ie > i + ξ, je > j + ξ it

holds that:

GLBDFD(u, v) ≤ dF (i, ie, j, je) ≤ GUBDFD(u, v)

GUBDFD(u, v) allows us to tighten bsf , which in turn
boosts the effectiveness of pruning. Both GLBDFD(u, v) and
GUBDFD(u, v) can be computed in O((n

τ
)2). We can re-

duce their computation cost by early termination. Specifically,
if at some point during the computation of GLBDFD(u, v), it
holds that GLBend

cross(ue, ve) ≥ GLBDFD(u, v) with ue −
u > ξ

τ
∧ ve − v > ξ

τ
, we may safely terminate the com-

putation because ∀ue′ > ue and ∀ve′ > ve it must be that
dFmin(u, ue′ , v, ve′) > dFmin(u, ue, v, ve) (i.e., it cannot fur-
ther tighten the bound). Similarly, early termination is possible in
the calculation of GUBDFD(u, v) too.

5.4 GTM Algorithm
Algorithm 3 presents the pseudocode for grouping-based tra-

jectory motif (GTM), which implements the computation frame-
work depicted in Figure 9. We first construct groups at Line 3,
then we compute the pattern-based lower bounds of group pairs
at Lines 4-5. Next, we insert each grouping based candidate sub-
set GCSu,v with its bound GCSu,v.LB = max(GLBcell(u, v),
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rGLBstart
cross(u, v), rGLB

row
band(u, v), rGLB

col
band(u, v)) into a list.

Then, we process the list in ascending order of GCSu,v.LB, and
apply DFD bounds for pruning (Lines 10-11) or for tightening the
bsf (Lines 12-13). After that, we halve the group size and repeat
the above procedure on the set of surviving groups Ssurvive until
the group size drops to 1. When this happens (i.e., τ = 1), each
element in Ssurvive is a candidate subset CSi,j . We invoke Algo-
rithm 2 on Ssurvive to obtain the final result.

Algorithm 3 GTM (Trajectory S, minLength ξ, group size τ )

Input: trajectory S, length n, minimum motif length ξ, group size τ
Output: subtrajectory pair bpair = (Si,ie ,Sj,je )

1: bsf ← +∞; bpair ← ∅
2: while τ > 1 do

3: Group trajectory S to G ⊲ Section 5.1
4: Compute GLBcell, rGLB

start
cross, rGLB

end
cross

5: and rGLBrow
band

, rGLBcol
band

⊲ Section 5.2
6: Construct a list GA of candidate subsets
7: Sort GA in ascending order of Ga.LB
8: Ssurvive ← ∅ ⊲ set of surviving groups
9: for each Ga in GA with bsf > Ga.LB do ⊲ Section 5.3

10: if bsf > GLBDFD(Ga.u,Ga.v) then
11: Ssurvive ← Ssurvive ∪ Ga.u ∪ Ga.v

12: if bsf > GUBDFD(Ga.u,Ga.v) then
13: bsf ← GUBDFD(Ga.u,Ga.v)

14: τ ← τ/2, S ← Ssurvive
15: Invoke Lines 5-13 in Alg. 2 on Ssurvive to compute the result bpair

Example: We demonstrate the grouping-based computation frame-
work in Figure 10. Assume that the minimum trajectory motif
length is ξ = 2 with bsf = 5. We first assign these subtrajectories
into groups (with τ = 2), as illustrated in Figure 10(a). Consider
two subtrajectories S0,5 and S6,11. We compute O(1)-time pattern-
based bounds to prune group pairs; the pruned pairs are shown in
gray in Figure 10(b). Then, we compute GLBDFD,GUBDFD

bounds for surviving pairs, as illustrated in Figure 10(c). The upper
bounds allow us to tighten bsf (to 4), whereas the lower bounds are
used to prune pairs (i.e., the gray region in Figure 10(c)). Finally,
we process the two surviving cells with Algorithm 2.

The group lower bounds developed in this section are directly
applicable to motif discovery between different trajectories, and the
adaptation of Algorithm 3 to that variant is straightforward.

Analysis: The computation cost of the while-loop (Lines 2–14) is
O(

∑log(τ)
i=1 ( ci

τ
)4), where c1 = n and ci is the number of surviving

groups in iteration i. Line 16 takes O(cτ2n2) time, where c is the
number of surviving groups after the while-loop. In summary, the
time complexity of Algorithm 3 is O(

∑log(τ)
i=1 ( ci

τ
)4 + cτ2n2). In

the worst case, Algorithm 3 degenerates to Algorithm 2, with time
complexity O(n4).

The space complexity of the algorithm is O(n2) as it employs
two 2-dimensional matrices for precomputed ground distances (i.e.,
dG[·][·]) and DFD values (i.e., dF [·][·]). In addition, it takes
O((n

τ
)2) space for precomputed group based lower bounds in GA

at Line 6.

5.5 Space-efficient GTM: GTM∗

We present a space-efficient variant of GTM, called GTM∗. It
incorporates three ideas: (i) during DFD computation, we compute
ground distances on-the-fly, (ii) implement DFD computation with
O(n) space, and (iii) execute the while-loop only once for a given
τ . Idea (i) eliminates the need for precomputed ground distances
(i.e., dG[·][·]). Idea (ii) is feasible because, in Lines 8-9 of Algo-
rithm 2, we examine at most two rows of dF [·][·] at the same time.

Idea (iii) requires only O((n
τ
)2) space. Thus, the space complexity

of GTM∗ is O(max{(n
τ
)2, n}).

The time complexity of GTM∗ is O((n
τ
)4 + c′τ2n2), where c′

is the number of group pairs that survive pruning by Idea (i). Since
GTM∗ executes the while-loop only once for a given τ (Idea iii),
the value of c′ in GTM∗ is expected to be larger than c in GTM.

6. EMPIRICAL EVALUATION
In this section, we evaluate the performance of our solutions on

real data. Section 6.1 introduces the experimental setting. Sec-
tion 6.2 studies the effectiveness of our pruning techniques (e.g.,
lower bounds and grouping). Section 6.3 compares the perfor-
mance of different methods with respect to various parameters.

6.1 Experimental Setup
We used three real trajectory datasets from moving people, vehi-

cles and animals. We note that these datasets have different char-
acteristics (such as sampling frequency and data distribution) thus
helping us verify the generality of our findings. The details of each
dataset are as follows.

GeoLife1: This GPS trajectory dataset was collected in the Geo-
Life project by Microsoft. The trajectories were recorded by differ-
ent GPS loggers and GPS-phones, and therefore they have differ-
ent sampling rates. Each trajectory is a sequence of time-stamped
points, each with a latitude, a longitude and an altitude. This dataset
contains 17,621 trajectories with a total distance of 1.2 million kilo-
meters.

Truck2: This dataset contains 276 trajectories of 50 trucks moving
in Athens metropolitan area in Greece. The trucks were carrying
concrete to several construction sites for 33 days.

Wild-Baboon3: This dataset was collected from wild olive ba-
boons at Mpala Research Centre in Kenya [23]. It contains 25
trajectories of baboons with a custom-designed GPS collar that
recorded a location every second from 1-st August to 14-th August,
2012.

In our experiments, we report the average measurements over
10 different trajectories of the same length. The response times
reported include the precomputation time of distances and lower
bounds. For each dataset, we concatenate raw trajectories in order
to build longer trajectories. By default, we fix the motif length
threshold ξ to 100, and the trajectory length n to 5000.

We used C++ for the implementation and conducted all experi-
ments (with single thread) on a machine with an Intel Core i7- 4770
3.40GHz processor. We compare the following methods:

• the baseline solution BruteDP (cf. Algorithm 1)

• the bounding-based solution BTM (cf. Algorithm 2)

• the grouping-based solution GTM (cf. Algorithm 3)

• the space-efficient solution GTM∗ (cf. Section 5.5)

6.2 Pruning Effectiveness
We first assess the effectiveness of our pruning techniques, par-

ticularly of our lower bounds and grouping. For the purposes of this
subsection, we present results only on the GeoLife dataset. Results
on Truck and Wild-Baboon are similar and are omitted in the inter-
est of space.

1
http://research.microsoft.com/en-us/projects/geolife/default.aspx

2
http://chorochronos.datastories.org/

3
https://www.datarepository.movebank.org/handle/10255/move.405
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Figure 13: BTM, effect of trajectory length n
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Figure 14: BTM, effect of minimum motif length ξ

6.2.1 Effectiveness of Relaxed Bounds

We first compare two variants of BTM that use: (i) only the tight

lower bounds from Section 4.2, and (ii) only the relaxed lower

bounds from Section 4.3.
In Figure 13, we compare the tight with the relaxed bounds by

varying the trajectory length n, with ξ fixed to 100. The pruning
percentage in Figure 13(a) corresponds to the ratio of candidate
pairs successfully pruned to the total number of candidate pairs.
Note that because the percentage is high, and in order to show
enough detail, we truncated the y-axis of the plot to start from
80%. In Figure 13(b), we show the overall response time to com-
pute the motif. We observe that the relaxed bounds are only slightly
weaker in pruning power, but they are orders of magnitude faster
computation-wise.

In Figure 14, we investigate the effectiveness and performance
of tight and relaxed bounds as a function of the minimum motif
length ξ, with n fixed to 5000. Again, although the tight bounds
have slightly higher pruning ratio (in Figure 14(a)), the relaxed
bounds render motif computation 10 times faster (in Figure 14(b)).
Since the relaxed bounds perform much better, we adopt them in
our framework (instead of the tight ones) and use them in the sub-
sequent experiments.

6.2.2 Effectiveness of Lower Bounds

In the next experiment, we compare the pruning effectiveness of
the different lower bound functions (LBcell, rLBcross, rLBband)
using BTM. Each bar in Figure 15 corresponds to the total number
of candidate pairs, broken down into the fraction pruned by each
of the 3 types of bounds, and the fraction of the surviving pairs
that required exact DFD computation (labeled as DFD in the bar
charts). In Figures 15(a),(b) we vary the trajectory length n and the
minimum motif length ξ, respectively. The bars are truncated to
start at ratio 50% to retain detail, because the percentage of LBcell

hugely dominates the rest.
Over 92% of the candidates can be collectively pruned by our

lower bounds. An interesting observation is that the bounds
complement each other. For instance, when ξ increases (in
Figure 15(b)), although LBcell deteriorates, rLBband becomes
stronger, thus eliminating many of the candidates that survived
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Figure 15: BTM, pruning ratio breakdown

 1

 10

 100

1K 5K 10K

R
es

po
ns

e 
tim

e 
(s

ec
)

Trajectory length

LBcell
LBcell+rLBcross

LBcell+rLBcross+rLBband
 1

 10

 100

 1000

 10000

100 200 300

R
es

po
ns

e 
tim

e 
(s

ec
)

Minimum motif length

LBcell
LBcell+rLBcross

LBcell+rLBcross+rLBband

(a) Effect of trajectory length n (b) Effect of minimum motif length ξ

Figure 16: BTM, response time

LBcell. This renders our methodology robust to different problem
settings.

Next, we compare three variants of BTM that use:
(i) LBcell only, (ii) LBcell, rLBcross only, and (iii)
LBcell, rLBcross, rLBband. We vary the trajectory length
n and the minimum motif length ξ in Figures 16(a),(b), respec-
tively. The results verify that the bounds complement each other
gracefully, and that the performance gains achieved are not due to
just one or some of them.

6.2.3 Effect of Group Size τ

In GTM (Algorithm 3), the initial group size τ influences the
pruning effectiveness and the computation cost of the algorithm.
Generally, when τ is small, group-based pruning has a high pruning
power but it requires high computation cost. In contrast, when τ
is large, group-based pruning becomes faster but it becomes less
effective. Figure 17 plots the response time of GTM for different
values of τ (x-axis) and trajectory length n (as indicated by the
label of each line). We observe that the response time is not overly
sensitive to τ . In the following experiments, we set τ = 32 by
default as it seems to work well in all cases.

6.3 Performance Evaluation
We compare the performance of our solutions (BTM, GTM, and

GTM∗) with the baseline (BruteDP) on the real datasets (GeoLife,
Truck, and Wild-Baboon). Recall that GTM∗ is the space-efficient
version of GTM.

Figure 18 plots the average response time for different trajectory
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Figure 18: Response time vs. trajectory length n
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Figure 19: Space requirements vs. trajectory length n
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Figure 20: Response time vs. minimum motif length ξ
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lengths n while fixing ξ = 100. BruteDP is prohibitively slow
even for small trajectories (e.g., n = 1000), thus, we terminate it
when it exceeds 2 hours. For the settings where it does terminate
within reasonable time, our advanced solutions (i.e., GTM, GTM∗)
outperform it by 3 orders of magnitude. GTM is the fastest algo-
rithm, with GTM∗ usually the runner-up. Due to the clear ineffi-
ciency of BruteDP, we exclude it from the following experiments.

In Figure 19, we plot the space requirements of BTM, GTM,
and GTM∗ for the same experiment as Figure 18. All methods
consume more memory as the trajectory length n increases. As
anticipated analytically, the space requirements of BTM and GTM
increase sharply with n, but those of GTM∗ are linear to it. Hence,
we consider GTM∗ as the method of choice for very long trajec-
tories, and the method that strikes the most favourable trade-off
between time and space efficiency.

In Figure 20, we measure response time as we vary the minimum
trajectory motif length ξ (with n fixed to 5000). The relative per-
formance of the methods is the same as in the previous experiment.
The response time of all solutions increases with ξ. That is because
a large ξ disqualifies short motifs with small DFDs, thus making it
harder to identify early a small bsf that enables aggressive pruning
(see also Figure 14(a)).

For completeness, we evaluate our algorithms for motif discov-
ery between different trajectories too. In Figure 21, we randomly
select 10 pairs of input trajectories (from the corresponding real
dataset) and report the average response time when varying their
length n (for fixed ξ = 100). The results demonstrate the efficiency
of our approaches in this problem variant too. Their performance
is very similar to the case of single input trajectory (Problem 1).
The same holds when we vary ξ as well as when we measure space
requirements; we omit the respective plots to avoid duplication.

7. CONCLUSION
In this paper, we study the trajectory motif discovery problem us-

ing the discrete Fréchet distance (DFD). Our contributions include
(i) a suite of novel lower bound functions for DFD, (ii) a grouping-
based solution that leverages on multi-level pruning to discover the
trajectory motif, and (iii) a space-optimized approach that is both
time and space efficient. Our fastest solution is over 3 orders of
magnitude faster than the baseline solution. All our algorithms
are exact. A promising direction for future work is to devise ap-
proximate solutions that trade exactness for shorter running times.
Another challenging direction is to apply similar optimizations in
order to accelerate other trajectory analysis operations that rely on
DFD, such as similarity join, subtrajectory clustering, etc.
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ABSTRACT

Planning user trips in an effective and efficient manner has
become an important topic in recent years. In this paper,
we introduce Group Trip Scheduling (GTS) queries, a novel
query type in spatial databases. Family members normally
have many outdoor tasks to perform within a short time for
the proper management of home. For example, the members
of a family may need to go to a bank to withdraw or deposit
money, a pharmacy to buy medicine, or a supermarket to
buy groceries. Similarly, organizers of an event may need to
visit different points of interests (POIs) such as restaurants
and shopping centers to perform many tasks. Given source
and destination locations of group members, a GTS query
enables a group of n members to schedule n individual trips
such that n trips together visit required types of POIs and
the total trip distance of n group members is minimized. The
trip distance of a group member is measured as the distance
between her source to destination via the POIs. We develop
an efficient approach to process GTS queries for both Eu-
clidean space and road networks. The number of possible
combinations of trips among group members increases with
the increase of the number of POIs that in turn increases the
query processing overhead. We exploit geometric properties
to refine the POI search space and prune POIs to reduce
the number of possible combinations of trips among group
members. We propose a dynamic programming technique to
eliminate the trip combinations that cannot be part of the
query answer. We perform experiments using real and syn-
thetic datasets and show that our approach outperforms a
straightforward approach with a large margin.

1 Introduction

Family members normally have many outdoor tasks to per-
form within a short time for the proper management of their
home. The members of a family may need to go to a bank to
withdraw or deposit money, a pharmacy to buy medicine, or
a supermarket to buy groceries. Similarly, organizers of an
event may need to visit different points of interests (POIs)

c©2017, Copyright is with the authors. Published in Proc. 20th International
Conference on Extending Database Technology (EDBT), March 21-24,
2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Com-
mons license CC-by-nc-nd 4.0

like supermarkets, banks, and restaurants to perform many
tasks. In reality, all family or organizing members do not
need to visit every POI and they can distribute the tasks
among themselves. These scenarios motivate us to introduce
a group trip scheduling (GTS) query that enables a group
(e.g., a family) to schedule multiple trips among group mem-
bers with the minimum total travel distance.

Users have some routine work like traveling from home
to office or office to home, and they would prefer to visit
other POIs on the way to office or returning home. Given
source and destination locations of n group members, a GTS
query returns n individual trips such that n trips together
visit required types of POIs, each POI type is visited by a
single member of the group, and the total trip distance of n
group members is minimized. The trip distance of a group
member is measured as the distance between her source to
destination via the POIs that the group member visits. If the
total travel distance is reduced, it will obviously cut down
the cost for arranging an event or managing a set of tasks,
which is very much desired. In this paper, we propose an
efficient approach to process GTS queries for both Euclidean
space and road networks.
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Figure 1: An example of a GTS query

In Figure 1, we consider a group or a family of four mem-
bers. Every member has preplanned source and destination
locations which may be home, office or any other place.
Group members u1, u2, u3, and u4 have source destination
pairs, < s1, d1 >, < s2, d2 >, < s3, d3 >, and < s4, d4 >,
respectively. Here, pkj denotes a POI of type cj with ID k.

For example, POI p21 in the figure is of type c1, which rep-
resents a bank. The group has to visit four POI types: a
bank (c1), a supermarket (c2), a hospital (c3), and a restau-
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rant (c4). For each POI type, there are many options. For
example, in real life, banks have many branches in differ-
ent locations. A GTS query considers all options for each
type of POIs, and returns four trips for four group members
with the minimum total trip distance, where each POI type
is included in a single trip. Figure 1 shows four scheduled
trips: s1 → p12 → p14 → d1, s2 → d2, s3 → p31 → d3 and
s4 → p33 → d4.

A major challenge of our problem is to find the set of POIs
from a huge amount of candidate POI sets that provide the
optimal answer in real time. For example, California City has
about 87635 POIs with 63 different POI types [2]. For each
POI type, there are on average 1300 POIs. If the required
number of POI types is 4 then the number of candidate POI
sets for a GTS query is (1300) × (1300) × (1300) × (1300)
= (1300)4 = 2.86e+12, a huge amount of candidate POI
sets. We exploit elliptical properties to bound the POI search
space, i.e., to prune POIs that cannot be part of the optimal
answer. Though elliptical properties have been explored in
the literature for processing other types of spatial queries [5,
7, 12, 13, 18] those pruning techniques are not directly ap-
plicable for GTS queries.

Furthermore, a GTS query needs to distribute the POIs
of required types in a candidate set among group members.
The candidate set contains exactly one POI from each of
the m required POI types. The number of possible ways to
distribute a candidate POI set of m POIs among n group
members is nm. Thus, the efficiency of a GTS query depends
on the refinement of the POI search space and the tech-
nique to schedule trips among group members. We develop
a dynamic programming technique to reduce the number of
possible combinations while scheduling trips among group
members. The technique eliminates the trip combinations
that cannot be part of the optimal query answer.

Planning trips for a single user or a group in an effec-
tive and efficient manner has become an important topic in
recent years. A trip planning (TP) query [13] for a single
user finds the set of POIs of required types that minimize
the trip distance with respect to the user’s source and des-
tination locations. To evaluate a GTS query, applying a trip
planning algorithm for every user independently for all pos-
sible combinations of required POI types requires multiple
traversal of the database and would be prohibitively expen-
sive. A group trip planning (GTP) query [8] identifies the set
of POIs of required types that minimize the total trip dis-
tance with respect to the source and destination locations of
group members. In a GTP query, each required POI type is
visited by all group members. On the other hand, in a GTS
query, separate trips are planned for every group member
and each required POI type is visited by only a single group
member. For the example scenario mentioned in Figure 1, in
Figure 2 we show the resultant trips for a GTP query, where
the group members visit all required POI types together. A
GTS query is also different from traveling salesman prob-
lem (TSP) [11] and its variants [4, 6, 15, 20]. The TSP and
its variants assume a limited set of POIs and cannot han-
dle a large dataset like a huge amount of POIs stored in a
database.

To the best of our knowledge, we propose the first ap-
proach for GTS queries. In summary, the contributions of
this paper are as follows:

• We introduce a new type of query, the group trip
scheduling (GTS) query in spatial databases.
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Figure 2: An example of a GTP query

• We present an efficient GTS query processing algo-
rithm. Specifically, we refine the POI search space for
processing GTS queries efficiently using elliptical prop-
erties and develop an efficient dynamic programming
technique to schedule trips among group members.
• We perform extensive experimental evaluation of the

proposed techniques and provide an comparative anal-
ysis of experimental results using both real and syn-
thetic datasets.

2 Problem Definition

A GTS query for a group is formally defined as follows.
Definition 1.[Group Trip Scheduling(GTS) Queries.]
Given a set P of POIs of different types in a 2-dimensional
space, a set of n group members U = {u1, u2, . . . , un} with
independent n source locations S = {s1, s2, . . . , sn} and cor-
responding n destination locationsD = {d1, d2, . . . , dn}, and
a set of m POI types C = {c1, c2, . . . , cm}, a GTS query
returns a set of n trips, T = {T1, T2, . . . , Tn} that mini-
mizes the total trip distance, AggTripDist of group mem-
bers, where a trip Ti corresponds to a group member ui,
group members together visit required types of POIs in C,
and a POI type in C is visited by a single member of the
group.

For any two point locations x1 and x2 in a 2-dimensional
space, let Function Dist(x1, x2) return the distance between
x1 and x2, where the distance can be measured either in the
Euclidean space or road networks. The Euclidean distance
is measured as the length of the direct line connecting x1

and x2. On the other hand, the road network distance is
measured as the length of the shortest path between x1 and
x2 on a given road network graph G = (V,E,W), where each
vertex v ∈ V represents a road junction, each edge (v, v′) ∈ E

represents a direct path connecting vertices v and v′ in V,
and each weight wv,v′ ∈W represents the length of the direct
path represented by the edge (v, v′).

A trip Ti of group member ui starts at si, ends at di,
goes through POIs in Ai, where Ai includes at most m

POIs of types specified in C and m = |C| =
∑n

i=1 |Ai|.
The total trip distance of group members is measured as
AggTripDist =

∑n

i=1 TripDisti. Let pj denote a POI of
type cj ∈ C. Without loss of generality, for Ai = {p1, p2, p3}
and {c1, c2, c3} ∈ C, the trip distance TripDisti of Ti

is computed as Dist(si, p1) + Dist(p1, p2) + Dist(p2, p3) +
Dist(p3, di), if the POI order p1 → p2 → p3 gives the mini-
mum value for TripDisti.
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3 System Architecture

Figure 3 shows an overview of the system architecture. The
coordinator of the group sends a GTS query request to a
location based service provider (LSP). The coordinator pro-
vides the source and destination locations of group members
and the required POI types that the group members need
to visit combinedly. The LSP incrementally retrieves POIs
from the database, processes GTS queries and returns sched-
uled trips to the coordinator of the group that minimizes the
total trip distance of the group members.

Scheduled Trips

GTS QueriesLocation Based
Service Provider

Retrieve POIs

Data Storage
(R∗-tree)

Coordinator of
a user group

Figure 3: System architecture

4 Related Work

Trip planning techniques exist for both single user and group
in the literature. Trip planning (TP) queries have been in-
troduced in [12] for a single user. TP queries allow a user to
find an optimal route to visit POIs of different types while
traveling from her source to destination location. In parallel
to the work of TP queries, in [18], Sharifzadeh et al. ad-
dressed the optimal sequenced route (OSR) query that also
focuses on planning a trip with the minimum travel distance
for a single user for a fixed sequence of POI types (e.g., a
user first visits a restaurant then a shopping center and a
movie theater at the end). In [5], a generalization of the
trip planning query, called the multi-rule partial sequenced
route (MRPSR) query has been proposed that supports mul-
tiple constraints and a partial sequence ordering to visit POI
types, and provides a uniform framework to evaluate both
of the above mentioned variants [12, 18] of trip planning
queries. In [16], the authors proposed an incremental algo-
rithm to find the optimal sequenced route in the Euclidean
space and then determine the optimal sequence route in road
networks based on the incremental Euclidean restriction. A
GTS query is different from TP and OSR queries as GTS
queries schedule trips among group members.

A group trip planning query that plans a trip with the
minimum aggregate trip distance to visit POIs of different
types with respect to source and destination locations of
group members has been first proposed in [8]. In [3, 17],
the authors proposed efficient algorithms to process GTP
queries for a fixed sequence of visiting POI types. In [7],
the authors developed an efficient algorithm to process GTP
queries in both Euclidean space and road networks. In a
GTP query, all group members visit all POI types in their
trips, whereas in a GTS query, each POI type is visited by
a single member in the group.

A traveling salesman problem (TSP) and variants that
focus on planning routes with a limited set of locations are
well studied problems in the literature. A generalized trav-
eling salesman problem (GTSP) [6] and multiple traveling
salesman problem (MTSP) [4] are well known variations of
TSP. A GTSP assumes that from groups of given locations,

a salesman visits a location from every group such that the
travel distance for the route becomes the minimum. The
MTSP allows more than one salesman to be involved in the
solution. In MTSP, if the salesmen are initially based at
different depots then this variation is known as the multi-
ple depot multiple traveling salesman problem (MDMTSP).
However, the limitation of the proposed solutions for TSP
and its variants is that they cannot handle a large dataset
(e.g., POI data) stored in the database, a scenario that is
addressed by a GTS query.

Elliptical properties have been used in the literature to re-
fine the search region for queries like group nearest neighbor
queries [14], trip planning queries [12], group trip planning
queries [7] and privacy preserving trip planning queries [19].
Though all of these refinement techniques present the re-
fined search region with an ellipse, they differ on the way to
set the foci and the length of the major axis of the ellipse.
In this paper, we develop two novel techniques to refine the
search region using ellipses for GTS queries.

5 Our Approach

In this section, we present our approach to process GTS
queries in the Euclidean space and road networks. In a GTS
query, the coordinator of a group sends the query request to
the LSP and provides required information like group mem-
bers’ source and destination locations, and the required POI
types. POI information is indexed using an R∗-tree [1] in
the database. The LSP incrementally retrieves POIs from
the database until it identifies the trips that minimize the
total travel distance of the group members. The underly-
ing idea of the efficiency of our approach is the POI search
region refinement techniques using elliptical properties and
the dynamic programming technique to schedule multiple
trips among the group members.
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Figure 4: Known region and search region

We use the concept of known region and search region [7,
12] for the retrieval of POIs from the database. The known
region represents the area which has already been explored,
that means all POIs inside the known region have been re-
trieved from the database. The search region represents the
refined space that we need to explore for the optimal so-
lution. In Figure 4, suppose the LSP retrieves the nearest
POIs p12 and p11 with respect to the geometric centroid G of
source and destination locations of a group of three mem-
bers, where p11 is the farthest POI from G among POIs p12
and p11 that have been already retrieved. The circular region
centered at G with radius equal to the distance between G

and p11 is the known region. We refine the POI search region
with respect to the retrieved POIs in the known region us-
ing multiple ellipses, and call it simply a search region. In
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Figure 4, based on current retrieved POIs, p12 and p11, the
search region is the union of three ellipses.

Find an initial POI set with respect to geometric centroid G,

which includes at least one POI from each required POI type

Compute n trips from initial POI set that provide the

minimum total trip distance

Update n scheduled trips

Find the next nearest POI with

respect to G within search region

Compute search region

Stop

No

Yes

Is search

region is

included

by known

region?

Figure 5: Overview of our approach for GTS queries

Figure 5 shows an overview of our developed approach for
processing GTS queries. Our approach initially incremen-
tally retrieves the nearest POIs from G until at least one
POI from each required POI type has been retrieved. Us-
ing the initial retrieved POI set, our approach schedules n

trips that provide the minimum total travel distance for the
group members, and refines the search region to prune POIs
that cannot be the part of the query answer. Then the pro-
posed approach checks whether the known region includes
the search region. If yes, then our approach has retrieved all
POIs that are required to find the optimal answer and the
approach terminates the search. Otherwise, our approach
continues to incrementally retrieve the next nearest POIs
within the search region, updates scheduled n trips, refines
the search region, and checks the termination condition of
the search until the condition becomes true. In the following
sections, we elaborate the steps of our approach for process-
ing GTS queries.

5.1 Computing the known region

For both Euclidean and road network spaces, our approach
incrementally retrieves the Euclidean nearest POIs with re-
spect to the geometric centroid G of n source-destination
pairs of group members. It uses the best-first search (BFS)
to find the POIs of required POI types that are assumed to
be indexed using an R∗-tree [1] in the database. The BFS
search also prunes the POIs whose types do not match with
the required POI types and returns the remaining POIs.

Let the BFS discover pj as the first nearest POI with
respect to G. The circular region centered at G with radius
r equal to the Euclidean distance between G and pj is the
known region. With the retrieval of the next nearest POI, r
is updated with the Euclidean distance from G to the last
retrieved nearest POI from the database.

5.2 Refinement of the search region

The key idea of our search region refinement techniques is
based on elliptical properties. A smaller search region de-
creases the number of POIs retrieved from the database,
avoids unnecessary trip computations, and reduces I/O ac-
cess and computational overhead significantly. We present
two novel techniques in Theorems 1 and 2 to refine the search
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Figure 6: Search region refinement

region using multiple ellipses, and based on these two refine-
ment techniques, we develop our algorithm to process GTS
queries in Section 5.5. The notations that we use in our the-
orems are summarized below:
• Tmini

: the minimum trip distance for a group member
ui, i.e., the distance between si and di without visiting
any POI type.
• Tmaxi

: the maximum trip distance for a group member
ui, i.e., the trip distance from si to di via required m

POI types.
• TripDisti: the current trip distance of a group member

ui among the scheduled trips.
• AggTripDist: the current minimum total trip distance

of the group.
Above notations are measured in terms of Euclidean dis-

tances if a GTS query is evaluated in the Euclidean space,
and in terms of road network distances if a GTS query is
evaluated in the road networks. Theorems 1 and 2 show two
ways to refine the search region for a GTS query in the Eu-
clidean space and road networks.

Theorem 1. The search region can be refined as the
union of n ellipses E1 ∪ E2 ∪ . . . ∪ En, where the foci of
ellipse Ei are at si and di, and the major axis of the ellipse
Ei is equal to Tmaxi

.

Proof. Let a POI p lie outside the search region, E1 ∪
E2 ∪ . . . ∪En, and AggTripDistp be the total trip distance
of the group, where a group member ui’s trip includes POI
p as shown in Figure 6(a). We have to prove that POI p can
not be a part of the optimal solution, i.e., AggTripDistp >

AggTripDist. Let TripDist
p
i be the trip distance for the

group member ui whose trip includes POI p. An elliptical
property states that the Euclidean distance between two foci
via a point outside the ellipse is greater than the length of
the major axis. Since the road network distance is greater
than or equal to the Euclidean distance, the road network
distance between two foci via a point outside the ellipse is
also greater than the length of the major axis. As POI p lies
outside the ellipse Ei, for both Euclidean and road network
spaces we have,

TripDist
p
i > Tmaxi

(1)
Tmaxi

represents the trip distance of user ui for visiting
m POI types. Any trip passing through the POI p outside
the ellipse Ei can not give better trip distance for user ui.
Thus, any POI outside the union of ellipses E1, E2, . . . , En

can not improve the total trip distance AggTripDist for the
group and can not be a part of an optimally scheduled group
of trips. Thus, AggTripDistp > AggTripDist.

Theorem 2. The search region can be refined as the
union of n ellipses E1 ∪ E2 ∪ . . . ∪ En, where the foci of
ellipse Ei are at si and di, and the major axis of the ellipse
is equal to AggTripDist−

∑n

l=1,l 6=i
Tminl

.
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Figure 7: Steps of our approach

Proof. Let a POI p lie outside the search region, E1 ∪
E2 ∪ . . . ∪En, and AggTripDistp be the total trip distance
of the group, where a group member ui’s trip includes POI
p as shown in Figure 6(b). We have to prove that POI p can
not be a part of the optimal solution, i.e., AggTripDistp >

AggTripDist.
Let TripDist

p
i be the trip distance for the group member

ui whose trip includes POI p. An elliptical property states
that the Euclidean distance between two foci via a point out-
side the ellipse is greater than the length of the major axis.
Since the road network distance is greater than or equal to
the Euclidean distance, the road network distance between
two foci via a point outside the ellipse is also greater than
the length of the major axis. As the POI p lies outside the
ellipse Ei, for both Euclidean and road network spaces we
have,

TripDist
p
i > AggTripDist−

n∑

l=1,l 6=i

Tminl

Rearranging the equation we get,

TripDist
p
i +

n∑

l=1,l 6=i

Tminl
> AggTripDist (2)

By definition we know,

AggTripDist
p = TripDist

p
i +

n∑

l=1,l 6=i

TripDist
p

l (3)

and
n∑

l=1,l 6=i

TripDist
p

l ≥
n∑

l=1,l 6=i

Tminl
(4)

From Equations 3 and 4, we get,

AggTripDist
p ≥ TripDist

p
i +

n∑

l=1,l 6=i

Tminl
(5)

Combining inequalities of 2 and 5,
AggTripDist

p
> AggTripDist

Thus, any POI outside the search region E1∪E2∪ . . .∪En

can not improve the total trip distance for the group and can
not be a part of an optimally scheduled group of trips.

Our approach refines the ellipses of every group member
independently using both bounds proposed in Theorems 1
and 2, and selects the bound that provides the minimum
length for the major axis of the ellipse. For the same foci,
the smaller major axis represents a smaller ellipse. It may
happen that for an ellipse of a member, Theorem 1 pro-

vides the minimum length of the major axis and for another
member’s ellipse, Theorem 2 provides the minimum length
of the major axis. The refined search region is computed as
the union of the smaller ellipses of all group members.
For a GTS query, our approach retrieves an initial set of

nearest POIs that includes at least one POI of each required
type. From the initial set of POIs, our approach schedules
trips with the minimum total trip distance for the group
using the dynamic programming technique shown in Sec-
tion 5.4, and refines the search region using Theorems 1
and 2. With the incremental retrieval of the nearest POIs
from G within the refined search region, our approach checks
and updates the scheduled trips, if the newly discovered
POIs improve the current scheduled trips. The newly up-
dated trips may improve the bound Tmaxi

for a group mem-
ber or the total trip distance of the group AggTripDist,
which can further refine the search region.
Figure 7(a) shows the initial set of retrieved POIs

p11, p
2
1, p

1
2, p

1
3, p

1
4, the known region, and four scheduled trips

using the initial POI set for a group of four members. Note
that the initial set may include more than one POIs of same
POI type (e.g., p11 and p21) because the incremental near-
est POI retrieval continues until the initial set includes at
least one POI from every required POI type. Using bounds
from Theorem 1 and 2, we compute and refine the search
region. Figure 7(b) shows the refined search region as the
union of four ellipses. After retrieving the next nearest POI
p31, the known region expands, which has the radius equal to
Dist(G, p31). Our approach checks whether this new POI can
improve the current solution. In this example, the new POI
p31 decreases the trip distance for group member u3 and thus,
the updated trip for u3 is s3 → p13 → p31 → d3. It also im-
proves the total trip distance and shrinks the search region
for all group members. In Figure 7(c), the dotted lines show
the scenario before retrieving POI p31 and the shaded areas
with solid lines show the updated scenario after retrieving
the POI p31. With the retrieval of the nearest POIs from the
database, the known region expands and the search region
shrinks or remains same.

5.3 Terminating condition for POI retrieval

When the known region covers the search region, no more
minimization in the total trip distance is further possible.
At this point, we can terminate traversing R∗-tree and re-
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trieving POIs. Figure 8 shows that the known region covers
the search region.
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Figure 8: Terminating condition: the known region includes
the search region

5.4 Dynamic programming technique for
scheduling trips

Scheduling the trips among the group members is an essen-
tial component of GTS query processing approach. After re-
trieving the initial POI set, our approach schedules the trips
among the group members such that the total trip distance
of the group is minimized. Each time our approach retrieves
new POIs, it again schedules trips using new POIs, if the new
trips improve the total trip distance of the group. Thus, the
efficiency of our approach largely depends on the computa-
tional cost of scheduling trips among the group members.
We propose a dynamic programming technique to schedule
the trips among the group members. The technique reduces
the number of trip combinations that we need to consider to
find the set of trips with the minimum total trip distance.
The distances computed in our dynamic programming tech-
nique are Euclidean distances, if a GTS query is processed
in the Euclidean space, and the distances are road network
distances, otherwise.

Our dynamic programming technique minimizes the fol-
lowing objective function:

n∑

i=1

TripDisti

satisfying constraints that a group of n members together
visit m different POI types and each POI type is visited by
a single group member. Let CTi

be the set of POI types
visited by trip Ti of user ui, where 0 ≤ |CTi

| ≤ m. Formal
representation of the constraints are as follows. The dynamic
programming technique satisfies,

n∑

i=1

|CTi
| = m,

n⋃

i=1

CTi
= C and ∀i,j(CTi

∩ CTj
) = ∅

For the GTS query, we have a set of m POI types

Table 1: Structure of dynamic table νy, where 0 ≤ y ≤ (m− 1)

{u1} . . . {un} {u1u2} . . . {u1u2 . . . un−1}
{c1, c2, . . . , cy}
{c1, c3, . . . , cy}
...

Table 2: Structure of dynamic table νm
{u1} . . . {un} {u1u2} . . . {u1u2 . . . un}

{c1, c2, . . . , cm}

C={c1, c2, . . . , cm}, where a group member visits any num-
ber of POI types from 0 to m. Thus, there are

∑m

y=0(
mCy)

ways to choose any y POI types from m(= |C|) differ-
ent POI types, where 0 ≤ y ≤ m. Suppose CCy de-
notes the set of all possible y chooses from the set of POI
types C. Let (CCy)

j represent the jth member of the set
CCy. Suppose we have a set of m = |C| = 4 POI types,
C = {c1, c2, c3, c4}. For y = 2, the number of ways to

choose y POI types from m(= |C|) POI types is |C|Cy =
4C2 = 6 and the set all possible y chooses from the set C is
CCy = {{c1, c2}, {c1, c3}, {c1, c4}, {c2, c3}, {c2, c4}, {c3, c4}},
where (CCy)

1 = {c1, c2}, (
CCy)

2 = {c1, c3}, . . . , (
CCy)

6 =
{c3, c4}.

For each member of the set CCy, we calculate optimal trips
for each group member in U = {u1, u2, u3, . . . , un} and store
trip distances for future computations. This is the initial step
for our dynamic programming technique. We define m + 1
dynamic tables, ν0, ν1, ν2, . . . νm to store the trip distances
of every group member and the combined trip distances of
the group members. Table νy has mCy rows, where jth row
corresponds to jth member of the set CCy, i.e., (

CCy)
j .

Each table has two types of columns : single member
columns and combined member columns. Each table has
n single member columns, where each column corresponds to
a member of the group U = {u1, u2, u3, . . . , un}. The cells of
these columns store the minimum trip distances for the cor-
responding column’s member to visit the POI types of the
corresponding rows. Each dynamic table except νm has (n−
2) combined member columns u1u2, u1u2u3, . . . , u1u2..un−1,
where the cells of the corresponding columns store the com-
bined trip distances of the corresponding column’s multiple
members. For example, each cell of the column u1u2 stores
the minimum combined trip distance of user u1 and u2 to
visit the POI types of the corresponding row, where a POI
type is visited either by u1 or u2. Table 1 shows the structure
of νy where 0 ≤ y ≤ (m− 1). Table 2 shows the structure of
νm that has an extra column u1u2 . . . un to store the mini-
mum total trip distance for n scheduled trips, where n trips
together visit m required POI types and every POI type is
visited by a single trip. The table has only one row which
contains all m POI types.

In addition to storing the minimum trip distance, each
cell of the dynamic tables stores the set of POIs for which

Table 3: Possible number
of POI type distributions
between u1 and u2

u1 u2

3 0
2 1
1 2
0 3

Table 4: Candidate trips
with trip distances for cell
ν2[{c1, c2}][{u1}]

Candidate trips Distances

s1 → p12 → p11 → d1 65.55

s1 → p12 → p21 → d1 61.72

s1 → p11 → p12 → d1 60.44

s1 → p21 → p12 → d1 51.58
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Table 5: Dynamic tables for the example scenario
(a) Dynamic table ν0

{u1} {u2} {u3} {u4} {u1u2} {u1u2u3}
∅ 51.55 93.33 68.84 81.78 144.88 213.72

(c) Dynamic table ν2

{u1} {u2} {u3} {u4} {u1u2} {u1u2u3}
{c1, c2} 51.58 96.22 123.61 90.67 144.90 213.74
{c1, c3} 51.86 96.26 123.68 90.70 145.19 214.03
{c1, c4} 51.57 96.23 123.61 90.67 144.90 213.74
{c2, c3} 51.57 93.97 78.34 81.81 144.88 213.72
{c2, c4} 51.56 93.34 68.84 81.78 144.88 213.72
{c3, c4} 51.55 93.97 78.32 81.79 144.88 213.72

(e) Dynamic table ν4

{u1} {u2} {u3} {u4} {u1u2} {u1u2u3} {u1u2u3u4}
{c1, c2, c3, c4} 51.90 96.28 123.69 90.71 145.20 214.03 295.53

(b) Dynamic table ν1

{u1} {u2} {u3} {u4} {u1u2} {u1u2u3}
{c1} 51.57 96.22 123.61 90.67 144.90 213.74
{c2} 51.56 93.33 68.84 81.78 144.88 213.72
{c3} 51.55 93.97 78.31 81.79 144.88 213.72
{c4} 51.55 93.33 68.84 81.78 144.88 213.72

(d) Dynamic table ν3

{u1} {u2} {u3} {u4} {u1u2} {u1u2u3}
{c1, c2, c3} 51.90 96.26 123.68 90.70 145.19 214.03
{c1, c2, c4} 51.59 96.23 123.61 90.67 144.90 213.74
{c1, c3, c4} 51.88 96.28 123.68 90.71 145.19 214.03
{c2, c3, c4} 51.57 93.97 78.34 81.81 144.88 213.72

the minimum trip distance is obtained. For example, cell
ν3[{c1, c3, c4}][{u1}] stores the minimum trip distance and
the POI set < p3, p1, p4 >, for which u1 obtains the mini-
mum trip distance.

The size of a dynamic table νy is : mCy × (n + (n − 2)),
where 0 ≤ y ≤ (m−1), and the size of table νm is mCm×(n+
(n−2)+1). Thus, the total space required for dynamic tables

is
∑(m−1)

y=0 (mCy×(n+(n−2)))+(mCm×(n+(n−2)+1)) =

(2m+1 × (n− 1) + 1) units. Similarly, the processing time of
the dynamic programming technique is proportional to the
number of the dynamic tables and the number of cells in a
dynamic table, which vary with the values of m and n.

Contents of cells of the single member columns of a dy-
namic table are computed using already retrieved POIs from
the database. To compute the contents of cells of the com-
bined member columns of a dynamic table νy, we use the
single member columns of the same table, and both sin-
gle and combined member columns of ν0, ν1, . . . , νy−1. For
example, for computing each cell of combined member col-
umn u1u2 of ν4, we use the already calculated single mem-
ber columns of ν4, and both single and combined mem-
ber columns of ν0, ν1, ν2 and ν3 based on possible num-
ber of POI type distributions between members u1 and u2

of that corresponding column. For the example scenario,
to visit 3 POI types, possible ways to distribute the num-
ber of POI types between u1 and u2 are listed in Ta-
ble 3. Formally, the minimum trip distance stored in a
cell (e.g., νy[{c1, c2, . . . , cy}][{u1u2}] of table νy) is com-

puted as miny
g=0{min

mCg

j=1 {min
mCy−g

k=1 (νg[(
CCg)

j ][{u1}] +

ν(y−g)[(
CC(y−g))

k][{u2}])}}, where (
CCg)

j ∩(CC(y−g))
k = ∅.

The constraint guarantees that no POI type is considered
twice while computing the minimum trip distance.

Similar to the combined member column u1u2, for com-
puting each cell of combined member column u1u2u3 of ν4,
we use the same dynamic tables, and similar distribution
listed in Table 3 between combined members u1u2 (instead
of u1) and single member u3 (instead of u2). Thus, we incre-
mentally compute dynamic tables ν0, ν1, ν2, . . . , νm, one by
one and finally we get our desired result for a GTS query.

We elaborate our dynamic programming tech-
nique with an example. Suppose a group of 4 mem-
bers, {u1, u2, u3, u4}, together want to visit 4 POI types
{c1, c2, c3, c4} with the minimum total trip distance, and

each POI type is visited by a single member. Here, n = 4,
m = 4, and a group member can visit any number of POI
types between 0 to m.

Figure 7(a) shows the initial set of retrieved POIs:
p11, p

2
1, p

1
2, p

1
3, p

1
4 and the known region. The initial set in-

cludes at least a POI from every POI type. Using these
POIs, we first compute all possible trips for the group mem-
bers and then schedule the trips using our proposed dynamic
programming technique.

We define (m + 1), i.e., 5 tables, ν0, ν1, ν2, ν3 and ν4 to
store the computed trip distances and combined trip dis-
tances of the group members. Each dynamic table νy has
m=4Cy rows, where each row corresponds to a member of the
set CCy. Each table has n = 4 single member columns, where
a column corresponds to a group member in {u1, u2, u3, u4},
and n−2 = 2 combined member columns, u1u2 and u1u2u3.
Table ν4 contains an extra column u1u2u3u4 to store the
minimum total trip distance of the 4 scheduled trips for 4
users that together visit 4 POI types, where each POI type
is visited by a single user. Tables 5 (a-e) show ν0, ν1, ν2, ν3
and ν4 for the considered example.

Computing single member columns: In the dynamic
tables, columns u1, u2, u3 and u4 are the single member
columns. Each cell of these columns of a table stores the
minimum trip distance for the corresponding column’s user
passing through POI types of the corresponding row of that
table. For example, in Table 5(c), cell ν2[{c1, c2}][{u1}] con-
tains the minimum trip distance for user u1 passing through
POI types c1 and c2. For computing this trip distance, we
consider user, u1’s source (s1) and destination (d1) loca-
tions along with candidate POIs in the initial set: {p11, p

2
1}

and {p12} with POI types c1 and c2, respectively. All can-
didate trips for cell ν2[{c1, c2}][{u1}] using these POIs with
the corresponding trip distances are listed in Table 4.

Among the candidate trips listed in this table, the min-
imum trip distance 51.58 for trip s1 → p21 → p12 → d1 is
stored in cell ν2[{c1, c2}][{u1}]. Similarly, our dynamic pro-
gramming technique populates all cells of the single member
columns of ν1, ν2, ν3 and ν4. Table ν0 is a trivial one that
stores trip distances for particular user’s trip from her source
to destination location only.

Computing combined member columns: Using the sin-
gle member columns and already calculated combined mem-
ber columns, we dynamically calculate the combined mem-
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ber columns of ν0, ν1, ν2, ν3 and ν4 one by one.
In ν0, cell ν0[∅][{u1u2}] contains the minimum total trip

distance of trips T1 and T2, where the trips correspond to
users u1 and u2, respectively, and visit no POI type. Table 6
shows the candidate combinations that are used to compute
the cell value, where trip distances are for users’ trips from
their source to destination locations.

Table 6: Candidate combined combinations with trip dis-
tances for cell ν0[∅][{u1u2}]

Combined Combinations Distances Total

ν0[∅][{u1}] + ν0[∅][{u2}] 51.55 + 93.33 144.88

Table 7: Candidate combined combinations with trip dis-
tances for cell ν1[{c1}][{u1u2}]

Combined Combinations Distances Total

ν1[{c1}][{u1}] + ν0[∅][{u2}] 51.57 + 93.33 144.90
ν0[∅][{u1}] + ν1[{c1}][{u2}] 51.55 + 96.22 147.77

To compute the cells of the combined member columns for
other table νy, we need to consider all dynamic tables from
ν0 to νy. For example, in ν2, cell ν2[{c1, c2}][{u1u2}] stores
the minimum total trip distance of trips T1 and T2, where the
trips correspond to users u1 and u2, respectively. Here a user
(u1 or u2) can visit any number (0 or 1 or 2) of POI types,
but u1 and u2 together visit the POI types {c1, c2}, and
each POI type is either visited by u1 or u2. For computing
the cell value, we use stored single member trip distances
and multiple member trip distances in ν0, ν1 and ν2. Using
ν0, ν1 and ν2 (Tables 5(a-c)), Table 8 shows the candidate
combinations of POI types for u1 and u2 along with the trip
distances for computing the value for cell ν2[{c1, c2}][{u1u2}]
in ν2 (Table 5(c)). Among candidate combinations listed in
Table 8, the minimum total trip distance 144.90 is stored in
cell ν2[{c1, c2}][{u1u2}].

Table 8: Candidate combined combinations with trip dis-
tances for cell ν2[{c1, c2}][{u1u2}]

Combined Combinations Distances Total

ν2[{c1, c2}][{u1}] + ν0[∅][{u2}] 51.58 + 93.33 144.91
ν1[{c1}][{u1}] + ν1[{c2}][{u2}] 51.57 + 93.33 144.90
ν1[{c2}][{u1}] + ν1[{c1}][{u2}] 51.56 + 96.22 147.78
ν0[∅][{u1}] + ν2[{c1, c2}][{u2}] 51.55 + 96.22 147.77

Similarly, our dynamic programming technique popu-
lates all cells of the combined member columns of ν0,
ν1, ν2, ν3 and ν4. Candidate combinations with trip dis-
tances for cell ν1[{c1}][{u1u2}] , ν3[{c1, c2, c3}][{u1u2}] and
ν4[{c1, c2, c3, c4}][{u1u2}] are listed in Table 7, Table 9 and
Table 10, respectively.

Table 9: Candidate combined combinations with trip dis-
tances for cell ν3[{c1, c2, c3}][{u1u2}]

Combined Combinations Distances Total

ν3[{c1, c2, c3}][{u1}] + ν0[∅][{u2}] 51.90 + 93.33 145.23
ν2[{c1, c2}][{u1}] + ν1[{c3}][{u2}] 51.58 + 93.97 145.55
ν2[{c1, c3}][{u1}] + ν1[{c2}][{u2}] 51.86 + 93.33 145.19
ν2[{c2, c3}][{u1}] + ν1[{c1}][{u2}] 51.57 + 96.22 147.79
ν1[{c1}][{u1}] + ν2[{c2, c3}][{u2}] 51.55 + 96.22 147.77
ν1[{c2}][{u1}] + ν2[{c1, c3}][{u2}] 51.56 + 96.26 147.82
ν1[{c3}][{u1}] + ν2[{c1, c2}][{u2}] 51.57 + 93.97 145.54
ν0[∅][{u1}] + ν3[{c1, c2, c3}][{u2}] 51.55 + 96.26 147.81

Table 10: Candidate combined combinations with trip dis-
tances for cell ν4[{c1, c2, c3, c4}][{u1u2}]

Combined Combinations Distances Total

ν4[{c1, c2, c3, c4}][{u1}]+ν0[∅][{u2}] 51.90+93.33 145.23

ν3[{c1, c2, c3}][{u1}]+ν1[{c4}][{u2}] 51.90+93.33 145.23

ν3[{c1, c2, c4}][{u1}]+ν1[{c3}][{u2}] 51.59+93.97 145.56

ν3[{c1, c3, c4}][{u1}]+ν1[{c2}][{u2}] 51.88+93.33 145.21

ν3[{c2, c3, c4}][{u1}]+ν1[{c1}][{u2}] 51.57+96.22 147.79

ν2[{c1, c2}][{u1}]+ν2[{c3, c4}][{u2}] 51.58+93.97 145.55

ν2[{c1, c3}][{u1}]+ν2[{c2, c4}][{u2}] 51.86+93.34 145.20

ν2[{c1, c4}][{u1}]+ν2[{c2, c3}][{u2}] 51.57+93.97 145.54

ν2[{c2, c3}][{u1}]+ν2[{c1, c3}][{u2}] 51.57+96.23 147.80

ν2[{c2, c4}][{u1}]+ν2[{c1, c3}][{u2}] 51.56+96.26 147.82

ν2[{c3, c4}][{u1}]+ν2[{c1, c2}][{u2}] 51.55+96.22 147.77

ν1[{c1}][{u1}]+ν3[{c2, c3, c4}][{u2}] 51.55+96.26 147.81

ν1[{c2}][{u1}]+ν3[{c1, c3, c4}][{u2}] 51.55+96.23 147.78

ν1[{c3}][{u1}]+ν3[{c1, c2, c4}][{u2}] 51.56+96.28 147.84

ν1[{c4}][{u1}]+ν3[{c1, c2, c3}][{u2}] 51.57+93.97 145.54

ν0[∅][{u1}]+ν4[{c1, c2, c3, c4}][{u2}] 51.55+96.28 147.83

We gradually combine trips of other users, u3 and u4, and
update the other combined member columns one by one.
For example, in ν2, cell ν2[{c1, c2}][{u1u2u3}] contains the
minimum total trip distance of trips T1, T2 and T3, where
the trips correspond to users u1, u2 and u3, respectively, and
together visit the POI types {c1, c2}. Using ν0, ν1 and ν2
(Tables 5(a-c)), Table 11 shows the candidate combinations
of POI types for combined members u1u2 and single member
u3 along with the trip distances for computing the value for
cell ν2[{c1, c2}][{u1u2u3}] in ν2 (Table 5(c)).

Table 11: Candidate combined combinations with trip dis-
tances for cell ν2[{c1, c2}][{u1u2u3}]

Combined Combinations Distances Total

ν2[{c1, c2}][{u1u2}]+ν0[∅][{u3}] 144.90 + 68.84 213.74

ν1[{c1}][{u1u2}]+ν1[{c2}][{u3}] 144.90 + 68.84 213.74

ν1[{c2}][{u1u2}]+ν1[{c1}][{u3}] 144.88 + 123.61 268.49

ν0[∅][{u1u2}]+ν2[{c1, c2}][{u3}] 144.88 + 123.61 268.49

Similarly we compute all combined member columns of
ν0 to ν4. The rightmost cell of the final table νm, which is
ν4[{c1, c2, c3, c4}][{u1u2u3u4}] in our example scenario, con-
tains the minimum total trip distance of four trips T1, T2, T3

and T4, where the trips correspond to users u1, u2, u3 and
u4, respectively. These trips together visit all required POI
types {c1, c2, c3, c4} and each POI type is visited by a single
user. This is actually the minimum total trip distance of the
group for the dynamic scheduling based on the retrieved ini-
tial POIs: p11, p

2
1, p

1
2, p

1
3, p

1
4. The minimum total trip distance

295.53 is stored in cell ν4[{c1, c2, c3, c4}][{u1u2u3u4}].
Note that the rightmost cell of the final table

ν4[{c1, c2, c3, c4}][{u1u2u3u4}] contains the minimum total
trip distance of the group which is AggTripDist that we
have mentioned in Section 5.2. To get the values of Tmini

and Tmaxi
for each user ui, we simply take the minimum and

maximum values from Table 5(a) and Table 5(e), respec-
tively. Tmini

and Tmaxi
values for users {u1, u2, u3, u4} are
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{51.55, 93.33, 68.84, 81.78} and {51.90, 96.28, 123.69, 90.71},
respectively. Using these values we refine the search region
based on Theorems 1 and 2. For user u1, based on The-
orem 1, the major axis for the elliptic region E1 is 51.90.
On the other hand, based on Theorem 2, the major axis is
295.53 − (93.33 + 68.84 + 81.78) = 51.58. We take the best
bound among them which is 51.58, the second one.

Each cell of ν0, ν1, ν2, ν3 and ν4 also stores the set of
POIs for which the minimum trip distance is obtained. For
the sake of clarity we do not show them in the tables.

5.5 Algorithms

Algorithm 1: GTS Approach(S,D,C)

input : S, D, C
output: A set of trips, T

1 Initialize();
2 InitDynTables(|S|, |C|,V);
3 ComputeTable(ν0);
4 Enqueue(Qp, root,MinD(G, root));
5 while Qp is not empty do
6 if end = 1 then
7 break;

8 {p, dmin(p)} ← Dequeue(Qp);
9 r ← dmin(p);

10 if p is not a POI then
11 foreach child node pc of p do
12 Enqueue(Qp, pc,MinD(G, pc));

13 else if τ(p) ∈ C and p ∈
⋃n

i=1 Ei then
14 P ← InsertPOI(p);
15 if init = 0 and CheckInclude(P,C) then
16 ComputeTrip(S,D,C, P,V);
17 init← 1;
18 isup← true;

19 else if init = 1 then
20 isup← UpdateTrip(τ(p), S,D,C, p,V);

21 if isup = true and init = 1 then
22 {T,Mx,Mi} ← UpDynTables(|S|, |C|,V);
23 ellipregions← UpEllipticRegions(T,Mx,Mi);

24 if IsInCircle(G, r, ellipregions) then
25 end← 1;

26 return T

Algorithm 1 shows the pseudocode of our approach to
evaluate GTS queries for both Euclidean space and road
networks. It takes the set of source and destination locations,
S and D, respectively for a group of n members and the set
of required m POI types C as input. The output is the set
of n scheduled trips T = {T1, T2, . . . , Tn}, where n trips
together visit all POI types in C and no POI type is visited
by more than one trip.

As the first step, using function Initialize(), Algorithm 1
initializes G to the geometric centroid of source and destina-
tion locations, a priority queue Qp to ∅, and other variables
as follows: r = 0, end = 0, isup = false, and init = 0.
The variable r represents the radius of current known re-
gion. Flags end and isup indicate whether the terminating
condition is true and a user’s trip has been updated, respec-
tively. Variable init is used to keep track between compute

and update trip operations. Initialize() also declares n el-
liptic regions for n users as ellipregions = {E1, E2, . . . , En},
where the foci of each ellipse Ei is initialized to the source
and destination locations of a user and the length of the
major axis is set to ∞.

Function InitDynTables(|S|, |C|,V) initializes the set
of dynamic tables V = {ν0, ν1, . . . , νm}. After that
ComputeTable(ν0) computes the values for single member
columns and combined member columns of the first dynamic
table ν0. The stored trip distances in ν0 are Euclidean dis-
tances if the GTS is query is processed in the Euclidean
space, and they are road network distances, otherwise.

The algorithm starts searching from the root of the R∗-
tree and inserts the root with MinD(G, root) into a priority
queue Qp. Qp stores its elements in order of their minimum
distances from G, dmin(p) that are determined by Function
MinD(G, p). For both Euclidean space and road networks,
MinD(G, p) returns the minimum Euclidean distance be-
tween G and p, where p represents a POI or a minimum
bounding rectangle of a R∗-tree node. After that the algo-
rithm removes an element p along with dmin(p) from Qp.
At this step, the algorithm updates r, the radius of current
known region. If p represents a R∗-tree node, then algorithm
retrieves its child nodes and enqueues them into Qp. On the
other hand, if p is a POI then it is added to candidate POI
set P , if the POI type is specified in C and falls inside any
user’s ellipse Ei. The algorithm uses function τ(p) to deter-
mine the POI type of a POI p.

Function CheckInclude(P,C) checks whether the POI
set P contains at least one POI from each POI type in
C. When the initial POI set has been found, Function
ComputeTrip(S,D,C, P,V) computes possible trips for all
users and populates the single member columns of ν1 to νm
using our dynamic programming technique. The algorithm
sets init to 1 and isup to true. As mentioned before, the
stored trip distances in the dynamic tables are Euclidean
distances if the GTS is query is processed in the Euclidean
space, and they are road network distances, otherwise.

After computing the trips from the initial POI set, if
the algorithm retrieves any new POI p, it uses Function
UpdateTrip(τ(p), S,D,C, p,V) to compute new trips using
p and update the single member columns of ν1 to νm, if new
trips can improve the stored trip distances in the tables. The
function also updates isup accordingly.

If isup is true and the initial set is already found (i.e.,
init = 1), Function UpDynTables(|S|, |C|,V) updates com-
bined member columns of tables from ν1 to νm based on
the logic described in Section 5.4. The function takes n, m
and the set of all dynamic tables V as input, updates the
combined member columns of the dynamic tables and re-
turns T , Mx and Mi, where T represents the scheduled
trips, Mx and Mi represent the sets {Tmax1 , . . . , Tmaxn}
and {Tmin1 , . . . , Tminn}, respectively. Tmaxi

and Tmini
for

1 ≤ i ≤ n are defined in Section 5.2.

Then using UpEllipticRegions(T,Mx,Mi), the algo-
rithm updates the elliptic bound for all n users, where
ellipregions represents the elliptic search regions of the
users. The bounds for the elliptic search regions are de-
termined using both Theorem 1 and 2. The algorithm
checks the terminating condition of our GTS queries us-
ing Function IsInCircle(G, r, ellipregions). This function
checks whether all n elliptic search regions is included by
the current circular known region or not. If the terminating
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condition is true, the algorithm updates the terminating flag
end to 1. At the end of the algorithm, it returns scheduled
trips T for n users that provide the minimum total distance.

6 A Straightforward Approach

To the best of our knowledge, we introduce GTS queries
in spatial databases and thus, there exists no approach to
process GTS queries in the literature. To validate the effi-
ciency of our proposed approach in experiments, we develop
a straightforward approach for processing GTS queries, S-
GTS, using existing trip planning algorithms.

A straightforward way to process a GTS query would be
independently evaluating optimal trips for every group mem-
ber and for all possible combinations of POI types, and then
selecting n trips that together satisfies the conditions of GTS
queries and provides the minimum total trip distance for the
group. This approach requires multiple independent searches
into the database and accesses same POIs multiple times.

Algorithm 2: S-GTS Approach(S,D,C)

input : S, D, C

output: A set of trips, T
1 m← |C|;
2 n← |S|;
3 InitDynTables(|S|, |C|,V);
4 ComputeTable(ν0);
5 for group member ui do
6 for g ← 1 to m do
7 foreach member tc of CCg do
8 νg[tc][{ui}]← GTP (si, di, tc);

9 {T,Mx,Mi} ← UpDynTables(n,m,V);
10 return T

Algorithm 2 shows the pseudocode of the S-GTS approach
to evaluate GTS queries in the Euclidean and road network
spaces. It takes the following parameters as input: the set
of source and destination locations, S and D, respectively,
for a group of n members and the set of required m POI
types C. The output is the set of n scheduled trips T =
{T1, T2, . . . , Tn}, where n trips together visit all POI types
in C and no POI type is visited by more than one trip.

In the first step, Algorithm 2 initializes the dynamic ta-
bles ν0 to νm using the function InitDynTables(|S|, |C|,V),
which we mentioned in Section 5.4. After that
ComputeTable(ν0) computes single member columns
and combined member columns of the first dynamic table
ν0. After updating table ν0, for each member ui of the group
and for each dynamic table νg, the algorithm calculates
trips for mCg possible sets of POI types using function
GTP (si, di, tc), and populates the dynamic tables ν1 to νm.
The function takes the source and destination locations
of ui, and a set of POI types tc from C as input and
returns the optimal trip with the trip distance in the
Euclidean space or road networks, where the trip starts
from si, passes through POI types in tc and ends at di.
The GTP (si, di, tc) function considers all possible orders of
POI types in tc while computing trip distances and returns
the minimum one. For the function GTP (si, di, tc), any
existing trip planning algorithm or group trip planning
algorithm (by assuming one group member) can be used. In

our experiment, we use the most recent and efficient group
trip planning algorithm [7] for this purpose. However, in
the S-GTS approach, the function GTP (si, di, tc) is called
multiple times, and a same POI may be accessed in the
database more than once. On the other hand, our GTS
approach requires a single traversal on the database and
ensures that a single POI is accessed once in the database.

Finally, the algorithm uses the same function
UpDynTables(n,m,V) as Algorithm 1 to select the fi-
nal n scheduled trips for the group. The function updates
the combined member columns of the dynamic tables
from ν1 to νm, and returns T , and Mx and Mi, where T

represents the scheduled trips, Mx and Mi are not used for
the S-GTS approach.

Although for the S-GTS approach, we apply the similar
dynamic programming that we use for our GTS approach
in Section 5, two approaches are different. In the S-GTS
approach, we use the dynamic programming technique once
to find the final scheduled n trips from the already calculated
optimal trips of users. On the other hand, the GTS approach
incrementally retrieves POIs from the database, calculates
the trips of users based on the retrieved POIs, and applies
the dynamic programming technique every time with the
retrieval of a new POI to check whether the new POI can
improve the scheduled trips.

7 Experiments

In this section, we evaluate the performance of our approach
for processing GTS queries through extensive experiments.
Since there is no existing work for GTS queries in the lit-
erature, we compare our proposed GTS approach with the
straightforward approach (S-GTS) discussed in Section 6 by
varying a wide range of parameters.

We evaluate our approach in both Euclidean and road
network dataspaces using synthetic and real world datasets.
For the real dataset, we used California [2] dataset that con-
tains 87635 POIs of 63 different types. The road network of
California has 21048 nodes and 21693 edges. We generated
the synthetic datasets of POIs of different types using the
uniform random distribution. The whole data space is nor-
malized to 1000x1000 sq. units for both real and synthetic
datasets. An R∗-tree is used to store all the POIs of a dataset
and a in-memory graph data structure is used to store the
road network.

We performed several set of experiments by varying the
following parameters: (i) the group size n, (ii) the number of
specified POI types m in a GTS query, (iii) the query area
A, i.e., the minimum bounding rectangle covering the source
and destination locations, and (iv) the dataset size ds (only
in the Euclidean space).

Table 12: Parameter settings
Parameter Values Default
Group size(n) 2, 3, 4, 5, 6, 7 3
Number of POI

types (m)
2, 3, 4 , 5 , 6 4

Query area(A)
(in sq. units)

50x50, 100x100, 150x150,
200x200, 250x250, 300x300

100x100

Dataset size(ds)
(number of POIs in

thousands)
5, 10, 20, 40, 80, 160 -

Dataset
distribution

Uniform -
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Table 12 shows the range and default values used for each
parameter. To observe the effect of a parameter in an exper-
iment, the value of the parameter is varied within its range,
and other parameters are set to their default values. We use
an Intel Core i5 machine with 2.30 GHz CPU and 4GB RAM
to run the experiments. For each set of experiments, we mea-
sure two performance metrics: the average processing time
and average I/O overhead (I/O access in R∗-tree). The met-
rics are measured by running 100 independent GTS queries
having random source and destination locations, and then
taking the average of processing time and I/O access. Since
both GTS and S-GTS approaches require the same amount
of storage for storing dynamic tables, we do not show them
in our experiments.

7.1 Euclidean Space

Effect of group size (n): Figures 9(a) and 9(b) show the
processing time and I/O access, respectively, for our GTS
and S-GTS approaches. We observe that both processing
time and I/O access slightly increase with the increase of
the group size. Our GTS approach requires significantly less
processing time and I/O access than the S-GTS approach,
which is expected. The S-GTS approach computes the op-
timal trips for each group member and for every possible
combination of POI types independently, and thus, accesses
the same POIs multiple times in the database. On the other
hand, our GTS approach accesses a POI in the database only
once and gradually refines the search regions based on the
scheduled trips using the dynamic programming technique.
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Figure 9: Effect of group size (n) (California dataset)

Effect of m: Figures 10(a) and 10(b) show that the pro-
cessing time and I/O access, respectively, increase with the
increase of m. The results show that our GTS approach out-
performs the S-GTS approach by a large margin in terms of
both I/O access and processing time. Specifically, the im-
provement for the I/O access is more pronounced for the
larger values of m. We observe in Figure 10(b) that the I/Os
required by the GTS approach remains almost constant, and
the number of I/O access for the S-GTS approach sharply
increases with the increase of m. The reason is as follows.
For the change ofm tom+1, the number of independent trip
computations in the S-GTS approach for each group mem-
ber increases by

∑m+1
y=0 (m+1Cy)−

∑m

y=0(
mCy), whereas the

I/O access of the GTS approach depends on the size of its
search region. For an additional POI type, the search region
only slightly increases since the AggTripDist and Tmaxi

for
any user ui increase by only a small amount.

Effect of A: Figures 11(a) and 11(b) show experimental
results for different values of the query area A. We see that
for both approaches, the processing time and I/O access
increase with the increase of A. This is because the POI
search region becomes large if the source and destination
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Figure 10: Effect of number of types (m) (California dataset)

locations are distributed in a large area of the total space.
For both metrics, our GTS approach outperforms the S-GTS
approach, which is for the similar reasons mentioned for the
experiments of varying n.
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Figure 11: Effect of query area (A) (California dataset)

Effect of dataset size (ds): In this experiment, we ex-
amine the performance difference of the two approaches with
respect to data set size (ds). Figures 12(a) and 12(b) show
that as the size increases, processing time and I/O access
increase for both approaches, which is expected. Like other
experiments, the GTS approach takes much less processing
time (approx. 192 times) and I/O access (approx. 570 times)
than the S-GTS approach for any dataset size.
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Figure 12: Effect of dataset size (ds) (Synthetic dataset)

7.2 Road Networks

Experimental results for processing GTS queries in road net-
works using our proposed approach, GTS, show similar per-
formance and trends like the Euclidean space except that
the GTS approach requires on average 6.6 times more query
processing time compared to the required processing time in
the Euclidean space.
Effect of group size (n): Figures 13(a) and 13(b) show

that the query processing time and I/O access increase with
the increase of group size n for both approaches, GTS and
S-GTS. This is because the number of road network distance
computations increase with the increase of n. On the other
hand, with the increase of group size n, for our GTS ap-
proach, the number of I/O access slightly changes, whereas
for the S-GTS approach, the I/O access increases signifi-
cantly due to the access of same POIs multiple times. For
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both metrics, the GTS approach outperforms the S-GTS
approach.
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Figure 13: Effect of group size (n) (California dataset)

Effect of m: Figures 14(a) and 14(b) show the perfor-
mance of the GTS approach and the S-GTS approach for
varying the total number of POI types m. We observe that
the performance trends are similar to those for the Euclidean
space. For any number of types, the GTS approach outper-
forms the S-GTS approach in terms of both I/O access and
processing time.
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Figure 14: Effect of number of types (m) (California dataset)

Effect of A: Figures 15(a) and 15(b) show that both
query processing time and I/O access increase with the in-
crease of A for both approaches, and the GTS approach
performs significantly better than the S-GTS approach for
both metrics.
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Figure 15: Effect of query area (A) (California dataset)

8 Conclusion

In this paper, we have introduced a new type of query, a
group trip scheduling (GTS) query in spatial databases that
enables a group of users to schedule multiple trips among
themselves with the minimum total trip distance of the
group members. We propose the first solution to evaluate
GTS queries in both Euclidean space and road networks.
The refinement technique of the POI search space and the
dynamic approach to schedule trips among group members
are the key ideas behind the efficiency of our approach. Ex-
periments show that our approach is on average 107 times
faster and requires on average 635 times less I/Os than the
straightforward approach for the Euclidean space. For road

networks, we observed that our approach requires on average
30 times less processing time and 1768 times less I/O access
than the straightforward approach. In the future, we aim to
protect location privacy [9, 10] of users for GTS queries.
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ABSTRACT
We address the problem of efficient maintenance of the an-
swer to a new type of query: Continuous Maximizing Range-
Sum (Co-MaxRS) for moving objects trajectories. The tra-
ditional static/spatial MaxRS problem finds a location for
placing the centroid of a given (axes-parallel) rectangle R so
that the sum of the weights of the point-objects from a given
set O inside the interior of R is maximized. However, mov-
ing objects continuously change their locations over time,
so the MaxRS solution for a particular time instant need
not be a solution at another time instant. In this paper, we
devise the conditions under which a particular MaxRS so-
lution may cease to be valid and a new optimal location for
the query-rectangle R is needed. More specifically, we solve
the problem of maintaining the trajectory of the centroid of
R. In addition, we propose efficient pruning strategies (and
corresponding data structures) to speed-up the process of
maintaining the accuracy of the Co-MaxRS solution. We
prove the correctness of our approach and present exper-
imental evaluations over both real and synthetic datasets,
demonstrating the benefits of the proposed methods.

1. INTRODUCTION
Recent technological advances in miniaturization of

position-aware devices equipped with various sensors, along
with the advances in networking and communications, have
enabled a generation of large quantities of (location, time)
data – O(Exabyte) [16]. This, in turn, promoted various geo-
social applications where the (location, time) information is
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1646107, and the ONR grant N00014-14-10215.
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national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

enriched with (sensed) values from multiple contexts [30,
31]. At the core of many such applications of high societal
relevance – e.g., tracking in ecology and environmental mon-
itoring, traffic management, online/targeted marketing, etc.
– is the efficient management of mobility data [23].

Researchers in the Spatio-temporal [15] and Moving Ob-
jects Databases (MOD) [9] communities have developed a
plethora of methods for efficient storage and retrieval of
the whereabouts-in-time data, and efficient processing of
various queries of interest. Many of those queries – e.g.,
range, (k) nearest neighbor, reverse nearest-neighbor, sky-
line, etc. – have had their “predecessors” in traditional rela-
tional database settings, as well as in spatial databases [27].
However, due to the motion, their spatio-temporal variants
became continuous (i.e., the answer-sets change over time)
and even persistent (i.e., answers change over time, but also
depend on the history of the motion) [20, 32].

In a similar spirit, this work explores the spatio-temporal
extension of a particular type of a spatial query – the, so
called, Maximizing Range-Sum query (MaxRS), which can
be described as follows:
Q:“Given a collection of weighted spatial point-objects O and
a rectangle R with fixed dimensions, finds the location(s) of
R that maximizes the sum of the weights of the objects in
R’s interior”.

Various aspects of MaxRS (e.g., scalability, approximate
solutions, insertion/removal of points) have been addressed
in spatial settings [5, 7, 11, 22, 25, 28] – however, our main

Figure 1: MaxRS vs. Co-MaxRS.
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motivation is based on the observation that there are many
application scenarios for which efficient processing of the
continuous variant of MaxRS is essential. Consider the fol-
lowing query:
Q1: “What should be the trajectory of a drone which ensures
that the number of mobile objects in the Field-of-View of its
camera is always maximal?”.

It is not hard to adapt Q1 to other application settings:
– environmental tracking (e.g., optimizing a range-bounded
continuous monitoring of a herd of animals with highest
density inside the region); – traffic monitoring (e.g., detect-
ing ranges with densest traffic between noon and 6PM); –
video-games (e.g., determining a position of maximal cov-
erage in dynamic scenarios involving change of locations of
players/tanks in World of Tanks game). Pretty much any
domain involving continuous detection of “most interesting”
regions involving mobile entities is likely to benefit from the
efficient processing of variants of Q1 (e.g., mining popular
trajectories patterns [33], sports analytics [26], etc.).

Contrary to the traditional range query which detects the
number of points, or higher dimensionality objects such as
(poly)lines and shapes, related to a given fixed region, the
MaxRS determines the location for placing a given region
so that the sum of the weights (i.e., some objective function
related to location) is maximized. Originally, the MaxRS
problem was tackled by the researchers in computational
geometry [11, 22] – however, motivated by its importance
in LBS-applications – e.g., best location for a new franchise
store with a limited delivery range, most attractive place
for a tourist with a restricted reachability bound – recent
works have proposed scalable efficient solution for MaxRS
in spatial databases [5], including approximate solutions [28]
and scenarios where the weights may change and points may
be added/deleted [7].

However, the existing solutions to MaxRS queries can only
be applied to a specific time instant – whereas Q1 is a Con-
tinuous MaxRS (Co-MaxRS) variant. Its weighted-version
would correspond to prioritizing certain kinds of mobile ob-
jects (e.g., areas with most trucks – by assigning higher
weights to trucks) to be tracked by the drone, or certain
kinds of tanks in the World of Tanks game. The fundamen-
tal difference between MaxRS and Co-MaxRS is illustrated
in Figure 1. Assuming that the 8 objects are static at time t0
and the weights of all the objects are uniform, the placement
of the rectangle R indicated in solid line is the solution, i.e.,
count for optimal R is 3. Other suboptimal placements are
possible too at t0, e.g., covering only o2 and o3 with count
being 2. However, when objects are mobile, the placement
of R at different time instants may need to be changed – as
shown in Figure 1 for t0, t and tmax.

A few recent works have tackled the dynamic variants of
the MaxRS problem [1, 21]. These works consider objects
that may appear or disappear (i.e., insert/delete); however,
the locations of the objects do not change over time. To the
best of our knowledge, the Co-MaxRS problem has not been
addressed in the literature so far and the main contribution
of our work can be summarized as follows:
• We formally define the Co-MaxRS problem and identify
criteria (i.e., critical times) under which a particular MaxRS
solution may no longer be valid, or a new MaxRS solution
emerges. These, in turn, enable algorithmic solution to Co-
MaxRS using procedures executing at discrete time instants.
• Given the worst-case complexity of the problem (conse-

quently, the algorithmic solution), we propose efficient prun-
ing strategies to reduce the cost of recomputing the Co-
MaxRS solutions at certain critical times. We present an
in-memory data structure and identify properties that en-
able two such strategies: (1) eliminating the recomputation
altogether at corresponding critical time; (2) reducing the
number of objects that need to be considered when recom-
puting the Co-MaxRS solution at given critical times.
• We evaluate our proposed approaches using both real and
synthetic datasets, and demonstrate that the pruning strate-
gies yield much better performance than the worst-case the-
oretical bounds of the Co-MaxRS algorithm – e.g., we can
eliminate 80-90% of the critical time events and prune ∼70%
objects (on average) when recomputing Co-MaxRS.

In the rest of this paper, Section 2 presents the basic tech-
nical background, and Section 3 formalizes the Co-MaxRS
problem and describes the basic properties and algorithmic
aspects of its solution. Section 4 presents the details of
our pruning strategies: properties, data structures and algo-
rithms, and Section 5 presents the quantitative experimental
observations illustrating the benefits of the proposed prun-
ing. Section 6 positions the work with respect to the related
literature, and Section 7 offers conclusions and directions for
future work.

2. PRELIMINARIES
We now review the approaches for solving static MaxRS

problem and introduce the concept of kinetic data structures
that we subsequently use for solving Co-MaxRS.

2.1 MaxRS for Static Objects
Let C(p,R) denote the region covered by an isothetic rect-

angle R, placed at a particular point p. Formally:

Definition 1. (MaxRS) Given a set O of n spatial points
O = {o1, o2, . . . , on}, where each oi associated with1 a
weight wi , the answer to MaxRS query (AMaxRS(O,R)) re-
trieves a position p for placing the center of R, such that∑
{oi∈( O ∩ C(p,R))} wi is maximal.∑
{oi∈( O ∩ C(p,R))} wi is called the score of R located at

p. If ∀oi ∈ O : wi = 1, we have the count variant, instances
of which at different times are shown in Figure 1. Note that
there may be multiple solutions to the MaxRS problem, and
in the case of ties – one can be chosen randomly, unless other
ranking/preference criteria exist.

Consider the example shown in Figure 2 – the count vari-
ant of MaxRS, with a rectangle R of size d1×d2 and five ob-
jects (black-filled circles). An in-memory solution to MaxRS
(cf. [22]) transforms it into a “dual” rectangle intersection
problem by replacing each object in oi ∈ O by a d1×d2 rect-
angle ri, centered at oi. R covers oi if and only if its center
is placed within ri. Thus, the rectangle covering the max-
imum number of objects can be centered anywhere within
the area containing a maximal number of intersecting dual
rectangles (e.g., r3 ∩ r4 ∩ r5 – gray-filled area in Figure 2).

Using this transformation, an in-memory algorithm to
solve the MaxRS problem in O(n logn) time and O(n) space
was devised in [22]. Viewing the top and the bottom edges of
each rectangle as horizontal intervals, an interval tree – i.e.,
a binary tree on the intervals – is constructed, and then a

1One may also assume that the points in O are bounded
within a rectangular area F.
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Figure 2: MaxRS → rectangle intersection.

horizontal line is swept vertically, updating the tree at each
event. The algorithm maintains the count for each interval
currently residing in the tree, where the count of an inter-
val represents the number of overlapping rectangles within
that interval. When the sweep-line meets the bottom (top)
edge of a rectangle, the corresponding interval is inserted to
(deleted from) the interval tree and the count of each interval
is updated accordingly. Considering the scenario in Figure 2
and using [xil, xir] to denote the left and right boundaries of
ri, when the horizontal sweep-line is at position l, there are
9 intervals: [−∞, x1l], [x1l, x2l], [x2l, x1r], [x1r, x2r], [x2r,
x4l], [x4l, x5l], [x5l, x4r], [x4r, x5r], and [x5r, +∞]—with
counts of 0, 1, 2, 1, 0, 1, 2, 1, and 0 respectively. An interval
with the maximum count during the entire sweeping process
is returned as the final solution and, since there can be at
most 2n events (top or bottom horizontal edge of all ri’s)
and each event takes O(logn) processing time, the whole
algorithm takes O(n logn) time to complete.

We note that one may construct a graph RG (rectangle
graph) where vertices correspond to points/objects inO (i.e.,
the centers of the dual rectangles) and an edge exists be-
tween two vertices oi and oj if and only if the corresponding
dual rectangles overlap (i.e., ri ∩ rj 6= ∅). As illustrated
with dotted edges in Figure 2, an area of maximum overlap
of dual rectangles corresponds to a maximum clique in RG.

2.2 Kinetic Data Structures

Figure 3: Kinetic Data Structures paradigm.

Kinetic data structures (KDS) [2] are used to track at-
tributes of interest in a geometric system, where there is
a set of values (e.g., location – x and y coordinates) that
are changing as a function of time in a known manner. To
process queries at a (virtual) current time t, an instance of
the data structure at initial time t0 is stored (i.e., values of
the attributes of interest), which is augmented with a set
of certificates proving its correctness at t0. The next step
is to compute the failure times of each certificates – called
events – indicating that the data structure may no longer be
an accurate representation of the state of the system. The
events are stored in a priority queue sorted by their failure

times. To advance to a time t (= t0 + δ), we have to pop
all the events having failure times tfail ≤ t0 + δ from the
queue in-order, and perform two operations at each event:
(1) modify the data structure so that it is accurate at tfail
(attribute update), and (2) update the related certificates
accordingly (see Figure 3). In this paper, we utilize KDS
to maintain the Co-MaxRS answer-set over time and only
perform certain tasks at the critical times (events) when a
current MaxRS solution may change.

3. BASIC CO-MAXRS
Interval tree was used as in-memory data structure of the

planesweep algorithm in both [22] and the subsequent work
addressing scalability [5]. However, these techniques can-
not be straightforwardly extended to maintain MaxRS so-
lutions continuously – i.e., one cannot expect to have an
uncountably-infinite amount of interval trees (at each in-
stant of objects’ motion). As it turns out, the answer to
Co-MaxRS can change only at discrete time-instants, which
we address in the sequel.

Throughout this section, without loss of generality, we
assume that each object moves along a single straight line-
segment and all the objects start and finish their motion
in the same time instant. We will lift this assumption and
discuss its impact in Section 4.3.

Continuous MaxRS (Co-MaxRS) is defined as follows:

Definition 2. (Co-MaxRS) Given a set Om of n 2D
moving points Om = {o1, o2, . . . , on}, where each
is associated with a trajectory2 oi = [(xi1, yi1, ti1),
. . . , (xi(k+1), yi(k+1), ti(k+1))] and a weight wi; and
a time-interval T = [t0, tmax], the answer to Co-
MaxRS (ACo-MaxRS(Om, R, T )) is a (time-ordered) sequence
of pairs [(l1obj , [t0, t1)), (l2obj , [t1, t2)), . . . , (lcobj , [tc−1, tmax))],

where (liobj , [ti−1, ti)) denotes the set of objects that deter-
mine the possible location(s) for R that is a MaxRS at any
time instant tj ∈ [ti−1, ti)(⊆ T ).

Figure 4: MaxRS location changes from t1 to t2,
although the objects in the solution are the same.

Note that, instead of maintaining a centroid-location
(equivalently, a region) as a Co-MaxRS solution, we main-
tain a list of objects that are located in the interior of the
optimal rectangle placement. The rationale is two-fold: (1)

2Again, the trajectories may be bounded within a rectangu-
lar area F.
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(a) (b) (c)

Figure 5: Co-MaxRS answer can only change when two rectangles’ relationship changes from overlap to
disjoint (or, vice-versa). Object locations at: (a) t1 (b) t2 (c) t3.

Even for small object movements, the optimal location of
the query rectangle can change while objects participating
in the MaxRS solution stay the same; and (2) We can easily
determine the trajectory (one of the uncountably-many) of
the centroid of R throughout the time-interval during which
the same set of objects constitutes the solution. An example
is shown in Figure 4. At time t1, objects o1, o2, and o3 fall in
the interior of the MaxRS solution. At t2, although the same
objects constitute the MaxRS solution, the optimal location
itself has shifted due to the movement of the objects. Sup-
pose there are s objects in the list ljobj at a particular time

instant ts ∈ [tj−1, tj). Given ljobj , one can find the intersec-
tion of the s dual rectangles to retrieve the (boundaries of
the possible) location for R at ts in O(s) time.

We can readily consider an alternative way of represent-
ing the Co-MaxRS solution – namely, as a trajectory of the
(placement of the) centroid of R. Consider any time interval
during which the same set of objects constitutes the solution
– e.g., again (ljobj , [tj−1, tj)). Let {oj1, . . . , ojs} denote the ac-

tual objects from Om defining ljobj . Their respective dual

rectangles, {rj1, . . . , rjs} have a common intersecting region
at t = tj−1 – which, by assumption, is an axes-parallel rect-
angle. Every point in ∩i=si=1r

j
i can be a centroid of R covering

ljobj at tj−1. Similarly for t = tj – once again we have an
intersection of the s objects yielding an axes-parallel rectan-
gle, except that both its size and location are changed with
respect to the one at t = tj−1. The key observations are:
(1) Each rji dual rectangle, when moving along a straight

line-segment (to follow the oji ) between tj−1 and tj , “swipes”
a volume corresponding to a sheared box/parallelopiped.
(2) At each t ∈ [tj−1, tj) the intersection of the dual rect-
angles is non-empty (otherwise, it would contradict the fact
that the objects in ljobj define the solution) and is a rectangle,
thereby ensuring that the intersection of the parallelopipeds
is continuously non-empty and, again, convex.

Thus, given the AMaxRS(O,R) at t = tj−1 and t = tj ,
we can simply pick a point in the interior of each of the
two (horizontal) rectangles in the (X,Y,Time) space, and
the line-segment connecting them is one of the possible tra-
jectories of the centroid of R as the solution/answer-set
ACo-MaxRS(O,R, T ) (of course, for T = [tj−1, tj)).

We now describe how to identify when a recomputation
of the MaxRS may (not) be needed due to the possibility
of a change in the solution. Consider the example in Fig-
ure 5 with 6 objects: {o1, o2, . . . , o6}. Let ri denote the dual
rectangle for an object oi. For simplicity of visualization,
assume that only o2, o5 and o6 are moving: o2 in west, o5
in north direction (orange rectangles and arrows), and o6 in

the northwest direction. Figure 5a, shows the locations of
objects at t1 and the current MaxRS solution, lobj = {o1, o2,
o3, o4} (blue colored objects in Figure 5a). In this setting,
r2 and r5 do not overlap. Figure 5b shows the objects’ loca-
tions and their corresponding rectangles at t2 (> t1). Due to
the movement of o2 and o5, the maximum overlapped area
changed at t2 (blue-shaded region). But, as r2 and r5 still do
not overlap, the objects comprising the MaxRS solution are
still the same as t1. Finally, Figure 5c represents the objects’
locations at a later time t3, where r2 and r5 are overlapping.
This causes a change in the list of objects making up the
MaxRS solution, and o5 is added to the current solution.
We note that the solution changed only when two disjoint
rectangles began to overlap. If we consider the example in
reverse temporal order, i.e., assuming t3 < t2 < t1, then the
MaxRS solution changed when two overlapping rectangles
became disjoint.
Observation: The solution of Co-MaxRS changes only
when two rectangles change their topological relationship
from disjoint to overlapping ( ~DO), or from overlapping to

disjoint ( ~OD). We consider the objects along the boundary
of the query rectangle R as being in its interior, i.e., rect-
angles having partially overlapping sides and/or overlapping
vertices are considered to be overlapping. In the rest of the
paper, if we need to indicate an occurrence of ~DO or ~OD at
a specific time instant t and pertaining to two specific ob-
jects oi and oj , we will extend the signature of the notation
by adding time as a parameter and index the objects in the
subscript (e.g., ~DOi,j(t) or ~ODi,j(t)).

Thus, as the objects (resp. dual rectangles) move, there
are two kinds of changes:
(1) Continuous Deformation: As the locations of the rectan-
gles change, the overlapping rectangular regions may change,
but the set of objects determining any overlapping rectan-
gular region remains the same.
(2) Topological Change: Due to the movement of the rectan-

gles, a ~DO or ~OD transition occurs for a pair of rectangles.
We note that, while the change of the topological rela-

tionship is necessary for a change in the answer set in the
continuous variant of AMaxRS(Om, R) – it need not be suf-
ficient. As shown in Figure 5, the relationship between r5
and r6 transitioned from disjoint, to overlap, and to dis-
joint again. However, none of those changes affected the
ACo-MaxRS(Om, R, T ) between t1 and t3.

In Section 4.3 we will use this observation when investi-
gating the options of pruning certain events corresponding
to changes in topological relationships. At the time being,
we summarize the steps for a brute-force algorithm for cal-
culating the answer to Co-MaxRS:
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Algorithm 1 Basic Co-MaxRS

Input: (Om, R, T = [t0, tmax])

1: Calculate all the time instants for all the pairwise topo-
logical changes for the objects in Om

2: Sort the times of topological changes
3: For each such time ttci , execute AMaxRS(O,R)
4: if Objects defining the answer set are the same then
5: Extend the time-interval of the validity of the most

recent entry in ACo-MaxRS (Om, R, T = [t0, tmax])
6: else
7: Close the time-interval of validity of the prior most-

recent entry
8: Add a new element into ACo-MaxRS (Om, R, T =

[t0, tmax]) consisting of the objects defining the
AMaxRS(O,R) at ttci , with the interval [ttci , t

tc
i+1)

9: end if
10: return ACo-MaxRS(Om, R, T )

Clearly, the complexity of Algorithm 1 is O(n3 logn) –
which can be broken into: – O(n2) for determining the (pair-
wise) times of topological changes; – O(n2 logn2) for sort-
ing those times; – executing O(n2) times the instantaneous
AMaxRS(O,R) (at O(n logn)). We note that O(n3 logn) is
actually a tight worst-case upper-bound, since the solutions
in AMaxRS(O,R) can be “jumping” from one R-region into
another that is located elsewhere in the area of interest be-
tween any two successive intervals – which are O(n2).

4. PRUNING IN CO-MAXRS
Given the complexity of the näıve solution – which, again,

captures the worst-case possible behavior of moving objects
– we now focus on strategies that could reduce certain com-
putational overheads, based on (possible) “localities”. We
discuss two such strategies aiming to: (1) Reduce the num-
ber of recomputations of MaxRS; and (2) Reduce the total
number of objects considered when recomputing the MaxRS
solution3, and then present the algorithms that exploit those
strategies.

Before proceeding with the details of the pruning, we de-
scribe the data structures used.

Figure 6 depicts the data structures used to maintain
the Co-MaxRS answer-set based on the KDS framework.
Strictly speaking, it consists of:
Object List (OL): A list for storing each object oi ∈ O,
with its current trajectory Troi (i.e., snapshots of location
at t0 and tmax), weight wi, sum of weights of its neighbors
in the rectangle graph WN(oi), and whether or not the ob-
ject is part of the current MaxRS solution. Note that, oj is
neighbor of oi if ri and rj overlap.
Kinetic Data Structure (KDS): Figure 6 illustrates the
underlying KDS (event queue), and its relation with the
OL. Each event E

tk
i,j is associated with a time tk, where

t0 < tk < tmax. KDS maintains an event queue, where the
events are sorted according to the time-value. Each event
entry E

tk
i,j has pointers to its related objects – two object

identifiers, and the type of the event – ( ~DO or ~OD).
Adjacency Matrix (AdjMatrix): Represents the time-
dependent rectangle graph RG, with its rows and columns

3Due to a lack of space, we do not present the proofs of the
Lemmas in this paper, however, they are available at [17].

corresponding to the vertices of RG (i.e., the objects
from Om). For each pair of objects oi and oj , and a
particular (critical) time instant, the AdjMatrix[i][j] and
AdjMatrix[j][i] – set to 1 or 0 – indicate whether the two
objects are directly connected with an edge in RG (i.e., their
dual rectangles overlap).

4.1 Pruning KDS Events
Recall that the solution to MaxRS problem is equivalent

to retrieving the maximum clique in the rectangle graph RG
(cf. Section 2). For our first kind of pruning methodology,
we leverage on the fact that a KDS event involving two ob-
jects oi and oj – which can be either ~DOij or ~ODij – is
equivalent to adding or deleting an edge only between ri
and rj , and no other objects/rectangles are involved. The

properties that allow us to filter out ~DO and/or ~OD types of
events without recomputing the MaxRS are discussed next.
~DO: Let WN(oi)(t) denote the current sum of the weights of
the neighbors of an object oi at time t, and let scoremax(t) =
score((AMaxRS(O,R)), t) denote the score of the current

MaxRS solution at t. During a ~DO event, the lower bound
of a MaxRS solution is scoremax(t), and upper bound of
the score (i.e., maximum possible score) of an overlapping
region including an object oi is (WN(oi) + wi).

Lemma 1. Consider the event ~DOi,j for two objects oi

and oj, occurring at time ti,j. Let l
(ti,j−δ)
obj (for some small

δ) denote the Co-MaxRS solution just before ti,j. After up-

dating WN(oi) and WN(oj) at ti,j (i.e., because of ~DOi,j),

l
(ti,j−δ)
obj remains a MaxRS if one of the following two in-

equalities holds:
(1) WN(oi)(ti,j) + wi ≤ scoremax(ti,j − δ)
(2) WN(oj)(ti,j) + wj ≤ scoremax(ti,j − δ)

~OD: In this case the intuition is much simpler – the
score/count of an instantaneous MaxRS solution can only

decrease (or, remain same) during an ~OD event, and if it
decreases (i.e., changes), both of the objects involved in the
event must have been in lobj . Thus, we have:

Lemma 2. Consider the event ~ODij for two objects oi

and oj occurring at time ti,j. Let l
(ti,j−δ)
obj (for some small

δ) be the current MaxRS solution before ti,j. If one of the
following two conditions holds:

(1) oi /∈ l
(ti,j−δ)
obj

(2) oj /∈ l
(ti,j−δ)
obj

Figure 6: Data structures used.
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(a) (b) (c)

Figure 7: An example showing the objects pruning scheme: (a) Objects’ locations and WN(oi) values at t

(b) Grey objects can be pruned using Lemma 3 in a ~DO event (c) Remaining objects after pruning at a ~DO
event.

then l
(ti,j−δ)
obj remains a MaxRS solution after ~ODij (i.e, af-

ter ti,j).

To utilize Lemma 1 and 2, we maintain for each oi ∈ Om
the value of WN(oi), and whether or not the object is part
of the current MaxRS solution. In Figure 6, two variables
inSolution and WN(oi) are used for this purpose, updated

accordingly during the processing of ~DO and ~OD events.

4.2 Objects Pruning
After filtering out many of the recomputations (Lemma 1

and Lemma 2), it is desirable to reduce the number of
objects required in the recomputation. Towards that, we
the following observations: (1) WN(oi) + wi is an up-
per bound on possible MaxRS scores containing an ob-
ject oi; (2) scoremax, the current MaxRS score, is a lower

bound on possible MaxRS scores after a ~DO event; and (3)
scoremax−min{wi, wj} is a lower bound on possible MaxRS

scores after a qualifying ~ODij event. Let Ei,j denote any

event involving two objects oi and oj (be it ~DOij or ~ODij).
We have:

Lemma 3. After updating WN(oi) and WN(oj) at Eij,
an object ok can be pruned before recomputing MaxRS if one
of the following two conditions holds:

(1) Ei,j is a ~DO event and WN(ok) + wk ≤ scoremax
(2) Ei,j is an ~OD event and WN(ok) +wk ≤ scoremax −

min{wi, wj}

Example 1. Figure 7a demonstrates an example scenario
with 46 objects. For the sake of simplicity, we only con-
sider the counting variant (i.e., ∀oi ∈ O : wi = 1) in this
example. The count of neighbors (i.e., WN(oi)) for each
object is shown as a label, and the current MaxRS solu-
tion is illustrated by a solid rectangle where scoremax (or,
countmax) = 6. Members of lobj are colored purple in Fig-
ure 7. Some of the objects are marked with an id (e.g., o1,
o2, o3, and o4), so that they can be identified clearly in the
text. In this scenario, to process any event, we will first up-
date the appropriate WN(oi) and inSolution values. Then,

suppose a new ~DO event is processed for one of the objects
for which WN(oi) ≤ 5, e.g., between o3 and o4. Then that
event will be pruned and MaxRS answer-set will remain the
same as the maximum possible count of a MaxRS includ-
ing that object will be (5 + 1)=6. Similarly, any ~OD event

involving an object other than the purple ones would be fil-
tered out. Figure 7b illustrates the application of Lemma 3,
based on which all the objects in grey can be pruned during
a ~DO event before recomputing MaxRS. Thus, after apply-
ing Lemma 3, we can prune 26 objects in linear time, i.e.,
going through the set of objects once and verifying the re-
spective conditions. After pruning, 20 objects will remain
(cf. Figure 7b) – only 43% of the total objects.

According to Lemma 1, a ~DOij event is not pruned
when both WN(oi) + wi > scoremax and WN(oj) + wj >
scoremax hold. Let us use N(oi) to denote the list of neigh-
bors of any object oi. Additionally, we employ CN(oi, oj) to
represent common neighbors of two objects oi and oj , i.e.,
N(oi)∩N(oj) . In this setting, there are two possible cases:
Case 1: Both oi, oj /∈ lobj . The observation here is that if

there exists a new MaxRS solution at a ~DOij event, then
both oi and oj must be present in the new solution as only

they are affected by the new ~DO event – all other objects
(and their related attributes) remain the same. Additionally,
for any MaxRS solution including both oi and oj , only the
members of CN(oi, oj) can be in lobj .
Case 2: Either oi ∈ lobj or oj ∈ lobj . Let us assume oi ∈
lobj . Then, if oj overlaps with all objects ok ∈ lobj (an
O(|lobj |) check), then we can directly have a new MaxRS
solution including oj , i.e., lobj = lobj ∪ oj . If this check fails,
we can follow the similar procedure as case 1. Note that, the
case of both oi, oj ∈ lobj is not possible as it contradicts the

concept of ~DOij event, i.e., oi and oj are mutually disjoint

before ~DOij . Based on the above observations, we have the
following two lemmas:

Lemma 4. For an event ~DOij involving two objects oi
and oj, we can prune all the objects except oi, oj, and
CN(oi, oj) before recomputing MaxRS.

Lemma 5. For an event ~DOij involving two objects oi
and oj where oi ∈ lobj, we can set lobj∪oj as the new MaxRS
solution if oj overlaps with all objects ok ∈ lobj.

To take advantage of Lemma 4, we need to keep track of
neighbors of all the objects in addition to WN(oi), which is
the purpose of the adjacency matrix (AdjMatrix in Figure 6).
We note that one could also maintain a list N(oi) for each
object – however, although each approach would incurO(n2)
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Figure 8: Application of Lemma 4 in ~DO events.

space overhead in the worst case, the adjacency matrix has
certain advantages:
• Updating of the matrix information can be done in
O(1) time. For example, at a ~DOi,j event we can di-
rectly set AdjMatrix[i][j]=1 and AdjMatrix[j][i]=1. Simi-
larly, AdjMatrix[i][j] and AdjMatrix[j][i] can be set to 0 at

an ~ODi,j event.
• We can compute CN(oi, oj) for two objects oi and oj effi-
ciently by doing a bit-wise AND operation over AdjMatrix[i]
and AdjMatrix[j].

Example 2. Suppose there is a new ~DO event between
objects o1 and o3 in the example in Figure 7. The event
will not be pruned because both WN(o1) and WN(o3) >
5. As o1 ∈ lobj , we will first check if o3 overlaps with all
other members of lobj (purple colored objects). As it does
overlap with all the members of lobj , we can directly output
lobj ∪ o3 as the new solution using Lemma 5. On the other

hand, suppose the new ~DO occurs between o2 and o3. Using
Lemma 4, we can prune all the objects except o2, o3, and
N(o2)∩N(o3). This leaves us with only 4 remaining objects
(cf. Figure 8) – 91.3% objects are pruned from the calcu-
lation. Obviously, score of the recomputed MaxRS will be
less than the scoremax we already have (i.e., 6), and thus no
change to the solution of Co-MaxRS will be made. We can
see, Lemma 4 and Lemma 5 greatly optimizes processing of
~DO events.

4.3 KDS Properties and Algorithmic Details
Instead of a single line-segment, moving objects tra-

jectories in practice are often polylines with vertices
corresponding to actual location-samples. To cater to
this, we introduce another kind of event, pertaining to
an individual object – line-change event at a given time
instant, denoted as Elc(oi, tli). Suppose, for a given object
oi, we have k + 1 time-samples during the period T as
ti1, ti2, . . . , ti(k+1), forming k line-segments. Note that the
frequency of location updates may vary for different objects;
even for a single object, the consecutive time-samples may
have different time-gap. Initially, we insert the second
time-samples for all the objects into the KDS as line-change
events (cf. Figure 6). When processing Elc(oi, tli) we need

to compute: (a) Next ~OD events with the neighbors; and

(b) Next ~DO events with other non-neighboring objects.
We also need to insert a new line-change event at tl(i+1)

for
oi into the KDS. Thus, processing a line-change event takes
O(n) time. Note that a particular trajectory may start
(appear) and/or finish its trip (disappear) at any time t,

where t0 < t < tmax and we can use similar ideas to handle
these special cases in O(n) time.

KDS Properties: We proceed with briefly analyzing the
properties of our proposed KDS-based structure (in the
spirit of [2]), which shows that our adaption of KDS is re-
sponsive, efficient, local, and practically responsive.
(1) Number of certificates altered during an event
(Responsiveness): Recall that we have two kinds of core
events:
~DO Event: At such an event we need to compute the time of
the next ~OD event between the two objects and insert that
to KDS if it falls within the given time-period T . Thus, only
one new event (certificate) is added.
~OD Event: For these events, we just need to process them,
and no new event is inserted into KDS.
In both cases, the number is a small constant – conforming
with the desideratum.
(2) The size of KDS (Compactness): In case of our

adaptation of the KDS, we can have at most O(n2) ~DO

and ~OD events at once. If we consider the additional line-
change events for the polyline moving objects trajectories,
there can be one such event for each object at any partic-
ular time, i.e., O(n) such events. Thus, the size of KDS
at a particular time is at most O(n2). However, as we will
see in Section 5, in practice the size (total events) can be
significantly smaller than this upper-bound – meeting the
desideratum, i.e., O(nε) for some arbitrarily small ε > 0 .
(3) The ratio of internal and external events (Effi-

ciency): In our KDS, the ~DO and ~OD events are exter-
nal events (i.e., possibly causing changes to the Co-MaxRS
answer-set), and the line-change events are internal. Thus,
the ratio between total number of events and external events
is O(n2)+O(n)

O(n2)
, which is relatively small. This is a desired

property of an efficient KDS [2].
(4) Number of certificates associated with an object

(Locality): An object can have n − 1 ~DO and ~OD events
with the other objects, and 1 line-change event at a partic-
ular time instant, i.e., the number of events associated with
an object is O(n), which is an acceptable bound.

Subsequently, our adaption of KDS is responsive, efficient,
local and, in practice, compact too.

Algorithmic Details: In Algorithm 2, we present the de-
tailed method for maintaining Co-MaxRS for a given time
period [t0, tmax]. As mentioned, for each object, in addition
to WN and inSolution variables, we also keep track of the
active neighbors in RG via AdjMatrix. After initialization
(line 1 and 2), the KDS is populated with all the initial
events that fall within the given time-period (line 3) – a
step taking O(n2) time. Then, we retrieve the current solu-
tion, i.e., the list of objects, and create a new time-interval
of its validity, starting at tnewstart in lines 4-6. We update the
inSolution values of related objects whenever we compute a
new MaxRS solution, and discard an old one (lines 7, 15, and
16). Lines 8–19 process all the events in the KDS in order
of their time-value, and maintain the Co-MaxRS answer-
set throughout. The top event from the KDS is selected
and processed using the function EventProcess (elaborated
in Algorithm 3). After checking whether a new solution
has been returned from EventProcess, the answer-set is ad-
justed in the sense of closing its interval of validity (tnewend )

408



Algorithm 2 Co-MaxRS (OL, R, t0, tmax)

1: KDS ← An empty priority queue of events
2: ACo-MaxRS ← An empty list of answers
3: Compute next event Enext, ∀oi ∈ OL and push to KDS
4: current ← Snapshot of object locations at t0
5: (locopt, scoremax, lobj)←R Location MaxRS(current)
6: tnewstart ← t0
7: Update inSolution variable for each oi in lobj
8: while KDS not EMPTY do
9: Ei,j ←KDS.Pop()

10: (l′obj , scoremax) ← EventProcess(Ei,j ,KDS, lobj ,
scoremax)

11: if lobj 6= l′obj then
12: tnewend ← ti
13: ACo-MaxRS.Add(lobj , [t

new
start, t

new
end ))

14: tnewstart ← ti
15: Update inSolution variable for each oi in lobj
16: Update inSolution variable for each oi in l′obj
17: lobj ← l′obj
18: end if
19: end while
20: tnewend ← tmax
21: ACo-MaxRS.Add(lobj , [t

new
start, t

new
end ))

22: return ACo-MaxRS

which, along with the corresponding lobj are appended to
ACo-MaxRS(Om, R, T ) (for brevity, the “.Add()” notation is
used). A modified version of the MaxRS algorithm from [22]
is used where, in addition to the score, the list lobj is also
returned – cf. R Location MaxRS in line 5. Note that, the
condition check at line 11 in implementation actually takes
constant time, which we detect via setting a boolean variable
during MaxRS computation.

The processing of a given KDS event Ei,j is shown in Al-
gorithm 3. In line 1, the WN of the relevant objects and
AdjMatrix are updated. In lines 2–7, we compute new ~OD
events and update the KDS. Lines 8–13 implement the ideas
of Lemma 1 and Lemma 2, which takes O(1) time. Lines
14–19 implement the idea of Lemma 5 to process a special
kind of ~DO events. Line 20 introduces a new list OL′, which
will eventually retain only the unpruned objects. Lines 21-
24 employ the idea of Lemma 4 for ~DO events. Lines 25–29
implement the ideas of objects pruning (Lemma 3), which
takes O(n) time. Finally, MaxRS is recomputed in lines
30–31 based on the current snapshot of the remaining mov-
ing objects in O(n logn) time (for brevity, we omitted han-
dling line-change events in Algorithm 3). Lines 32–34 en-
sure that only valid computed values are returned, i.e., when
score′max > scoremax for ~DO events.
Discussion: In the worst-case, Co-MaxRS for n trajecto-
ries with k segments throughout the query time-interval, has
O(kn2) events. In KDS, O(n2) events are added at the be-
ginning, then at each of the O(kn) line change events, O(n)
new events may be created, resulting in O(kn2) events in to-
tal. Observe that between two consecutive event-times ts−1

and ts, there is a Co-MaxRS path of constant complexity
(i.e., the centroid of R moves along a straight line-segment).
As mentioned in Section 3, this follows from the fact that
the Co-MaxRS solution covering a particular list lsobj in the
sequence (ACo-MaxRS(Om, R, T )) for the interval [ts−1, ts], is
the (maximum) intersection of sheared-boxes generated by
the motion of the dual rectangles of the objects in lsobj . Thus,

Algorithm 3 EventProcess (Ei,j , KDS, lobj , scoremax)

1: Update WN(oi), WN(oj), and AdjMatrix accordingly

2: if Ei,j .T ype = ~DO then
3: Compute Enext for objects oi and oj
4: if Enext 6= NULL and Enext.t ∈ [t0, tmax] then
5: KDS.Push(Enext)
6: end if
7: end if
8: if Ei,j .T ype = ~DO and (WN(oi) + wi ≤ scoremax or

WN(oj) + wj ≤ scoremax) then
9: return (lobj , scoremax)

10: end if
11: if Ei,j .T ype = ~OD and (oi.inSolution = false or

oj .inSolution = false) then
12: return (lobj , scoremax)
13: end if
14: if Ei,j .T ype = ~DO and Either oi/oj ∈ lobj then
15: ok ← oj/oi
16: if ok and lobj are mutually overlapping then
17: return (lobj ∪ ok, scoremax + wk)
18: end if
19: end if
20: OL′ ← OL
21: if Ei,j .T ype = ~DO then
22: CN(oi, oj)← Compute-CN (AdjMatrix, oi, oj)
23: OL′ ← CN(oi, oj) ∪ {oi, oj}
24: end if
25: for all ok in OL′ do
26: if (Ei,j .T ype = ~DO and WN(ok) + wk ≤ scoremax)

or (Ei,j .T ype = ~OD and WN(ok)+wk ≤ scoremax−
min(wi, wj)) then

27: Prune ok
28: end if
29: end for
30: current ← Snapshot of objects in OL′ at ti
31: (loc′opt, score

′
max, l

′
obj)←R Location MaxRS(current)

32: if (Ei,j .T ype = ~OD) or (Ei,j .T ype = ~DO and
score′max > scoremax) then

33: return (l′obj , score
′
max)

34: end if
35: return (lobj , scoremax)

the worst-case combinatorial complexity of the path of the
centroid of the Co-MaxRS solutions is O(kn2) – with a note
that there may be discontinuities between consecutive loca-
tions of the centroids (i.e., the solution “jumps” from one lo-
cation to another). The overall worst-case complexity when
considering trajectories with multiple segments (i.e., poly-
line routes) is O(kn3 logn).

We close this section with two notes:
(1) While the worst-case complexity of processing Co-
MaxRS is high, such orders of magnitude are not uncommon
for similar types of problems – i.e., detecting and maintain-
ing flocks of trajectories [8]. However, as our experiments
will demonstrate, the pruning strategies that we proposed
can significantly reduce the running time.
(2) A typical query processing approach would involve fil-
tering prior to applying pruning – for which an appropriate
index is needed, especially when data resides on a secondary
storage. Spatio-temporal indexing techniques abound since
the late 1990s (extensions of R-tree or Quadtree variants,
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combined subdivisions in spatial and temporal domains,
etc. [14, 19]). Throughout this work we focused on efficient
in-memory pruning strategies, however, in Section 5 as part
of our experimental observations, we provide a brief illus-
tration about the benefits of using an existing index (TPR∗

tree [29]) for further improving the effects of the pruning.
This, admittedly, is not a novel research or a contribution
of this work, but it serves a two-fold purpose: (a) to demon-
strate that our proposed approaches could further benefit
by employing indexing; (b) to motivate further research for
appropriate index structure.

5. EXPERIMENTAL OBSERVATIONS
Datasets: We used two real-world datasets and another
synthetic one during our experiments. The first real-world
dataset we used is the bicycle GPS (BIKE-dataset) collected
by the researchers from University of Minnesota [10], con-
taining 819 trajectories from 49 different participant bik-
ers, and 128,083 GPS points. The second one is obtained
from [34] (MS-dataset), which contains GPS-tracks from
182 users in a period of over five years collected by re-
searchers at Microsoft with 17,621 trajectories in total, cov-
ering 1,292,951 km and over 50,176 hours (with GPS samples
every 1-5 seconds). To demonstrate the scalability of our
approach, we also used a large synthetic dataset (MNTG-
dataset) generated using Minnesota Web-based Traffic Gen-
erator [18]. The generated MNTG-dataset consists of 5000
objects, and 50000 trajectories with 400 points each, where
we set the option that objects are not constrained by the un-
derlying network. For every object in the synthetic dataset,
we generated its weight uniformly in the range from 1 to 50,
while weights in Bike-dataset and MS-dataset (real-world
datasets) were set to 1.

For each of the dataset used in the experiments, we con-
sidered one trajectory per object during a run and we av-
eraged over all the runs to get representative-observations.
The default values of the number of objects for BIKE, MS,
and MNTG dataset are 49, 169, and 5000 respectively. The
query time is set to the whole time-period (lifetime of trajec-
tories) during a particular run for each respective dataset,
and the base value of range area (R) for each of the BIKE,
MS, and MNTG dataset is 500000, 100000, and 400000 m2

respectively.
Implementations: We implemented all the algorithms in
Python 2.7, aided by powerful libraries, e.g., Scipy, Mat-
plotlib, Numpy, etc. We conducted all the experiments on a
machine running OS X El Capitan, and equipped with Intel

(a) (b)

Figure 9: (a) Events Pruning (b) Objects Pruning.

Core i7 Quad-Core 3.7 GHz CPU and 16GB memory. As
no prior works exist that directly deal with the Co-MaxRS
problem, we use Algorithm 1 as our baseline for compari-
son. In addition to the Algorithms 1, 2 and 3, we have two
additional implementations4: (1) As mentioned at the end
of Section 4.3, we added TPR∗-tree index, to investigate the
further benefits in terms of pruning with KDS; and (2) To
demonstrate the benefits of our pruning schemes, we tested
them against a trivial approximate-solution to Co-MaxRS:
one that would periodically re-evaluate the query through-
out its time-interval of interest. In other words, MaxRS
is re-computed at each t + δ, i.e., δ is a fixed time-period
(default δ=5s).
Performance of Pruning Strategies: Our first observa-
tions are shown in Figure 9a and they demonstrate the ef-
fectiveness of our events pruning strategy over both the real
and synthetic datasets. The most amount of pruning is ob-
tained in MS-dataset, while the other two datasets also show
more than 80% pruning. Note that, the number of actual
recomputation-events are well below the worst-case theoret-
ical upper-bound, e.g., only 103 events are processed for 49
objects (trajectories) running for an hour in Bike-dataset.
Similar results are obtained for the objects pruning scheme,
as demonstrated in Figure 9b – indicating that the pruning
schemes perform nearly equally well in all three datasets.
Impact of Cardinality: Figure 10 illustrates the impact
of the cardinality on the effectiveness of our pruning meth-
ods. In Figure 10a, from the experiment done on the BIKE-
dataset, we can deduce an interesting relation: as the data-
size increases, more ~OD kind of events are pruned, whereas
(cf. Figure 10b), objects pruning slightly decreases for ~OD

as the datasize increases. On the other hand, ~DO events
exhibit completely opposite behavior. This, in a sense, neu-
tralizes the overall impact of the increase in cardinality for
our pruning scheme. Figure 10c demonstrates the effect of
increasing the cardinality of objects on the pruning schemes
for all the dataset – hence, the label on the X-axis indicates
the percentage of all the objects for the respective datasets.
Influence of Range Size: This experiment was designed
to observe the effect of different range sizes, i.e., the area of
R – d1 × d2 over the pruning strategies. As shown in Fig-
ure 11a, increasing range area (the values on X-axis indicate
multiples of the base-size for each dataset) results in fewer
portion of events pruned. This occurs because as the area of
R grows, there are more overlapping dual rectangles among
the moving objects. Similarly, the growing rectangle size
had adverse effects on the objects pruning scheme as well
(cf. Figure 11b). We note, though, that even with quite
large values of R (e.g., 50000 m2) we have more than 60%
of pruning through our proposed methods.
Benefits of indexing: Indexing the trajectories provides a
filtering power which can be used as an additional pruning
benefits (with respect to the Lemmas in Section 4) in terms
of retrieving overlapping neighbors for any object. Figure 12
demonstrates benefits of indexing over varying cardinality
(experiment done on MNTG Dataset). The running time
using index is almost 100% times faster (half) for 5000 ob-
jects. We re-iterate that, as mentioned in Section 4.3, this
is not a research contribution of the paper but only serves
the purpose to demonstrate that an index is likely to yield

4We note that all the datasets and the source
code of the implementation are publicly available at
http://www.eecs.northwestern.edu/∼mmh683.
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(a) (b) (c)

Figure 10: Impact of cardinality on the pruning schemes: (a) Different events pruning (BIKE-dataset) (b)
Objects pruning (BIKE-dataset) (c) Overall objects and events pruning (all datasets).

(a) (b)

Figure 11: (a) Events pruning strategy; (b) Objects
pruning strategy against varying range sizes.

Figure 12: Potential impact of index.

further benefits for our proposed approaches.

Figure 13: Running-time in different datasets.

Running Time Comparison: We ran the algorithms over
the three datasets and the result is shown in Figure 13. This
is the first experiment in which we also report observations
regarding the periodical processing of the MaxRS – and it

serves the purpose to provide a complementary illustration
of the benefits of our methodologies. Namely, even if one
is willing to accept an error in the result and perform only
periodic snapshot MaxRS, our pruning techniques are still
more efficient, while ensuring correct/complete answer set.
The Base, (Base+O), (Base+E), (Base+E+O), and Peri-
odic in Figure 13 denote the base Co-MaxRS, base + objects
pruning, base + events pruning, base + both events and ob-
jects pruning, and periodical processing of MaxRS (δ=5s),
respectively. In case of MNTG-dataset, the average running
time (for a set of trajectories) is shown in minutes, while for
the other two datasets the unit it is shown in seconds. We
omitted the average running time for the base algorithm over
MNTG-dataset in Figure 13 which is more than 10 hours (to
avoid skewing the graph). The base Co-MaxRS is the slow-
est among these algorithms, as it recomputes MaxRS at each
event. The effect of both events and objects pruning schemes
on running time is prominent, although events pruning ex-
hibits a bigger impact individually (preventing unnecessary
recomputations). When both pruning strategies are applied
together, the algorithm speeds-up significantly – almost 6-15
times faster than the base algorithm over all the datasets –
making it the fastest among all the evaluated algorithms.

(a) (b)

Figure 14: Impact of δ on (a) Error (b) Running
Time of periodic-MaxRS.

Periodical Processing: The last observations illustrate
the errors induced by periodical processing of MaxRS
(periodic-MaxRS) to approximate Co-MaxRS. Note that we
exclude performing periodic-MaxRS related experiments on
the large synthetic dataset (MNTG-dataset) as the correct-
ness, rather than scalability, is a concern. In Figure 14, the
impact of (δ) is illustrated both on running time and correct-
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ness. As δ increases the error in the approximation increases
as well. Even for a small δ (e.g., 1s), the respective error
is still around 8-14% (cf. Figure 14a). Complementary to
this, in Figure 14b, we see that as δ decreases, the running
time increases too. For both Bike-dataset and MS-dataset,
for small δ values (≤ 5s), average processing time is much
longer than our proposed algorithm (Base+E+O) and yet
it contains errors.

6. RELATED WORKS
The problem of MaxRS was first studied in the Compu-

tational Geometry community, with [11] proposing an in-
memory algorithm to find a maximum clique of intersection
graphs of rectangles in the plane. Subsequently, [22] used
interval tree data structure to locate both (i) the maximum-
and (ii) the minimum-point enclosing rectangle of a given
dimension over a set of points. Although both works pro-
vide theoretically optimal bound, they are not suitable for
large spatial databases, and a scalable external-memory al-
gorithm – optimal in terms of the I/O complexity – was
proposed in [5] (also addressing (1− ε)-approximate MaxRS
and All-MaxRS problems). More recently, the problem of
indexing spatial objects for efficient MaxRS processing was
addressed in [35]. In this work, we used the method of [22]
to recompute MaxRS only at certain KDS events, however,
we proposed pruning strategies to reduce the number of such
invocations. We note that an indexing scheme based on a
static sub-division of the 2D plane (cf. [5, 35]) need not to be
a good approach for spatio-temporal data because the densi-
ties in the spatial partitions will vary over time, and we plan
to investigate the problem of efficient indexing techniques for
Co-MaxRS as part of our future work.

In [24], an algorithm to process MaxRS queries when the
locations of the objects are bounded by an underlying road
network is presented. Complementary to this, in [4] the
solution is proposed for the rotating-MaxRS problem, i.e.,
allowing non axis-parallel rectangles. Recently, [1] proposed
methods to monitor MaxRS queries in spatial data streams –
objects appear or disappear dynamically, but do not change
their locations. Although [1], [4], and [24] deal with inter-
esting variants of the traditional MaxRS problem, they do
not consider the settings of mobile objects.

In this work, we relied on the KDS framework, introduced
and practically evaluated in [2]. The KDS-like data struc-
ture was used to process critical events at which the current
MaxRS solution may change. To estimate the quality of
a KDS, [2] considered performance measures such as the
time-complexity of processing KDS events and computing
certificate failure times, the size of KDS, and bounds on
the maximum number of events associated with an object.
We used the same measures to evaluate the quality of our
approach.
Circular (Co-)MaxRS: A special note is in order for the,
so called, circular MaxRS [3] – which is, the region R is a
disk instead of a rectangle. Arguably, this problem is Θ(n2)
and one of the main reasons is that the combinatorial com-
plexity of the boundary of the intersection of a set of disks
is not constant (unlike axes-parallel rectangles). This, in
turn, would increase the n logn factor in our algorithms to
n2 – and the continuous variant of the circular MaxRS im-
plies maintaining intersections of sheared cylinders instead
of sheared boxes. We also note that this case (counting vari-
ant) bears resemblance to works that have tackled problems

in trajectory clustering [13]. More specifically, [8] introduced
the concept of flocks as a group of trajectories who are mov-
ing together within a given disk and for a given time, and [12]
introduced the (less constrained) concept of trajectory con-
voys. These works, while similar in spirit to a continuous
variant of the circular MaxRS – have not explicitly addressed
the problem of detecting (and maintaining) the disk which
contains the maximum number of moving objects, nor have
considered weights of the objects. We re-iterate that the re-
sults in [8] show that some of the proposed algorithms have
complexities similar in magnitude to the worst-case com-
plexity of the Co-MaxRS. An approximate solution to the
static variant of the circular MaxRS was presented in [5] (ap-
proximating the disk with the minimum bounding square)
and our current Co-MaxRS solution can be readily applied
towards the approximated variant.

7. CONCLUSION AND FUTURE WORKS
We addressed the problem of determining the locations of

a given axes-parallel rectangle R so that the maximum num-
ber of moving objects from a given set of trajectories is inside
R. In contrast to the MaxRS problem first studied by the
computational geometry community [11, 22], the Continu-
ous MaxRS (Co-MaxRS) solution may change over time. To
avoid checking the validity of the answer-set at every clock-
tick, we identified the critical times at which the answer to
Co-MaxRS may need to be re-evaluated, corresponding to –
events occurring when the dual rectangles of the moving ob-
jects change their topological relationship. To speed up the
processing of Co-MaxRS we used the kinetic data structures
(KDS) paradigm and proposed two pruning heuristics: (1)
eliminating events from KDS; and (2) eliminating the ob-
jects not affecting the answer (when re-computation of Co-
MaxRS is necessary). While our algorithms mostly focused
on the moving objects (resp. rectangles) defining the answer
set, the possible volume(s) (in terms of 2D space + time)
swept by the Co-MaxRS can be straightforwardly derived.
Our experiments, over both real and synthetic data sets,
showcased that the proposed heuristics enabled significant
speed-ups in terms of the overall computation time from the
upper bound on the time complexity.

There are numerous extensions of our work. One task is
to devise a suitable indexing structure that will minimize
the I/O overheads when trajectories data sets need to re-
side on a secondary storage or even on cloud [6], and to
investigate the trade-offs between processing time vs. ap-
proximate answer to Co-MaxRS [5]. While, intuitively, our
approaches seem “transferable” to the case of circular Co-
MaxRS, we still need to have a more thorough investigation
of the pruning effects in the KDS – and a related challenge is
to investigate Co-MaxRS when the rectangles are in general
positions (i.e., not restricted to be axes-parallel) [4]. In our
solution there may be cases where Co-MaxRS has disconti-
nuities – i.e., the current MaxRS needs to instantaneously
change its location. Clearly, in practice one may want to
have a realistic time-budget for the MaxRS to “travel” from
one such location to another – which is another challenge
to be addressed, in terms of lost precision. Other natural
extensions of this setting are to investigate the k-variant of
Co-MaxRS – i.e., the case of multiple mobile cameras jointly
guaranteeing a continuous maximal coverage, as well as the
effective management of Co-MaxRS for real time location
updates.
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ABSTRACT
Shortest path computation is a fundamental problem in road net-
works with various applications in research and industry. However,
returning only the shortest path is often not satisfying. Users might
also be interested in alternative paths that are slightly longer but
have other desired properties, e.g., less frequent traffic congestion.

In this paper, we study alternative routing and, in particular, the
k-Shortest Paths with Limited Overlap (k-SPwLO) query, which
aims at computing paths that are (a) sufficiently dissimilar to each
other, and (b) as short as possible. First, we propose MultiPass, an
exact algorithm which traverses the network k−1 times and em-
ploys two pruning criteria to reduce the number of paths that have
to be examined. To achieve better performance and scalability, we
also propose two approximate algorithms that trade accuracy for
efficiency. OnePass+ employs the same pruning criteria as Multi-
Pass, but traverses the network only once. Therefore, some paths
might be lost that otherwise would be part of the solution. ESX
computes alternative paths by incrementally removing edges from
the road network and running shortest path queries on the updated
network. An extensive experimental analysis on real road networks
shows that: (a) MultiPass outperforms state-of-the-art exact algo-
rithms for computing k-SPwLO queries, (b) OnePass+ runs sig-
nificantly faster than MultiPass and its result is close to the exact
solution, and (c) ESX is faster than OnePass+ (though slightly less
accurate) and scales for large road networks and large values of k.

CCS Concepts
•Information systems → Geographic information systems;
Database query processing;

Keywords
Alternative Routing;Road Networks;Query Services

1. INTRODUCTION
Computing the shortest path between two locations in a road net-
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ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

Figure 1: Motivational example

work is a fundamental problem that has attracted lots of attention
by both the research community and the industry. Traditionally,
the shortest path problem is addressed by Dijkstra’s algorithm [9].
Additionally, a plethora of pre-processing based methods have been
proposed that answer shortest path queries in almost constant time,
even for continental sized networks [7, 11, 21, 25].

However, in many real-world scenarios, determining solely the
shortest path is not enough. Most commercial route planning ap-
plications and navigation systems offer alternatives that might be
longer than the shortest path but have other desirable properties
(e.g., lower fuel consumption), leaving the final decision to the
user. Alternative routes are also very useful for the transportation of
goods using a fleet of vehicles, i.e., transportation of humanitarian
aid through unsafe regions. By distributing the load into vehicles
that follow different routes, the probability that at least some of the
goods will arrive at the destination safely can be increased. Another
interesting scenario arises in emergency situations such as natural
disasters and terrorist attacks. To avoid panic and potential catas-
trophic collisions while dealing with the aftermath of such events,
evacuation plans should include, apart from the shortest, alternative
paths that are sufficiently dissimilar to each other.

A first take on providing alternative routes with no prior infor-
mation is to solve the K-shortest paths problem [10, 15, 24]. In
most cases, though, the returned paths share large stretches, and
therefore, they are of little practical value to the user. Consider the
scenario illustrated in Figure 1, which shows three different paths
from location A to B representing the central train station and the
hospital in the city of Bolzano, respectively. The solid/black line
indicates the shortest path fromA toB while the dashed/red line in-
dicates the next path by length; notice how similar these two paths
are. On the other hand, the green/dotted line indicates a third path,
which is clearly longer than the other two but significantly differ-
ent from the shortest path. In practice, the paths cover very distant
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parts of the city’s road network. In many application scenarios, the
green/dotted path would be considered as a better alternative to the
shortest path, compared to the dashed/red path.

Existing literature has approached alternative routing from dif-
ferent perspectives. Notable works include methods which aim at
computing alternative routes either by incrementally building a set
of dissimilar paths [12] or by employing edge penalties [2]. The
proposed methods, though, typically give no guarantees regard-
ing the length of the alternative paths. Other approaches [1, 3,
5] first generate a large number of candidates and then, in a post-
processing step, consider a number of constraints and criteria in
order to determine the final alternative paths. However, in these
works alternatives are defined based solely on their individual sim-
ilarity to the shortest path, which results in alternative paths that are
very similar to each other and, hence, of limited interest to the user.

Contributions. In this paper, we focus on the problem of find-
ing k-Shortest Paths with Limited Overlap (k-SPwLO), previously
introduced in [6]. A k-SPwLO query aims at computing paths
that are (a) sufficiently dissimilar to each other (based on a user-
specified similarity threshold), and (b) as short as possible. In
[6], we presented the OnePass algorithm for processing k-SPwLO
queries. The algorithm outperforms a baseline solution which enu-
merates paths in increasing length order, but, in reality, OnePass
is not practical even for mid-sized road networks. To this end, we
propose MultiPass, an exact algorithm which extends and improves
OnePass by employing an additional pruning criterion. In contrast
to OnePass, which traverses the road network once and expands
only those paths that qualify the similarity constraint, MultiPass
traverses the network k−1 times, but examines and expands only
the most promising paths. Any path that cannot lead to a solution
is pruned. Our experimental analysis shows that MultiPass always
outperforms OnePass, and, in most cases, by a large margin.

Despite its significant performance advantage over OnePass, also
MultiPass cannot scale in practice for large road networks, a fact
that is backed by our extensive experimental evaluation. In this
spirit, we propose two approximate methods that trade result qual-
ity for efficiency. Our first approximate algorithm, OnePass+, em-
ploys the pruning power of MultiPass, but traverses the road net-
work only once, similar to OnePass. Thereby, OnePass+ may prune
some partial paths that, in a subsequent iteration, could become part
of an alternative path. Our second approximate algorithm, ESX,
computes alternative paths by incrementally removing edges from
the road network that belong to previously recommended paths, and
running shortest path queries on the updated network. Essentially,
ESX reduces the search for alternative paths to a set of shortest
path queries which require much less time to be processed. In our
extensive experimental evaluation, we show that the approximate
algorithm OnePass+ is significantly faster than the exact algorithm
MultiPass, while recommending alternative paths that are almost as
short as the alternatives in the exact k-SPwLO set. We also show
that ESX is the fastest algorithm and is scalable even for large road
networks (i.e., one million nodes) and large values of k.

Outline. The rest of the paper is organized as follows. Section 2
briefly discusses the related work on providing alternative paths. In
Section 3, we formally define the k-SPwLO problem and revisit our
evaluation methodology from [6]. In Section 4, we present Mul-
tiPass, a novel exact algorithm for processing k-SPwLO queries,
and conduct a preliminary experimental analysis comparing Multi-
Pass to OnePass. Next in Section 5, we investigate the approximate
evaluation of k-SPwLO. We first discuss a baseline method SVP+,
based on existing literature and then propose our approximate algo-

rithms OnePass+ and ESX. The results of our detailed experimental
evaluation are reported in Section 6. Finally, Section 7 concludes
the paper and points to future work.

2. RELATED WORK
A common approach for alternative routing is to first compute

a large set of candidate paths, then examine the candidate paths
with respect to a number of constraints (e.g., their length or the
nodes they cross) and determine the final result set. In [5], the au-
thors build two shortest path trees, one from the source and one
from the target, and then look for paths that appear in both trees
simultaneously, termed plateaus. This approach was revisited and
formally defined in [3] (where the concept of alternative graphs
has been introduced with the same functionality as the plateaus)
and further improved in [17]. Abraham et al. [1] introduced the
notion of single-via paths. The method runs Dijkstra’s algorithm
two times, once from the source s and once from the target t while
reversing the edges of the road network. Then, for each node n
apart from s and t, the algorithm constructs a single-via path by
concatenating the shortest path from s to n and the shortest path
from n to t. The algorithm evaluates each (simple) single-via path
by employing a set of user-defined constraints, i.e., length, local
optimality and stretch, and rejects all single-via paths that violate
these constraints. Compared to our k-SPwLO problem, none of the
aforementioned methods tackles the problem of computing multi-
ple alternative paths that are dissimilar to each other; in contrast,
the similarity only to the shortest path is considered.

Penalty-based methods generate a set of paths that are dissimi-
lar to the shortest path by adding a penalty on the weights of the
edges of the shortest path. For example, Akgun et. al. [2] pro-
pose a method which doubles the weight of each edge that lies on
the shortest path. The alternative paths are computed by repeatedly
running Dijkstra’s algorithm on the input road network, each time
with the updated weights. A similar approach is adopted in [14],
where the penalty is computed in terms of both the path overlap and
the total turning cost, i.e., how many times the user would have to
switch between roads when following a path. The main shortcom-
ing of penalty-based methods is that there is no intuition behind
the value of the penalty applied before each subsequent iteration.
In general, using a large penalty value would result in diverse but
possibly very long alternative paths. On the other hand, using a
small penalty value would require the algorithm to perform more
iterations in order to find the desired result. Even so, penalty-based
methods cannot provide a formal result set. Our last approximate
algorithm ESX can also be viewed as a penalty based method where
the penalty added to the weight of selected edges is +∞.

To the best of our knowledge, the problem tackled in [12] is the
most similar to our k-SPwLO problem. The authors devise a so-
lution which extends Yen’s algorithm [24] to produce paths that
qualify a similarity constraint. In particular, given a source s and
a target t, starting from the shortest path, the algorithm produces
a set of candidate paths by modifying the previously found path.
Among the candidate paths, the algorithm chooses the one that is
most dissimilar to the previously found path and continues until
a sufficiently dissimilar path is found. Apparently, the algorithm
does not examine paths in length order but only based on their sim-
ilarity. Thus, it does not compute alternative paths that are as short
as possible, but only dissimilar. Naturally, a user finds more value
in paths that are also as short as possible.

Xie et. al. [23] define alternative shortest paths using edge avoid-
ance. Given the shortest path p(s→t) and an edge e on p, the alter-
native path is the shortest path from s to t which avoids edge e. To
compute alternative paths, they build upon the concept of distance
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oracles [20] and distance sensitivity oracles [4] and propose iSPQF,
a quadtree-based spatial data structure inspired by [19]. Compared
to our work, iSQPF computes only one alternative path instead of
a set. Moreover, the use-case is different as Xie et al. find alterna-
tive paths by explicitly avoiding forbidden edges, while k-SPwLO
considers the similarity between paths to propose alternative paths.

Finally, the task of alternative routing can be based on the pareto-
optimal paths for multi-criteria networks [8, 13, 16]. A path p is
part of the pareto-optimal set (or the route skyline) P if p is not
dominated by another path p′ ∈ P . Hence, path p dominates p′ iff
p is not worse than p′ in all criteria/dimensions of the network (e.g.,
distance, travel time, gas consumption) and strictly better than p′ in
at least one of those criteria. Our definition of alternative routing,
i.e., the k-SPwLO query, is not a multi-criteria optimization prob-
lem; the paths recommended by k-SPwLO cannot be obtained by
first computing the pareto-optimal path set.

3. BACKGROUND
LetG=(N,E) be a directed weighted graph representing a road

network with set of nodes N and set of edges E ⊆ N×N . The
nodes of G represent road intersections and the edges represent
road segments. Each edge (nx, ny) ∈ E has an assigned posi-
tive weight wxy , which captures the cost of moving from node nx

to ny , e.g., travel time or distance. A (simple) path p(s → t)
from a source node s to a target node t (or just p, if s and t are
clear from the context) is a connected and cycle-free sequence of
edges 〈(s, nx), . . . , (ny, t)〉. The length `(p) of a path p equals the
sum of the weights of all contained edges. The shortest path be-
tween two nodes, p0(s→t), is the path that has the shortest length
among all paths connecting s to t. The length of the shortest
path is also termed the (network) distance between s and t, i.e.,
d(s, t)=`(p0(s→t)).

Problem Definition. In [6], we introduced the problem of k-
Shortest Paths with Limited Overlap (k-SPwLO) in order to rec-
ommend alternative paths a user may take to reach her destination.
In particular, let P be a set of paths from a node s to another node t
on a road network G. A path p′(s→t) is called alternative to set P
if p′ is sufficiently dissimilar to every path p ∈ P . More formally,
the similarity of p′ to p is determined by their overlap ratio:

Sim(p′, p)=

∑
(nx,ny)∈p′∩p wxy

`(p)
, (1)

where p′ ∩ p denotes the set of edges shared by p′ and p. Then,
given a similarity threshold θ, path p′ is alternative to set P iff
Sim(p′, p) ≤ θ,∀p ∈ P holds.

Now, given a source node s and a target node t, a k-SPwLO
(s, t, θ, k) query returns a set of k paths from s to t, sorted in in-
creasing length order, such that:

(a) the shortest path p0(s→t) is always included,

(b) all k paths are pairwise dissimilar with respect to the similarity
threshold θ, and

(c) all k paths are as short as possible.

Consider the road network in Figure 2. The shortest path from
s to t is p0=〈(s, n3), (n3, n5), (n5, t)〉 with length `(p0)=8.
Assume that P contains only the shortest path, i.e., P={p0}
and consider paths p1=〈(s, n3), (n3, n5), (n5, n4), (n4, t)〉
and p2=〈(s, n3), (n3, n4), (n4, t)〉 with `(p1)=9 and
`(p2)=10, respectively, as alternatives to P . Path p1
shares edges (s, n3) and (n3, n5) with p0, which gives

s

n1

n2

n3

n4

n5 t

6

4

3

2
6

3

5

5

3

1
2

2

Figure 2: Running example.

Sim(p1, p0)=(ws,3 + w3,5)/`(p0) = 6/8 = 0.75, whereas
Sim(p2, p0)=ws,3/`(p0) = 3/8 = 0.38. Assuming a similarity
threshold θ=0.5, only p2 is alternative to P .

Note that the asymmetric similarity metric of Equa-
tion 1 allows us to exclude needlessly long paths. Fol-
lowing up on our previous example, consider the shortest
path p0 and the paths p3=〈(s, n3), (n3, n4), (n4, t)〉 and
p4=〈(s, n3), (n3, n2), (n2, n4), (n4, t)〉 with `(p3)=10 and
`(p4)=13, respectively. The use of a symmetric similarity metric
such as the Jaccard distance would indicate that p4 is less similar to
p0 than p3, although the shared length of both p3 and p4 with p0 is
the same. With the asymmetric definition of Equation 1 we avoid
such cases. Furthermore, the pairwise dissimilarity is guaranteed
as long as `(p′) ≥ `(p) (proof excluded due to lack of space).

Evaluating k-SPwLO. A naïve approach for evaluating k-
SPwLO queries is to iterate over all paths connecting s to t and
compute their pairwise similarity. Naturally, such a solution is not
practical. A potential improvement is to examine paths in increas-
ing order of their length, which allows us not to examine all possi-
ble paths p(s→ t). This idea was captured by the baseline method
in [6], but the computation cost is still prohibitively high.

To further reduce the search space, we first introduced a prun-
ing criterion in [6] based on the following simple observation.
Let p(s→n) be a path connecting source s to a node n, and
pi(s→t) ∈ PLO be an already recommended path. Assume that
p is extended to reach target t, resulting in path p′(s→t). As p′

contains all edges shared by p and pi, its similarity to pi is at least
equal to the similarity of path p, i.e., Sim(p′, pi) ≥ Sim(p, pi).
Hence, given a threshold θ, if there exists pi ∈ PLO such that
Sim(p, pi) ≥ θ, path p can be safely discarded. This observation
is formally captured by the following lemma:

LEMMA 1. Let PLO be the set of already recommended paths.
If p is an alternative path to PLO with respect to a threshold θ,then
Sim(p′, pi) ≤ θ holds for every subpath p′ of p and all pi ∈ PLO .

We used this Lemma 1 as pruning criterion in the OnePass algo-
rithm. The algorithm traverses the road network, expanding every
path from the source node s that satisfies Lemma 1. OnePass em-
ploys a min priority queue in order to examine paths in increasing
order of their length. Each time a new path is recommended, i.e.,
added to the result set PLO , an update procedure takes place for all
remaining incomplete paths p(s → n) in the priority queue. The
algorithm terminates when either k paths are added to the result set
or all paths from s to t qualifying Lemma 1 are examined.

OnePass can be viewed as an extension of Fox’s algorithm [10]
for computing the K-shortest paths. Fox’s algorithm traverses the
road network expanding every path from source node s. At each it-
eration, the algorithm expands up to K nodes, allowing each node
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to be expanded up to K times. It terminates when the target node
has been expanded K times. The time complexity of Fox’s algo-
rithm isO(|E|+K · |N | · log |N |). In contrast to Fox’s algorithm,
OnePass allows each node to be visited an unlimited number of
times. Each node can be visited by OnePass as many times as the
number of paths from s to t. Note that enumerating all paths from
s to t is a #P -complete problem [22]. OnePass terminates when
either k paths are recommended or all paths from s to t qualify-
ing Lemma 1 are examined. Hence, the complexity of OnePass is
O(|E| + K · |N | · log |N |), where K is the number of shortest
paths that have to be computed in order to cover the k results of the
k-SPwLO query.

4. AN EFFICIENT EXACT ALGORITHM
Despite employing the pruning criterion of Lemma 1, OnePass

still has to expand and examine a large portion of all possible
p(s→t) paths. In this section, we propose a novel label-setting
algorithm termed MultiPass to enhance the computation of k-
SPwLO. The algorithm employs an additional powerful pruning
criterion which significantly reduces the search space by avoiding
expanding non-promising paths. Our experimental analysis in Sec-
tion 4.3 demonstrates the advantage of MultiPass over OnePass in
practice using real-world road networks.

4.1 Pruning Non-Promising Paths
Let p0(s→t) be the shortest path from a source node s to a tar-

get node t as illustrated in Figure 3. In addition, let pi(s→n) and
pj(s→n) be two distinct paths from source s to a node n of the
shortest path p0 such that `(pi)<`(pj). Assuming that both pi and
pj are extended to reach target t following the same path p(n→t),
then any extension of pi will be shorter than the respective exten-
sion of pj . Furthermore, let Sim(pi, p0)≤Sim(pj , p0), i.e., the
overlap ratio of pi with p0 is equal or lower than the ratio of pj
with p0. Due to the monotonicity of the similarity function (Equa-
tion (1)), any extension of pi to nwill have the same or less overlap
ratio with p0 compared to the respective extension of pj . In other
words, for any extension of pj there will always be a shorter exten-
sion of pi with less or equal overlap ratio with p0, and therefore, pj
can be pruned.

s n t
p0

pi

pj

Figure 3: Pruning paths with Lemma 2.

The same idea can be utilized to prune the search space when
computing the shortest alternative path to a set of pathsP . Consider
again pi,pj with `(pi)<`(pj) and Sim(pi, p0)≤Sim(pj , p0).
Path pj is pruned if for every path p ∈ P the overlap ratio
Sim(pi, p) is lower or equal to Sim(pj , p). This pruning crite-
rion is formally captured by the following lemma:

LEMMA 2. Let P be a set of paths from a source node s to a
target node t, and pi, pj be two paths from source s to some node
n. If `(pi)<`(pj) and ∀p ∈ P : Sim(pi, p)≤Sim(pj , p) hold,
then path pj cannot be part of the shortest alternative path to P ,
and we write pi ≺P pj .

PROOF. We prove the lemma by contradiction. Assume that an
extension p′j=〈(s, ∗), . . . , (∗, n), . . . , (∗, t)〉 of pj(s→n) to target

t is the shortest alternative path to P . Then, we show that an exten-
sion p′i=〈(s, ∗), . . . , (∗, n), . . . , (∗, t)〉 of pi(s→n) to target t is
also an alternative path and it will be examined and recommended
before p′j .

According to the definition of alternative path, Sim(p′j , p)≤θ
holds ∀p ∈ P and following Lemma 1 Sim(pj , p)≤θ also
holds ∀p ∈ P . Furthermore, due to the ∀p ∈ PLO :
Sim(pi, p)≤Sim(pj , p) assumption of Lemma 2, we get that
Sim(pi, p)≤θ holds ∀p ∈ P .

As extension paths p′i and p′j share the same sequence of edges
connecting n to target t, we deduce that (a) Sim(p′i, p)≤θ holds
∀p ∈ P , i.e., p′i is alternative to P and (b) `(p′i)<`(p

′
j) which

means that p′i will be examined before p′j .

The pruning criterion of Lemma 2 can be utilized to compute the
shortest alternative to a set of paths as follows. Let P be the set of
paths for which we want to compute the shortest alternative path,
and Pn be the set of paths from s to a node n created during the
expansion of all paths from s. If set Pn contains a path p′(s→n)
such that (a) p′ is longer than any path pn ∈ Pn \ {p′} and (b)
for every path p ∈ P the overlap ratio Sim(p′, p) is higher than
the ratio Sim(pn, p) for all paths pn ∈ Pn \ {p′}, then p′ can be
pruned. Note that the addition of a path in Pn may render condition
(b) not applicable for another path already contained in Pn. To
ensure that the set Pn contains only paths for which both (a) and
(b) hold, every time a new path is added to Pn, we have to check
whether condition (b) still holds for all paths in the set.

Unfortunately, Lemma 2 cannot be employed directly for the
computation of k-SPwLO queries. Consider again the example in
Figure 3. Let p0 be the only path in the set of currently recom-
mended alternative paths P . If during the search for the next alter-
native p1 to P , pj is pruned because pi ≺P pj holds, pj cannot be
part of the shortest alternative to P . However, there is no guarantee
that pj will not be part of the shortest alternative to both p0 and
p1. In particular, if pi is part of p1, then, during the search for the
next alternative to P={p0, p1}, pi might be pruned much earlier
by Lemma 1. Hence, we have to compute k-SPwLO queries in an
iterative way. Each time a new alternative is added to the k-SPwLO
result set, we have to re-start the search for the next alternative from
the beginning.

4.2 The MultiPass Algorithm
Next, we present MultiPass, which employs both pruning cri-

teria of Lemma 1 and Lemma 2 to enhance the computation of
k-SPwLO queries. The algorithm has the following key features.
For each node n of the road network, MultiPass maintains a set of
labels Λ(n). Each label represents a path from s to n and is of
the form 〈n, p(s→n)〉1. MultiPass traverses the road network k-1
times. At each iteration, the algorithm examines paths from s in in-
creasing order of their length and expands every path p(s→n) from
s to a node n for which the following holds: (a) its similarity with
any already computed result does not exceed the input threshold θ
(Lemma 1) and (b) its extension can possibly lead to the shortest
alternative path during the current iteration (Lemma 2). Every time
a new path pn(s→n) that qualifies conditions (a) and (b) is found,
a label 〈n, pn〉 is added to Λ(n), and MultiPass removes all paths
from Λ(n) which do not qualify condition (b). As soon as a path
to target t is found, MultiPass terminates current round, discards
all stored labels, and re-traverses the network from source s. The
algorithm terminates after k paths are added to result set PLO or

1In practice, MultiPass stores only the predecessor of each label
during the expansion. By tracing backwards each step of the ex-
pansion, the actual path can be retrieved at any time.
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ALGORITHM 1: MultiPass
Input: Road network G(N,E), source node s, target node t,

# of results k, similarity threshold θ
Output: Set PLO of k paths

1 PLO ← {shortest path p0(s→t)};
2 while |PLO |<k and last round updated PLO do
3 initialize min-priority queueQ with 〈s, ∅〉;
4 ∀n ∈ N : Λ(n)← ∅;
5 whileQ not empty do
6 〈n, pn〉 ← Q.pop(); . Current path
7 if n=t then
8 PLO ← PLO ∪{pn}; . Update result set
9 break;

10 else
11 foreach outgoing edge (n, nc) ∈ E do
12 pc ← pn ◦ (n, nc); . Expand path pc
13 if ∃pi ∈ PLO : Sim(pc, pi)≥θ then
14 continue; . Pruned by Lemma 1
15 else if ∃〈nc, p

′
c〉 ∈ Λ(nc) : p′c≺PLO pc then

16 continue; . Pruned by Lemma 2
17 else
18 remove fromQ and Λ(nc) all

〈nc, p
′
c〉 : pc ≺PLO p′c; . Lemma 2

19 Q.push(〈nc, pc〉);
20 Λ(nc)← Λ(nc) ∪ {〈nc, pc〉};

21 return PLO ;

the last iteration failed to find an alternative path. In the latter case,
a complete set of k-SPwLO with respect to given θ and k values
cannot be computed.

Algorithm 1 illustrates the pseudocode of MultiPass. The algo-
rithm initializes PLO with the shortest path p0(s→t) (Line 1) and
employs a min priority queue Q to traverse the road network. Be-
fore each traversal round, Q is initialized to 〈s, ∅〉 (Line 3) and
the algorithm associates each node n with a (initially empty) set
of labels Λ(n) (Line 4). At each round in between Lines 5 and
20, MultiPass first pops label 〈n, pn〉 for current path pn in Line 6.
If n is the target t, then pn is added to PLO and the round termi-
nates (Lines 7–9). Otherwise, the algorithm expands the current
path pn considering all outgoing edges (n, nc) (Lines 10-16). For
each new path pc ← pn ◦ (n, nc) (Line 12), the algorithm checks
whether pc qualifies the pruning criteria of Lemma 1 (Lines 13-
14) and Lemma 2 (Lines 15-16). If the new path pc qualifies both
pruning criteria, MultiPass removes fromQ and Λ(nc) every label
representing a path p′n such that pc ≺PLO p′n (Line 19). Finally,
MultiPass adds the new label to Q (Line 19) and Λ(nc) (Line 20)
and proceeds with popping the next label fromQ.

To achieve an efficient implementation, for each label 〈n, pn〉
MultiPass also stores a vector VSim containing the overlap ratio
of pn with all paths that were in PLO at the time when the label
was created. Due to the monotonicity of Equation 1, the overlap
ratios stored in VSim can be updated incrementally. When a new
label is created and added to Q, our implementation of MultiPass
performs lazy updates for Q and retains a black list to ignore la-
bels representing pruned paths after they are removed from Q. In
order to consider results in PLO that are added after the creation
of the label, each time a label is popped MultiPass compares the
size of VSim stored in the popped label to |PLO| and, if necessary,
computes the missing overlaps and updates VSim.

EXAMPLE 1. We demonstrate MultiPass using the road net-
work of Figure 4 and the k-SPwLO(s, t, 0.5, 3) query. During ini-
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Figure 4: Result of k-SPwLO (s,t,0.5,3) query.

tialization, the shortest path p0(s→n)=〈(s, n3), (n3, n5), (n5, t)〉
is computed and added to PLO .

Starting from s, the first path examined by Mul-
tiPass is p(s→n3)=〈(s, n3)〉. The overlap ratio
Sim(p(s, n3), p0)=3/8=0.375 is below the similarity threshold
θ=0.5; hence p(s, n3) is not pruned. The same holds for the
next two paths examined, which are p(s→n2)=〈(s, n2)〉 and
p(s→n1)=〈(s, n1)〉.

Next, MultiPass examines paths p(s→n5)=〈(s, n3), (n3, n5)〉,
p′(s→n1)=〈(s, n3), (n3, n1)〉, p′(s→n2)=〈(s, n3), (n3, n2)〉
and p(s→n4)=〈(s, n3), (n3, n4)〉. For path p(s→n5) the over-
lap ratio Sim(p(s, n5), p0)=6/8=0.75 exceeds the similarity
threshold of 0.5 and so, path p(s→n5) is pruned (Lemma 1). For
path p′(s→n1) the overlap ratio Sim(p′(s, n1), p0)=0.375 does
not exceed the similarity threshold. Since node n1 has already
been visited by path p(s→n1), we check Lemma 2. We have
Sim(p′(s→n1), p0)>Sim(p(s→n1), p0) and for the length
`(p′(s→n1))<`(p(s, n1)). Therefore, Lemma 2 cannot be applied
and path p′(s→n1) is not pruned. On the contrary, for path
p′(s→n2) we have Sim(p′(s→n2), p0)>Sim(p(s→n2), p0)
and `(p′(s→n2))>`(p(s→n2)). In this case, the criterion of
Lemma 2 is applied and path p′(s→n2) is pruned. Finally, for
path p(s→n4) the overlap ratio Sim(p(s→n4), p0)=0.375 does
not exceed the similarity threshold, hence, the path is not pruned.

MultiPass continues the execution of the current round un-
til the alternative path p1(s→t)=〈(s, n3), (n3, n4), (n4, t)〉 with
`(p1)=10 is found and subsequently added to PLO . Next, Multi-
Pass performs the second round in the same fashion, computes the
alternative path p2(s→t)=〈(s, n3), (n3, n1), (n1, t)〉 and com-
pletes the result set PLO .

Compared to OnePass, MultiPass traverses the road network
k−1 times instead of once (hence, the name of the algorithm).
Each round works independently, i.e., builds a new path tree by
expanding all paths that qualify both pruning criteria. As a result,
at each round, MultiPass may potentially re-expand and re-examine
paths already processed in previous rounds. On the other hand, by
employing Lemma 2, the number of paths that MultiPass has to ex-
amine (including the paths examined multiple times) is lower than
the number of paths processed by OnePass. Finally, OnePass has to
check the simplicity of every new path, i.e., whether any cycles are
contained, while MultiPass does not need to perform such a check,
as Lemma 2 ensures that all non-simple paths are pruned.

Complexity analysis. Given a k-SPwLO query, MultiPass first
computes the shortest path p0(s→t) from source node s to target
t. Naturally, the cost of this step is independent of the number of
requested paths k and the similarity threshold θ. For the computa-
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tion of p0(s→t), any shortest path algorithm can be employed, e.g.,
Dijkstra’s algorithm [9] which requires O(|E|+ |N | · log |N |).

To find each subsequent alternative path, MultiPass expands all
paths from source s that qualify the pruning criterion of Lemma 1.
However, as the value of the similarity threshold θ approaches 1,
the number of paths pruned by Lemma 1 significantly drops, which
means that MultiPass returns the K-Shortest paths. Furthermore in
practice, there exists no formula for estimating the number of paths
pruned by the pruning criterion of Lemma 2. Hence, each round
of MultiPass becomes equivalent to Fox’s algorithm [10] with a
complexityO(|E|+K · |N | · log |N |), where K is the number of
the shortest paths that have to be computed to cover the k-SPwLO
result. Since MultiPass has to perform k−1 rounds to compute a
k-SPwLO query, its total runtime complexity isO(k(|E|+K ·|N |·
log |N |)) where K�k. We have shown in [6] that the number of
K-shortest paths that need to be computed in order to cover the k-
SPwLO set is very high; in extreme cases, MultiPass may have to
construct all paths from s to t.

Finally, note that the time complexity of MultiPass is worse than
the time complexity of OnePass. However, we show in our ex-
perimental evaluation that MultiPass is much faster than OnePass.
The reason for this inconsistency is that, although by employing the
pruning criterion of Lemma 2 MultiPass examines much less paths
than OnePass, there can be no formal guarantees for the number
of paths that are pruned. Although MultiPass has worse theoretical
time complexity, in practice it is much more efficient than OnePass.

Optimization. As discussed in [6] for OnePass, the performance
of MultiPass can be further enhanced by employing a lower bound,
d(n, t), for the network distance d(n, t) of every node n to the
target t. By employing such a lower bound, MultiPass traverses at
each round the network in anA∗-like fashion and directs the search
towards the target, which avoids visiting nodes that are far away. In
order to derive tight d(n, t) lower bounds, we first reverse the edges
of the road network and then run Dijkstra’s algorithm from target t
to every node n of the network [18]. In practice, at the beginning of
the MultiPass execution, instead of simply computing the shortest
path from s to t, we compute the shortest path from target t to each
node n in the road network.

4.3 Experimental Evaluation
To demonstrate its efficiency, we compare MultiPass against

OnePass presented in [6] using real road networks. For each al-
gorithm, we measure the average response time and the number of
examined labels (i.e., paths) over 1,000 random queries varying pa-
rameters k and θ. Due to the high execution time of OnePass, our
experiments involve only the road networks for the city of Olden-
burg (6,105 nodes and 14,058 edges) and the city of San Joaquin
(18,263 nodes and 47,594 edges). We also consider a timeout of
120 seconds for the evaluation of each query.

Figure 5 reports the response times of MultiPass and OnePass.
The continuous lines show the time for the queries for which
both algorithms finished their execution in less than 120 seconds,
whereas the dashed lines show the time for all 1,000 queries includ-
ing those which did not finish within 120 seconds. In Figures 5a
and 5b, we observe that the performance of both OnePass and Mul-
tiPass deteriorates as the number k of requested paths increases.
For all values of k though, MultiPass is clearly faster than OnePass,
and in most cases MultiPass is at least two times faster. Another in-
teresting observation is that the performance curve of OnePass is
almost linear, i.e., each iteration requires approximately the same
time. For instance, for Oldenburg (Figure 5a) the algorithm needs
similar time to find the third and the fourth alternative path. On

the other hand, MultiPass needs more time for each subsequent re-
sult. This behavior can be explained by the fact that MultiPass
restarts and re-expands paths. With regard to parameter θ, we ob-
serve in Figures 5c and 5d that in all cases, MultiPass is faster than
OnePass. Especially for the lowest values of θ, i.e., 0,1 and 0.3,
MultiPass outperforms OnePass by at least an order of magnitude.
The performance of OnePass is close to MultiPass only for θ=0.9,
where the computed paths can be very similar.
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Figure 5: Performance comparison of MultiPass and OnePass vary-
ing requested paths k and similarity threshold θ.

To provide a better insight on the performance of MultiPass and
OnePass, we report in Figure 6 the number of labels/paths each
algorithm needs to examine before returning the k-SPwLO result.
We observe that in all scenarios MultiPass examines significantly
fewer paths than OnePass (even though we count the total number
of paths from all rounds of MultiPass, hence some paths may be
counted more than once). With respect to the similarity threshold
θ, we observe the following important trade-off. As θ increases,
the pruning power of Lemma 1 deteriorates, and both OnePass and
MultiPass construct more paths (supporting measurements are not
included due to lack of space). However at the same time, the next
result can be determined earlier and, hence, the total runtime drops.
In addition, as θ decreases, the pruning power of Lemma 2 in-
creases, and more partial paths can be pruned. This explains the
behavior of MultiPass, where the number of examined paths ini-
tially increases, but after θ=0.5 it goes down.

Finally, in Table 1 we report the percentage of timed-out/failed
queries for timeout values of 30, 60 and 120 seconds. First, we
observe that the failure rate of OnePass is, in most cases, much
higher than the failure rate of MultiPass. More specifically, for the
road network of Oldenburg, the failure rate of OnePass is more than
10% when k>3 or θ<50%. For the road network of San Joaquin,
apart from the case where k=3 and θ=90%, the failure rate of
OnePass is more than 30%, even when the timeout is set to 120
seconds. On the contrary, the timeout rate of MultiPass for the
road network of Oldenburg is in all cases below 10%. For the road
network of San Joaquin, the failure rate of MultiPass is below 10%,
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Figure 6: Comparison of examined paths by OnePass and Multi-
Pass varying requested paths k and similarity threshold θ.

except for the cases where k>3. However, even in cases where the
failure rate of MultiPass is the highest (θ=50% and k>3), it is still
significantly lower than the failure rate of OnePass.

road
network θ k OnePass MultiPass

30 60 120 30 60 120

Oldenburg

0.1 3 46.9 45.4 44.5 0 0 0
0.3 3 22.8 20.5 17.8 0 0 0
0.5 3 9.1 7.7 6.6 0 0 0
0.7 3 0.4 0.1 0.1 0 0 0
0.9 3 0 0 0 0 0 0
0.5 2 2.7 0.2 1.5 0 0 0
0.5 4 15.2 12.8 10.7 2.6 1.4 0.7
0.5 5 20.4 17.5 15 9.6 7.4 6.2

San Joaquin

0.1 3 77.5 76 74.6 3.2 1.8 1.3
0.3 3 66.8 65.2 63.2 8.1 5.6 4.4
0.5 3 52.3 49.4 46.6 6.8 5.1 3.5
0.7 3 35.8 33.6 32.1 2.1 0.9 0.3
0.9 3 3.1 2.3 1.6 0 0 0
0.5 2 36.5 34.1 33.2 0 0 0
0.5 4 61 59.3 56.8 28.9 25.5 22.5
0.5 5 67.5 64.8 62.3 45.2 42 39.1

Table 1: Failure rate (%) for timeout set to 30, 60 and 120 sec.

5. APPROXIMATE ALGORITHMS
Our experimental analysis in Section 4.3 showed that MultiPass

clearly outperforms OnePass presented in [6]. However, despite
employing Lemma 2, MultiPass still has to examine a large num-
ber of paths, which essentially renders the algorithm not applicable
to large-scale road networks. In view of this, we next investigate
the approximate evaluation of k-SPwLO queries. In particular, we
first discuss a baseline method, termed SVP+, which builds on top
of existing literature, and then we propose two novel approximate
algorithms, termed OnePass+ and ESX.

5.1 A Baseline Solution
Our baseline algorithm, denoted by SVP+, builds upon the no-

tion of single-via paths, which was introduced as an alternative

ALGORITHM 2: SVP+

Input: Road network G(N,E), source node s, target node t,
# of results k, similarity threshold θ

Output: Set PLO of k paths
1 initialize min-priority queueQ with ∅;
2 Ts→N ← shortest path tree from s to all n ∈ N ;
3 TN→t ← shortest path tree from all n ∈ N to t;
4 foreach n ∈ N do
5 Q.push(〈n, d(s, n)+d(n, t)〉);
6 PLO ← {shortest path p0(s→ t)};
7 while PLO contains less than k paths andQ not empty do
8 〈n, `(pn)← Q.pop();
9 pn ← RetrieveSingleViaPath(Ts→N , TN→t, n);

10 if Sim(pn, p) ≤ θ for all p ∈ PLO then
11 add pn to PLO; . Update result set

12 return PLO;

routing technique in [1]. As we discussed in Section 2, the original
method considers the similarity of single-via paths only with regard
to the shortest path and disregards the pairwise dissimilarity of all
results. Instead of employing the objective criteria as in [1], SVP+

iterates over the set of single-via paths aiming to find a subset of k
paths which are (a) sufficiently dissimilar to each other and (b) as
short as possible. Intuitively, the main idea behind SVP+ is similar
to the baseline method for computing k-SPwLO queries discussed
in Section 3. However, instead of iterating over all possible paths
connecting a source node s to a target node t and computing their
pairwise overlap ratio, SVP+ iterates over the much smaller set of
single-via paths. As the results of k-SPwLO are not necessarily
singe-via paths, SVP+ can only provide approximate answers to
the queries.

Algorithm 2 illustrates the pseudocode of SVP+. First, the
algorithm computes the two shortest path trees, one from s to
every node of G (Line 2) and one from every node of G to t
(Line 3). During this step all distances d(s, n) and d(n, t) are also
computed. The algorithm orders the nodes based on the sum of
d(s, n)+d(n, t), which is also the length of the single-via path of
n, using a min priority queueQ (Lines 4-5). In Line 6, the result set
PLO is initialized with p0, i.e., the shortest path from s to t. Note
that the shortest path p0 is actually the shortest single-via path and,
hence, no additional computation is required. At each iteration be-
tween lines 7 and 11, SVP+ pops from the queue the top element
representing a node n (Line 8) and retrieves the single-via path pn
for node n (Line 9). Then, SVP+ checks in Line 10 whether pn
is sufficiently dissimilar to all paths currently in PLO; if so, pn is
added to PLO (Line 11). The algorithm terminates and returns the
PLO set when either k paths have been added to PLO or there exist
no more single-via paths to examine, i.e., queueQ is depleted.

5.2 Approximate OnePass
We propose next a novel approximate algorithm, denoted by

OnePass+, which combines the feature of OnePass to scan the
graph only once with the pruning power of Lemma 2. OnePass+

has the following key features. Given a source node s and a target
node t, OnePass+ traverses the road network expanding every path
p(s→n) from source s to a node n that qualifies both Lemma 1
and Lemma 2. This procedure is the same with each distinct round
of MultiPass. In contrast to MultiPass though, each time a new
result is added to the result set PLO , an update procedure takes
place for all remaining incomplete paths p(s→n). In particular,
for every incomplete path p(s→n), OnePass+ computes the over-
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lap of p with the newly found result and, then, p is checked against
Lemma 1 with respect to the updated PLO . The same update proce-
dure is also employed by OnePass. The algorithm terminates when
either k paths are recommended or all paths from s to t qualifying
Lemma 1 and Lemma 2 have been examined.

By not restarting after the computation of each new result,
OnePass+ avoids expanding the network multiple times. However,
the fact that OnePass+ does not restart the expansion after each
round implies that the next best path might get pruned and, hence,
OnePass+ cannot guarantee that the exact solution will be found.
We already explained in Sec. 4 that for the MultiPass algorithm to
find the exact solution, the restart is required as a path that is pruned
as non-promising during the current round, may be promising dur-
ing the next round. All such paths are excluded permanently from
the search space of OnePass+. Nevertheless, this case applies to
only a small subset of the paths from a source s to a target t and,
hence, the average length of paths in the PLO set is expected to be
close to the optimal one.

Algorithm 3 illustrates the pseudocode of OnePass+. The algo-
rithm employs a min priority queue Q (initialized with source s)
to traverse the road network. Result set PLO is initialized with p0,
i.e., the shortest path from s to t (Line 1). In between Lines 4 and
21, OnePass+ examines the contents of Q until either k paths are
found orQ is depleted. At each iteration, a label 〈n, pn〉 is popped
fromQ (Line 5). If node n is the target t, then pn is added to PLO

(Line 7) and the same update procedure as in OnePass takes place
(Lines 8-10), i.e., all paths ph with Sim(ph, pc) > θ are discarded.
Otherwise, the algorithm expands the current path pn considering
all outgoing edges (n, nc) (Lines 12-21). OnePass checks whether
the new path pc ← pn◦(n, nc) qualifies the pruning criteria of both
Lemma 1 (Lines 14-15) and Lemma 2 (Lines 16-17) and updates
Q and Λ(nc) accordingly. Finally, OnePass adds a new label for
pc to Q (Line 20) and Λ(nc) (Line 21) and proceeds with popping
the next label fromQ.

Similar to MultiPass, for each label our implementation of
OnePass+ maintains and updates incrementally a vector VSim con-
taining the overlaps of pn with all paths that where in PLO at the
time when the label was created. Furthermore, OnePass+ also per-
forms lazy updates forQ. That is, for labels that have already been
created and added to Q, OnePass+ updates VSim only at the time
when a label is popped from Q. OnePass+ also retains a black list
to ignore labels representing pruned paths.

Complexity Analysis. Similar to MultiPass, given a k-SPwLO
query from a node s to a node t, OnePass+ first computes p0(s→t)
using any shortest path algorithm, e.g., Dijkstra, and adds it to the
result set. To compute alternatives, OnePass+ traverses the road
network expanding every path p(s→n) from source s to a node n
that qualifies both Lemma 1 and Lemma 2. As we discussed in
the cost analysis of MultiPass, there can be no formal guarantees
regarding the number of paths that are pruned using either pruning
criterion. In the worst case when no paths are pruned, OnePass+

is equivalent to OnePass and Fox’s algorithm. Therefore, the time
complexity of OnePass+ is alsoO(|E|+K · |N | · log |N |), where
K is the number of shortest paths that have to be computed in order
to cover the k-SPwLO result.

5.3 Edge Subset Exclusion
Finally, we present our second approximate algorithm, denoted

by ESX, which computes k-SPwLO by iteratively excluding edges
from the road network. The idea behind ESX is the following.
Given a road network G, a source node s and a target node t, the
algorithm first adds the shortest path p0 to the result set PLO , sim-

ALGORITHM 3: OnePass+

Input: Road network G(N,E), source node s, target node t,
# of results k, similarity threshold θ

Output: Set PLO of k paths
1 PLO ← {shortest path p0(s→ t)};
2 initialize min-priority queueQ with 〈s, ∅〉;
3 ∀n ∈ N : Λ(n)← ∅;
4 while PLO contains less than k paths andQ not empty do
5 〈n, pn〉 ← Q.pop(); . Current path
6 if n = t then
7 PLO ← PLO ∪ {pn}; . Update result set
8 foreach label 〈n′, `(pn′)〉 inQ do
9 if Sim(pn′ , pi) > θ, ∀pi ∈ PLO then

10 remove 〈n′, `(pn′)〉 fromQ ; . Lemma 1

11 else
12 foreach outgoing edge (n, nc) ∈ E do
13 pc ← pn ◦ (n, nc); . Expand path pc
14 if ∃pi ∈ PLO : Sim(pc, pi) ≥ θ then
15 continue; . Pruned by Lemma 1
16 else if ∃〈nc, p

′
c〉 ∈ Λ(nc) : p′c≺PLO pc then

17 continue; . Pruned by Lemma 2
18 else
19 remove fromQ and Λ(nc) all

〈nc, p
′
c〉 : pc ≺PLO p′c; . Lemma 2

20 Q.push(〈nc, pc〉);
21 Λ(nc)← Λ(nc) ∪ {〈nc, pc〉};

22 return PLO ;

ilar to all previously described methods. Next, ESX removes an
edge of p0 from the road network and computes the shortest path
pc from s to t on the updated road network2. If the overlap of path
pc with p0 does not violate the similarity threshold θ, then pc is
added to the result set PLO . Otherwise, the algorithm proceeds
with removing more edges from the road network. If PLO contains
more than one paths, ESX removes an edge from path p ∈ PLO for
which the similarity Sim(pc, p) is the highest. At each iteration,
ESX removes only one edge from some path in PLO . The process
is repeated until a path that does not violate the similarity threshold
θ is found. To compute more alternatives, the algorithm continues
by removing more edges until another alternative is found, or until
there are no more edges to remove.

Removing an edge from the road network may cause the network
to become disconnected and prevent any subsequent iteration from
finding a valid path. To avoid such a case, the algorithm has to make
sure that any edge affecting the connectivity of the road network is
never removed. To this end, after removing an edge from the road
network, if the shortest path search fails to find a path connecting s
and t, then ESX re-inserts the edge in the road network and marks
it as non-removable. Edges marked as non-removable cannot be
removed at any iteration.

The order in which we remove the edges from the road network
affects both the quality of the result and the performance of ESX.
However, determining the optimal order is prohibitively expensive.
Therefore, to determine which edge to remove at each iteration, we
employ a heuristic based on the following observation: the more
shortest paths cross an edge, the greater the probability that the
removal of this edge will cause a detour and lead the next result
faster. As it is also prohibitively expensive to compute the all-pairs

2In practice, the edges are not actually deleted from the road net-
work but only marked as such in order to be ignored by the search.
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shortest paths, ESX performs a local check. Given an edge e(a, b)
on some path p ∈ PLO , let Einc(a) be the set of all incoming
edges e(ni, a) to a from some node ni ∈ N\{b} and Eout(b)
be the set of all outgoing edges e(b, nj) from b to some node nj ∈
N\{a}. First, ESX computes the setPs which contains the shortest
paths from every node ni ∈ Einc(a) to every node nj ∈ Eout(b).
Then, ESX defines the set P ′s which contains all paths p ∈ P ′s that
cross edge e. Finally, ESX assigns a priority to edge e, denoted by
prio(e), which is set to |P ′s|.

EXAMPLE 2. Consider our running example in Figure 7, where
p0(s→t)=〈(s, n3), (n3, n5), (n5, t)〉 is the shortest path from s
to t and the only path currently in PLO . For edge (n3, n5) we
compute the shortest path from every node in {s, n1, n2, n4} to
every node in {n4, t}. Three shortest paths, p(n1→n4), p(s→n4)
and p(s→t), cross edge (n3, n5) (bold lines). On the other hand,
the rest of the shortest paths, e.g., shortest path p(n2→t) (dashed
line), do not cross edge (n3, n5). Therefore, the priority of edge
(n3, n5) is prio(n3, n5)=3. In the same fashion, we compute the
priorities for edges (s, n3) and (n3, t), and we have prio(s, n3)=0
and prio(n5, t)=0.
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Figure 7: Computing the priority of edge (n3, n5).

Algorithm 4 illustrates the pseudocode of ESX. First, the algo-
rithm initializes PLO with the shortest path p0 in Line 1 and creates
a max-heapH0, associated with p0, in which all the edges of p0 are
enheaped and sorted based on their priority (Line 2). The algorithm
also initializes the setEDNR of non-removable edges (Line 3). ESX
enters the outer loop in Line 4 and continues until either k results
are found or there are no more edges to be removed from the graph.
Next, the algorithm sets pc to the last result found and enters the in-
ner loop (Line 6). At each iteration the algorithm chooses pmax as
the path in PLO which has the maximum overlap Sim(pc, pmax)
and which contains edges in Hmax (the max-heap associated with
pmax) that can be removed from the graph. Then, the algorithm
deheaps edge etmp from Hmax (Line 8) and checks whether etmp

is in EDNR, i.e., it is marked as non-removable (Line 9). If it is
not, edge etmp is removed (Line 10) and the algorithm computes
the shortest path ptmp on the updated graph (Line 11). In Lines 12-
15 the algorithm checks whether ptmp is a valid path and, if not,
re-inserts etmp to the graph and marks it as non-removable. Other-
wise, the algorithm sets pc to ptmp and proceeds to the next itera-
tion. Finally, when the inner loop is finished, the algorithm checks
if pc is a valid alternative (there is also the possibility that all the
heaps are empty and no more edge can be removed). If pc is valid,
it is added to PLO and a new max-heap Hc associated with pc is
initialized with the edges of pc. Finally, after the outer loop is fin-
ished, the algorithm returns PLO in Line 20.

EXAMPLE 3. We demonstrate the functionality of
ESX using again the road network of Figure 4 and the

ALGORITHM 4: ESX
Input: Road network G(N,E), source node s, target node t,

# of results k, similarity threshold θ
Output: Set PLO of k paths

1 PLO ← {shortest path p0(s→ t)};
2 initialize max-heap H0 ← 〈ei,prio(G, ei)〉,∀ei ∈ p0;
. Every Hi is associated with pi

3 initialize EDNR ← ∅;
4 while PLO contains less than k paths and ∃Hi not empty do
5 set pc ← last path added to PLO;
6 while max{Sim(pc, pi) : pi ∈ PLO and Hi not empty

} > θ do
7 Edge etmp ← Hi.pop();
8 if etmp ∈ EDNR then
9 continue;

10 G.remove(etmp);
11 Path ptmp ← ShortestPath(G, s, t);
12 if ptmp is null then
13 re-insert etmp to G;
14 insert etmp to EDNR;
15 continue;
16 pc ← ptmp;
17 if max{Sim(pc, pi) : pi ∈ PLO} then
18 add pc to PLO;
19 initialize max-heap Hc ← 〈ej ,prio(G, ej)〉,

∀ej ∈ pc;

20 return PLO;

k−SPwLO(s, t, 0.5, 2) query. During initialization, the shortest
path p0(s→t) = 〈(s, n3), (n3, n5), (n5, t)〉 is computed and
added to the result set PLO . First, we compute the priority of each
edge of the shortest path. Having computed the priorities, we first
remove edge (n3, n5), which is the edge with the highest priority.
Then, we compute the shortest path p′(s→t) on the updated graph.
The shortest path is p′(s→t) = 〈(s, n3), (n3, n4), (n4, t)〉 with
`(p′(s→t)) = 10. We check the overlap of the new path with the
original shortest path and find that Sim(p′(s→t), p0) = 0.375,
which does not exceed the similarity threshold. Therefore, p′(s→t)
is added to the PLO set.

Complexity Analysis. ESX reduces the search for an alterna-
tive path to a set of ordinary shortest path queries. In particular,
given a road network G = (N,E) let PLO be the result set of a
k-SPwLO(s, t, θ, k) query containing k paths. ESX requires |P |×
total number of edges in P executions of shortest path queries, i.e.,
the number of shortest path queries that have to be processed is
linear to the number k of paths and the size of the result paths.
Furthermore, in our implementation of ESX we employed the op-
timization using lower bounds described in Section 4.2, which re-
duces the cost for retrieving each shortest path to a minimum; thus,
the performance of ESX is significantly optimized.

6. EXPERIMENTAL EVALUATION
In this section, we report the results of an experimental evalua-

tion of the algorithms for processing k-SPwLO queries. We use
seven different road networks shown in Table 2. To assess the
runtime performance, we measure the average response time over
1,000 random queries (i.e., pairs of nodes), varying the number k
of requested paths and the similarity threshold θ. In each exper-
iment, we vary one of the two parameters and fix the other to its
default value: 3 for k and 0.5 for θ. We also report experiments on
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Table 2: Road networks.

road network # nodes # edges
Oldenburg 6,105 14,058

San Joaquin 18,263 47,594
Vienna 19,826 54,918
Denver 73,166 196,630

San Francisco 174,956 443,604
New York City 264,346 730,100

Colorado 435,666 1,057,066

the quality of the results computed by the approximate solutions.
Given the number k of requested paths, we measure (a) the num-
ber of paths returned by each approximate algorithm and (b) the
average length of the computed paths in comparison to the length
of the shortest path. All algorithms were implemented in C++ and
the tests run on a machine with 4 Intel Xeon X5550 (2.67GHz)
processors and 48GB main memory running Ubuntu Linux.

6.1 Performance
Similar to Section 4.3, we consider a timeout of 120 seconds for

each query. The ratio of timed-out/failed queries for OnePass+

was below 10% in all experiments. For SVP+ and ESX, all
queries were executed within 120 seconds. Due to space limita-
tions, the performance results shown in this section consider only
those queries which were successfully completed by all algorithms.

The first experiment in Figure 8 compares the exact algorithm
MultiPass with the approximate solutions SVP+, OnePass+ and
ESX. In Figures 8a–b we observe that the runtime of all algorithms
increases with the number k of requested paths. As expected,
the runtime of the approximate solutions increases only slightly,
whereas the exact solution MultiPass deteriorates for large values
of k. For k>3, MultiPass becomes one order of magnitude slower
than OnePass+ and more than two orders of magnitude slower than
ESX and SVP+. With regard to parameter θ, Figures 8c–d show
that for θ<70%, MultiPass is one order of magnitude slower than
OnePass+ and two orders of magnitude slower than SVP+ and
ESX (for θ=30%). For large values of θ, the performance of Mul-
tiPass gets closer to the performance of the approximate algorithms
(for θ=90% MultiPass is even faster than ESX and SVP+).

The next experiment in Figure 9 compares the approximate al-
gorithms using larger datasets. In Figures 9a–b, we vary the pa-
rameter k. For small values of k, the difference is not much, while
for increasing values of k both SVP+ and ESX clearly outperform
OnePass+ up two one order of magnitude. In Figures 9c–d, where
the value of θ varies, we observe that OnePass+ is very fast for ex-
treme values of θ (θ=10% and θ=90%), but it is rather slow for
values in between. It is clear that OnePass+ is not practical for
large road networks and/or values of k>3.

Another interesting observation in Figures 8c–d and 9c–d is that
the performance of MultiPass and OnePass+ show a local maxi-
mum for θ=0.3, which indicates the following important trade-off.
As θ increases, the pruning power of Lemma 1 deteriorates, and
both MultiPass and OnePass+ construct more (partial) paths (sup-
porting measurements are excluded due to lack of space). At the
same time, the next result will be determined earlier, and hence the
total runtime drops. In addition, as θ decreases, the pruning power
of Lemma 2 also increases and more partial paths are pruned. This
explains the behavior of MultiPass and OnePass+, where the re-
sponse time initially increases, but after θ=0.3 the runtime of both
algorithms goes down.

To summarize the observations in Figures 8 and 9, the approx-
imate solutions clearly outperform the exact algorithm MultiPass.
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Figure 8: Performance comparison of exact and approximate algo-
rithms varying requested paths k and similarity threshold θ.

Comparing the approximate solutions, we observe that SVP+ and
ESX have similar performance and are the clear winners for the
datasets, which are of small and medium size. OnePass+ is the
slowest approximate solution.

6.2 Scalability
From the previous experiments it is clear that both MultiPass and

OnePass+ are not scalable. For values of k>2 both algorithms are
prohibitively expensive, even for a mid-sized road network such as
Denver. However, the same does not apply for ESX and SVP+.
To demonstrate the scalability of ESX and SVP+, we present in
Figure 10 the results of an experiment using larger values of k ∈
{4, 8, 12, 16} and we also include larger datasets. We observe that
for San Francisco and Colorado, ESX is significantly faster that
SVP+ for all values of k. For the road networks of Denver and
New York, ESX is faster than SVP+ only for small values of k,
whereas SVP+ appears to be faster than ESX for k=12 and k=16.
The reason for this behavior is that SVP+ computes considerably
less alternative paths than ESX (cf. Table 3 and the discussion in
Sec. 6.3). Notice that the smaller result set is not due to a timeout,
rather the algorithm is not able to find more alternatives. Overall,
whenever ESX and SVP+ find approximately the same number of
alternative paths, ESX clearly outperforms SVP+.

6.3 Result Quality & Completeness
In Figure 11, we present our experiments that analyze the quality

of the computed results. We consider all queries for which each al-
gorithm returned k paths (i.e., no timeout) and compute the average
length of the returned paths. Then we compare the average length
of each result set to the length of the shortest path. That is, we
show how much longer, on average, are the alternative paths with
respect to the shortest path. Obviously, the exact results, named
k-SPwLO, contain the shortest alternatives. They can be computed
by any exact algorithm, such as MultiPass. Looking at the approx-
imate solutions, OnePass+ produces clearly the best alternatives,
which are very close to the paths in the exact solution. Both ESX
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Figure 9: Performance comparison of approximate algorithms
varying requested paths k and similarity threshold θ.

and SVP+ recommend alternatives that, on average, are up to 15%
longer than the alternatives in k-SPwLO. The alternatives recom-
mended by ESX, though, are most of the time shorter than the al-
ternatives recommended by SVP+.

The next experiment analyzes the completeness of the result sets.
As we have already seen in previous experiments, the algorithms
are not always able to compute k alternative paths. Table 3 reports
for each algorithm the percentage of queries for which exactly k al-
ternative paths were found. Naturally, the exact solution k-SPwLO
has the highest completion ratio. OnePass+ is very close to the ex-
act solution. In particular, for San Joaquin the completion ratio of
OnePass+ is always more than 99%. The completion ratio of ESX
is lower than OnePass+, but constantly over 95%. Finally, SVP+

has generally the lowest completion ratio (except for k=3, where
ESX is slightly worse).

road k k-SPwLO OnePass+ ESX SVP+

network

Oldenburg
2 100 100 100 100
3 99.9 99.1 98.7 99.5
4 99.9 98.6 97.1 95
5 99.9 98.2 95.8 85.6

San Joaquin
2 100 100 100 99.9
3 100 99.8 98.5 99.5
4 100 99.7 97.7 97
5 100 99.3 95.6 94.3

Table 3: Average completeness ratio (%) per query varying re-
quested paths k (θ = 50%) for all algorithms.

The final experiment in Table 4 compares the quality of ESX and
SVP+ by measuring the average number of returned paths for four
road networks and values of k ∈ {4, 8, 12, 16}. It is evident that
ESX returns more alternative paths than SVP+ for all values of k.
The number of alternatives returned by ESX is, in all cases, very
close to k. In contrast, the number of paths returned by SVP+ is
significantly lower than k for k>8. For instance, for New York
SVP+ cannot find more than six alternatives per query on aver-
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Figure 10: Performance comparison of SVP+ and ESX for k ∈
{2, 4, 8, 16} and θ = 50%.

age; similar figures can be observed for Denver and San Francisco.
Apparently, the set of single-via paths does not contain enough suf-
ficiently dissimilar paths, and hence SVP+ returns more and more
incomplete results for an increasing k.

road network k ESX SVP+

Denver
4 3.96 3.95
8 7.72 6.52
12 11.39 7.14
16 14.94 7.25

San Francisco
4 3.97 3.95
8 7.92 7.03
12 11.81 8.42
16 15.55 8.80

New York
4 3.97 3.75
8 7.77 5.49
12 11.45 5.85
16 15.02 5.91

Colorado
4 3.97 3.81
8 7.92 7.87
12 11.83 10.78
16 15.71 12.55

Table 4: Average returned results per query varying requested paths
k (θ = 50%) for SVP+ and ESX.

7. CONCLUSIONS
We studied the problem of alternative routing on road networks

and, in particular, the efficient computation and approximation of
k-SPwLO queries. First, we proposed MultiPass, an exact algo-
rithm which builds upon and optimizes the existing OnePass algo-
rithm by employing one additional pruning criterion. Our experi-
ments showed that MultiPass is the most efficient exact method for
evaluating k-SPwLO queries as it outperforms OnePass for nearly
every combination of the θ and k parameters and, in most cases, by
a large margin. To achieve scalability though, we also introduced
two approximate algorithms. OnePass+ employs ideas from both
OnePass and MultiPass and achieves to compute a set of dissimilar

424



2 3 4 5
0

5

10

15

20

25

k

D
iff

.w
ith

sp
(%

)

k-SPwLO OnePass+ ESX SVP+

(a) Oldenburg

2 3 4 5
0

5

10

15

20

k

D
iff

.w
ith

sp
(%

)

(b) San Joaquin

2 3 4 5
0

3

6

9

12

k

D
iff

.w
ith

sp
(%

)

(c) Vienna

2 3 4 5
0

5

10

15

20

25

k

D
iff

.w
ith

sp
(%

)

(d) Denver

Figure 11: Result quality varying requested paths k (θ = 50%).

paths which, in terms of average length, is very close to the exact
solution. ESX, our second approximate algorithm, computes al-
ternatives by incrementally removing edges from the road network
and running shortest path queries. Through an analytical experi-
mental evaluation we showed that (a) MultiPass is the fastest exact
algorithm, outperforming the existing OnePass, (b) OnePass+ is
significantly faster than MultiPass while its result set is close to
the exact solution, and (c) in contrast to the other algorithms, ESX
is scalable, i.e., it can compute approximate k-SPwLO queries for
large road networks and large values of k.

In the future, we plan to extend the definition of alternative rout-
ing by considering additional constraints and criteria besides the
overlap between paths and their length. We also plan to perform a
qualitative study to identify which criteria users value more when
deciding upon which route to follow. Finally, we plan to investigate
the computation of multiple dissimilar paths on different types of
networks such as social networks and web graphs.
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ABSTRACT

This research presents an advanced MapReduce-based parallel so-
lution to efficiently address spatial skyline queries on large datasets.
In particular, given a set of data points and a set of query points, we
first generate the convex hull of the query points in the first MapRe-
duce phase. Then, we propose a novel concept called independent
regions, for parallelizing the process of spatial skyline evaluation.
Spatial skyline candidates in an independent region do not depend
on any data point in other independent regions. Thus, we calcu-
late the independent regions based on the input data points and the
convex hull of the query points in the second phase. With the in-
dependent regions, spatial skylines are evaluated in parallel in the
third phase, in which data points are partitioned by their associated
independent regions in the map functions, and spatial skyline can-
didates are calculated by reduce functions. The results of the spatial
skyline queries are the union of outputs from the reduce functions.
Due to high cost of the spatial dominance test, which requires com-
paring the distance from data points to all convex points, we pro-
pose a concept of pruning regions in independent regions. All data
points in pruning regions can be discarded without the dominance
test. Our experimental results show the efficiency and effectiveness
of the proposed parallel spatial skyline solution utilizing MapRe-
duce on large-scale real-world and synthetic datasets.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Application—spatial

databases

Keywords

Spatial Skyline Query, MapReduce, Parallel Computation

1. INTRODUCTION
Since the skyline operator was introduced into database research

[4], a number of efficient algorithms have been proposed for the
skyline evaluation. Bitmap [25], Index [25], NN (Nearest Neigh-
bor) [16] and BBS (Branch-and-Bound Skyline) [19] rely on in-
dices constructed before query processing; while BNL (Block Nested

c© 2017, Copyright is with the authors. Published in Proc. 20th Inter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

Loop) [4], D&C (Divide and Conquer) [4], SFS (Sort Filter Sky-
line) [7], and OSPS (Object-based Space Partitioning Skyline) [32]
use non-index techniques. Moreover, several studies primarily fo-
cus on the skyline query in a variety of problem settings (data re-
siding in a data stream [22] or on mobile devices [14]).

As a novel type of skyline queries, Spatial Skyline Query (SSQ)
was proposed to consider the preference of both static and dy-
namic object attributes in multi-criteria decision-making applica-
tions [23]. Unlike skyline queries that only take static object at-
tributes (e.g., rating and price of restaurants) into account, the dis-
tance between objects is also calculated as dynamic attributes in
the spatial skyline queries. In particular, given a set of data points
P and a set of query points Q in a d-dimensional space, spatial
skyline queries return a subset of P , in which data points are not
spatially dominated by other data points in P . The spatial domi-
nance is defined by using the distance from data points to all query
points.

Spatial skyline query is applicable to many applications. Take
crisis management applications as an example, we assume that a
number of waterborne infectious disease cases were confirmed at
different locations, people who live at spatial skyline places with
respect to those locations should be alerted and examined first, be-
cause there might be higher possibility that these people may have
been exposed to contagious water. Travel planning applications
are another type of example. People may prefer the spatial skyline
hotels with respect to fixed locations of beaches and museums for
their vacation. In this case, people would not like to choose a hotel,
which is farther from all interesting attractions than other hotels.
One more example of spatial skyline query is that people may plan
to have dinner with their friends at weekends. They may consider
the distance from their homes to the restaurant for the restaurant se-
lection. The restaurants far from all of their homes would not be in
the candidate list, because they may want to save time on the road.
Thus, giving a list of spatial skyline restaurants is the first step of
the restaurant selection.

Two index-based algorithms were proposed to efficiently address
the spatial skyline queries [23]. Branch and Bound Spatial Skyline
B2S2 algorithm searches spatial skyline candidates by visiting an
R-tree from top to bottom. Once a spatial skyline is found, B2S2

expands the R-tree to access the node which has minimum mindist
value, and compares it with all spatial skyline candidates found so
far in spatial dominance test. The other method, Voronoi-based
Spatial Skyline V S2 algorithm relies on a Voronoi diagram created
over input data points. V S2 starts with the closest data points to
query points, searches in the space by visiting the neighbors of vis-
ited data points over the Voronoi diagram. Due to high cost of the
spatial dominance test, V S2 was improved by reducing the num-
ber of spatial dominance tests in [24]. In the method, seed skyline
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points (a subset of spatial skyline points) can be identified with spa-
tial dominance test.

However, the following problems motivate us to propose a novel
parallel solution for spatial skyline evaluation. Firstly, as data grows
rapidly, addressing skyline queries on large-scale datasets in a single-
node environment becomes impractical. There are increasing num-
ber of approaches proposed for processing skyline queries in dis-
tributed and/or parallel environments [13]. But none of parallel
spatial skyline solutions were observed in literature. Secondly, the
distance between moving objects may keep changing. If indices
are created at a preprocessing stage, the cost of index maintenance
would be unacceptably high. Thirdly, MapReduce framework has
been incorporated into parallel solutions for skyline computation
[17] [20] [31] and other database applications [30] [26] [18].

Therefore, we propose a novel three-phase MapReduce-based
solution, which is able to efficiently address spatial skyline queries
on large-scale datasets in this paper. In particular, given a set of
data points and a set of query points, we calculate the convex hull
of the query points in the first phase. Initially, the query points are
evenly partitioned. Each map function accepts a subset of query
points, and outputs a local convex hull. Then, the reduce function
produces the global convex hull by merging the intermediate results
from the map functions. A filtering method can be applied to filter
out unqualified data points before the convex hull computation. For
example, CG_Hadoop uses skyline algorithms as a filtering method
in convex hull evaluation [11]. Moreover, to parallelize the spatial
skyline computation, we propose a novel concept, independent re-
gions, in each of which spatial skylines do not depend on any data
point outside the independent region. If data points do not fall in
any independent region, they can be discarded because they must
be spatially dominated by other data points. Thus, our solution
produces the independent regions at the second phase. Each map
function receives a subset of data points and the convex hull of
query points, and generates locally optimized independent regions.
Then, the reduce functions output globally optimized independent
regions.

With the independent regions in the third phase, map functions
associate data points with their independent regions. By using the
unique identifiers of independent regions as keys, all data points in
an independent region are sent to a reducer after the shuffle phase,
and reduce functions find the spatial skylines in independent re-
gions in parallel. Due to high cost of the spatial dominance test,
which requires comparing the distance from data points to all con-
vex points, we propose a novel concept, pruning regions, in inde-
pendent regions. The pruning regions are the areas in which all data
points are dominated by other data points. Thus, since a pruning
region is defined by a data point, a convex point, and its adjacent
convex points, if a data point is in a pruning region, the data point
can be discarded without accessing all convex points and calcu-
lating the distance from the data point to them. In addition, a data
point may fall in more than one independent regions, and there may
exist duplicates in spatial skyline candidates. We employ an elimi-
nation method in our solution to remove the duplicates with subtle
overhead.

In short, the contributions of this study are summarized below:

1. We propose a parallel scheme to efficiently evaluate spatial
skyline queries on large datasets using MapReduce.

2. We introduce a concept of independent regions in our solu-
tion. The spatial skyline candidates in an independent region
do not depend on any data points in other independent re-
gions. With the feature of the independence, spatial skyline
queries can be addressed in parallel.

3. We present a concept of pruning regions in independent re-
gions, in order to minimize the cost of the dominance test by
avoiding the computation of distance from data points to all
convex points.

4. We evaluate the performance of the proposed solution through
extensive experiments with large-scale real-world and syn-
thetic datasets.

The rest of this paper is organized as follows. Section 2 surveys
related works. The spatial skyline queries and relevant techniques
utilized in our solutions are formally defined in Section 3. In Sec-
tion 4, our advanced solution is presented. The experimental val-
idation of our design is presented in Section 5. We conclude the
paper in Section 6.

2. RELATED WORK
In this section, we review previous works related to spatial sky-

line queries and parallel solutions for general skyline queries.

2.1 Spatial Skyline Queries
As a special case of dynamic skyline queries, Spatial Skyline

Queries (SSQ) can be addressed by Block Nested Loop (BNL) [4]
and Branch-and-Bound Skyline algorithms (BBS) [19]. In a dy-
namic skyline query, each object is mapped to another search space
by using pre-defined functions. All the objects that are not dom-
inated by other objects in the search space after the mapping are
returned from the dynamic skyline queries. BNL algorithm can ad-
dress the dynamic skyline queries, because it compares every pair
of objects in the input dataset, and eliminates the ones that are dom-
inated by any other objects. BNL does not need indices and is ef-
ficient over small datasets. But it suffers from I/O access when the
input datasets become large. If the size of skyline candidates ex-
ceeds the size of available memory space, all the candidates have
to be written to a temporary data stream, and read back when they
are needed in the next iteration of object comparison. BBS relies
on an R-tree to evaluate the general skyline queries; it calculates
the mindist of intermediate entries in the R-tree, and searches the
space by expanding the entry with the smallest mindist. However,
BBS does not consider the relation between the input query points
and data points.

Motivated by the inefficiency of BNL and BBS, a Branch-and-
Bound Spatial Skyline (B2S2) algorithm and a Voronoi-based Spa-
tial Skyline (V S2) algorithm were proposed for spatial skyline eval-
uation [23]. In addition to considering the properties of the convex
hull generated by input query points, B2S2 searches the space by
visiting an R-tree from top to bottom. Once the first spatial sky-
line is found, B2S2 expands the R-tree with the node which has
the minimum mindist value, and checks the dominance between
the visited node and all spatial skyline candidates found so far. The
process continues until all intermediate nodes potentially contain-
ing spatial skylines have been visited. On the other hand, V S2

builds a Voronoi diagram over input data points. The input data
points are organized by their Hilbert values in pages in order to
preserve their locality. After completion of convex hull calcula-
tion, V S2 starts with the closest data points to the query points, and
searches the space by visiting the neighbors of visited data points
over the Voronoi diagram. For every visited data point, V S2 com-
pares it with all spatial skylines found so far for spatial dominance
test. The process continues until all Voronoi cells (or data points)
that potentially contain spatial skylines have been visited. Inspired
by high cost of the spatial dominance test, V S2 was improved by
reducing the number of spatial dominance tests [24]. In addition
to applying sorting techniques, the method is able to identify seed
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skyline points (a subset of spatial skyline points) without domi-
nance test. Given a set of query points Q and a set of data points P ,
let V (pi) be the Voronoi cell of data point pi ∈ P , the seed skyline
points are the points pi that V (pi) intersect with the boundary of
the convex hull of Q or is inside the convex hull. However, none of
the aforementioned methods can address the spatial skyline query
in parallel. B2S2 requires a pre-structured R-tree and V S2 needs
to build a Voronoi diagram over input data points. Extending their
methods to a distributed and/or parallel environment is non-trivial.

2.2 Parallel Skyline Solution
Due to high cost of skyline evaluation, a number of advanced so-

lutions have been proposed to evaluate the general skyline queries
in a distributed and/or parallel environment. Balke et al. developed
a parallel skyline solution over distributed environments [3]. Their
method first vertically partitions input datasets in such a manner
that each partition keeps object attributes in one dimension. Then,
the skyline objects are calculated in parallel, and reported to a cen-
tral point for a final dominance check. Wu et al. designed a parallel
skyline method that leverages content-based data partitioning [28].
Their method can avoid unnecessary data access and can progres-
sively produce skylines by using recursive region partitioning and
dynamic region encoding mechanisms. Moreover, the incremen-
tal scalability is also provided in such a manner that workload can
be automatically balanced by distributing objects to new nodes. In
addition to random data partitioning methods that can generate sim-
ilar data distribution in each partition [8] and grid-based data par-
titioning methods that consider object proximity [2] [21], Vlachou
et al. proposed an angle-based data partitioning method that parti-
tions objects by their angular coordinates [27]. The average prun-
ing power of objects within a partition can be increased and the
number of skyline objects in local skyline calculation can be mini-
mized by applying the angle-based partitioning method. Köhler et

al. designed a hyperplane-based data partitioning method in order
to minimize the local skylines in a partition and achieve efficient
local skyline merging [15]. Moreover, a variety of MapReduce-
based parallel solutions have been proposed for skyline queries and
other database applications. Han et al. proposed an advanced sky-
line algorithm that utilizes Sorted Positional Index Lists (SSPL) to
reduce I/O cost [12]. Zhang et al. implemented BNL, SFS, and
Bitmap algorithms using MapReduce framework [29]. Chen et al.

applied an angular data partition in their MapReduce-based solu-
tion for skyline query evaluation [6]. Eldawy et al. developed
CG_Hadoop, a suite of MapReduce algorithms, to solve funda-
mental computational geometry problems, which include convex
hull computation [11]. Mullesgaard et al. investigated the gen-
eral skyline queries by using the MapReduce framework. Their
method uses bit strings to represent the dominance relation of at-
tributes, and generates independent partition groups for calculating
local skyline objects in parallel [17]. Zhang et al. proposed an effi-
cient parallel skyline solution using MapReduce, in which a Partial-
presort Grid-based Partition Skyline (PGPS) algorithm was devel-
oped to significantly improve the merging skyline computation on
large datasets [31]. More importantly, PGPS can be easily incorpo-
rated in the shuffle phase of the MapReduce framework with minor
overhead. However, our proposed solution targets on spatial sky-
line queries, which are different from the general skyline queries.
None of the partition schemes or computation algorithms above
could address the spatial skyline problem. Therefore, we propose
a novel partition method and a parallel algorithm which includes
independent regions to parallelize the spatial skyline computation
and pruning regions to reduce the cost of spatial dominance test.

Table 1 Symbolic notations.

Symbol Meaning

P , Q a set of data points and a set of query points
p, q a data point and a query point

p.xi the value of data point p in the ith dimension

Rd a d-dimensional space
h a hyper-place
S a half-space
F a facet of a convex hull

A
△
q a set of adjacent convex points of q

p ≺Q p′ p spatially dominates p′ with respect to Q
SSKY (P,Q) spatial skylines of P with respect to Q

CH(Q) the convex hull of Q
DR(p,Q) the dominator region of p with respect to Q
PR(p, q) the pruning region generated by p and q
IR(p, q) the independent region generated by p and q
IRP Independent Regions Pivot, the independent regions

are generated by IRP
lssky a set of local spatial skyline candidates
chsky a set of spatial skyline candidates in a convex hull

3. PRELIMINARIES

3.1 Problem Statement
Given a dataset P in a d-dimensional space Rd, an object p ∈ P

can be represented as p = {x1, x2, ..., xd} where p.xi is the value
of the object on the ith dimension. D(., .) denotes a distance met-
ric that obeys the triangle inequality in Rd. The spatial dominat-
nce relationship and the spatial skyline operator are defined as fol-
lows [23]. All notations used in this paper are summarized in Ta-
ble 1.

Definition (Spatial Domination) Given a set of query points Q,
and two data points p and p′ in Rd, p spatially dominates p′ with
respect to Q, denoted by p ≺Q p′, if ∀ q ∈ Q, D(p, q) ≤ D(p′, q)
and ∃ q′ ∈ Q, D(p, q′) < D(p′, q′).

Definition (Spatial Skyline) Spatial skylines of a set of data points
P with respect to a set of query points Q in Rd, denoted by SSKY (P ,
Q), are a set of data points in P , which are not spatially dominated
by any other data point in P with respect to Q.

SSKY (P,Q) = {p ∈ P | ∄ p′ ∈ P, p 6= p′, p′ ≺Q p} (1)

PROPERTY 1. If any data point p ∈ P is a spatial skyline point

with respect to a subset of query points Q′ ⊂ Q, then p is also a

spatial skyline point with respect to Q [23].

PROPERTY 2. The set of spatial skyline points of data points

P does not depend on any non-convex query points q ∈ Q, q /∈
CH(Q), where CH(Q) indicates the convex hull of Q [23]. In

other words,

SSKY (P,Q) = SSKY (P,CH(Q)) (2)

Definition (Dominator Region) Given a data point p ∈ P , a set
of query points Q, and hyper-spheres that center at qi with ra-
dius D(p, qi), qi ∈ Q, any data point inside the intersection of
the hyper-spheres spatially dominates p with respect to Q. The in-
tersection area that potentially contains data points spatially domi-
nating p with respect to Q is referred to as the dominator region of
p, denoted by DR(p,Q).

Dominator Region enables our solution to efficiently eliminate
data points by reducing the search space of data points. For ex-
ample, Figure 1 displays dominator region of a data point p and
a set of query points Q. Q has three query points q1, q2, and q3,
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which represent a convex hull in a 2-dimensional space. Three cir-
cles centered at qi ∈ Q with radius D(qi, p) are created in order to
highlight the dominance areas of p with respect to the query points.
Any data point p′ in the intersection of the three circles spatially
dominates p with respect to Q.

3.2 Convex Hull and Spatial Skyline Queries
Given a set of query points Q in a d-dimensional space Rd, the

convex hull of Q, denoted by CH(Q), is the smallest convex poly-
tope that contains all query points in Q. Theoretically, a convex hull
can be represented as either a set of convex points or the intersec-
tion of a set of half-spaces. Each half-space contains all the query
points in Q. Moreover, a convex hull can also be abstracted by a set
of facets and their adjacency relationships. Each facet can be de-
fined by a number of convex points. For example, a facet (line) can
be determined by two adjacent convex points in a 2-dimensional
space. The facets become planes that can be represented by a con-
vex point and its two adjacent convex points in a 3-dimensional
space. Because the facets of CH(Q) separate the query points in
Q from any point outside the convex hull, connecting a data point v
outside CH(Q) with any data point in CH(Q) must intersect with
at least one facet of the convex hull. Thus, the facet is referred to
as a visible facet from v.

The properties of convex hull provide opportunities to optimize
the process of spatial skyline evaluation by reducing the search
space of both data points and query points. Given a set of data
points P and the convex hull of a set of query points Q, all data
points inside CH(Q) are spatial skylines of P with respect to
Q [23]. Given two data points, if they are in the convex hull, the
bisector hyper-plane of these two points partitions the space into
two half-spaces, and there must exist convex points in either half-
space. Thus, neither of the two data points can spatially dominate
the other, and both of them are spatial skylines. If one point p1 is
in the convex hull and the other p2 is not, then, the bisector line of
p1 and p2 partitions the space into two half-spaces, and there must
exist a convex point in the same half-space with p1. If the convex
point does not exist, the convex hull cannot contain p1, which con-
tradicts with our assumption. Thus, p1 is not spatially dominated
by p2. These two cases are summarized in Property 3.

PROPERTY 3. Given a set of data points P and a set of query

points Q, if any point p ∈ P is inside the convex hull of Q, then p
is a spatial skyline of P with respect to Q (p ∈ SSKY (P,Q)).

3.3 MapReduce Overview
MapReduce was proposed as a generic programming model for

data-intensive applications in distributed environments [10]. The
framework provides two simple primitives, map and reduce func-
tions, and allows developers to mainly focus on their functionality.
The task scheduling, load balancing, and other issues are encapsu-

lated in the MapReduce framework, which significantly reduces the
difficulty of the development of parallel applications. Driven by the
MapReduce framework, map functions receive data in key/value
pairs from input streams and output intermediate results in another
type of key/value pairs. Then, reduce functions retrieve the inter-
mediate results and write final results to an output stream. In the
shuffle phase, the intermediate results are automatically grouped
and sorted by the MapReduce framework, The two primitives can
be represented as: map(K1, V1) → list(K2, V2) and reduce(K2,
list(V2)) → list(K3, V3).

4. DESIGN
In this section, we propose our advanced parallel spatial sky-

line solution using MapReduce. First of all, we briefly present the
framework of the solution. Then, our spatial skyline algorithm is
illustrated in detail in Section 4.2. The concepts of independent re-
gions and pruning regions are introduced to optimize the process of
spatial skyline evaluation. Finally, we discuss three critical imple-
mentation issues in our solution.

4.1 Framework Overview
Our solution consists of three MapReduce phases, which receive

a set of data points P and a set of query points Q as inputs, and out-
put spatial skyline points of P with respect to Q. As illustrated in
Figure 3, we calculate the convex hull of Q in the first MapReduce
phase. Q is initially partitioned into subsets of equal size, and each
map function finds the local convex hull of query points in a subset.
Then, a reduce function generates the global convex hull of Q by
merging the local convex hulls. Convex hull algorithm like Graham
scan could be employed in each map and reduce function [5]. Due
to high complexity of convex hull computation, a filtering method
can be used to filter out unqualified points with lower cost. For ex-
ample, Eldawy et al. observed that the convex points must be at
least one of four types of skyline points of Q (max-max, min-max,
max-min, and min-min) in a 2-dimensional space, and applied sky-
line algorithms as a filtering step in their CG_Hadoop system [11].

An intuitive spatial skyline method requires to examine the spa-
tial dominance between every pair of data points. Sharifzadeh and
Shahabi utilized the R-tree and Voronoi diagram as indices in their
B2S2 and V S2 algorithms [23]. Son et al. enhanced V S2 by re-
ducing the number of dominance tests [24]. However, extending
these methods to a parallel solution is non-trivial. Efficiently main-
taining indices over data in a distributed and/or parallel environ-
ment requires expertise and extensive experience. To address this
issue, we propose a novel concept, independent regions, in each of
which spatial skyline points do not depend on any data points out-
side the independent region. With the independence, the input data
points can be partitioned by their independent regions, and spatial
skyline points can be calculated in parallel. Therefore, after the
completion of convex hull computation, we calculate the indepen-
dent regions based on the convex hull and the input data points P
in the second phase. Each map function takes a subset of P and the
convex hull of Q as inputs, and outputs a locally optimal Indepen-

dent Region Pivot (See Figure 2, the independent regions are de-
termined by the independent region pivot and convex points). Then
a reduce function produces a globally optimal independent region
pivot by merging the intermediate results. More details of indepen-
dent region pivot selection will be discussed in Section 4.3.1. In the
third phase, P is initially partitioned, and each map function finds
the independent regions of data points in a split. The output of the
map functions can be represented as < IR.id, p >, where IR.id
denotes the unique identifier of the independent region associated
with a data point p. There are three possible cases: (1) data points
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Figure 3: An overview of the parallel spatial skyline processing using MapReduce.

are eliminated if they are outside all independent regions; (2) data
points are marked and output as spatial skylines by mappers and
reducers if they are inside the convex hull of Q. These data points
are needed in reduce functions, because they may spatially dom-
inate data points in category 3; (3) data points are produced with
their associated independent regions if they fall in at least one in-
dependent region. These data points will be processed by reducers
to find spatial skylines in the independent regions. If a data point
is inside two or more independent regions, the map function will
produce a pair of < IR.id, p > for every associated independent
region. After the shuffle phase, data points in P are grouped by in-
dependent regions, and sent to reduce functions for spatial skyline
calculation in parallel. Finally, the global spatial skyline points are
the union of the output of reduce functions. A data point could be
associated with two or more independent regions, which may intro-
duce duplicates in the results. We design an elimination method to
remove duplicates in our solution. The method will be presented in
Section 4.3.3.

Figure 2 shows an example of spatial skyline query over three
query points and eight data points (Q={q1, q2, q3, q4}, P={p1,
..., p8}). First of all, the convex hull of query points (CH(Q)) is
generated in the first MapReduce phase. Then, the globally op-
timal independent region pivot is found by using P and CH(Q)
in the second MapReduce phase. Each mapper takes a split of P
and CH(Q) (a constant global variable), and selects a local opti-
mal independent region pivot, and a reducer outputs the globally
optimal pivot. In the third MapReduce phase, each mapper re-
ceives a split of P , and the pivot and CH(Q) (as two constant
global variables), and produces object points with their associated
independent regions. In the example, there are three independent
regions ({IR(p1, q1), IR(p1, q2), IR(p1, q3)}). All the indepen-
dent regions can be calculated from the pivot and CH(Q) in map-
pers. Moreover, object points are associated with the independent
regions where they locate in. If we use ir1, ir2, and ir3 to de-
note IR(p1, q1), IR(p1, q2), and IR(p1, q3), then p1 is associated
with ir1, p5 is associated with ir2 and etc. After the shuffle phase,
< ir1, p1 >, < ir1, p2 >, < ir1, p3 >, and < ir1, p8 > are
grouped and sent to the first reducer, < ir2, p1 >, < ir2, p5 >,
and < ir2, p6 > are passed to the second reducer, and < ir3, p1 >
< ir3, p4 > < ir3, p5 > are processed in the third reducer. In
this case, p1 is a special object point, which is in all three inde-
pendent regions. As we will discuss our elimination method in
Section 4.3.3, p1 will be only output by the first reducer. Thus, the
first reducer outputs p1, p2 and p8 as spatial skylines and discards
p3 because it is dominated by p8. The second reducer produces
p5, p6. The third reducer does not output any object because p4 is
eliminated in the spatial dominance test and p5 has been produced
in the second reducer. Finally, the result of the spatial skyline query
is the union of the results of reducers, which are {p1, p2, p5, p6,
p8}.

4.2 Spatial Skyline Calculation
In the second and third MapReduce phases, we generate inde-

pendent regions based on the convex hull of Q and a set of data
points P for spatial skyline computation in parallel. In this subsec-
tion, we first provide a formal definition of an independent region.
Due to high cost of the spatial dominance test that requires compar-
ing the distance from data points to all convex points, we introduce
pruning regions in independent regions. A pruning region can be
defined by a data point inside CH(Q), a convex point, and its adja-
cent convex points. If a data point is in a pruning region, the point
can be discarded without the dominance test.

Definition (Independent Region) Given a data point p and a set of
query points Q in a d-dimensional space, we define an Independent

Region of p and qi, qi ∈ Q as a sphere centered at qi with radius
D(p, qi). An Independent Region Group (IRG) of p with respect
to Q is the union of the independent regions, as shown in Figure 2.

IRG(p,Q) =
⋃

qi∈Q

IR(p, qi), where

IR(p, qi) = {l| D(l, qi) ≤ D(p, qi)}

(3)

We define data point p as the Independent Region Pivot of IRG(p,Q)
as shown in Figure 2.

With the definition of the independent region, we provide the
independence of spatial skylines as follows.

THEOREM 4.1. Given a data point p and its independent re-

gions {IR(p, qj) | qj ∈ CH(Q)}, where CH(Q) is the convex

hull of query points Q, ∀ qj ∈ CH(Q), any data point p′ ∈
IR(p, qj) is not dominated by any data point p′′ /∈ IR(p, qj).

PROOF. The proof is by contradiction. Assume that ∃ p′ ∈
IR(p, qj), p

′′ /∈ IR(p, qj), p
′′ ≺Q p′. By the definition of spatial

skyline, p′′ is spatially closer to any query point qi (qi ∈ Q) than
p. Since qj ∈ CH(Q), so qj ∈ Q as well. But according to the
definition of independent regions, D(p′′, qj) ≥ D(p′, qj) since p′′

is outside of IR(p, qj), which leads to a contradiction. Thus, this
concludes the proof.

The independent regions are determined by the independent re-
gion pivot and the convex hull of Q. The convex hull is uniquely
determined by input query points Q; however, theoretically, the
pivot can be arbitrarily selected. Since the independent regions
specify the search region that contains spatial skyline candidates,
an intuitive strategy of the data point selection is to select the data
point that minimizes the total volume of its independent regions.

Figure 2 displays an example that utilizes independent regions in
the spatial skyline evaluation in R2. The datasets P and Q consist
of 8 data points and 4 query points, respectively. q1, q2, and q3
are the convex points of the convex hull of Q. The three dashed
circles indicate three independent regions generated by p1 and the
convex points. In this example, P is partitioned into three sub-
sets, which are P1 = {p1, p2, p3, p8}, P2 = {p1, p4, p5} , and
P3 = {p1, p5, p6}. p1 and p8 are spatial skylines, because they are
in the convex hull [23]. p7 is outside all independent regions and
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can be discarded by mappers in the third phase. p5 is in IR(p1, q2)
and IR(p1, q3), thus p5 is associated with both independent re-
gions. Then, the spatial skylines in independent regions are cal-
culated independently. Figure 4 shows an example of the pruning
region in IR(p1, q1) (the formal definition of pruning regions will
be presented in Section 4.2.1). p8 is a data point that is closer to q1
than p1. Thus, we create a pruning region PR(p8, q1) (highlighted
in gray) in IR(p1, q1) to filter out data points dominated by p8. In
the example, p3 falls in PR(p8, q1), and can be discarded without
being compared with p2. Thus, p2 is the only data point requiring
spatial dominance test, comparing its distance to all convex points
with the one of p8. Our spatial skyline algorithm will be presented
in Section 4.2.2.

4.2.1 Pruning Regions in Independent Regions

In the third MapReduce phase, a reduce function calculates spa-
tial skylines of a set of data points in an independent region. In
particular, the data points are comparing their distances to all con-
vex points of CH(Q) with all other data points (spatial skylines do
not depend on non-convex points [23]), and the ones are discarded
if they are spatially dominated in the same independent region. The
data point comparison would be expensive when the number of
convex points of CH(Q) becomes large. Thus, to minimize the
cost of the dominance test, we propose a pruning method that is
able to efficiently filter out unqualified data points without access-
ing all convex points of CH(Q). This method defines a pruning
region in each independent region; if data points fall in the pruning
region, they can be discarded because there must exist a data point
dominating these data points. We will first illustrate the pruning
regions in a 2-dimensional space, and then provide a formal defini-
tion and proof of the pruning regions in high-dimensional spaces.

Figures 6 and 7 show an example of a pruning region in R2.
Given a query point q, two data points p and v, let Lqx be a line
connecting q to any point x ∈ R2, and Lvq be the line of q and v.
We build a 2-dimensional Cartesian coordinate system, in which q
is the origin and Lqx is x axis. Lqx and Lvq partition R2 into two
half-spaces, denoted by S−

qx and S+
qx, and S−

vq and S+
vq , respec-

tively.

THEOREM 4.2. If p and v satisfy

(1) v ∈ S+
qx and p ∈ S−

qx

(2) v.x ≤ p.x

(3) D(v, q) > D(p, q)

(4)

then p spatially dominates v with respect to any point q∗, q∗ ∈
S−
qx

⋂

S+
vq .

PROOF. As a case of p.x ≥ 0 shown in Figure 6, the three con-
ditions indicate that (1) Lqx partitions v and p into two half-spaces,
v.y > 0, p.y < 0; (2) if we create a line Lpc perpendicular to Lqx,

p1

q2

q3

p2

p6

IR(p1, q2)
IR(p1, q1)

IR(p1, q3)

p5

p4

p7

p8

p3

q1

PR(p8, q1)

Figure 4: An example of Pruning

Regions in R2.

p1

q2

q1

q4

p2

p3

p4

p5

p6

p7IR(p1,{q3}) IR(p1, {q1, q2})

IR(p1, {q4})

p8q3

Figure 5: An example of merged

Independent Regions in R2.

q

p

v

a

b

c

e
�[

q*

x

q**

y

qx

Figure 6: A pruning region

using p and a visible facet Lqx.

qi

p

v

c

d

q*

q**

qi+1

qi-1 G
+

G
-

a
b

Figure 7: An example of

PR(p, qi).

then v is at the left side of Lpc; (3) v is outside of the circle cen-
tered at q with radius D(p, q). The circle intersects with Lpc at p
and b.

Given any data point q∗ or q∗∗ in S−
qx

⋂

S+
vq (highlighted in

gray), Lvq∗ must intersect with either an arc from a to b (arcab)
or a line from b to c (Lbc). If Lvq∗ intersects with arcab at e, then
we can get D(p, q) = D(e, q) and p.x > e.x. Given a query point
qx = {q∗.x, 0} on Lqx, then

D(e, qx) =
√

(e.x− q∗.x)2 + (e.y)2

=
√

D(e, q)2 − 2 · (e.x) · (q∗.x) + (q∗.x)2

>
√

D(p, q)2 − 2 · (p.x) · (q∗.x) + (q∗.x)2

=
√

(p.x− q∗.x)2 + (p.y)2

= D(p, qx)

(5)

thus, D(p, qx) < D(v, qx). If qx is moved to q∗ (q∗.y < 0), then
D(p, q∗) < D(v, q∗) is also held. On the other hand, if Lvq∗∗

intersects with Lbc at e′, then D(p, q∗∗) < D(e′, q∗∗), because
Lqx is the bisector line of p and b, and both p and q∗∗ are in S−

qx.
Thus, D(p, q∗∗)<D(e′, q∗∗)≤D(v, q∗∗). We can get the similar
result in the case of p.x < 0. Therefore, p spatially dominates v
with respect to any query point in S−

qx

⋂

S+
vq .

In a 2-dimensional space, a convex hull is a convex polygon,
in which each convex point has two adjacent convex points. Fig-
ure 7 shows three convex points qi−1, qi, and qi+1 of a convex
hull CH(Q). qi−1 and qi+1 are adjacent to qi. Line segments
Lqiqi−1

and Lqiqi+1
are two visible facets from a data point v out-

side CH(Q) [9].

THEOREM 4.3. In a 2-dimensional space, given a query point

qi ∈ CH(Q) and a data point v outside CH(Q), let A△
qi be a set

of adjacent convex points of qi, and p be an invisible data point

from v. Each of the lines from p perpendicular to Lqiqj (qj ∈ A△
qi )

partitions the space into two closed half-spaces. Let S−

qiqj⊥
be the

half space containing qi. Then, any data point v outside CH(Q)
satisfying

(1) v ∈ S−

qiqj⊥
, qj ∈ A△

qi

(2) D(v, qi) > D(p, qi)
(6)

is spatially dominated by p with respect to Q.

PROOF. In Figure 7, Lab and Lcd are two lines from p perpen-
dicular to Lqiqi−1

and Lqiqi+1
, respectively. Lab, Lcd, and arcbc

separate v from the convex hull CH(Q). Lvqi partitions CH(Q)
into two closed half regions, G− and G+; all convex points are in
either G− or G+. If a convex point q∗ is in G−, we can easily get
D(p, q∗)<D(v, q∗) by using Theorem 4.2. The similar result can
be obtained in the case that any convex point q∗∗ is in G+. Thus, v
is spatially dominated by p with respect to Q.
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After an illustration of pruning regions in R2, we extend the
concept of pruning regions to high-dimensional spaces. In a d-
dimensional space, a convex hull of query points Q can be repre-
sented by a set of half-spaces H, where CH(Q) =

⋂

h+∈H h+.
The bisector hyper-plane of each half space contains a (d-1)- di-
mensional facet of the convex hull, which can be determined by a
convex point and a subset of its adjacent convex points. The formal
definition of the pruning regions is provided as follows.

Definition (Pruning Regions) In a d-dimensional space, given a
convex hull of query points CH(Q), a data point v outside CH(Q),
a visible convex point q, and an invisible data point p from v, let
A△

q be a set of adjacent convex points of q in facets, h⊥
qqj be the

(d-1)-dimensional hyper-plane that contains p and is perpendicular
to Lqqj , qj ∈ A△

q . h⊥
qqj partitions the space into two closed half-

spaces; the one containing q is denoted by S−

h⊥
qqj

. Then any data

point v outside CH(Q) satisfying

(1) v ∈ S−

h⊥
qqj

, qj ∈ A△
q

(2) D(v, q) > D(p, q)
(7)

is spatially dominated by p with respect to Q. The region contain-
ing all possible v is called a Pruning Region of p and q, denoted by
PR(p, q).

PROOF. The proof is by induction. The pruning region in a 2-
dimensional space has been proven in Theorem 4.3. We assume
that the pruning region is held in an (i-1)-dimensional space (i≥ 3),
then, in an i-dimensional space, since v is outside CH(Q), the line
connecting v with any convex point q∗ must intersect with a visi-
ble closed (i-1)-dimensional facet F of CH(Q). The hyper-sphere
centered at q with radius D(p, q) and h⊥

qqj (qj ∈ A△
q ) separate v

from CH(Q). If a ray from v to q∗ intersects with the hyper-sphere
at e earlier than any h⊥

qqj (qj ∈ A△
q ), then given any convex point

qk ∈ A△
q , we can build an i-dimensional Cartesian coordinate sys-

tem, in which F is a hyper-plane (xi = 0), v.xi > 0, p.xi < 0,
and Lqqk (Lqqk ∈ F ) is x axis. Any query point on Lqqk can be
represented by {x1, 0, ..., 0}. Since D(e, q) = D(p, q) and e.x1 <
p.x1, given any query point qx on Lqqk , we can get

D(e, qx) =
√

(e.x1 − qx.x1)2 +D(e, Lqqk )
2

=
√

D(e, q)2 − 2 · (e.x1) · (qx.x1) + (qx.x1)2

>
√

D(p, q)2 − 2 · (p.x1) · (qx.x1) + (qx.x1)2

=
√

(p.x1 − qx.x1)2 +D(p, Lqqk )
2

= D(p, qx)

(8)

where D(e, Lqqk ) denotes the distance from e to the line Lqqk .
Thus, we can get that, given any query point q′ satisfying D(p, q′)
≤ D(e, q′), if q′ is moved to q′′ on any of the directions from q to its
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adjacent convex points in F , D(p, q′′) < D(e, q′′) is also held. So, p
is closer to any query point in F than e. Since, v.xi > 0, p.xi < 0,
and q∗.xi < 0, so D(p, q∗) < D(v, q∗). On the other hand, if a
ray from v to q∗ first intersects with h⊥

qqk at e′, let q⊛ be the center

of the intersection of h⊥
qqk and the hyper-sphere centered at q with

radius D(p, q), h⊥
qqk is an (i-1)-dimensional hyper-plane, in which

D(e′, q⊛) > D(p, q⊛), and e′ ∈ S−
hqqt

, qt 6= qk, qt, qk ∈ A△
q ,

which satisfies the conditions in an (i-1)-dimensional space. Thus,
D(p, q⊛) < D(e′, q⊛); then D(p, q∗) < D(e′, q∗) ≤ D(v, q∗).
Therefore, this concludes the proof.

Figure 8 shows an example of the convex hull of query points
Q in a 3-dimensional space. v is a data point outside the convex
hull. The line Lvwe intersects with a visible facet F at e. F can be
determined by three convex points qi−1, qi, and qi+1. After a coor-
dinate transformation, F is transformed to be on plane Z (z = 0),
v.z > 0, and p.z < 0, as displayed in Figure 9. Lqiqi+1

is the x
axis in plane Z. The area invisible from v, including p, is high-
lighted in gray. Two hyper-planes h⊥

qiqi−1
and h⊥

qiqi+1
perpendic-

ular to Lqiqi−1
and Lqiqi+1

are highlighted in red. qi+1 and qi−1

are two elements of A△
qi . If a ray from v to q∗ first intersects with

the sphere centered at qi with radius D(p, qi) at e, then according
to Equation 8, we can get that given any point q′ on Lqiqi+1

, q′.x
≥ qi.x, D(p, q′) ≤ D(e, q′), and moving the point on the direc-
tion from qi to qi+1 with distance △d (△d > 0) makes the point
closer to p than e. The similar result can be obtained on the di-
rection from qi to qi−1. Thus, any query point in the facet F is
closer to p than e. Moreover, e.z > 0, q.z < 0, and q∗.z < 0,
we can get that D(p, q∗) < D(e, q∗) < D(v, q∗). On the other
hand, if a ray from v to q∗∗ first intersects with h⊥

qiqi+1
at e′, then

e′.x = p.x, and D(e′, qi) > D(p, qi). Let q′i be the intersection of
Lqiqi+1

and h⊥
qiqi+1

, D(e′, q′i)>D(p, q′i). h
⊥
qiqi−1

intersects with

h⊥
qiqi+1

at a line, which contains p and partitions h⊥
qiqi+1

into two

closed half-spaces. q′i and e′ are in the same half space. By Theo-
rem 4.3, D(e′, q′i) > D(p, q′i). Therefore, D(v, q∗∗) ≥ D(e, q∗∗)
> D(p, q∗∗), and v is spatially dominated by p with respect to Q.

4.2.2 Spatial Skyline Algorithm

With the concept of pruning regions, we present our spatial sky-
line algorithm used in reduce functions of the third phase. The
input data points are grouped by their independent regions through
the shuffle phase, and unqualified data points outside independent
regions have been discarded in map functions. The fundamental
idea of our method is to first eliminate data points by using prun-
ing regions. If they are not in any pruning region, they are needed
to compare with all other potential spatial skyline candidates for
spatial dominance test.

The details of our method are described in Algorithm 1. The al-
gorithm receives all data points in an independent region IR(p, qi),
denoted by Pi, and the convex hull of query points Q. We use
chsky and lssky to keep local spatial skylines inside and outside
CH(Q), respectively. PR abstracts pruning regions of the spatial
skyline candidates. The union of chsky and lssky are output as
spatial skylines in the independent region, which is a subset of the
global spatial skylines of the query.

In particular, the algorithm first finds all the data points in CH(Q).
These data points are kept in chsky, and used to build pruning re-
gions PR (from lines 4 to 11). lssky temporarily maintains all
data points outside CH(Q). Then, each data point in lssky is vis-
ited for the dominance test (from lines 12 to 20). If a data point
falls in any pruning region, the data point will be removed from
lssky. If the data point is outside the pruning regions, it needs to
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Algorithm 1 Spatial Skyline Algorithm

Input: Pi, CH(Q)
Output: lssky ∪ chsky
1: lssky = ∅;
2: chsky = ∅;
3: PR = ∅;
4: for ∀p ∈ Pi do

5: if p is inside CH(Q) then

6: chsky = chsky ∪ {p};
7: PR = PR ∪ PR(p, qi);
8: else

9: lssky = lssky ∪ {p};
10: end if

11: end for

12: for ∀p ∈ lssky do

13: if p is in PR then

14: lssky = lssky - {p};
15: Continue;
16: end if

17: if ∃ p′ ∈ (chsky ∪ lssky), p′ 6= p, p′ ≺Q p then

18: lssky = lssky - {p};
19: end if

20: end for

21: return lssky ∪ chsky;

Level 0

Level 1

Level 2

Level 3

P1

P2P3

P4

Figure 10: An example of

Grid(lssky ∪ chsky).

Level 0

Level 1

Level 2

Level 3

DR(P1)

DR(P2)DR(P3)

DR(P4)

Figure 11: An example of

Grid(DR(lssky ∪ chsky)).

compare with all other data points in chsky and lssky, and will be
eliminated if it is dominated.

To minimize the cost of the dominance test in line 17, we use two
multi-level grids, Grid(lssky ∪ chsky) and Grid(DR(lssky ∪
chsky)), to maintain spatial skyline candidates and their domi-
nator regions (defined in Section 3.1). The two grids are always
synchronized; once there is a data point inserted into or removed
from Grid(lssky ∪ chsky), Grid(DR(lssky ∪ chsky)) is up-
dated accordingly. Figures 10 and 11 display an example of the
two grids. The cells at the bottom level keep the references of
spatial skyline candidates and their dominator regions; parent cells
maintain the proximity information of their child cells. In the dom-
inance test of a new data point p, we first check if p is dominated
by other data points. We calculate the dominator region of p, and
visit Grid(lssky ∪ chsky) from top to bottom to see if there is a
data point falling in the dominator region. The iteration can stop
at any intermediate level when either of the two conditions is sat-
isfied: (1) all cells intersecting with the dominator region do not
contain any data point (p is not dominated by spatial skyline can-
didates in lssky ∪ chsky); (2) a cell inside the dominator region
contains a data point (p is dominated by the data point). If p is not
dominated, then we visit Grid(DR(lssky ∪ chsky)) in a simi-
lar manner to see if p dominates any data point in lssky ∪ chsky.
If p falls in the dominator region of p′, then p′ and its domina-
tor region will be removed from both Grid(lssky ∪ chsky) and
Grid(DR(lssky ∪ chsky)).

4.3 Implementation Issues

In this subsection, we discuss three implementation issues in our
solutions.

4.3.1 Independent Region Pivot Selection

In the second MapReduce phase, the search space is partitioned
into a number of independent regions. The spatial skylines are cal-
culated in parallel by reducers in the third MapReduce phase. The
execution time of a parallel program is determined by the slowest
process, and the spatial skyline algorithm takes longer on larger in-
puts. Thus, distributing the data points to reducers in a balanced
manner is critical to our approach.

If the data points are uniformly distributed in the search space,
the number of data points in an independent region is proportional
to the volume of the independent region, which depends on the dis-
tance between the independent region pivot and the convex point.
Theoretically, the point with equal distance to all convex points is
the optimal independent region pivot, which could split data points
in equal size. But the optimal pivot may not exist in irregular con-
vex hull. Moreover, the point that minimizes the total volume of
independent regions would be an alternative optimal pivot. How-
ever, the cost of finding the point is expensive. Thus, we turn to
an approximation method in our implementation. After the convex
hull is calculated, we choose the center of the Minimum Bound-
ing Rectangle (MBR) of the convex hull as the independent region
pivot. The experimental results of varying independent region piv-
ots can be found in Section 5.6.

4.3.2 Independent Region Merging

In the third phase of our solution, a reducer processes data points
in an independent region. The number of reducers needed in the
spatial skyline calculation depends on the number of independent
regions or the number of convex points in the convex hull of query
points Q. Since the size of the convex hull would be large, the task
maintenance and communication overhead in MapReduce frame-
work would be unacceptably high.

Thus, there are two merging strategies that can be applied to our
proposed solution if the number of independent regions is much
greater than the number of available computing resources. In the
strategies, we assume that objects are uniformly distributed in the
search space. The smaller the total volume of independent regions
is, the less the number of objects are processed in spatial skyline
computation.

Shortest distance merging. In this method, we merge the clos-
est pair of two neighboring independent regions. The distance of
two independent regions is evaluated by the distance between the
centers of the independent regions. We assume that there is higher
possibility that two independent regions overlap with each other if
they are close. Merging two overlapped independent regions may
reduce the cost of spatial skyline computation for the following two
reasons: (1) the objects in the overlapping region are fed to one re-
ducer instead of two, which minimizes the total number of objects
in the spatial dominance test; (2) the pruning regions of the inde-
pendent regions are also merged; more objects could be eliminated
without the dominance test. Take Figure 5 for example, q1 and
q2 are the closest pair of convex points in the figure. IR(p1, q1)
and IR(p1, q2) are merged, and the new independent region is de-
noted by IR(p1, {q1, q2}). So, p3 and p8 are only processed by
the reducer, which receives IR(p1, {q1, q2}). The pruning region
of IR(p1, {q1, q2}) is PR(p1, q1) ∪ PR(p1, q2).

In our implementation, we iterate the convex hull in counter
clockwise order, and calculate the distance between every pair of
two consecutive independent regions. Let n be the number of com-
puting resources available to the spatial skyline evaluation and m
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be the number of convex points, we will merge the top m − n
(m ≥ n) closest pairs of the independent regions (the number
of pairs of independent regions is equal to the number of convex
points).

Threshold-based merging. An alternative strategy merges in-
dependent regions by considering the volume of the overlapping
region of two independent regions. In this method, we visit the
independent regions in counter clockwise order. Given two con-
secutive independent regions, we calculate the ratio of volume of
the overlapping region of the two independent regions to the vol-
ume of the smaller independent region. If the ratio is higher than
a specific threshold, the two independent regions will be merged.
Another difference from the first method is that two or more inde-
pendent regions may be merged if they are close to each other. The
ratio can be defined as follows.

ratio(q1, q2) =
V old(IR(p1, q1)) ∩ V old(IR(p1, q2))

V old(IR(p1, q2))
(9)

where IR(p1, q1) and IR(p1, q2) are two consecutive independent
regions, V old(IR(p1, q2)) denotes the volume of IR(p1, q2) in a
d-dimensional space, and V old(IR(p1, q1))≥ V old(IR(p1, q2)).

Moreover, the volume of the overlapping region of two inde-
pendent regions (two spheres) can be calculated as follows (See
Figures 12 and 13).

V old(IR(p1, q1) ∩ IR(p1, q2)) =∫ r1

u0

V old−1(h)du+

∫ r2

t0

V old−1(h)dt
(10)

where V old−1(h) denotes the volume of the sphere with radius h in

a (d-1)-dimensional space, h = (r21−u2)1/2 = (r22−t2)1/2. u0 and

t0 are the lower bounds of the integrals, where u0 =
r21−r22+D(q1,q2)

2

2D(q1,q2)

and t0 =
r22−r21+D(q1,q2)

2

2D(q1,q2)
. D(q1, q2) denotes the distance between

q1 and q2.
Figure 12 shows an example of the independent region merging

in a 2-dimensional space. Line lpp′ decomposes the overlapping
region into two sub-regions. The length of lpp′ is denoted by V 1(h)
= 2h. If we move lpp′ towards q1 and q2, respectively, then, the

volume of the two sub-regions is the sum of integral of V d−1(h)
in the overlapping area. In a d-dimensional space, lpp′ becomes a
sphere in a (d-1)-dimensional hyper-plane, and h is the radius of
the sphere.

In a 2-dimensional space, ratio(q1, q2) can be calculated as fol-
lows,

ratio(q1, q2) =
V ol2(IR(p, q1)) ∩ V ol2(IR(p, q2))

V ol2(IR(p, q1))

=

∫ r1
u0

(h)du+
∫ r2
t0

(h)dt

V ol2(IR(p, q1))

=
r2cos−1(

d2+r21−r22
2dr2

) + r1cos−1(
d2+r22−r21

2dr1
)

πr12

(11)

4.3.3 Duplicate Elimination

The third issue is that our solution may produce duplicates since
a data point may locate in two or more independent regions. If
the data point is a spatial skyline, it will be written to the results
of the query by multiple reducers. To eliminate the duplicates, we
associate a unique independent region identifier to each data point,
which indicates that the data point will be output as a spatial sky-
line by the reducer which processes data points in the independent
region. Reducers processing data points in other independent re-
gions will not output the data point even if it is a spatial skyline.
Take Figure 4 as an example, p5 is a data point in IR(p1, q2) and
IR(p1, q3). If the identifier of IR(p1, q2) is associated with p5,
and p5 is a spatial skyline, p5 is output only by the reducer process-
ing data points in IR(p1, q2).

5. EXPERIMENTAL VALIDATION
In this section, we evaluate the performance of the proposed

MapReduce-based solution over synthetic and real-word datasets.
Our proposed algorithm is denoted by PSSKY -G-IR-PR, which
combines the concepts of independent regions, pruning regions,
and multi-level grid data structure for efficient query evaluation.
Since none of the existing solutions can be easily extended to ad-
dress spatial skyline queries in parallel, we developed two single-
phase MapReduce-based solutions as baselines, PSSKY and
PSSKY -G. PSSKY applies a random data partitioning method
to split data points. Each mapper uses BNL to produce local spa-
tial skylines by comparing every pair of data points, and a reducer
merges the local results and outputs the global spatial skylines.
PSSKY -G works similarly to PSSKY except that PSSKY -
G utilizes multi-level grid data structure for efficient spatial domi-
nance test. Since all three solutions use the same algorithm in con-
vex hull computation, we will focus primarily on the investigation
of the overall performance of solutions and the effect of indepen-
dent regions and pruning regions on spatial skyline computation in
the second and third MapReduce phases. All solutions were imple-
mented in Java on Hadoop 2.6, which is an open source implemen-
tation of the MapReduce framework [1].

In the experiments, the real-word datasets were downloaded from
Geonames 1. We retrieved 11 million objects (streams, schools,
etc.) in the United States, and used them as data points and query
points. The data points in our synthetic datasets are randomly gen-
erated under uniform distribution in a 2-dimensional space. Simi-
larly with [23], the query points were also generated in a specified
region at the center of the search space. By default, there are 10
convex points in the convex hull of query points. The area covered
by the Minimum Bounding Rectangle (MBR) of query points is
fixed at 1% of the search space. The experiments were conducted
on a 12-node shared-nothing cluster. Each node is equipped with
19 Intel Xeon 2.2 GHz processors and 128 GBytes of memory. All
nodes are connected by GigaBit Ethernet network. All results were
recorded after the system model reached a steady state.

1http://www.geonames.org/
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Figure 14: The overall execution time of the three solutions by varying

dataset cardinality.

5.1 Scalability with Cardinality
First of all, we evaluate the effect of data cardinality on all three

solutions. We vary the cardinality of both synthetic and real-world
datasets from 100 to 500 million and 2 to 10 million data points,
respectively. As Figure 14 displays, the execution time of all solu-
tions increase when the datasets grow. The growth rate of PSSKY -
G-IR-PR over synthetic datasets is lower than PSSKY and PS
SKY -G. In addition, on average, PSSKY -G-IR-PR executes
around 90% faster than PSSKY and 32% faster than PSSKY -
G, respectively. The reason is that PSSKY -G-IR-PR is able to
parallelize the spatial skyline evaluation by applying the concept of
independent regions and efficiently filter out unqualified data points
in pruning regions. Moreover, a performance improvement was ob-
served when comparing PSSKY -G with PSSKY , because the
multi-level grid data structure is employed to efficiently access the
proximity information of data points for the dominance test.

5.2 Effect of Independent Regions and Prun-
ing Regions on Spatial Skyline Algorithms

To evaluate the effectiveness of independent regions and pruning
regions on the query evaluation, we compare the execution time of
spatial skyline computation in PSSKY -G-IR-PR (the execution
time of reducers in the third MapReduce phase) with the ones in
PSSKY and PSSKY -G. The cardinality of synthetic and real-
world datasets varies from 100 to 500 million and 2 to 10 million
data points.As Figure 15 shows, the execution time of all solutions
increase when the datasets grow. The execution time of PSSKY
increases rapidly due to high complexity of spatial skyline com-
putation. The growth rate of PSSKY -G-IR-PR is the lowest,
because all data points can be processed in parallel and a signif-
icant portion of data points can be discarded without dominance
test. Moreover, the reducer that merges spatial skylines becomes a
bottleneck in PSSKY and PSSKY -G, which consumes 50% to
90% of the total execution time over large synthetic and real-world
datasets.

5.3 Effect of Number of Nodes
We evaluate the speedup of proposed solutions by scaling up the

size of our cluster. The real and uniform datasets are fixed at 10
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Figure 15: The execution time of spatial skyline algorithms by varying

dataset cardinality.
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Figure 16: The number of dominance test by varying dataset cardi-

nality.

million and 100 million objects. The cardinality of cluster nodes
varies from 2 to 12.

In Figure 17, the execution time of all solutions drops as the size
of the cluster increases. As expected, PSSKY always consumes
more execution time than PSSKY -G and PSSKY -G-IR-PR
while scaling up the cluster. On average, PSSKY -G-IR-PR en-
joys the highest dropping rate. Take experiments on real world
data for example, PSSKY -G-IR-PR drops 34.35% when scal-
ing up to 8 nodes, PSSKY-G only drops 27%; the dropping rate
of PSSKY is constantly lower than 20% in all experiments. The
reason is that more map or reduce tasks can be executed in parallel
with more computing resources. However, even all three meth-
ods will take advantage of mapper parallelism, only reducers of
PSSKY -G-IR-PR run in parallel, because the global region is
partitioned into independent regions; the skyline results in each in-
dependent region do not depend on the ones in other independent
regions.

For both synthetic and real data, PSSKY -G-IR-PR performs
approximately 50% better than PSSKY -G and 80% better than
PSSKY in terms of execution time.

5.4 Effect of Pruning Regions
We also evaluate the effect of pruning regions by comparing the

number of dominance tests among three solutions. The cardinality
of synthetic and real-world datasets varies from 100 to 500 million
and 2 to 10 million data points. Figure 16 displays the number
of dominance test in the three solutions over the datasets. As ex-
pected, PSSKY always suffers from more dominance tests than
PSSKY -G and PSSKY -G-IR-PR. Using multi-level grid data
structure can reduce the cost of the dominance test, because, in-
stead of access all data points, PSSKY -G only needs to visit data
points in the cells that intersect with dominator regions of other
data points. Moreover, the effect of pruning regions can be ob-
served by comparing the results of PSSKY -G and PSSKY -G-
IR-PR. Although data points locating at two or more independent
regions may introduce subtle overhead in data point comparison,
PSSKY -G-IR-PR can save more time in the dominance test by
utilizing the concept of pruning regions. According to our experi-
ments, there are a small number of duplicate data points generated
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Figure 17: The overall execution time of the three solutions by varying

nodes cardinality.
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Table 2: Effectiveness of pruning regions by varying dataset

cardinality.

Synthetic
DataSets

Number of Data Points (million)
100 200 300 400 500
27% 27% 27% 27% 27%

Real-world
DataSets

Number of Data Points (million)
2 4 6 8 10
10% 10% 9% 9% 8%

by PSSKY -G-IR-PR. Combining the experiments shown in
Figure 15, PSSKY -G-IR-PR only takes a few minutes longer
if there are additional 100 million dominance test are performed
by PSSKY -G-IR-PR. Note that these dominance tests may be
conducted in parallel in PSSKY -G-IR-PR.

Table 2 shows the power of pruning regions in terms of data point
reduction rate by varying cardinality of datasets. The reduction rate
is defined by the average percentage of data points eliminated by
pruning regions in independent regions. We find that around 27%
of data points in synthetic datasets fall in pruning regions, and can
be discarded by PSSKY -G-IR-PR while there are around 9%
of real-world data points that can be pruned without the dominance
test. Moreover, the object elimination rate is slightly changed for
large real-world datasets. The reason is that the number of data
points varies in the experiments, but the number of query points
and its convex hull are fixed. Theoretically, if data points are uni-
formed distributed, the effectiveness of the Pruning Region only
depends on the volume of Pruning Regions. Increasing the density
of data points over a large data point datasets does not help much
to generate larger pruning regions. Thus, the reduction rate over
synthetic datasets remains unchanged, and there is slight change in
the reduction rate over real-world datasets due to the non-uniform
distribution of data points.

Table 3 shows the power of pruning regions in terms of data point
reduction rate by varying the distribution of data points. We re-
place 5%, 10%, 15%, and 20% of uniform data points with anti-
correlated data points. For example, the experiments performed
over datasets with 20% anti-correlated and 80% uniform data points
are displayed in the first row of the results in Table 3. We find
that the reduction rate remains the same over datasets under the
same distribution of data points. Moreover, when 20% of anti-
correlated data points are generated in datasets, only 2% difference
is observed in the experiments, which tells us that the ratio of the
volume of independent regions and pruning regions to that of the
search space is small. In other words, if 20% data points are moved
to the central area of the search space, there are only 2% of data
points moved outside the pruning regions.

5.5 Effect of Query Points
We investigate the effect of the area covered by the convex hull

of query points on the solutions in this subsection. We fix the size
of data points at 100 million. The ratio of the area covered by the
MBR of query points to the search space ranges from 1% to 2.5%.
The number of Convex Hull query points selected for real-world

Table 3: Effectiveness of pruning regions by varying dataset

distribution.

DataSets
Number of Data Points (million)

100 200 300 400 500

20% anti-correlated 24% 24% 24% 24% 24%

15% anti-correlated 24.7% 24.7% 24.7% 24.7% 24.7%

10% anti-correlated 25.3% 25.3% 25.3% 25.3% 25.3%

5% anti-correlated 26% 26% 26% 26% 26%
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Figure 18: The overall execution time of the three solutions by varying

the MBR of the convex hull of query points.
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Figure 19: The execution time of spatial skyline algorithms by varying

the MBR of the convex hull of query points.

datasets are 10, 14, 17, and 23, and that for synthetic datasets are
10, 12, 14, and 16, respectively. Figure 18 displays the overall
execution time of solutions over synthetic and real-world datasets.
The ratios of the MBR of the convex hull of query points are indi-
cated by x axis. Intuitively, a larger convex hull may help to reduce
the cost of the dominance test because more data points would lo-
cate in the convex hull, and can be output as spatial skylines with-
out dominance test. However, our experimental results show that
the entire process of query evaluation takes longer. The reason is
that there are more data points in the search region, and the num-
ber of data points requiring dominance test becomes larger. Take
Figure 2 for example, a convex hull is represented by q1, q2, and
q3. p1 is used to generate three independent regions. If the convex
hull grows larger, the area covered by the three independent regions
will become larger accordingly. Thus, more data will be located in
the independent regions, and be processed by reducers in the third
MapReduce phase.

The evidence is also displayed in Figure 19 and 20. Figure 19
shows the execution time of spatial skyline computation and the
number of dominance tests grow rapidly when the MBRs of the
convex hull of query points cover larger areas. A similar results are
observed in terms of the number of dominance test in Figure 20.

5.6 Effect of Independent Region Pivot Selec-
tion

We investigate the effect of independent region pivot selection on
the query evaluation by varying the pivot on real world datasets. We
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Figure 20: The number of dominance test in the three solutions by

varying the MBR covered by query points.
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Figure 21: The execution time of PSSKY -G-IR-PR by varying in-

dependent region pivots.

randomly choose three query dataset in such a way that the convex
hull of the query points is in random shape. Figure 20 shows the
execution time of the query when the pivot locates at the query
points with minimum and maximum y-coordinate values (p5 and
p1), and the center of MBR(CH(Q)) (p3). Two additional pivots
are selected at the midpoint of the line of p1 and p3, and the line of
p3 and p5. The two pivots are denoted by p2 and p4, respectively.
In general, p3 is closer to the optimal pivot than other four pivots,
and PSSKY -G-IR-PR runs faster when p3 is selected as the
independent region pivot.

6. CONCLUSION AND FUTURE WORK
In this paper, we propose an advanced parallel spatial skyline so-

lution utilizing MapReduce framework. Given a set of data points
and a set of query points, our approach first calculates the convex
hull of the query points. Then, we propose a novel concept of in-
dependent regions; the input data points are partitioned by their
associated independent regions. Unqualified data points outside in-
dependent regions can be eliminated without the dominance test.
Finally, all spatial skylines in independent regions are calculated
in parallel, and the global spatial skylines are the union of local
spatial skylines. Moreover, to avoid high cost of data point com-
parison, we propose a concept of pruning regions, in which objects
can be discarded without comparing their distance to all convex
hull query points. We demonstrate the efficiency and effectiveness
of the proposed solution through extensive experiments on large-
scale real-world, and synthetic datasets.

We plan to extend the proposed parallel solution to address spa-
tial skyline queries on road networks. Theoretically, the concepts
of independent regions and pruning regions can be applied in the
space of road networks. However, more investigation is needed to
evaluate the cost of calculating the independent regions and prun-
ing regions. Due to variety of data distribution, it is also interesting
to study the pruning power of pruning regions on road networks.
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ABSTRACT
We study distributed graph algorithms that adopt an iterative vertex-
centric framework for graph processing, popularized by Google’s
Pregel system. Since then, there are several attempts to imple-
ment many graph algorithms in a vertex-centric framework, as well
as efforts to design optimization techniques for improvingthe ef-
ficiency. However, to the best of our knowledge, there has not
been any systematic study to compare these vertex-centric imple-
mentations with their sequential counterparts. Our paper addresses
this gap in two ways. (1) We analyze the computational com-
plexity of such implementations with the notion of time-processor
product, and benchmark several vertex-centric graph algorithms
whether they perform more work with respect to their best-known
sequential solutions. (2) Employing the concept of balanced prac-
tical Pregel algorithms, we study if these implementationssuffer
from imbalanced workload and large number of iterations. Our
findings illustrate that with the exception of Euler tour tree algo-
rithm, all other algorithms either perform asymptoticallymore work
than their best-known sequential approach, or suffer from imbal-
anced workload/ large number of iterations, or even both. Wealso
emphasize on graph algorithms that are fundamentally difficult to
be expressed in vertex-centric frameworks, and conclude bydis-
cussing the road ahead for distributed graph processing.

1. INTRODUCTION
In order to achieve low latency and high throughput over mas-

sive graph datasets, data centers and cloud operators consider scale-
out solutions, in which the graph and its data are partitioned hor-
izontally across cheap commodity servers in the cluster. The dis-
tributed programming model for large graphs has been popularized
by Google’s Pregel framework [4], which was inspired by the Bulk
Synchronous Parallel (BSP) model [12]. It hides distribution re-
lated details such as data partitioning, communication, underlying
system architecture, and fault tolerance behind an abstract API.
In Pregel, also known as thethink-like-a-vertexmodel, graph al-
gorithms are expressed as a sequence of iterations called super-
steps. During a superstep, Pregel executes a user-defined function
for each vertex in parallel. The user-defined function specifies the
operation at a single vertexv and at a single superstepS. The su-

c©2017, Copyright is with the authors. Published in Proc. 20thInter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under theterms of the Cre-
ative Commons license CC-by-nc-nd 4.0

persteps are globally synchronous among all vertices, and messages
are usually sent along the outgoing edges from each vertex.

With the inception of the Pregel framework, vertex-centricdis-
tributed graph processing has become a hot topic in the database
community (for a survey, see [13]). Although Pregel provides a
high-level distributed programming abstract, it suffers from effi-
ciency issues such as the overhead of global synchronization, large
volume of messages, imbalanced workload, and straggler prob-
lem due to slower machines. Therefore, more advanced vertex-
centric models (and its variants) have been proposed, e.g.,asyn-
chronous (GraphLab), asynchronous parallel (GRACE), barrierless
asynchronous parallel (Giraph Unchained), data parallel (GraphX,
Pregelix), gather-apply-scatter (PowerGraph), timely dataflow (Na-
iad), and subgraph centric frameworks (NScale, Giraph++).Vari-
ous algorithmic and system-specific optimization techniques were
also designed, e.g., graph partitioning and re-partitioning, combin-
ers and aggregators, vertex scheduling, superstep sharing, message
reduction, finishing computations serially, among many others.

While speeding up any algorithm is always significant in its own
right, there may be circumstances in which we would not benefit
greatly from doing so. McSherry et. al. [5] empirically demon-
strated that single-threaded implementations of many graph algo-
rithms using a high-end 2014 laptop are often an order of magni-
tude faster than the published results for state-of-the-art distributed
graph processing systems using multiple commodity machines and
hundreds of cores over the same datasets. Surprisingly, with the ex-
ception of [14], the complexity of vertex-centric graph algorithms
has never been formally analyzed. As one may realize, this isnot
a trivial problem — there are multiple factors involved in a dis-
tributed environment including the number of processors, compu-
tation time, network bandwidth, communication volume, andmem-
ory usage. To this end, we make the following contributions.

• We formally analyze the computational complexity of vertex-
centric implementations with the notion of time-processor
product [12], and benchmark several vertex-centric graph al-
gorithms whether they perform asymptotically more work in
comparison to their best-known sequential algorithms.

• We use the concept of balanced, practical Pregel algorithms
[14] to investigate if these vertex-centric algorithms suffer
from imbalanced workload and large number of iterations.

While the notion of balanced, practical Pregel algorithms was in-
troduced by Yan et. al. [14], they only considered the connected
component-based algorithms. On the contrary, in this paperwe re-
port as many as fifteen different graph algorithms (Table 1),whose
vertex-centric algorithms were implemented in the literature. Fi-
nally, we also identify graph workloads and algorithms thatare dif-
ficult to be expressed in the vertex-centric framework, and highlight
some important research directions.
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Graph Vertex-Centric Best Sequential Vertex-Centric
Workload Algorithm Complexity Algorithm Complexity More Work? BPPA?

1 Diameter (Unweighted) [6] O(mn) BFS [9] O(mn) No No
2 PageRank1 [4] O(mK) power iteration O(mK) No No
3 Connected Component Hash-Min [4] O(mδ) BFS [3] O(m+ n) Yes No
4 Connected Component S-V [14] O((m+ n) log n) BFS [3] O(m+ n) Yes No
5 Bi-Connected Component [14] O((m+ n) log n) DFS [3] O(m+ n) Yes No
6 Weakly Connected Component [14] O((m+ n) log n) BFS [3] O(m+ n) Yes No
7 Strongly Connected Component [14] O((m+ n) log n) DFS [11] O(m+ n) Yes No
8 Euler Tour of Tree [14] O(n) DFS O(n) No Yes
9 Pre- & Post-order Tree Traversal [14] O(n log n) DFS O(n) Yes Yes
10 Spanning Tree [14] O((m+ n) log n) BFS O(m+ n) Yes No
11 Minimum Cost Spanning Tree1 [10] O(δm logn) Chazelle’s algorithm O(mα(m,n)) Yes No
12 Betweenness Centrality (Unweighted) [8] O(mn) Brandes’ algorithm O(mn) No No
13 Single-Source Shortest Path [4] O(mn) Dijkstra with Fibonacci heap O(m+ n logn) Yes No
14 All-pair Shortest Paths (Unweighted) [6] O(mn) Chan’s algoithm O(mn) No No
15 Graph Simulation1 [1] O(m2(nq + mq)) Henzinger et. al. [2] O ((m + n) (mq + nq)) Yes No

Table 1:Efficiency analysis for vertex-centric graph algorithms: #nodes =n, # edges =m, diameter =δ
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Figure 1:Vertex-centric algorithm for diameter computation in unweighted graphs

2. PRELIMINARIES
2.1 Time-Processor Product

Time-processor product was employed by Valiant [12] as a com-
plexity measure of algorithms on the BSP model, defined by the
following parameters. (1) Bandwidth parameter isg, that mea-
sures the permeability of the network to continuously send traffic
to uniformly-random destinations. The parameterg is defined such
that anh-relation will be delivered in timehg. (2) Synchronization
periodicity isL, where the components at regular intervals ofL
time units are synchronized. In a superstep of periodicityL, L lo-
cal operations and⌊L/g⌋-relation message patterns can be realized.
(3) The number of processors isp. Let wi be the amount of local
work performed by processori in a given superstep. Assumesi and
ri be the number of messages sent and received, respectively, by
processori. Letw = maxp

i=1
wi, andh = maxp

i=1
(max(si, ri)).

Then, the time for a superstep ismax(w, gh,L).
If we have multiple processors, we can solve a problem more

quickly by dividing it into independent sub-problems and solving
them at the same time, one at each processor. Given an input sizen,
the running timeT (n) is the elapsed time from when the first pro-
cessor begins executing to when the last processor stops executing.
A BSP algorithm for a given problem is called efficient if its proces-
sor boundP (n) and time boundT (n) are such that time-processor
productP (n)T (n) = O(S), whereS is the running time of the
best-known sequential algorithm for the problem, providedthatL
andg are below certain critical values. Therefore, with this met-
ric, we measure whether a vertex-centric algorithm performs more
work, compared to the problem’s best-known sequential algorithm.

2.2 Balanced, Practical Pregel Algorithms
For an undirected graph, we denote byd(v) the degree of vertex

v. On the other hand, letdin(v) anddout(v) denote the in-degree
and out-degree, respectively, of vertexv in a directed graph. A
Pregel algorithm is called a balanced, practical Pregel algorithm
(BPPA) [14] if it satisfies the following. (1) Each vertexv uses
O(d(v)) (or,O(din(v)+dout(v))) storage. (2) The time complex-
ity of the vertex-compute() function for each vertexv is O(d(v))
(or, O(din(v) + dout(v))). (3) At each superstep, the size of the

1
K is # iterations for convergence,α() functional inverse of Ackermann’s func-

tion. nq andmq the number of nodes and edges, respectively, in the query graph.
2For higher values ofg, the time-processor product would be even higher.

messages sent/received by each vertexv isO(d(v)) (or,O(din(v)+
dout(v))). (4) The algorithm terminates afterO(log n) supersteps.
Properties 1-3 offer good load balancing and linear cost at each
superstep, whereas property 4 impacts the total running time.

3. COMPLEXITY ANALYSIS
We summarize the complexity of fifteen vertex-centric graphal-

gorithms in Table 1. We shall discuss five of them in the following.

3.1 Diameter Computation
We consider a vertex-centric algorithm [6] that computes the ex-

act diameter of an unweighted graph. Let us denote the eccentricity
ǫ(v) of a vertexv as the largest hop-count distance fromv to any
other vertex in the graph. The diameterδ of the graph is defined
as the maximum eccentricity over all its nodes. Instead of finding
this largest vertex eccentricity one-by-one, the algorithm works by
computing the eccentricity of all vertices simultaneously.

We illustrate in Figure 1 the eccentricity computation method of
one vertex. Initially, each vertex adds it’s own unique id tothe
outgoing messages (sent along the outgoing edges) and also to the
history set, which resides in the local memory of that vertex. Af-
ter the initial superstep, the algorithm operates by iterating through
the set of received ids, which correspond to the vertices that sent the
original messages. The receiving vertex then constructs a set of out-
going messages by adding each element of the incoming set which
was not seen yet. The reason for keeping a history of the originat-
ing ids that were received earlier is to prevent the re-propagation of
a message to the same vertices. The history set also serves toprune
the set of total messages by eliminating message paths that would
never result in the vertex’s eccentricity.

Assuming the graph is connected, each vertex will process a
message from each originating vertex exactly once. The algorithm
terminates when the largest eccentricity is calculated; and there-
fore, the diameter of the graph is equal to the number of supersteps
(minus 1, for the final, non-processing superstep).

Since each vertex generates a unique message, there are total
Θ(n) messages. Each message is passedO(m) times, resulting in
a message complexity ofO(mn). There are totalO(δ) supersteps.
Each vertex processesn messages; therefore, the overall computa-
tion cost isO(n2). Assuming bandwidth parameter2 g = O(1),
the time-processor product =O(mn), which is equal to the com-
plexity of the best-known sequential algorithm.

However, this vertex-centric algorithm is not BPPA because: (1)
The number of messages that each vertexv relays can be asymptot-
ically larger thanO(d(v)) at later supersteps. (2) Given that each
vertexv must store a history of the messages received, each vertex
storesO(n) vertex IDs, which is larger thanO(d(v)). (3) There
are totalO(δ) supersteps, which could be larger thanO(log n).
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Figure 2:Forest structure of S-V algorithm [14]
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Figure 3:Tree hooking, star hooking, and shortcutting [14]

3.2 Connected Component
We study two vertex-centric algorithms: Hash-min and S-V [14].

3.2.1 Hash-Min Algorithm
We assume that each vertex in a graphG is assigned a unique ID.

The color of a connected component inG is defined as the smallest
vertex among all vertices in the component. In Superstep 1, each
vertexv initializesmin(v) as the smallest vertex in the set({v} ∪
neighbors(v)), sendsmin(v) to all v’s neighbors, and votes to
halt. In each subsequent superstep, a vertexv obtains the smallest
vertex from the incoming messages, denoted byu. If u < v, v
setsmin(v) = u and sendsmin(v) to all its neighbors. Finally,
v votes to halt. When all vertices vote to halt and there is no new
message in the network, the algorithm terminates.

It takes at mostO(δ) supersteps for the ID of the smallest ver-
tex to reach all the vertices in a connected component, and ineach
superstep, each vertexv takes at mostO(d(v)) time to compute
min(v) and sends/receivesO(d(v)) messages each usingO(1)
space. Therefore, it is a balanced Pregel algorithm (i.e., satisfies
properties 1-3), but not BPPA since the number of superstepscan
be larger thanO(log n), e.g., for a straight-line graph.

Each superstep consists ofO(m) messages andO(m) computa-
tions. Assumingg = O(1), the time-processor product isO(mδ).
This is more than the complexity of the best-known sequential al-
gorithm, which is due to BFS with complexityO(m+ n).

3.2.2 Shiloach-Vishkin (S-V) Algorithm
In the S-V algorithm, each vertexu maintains a pointerD[u].

Initially, D[u] = u, forming a self-loop as depicted in Figure 2(a).
During the algorithm, vertices are arranged by a forest suchthat
all vertices in each tree in the forest belong to the same connected
component. The tree definition is relaxed a bit to allow the tree root
w to have a self-loop (see Figures 2(b) and 2(c)), i.e.,D[w] = w;
while D[v] of any other vertexV in the tree points tov’s parent.

The S-V algorithm proceeds in iterations, and in each iteration,
the pointers are updated in three steps (Figure 3): (1)tree hooking:
for each edge(u, v), if u’s parentw = D[u] is a tree root, hookw
as a child ofv’s parentD[v] (i.e., merge the tree rooted atw into
v’s tree); (2)star hooking: for each edge(u, v), if u is in a star (see
Figure 2(c) for an example of star), hook the star tov’s tree as Step
(1) does; (3)shortcutting: for each vertexv, move vertexv and its
descendants closer to the tree root, by hookingv to the parent of
v’s parent, i.e., settingD[v] = D[D[v]]. The algorithm terminates
when every vertex is in a star. We perform tree hooking in Step(1)
and star hooking in Step (2) only ifD[v] < D[u], which ensures
that the pointer values monotonically decrease.

It was proved that the above S-V algorithm computes connected
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components inO(log n) supersteps [14]. However, the algorithm
is not a BPPA because a vertexv may become the parent of more
thand(v) vertices and hence receives/sends more thand(v) mes-
sages in a superstep. On the other hand, the overall number ofmes-
sages and computations in each superstep are bounded byO(n) and
O(m), respectively. Withg = O(1), we have the time-processor
product =O((m + n) log n). As earlier, this is higher than the
complexity of the best-known sequential algorithm.

3.3 Euler Tour Tree Traversal
A Euler tour is a representation of a tree, where each tree edge

(u, v) is considered as two directed edges(u, v) and (v, u). As
shown in Figure 4(a), a Euler tour of the tree is simply a Eulerian
circuit of the directed graph, that is, a trail that visits every edge
exactly once, and ends at the same vertex where it starts.

We assume that the neighbors of each vertex v are sorted ac-
cording to their IDs, which is usually common for an adjacency
list representation of a graph. For a vertexv, let first(v) and
last(v) be the first and last neighbor ofv in that sorted order; and
for each neighboru of v, if u 6= last(v), let nextv(u) be the
neighbor ofv next tou in the sorted adjacency list. We also de-
fine nextv(last(v)) = first(v). As an example, in Figure 4(a),
first(0) = 1, last(0) = 6, next0(1) = 5, andnext0(6) = 1.

Yan et. al. [14] designed a 2-superstep vertex-centric algorithm
to construct the Euler tour as given below. In Superstep 1, each
vertexv sends message〈u, nextv(u)〉 to each neighboru; in Su-
pertep 2, each vertexu receives the message〈u, nextv(u)〉 sent
from each neighborv, and storesnextv(u) with v in u’s adjacency
list. Thus, for every vertexu and each of its neighborv, the next
edge of(u, v) is obtained as(v, nextv(u)), which is the Euler tour.

The algorithm requires a constant number of supersteps. In every
superstep, each vertexv sends/receivesO(d(v)) messages, each
usingO(1) space. By implementingnextv(.) as a hash table asso-
ciated withv, we can obtainnextv(u) in O(1) expected time given
u. Therefore, the algorithm is BPPA. In addition, withg = O(1),
the time-processor product =O(n). This matches with the time
complexity of the best-known sequential algorithm.

3.4 Minimum Cost Spanning Tree
Salihoglu et. al. implemented the parallel (vertex-centric) ver-

sion of Boruvka’s minimum cost spanning tree (MCST) algorithm
[10] for a weighted, undirected graphG. The algorithm iterates
through the following phases, each time adding a set of edgesto
the MCSTS it constructs, and removing some vertices fromG un-
til there is just one vertex, in which case the algorithm halts.

1. Min-Edge-Picking: In parallel, the edge list of each ver-
tex is searched to find the minimum weight edge from that vertex.
Ties are broken by selecting the edge with minimum destination
ID. Each picked edge(v, u) is added toS. As proved in Boru-
vka’s algorithm, the vertices and their picked edges form disjoint
subgraphsT1, T2, . . . , Tk, each of which is aconjoined-tree, i.e.,
two trees, the roots of which are joined by a cycle (Figure 4(b)).
We refer to the vertex with the smaller ID in the cycle ofTi as
the super-vertex ofTi. All other vertices inTi are called its sub-
vertices. The following steps merge all of the sub-verticesof every
Ti into the super-vertex ofTi.
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2. Super-vertex Finding: First, we find all the super-vertices.
Each vertexv sets its pointer to the neighborv picked in Min-Edge-
Picking. Then, it sends a message tov.pointer. If v finds that it
received a message from the same vertex to which it sent a message
earlier, it is part of the cycle. The vertex with the smaller ID in the
cycle is identified as the super-vertex. After this, each vertex finds
the super-vertex of the conjoined-tree it belongs to using theSimple
Pointer Jumpingalgorithm. The inputR to the algorithm is the set
of super-vertices, and the inputS is the set of sub-vertices.
Simple-Pointer-Jumping-Algorithm(R,S)

repeat until every vertex inS points to a vertex inR
for each vertexv that does not point to a vertex inR do

perform a pointer jump:v.pointer→ v.pointer.pointer
3. Edge-Cleaning-and-Relabeling:We shrink each conjoined

tree into the super-vertex of the tree. This is performed as follows.
In the set of edges ofG, each vertex is renamed with the ID of
the super-vertex of the conjoined tree to which it belongs. The
modified graph may have self-loops and multiple edges. All self-
loops are removed. Multiple edges are removed such that onlythe
lightest edge remains between a pair of vertices.

The above operations can be implemented inO(δ) supersteps,
which is due to the maximum number of iterations required for
the simple pointer jumping algorithm. Each superstep has message
and computation complexityO(m). The three above phases are
repeated, that is, the graph remaining after thei-th iteration is the
input to thei+1-th iteration, unless it has just one vertex, in which
case the algorithm halts. Furthermore, the number of vertices of
the graph at thei + 1-th iteration is at most half of the number
of vertices at thei-th iteration. Hence, the number of iterations
is at mostO(log n). With g = O(1), the time-processor product
is O(mδ log n). This is higher than the complexity of the best-
known sequential algorithm for MCST, which isO(mα(m,n)) by
Chazelle’s algorithm. Here,α() is the functional inverse of Ack-
ermann’s function, and it grows extremely slowly, so that for all
practical purposes it may be considered a constant no greater than
4. Even if we consider widely-used Prim’s algorithm (sequential),
it has time complexityO(m + n log n) using fibonacci heap and
adjacency list. In summary, the vertex-centric algorithm for MCST
performs more work than the problem’s sequential solutions.

The algorithm is not in BPPA, since (1) the Edge-Cleaning-and-
Relabeling step increases the number of neighbors of the super-
vertices, and (2) the number of supersteps isO(δ log n).

3.5 Difficult Problems for
Vertex-Centric Model

An important question is whetherall kinds of graph analytics
tasks and algorithms can be expressedefficientlyat vertex level. (1)
Vertex-centric model usually operates on the entire graph,which is
often not necessary for online ad-hoc queries [15], including short-
est path, reachability, and subgraph isomorphism. (2) Thismodel is
not well-suited for graph analytics that require a subgraph-centric
view around vertices, e.g., local clustering coefficient, triangle and
motifs counting. This is due to the communication overhead,net-
work traffic, and the large amount of memory required to construct
multi-hop neighborhood in each vertex’s local state [7]. (3) Not all
distributed algorithms for the same graph problem can be imple-
mented in a vertex-centric framework. As an example, it is difficult
to implement the distributed union-find algorithm for the connected
component problem using a vertex-centric model [5]. However,
this algorithm is useful for graph streams. (4) State-of-the-art re-
search on vertex-centric graph processing mainly focused on a lim-
ited number of graph workloads such as PageRank and connected
components, and it is largely unknown whether some other widely-

used graph computations, e.g., modularity optimization for com-
munity detection, betweenness centrality (weighted graphs), influ-
ence maximization, link prediction, partitioning, and embedding
can be implemented efficiently over vertex-centric systems.

4. DISCUSSION AND CONCLUSION
Our analysis shows that vertex-centric algorithms often suffer

from imbalanced workload/ large number of iterations, and perform
more work than their best-known sequential algorithms.

Due to such difficulties, alternate proposals exist where the entire
graph is loaded on a single machine having larger memory, or on a
multi-core machine with shared-memory. Nevertheless, distributed
graph processing systems would still be critical due to the two fol-
lowing reasons. First, graph analysis is usually an intermediate step
of some larger data analytics pipeline, whose previous and follow-
ing steps might require distribution over several machines. In such
scenarios, distributed graph processing would help to avoid expen-
sive data transfers. Second, distributed-memory systems generally
scale well, compared to their shared-memory counterparts.

However, one distributed model might not be suitable for all
kinds of graph computations. Many recent distributed systems,
e.g., Trinity, NScale, and Apache Flink support multiple paradigms,
including vertex-centric, subgraph-centric, dataflow, and shared ac-
cess. But, perhaps more importantly, we need to identify theap-
propriate metrics to evaluate these systems. In addition totime-
processor product and BPPA that we studied in this work, one
can also investigate the speedup and cost/computation. Twoother
critical metrics areexpressibilityandusability, which were mostly
ignored due to their qualitative nature. The former identifies the
workloads that can be efficiently implemented in a distributed frame-
work, while the later deals with ease in programming, e.g., domain-
specific languages, declarative programming, high-level abstrac-
tion to hide data partitioning, communication, system architecture,
and fault tolerance, as well as availability of debugging and prove-
nance tools. With all these exciting open problems, this research
area is likely to get more attention in the near future.
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ABSTRACT
The top-k skyline groups query (k-SGQ) returns k skyline
groups that dominate the maximum number of points in
a given data set. It combines the advantages of skyline
groups and top-k queries. The k-SGQ is an important tool
for queries that need to analyze not only individual points
but also groups of points, and can be widely used in areas
such as decision support applications, market analysis and
recommendation system. In this paper, we formally define
this new problem and design an efficient algorithm to solve
this problem. Extensive experimental results show that our
algorithm is effective and efficiency.

1. INTRODUCTION
The skyline query [1] is widely used in multi-criteria opti-

mal decision making applications, which aims at retrieving
points that are not dominated by other points in a data
set. In this paper, we assume that larger values are pre-
ferred. Qi denotes the ith point and Qi

k denotes the value
on the kth dimension of Qi, then Qi dominates Qj , denoted
as Qi ≺ Qj , iff for each k, Qi

k ≥ Qj
k and for at least one

k, Qi
k > Qj

k (1 ≤ k ≤ d). Fig. 1 shows a skyline example.
The data set in Fig. 1 (left) consists of 5 points. Each point
has two dimensions. We can see that Q4(4, 4) ≺ Q3(4, 2) as
an example of dominance relationship between points. As
shown in Fig. 1 (right), the skyline contains Q1, Q2 and Q4.
Though skyline computation is particularly useful in multi-

criteria decision making applications, it is inadequate to an-
swer queries that need to analyze not only individual points
but also their combinations [3, 4, 2, 6, 9]. Specifically, in
many real-world applications, we need to find groups of
points that are not dominated by other groups of equal size.
It is shown in [3, 4, 2, 6, 9] that a skyline group may consist

of both skyline points and non-skyline points, all points in
the data set have a chance to form a skyline group. There-
fore, there are total Ck

n combinations, which are far more
than the n candidates in traditional skyline computation.
Moreover, the output size of skyline groups is far more than

c⃝2017, Copyright is with the authors. Published in Proc. 20th Internation-
al Conference on Extending Database Technology (EDBT), March 21-24,
2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Com-
mons license CC-by-nc-nd 4.0

Figure 1: A skyline example

the size of skyline. The experimental results proposed in [6,
9] show that the output size is million scale even when the
input is a few thousand points. The large output size is less
informative and it may be hard for users to make a good,
quick selection.

Motivation. The large output size promotes us to de-
sign an algorithm to select the best k skyline groups. Such
k skyline groups should be most representative. Inspired by
the top-k skyline queries, we quantify the concept of ”repre-
sentative” by counting the number of points dominated by
the group. Here, we define that a point Q is dominated by a
group G iff there exists at least one point Q′ in G satisfying
Q′ ≺ Q. We briefly summarize our contributions as follows:

• We propose a novel problem, top-k skyline groups query,
so that the k skyline groups with maximal number of
dominated points can be produced to facilitate user
queries.

• We propose an efficient algorithm for processing k-
SGQ, using several pruning techniques.

• We conduct extensive experiments to validate the ef-
fectiveness and efficiency of our proposals.

2. PRELIMINARY
In this section, we introduce the problem definition and

related works.

2.1 Problem Definition
First, we introduce the definitions of dominance relation-

ship between groups defined in [3, 4, 2, 6, 9]. We use ≺g

to denote the dominance relationship between groups. Let
G ≺g G′ denote G dominates G′. The dominance relation-
ship between groups defined in existing works can be divided
into two kinds.

Definition 1. (≺g) [6] Assuming thatG = {Q1, Q2, ..., Ql}
and G′ = {Q′1, Q′2, ..., Q′l} are two different groups with l
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points. We say that G ≺g G′, iff there exist two permuta-
tions of the l points for G and G′, G = {Qu1, Qu2, ..., Qul}
and G′ = {Q′u1, Q′u2, ..., Q′ul} satisfying that for each i,
Qui ≼ Q′ui and for at least one i, Qui ≺ Q′ui (1 ≤ i ≤ l).

For instance in the Fig.1, since Q2 ≺ Q5 and Q4 ≺ Q3,
thus {Q2, Q4} ≺g {Q3, Q5}.

Definition 2. (≺g) [3, 4, 2, 9] For an aggregate function f
and a group G = {Q1, Q2, ..., Ql}, then G is represented by
a point Q, where Qj = f(Q1

j , Q
2
j , ..., Q

l
j). For two distinct

groups G and G′, Q and Q′ represents G and G′ respectively.
We define G ≺g G′ iff Q ≺ Q′.

In this paper, we study two kinds of aggregate function.
The first one is strictly monotone, which means f(Q1

j , Q
2
j , ...,

Ql
j) > f(Q1′

j , Q2′
j , ..., Ql′

j ) if Q
i
j ≥ Qi′

j for every i ∈ [1, l] and

∃k such that Qk
j > Qk′

j , where 1 ≤ k ≤ l. For the strictly
monotone function, we study SUM in this paper. We also
investigate aggregate functions that are not strictly mono-
tone such as MAX and MIN . Fig. 2 shows the dominance
relations under different aggregate functions.

Figure 2: Dominance relations under different ag-
gregate functions

Based on the Definition 1 or Definition 2, skyline group is
defined as follows:

Definition 3. (GSkyline) The l-point GSkyline consists
of groups with l points that are not dominated by any other
groups of the same size.

We define the problem of top-k skyline groups query in the
following. To facilitate the presentation, we define a function
score(G) that counts the number of the points dominated
by group G. Then we have:

score(G) = |{Q ∈ D −G|∃Q′ ∈ G ∧Q′ ≺ Q}|

For instance, if G = {Q2, Q4}, score(G) = 2.

Definition 4. (k-SGQ) Top-k skyline groups query re-
trieves the set SK ⊆ GSkyline of k skyline groups with
highest score values. Then we have:

∀G ∈ SK , ∀G′ ∈ (GSkyline− SK) → score(G) ≥ score(G′)

Obviously, k-SGQ can be applied to find top-k skyline
groups based on both Definition 1 and Definition 2.

2.2 Related Work
The most related works with regard to the concept of sky-

line groups queries are [3, 4, 2, 6, 8, 9]. [3, 4, 2, 8, 9] in-
vestigate the skyline groups query based on Definition 2 and
Liu et al. [6] investigate the problem based on Definition 1.
However, the output sizes of both definitions are large, which
is a potential limitation of skyline group operator. To solve
this, we propose an efficient algorithm to select top-k skyline
groups.

The most related works to our k-SGQ are [5] and [8].
[5] proposes a top-k representative skyline points query. It
aims to compute a set of k skyline points such that the total
number of points dominated by one of the k skyline points
is maximized. Obviously, it is inherently different from our
problem. Moreover, since a skyline group may consist of
both skyline points and non-skyline points. Therefore, the
techniques proposed in [5] are not applicable to our problem.
[8] proposes an algorithm to find top-k combinatorial sky-
line. In their work, a combinatorial skyline is a skyline group
based on Definition 2. They rank skyline groups based on a
predefined preferred attribute order. It only reports groups
whose aggregate values for a certain attribute are the high-
est. Obviously, the problem proposed in [8] is also inherently
different from our problem. Moreover, the ranking method
proposed in [8] is not applicable to Definition 1, because a
group cannot be represented by a point based on this defi-
nition. Therefore, [8] is orthogonal to our problem.

To the best of our knowledge, we are the first to address
the problem of finding top-k skyline groups that dominate
the maximum number of points.

3. COMPUTING TOP-K GSKYLINE
The brute-force method to compute k-SGQ is to enumer-

ate all skyline groups and count the number of points dom-
inated by each group, then select the best k skyline groups.
For each skyline group we need O(l×n) time complexity to
count the points dominated by the group. Let |SG| denote
the size of skyline groups, then time complexity of select-
ing best k groups is O(|SG| × log k). Therefore, the overall
time complexity is O(l × n × |SG| × log k). Obviously, the
brute-force method incurs high computation overhead.

3.1 The k-SGQ Algorithm
Let Skyline denote the set of points in the skyline. Skyline

is an accompanying result when computing GSkyline [6, 9].
We summarize frequently used notions in Table 1.

Lemma 1. For Definition 1 and strictly monotone aggre-
gate functions under Definition 2, if G ∈ GSkyline and G =
{Q1, Q2, ..., Ql}, then for each Qi ∈ G, we have Qi ∈ Skyline
or ∃Qj ∈ G and Qj ∈ Skyline → Qj ≺ Qi.

Proof. We prove by contradiction. Assume that Qj ≺
Qi and Qj ∈ Skyline, if Qj /∈ G, we can use Qj to replace
Qi in G, the new group is denoted as G′.

Case 1. For the Definition 1, since Qj ≺ Qi and all the
other points are the same, then G′ ≺g G which contradicts
G ∈ GSkyline.

Case 2. For a strictly monotone aggregate function f un-
der Definition 2, since Qj ≺ Qi, we assume that Qj

t > Qi
t.

Then we have f(Q1
t , ..., Q

i
t, ..., Q

l
t) < f(Q1

t , ..., Q
j
t , ..., Q

l
t).

On other dimensions, we have f(Q1
t′ , ..., Q

i
t′ , ..., Q

l
t′) ≤ f(Q1

t′ ,
..., Qj

t′ , ..., Q
l
t′). Therefore, G′ ≺g G, which contradicts G ∈

GSkyline.

Therefore, for Definition 1 and strictly monotone aggregate
functions under Definition 2, if G ∈ GSkyline, then for each
Qi ∈ G, we can get that Qi ∈ Skyline or ∃Qj ∈ G and Qj ∈
Skyline → Qj ≺ Qi.

Lemma 2. For MAX and MIN under Definition 2, if
∃Qi ∈ G (G ∈ GSkyline) and Qi is dominated by at least
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Table 1: The Summary of Notations
Notation Description

D A d-demonical data set
d Number of dimensions
n Number of points in D

Qi The ith point in D

Qi
j The value on the jth dimension of Qi

≺ Preference/dominance relation
Skyline The skyline of data set D

l Size of a group
score(G) Number of points dominated by G

k points, then either (1) ∃Qj ∈ G and Qj ≺ Qi or (2) it is
safe to prune G from GSkyline.

Proof. Obviously, it is possible to have a point Qj ∈
G and Qj ≺ Qi. In this situation we have score(G) =
score(G \ {Qi}).
In the second situation, all points dominate Qi are not in

G. If Qj ≺ Qi, we use Qj to replace Qi in G, the new group
is denoted as G′. Since Qj ≺ Qi and all the other points
are the same, then MAX(G′) ≼ MAX(G) and MIN(G′) ≼
MIN(G). As G is a skyline group under MAX and MIN ,
we have MAX(G′) = MAX(G) and MIN(G′) = MIN(G)
which means that G′ is also a skyline group under MAX
and MIN .
Moreover, we have socre(G′) ≥ score(G). Since Qi is

dominated by at least k points, we have at least k skyline
groups whose socres are equal or greater than score(G).
Therefore, it is safe to prune G from GSkyline.

Let dom(Q) denote the set of points dominated by point
Q, then score(G) = |

∪
Q∈G dom(Q)|. In order to compute

score(G) efficiently, we maintain a bit vector for each point
in the group, then we can employ fast bit-wise operations
for much more efficient score computation.

Definition 5. ([Q]) [Q] denotes the bit vector of Q. [Q]
has the length of |D| bits, with one bit corresponding to a
point in D. If a point Qj is dominated by Q then the jth

bit is set to 1. Otherwise, the bit is set to 0.

Based on Definition 5, score(G) equals the number of ”1”
in [Q1]|[Q2]|...|[Ql] (G = {Q1, Q2, ..., Ql}). For instance
in Fig. 1, [Q2] = 00001, [Q4] = 00100. If G = {Q2, Q4},
score(G) equals the number of ”1” in [Q2]|[Q4] = 00101.
Therefore, score(G) = 2.
Based on Lemma1 and Lemma2, we do not need to com-

pute [Q] for every point in the data set. We use (k − 1)-
skyband [7] to denote the set of points that are dominated
by at most k − 1 points in a data set.

Lemma 3. For Definition 1 and strictly monotone aggre-
gate functions under Definition 2, based on Lemma1, we
know that if Q ∈ G and Q /∈ Skyline, then Q has zero
contribution to score(G). Thus [Q] is modified as follows:

[Q] =

{
[Q], Q ∈ Skyline

0...0, Others

For MAX and MIN , we modify [Q] in the following. Be-
cause if Q /∈ (k − 1)-skyband then either Q has zero contri-
bution to score(G) or it is safe to prune a candidate group

Algorithm 1: The k-SGQ algorithm

Input : GSkyline, k;
Output: the result set SK of k-SGQ on GSkyline

1 begin
2 PQ← ∅; /* PQ is a priority queue sorting groups in the

ascending order of their scores */
3 τ ← −1; /* τ is a threshold used for pruning */
4 if the aggregate function is strictly monotone or under

Definition 1 then
5 Compute the bit vectors for points in the Skyline;

6 if the aggregate function is MAX or MIN then
7 Compute the bit vectors for points in the

(k − 1)-skyband;

8 for each group G in GSkyline do
9 if MaxScore(G) > τ then

10 if score(G) > τ then
11 PQ.push(G);

12 if |PQ| > k then
13 PQ.pop();
14 τ ← PQ.top().score;

15 return PQ;

containing Q, thus all points outside of the (k − 1)-skyband
will not affect the result of top-k skyline groups query.

[Q] =

{
[Q], Q ∈ (k − 1)-skyband

0...0, Others

Definition 6. (MaxScore) MaxScore denotes the upper
bound of score. MaxScore(G) =

∑
Q∈G |dom(Q)|.

|dom(Q)| =

{
0, [Q] = 0...0

number of ”1” in [Q], [Q] ̸= 0...0

Obviously, MaxScore(G) ≥ score(G).

Lemma 4. Let SC be a candidate set containing k skyline
groups and τ be the smallest score for all groups in SC . For
a specified group G′ ∈ GSkyline with MaxScore(G′) ≤ τ , it
can be safely pruned away as it cannot be an actual answer
group for k-SGQ.

Based on the above discussion, we propose Algorithm1
to compute k-SGQ. In Algorithm1 we maintain a priority
queue of k skyline groups. Line 3 sets a threshold used for
pruning. Then we compute the bit vectors for points in the
Skyline or (k − 1)-skyband based on the skyline group def-
inition and aggregate functions. Line 9 utilizes Lemma4 to
prune candidate groups, Line 10 utilizes bit-wise operations
to compute score(G) for candidate groups.

3.2 Time Complexity Analysis
The time complexity of computing bit vectors for points

in the Skyline and (k − 1)-skyband is O(|Skyline| × n)
and O(|(k − 1)-skyband| × n) respectively. For each group
G in GSkyline, we need l − 1 bit-wise operations to get
score(G). The time complexity of updating the priority
queue is O(log k). Therefore, the time complexity of Algo-
rithm1 under Definition 1 and strictly monotone functions
under Definition 2 is O(|Skyline|×n+(l−1)×|SG|× log k).
The time complexity of Algorithm1 for MAX and MIN is
O(|(k−1)-skyband|×n+(l−1)×|SG|× log k). Obviously,
the time complexity of Algorithm1 is far less than the time
complexity of the brute-force method.

4. EXPERIMENTAL EVALUATION
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Figure 3: Output size of skyline groups based on
Definition 1 and Definition 2 of varying n and l

In this section, we conduct extensive experiments to evalu-
ate the run-time performance of Algorithm1 under different
settings. All our experiments are carried out on the same
machine with 64GB memory and dual eight-core Intel Xeon
E7-4820 processors clocked at 2.0Ghz. All algorithms are
implemented in C++.
We continue to use the real data set adopted in [6]. The

data set contains 1191 NBA players who are league leaders of
playoffs. The data was extracted from http://stats.nba.com/
leaders/alltime/?ls=iref:nba:gnav on 11/01/2016. Each play-
er has five attributes that measure the player’s performance.
Those attributes are Points (PTS), Rebounds (REB), As-
sists (AST), Steals (STL) and Blocks (BLK).
We experiment with different settings, including number

of best skyline groups k, number of points n and number of
points in a group l. The settings of all these parameters are
summarized in Table 2, where the default values are shown
in bold. In every set of experiments, we only change one
parameter, with the rest set to their defaults.
We compute skyline groups based on both Definition 1 and

Definition 2. For Definition 2, we experiment with SUM ,
MAX and MIN . The output sizes of skyline groups are
shown in Fig. 3. We can see that the output sizes based on
both definitions are too large to make quick selections. Thus
it is not trivial to design a top-k algorithm.
In Fig. 4 we present the performance of k-SGQ algorithm

under different settings. We evaluate the performance of ap-
plying k-SGQ algorithm to find top-k skyline groups based
on Definition 1 and Definition 2. From the three subfigures
in Fig. 4 we can see that k-SGQ algorithm is efficient for
both definitions under different settings. Therefore, our
algorithm can be applied to all existing skyline group op-
erators. Moreover, compared to the brute-force method,
k-SGQ algorithm is much faster. For instance, there are
1720610 skyline groups generated from the NBA data set
based on Definition 1, k-SGQ only needs 5 seconds to com-
pute top-32 skyline groups while brute-force method needs
693 seconds. The experimental results show that for Defini-
tion 1 and SUM , k-SGQ algorithm is about average 134×
and 121× speedup over the brute-force method respective-
ly. For MAX and MIN , k-SGQ algorithm is about average
33× and 45× faster than the brute-force method respective-
ly. Therefore, k-SGQ algorithm is efficient under different
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Figure 4: Performance of k-SGQ algorithm and
brute-force method under different settings

Table 2: Parameter Ranges and Default Values
Parameter Range

k 4,8,16, 32
n 300,600,900, 1191
l 2,3,4, 5

settings and can be applied to compute top-k skyline groups
for all existing skyline group operators.

5. CONCLUSIONS
In this paper, we introduce a new and useful type of query,

top-k skyline groups queries. The existing techniques cannot
be applied to solve k-SGQ. We propose an efficient algorithm
with several powerful pruning strategies. Moreover, we con-
duct extensive experiments to validate the efficiency our
algorithm. Experimental results show that our algorithm
reaches high performance under different settings.
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ABSTRACT
The research community has adopted a sequence of snap-
shots as the logical representation of evolving graphs —
graphs that change over time and whose history of evolu-
tion we want to preserve for analysis. This paper argues
that the snapshot sequence model of evolving graphs is in-
sufficient for representation and analysis of a wide range of
networks. Instead, we propose to use the interval model
with sequenced semantics. In this model nodes and edges
are associated with their validity intervals, and operations
adhere to the properties of snapshot reducibility, extended
snapshot reducibility, and change preservation. We show
the advantages of adopting this model for evolving graphs
and lay the groundwork for an evolving graph query lan-
guage with sequenced semantics. We also discuss several
challenges of efficiently supporting sequenced semantics in a
distributed setting.

1. INTRODUCTION
Evolving graphs are used to represent a wide range of

phenomena, including the Web, social networks, communi-
cation and transportation networks, interaction networks,
metabolism pathways, and many others. Researchers study
graph evolution rate and mechanisms, impact of specific
events on further evolution, spatial and spatio-temporal pat-
terns, and how graph properties change over time.
The dominant logical model for evolving graphs over the

past 20 years has been a sequence of static graphs, termed
snapshots. This model is a graph-specific adaptation of the
point-based temporal model [19], and it introduces a semantic
ambiguity that has been well studied in the temporal rela-
tional databases literature [2]: if an entity (graph, vertex
or edge) with the same attributes exists in two consecutive
snapshots, does it represent the same fact or two different
facts? What does it mean for an entity to change?
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Figure 1: A social network as a snapshot sequence.

Figure 1 shows an example of an evolving social network,
in which vertices represent people, while edges represent in-
teractions between them such as likes and conversations. In
this example, did Alice and Bob have two conversations over
the time period [t1, t4) or one long one? Did Alice undergo
any changes during this time? Which user was the most
active in this network, as defined by the number of distinct
interactions? What is the rate of change of this network?
We cannot answer these questions without additional infor-
mation in a point-based model. Suppose that Alice held a
temporary position at Drexel at time t1 and transferred to a
permanent one at time t2. This information cannot be rep-
resented in the point-based model. Suppose that Alice and
Bob had two short interactions, while Cathy and Bob had
one longer one. The point-based model cannot distinguish
between these two cases.
This kind of semantic ambiguity affects several graph op-

erations, most notably aggregation and retrieval of change
history, and, as a result, local (confined to specific entity or
subset of entities) and global (whole-graph) temporal queries
that are useful for evolving graph analysis.
In a point-based model [19] each entity is time-stamped

with its validity time. For practical reasons, intervals are of-
ten used as syntactic abbreviations for sets of points. To use
intervals in a time-stamped model, we coalesce, i.e., merge
value-equivalent tuples over overlapping and adjacent time
points [1]. Importantly, the use of intervals to represent
a sequence of value-equivalent time-adjacent snapshots is
not semantically equivalent to a model with sequenced se-
mantics, where entities are time-stamped with intervals that
have meaning. A work-around to avoid coalescing tuples
that represent different facts is to add attributes to entities,
in order to distinguish between changes and non-changes.
For example, we can add position title to the vertex Al-
ice to state that Alice changed jobs at time t2, and add a
conversation id to each edge to designate distinct conver-
sations. Unfortunately, this solution is ad-hoc rather than
general and does not hold up over time, as discussed in [2].
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We contend that a snapshot sequence model of evolv-
ing graphs is insufficient for representation of a wide range
of networks and propose instead to use the interval model
with sequenced semantics. Facts in our model correspond to
graph vertices and edges, rather than to graph snapshots in
their entirety (as in Figure 1). This representational choice
is orthogonal to the issue of point-based vs. sequenced se-
mantics, but has an important advantage. Many evolving
graph queries include temporal predicates over vertices or
edges, e.g., compute a subgraph containing only vertices
that persist for at least a year. Such queries cannot be
evaluated directly over a sequence of snapshots.
In Section 2 we briefly survey existing models and summa-

rize relevant work in temporal databases. We then propose
a new model in Section 3. In Section 4 we discuss the chal-
lenges of efficient computation under sequenced semantics
in a distributed environment. We conclude with future re-
search directions in Section 5.

2. RELATED WORK
Evolving graph models. While temporal models in

the relational literature are very mature, the same cannot
be said about the evolving graphs literature. Evolving graph
models differ in what time stamp they use (point or interval
stamping), what top-level entities they model (graphs or sets
of nodes and edges), whether they represent topology only
or attributes or weights as well, and what types of evolution
are allowed. All evolving graph models require node identity,
and thus edge identity as well, to persist across time. See [20]
for a survey of evolving graph models.
The first mention of evolving graphs that we are aware

of is by Harary and Gupta [6] who informally proposed to
model the evolution as a sequence of static graphs. This
model has been predominant in the research literature ([4, 7,
14] and many others), with various restrictions on the kinds
of changes that can take place during graph evolution. For
example, Khurana and Deshpande [7] use this model with
the restriction that a node, once removed, cannot reappear.
In [4] and [14] there is no notion of time, only a sequence of
graphs. It is important to note that we are talking about the
logical model of the evolving graphs, rather than a physical
representation. For example, Semertzidis et al. [16] present
a concrete representation of an evolving graph called Ver-
sionGraph that is similar to the logical model we propose
here, yet their logical model is still a sequence of snapshots.
The advantages of the snapshot sequence model are that

(a) it is simple and (b) if snapshots are obtained by periodic
sampling, which is a very common approach, it accurately
represents the states of the graph at the sampled points
without making assertions about unknown times. For ex-
ample, the WWW is so large that it is impossible to create
a fully accurate snapshot that represents any moment in
time. An important limitation of this model, in addition
to the semantic ambiguity on what constitutes a change, is
that it forces a specific time granularity, whereas open-closed
time intervals can be broken down into any desired level of
granularity.

Temporal relational models. The question of seman-
tics of temporal data has been thoroughly explored in the
relational temporal database community. Böhlen et al. [2]
defined point and sequenced models, and showed that the
difference between the models lies in the properties of the
operators, and not in the use of intervals as representational

devices. With this foundation, Dignös et al. [3] defined se-
quenced semantics, with properties of snapshot reducibil-
ity, extended snapshot reducibility, and change preservation.
Snapshot reducibility means that a temporal operator pro-
duces the same result as an equivalent non-temporal oper-
ator over corresponding snapshots. Extended snapshot re-
ducibility allows references to timestamps in the operators
by propagating them as data. Point semantics has both of
these properties as well.
The third property, change preservation, is unique to se-

quenced semantics. It states that operators only merge con-
tiguous time points of a result if they have the same lin-
eage. As shown in [3], all three properties can be guaran-
teed through the use of the normalize and align operators
on non-temporal relations, extended with an explicit time
attribute.
As we as a community move to more and more sophis-

ticated analyses of evolving graphs, we need to adopt the
state of the art in temporal databases.

3. DATA MODEL
We now describe the logical representation of an evolving

graph, called a TGraph. A TGraph represents a single graph,
and models evolution of its topology and of vertex and edge
attributes.
Following the SQL:2011 standard [8], a period (or inter-

val) p = [s, e) represents a discrete set of time instances,
starting from and including the start time s, continuing to
but excluding the end time e. Time instances contained
within the period have limited precision, and the time do-
main has total order. In the rest of this paper we use the
terms interval and timestamp interchangeably.
A TGraph is represented with four temporal SQL rela-

tions [1], and uses sequenced semantics [3], associating a
fact (existence of a vertex or edge, and an assignment of a
value to a vertex or edge attribute) with an interval.
A snapshot of a temporal relation R, denoted τc(R) is the

state of R at time point c.
We use the property graph model [15] to represent vertex

and edge attributes: each vertex and edge during period p
is associated with a (possibly empty) set of properties, and
each property is represented by a key-value pair. Property
values are not restricted to be of atomic types, and may,
e.g., be sets, maps or tuples.
We now give a formal definition of a TGraph, which builds

on the model of [12] and is adjusted to support sequenced
semantics.

Definition 3.1 (TGraph). A TGraph is a pair T =
(V,E). V is a valid-time temporal SQL relation with schema
V(v,p) that associates a vertex with the time period during
which it is present. E is a valid-time temporal SQL relation
with schema E(v1, v2,p), connecting pairs of vertices from
V. T optionally includes vertex and edge attribute relations
AV(v,p, a) and AE(v1, v2,p, a), where a is a nested attribute
consisting of key-value property pairs. Relations of T must
meet the following requirements:

R1: Unique vertices/edges In every snapshot τc(V) and
τc(E) a vertex/edge exists at most once.

R2: Unique attribute values In every snapshot τc(AV)
and τc(AE), a vertex/edge is associated with at most
one attribute (which is itself a set of key-value pairs
representing properties).
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Figure 2: Vertices from Figure 1 split in 4 partitions.

R3: Referential integrity In every snapshot τc(T), for-
eign key constraints hold from τc(E) (on both v1 and
v2) and τc(AV) to τc(V), and from τc(AE) to τc(E).

Requirements R1, R2, R3 guarantee soundness of the
TGraph data structure, ensuring that every snapshot of a
TGraph is a valid graph. Graphs may be directed or undi-
rected. For undirected graphs we choose a canonical repre-
sentation of an edge, with v1 ≤ v2 (self-loops are allowed).
At most two edges can exist between any two vertices at any
time point, one in each direction.
Definition 3.1 presents a logical data structure that admits

different physical representations, including, e.g., a colum-
nar representation (each property in a separate relation, sup-
porting different change rates), by a hash-based representa-
tion of [18], or in some other way. The logical model also
allows for distributed storage in HDFS.

4. SEQUENCED SEMANTICS IN A
DISTRIBUTED ENVIRONMENT

Many interesting static graphs are so large that they ne-
cessitate a distributed approach, as evidenced by the plethora
of works on Pregel-style computation and graph partition-
ing [10]. In this section we discuss the challenges inherent in
supporting three properties of sequenced semantics — snap-
shot reducibility, extended snapshot reducibility, and change
preservation — in a distributed environment.

Snapshot reducibility. Evolving graphs can be par-
titioned among the available machines using time locality.
Following convention, we refer to the operator that can pro-
duce such partitioning as a splitter. The splitter places each
tuple (vertex or edge) into one or more partitions based on
its timestamp. The goal of the splitter is to form partitions
that are balanced, i.e., have approximately the same number
of items, under the assumption that most operations can be
executed locally at each partition. Recall that snapshot re-
ducibility requires a temporal operator to produce the same
result as if it were evaluated over each snapshot. Validity
period of a tuple that spans more than one temporal par-
tition is split, and the tuple is replicated across partitions.
This increases the overall size of the relation, but all oper-
ations can now be carried out within each partition. See
Figure 2a for a simple example of the V relation being split
into four temporal partitions.
For the purposes of illustration, consider the temporal

subgraph operation, a generalization of subgraph match-
ing for non-temporal graphs [12]. Temporal vertex-subgraph
subT

v (qt
v,T) = T′(V′,E′,AV′,AE′) computes an induced sub-

graph of T, with vertices defined by the temporal conjunc-
tive query qt

v. Note that this is a subgraph query, and so
V′ ⊆T V. Observe that we can carry out the subgraph
operation with non-temporal predicates, e.g., name=’Alice’,
at each partition individually, without any cross-partition
communication.

The question of optimal splitting has been addressed by
Le et al. [9], who demonstrated that a temporal relation can
be efficiently split into k buckets in cases of both internal
memory and external memory, and guarantee optimality of
the solution. This method requires a sequential scan of the
relation to compute an index called the stabbing count array.
How to make this method more efficient in a distributed
environment is an open question.
The subgraph operation requires co-partitioning of graph

relations to enforce referential integrity on edges. A num-
ber of alternatives for co-partitioning present themselves,
as the vertex, edge and attribute relations are not guaran-
teed to have the same splitters due to different evolution
rates. Typically, vertices are co-partitioned with edges in
the non-temporal case [5], and this likely is most efficient
with evolving graphs as well.

Extended snapshot reducibility. Snapshot reducibil-
ity can be guaranteed in the distributed setting, as shown
above for a subgraph query without temporal predicates.
In general, a subgraph query qt

v may use any of the con-
stituent relations of T, and may explicitly reference tempo-
ral information in compliance with the extended snapshot
reducibility property of sequenced semantics. Refer back
to Figure 2a and assume time granularity of years. If we
perform the subgraph operation, selecting vertices that per-
sist for longer than 2 years, over the split then we will get
no matches. However, the original relation contains two
matches – only Bob does not meet the predicate. To sup-
port extended snapshot reducibility over a split relation,
during partitioning tuples should be placed into their parti-
tions with their full original timestamps. Incidentally, this
is what Le at al. describe in their work on optimal split-
ters [9]. Figure 2b shows relation V split in the same four
partitions with this approach.

Change preservation. Change preservation property
requires that derived tuples should only be coalesced if they
share lineage. To support this property, normalize and align
operators are used [3]. The normalize operator splits each
tuple in the input relation w.r.t. a group of tuples such that
each timestamp fragment is either fully contained or disjoint
with every timestamp in the group. The align operator splits
each tuple w.r.t. a group of tuples such that each timestamp
fragment is either an intersection with one of the tuples in
the group or is not covered by any tuple in a group.
The normalize operator splits each tuple w.r.t. to a group

defined by the operation. For example, consider the attribute-
based node creation operation on graphs [12], an operation
similar to aggregation on temporal relations. This oper-
ation allows the user to generate a TGraph in which ver-
tices correspond to disjoint groups of vertices in the input
that agree on the values of all grouping attributes. For in-
stance, nodeT

a (school,T) will compute a vertex for each value
of AV.a.school. While the group defined for each tuple (dis-
tinct value of school) spans temporal partitions, only tuples
within the same partition overlap. Thus, the normalize and
align operations can be carried out locally at each partition.
An important challenge to address is how to efficiently

support aggregation over temporal windows in a distributed
setting. This operation requires cross-partition communica-
tion, which impacts the cost model, requiring a generaliza-
tion of the approach of Le et al. [9].

Partitioning of evolving graphs. Large evolving graphs
present additional challenges compared to static graphs and
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Table 1: Connected components and PageRank with differ-
ent temporal partitioning, seconds.

(a) wiki-talk
width k CC PR
8 23 382 1,086
16 12 328 1,037
bal. 16 351 720
bal. 24 408 375

(b) nGrams
width k CC PR
8 26 1,324 2,867
16 13 856 1,873
bal. 3 321 740
bal. 16 422 519

temporal relations alone. Each graph snapshot may be too
large to fit into a single partition. This necessitates parti-
tioning graphs by both time and structure. Miao et al. [11]
have demonstrated within their ImmortalGraph system that
different locality, structural or temporal, is more appropri-
ate for different graph queries. However, their results do not
directly translate to the distributed environment. Miao et
al. showed that spatial locality provides better performance
than temporal locality in global point queries, i.e., queries
that compute over a snapshot corresponding to a particu-
lar time point. In a distributed setting we do not expect
these results to hold, since communication costs generally
dominate the overall performance, and partitioning by time
alone will guarantee that a snapshot is distributed among
the lowest number of partitions.
Global range queries such as change in graph centrality

over time, on the other hand, are computed over multiple
snapshots and their performance depends on the method of
computation. We can utilize temporal locality and compute
on each snapshot independently. Assuming that each par-
tition fits one or more snapshots, the maximum number of
snapshots across all partitions will determine the overall per-
formance. With structural locality we can distribute edges
across the partitions using any of the already proposed par-
titioning approaches such as range- and hash-based [17] or
EdgePartition2D (E2D).
We explored the effectiveness of partitioning strategies in

graphs that undergo changes in topology over time, and
found that structural partitioning such as in ImmortalGraph
is effective only when graph topology changes very little [13].
We found that a hybrid approach that combines temporal
and structural locality is promising. We are currently inves-
tigating methods for selecting a partitioning strategy that
provides the best overall performance.

Preliminary experiments. We conducted some prelim-
inary experiments to see the effect of temporal partitioning
on distributed execution of analytics, which present one of
the heaviest computational workloads. PageRank and Con-
nected components analytics were executed on the wiki-talk1

and nGrams2 datasets.
Wiki-talk contains 179 time periods. nGrams contains

over 400, but we used the first 208. Both datasets exhibit
strong skew, with few edges at the start of the datasets and
increasing by several orders of magnitude towards the end.
We compared equi-width and equi-depth temporal partition-
ing, using 8 and 16 consecutive intervals for equi-width, and
using offline optimal split of edges with varying number of
splitters k. Each dataset was partitioned first temporally,
and then spatially using Edge2D partitioning. Table 1 shows
that equi-depth partitioning is superior to equi-width in all
cases but one. However, the number of splitters is key in

1http://dx.doi.org/10.5281/zenodo.49561
2http://storage.googleapis.com/books/ngrams/books/
datasetsv2.html

obtaining good results. We are currently investigating this
phenomenon further.

5. CONCLUSION
We have argued that modeling evolving graphs using snap-

shot sequences presents semantic difficulties. As an alterna-
tive, we proposed a vertex-edge model with sequence se-
mantics and discussed several challenges of supporting this
model in a distributed setting. We are currently working
on implementing this model in Apache Spark, and explor-
ing the performance of different physical representations and
partition strategies.
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ABSTRACT
We examine deployment strategies for text translation and
text summarization tasks. We formalize a deployment strat-
egy along three dimensions: work structure, workforce orga-
nization, and work style. Work structure can be either simul-
taneous or sequential, workforce organization independent
or collaborative, and work style either crowd-only or hy-
brid. We use Amazon Mechanical Turk to evaluate the cost,
latency, and quality of various deployment strategies. We
asses our strategies for different scenarios: short/long text,
presence/absence of an outline, and popular/unpopular top-
ics. Our findings serve as a basis to automate the deploy-
ment of text creation tasks.

Keywords
Crowdsourcing; Text Creation; Deployment Strategies;

1. INTRODUCTION
Crowdsourcing has been applied to all kinds of tasks rang-

ing from the simplest such as image categorization to the
most sophisticated such as creating elaborate text. Although
several automatic solutions have been designed for text cre-
ation, this task remains difficult for machines as it involves
a level of abstraction and creativity that only humans are
capable of. That is particularly true for translation and
summarization where original texts of varying length and
complexity need to be understood and processed. In this
paper, we examine how hybrid deployment strategies that
combine the power of algorithms with the creativity of hu-
mans can improve the quality of produced text, as well as
the cost and latency of tasks. To the best of our knowledge,
our work is the first to explore the effectiveness of hybrid
deployment strategies for crowdsourced text creation.

We are interested in two text creation tasks: translation
and summarization. It has been shown that for text transla-
tion, letting workers edit text and correct each others’ mis-
takes in a sequential manner, produces higher quality trans-
lations than in the case where workers generate independent

c©2017, Copyright is with the authors. Published in Proc. 20th Inter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

translations simultaneously [1]. It has also been shown that
automatic methods are not very good at summarizing and
merging sentences to generate high-quality summaries [11].
We hence propose to study different deployment strategies.
A deployment strategy is a plan on how to carry out a
task. It is a combination of three dimensions: work struc-
ture, workforce organization, and work style. Work structure
refers to how a task is deployed among workers, which can
either be simultaneous or sequential. Workforce organization
refers to how workers are organized to complete a task, which
can either be independent or collaborative. Work style dis-
tinguishes a hybrid approach, where a task is completed by
both algorithms and humans, from a crowd-only approach,
where a task is solely carried out by humans. Table 1 shows
6 deployment strategies that combine those dimensions.

The idea of combining humans and machines for task com-
pletion has been explored in a variety of domains ranging
from databases to machine learning [3, 4, 5, 7, 9, 10, 12].
Our focus is on the evaluation of how our strategies affect
cost, latency, and quality of output text. For translation,
in addition to work structure, workforce organization, and
work style, we pay attention to the properties of the text
that is being translated or summarized and study the im-
pact of text length. For summarization, we study the qual-
ity of summaries in the presence and absence of a suggested
outline, and for topics of varying popularity.

The paper is organized as follows. Our tasks and deploy-
ment strategies are given in Section 2. Our experiments are
presented in Section 3. We conclude and discuss perspec-
tives raised by this work in Section 4.

2. TASK DEPLOYMENT

2.1 Translation
We examine two types of translation tasks: full document

and short text translation. In the first case, the original text
is a speech by President Obama entitled “Giving Every Stu-
dent an Opportunity to Learn Through Computer Science
for All.” It consists of 35 sentences and 10 paragraphs. The
target language is French. In the second case, the original
text is a poem in Arabic, “When You Decide to Leave” by
Mahmoud Darwish, with 4 sentences. The target languages
are English and French.

2.2 Summarization
We chose movie reviews and soccer games to be summa-

rized into free-text, structured, or personalized summaries.
A free-text summary is generic and has no specific struc-
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Strategy Description
Sequential-Independent-Hybrid
(SEQ-IND-HYB)

An initial output is generated automatically then it is sent to one worker at a
time for improvement. The final result is a single output.

Sequential-Independent-CrowdOnly
(SEQ-IND-CRO)

An initial output is completed by a worker then it is sent to one worker at a
time to improve it. The final result is a single output.

Simultaneous-Independent-Hybrid
(SIM-IND-HYB)

An initial output is generated automatically then sent to several independent
workers for improvement. The best output is chosen after an evaluation.

Simultaneous-Independent-CrowdOnly
(SIM-IND-CRO)

Several outputs are created simultaneously by independent workers. The best
output is chosen after an evaluation.

Simultaneous-Collaborative-Hybrid
(SIM-COL-HYB)

An initial output is generated automatically then sent to one group of workers
who collaborate to improve it.

Sequential-Collaborative-CrowdOnly
(SIM-COL-CRO)

One output is created by one group of workers together.

Table 1: Deployment Strategies

ture while the structured and personalized ones are based
on a given outline. A structured summary, however, puts
more emphasis on the organization of text, while in a per-
sonalized summary the content is given primary importance.
The choice of movies and soccer allows us to control topic
popularity.

For movies, we used IMDb datasets, and chose “The Imi-
tation Game,”“2012,” and “The Count of Monte Cristo” as
they respectively satisfy the following characteristics: pop-
ular with high ratings, popular with low ratings, and not
popular. For each movie, we selected five reviews with 7 to
10 sentences each, to be summarized in at most 7 sentences.

For soccer, we asked to summarize game statistics into
14 sentences. We chose two games that were recently held
at La Liga-Spain 2016: one between two popular teams,
Barcelona and Granada, and the other between less popular
teams, Rayo Vallecano and Levante.

2.3 Deployment Strategies
Figure 1 illustrates all strategies for the translation task.

For instance, SEQ-IND-HYB first generates an initial trans-
lation from English to French using Google Translate, then
it asks three workers to improve the translation one after
the other. In addition to the original text and task instruc-
tions, a requester must consider the following: the num-
ber of workers to recruit for the task and the result quality
requirement, which are affected by time and budget con-
straints. For example, in translating Obama’s speech, a re-
quester may expect the highest possible quality that three
workers can achieve within no particular time and without
budget restrictions.

Since we want the highest possible quality, we evaluate
every response received. The evaluation may be done by
experts, by algorithms [8], or by the crowd [2].

3. VALIDATION
In this section, we report the setup and the results of

experiments we performed to evaluate our proposed deploy-
ment strategies. We deployed our tasks on Amazon Mechan-
ical Turk (AMT). The list of required skills was provided at
the beginning of each task. In the case of hybrid strategies,
we used Google Translate to obtain machine translations
and MEAD1 to obtain automatic summaries.

We observed how our strategies affect the cost, latency

1http://www.summarization.com/mead/

and result quality. We calculated the cost by taking the
sum of all the payments to workers for all the HITs posted
to carry out a strategy. We asked experts to rate quality of
each text output using a 5-pt Likert scale (1 - very poor, 2 -
poor 3 - barely acceptable, 4 - good, 5 - very good) using the
following criteria: spelling, syntax, semantic coherence, and
adequation to the original text. The latency was derived by
adding the amount of time it took for a worker or group of
workers to complete each task in a given strategy. Table 2
summarizes the comparisons that we performed.

3.1 Translation
All strategies were considered to translate Obama’s speech.

For Darwish’s poem, we only report results for simultane-
ous work structure and independent workforce organization
(Figure 1b). Sequential strategies were not useful since the
text is short. Similarly, for collaborative strategies, the time
and effort of recruiting workers outweighs their benefit for
short text.

Setup. Figure 1a shows how we implemented sequential
independent strategies for translation tasks. In the case of
a hybrid work style, we first obtained an automatic transla-
tion of the original text to the target language. It was then
improved by three different workers one after the other. To
improve a translation, we published a Human Intelligence
Task (HIT) that instructs a worker to enhance an automati-
cally produced translation. For every response, we asked an
expert to rate the improved translation. When the rating
was good enough, we asked the next worker to enhance the
current translation. Otherwise, we asked another worker to
enhance the initial translation until we received an accept-
able translation. For a crowd-only work style, we first pub-
lished a HIT that requests a translation of the original text
from scratch. After receiving an initial translation, we asked
two more workers to improve the translation iteratively.

As shown in Figure 1b, for simultaneous independent strate-
gies, we posted a HIT requesting three workers to translate
text simultaneously. For the hybrid work style, workers im-
proved an initial machine translation, while in the crowd-
only case, they translated the original text from scratch.
After receiving all three answers, we asked an expert to se-
lect the best one.

For simultaneous collaborative strategies (Figure 1c), we
needed workers to collaborate to create (crowd-only) or im-
prove (hybrid) a translation. We deployed these tasks by
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(a) SEQ-IND-HYB & SEQ-IND-CRO (b) SIM-IND-HYB & SIM-IND-CRO (c) SIM-COL-HYB & SIM-COL-CRO

Figure 1: Translation strategies

Workforce Organization (IND vs COL) Work Structure (SIM vs SEQ) Work Style (HYB vs CRO)
SIM-IND-HYB vs. SIM-COL-HYB SIM-IND-HYB vs. SEQ-IND-HYB SEQ-IND-CRO vs. SEQ-IND-HYB
SIM-IND-CRO vs. SIM-COL-CRO SIM-IND-CRO vs. SEQ-IND-CRO SIM-IND-CRO vs. SIM-IND-HYB

SIM-COL-HYB vs. SIM-COL-CRO

Table 2: Comparison Scenarios

posting a HIT that explains to workers the task require-
ments and asks them if they are willing to work on the task
with other workers. After that, we invited at least two work-
ers to use Google Docs to collaborate on the translation.

We based our incentives on the pricing scheme in [13] that
paid $0.10 (US dollars) per sentence. For the independent
tasks, we paid $3.50/HIT for each translation from scratch
and $1.75 for each translation improvement HIT. For the col-
laborative tasks, we paid $1.16 per worker for the translation
from scratch HIT and $0.58 per worker for the translation
improvement HIT.

Findings. We find that letting workers collaborate as
a group has a positive impact on the behavior of workers,
which also contributes to raising translation quality. An-
other advantage of collaboration is a much lower cost, while
latency only slightly increases. For translating long text, a
hybrid work style combined with a sequential work struc-
ture are best (SEQ-IND-HYB). For short text, however, a
simultaneous work structure is more appropriate, and both
hybrid and crowd-only work styles perform well (SIM-IND-
HYB and SIM-IND-CRO).

3.2 Summarization
It has been shown that providing a narrative outline im-

proves text summaries [6]. To verify this finding for movies
and soccer games, we crowdsourced summaries with various
deployment strategies in the presence and the absence of
a proposed summary outline for topics of varying popular-
ity. The summarization tasks were deployed using the same
strategies as in Figures 1a, 1b, and 1c with movie reviews or
game statistics as input, and a summary text as output. For
the hybrid work style, we first obtained an automatic sum-
mary using MEAD and gave it to workers for improvements.
In the case of a crowd-only work style, workers were instead
provided an outline to follow when producing a summary.
This work was then performed with different workforce or-
ganizations and work structures, similar to translation tasks.

Movie Setup. We selected movies with different ratings
and popularity. In addition to a structured outline that we
provided, we asked three different workers to propose an
outline that conforms to their expectations (personalized).
Figure 2 shows two example outlines. On the left side is
our proposed outline. On the right side is one that a worker
suggested. One can see that ours is generic and covers the
main aspects of a movie while that of the worker is more spe-
cific. We deployed all strategies for the movie“The Imitation
Game” to obtain free-text summaries as well as personalized
summaries. The two other movies were summarized with
crowd-only work styles, using a structured summary. The
incentives we provided for the independent creation of free-
text summaries are as follows: $5.00 for each written from
scratch, $1.25 for its 1st improvement and $0.62 for the 2nd;
$2.50 for the 1st improvement of an automatically gener-
ated summary, $0.62 for the 2nd, and $0.31 for the 3rd. For
collaborative tasks, we paid each worker $1.16 to create a
summary from scratch and $0.58 each to improve a sum-
mary. For the structured and personalized summaries of
movie reviews, we paid $0.70 for the task of coming up with
an outline and for creation and improvement tasks.

Movie Findings. We find that workers produce better
summaries when given an outline that serves as a template.
This finding reinforces previous results in narrative theory
that show an increase in emotional worker engagement, and
the likelihood of workers sharing those summaries when nar-
rative templates are used to produce them [6]. However,
there is a fine line between providing outlines that are gen-
eral and outlines that ask for specific content requiring work-
ers to spend extra time finding that content. We also observe
that a hybrid work style that provides workers with an auto-
matically generated initial summary helps workers structure
their thoughts. Among our proposed strategies, we found
that SEQ-IND-HYB is best for free-text summaries while
SEQ-IND-CRO is best for structured ones. Finally, we find
that summarizing reviews for a popular movie does not guar-
antee a high-quality outcome.
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Figure 2: Two Summarization Outlines

Soccer Setup. We sought to verify how the popular-
ity of a team and the deployment strategy affect the re-
sults. We requested summaries for two games: one between
two popular teams and another between less popular teams.
The soccer games were summarized with crowd-only work
styles, using a structured summary. To create structured
summaries for soccer games, we paid $1.40 and to improve
a summary, we also paid $0.70.

Soccer Findings. We observed that the summaries cre-
ated for popular teams were completed faster and were of
higher quality compared to the less popular game. We also
noticed that workers prefer working independently and se-
quentially (SEQ-IND-CRO), as they tend to disagree a lot
on this topic, which makes collaborating difficult.

4. SUMMARY AND PERSPECTIVES
The main takeaway is that humans have an aversion to

long text and to the effort of creating text from scratch (case
of full document translation). They are however better than
machines at sequentially improving automatically translated
text, or at creating text based on outlines (case of summa-
rizing movie reviews). For short text, providing an initial
machine translation does not help.

The popularity of an event affects the quality of obtained
summaries (case of soccer games). Its recency impacts the
speed at which workers respond. Also, for tasks requiring
creativity, and when the input text is short (case of the short
poem), humans are best. The same is true when guidelines
are provided for text creation tasks (case of summary out-
lines). However, when those guidelines are too specific, the
resulting quality drops as it becomes necessary to focus on
finding answers to specific questions (case of personalized
summary outlines).

Our findings can serve as a basis for the development of
automatic task deployment text creation. In particular, we
would like to design an environment that lets requesters in-
teract with suggested deployment strategies and refine them
as tasks are completed. This requester-in-the-loop perspec-
tive will provide more transparency in crowdsourcing.
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ABSTRACT
We study the r-near neighbors reporting problem (rNNR)
(or spherical range reporting), i.e., reporting all points in a
high-dimensional point set S that lie within a radius r of a
given query point. This problem has played building block
roles in finding near-duplicate web pages, solving k-diverse
near neighbor search and content-based image retrieval prob-
lems. Our approach builds upon the locality-sensitive hash-
ing (LSH) framework due to its appealing asymptotic sub-
linear query time for near neighbor search problems in high-
dimensional space. A bottleneck of the traditional LSH
scheme for solving rNNR is that its performance is sensi-
tive to data and query-dependent parameters. On data sets
whose data distributions have diverse local density patterns,
LSH with inappropriate tuning parameters can sometimes
be outperformed by a simple linear search.

In this paper, we introduce a hybrid search strategy be-
tween LSH-based search and linear search for rNNR in high-
dimensional space. By integrating an auxiliary data structure
into LSH hash tables, we can efficiently estimate the compu-
tational cost of LSH-based search for a given query regardless
of the data distribution. This means that we are able to
choose the appropriate search strategy between LSH-based
search and linear search to achieve better performance. More-
over, the integrated data structure is time efficient and fits
well with many recent state-of-the-art LSH-based approaches.
Our experiments on real-world data sets show that the hy-
brid search approach outperforms (or is comparable to) both
LSH-based search and linear search for a wide range of search
radii and data distributions in high-dimensional space.

1. INTRODUCTION
We study the r-near neighbors reporting problem (rNNR)

(or spherical range reporting) [2, 5]: Given a d-dimensional
point set S of size n, reporting all points in S that lie within
a radius r of a given query point. This problem has played
building block roles in finding near-duplicate web pages [11],
solving k-diverse near neighbor search [1] and content-based

c©2017, Copyright is with the authors. Published in Proc. 20th Inter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

q1q2

r r

Figure 1: An example of LSH bottleneck. Given
a radius r, LSH works efficiently with the query q1

on sparse area, since it will report just a few points.
However, LSH is worse than linear search with the
“hard” query q2 on dense area. Since the output size
of q2 is nearly the data set size and many points are
very close to q2, duplicates show up in most hash
tables and the cost of removing duplicates will be
the computational bottleneck.

image retrieval problems [15]. Recent theoretical work [2,
3] conjectures that solving rNNR exactly in time truly sub-
linear in n seems to demand space exponential in d, which is
an example of the phenomenon “curse of dimensionality”.

Since exact solutions of rNNR generally degrade as dimen-
sionality increases, we investigate an approximate variant of
rNNR. That is, given a parameter 0 < δ < 1, we allow the
algorithm to return each point in S that lie within a radius
r of the query point with probability 1− δ. Our approach
builds upon on the locality-sensitive hashing (LSH) [4, 12],
one of the most widely used solution for near neighbor search
problems. In a nutshell, LSH hashes near points into the
same bucket with good probability, and increases the gap of
collision probability between near and far points. It typically
needs to use multiple hash tables to obtain probabilistic
guarantees. Search candidates are distinct data points that
are hashed into the same bucket as the query in hash tables.

Since its first introduction, several LSH schemes [6, 7, 8,
10, 13, 14] have been proposed for a wide range of metric
distances in high-dimensional space. However, a bottleneck
of using LSH for solving rNNR is that its performance is
sensitive to the parameters which depend on the distance
distribution between data points and query points. Such
parameters are hard to tune on data sets whose data distri-
butions have diverse local density patterns. Figure 1 shows
an illustration of this bottleneck.

In practice, LSH needs to use significant space (i.e., hun-
dreds of hash tables) [10] or the multi-probe approach [13]
which examines several “close” buckets in a hash table. In
other words, the number of examined buckets needs to be
sufficiently large to obtain high accuracy. In turn, the cost
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of removing duplicates (i.e., points colliding with the query
in several hash tables) turns out to be the computational
bottleneck when there are many points close to the query.
This observation has been shown on the Webspam dataset
in the experiment section even with very small radii.

In this work, we study a hybrid search strategy between
LSH-based search and linear search for rNNR in an arbitrary
high-dimensional space and distance measure that allows
LSH. By integrating the so-called HyperLogLog data struc-
tures [9] into LSH hash tables, we can quickly and accurately
estimate the output size and derive the computational cost
of LSH-based search for a given query point regardless of
the data distribution. In other words, we are able to choose
the appropriate search strategy between LSH-based search
and linear search to achieve better performance (i.e., running
time and recall ratio). Moreover, the proposed solution can
be adapted to many recent state-of-the-art LSH-based ap-
proaches [2, 13, 14]. Our experiments on real-world datasets
demonstrate that the proposed hybrid search outperforms (or
is comparable to) both LSH-based search and linear search
for a wide range of search radii and data distributions in
high-dimensional space.

2. BACKGROUND AND PRELIMINARIES
Problem setting. Our problem, r-near neighbor report-

ing under any distance measure, is defined as follows:

Definition 1. (r-near neighbor reporting or rNNR) Given
a set S ⊂ Rd, |S| = n, a distance function f , and parameters
r > 0, δ > 0, construct a data structure that, given any query
q ∈ Rd, return each point x ∈ S where f(x, q) ≤ r with
probability 1− δ.

We call this the “exact” rNNR problem in case δ = 0,
otherwise it is the “approximate” variant.

Locality-sensitive hashing (LSH). LSH can be used
for solving approximate rNNR in high-dimensional space
because its running time is usually better than linear search
with appropriate tuning parameters [4].

Definition 2. (Indyk and Motwani [12]) Fix a distance
function f : Rd ×Rd → R. For positive reals r, c, p1, p2,
and p1 > p2, c > 1, a family of functions H is (r, cr, p1, p2)-
sensitive if for uniformly chosen h ∈ H and all x,y ∈ Rd:

• If f(x,y) ≤ r then Pr [h(x) = h(y)] ≥ p1;
• If f(x,y) ≥ cr then Pr [h(x) = h(y)] ≤ p2.

Given an LSH family H, the classic LSH algorithm con-
structs L hash tables by hashing data points using L hash
functions gj , j = 1, . . . , L, by setting gj =

(
h1
j , . . . , h

k
j

)
,

where hij , i = 1, . . . , k, are chosen randomly from the LSH

family H. Concatenating k such random hash functions hij
increases the gap of collision probability between near points
and far points. To process a query q, one needs to get a
candidate set by retrieving all points from the bucket gj(q)
in the jth hash table, j = 1, . . . , L. Each distinct point x in
the candidate set is reported if f(x, q) ≤ r.

For the approximate rNNR, a near neighbor has to be
reported with a probability at least 1− δ. Hence, one can
fix the number of hash tables, L, and set the value k as
a function of L and δ. A simple computation indicates

that k =
⌈
log (1− δ1/L)/ log p1

⌉
leads to good performance1.

1This is a practical setting used in E2LSH package
(http://www.mit.edu/∼andoni/LSH/)

Note that our parameter setting is different from the standard
setting k = log n, L = nρ, where ρ = log p1/ log p2 [12], since
we focus on reporting every r-near neighbor.

Although LSH-based algorithm can efficiently solve rNNR
problem, it might run in O (nL) time in the worst case, see
Figure 1 as an example. Tuning appropriate parameters k, L
for a given dataset whose data distribution has diverse local
density patterns remains a tedious process.

HyperLogLog (HLL) for count-distinct problem.
While counting the exact number of distinct elements in
a data stream is simple with space linear to the cardinality,
approximating such the cardinality using limited memory
is an important problem with broad industrial applications.
Among efficient algorithms for the problem, HyperLogLog
(HLL) [9] constitutes the state-of-the-art (i.e., a near-optimal
probabilistic algorithm) when there is no prior estimate of the
cardinality. This means that it achieves a superior accuracy
for a given fixed amount of memory over other techniques.

HLL builds an array M of m zero registers. For an ele-
ment i, it generates a random integer pair {mi, vi} where
mi ∼ Uniform([m]) indicates a position in M , and vi ∼
Geometric(1/2) is an update value. The array M updates
the value at the position mi by max (M [mi], vi). After pro-
cessing all elements, the cardinality estimator of the stream

is θmm
2
(∑m

j=1 2−M [j]
)

, where θm is a constant to correct

the bias. HLL works optimally with distributed data streams
since we can merge several HLLs by collecting register values
and applying component-wise a max operation. The relative
error of HLL is 1.04/

√
m. More details of the theoretical

analysis and a practical version of HLL can be seen in [9].

3. ALGORITHM
This section describes our novel hybrid search strategy

which interchanges LSH-based search and linear search for
solving rNNR. We first present a simple but accurate compu-
tational cost model to measure the performance of LSH-based
search. By constructing an HLL data structure in each bucket
of hash tables, we are able to estimate the computational
cost of LSH-based search, and then identify the condition
whether LSH-based search or linear search is used.

3.1 Computational Cost Model
For each query, LSH-based search needs to process fol-

lowing operations: (1) Step S1: Compute hash functions to
identify the bucket of query in L hash tables, (2) Step S2:
Look up in each hash table the points of the same bucket of
query, and merge them together for removing duplicate to
form a candidate set, and (3) Step S3: Compute the distance
between candidates and the query to report near neighbor
points. Typically, the cost of S1 is very small and dominated
by the cost of S2 and S3, which significantly depend on the
distance distribution between the query and data points.

To process Step S2, one typically uses a hash table or a
bitvector of n bits to store non-duplicate entries. The cost
of such techniques is proportional to the total number of
collisions (#collisions) encountered in L hash tables, which
can be directly computed by simply storing the bucket size.
The cost of S3 is clearly proportional to the candidate set size
(candSize). The total cost of LSH-based search is composed
of the cost of S2 and S3, as formalized in Equation (1).

Given α as the average cost of removing a duplicate, and
β as the cost of a distance computation, we formalize the
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total cost of LSH-based search and linear search as follows:

LSHCost = α ·#collisions+ β · candSize (1)

LinearCost = β · n (2)

Given such constants α, β, we can compute exactly Lin-
earCost, but we need candSize for computing LSHCost.
By constructing an HLL data structure for each bucket, we
can derive the HLL of the candidate set. Therefore, we
can accurately approximate candSize, and then estimate
the LSHCost. In turn, we can compare LinearCost and
LSHCost in order to interchange LSH-based search with
linear search to achieve better performance.

3.2 Hybrid Search Strategy
We construct an HLL for each bucket when building LSH

hash tables, as shown in Algorithm 1. Given a query q, we
view point indexes hashed in the buckets g1(q), · · · , gL(q) as
L partitions of a data stream. We will estimate the number of
distinct elements of such data stream, which is the candSize
in Equation (1). By estimating LSHCost and comparing it
to LinearCost, we can identify the suitable search strategy,
as shown in Algorithm 2.

Algorithm 1 Construct LSH hash tables

Require: A point set S, and L hash functions: g1, . . . , gL
1: for each x ∈ S do
2: for each hash table Ti using hash function gi do
3: Insert x into the bucket gi(x)
4: Update HyperLogLog of the bucket gi(x)
5: end for
6: end for

Algorithm 2 Hybrid search for r-NN

Require: A query point q, and L hash tables: T1, . . . , TL
1: Get the size of the buckets g1(q), . . . , gL(q) to compute

#collisions
2: Merge HLLs of the buckets g1(q), . . . , gL(q) to estimate
candSize

3: Estimate LSHCost using Equation (1), and compute
LinearCost using Equation (2)

4: Choose LSH-based search if LSHCost < LinearCost;
otherwise, use linear search

The time complexity analysis. Now, we analyze the
complexity of the two algorithms. Algorithm 1 uses a space
overhead due to the additional HLLs. For each bucket, an
HLL needs O(m) space where m is the number of registers of
HLL, which governs the accuracy of the candSize estimate.
In practice, we only need m = 32− 128. This means that the
space overhead of HLLs is usually smaller than large buckets
(e.g., #points > m). For small buckets (e.g., #points < m),
we might not need HLL, since we can update the merged HLL
on demand at the query time. This trick can save the space
overhead and improve the running time of the algorithm.

Algorithm 2 is more important since it governs the run-
ning time of the algorithm. Compared to the classic LSH-
based search, the additional cost of the hybrid search ap-
proach is from merging L HLL data structures and estimating
candSize, which takesO(mL). Such cost is often smaller than
(or comparable to) the cost of Step S1, i.e., hash functions
computation on LSH families [6, 7, 8, 12]. In other words,
the cost overhead caused by our hybrid search approach is
little and dominated by the total search cost.

4. EXPERIMENT
We implemented algorithms in Python 3 and conducted ex-

periments on an Intel Xeon Processor E5-1650 v3 with 64GB
of RAM. We compared the performance of different search
strategies, including hybrid search, LSH-based search, and
linear search for reporting near neighbors on several met-
ric distances allowing LSH. We used 4 real-world data sets:
Corel Images2 (n = 68, 040, d = 32), CoverType2 (n =
581, 012, d = 54), Webspam3 (n = 350, 000, d = 254), and
MNIST3 (n = 60, 000, d = 780). For each dataset, we ran-
domly remove 100 points and use it as the query set, and
report the average of 5 runs of algorithms on the query set.

For each metric distance, we use the corresponding LSH
family. Particularly, we applied SimHash [7] to obtain 64-bit
fingerprint vectors for MNIST and use bit sampling LSH [12]
for Hamming distance. CoverType and Corel Images use
random projection-based LSH [8] for L1 and L2 distances,
respectively. Webspam uses SimHash [7] for cosine distance.

4.1 Efficiency of HyperLogLog
This subsection presents experiments to evaluate the effi-

ciency of HLLs on estimating the candidate set size for a given
query point. For HLL’s parameter, we fix m = 128 to achieve
a relative error at most 10% as suggested in [9]. For LSH’s pa-

rameters, we fix L = 50 and set k =
⌈
log (1− δ1/L)/ log p1

⌉
,

where δ = 10% and p1 is the collision probability for points
within the radius r to the query. This setting is used
for SimHash [7] and bit sampling LSH [12]. For random
projection-based LSH [8] for L1 and L2 distances, in order
to achieve δ = 10%, we have to adjust k = 8, w = 4r and
k = 7, w = 2r, respectively, where w is an additional parame-
ter of such LSHs. We note that HLL estimation takes O(mL)
time, so this cost is almost constant when fixing m and L.

Table 1: Relative cost and error of HLLs
Dataset Webspam CoverType Corel MNIST
% Cost 1.31% 0.12% 3.18% 17.54%
% Error 5.99% 5.86% 6.74% 6.8%

Table 1 shows the average performance of HLL over 4
datasets for a small range of radii where LSH-based search
significantly outperforms linear search. It is clear that the
cost of HLL is very little, less than 4% of the total cost for
the real-value data points. For MNIST, since the distance
computation cost is very cheap due to binary representation,
the cost of HLL is 17.54% of the total cost. However, since
MNIST is very small (n = 60000), we can set m = 32 to
reduce the cost to 4.4% without degrading the performance.

Regarding the accuracy, although theoretical analysis guar-
antees a relative error of 10%, the practical relative error
is even much smaller, less than 7% with standard deviation
around 5% for all datasets. The small overhead cost and high
accuracy provided by HLL enables us to efficiently estimate
the total cost of LSH-based search, see Equation (1), and
identify the appropriate search strategy.

4.2 Efficiency of Hybrid Search
This subsection studies the performance of our proposed

hybrid search strategy. To compare LSHCost and Lin-
earCost, we need to identify the ratio β/α, which obviously
depends on the implementation, the sparsity of the dataset

2https://archive.ics.uci.edu/ml/datasets/
3http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/
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Figure 2: Comparison of CPU Time (s) for a query set between hybrid search (Hybrid), LSH-based search
(LSH), and linear search (Linear) on 4 data sets using different metric distances.
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Figure 3: Left: Average, maximum, and minimum
output size of queries; Right: Percentage of linear
search (LS) calls used in hybrid search for Webspam.

and the used distance metric. We use a random set of 100
queries and 10,000 data points for choosing the ratio β/α
as 10, 10, 6, 1 for Webspam, Covertype, Corel, and MNIST,
respectively. We use the same setting as the previous section
for LSH’s and HLL’s parameters.

Figure 2 shows the average running time in seconds of the 3
search strategies. For small r, LSH-based search and hybrid
search are comparable, but superior to linear search since the
output size of each query is rather small. When r increases,
hybrid search gains substantial advantages by interchanging
LSH-based search with linear search since there are more
“hard” queries on the query set. It outperforms LSH-based
search and eventually converges to linear search. Specifically,
hybrid search provides superior performance compared to
both LSH-based search and linear search on Webspam, as
shown in Figure 2.b. This is due to the fact that Webspam
has several “hard” queries for even very small radii (r ≤ 0.1).

Figure 3 reveals that the output size varies significantly
even with small r. The maximum output size is almost more
than half of the point set size (n/2) whereas the minimum
output size is very tiny. This means that Webspam has many
“hard” queries, and therefore hybrid search gives superior
average performance. The right figure confirms this observa-
tion by showing the average percentage of linear search calls
for hybrid search. This amount is at least 10% at r = 0.05
and increases to approximate 50% at r = 0.1.

We note that hybrid search gives higher recall ratio than
LSH-based search since it uses linear search for“hard”queries.
Due to the limit of space, we do not report it here.

5. CONCLUSIONS
In this paper, we propose a hybrid search strategy for LSH

on rNNR problem in high-dimensional space. By integrat-
ing an HyperLogLog data structure for each bucket, we can

estimate the total cost of LSH-based search and choose the
appropriate search strategy between LSH-based search and
linear search to achieve better performance. Our experiments
on real-world data sets demonstrate that the proposed ap-
proach outperforms (or is comparable to) both LSH-based
search and linear search for a wide range of search radii and
data distributions in high-dimensional space. We observed
that our hybrid search fits well with the multi-probe LSH
schemes [2, 13] and the covering LSH [14], which typically
require a large number of probes. Applying hybrid search on
these LSH schemes for rNNS will be our future work.
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ABSTRACT
In database cracking, a database is physically self-organized
into cracked partitions with cracker indices boosting the ac-
cess to these partitions. The AVL Tree is the data struc-
ture of choice to implement cracker indices. However, it is
particularly cache-inefficient for range queries, because the
nodes accessed only for a few times (i.e, “Cold Data”) and
the most accessed ones (i.e, “Hot Data”) are spread all over
the index. In this paper, we present the Self-Pruning Splay
Tree (SPST) data structure to index database cracking and
reorganize “Hot Data” and “Cold Data” to boost the ac-
cess to the cracked partitions. To every range query, the
SPST rotates to the root the nodes pointing to the edges
and to the middle value of the predicate interval. Eventu-
ally, the most accessed tree nodes remain close to the root
improving CPU and cache activity. On the other hand, the
least accessed tree nodes remain close to the leaves and are
pruned to improve updates. Our experimental evaluation
shows 37% more Instructions per Cycle and 75.9% less cache
misses in L1 for lookup operations in the SPST compared
to the AVL tree. Our data structure outperforms the AVL
tree for lookups and maintenance costs in three major data
access patterns: random, sequential and skewed. The SPST
outperforms the AVL in 4% even in the worst case scenario
with mixed workloads with lookups and batch updates.

Keywords
Database Cracking, Cracker Index, Splay Tree

1. INTRODUCTION
Database Cracking [6] presents a self-organizing database

partitioning for column-oriented relational databases. It
works by physically self-organizing database columns into
partitions, called cracked pieces. The goal is to create cracked
pieces for all accessed intervals of range queries. Cracker in-
dices are created to keep track of these partitions.

An index is a data access method that typically stores a
list of pointers to all disk blocks that contain records to the

c©2017, Copyright is with the authors. Published in Proc. 20th Inter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

indexed column. The values in the index are ordered to make
binary search possible. It is smaller than the data file itself,
so searching the index using binary search is reasonably ef-
ficient [2]. In contrast to usual indices in the literature, the
nodes of a cracker index do not point to all the disk blocks
of a column. Instead, they point to the beginning of each
cracked piece to boost access to an interval of values.

The current data structure implemented as cracker index
is the self-balancing AVL Tree [1], where the height of the
adjacent children subtrees of any node differ by at most one.
If in a given moment their height differs by more than one,
the tree is rebalanced by tree rotations. As the index is
created by incoming queries, the index starts to be filled
with pointers to data keeping the self-balancing property
of the tree height. However, this property makes the AVL
tree particularly cache-inefficient. The tree nodes accessed
only for a few times (i.e, “Cold Data”) and the most accessed
ones (i.e, “Hot Data”) are spread all over the index. Another
concern lies in the index size as “Cold Data” are kept in the
index. Eventually, the cracker index converges to a full index
(i.e, all values indexed) with high administration costs for
high-throughput updates.

In this paper, we present a data structure called Self-
Pruning Splay Tree (SPST) to index database cracking and
keep “Hot Data” close to the root of the tree. The SPST
is based on binary search Splay trees with a self-adjusting
property carried out by the splaying operation. Splaying
consists of a sequence of rotations to move a node way up
to the root of the tree. To every range query, our algorithm
rotates the nodes pointing to the edges and to the middle
value of the predicate interval. With “Hot Data” constantly
rotated, they eventually remain close to the root. On the
other hand, “Cold Data” are stored close to the leaves pre-
senting the opportunity to prune them out of the index and
improve maintenance and update costs.

This paper is organized, as follows: Section 2 discusses
related work. Section 3 presents our Cracker Index followed
by the experiments in Section 4 and we conclude in Section 5.

2. STANDARD DATABASE CRACKING AND
RELATED WORK

There are two Database Cracking algorithms: crack-in-
two and crack-in-three to split the columns into two and
three partitions respectively. The first one is suited for one-
sided range queries (e.g, V1 < A) or two-sided range queries
(e.g, V1 < A < V2) where each side accesses different cracked
pieces. The second one is only for two-sided queries that
access the same cracked piece. It starts with similar per-
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Figure 1: Database Cracking when executing two
queries with different ranges [8]

formance of full column scan and overtime gets close to the
performance of a full index.

Figure 1 depicts query Q1 triggering the creation of the
cracker column Ackr, (i.e., initially a copy of column A)
where the tuples are clustered in three pieces reflecting a
crack-in-three iteration from the range predicate of Q1. The
result of Q1 is then retrieved as a view on Piece 2 (i.e.,
indexing 10 < A < 14). Later, query Q2 requires a refine-
ment of Pieces 1 and 3 (i.e., respectively indexing A > 7
and A ≤ 16), splitting each in two new pieces resulted by a
crack-in-two iteration.

There are many data structures in the literature to keep
track of data partitions. In database cracking the AVL is
the data structure of choice, but other self-balancing trees,
like RedBlack or 2-3 trees, draw the same result. These
trees have the property of keeping the height of the tree for
self-balancing purposes. However, this property makes them
cache-inefficient for range queries. The tree nodes accessed
only for a few times and the most accessed ones are spread
all over the tree.

3. THE SPST-INDEX
Our contribution regards recognizing “hot data” to im-

prove data access and recognizing “cold data” to prune un-
used data and boost updates.

3.1 Splaying
A Splay Tree [9] is a self-adjusting binary search tree that

uses a splaying technique every time a node is Searched, Up-
dated, Inserted or Deleted. Splaying consists of a sequence of
rotations that moves a node to the root of the tree. Lookup,
Insertion and Deletion take O(logn) time in the average and
worst case scenarios, where n is the number of nodes in the
Splay Tree. It clusters the most accessed nodes near the root
of the tree. Therefore, the most frequent accessed nodes will
be accessed faster. Since we are dealing with range queries,
our goal is to splay the query range, instead of splaying only
one node like the original splay tree. The self-adjustment
algorithm in our data structure is straightforward: we first
splay the leftmost node of the range, then the rightmost
node and later the closest node to the middle.

Let us consider for cracker index the SPST depicted by
Figure 2. If a range query of 1 < A < 5 is executed, the
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Figure 3: The SPST with size n = 7 being pruned.

algorithm performs three operations: Splay (1), Splay (5)

and Splay (
⌈ (1+5)

2

⌉
). Figure 2(b) depicts the resulting tree

with nodes 1, 3 and 5 close to the root. In the SPST, the
nodes remain close to the root as long as they are frequently
accessed. In our index, the nodes pointing to the most ac-
cessed cracked pieces remain close to the root.

3.2 Pruning
Besides speeding up the access to hot data, another goal

is to speed up updates and maintenance costs when rotating
hot data. We assume that eventually the nodes stored at the
leaves point to cold data. The maintenance strategy of our
data structure is to prune the leaves. As we prune them, the
update time is expected to shrink. The downside of pruning
the tree is that the following queries can become slightly
more expensive compared to the situation where we do not
have any pruning at all. Our hypothesis is that we mitigate
this cost with the gains in the update time. When we prune
the leaves, the size of the index shrinks, in the best case, to⌊
n
2

⌋
, where n is the number of nodes in the SPST.

Let us suppose the SPST index depicted by Figure 3(a).
In this scenario the most frequent range is between 10 and
30. Let us suppose inserting the value 21 in the Cracker
Column. To do this, we need to update the nodes 35, 30
and 25 respective pointers to the cracker column and merge
at their respective cracker column pieces. Instead, we start
pruning the leaves having as result the tree depicted by Fig-
ure 3(b). Then we only need to update the pointer to the
cracked piece of node 30.

4. EXPERIMENTAL ANALYSIS
In this section, we discuss the results of our experimen-

tal evaluation of the SPST implemented as a cracker index.
We divide this section in two subsections, the first one is
related to the select operator where we performed the same
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Figure 4: Workload Patterns

experimental protocol and ran the same lookup scenarios
described in [8]. The second one is related to the update sce-
nario where we performed the same experimental protocol
and ran the same scenarios described in [4]. We implemented
our data structure and performed all the experiments using
the database cracking simulator1 presented by [8]. We ran
the experiments on a MacOS Sierra (10.12) machine with
2.2GHz quad-core Intel Core i7 processor (Turbo Boost up
to 3.4GHz), 6MB shared L3 cache and 8 GB of RAM.

For the select operator, we focused our analysis on the
accumulated index lookup time for querying and indexing,
and the accumulated index update time. In particular, we
analyzed the Instructions per Cycle (IPC) and the cache
misses (L1/2/3). We consider as the best cache-efficient data
structure the one with the highest IPC and lowest number
of cache misses.

For the update operator, we considered two update sce-
narios: low frequency high volume updates (i.e, LFHV), and
high frequency low volume updates (i.e, HFLV). In the first
scenario after 1,000 queries a batch of 1,000 updates are ex-
ecuted. In the second scenario after 10 queries a batch of 10
updates are executed. The query pattern and the updates
are both random. The SPST prunes itself always before a
batch update if the previous queries present a standard devi-
ation, for cracking time, lower than a defined threshold. We
focused our analysis only on measurements that are affected
by update and pruning (i.e, cracking time, index update
time, cracker column shuffle time and pruning time).

We use an integer array with 108 uniformly distributed
values. The workload size and the query selectivity is 1,000
and 1 for all experiments. All query predicates are of the
form: R.A ≥ V1 AND R.A < V2. We repeat the entire work-
load 5 times and take the average runtime of each query. We
consider three different workloads depicted by Figure 4. For
each workload, we graphically illustrate how a sequence of
1, 000 queries accesses the domain value of a single attribute.
For each query, we plot the two edges of the interval (i.e.,
called “Query Predicate Sequence”). The random, sequen-
tial and skewed workloads are respectively depicted by Fig-
ures 4(a), 4(b), and 4(c). The skewed workload is generated
by the zipf’s law with α equals to 2.0.

4.1 Select Operator
Figure 5 depicts the accumulated index lookup and main-

1The cracker index simulator, written in C/C++ and
compiled with G++ v.4.7, is available at: www.infosys.
uni-saarland.de/research/publications.php

Tree L1 L2 L3 IPC
Random

AVL 1108508606 4972838130 252404784 1.094
SPST 267097844 3957313535 135615510 1.385

Sequential
AVL 855925856 10890330930 412469096 1.234
SPST 711228747 10479242239 399344564 1.263

Skewed
AVL 573854301 3800678199 176536452 1.160
SPST 256760334 3780063118 128213328 1.600

Table 1: Cache Misses and IPC by workload

tenance time for the query stream in the random, sequential
and skewed workload. For random, the AVL Tree was faster
than the SPST for the first 180 queries, because the ran-
dom workload demanded a higher number of rotations in
the SPST to settle down the range pattern close to the root.
With more incoming queries the SPST started to leverage
the cached nodes from the root running the 1, 000th query
21.5% faster than the AVL Tree (see Figure 5(a)).

The sequential pattern was the worst case scenario for the
SPST, but still the SPST was 7% faster than the AVL Tree
at the 1, 000th query (see Figure 5(b)). The worst case sce-
nario was the result of many changes in the range predicate
of the sequential pattern that required splaying many nodes
from the leaves. Over time the SPST mitigated these ro-
tations with 16.9% less cache misses compared to the AVL
(see Table 1). The skewed pattern was the best case sce-
nario for the SPST, being 37% faster than the AVL Tree at
the 1, 000th query (see Figure 5(c)). The best case scenario
was the result of a skewed workload, achieving an IPC 37%
higher. (see Table 1).

4.2 Update Operator
Figures 6(a) and 6(b) depicts the accumulated cracking

and update time for the query stream of 10, 000 queries in
the HFLV and LFHV scenarios respectively. In both, the
SPST achieves the lowest run time. Every time the tree
is pruned, updates are boosted but cracking becomes more
expensive since we have less nodes to update, but bigger
pieces of the cracker column to scan. The SPST was able to
prune at convenient moments minimizing the extra crack-
ing cost and greatly boosting update time. For HFLV, we
defined empirically a standard deviation of 0.2 milliseconds
and for LFHV 200 milliseconds. These values differ because
for HFLV it is only analyzed the standard deviation for 10
queries previous to a batch update, while for LFHV 1,000
queries are analyzed. For HFLV, the SPST was pruned only
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Figure 5: Sum of Lookup for Querying and Indexing, and Insertions Time in Various Workloads
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Figure 6: Total time for cracking and updates

once, and was 4% faster than the AVL Tree. For LFHV, the
SPST was 5% faster, pruning the tree 8 times and having
around 25% of the total size of a full AVL Tree. We observed
more rotations in the SPST than in the AVL tree. However,
the rotations in the SPST presented less impact in response
time compared to the ones in the AVL Tree. While in the
SPST the rotations happened most frequently near the root
with less cache misses in L1/2/3 and higher IPC, the AVL
Tree spanned many rotations usually close to the leaves of
the index to rebalance the tree with many unnecessary tree
nodes polluting the cache (see Table 1 cache misses).

5. CONCLUSION
This work presented the SPST as a cracker index for

database cracking. We explored the Standard Cracking al-
gorithm for select and mixed workloads with three different
synthetic patterns where the SPST outperforms the AVL
Tree in all scenarios. The SPST was able to cache the most
frequently accessed data near to the root reducing cache

misses and achieving a higher IPC than the AVL.
In future work, we will compare the SPST with other

main-memory index structure for efficiently executing queries
on modern processors, like, the recent proposed ART-Tree
and Cache-Sensitive Skip List. Our SPST implementation
follows the classic splay tree structure, but there are many
rotation and pruning strategies that can be explored to im-
prove response time, like, freezing the top of the SPST to
diminish the rotations. Furthermore, we focus the SPST
on standard cracking. However, there are other cracking
approaches in the literature to be explored in future work,
like: Hybrid Cracking[7], Sideways Cracking[5] and Stochas-
tic Cracking[3].

Acknowledgments
This work was partly funded by the CNPq Universal, grant
441944/2014-0.

6. REFERENCES
[1] J. Bell and G. Gupta. An evaluation of self-adjusting

binary search tree techniques. Software: Practice and
Experience, 23(4):369–382, 1993.

[2] Elmasri and Navathe. Fundamentals of Database
Systems. Pearson, 2007.

[3] F. Halim, S. Idreos, P. Karras, and R. H. Yap.
Stochastic database cracking: Towards robust adaptive
indexing in main-memory column-stores. VLDB,
5(6):502–513, 2012.

[4] S. Idreos, M. L. Kersten, and S. Manegold. Updating a
cracked database. In SIGMOD, pages 413–424, 2007.

[5] S. Idreos, M. L. Kersten, and S. Manegold.
Self-organizing tuple reconstruction in column-stores.
SIGMOD, pages 297–308, 2009.

[6] S. Idreos, M. L. Kersten, S. Manegold, et al. Database
cracking. In CIDR, volume 3, pages 1–8, 2007.

[7] S. Idreos, S. Manegold, H. Kuno, and G. Graefe.
Merging what’s cracked, cracking what’s merged:
adaptive indexing in main-memory column-stores.
VLDB, 4(9):586–597, 2011.

[8] F. M. Schuhknecht, A. Jindal, and J. Dittrich. The
uncracked pieces in database cracking. VLDB,
7(2):97–108, 2013.

[9] D. D. Sleator and R. E. Tarjan. Self-adjusting binary
search trees. Journal of the ACM (JACM),
32(3):652–686, 1985.

461



In-Memory Spatial Join: The Data Matters!

Sadegh Nobari†, Qiang Qu†, Christian S. Jensen‡

{nobari,qiang}@siat.ac.cn, csj@cs.aau.dk
†Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences

‡Department of Computer Science, Aalborg University

ABSTRACT
A spatial join computes all pairs of spatial objects in two
data sets satisfying a distance constraint. An increasing de-
mand in applications ranging from human brain analysis to
transportation data analysis motivates studies on designing
new in-memory spatial join algorithms. Among recent pro-
posals, the following six algorithms can efficiently perform
in-memory spatial joins: Size Separation Spatial Join (S3),
Spatial Grid Hash join (SGrid), TOUCH, Partition Based
Spatial-Merge Join (PBSM), Plane-Sweep Join (PS), and
Nested-Loop Join (NL).

This paper addresses the need for studies of aspects that
may influence the performance of spatial join algorithms.
In particular, given two datasets, A and B, the following
aspects may affect performance: the datasets being real or
synthetic data, the distributions with respect to density and
location of the datasets, and the order of performing the
spatial join (A 1 B or B 1 A). To study the effects on
performance of these aspects, we implement the six spatial
join algorithms in a single framework and conduct extensive
experiments.

The findings show that the data being real or synthetic,
the data distribution, and the join order can influence sub-
stantially the performance of the algorithms. We present de-
tailed findings that offer insight into different facets of each
algorithm and that enable comparison across algorithms and
datasets. Furthermore, we provide advice on choosing among
the spatial join algorithms based on the empirical evalua-
tion.

1. OBJECTIVES
Joins are important in many applications [3, 12, 13]. Spa-

tial joins find spatially close object pairs in two data sets.
Spatial joins are employed in many applications, and their
use in-memory is becoming increasingly important [9, 13,
14] for two reasons. First, main memory has grown so large
that many datasets fit main memory so that spatial joins can
be performed entirely in-memory. Second, in-memory join
is an unavoidable component of any join since, regardless

c© 2017, Copyright is with the authors. Published in Proc. 20th Inter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

of whether disk-based or in-memory joins are used, at least
some of the join occurs in-memory. Several spatial join algo-
rithms exist. Among them, the following 6 algorithms can
efficiently perform in-memory spatial joins: 1) Size Separa-
tion Spatial Join (S3) [2], an algorithm based on a hierarchy
of equi-width grids of increasing granularity; 2) Spatial Grid
Hash join (SGrid) [4], a sampling algorithm that speeds up
building an R-Tree on one dataset; 3) TOUCH [9], a hi-
erarchical data-oriented space partitioning in-memory algo-
rithm; 4) Partition Based Spatial-Merge Join (PBSM) [10], a
multiple assignment algorithm that assigns each spatial ob-
ject to all partitions it overlaps with; 5) Plane-Sweep Join
(PS) [11], an algorithm that sorts the datasets in one dimen-
sion and scans the datasets synchronously; and 6) Nested-
Loop Join (NL) [5] that iterates over both spatial datasets
in a nested loop and compares all pairs of objects.

Despite many studies on spatial joins, an investigation is
missing that studies the importance of the joining data it-
self. Given two datasets, our empirical study shows that
when joining real and synthetic datasets, the data distribu-
tion and the order in which the datasets are joined (join
order) can impact the performance of the algorithms con-
sidered very substantially. Our objectives are thus two-fold.
First, we implement all the above algorithms in a unified
and efficient in-memory spatial join framework in C++ for
ease of comparison and consistent reporting of results. In
our framework, we apply implementation optimization and
modularity wherever possible. Second, we aim to study how
real versus synthetic data, data distribution, and join or-
der influence spatial join performance, and how the findings
suggest dirctions for designing robust, high-performance in-
memory spatial join algorithms [1, 6, 7, 8, 15].

2. ALGORITHMS & IMPLEMENTATION
In the following, we briefly discuss the 6 spatial join algo-

rithms we implemented in-memory. The Nested Loop (NL)
join [5] compares all pairs of objects from both datasets
exhaustively. The Plane-Sweep (PS) approach sorts the
datasets based on an arbitrary dimension and scans both
datasets synchronously. To perform PS, we employ a fast
parallel sort to efficiently sort all the objects on one dimen-
sion. However, the performance of PS suffers from objects
that are not near each other in the other dimensions. Despite
its deficiencies, the plane-sweep approach is still broadly
used for in-memory joins of the partitions resulting from
disk-based spatial joins.

Disk-based approaches first partition both datasets and
then join the resulting partitions in-memory via two different
approaches, multiple assignment and multiple matching.
Multiple Assignment: this strategy assigns each spatial
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(a) Uniform (b) Gaussian (c) Clustered

Figure 1: Synthetic datasets

object to all partitions it overlaps with. PBSM [10] is an
efficient multiple assignment approach that partitions the
entire space of both datasets (A & B) into cells using a
uniform grid. Then it joins the cells synchronously. SGrid
on the other hand, constructs a grid only for the first dataset
(A) and probes the intersecting cells in the constructed grid
for each object of the other dataset (B).
Multiple Matching: this strategy that assigns each spa-
tial object only to one of the partitions it overlaps with.
S3 [2] is a multiple matching approach that maintains a hi-
erarchy of L equi-width grids of increasing granularity. In
D dimensions, the grid on a particular level l has (2l)D grid
cells and assigns each object of both datasets to a grid cell
in the lowest level where it only overlaps one cell. Then
S3 joins a cell with its counterpart as well as with cells on
higher levels for all the cells.

The TOUCH algorithm consists of three steps: Tree con-
struction, assignment, and batch join. TOUCH first builds
an R-Tree from the objects of datasetA, i.e., TA. Then it as-
signs the objects of datasetB to the internal nodes of TA. Fi-
nally, the algorithm performs the required pairwise compar-
isons according to the assignment of the objects of datasetB
to TA in the batch join step.

3. SETUP AND PRESENTATION
Configuration: The experiments are executed on a Linux
Ubuntu 15.04 server equipped with 4 Intel Xeon E5-2650 v3
2.30GHz CPUs and 128GB RAM.
Data description: Our empirical study is done on two cat-
egories of datasets, namely real (i.e., do not follow any par-
ticular distribution) and synthetic. Each synthetic dataset
is generated with varying distributions of 128,000 cuboids.

The distributions are Uniform (Figure 1(a)) (denoted as
U), Gaussian (Figure 1(b)) (denoted as G), and Clustered
(Figure 1(c)) (denoted as C) in a universe with a range
of [-1000,1000] units per dimension. Figure 1 shows a 2D
projection of the distributions. Uniform randomly assigns
object centers in the bounded universe. Gaussian has a
mean in the center of universe (0,0,0) and a dispersion of
1000 units. Clustered contains 10 clusters. Objects are ran-
domly assigned to one of the cluster centers in the space,
and each cluster has a Gaussian distribution (σ = 200)
around the center of the cluster. Each dataset consists only
of cuboid objects. After centers of cuboids are distributed,
as explained above, each object size is randomly increased
uniformly and independently, i.e., the correlation between
dimensions is zero. We created 128 thousand objects with
average mean length of 10 units.

In addition, to generate the synthetic datasets, we take 10
random samples of 128,000 cylinders (termed R) from Brain
datasets (Axons and Dendrites) [9], which do not follow any
particular distribution.

To examine the impact of the join order and distribution,
we generate (or sample) 20 datasets for each distribution
(category). Then we divide the datasets for each distri-

bution into two groups A and B, each with 10 datasets of
128,000 objects. Finally, for each possible combination and
order of the datasets, we run all six algorithms and mea-
sure the total time. The total time consists of loading time,
processing time, and the time for maintaining a result. All
the reported total times are averaged over 5 runs under the
above-described configuration. In the figures, we distinguish
join order (dataset A or B) and the dataset distribution (R,
U , C, or G) in the legends. For instance RA 1 UB means
the left hand side dataset is a Real dataset and the right
hand side is a Uniform dataset.
Result presentation: We run all 6 algorithms, namely S3,
SGrid, TOUCH, PBSM, PS, and NL and report the results
in the next section. Since NL was substantially slower than
the other algorithms, with a total time of more than 5 hours,
with omit NL from the charts. For sake of clarity, we present
the results of running the remaining 5 algorithms in the
following forms: Since SGrid consistantly performs slower
than TOUCH and PBSM and faster than S3 and PS, we
present the results for SGrid in Table 1 and the results for
the other four algorithms in Figures 1 to 7; In these figures,
since TOUCH and PBSM are always faster than S3 and PS,
we create two groups (TOUCH and PBSM in one group, S3
and PS on the other group) and use different vertical axes
for each group.

4. RESULTS
Our results are summarized as follows:

• The performance of NL and PS is insensitive to the
join order.

• When one of the datasets follows a particular distribu-
tion or when joining two datasets of the same category,
the performance of SGrid is not affected by swapping
the datasets. Furthermore, when joining two datasets
of different categories, the performance of SGrid varies
very substantially when swapping the join order.

• The performance of S3, TOUCH, and PBSM changes
when swapping the join order and changing the dataset
category of the arguments. As a result, there is not sin-
gle winner among these algorithms. However, TOUCH
does outperform the algorithms in most cases, although
in few scenarios, TOUCH can be outperformed by
PBSM for some join orders and data distributions. For
instance, when joining R and U, the join order of join
is critical to the performance of TOUCH. In one order,
i.e., UB 1 RA, TOUCH outperforms PBSM while we
swap the order, i.e., to RA 1 UB , PBSM outperforms
TOUCH.

We proceed to provide detailed observations of each impact
separately and finally cover all the impacts together.

4.1 Join order (order)
We first observe the impact of swapping the order of the

datasets participating in a join, i.e., the join order. To ob-
serve this impact, we join different samples of the same cat-
egory of dataset, i.e. real or synthetic, while swapping the
join order. The join order has the least impact on PS, while
S3 is affected the most. While affected by the join order,
TOUCH outperforms all the other algorithms when joining
datasets of the same category and distribution.

In Table 1, rows with same dataset, i.e., A=B, tell that
SGrid is unaffected by the join order when keeping the dataset
category and distribution unchanged. The results of this set
of experiments while we join datasets of the same category
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Dataset Total time (s)
A B A 1 B B 1 A

Real Real 142.517 141.37
Uniform 16.799 48.449
Gaussian 1.906 2.740
Clustered 9.662 25.526

Uniform Uniform 171.782 171.911
Gaussian 3.579 3.746
Clustered 41.541 41.196

Gaussian Gaussian 3.245 3.243
Clustered 3.450 3.606

Clustered Clustered 53.706 53.684

Table 1: SGrid performance for varying datasets.

and distribution show that the join order does not affect
the relative performance of SGrid. The study thus offers ev-
idence that the join order does not matter when the category
and distribution of the datasets are fixed.

4.2 Joining real with synthetic datasets (cate-
gory)

Having observed the impact of changing the join order
of datasets of the same category and distribution, we pro-
ceed to observe how join order is influenced when we join
a real dataset with varying synthetic datasets. Thus, we
want to observe how the performance of the join algorithms
is affected when one dataset is not following a particular
distribution while the other dataset has a particular distri-
bution. Figures 2, 3, and 4 and Table 1 contain results of
joining Real (R) dataset with Uniform (U), Clustered (C)
and Gaussian (G) datasets, respectively. The performance
of all algorithms show a dependence the join order when
swapping the category of datasets. The algorithms are af-
fected to the extent that their relative performance changes
so that there is no clear winner.

TOUCH and PBSM, in Figures 2 and 4, exhibit an inter-
esting change in their relative performance, so that TOUCH
can outperform PBSM only when TOUCH constructs its hi-
erarchical data structure based on the uniform dataset for
U 1 R and based on the Real dataset for R 1 G. In
all other cases, PBSM outperforms TOUCH. This behav-
ior of TOUCH shows how this algorithm exploits the dis-
tribution of the objects. Indeed, TOUCH can outpeform
the other algorithms when its constructed tree based on
the two datasets is balanced, meaning that similar num-
bers of objects from both datasets occur in its tree nodes.
For instance, when joining Guassian and real datasets, the
real dataset can accommodate a balanced distribution of ob-
jects of both datasets in the tree constructed by TOUCH.
And when joining real and clustered datasets, none of the
datasets can yield a balanced tree because the datasets are
not mutually aligned in terms of the density of their objects’
distribution.

SGrid (Table 1 rows 2, 3, and 4) shows a substantial
change, about 3×, in performance when swapping the join
order. This indicates that all the algorithms, except the
quadratic comparison (NL), are influenced by join order
when dataset categories are different. Therefore, it is es-
sential to carefully select the join order when datasets are
not following a particular pattern of object distribution, e.g.,
when joining real datasets.

4.3 Joining synthetic datasets (distribution)
Finally, we put focus on joining synthetic datasets of dif-

ferent distributions. In other words, we join datasets that

TOUCH PBSM
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

To
ta

l t
im

e 
(s

)

RA UB UB RA

(a) R 1 U

S3 PS
0

200

400

600

800

1000

(b) U 1 R

Figure 2: Real (R) 1 Uniform (U) and vice versa.

TOUCH PBSM
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

To
ta

l t
im

e 
(s

)

RA CB CB RA

(a) R 1 C

S3 PS
0

100

200

300

400

500

600

700

800

900

(b) C 1 R

Figure 3: Real (R) 1 Clustered (C) and vice versa.

follow a particular distribution, namely U, G, and C, while
the pattern is different for each. Figures 5, 6, and 7 are
results of joining Uniform (U) and Clustered (C) datasets,
Uniform (U) and Gaussian (G) datasets, and Clustered (C)
and Gaussian (G) datasets, respectively. And rows 6, 7, and
9 in Table 1 show the performance of SGrid for this set of ex-
periments. All algorithms show less impact on the join order
when each dataset follows a distribution, in contrast to real
datasets with no particular distribution pattern. TOUCH
outperforms all the algorithms and it shows a larger change
of its performance for different join orders when none of the
datasets have a uniform distribution.

NL is always steadily slower than all the other 5 algo-
rithms, no matter what join order or data distribution we
use. For any two of our datasets, NL always requires close
to 5 hours to perform the join.

4.4 Overall comparison
The results in Table 1 suggest that when each of the

joining datasets follows a particular distribution, the perfor-
mance of SGrid is not affected when swapping the datasets,
i.e., constructing the grid based on the first dataset or the
second makes little difference. However, when joining a real
dataset with a synthetic dataset, the join order affects the
performance of SGrid. This behavior can be explained by
the number of cells that an object intersects with as well
as the number of objects in the intersecting cells, e.g., the
density of the cell.

All presented results suggest that the most challenging
distribution for all algorithms is that of the Real (R) dataset.
The reason is possibly the irregular density/distribution of
the objects all over the universe. However, TOUCH and
PBSM generally outperform all the other joins due to their
ability to handling varying densities.

Among all the algorithms considered, S3 is the most sen-
sitive to the join order, especially when none of the datasets
are neither uniform nor real. When both datasets are either
uniform or real, the density of objects is consistent with the
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Figure 5: Uniform (U) 1 Clustered (C) and vice versa.

region, meaning that similar regions of both datasets have
similar object densities. The sensitivity of S3 arises from
its dependency on its hierarchical model. Its hierarchy is
constructed for the two datasets independently. Therefore,
when the order of join changes, the algorithm is affected
substantially. In contrast to S3, NL and PS are algorithms
that are the least sensitive to the join order. The reasons are
that NL uses quadratic comparison to enumerate the search
space and that PS sweeps the space one dimension at a time.

From a practical point of view, TOUCH, SGrid, and PBSM
are generally faster than the other algorithms when joining
large datasets. SGrid is preferred when the datasets are
both real or synthetic with the same distribution. Next,
when the datasets are not both real or synthetic with the
same distribution, like real and clustered, PBSM is preferred
because TOUCH is sensitive to the join order. TOUCH is
the fastest when the datasets follow the same distribution.
The findings of this paper can help when designing practical
algorithms for multi-joins (e.g., (A 1 B) 1 C) and multiple
spatial joins (e.g., joining A, B, and C simultaneously). In
such algorithms, the order and distribution play even more
crucial roles than what we observed in these experiments.

This study suggests that without prior knowledge of the
datasets, there is no single winner among the spatial join
algorithms. Further, obtaining such knowledge is not al-
ways feasible or possible, due to the associated cost or the
real-time nature of the datasets, e.g. streaming, intermedi-
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Figure 7: Gaussian(G) 1 Clustered(C) and vice versa.

ate, or growing datasets. Therefore, designing a spatial join
algorithm that gradually adapts to the distribution of the
argument datasets during the processing and that is capa-
ble of changing the order of the joining datasets internally
are important for designing robust and scalable spatial join
algorithms.
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ABSTRACT
Despite the success of crowdsourcing, the question of ethics
has not yet been addressed in its entirety. Existing efforts
have studied fairness in worker compensation and in help-
ing requesters detect malevolent workers. In this paper, we
propose fairness axioms that generalize existing work and
pave the way to studying fairness for task assignment, task
completion, and worker compensation. Transparency on the
other hand, has been addressed with the development of
plug-ins and forums to track workers’ performance and rate
requesters. Similarly to fairness, we define transparency ax-
ioms and advocate the need to address it in a holistic manner
by providing declarative specifications. We also discuss how
fairness and transparency could be enforced and evaluated
in a crowdsourcing platform.

Keywords
Crowdsourcing, Fairness, Declarative Transparency

1. INTRODUCTION
The success of crowdsourcing is undeniable. Many tasks

ranging from image recognition to sentiment analysis, are
routinely deployed and completed by a pool of workers ready
to be solicited. It is therefore timely to start addressing fair-
ness and transparency in crowdsourcing, two key questions
that are of interest today in ethics.1 Existing work on fair-
ness has primarily focused on studying worker compensation
or on helping requesters identify malevolent workers [2, 17,
21, 20, 19]. For transparency, tools and plug-ins have been
developed to disclose computed information such as work-
ers’ performance and requesters’ ratings [3, 6, 9, 15]. In this
paper, we argue that a holistic approach to both fairness
and transparency is necessary because of the dependencies
between crowdsourcing processes. We define fairness and
transparency axioms that serve as a basis for our framework
and discuss implementation and evaluation.

1http://www.fatml.org/

c©2017, Copyright is with the authors. Published in Proc. 20th Inter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

Our first endeavor is to understand fair crowdsourcing.
Discrimination against individuals is generally defined ac-
cording to the attributes of those individuals [5]. For exam-
ple, Google’s advertising displays ads for high-income jobs
to men much more often than it does to women; and ads for
arrest records are most often associated to search queries
for common African-American names [18]. In crowdsourc-
ing, even if workers are assigned tasks fairly, the attributes
used in task assignment may not have been inferred fairly.
It is therefore crucial to characterize fairness in a holistic
fashion. We define a set of fairness axioms that capture and
generalize existing approaches. For example, we state that
in task assignment, two workers with the same qualifications
should have access to the same tasks. Similarly, comparable
tasks offered by two different requesters should be equally
visible to workers. In task completion, fairness to workers
means letting them complete tasks without interruption.

Our second question is about transparent crowdsourcing.
Intuitively, a crowdsourcing platform that provides better
transparency would generate less frustration among workers
and see better worker retention. This realization is not new,
and several proposals have addressed transparency in crowd-
sourcing from requester and platform perspectives. Requester
transparency reveals details such as recruitment criteria, the
conditions under which work may be rejected, and the time
before workers’ contributions are approved. Platform trans-
parency, e.g., providing feedback to workers on their per-
formance, has also been addressed [12]. Several tools and
forums have been developed to disclose information to work-
ers. For example, Turkopticon [9] provides a plug-in to AMT
that helps workers determine which HITs do not pay fairly
and which requesters have been reviewed by other work-
ers. Turker Nation 2 is an online forum that lets workers
exchange information about the latest available HITs and
their opinion on requesters. CrowdFlower 3 displays a panel
with the worker’s estimated accuracy so far. In this paper,
we advocate that a single framework is needed to express and
enforce transparency. We believe it is essential to provide
declarative languages to help requesters and platform devel-
opers express what they want to make transparent. Such a
solution would also facilitate sharing and comparing trans-
parency choices across platforms.

The question of how to validate fairness and transparency
in crowdsourcing also merits attention. A common approach
is to design appropriate user studies that gather the expe-
rience of workers and requesters with specific implementa-

2http://www.turkernation.com/
3https://www.crowdflower.com/
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tions of fairness and transparency. Such an approach was
used in [12] to validate that feedback contributes to increas-
ing workers’ motivation. In this paper, we wish to define
a validation protocol based on objective measures and pro-
pose to quantify measures such as contributions quality for
fairness and worker retention for transparency.

We believe that our proposal paves the way for checking
fairness and transparency in existing crowdsourcing systems
and also for enforcing them by design in newly developed
systems. Section 2 contains a review of fairness and trans-
parency in crowdsourcing and other related areas. Section 3
illustrates the need for fairness and transparency using key
use cases, and formalizes our proposal. Section 4 discusses
validation.

2. RELATED WORK

2.1 Fairness
Fairness in crowdsourcing has mainly been considered in

providing fair wages and managing malicious workers. In
[2] and [17], wage discrimination is viewed as the wrongful
rejection of work, unfair compensation amount, or delayed
payment. In [21], a quality-based reward scheme provides
compensation that depends on the quality of a worker’s con-
tribution. Vuurens et al. proposed measures to detect and
counter malicious users since they observed that nearly 40%
of the answers they received from AMT were from malicious
users [20].

Studies that address malicious workers through task as-
signment and worker reputation focus on the quality, relia-
bility, and total cost of worker contributions. Examples of
existing task assignment schemes include offering low-cost,
reliable answers [7, 11], and accounting for worker skills to
maximize the requester’s total gain from the completed work
[8]. These schemes are requester-centric and do not guaran-
tee fair task assignment to workers.

Overall, we observed that while some work have developed
ways of enforcing fair wages and helping requesters detect
malicious workers, no holistic approach has been developed
to address fairness as a whole for all crowdsourcing pro-
cesses.

2.2 Transparency
Bederson et al. claimed that higher transparency in work-

ing conditions such as hourly wage, or in requester expecta-
tions such as work quality metrics, lead to fairness [2]. They
asserted the need for requester and platform transparencies
to address discrimination but did not tackle its systematic
implementation.

Requester transparency has been shown to have positive
effects on worker engagement. Studies show that providing
workers with information about the requester leads to higher
engagement and more effort in task completion [16]. More-
over, providing workers with information about the crowd-
sourcing workflow and helping them feel part of a group,
result in more contributions and higher accuracy [13].

Different initiatives implement transparency in crowdsourc-
ing platforms through plug-ins. Turkopticon [9] is a plu-
gin for AMT that lets workers review tasks and requesters.
Crowd-Workers [3] and Turkbench [6] provide expected hourly
wages when workers browse tasks. The MobileWorks plat-
form [15] facilitates worker-to-worker communication and
assigns manager roles to some workers, allowing workers to

monitor each other and benefit from each other’s experience,
which results in higher quality contributions.

Transparency for workers comes from worker initiatives
and communities mainly through forums such as Turker Na-
tion and Mturk Forum4 where workers share information
about tasks, requesters and tools to enhance their experi-
ence. These tools are often worker-made scripts that dis-
close information hidden by the platform such as the time
until automatic approval of a submission on AMT.

In summary, workers strive for transparency as it is of-
ten fragmented and external to platforms. In this paper, we
advocate a systematic way of expressing and enforcing trans-
parency in crowdsourcing platforms through a formalization
of fairness and transparency axioms.

3. PROPOSAL
In this section, we first discuss scenarios where discrimi-

nation and opacity can hinder workers’ and requesters’ ex-
perience. We then formalize our framework and discuss how
we can enforce fairness and transparency in crowdsourcing
systems.

3.1 Scenarios

3.1.1 Discrimination

In Task Assignment. Task assignment, the process through
which workers find tasks to complete, is central to crowd-
sourcing. In platforms such as AMT and CrowdFlower, re-
questers post tasks, and qualified workers choose the ones
they like. This simple task assignment mechanism could be
characterized as fair because workers have access to the same
set of tasks.

Aside from self-appointment, many task assignment al-
gorithms have been designed to optimize a particular ob-
jective. However, these algorithms can be discriminatory
[14]. For instance, requester-centric task assignment allo-
cates tasks to workers so as to maximize the total gain of
the requester. This could be discriminatory to workers. On
the other hand, a worker-centric assignment that allocates
tasks based on workers’ preferences is more likely to be fair
to workers, by favoring their expected compensation, but
may be unfavorable to requesters.

In Task Completion. In task completion, workers and re-
questers have different goals. Requesters aim to get enough
good results while workers’ objectives range from getting
paid to improving their skills, spending their time wisely,
or signaling their presence and achievements to others [12].
These goals may be advantageous to one but unfair to the
other.

For example, in survey tasks, requesters usually publish
more HITs than necessary to get a good number of re-
sponses. There are cases when a requester cancels tasks
when she gets the target number of acceptable responses.
Requesters do so to reduce their waiting time and avoid pay-
ing more than needed. However, this would be unfair to a
worker who has partially completed a task but is not paid for
her efforts. A requester may also experience discrimination
during task completion in the case of malevolent workers.

4http://www.mturkforum.com/
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In Worker Compensation. Discriminatory compensation
has been identified as one of the major problems for crowd
workers [2, 17]. For instance, in AMT, a requester may
reject valid work and not pay the worker. In some other
cases, a requester promises to provide a bonus when a worker
completes a series of tasks but does not do so in the end.
In collaborative tasks, a worker may contribute more than
another and still receive the same amount of payment.

3.1.2 Opacity

Requester Opacity. In Turker Nation, workers often com-
plain about requesters who reject their contribution without
providing feedback. For example, a requester who posts a
text summarization task may not publish how a worker’s
contribution will be evaluated. This requester opacity does
not only negatively affect workers’ experiences but also af-
fects other crowdsourcing processes. If a contribution is re-
jected, it is reflected in the worker’s history and statistics
thus it may limit future task assignment opportunities. If
a worker is provided means to post a review of a requester,
this may encourage requesters to be more transparent.

Platform Opacity. Since a platform facilitates the entire
crowdsourcing process, it must provide valuable information
to help requesters and workers achieve their goals [2]. For re-
questers, it is important to see worker statistics and progress
to help them monitor tasks. For workers, it is beneficial to
have access to various information that could help them se-
lect and complete tasks such as requester reviews and rat-
ings, payment schedules, and estimated worker performance
in comparison with other workers. Currently, CrowdFlower
shows ratings per task in its task browsing interface and
the Turkopticon plug-in shows requester ratings in AMT [9].
Nevertheless, there is currently no systematic way for plat-
form developers and for requesters to specify which informa-
tion should be made transparent.

3.2 Fairness and Transparency Axioms
In this section, we attempt to define and formalize fair-

ness and transparency axioms. Our proposal does not aim
to be exhaustive. Rather, it provides a framework to de-
fine and extend a series of axioms that govern checking if a
crowdsourcing system abides by fairness and transparency
goals, in a principled fashion, or for designing a fair and
transparent platform from scratch.

We consider a set of tasks T = {t1, . . . , tn}, a set of
workers W = {w1, . . . , wp} and a set of skill keywords S =
{s1, . . . , sm}.

Tasks. A task t is a tuple (idt, idr, St, dt) where idt is a
unique task identifier, idr a unique requester identifier, and
St is a vector 〈t(s1), t(s2), . . . , t(sm)〉 where each t(sj) is a
Boolean value that denotes the requirement or not of having
skill sj to qualify for task t. A reward dt is given to a
worker who completes t. To capture a variety of tasks, skill
keywords may be interpreted as expected workers’ interests
or qualifications.

Workers. A worker w is a tuple (idw, Aw, Cw, Sw) where
idw is the worker’s unique id, Aw is a set of self-declared
worker attributes such as demographics and location, Cw

is a set of computed worker attributes such as a worker’s

acceptance ratio, and Sw is a skill vector 〈w(s1), . . . , w(sm)〉
where each w(sj) is a Boolean value capturing the interest
of w in the skill keyword sj .

3.2.1 Fairness
We define fairness axioms for task assignment, worker

compensation and task completion.

Axiom 1 (Worker fairness in task assignment).
Given two different workers wi and wj, if Awi is similar to
Awj and Cwi is similar to Cwj , and Swi is similar to Swj ,
then wi and wj should have access to the same tasks.

Similarity can be platform-dependent and ranges from
perfect equality to threshold-based similarity.

Axiom 2 (Requester fairness in task assignment).
Given two tasks ti and tj posted by different requesters idri
and idrj , if the required skills for the two tasks Sti and Stj

are similar, and the two tasks offer comparable rewards dti
and dtj , then ti and tj should be shown to the same set of
workers.

Skill similarity can be computed using different measures
such as cosine similarity.

Axiom 3 (Fairness in worker compensation).
Given two distinct workers wi and wj who contributed to the
same task t, if their contributions are similar, they should
receive the same reward dt.

Different measures could be used to compute similarity
of contributions depending on the nature of those contribu-
tions, e.g., for textual contributions, n-grams could be used
[4], for ranked lists, using measures such as Discounted Cu-
mulative Gain [10] would be more appropriate.

Axiom 4 (Requester fairness in task completion).
Requesters must be able to detect workers behaving mali-
ciously during task completion.

Axiom 5 (Worker fairness in task completion).
A worker who started completing a task should not be inter-
rupted.

3.2.2 Transparency
It is believed that limiting worker and requester anonymity

may lead to fairer labor practices [2]. Therefore, letting
workers and requesters reveal information about themselves,
ranging from their true identity, to historical worker perfor-
mance, for example, may help raise everyone’s trust in the
platform. Transparency axioms govern what requesters and
platforms should make available to workers in order to en-
sure their fair treatment.

Axiom 6 (Requester transparency).
A Requester must make available requester-dependent work-
ing conditions such as hourly wage and time between sub-
mission of work and payment, and task-dependent working
conditions such as recruitment criteria and rejection crite-
ria.

Axiom 7 (Platform transparency).
The platform must disclose, for each worker w, computed
attributes Cw such as performance and acceptance ratio.
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3.3 Implementation
We discuss our preliminary thoughts on how fairness and

transparency could be implemented and enforced.

3.3.1 Fairness
Our axioms form a framework to check how fair an ex-

isting crowdsourcing system is and also develop guidelines
for designing fair crowdsourcing processes from scratch. Us-
ing the axioms discussed in Section 3.2, we intend to de-
velop fairness check benchmarks and algorithms for existing
crowdsourcing systems.

Particular attention needs to be given to checking fair-
ness due to the inter-dependencies between crowdsourcing
processes. For instance, an algorithm that checks worker
fairness in task assignment must check the fairness of deriv-
ing computed attributes such as worker’s performance.

3.3.2 Transparency
We advocate the use of a declarative high-level language to

specify fairness rules. Such rules can be used by requesters
to disclose task requirements, recruitment criteria, evalua-
tion scheme, and payment schedule. Platform designers can
use these rules to disclose relevant information that they
want to show both workers and requesters. Rules can also
be translated into human-readable descriptions for workers’
consumption. Last but not least, the declarative nature
of those rules will allow easy comparison across platforms.
Guiding principles for such a language can be found in works
on privacy policy declaration such as in [1].

4. DISCUSSION

4.1 Evaluation
When measuring fairness and transparency, objective mea-

sures such as quality of worker contribution and worker re-
tention, can be used in controlled experiments to quantify
the level of fairness and transparency of a system as well as
its effectiveness.

4.2 Research agenda
Regarding fairness, our immediate agenda is to review ex-

isting algorithms for task assignment, strategies for worker
compensation, and approaches for task completion, to assess
their discriminatory power.

Regarding transparency, we plan to run a user study to
validate what kind of transparency choices workers are most
sensitive to. Meanwhile, we started designing a declarative
language in which transparency rules can be expressed.
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ABSTRACT
Regular path queries (RPQs) have quickly become a staple
to explore graph databases. SPARQL 1.1 includes prop-
erty paths, and so now encompasses RPQs as a fragment.
Despite the extreme utility of RPQs, it can be exceedingly
difficult for even experts to formulate such queries. It is
next to impossible for non-experts to formulate such path
queries. As such, several visual query systems (VQSs) have
been proposed which simplify the task of constructing path
queries by directly manipulating visual objects representing
the domain elements. The queries generated by VQSs may,
however, have many commonalities that can be exploited
to optimize globally. We introduce Tasweet, a framework
for optimizing “disjunctive” path queries, which detects the
commonalities among the queries to find a globally opti-
mized execution plan over the plan spaces of the constituent
RPQs. Our results show savings in edge-walks / time-to-
completion of 59%.

1. INTRODUCTION
Military intelligence consists of collecting, analyzing, and

extracting intelligence on situations, events, and entities (e.g.,
people, places, and organizations) from different types of
data (e.g., text, video, picture, and signals) produced by
a variety of sources (e.g., human, electronic, open source,
and sensors) [2]. The goal of the intelligence is to label sus-
pected entities, relationships, and patterns of events. With
the emergence of social networks and cyber warfare, graph
database systems, especially with visual query facilities, have
become a popular choice for military intelligence, as ev-
idenced by the success of products such as Gotham by
Palentir1 and Linkurious by Neo4j.2

1https://www.palantir.com/palantir-gotham/platform/
2https://neo4j.com/developer/guide-data-visualization/

c©2017, Copyright is with the Crown and authors. Published in Proc.
20th International Conference on Extending Database Technology (EDBT),
March 21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

It has become common methodology to search for pairs
of nodes such that each pair is connected by a path—a se-
quence of labeled edges—matching a path expression ex-
pressed via a path query. For example, an analyst working
on a money laundering case might be searching financial
transactions data to find individuals who own companies
that have transferred money to businesses with investments
in off-shore companies, or individuals who work at said com-
panies. Thus, the analyst is looking for potential links from
individuals to off-shore companies matching those path spec-
ifications, as illustrated in Figure 1.

In path queries, one can specify the path of interest via
a regular expression, instead of needing to specify the path
explicitly. This is known as a regular path query (RPQ).
Given the usefulness of path queries, SPARQL 1.1 now sup-
ports them via property paths. While highly expressive, for-
mulating such queries can be exceedingly difficult, even for
experts. As such, visual query systems have been proposed
(OptiqueVQS is one such system [7]) to formulate queries
which are more user-friendly, intuitive, and less expertise-
demanding. Queries generated by VQSs may contain similar
sub-queries, and so can be further optimized. We address
one such optimization problem: optimizing disjunctive reg-
ular path queries (dRPQs); that is, a disjunction of a set of
regular path queries (RPQs). As the answer set of a dRPQ
is the union of the answer sets of the individual RPQs, one
way to evaluate it is to evaluate the RPQs independently.
One can often do better, however, by sharing evaluation of
commonalities across the RPQs. Thus, the problem is to
optimize multiple regular path queries in graph databases.

In a recent work, Yakovets et al. [11] demonstrate that
there is a rich plan space for RPQs, and that evaluation cost
can differ by orders of magnitude from one plan to another.
Their Waveguide framework is able to find the optimal ex-
ecution plan with respect to cost-based estimation over this
plan space for a given RPQ. Of course for us, when evalu-
ating a dRPQ, choosing the “locally” optimal plans for each
of the RPQs may not be globally optimal, given commonal-
ities. One might benefit then by choosing alternative plans
that take advantage of the commonalities. We introduce
Tasweet, a methodology and prototype for this. Tasweet
detects the commonalities over the RPQs (of a dRPQ), then
uses Waveguide with knowledge of the commonalities to
find an improved global execution plan (by estimated cost)
over the plan spaces of the constituent RPQs.
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Figure 1: A graph example in military intelligence with two queries Q1 and Q2 and their two automaton plans.

2. METHODOLOGY
A regular path query (RPQ) [4] over a graph G is a triple
〈x, reg, y〉 where x and y are free variables over the nodes
N of G, and reg is a regular expression. An answer of an
RPQ is a node-pair 〈s, t〉 (with s, t ∈ N) such that there is
a sequence of edge labels a0a1 · · · ak in G, called a path p,
between s and t, and the path p matches the given reg. Thus,
the answer set of an RPQ contains all its answers. The
RDF data model and SPARQL query language represent
these concepts. With the introduction of property paths in
SPARQL 1.1, the query language contains RPQs. Herein,
we use SPARQL syntax in explanations.

2.1 Evaluation of RPQs
An initial approach to evaluating RPQs was introduced

in G+ [4]. There, a product finite automaton (FA) is con-
structed that can be used to navigate and match paths to the
regular expression simultaneously. (This approach is nick-
named the FA approach in [11].) More recently, there has
been renewed interest in how to evaluate RPQs efficiently
in SPARQL over RDF stores [1]. Much focus has been on
expanding the relational algebra to leverage relational query
optimization and evaluation. It suffices to add an additional
operator for transitive closure (called “α”). (This approach
is nicknamed as α-RA in [11].) Virtuoso is a relational sys-
tem that has been extended in this way to support SPARQL
and RDF.

The Waveguide approach generalizes over both the FA
and α-RA approaches to provide a very rich plan space for
RPQs [11]. While the plan space is exponential (with re-
spect to the length of the regular expression), Waveguide
offers a cost-based optimization via polynomial-time enu-
meration. In Waveguide, path search is conducted simul-
taneously while recognizing the path expressions. Its input is
a graph database G and a waveplan (WP) PQ which guides
a number of search wavefronts that explore the graph. A
wavefront is a part of the plan that evaluates breadth-first
during the evaluation. Here, the graph exploration is driven

by an iterative search strategy which is inspired by the semi-
näıve bottom-up procedure used in the evaluation of linear
recursive expressions that is based on a fixpoint. The key
concept is to expand the search wavefronts continuously un-
til there are no new answers; i.e., we reach a fixpoint. Any
search wavefront is guided by an automaton in the plan,
based on a finite state machine FA.

Consider query plans for Q1, 〈x, own/transfer/invest, y〉,
as in Figure 1. Plan A captures the notion of “pipelin-
ing”. It employs a WP corresponding to a single FA that
directly encodes a recognizer for the query’s regular expres-
sion. Whereas Plan B captures the notion of “materializa-
tion”. It employs a WP that consists of two subplan au-
tomata: the first subplan (SP) is used as a view for transi-
tion over states in the second plan. Note that in the second
subplan automaton, we used a prepend transition ((·)own)
over the previous state. The cost for Plan A is 9 edge-walks
whereas for Plan B it is 11 edge-walks. In addition to these
two plans, there is also a reverse“pipelining”plan (not shown
in Figure 1) which is evaluated “backwards”, retrieving all
pairs connected by edge label invest (across such labeled
edges in reverse), then prepending with those connected by
transfer, and finally by own, with the plan cost of 12.

The Waveguide prototype implements this guided graph
search as procedural SQL on top of PostgreSQL. However,
any type of backend physical graph database model (e.g.,
triple store or adjacency lists) could be used instead.

2.2 Evaluation of Disjunctive RPQs
Instead of evaluating each RPQ individually, one may ben-

efit by sharing the results of common sub-expressions. Con-
sider the two queries as in Figure 1: Q1, 〈x, own/transfer/-
invest, y〉; and Q2, 〈x, work at/transfer/invest, y〉. The (lo-
cally) optimal automaton plans (“Plan A”) do not share any
common subplan for Q1 and Q2. If we chose sub-optimal
automaton plans (“Plan B”), however, then we can share a
common sub-plan automaton (transfer/invest) between the
evaluations of Q1 and Q2.
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Figure 2: Tasweet Framework

3. THE FRAMEWORK
Our Tasweet framework, shown in Figure 2, takes a

dRPQD = Q1∨...∨Qn that consists of n RPQs as input over
a graph G. Its evaluation is a two-step process: identifying
common sub-expressions among queries; and then searching
for a global optimal plan such that its cost is less than the
total cost of the locally optimal plans of the corresponding
RPQs. Figure 2 shows the overall Tasweet architecture.

3.1 Detecting Commonalities
The problem of finding common sub-automata resembles

finding the maximum common subgraphs in graphs. The
problem is more difficult here, however, as we need to find
the largest common subgraphs (sub-automata) for multiple
graphs (FAs). We begin our discussion by converting the FA
equivalence problem into a graph isomorphism problem. We
then extend the concept to find the equivalent sub-automata
in FAs using sub-graph isomorphism techniques.

3.1.1 Finite Automata Isomorphism
Deterministic Finite Automata (DFA). A determin-

istic finite automaton M is a 5-tuple language acceptor ma-
chine, (S,

∑
, δ, q0, F ) where it consists of a set of states (S),

a set of input symbols called the alphabet (
∑

) and a tran-
sition function (δ : S ×

∑
→ S). There is one state that is

marked as an initial state (q0 ∈ S) and also there is a set of
states marked as accept states (F ⊆ S). Two DFAs are said
to be equivalent if they accept the same language.
Minimum Automata. A DFA M is minimal if there is

no other DFA N that is equivalent to M with fewer states
than M . A DFA M is minimal if (i) all its states can be
reached from the initial state q0 and (ii) no two equiva-
lent states exist. (Two states q1 and q2 are equivalent if
for all x ∈

∑∗, δ(q1, x) ∈ F iff δ(q2, x) ∈ F .) All mini-
mal DFAs for a language L are isomorphic; i.e., they have
identical transitions with the same number of states (by the
Myhill-Nerode Theorem [5]). By corollary, when joining two
minimum DFAs, the structure of the new DFA remains the
same. Therefore, we can use the techniques of detecting the
maximum common edge subgraph (MCES) to identify the
common sub-automata among minimum DFAs; hence, the
commonalities among RPQs.

3.1.2 Maximum Common Subautomaton
Most solutions of MCES problem only consider non-labeled

edges and nodes in undirected graphs. We adopt the solution
from [6] to detect common sub-automata. This has three
steps: transforming labeled-graphs into the equivalent line-
graphs; producing a product graph from the line-graphs; and
detecting the maximal cliques in the product graph, which
correspond to MCESs (therefore, common sub-automata).

Constructing Linegraphs. The linegraph L(G) of a
graph G is a directed graph where each edge (with label)
in original G becomes a node (with the same edge label) in
L(G). Two nodes in L(G) are connected with an edge if their
corresponding edges in original G share a common node. In
the original G, this common node can be an incoming or
an outgoing node for two connected edges. That is, it can
have four different possibilities depending on the directions
of connected edges: source-destination, destination-source,
source-source, and destination-destination. Therefore, dur-
ing our linegraph construction, we store the directions of
edges of the common node as edge labels in L(G). Before
the construction of linegraphs, we removed all the self-loops
in the automaton by creating additional transitions with an
additional state. This process is necessary for the next step,
clique detection. (Most algorithms for detecting cliques only
work with non self-loop graphs.)

Constructing Product Graph. The product graph
L(Gp) of two linegraphs, L(G1) and L(G2), is constructed as
follows [8]. The nodes Np in L(Gp) are node-pairs defined in
the Cartesian product of N1 of L(G1) and N2 of L(G2). In
constructing Np, we only consider node-pairs that have the
same node label of the corresponding linegraphs L(G1) and
L(G2). The two node-pairs in Np have an edge in L(Gp)
if either (i) the same edges exist between the correspond-
ing nodes in the original linegraphs (called a strong connec-
tion), or (ii) no edges exist between the corresponding nodes
(called a weak connection). To reduce the size of the product
graph, we remove all nodes with non-common labels among
the linegraphs and then build the product graph recursively.

Maximal Cliques in Product Graph. We used the
Bron-Kerbosch Algorithm [3] to find all the maximal cliques
in the product graph. A maximal clique with a tree that
covers strong connections in the product graph corresponds
to a maximal common sub-automaton within a group of FAs.

Query Rewriting. A regular expression reg can be rec-
ognized by several FAs. For example, although the two
FAs for the two regular expressions reg1 = (xy)∗xz and
reg2 = x(yx)∗z are same but the plan space may differ,
depending on the chosen FA. In this step, we rewrite FAs
based on their shared common sub-automata.

3.2 Global Optimization
In Waveguide, finding the optimal plan for an RPQ is

done by dynamic programming, analogous to join enumera-
tion in System R. It works bottom-up to construct a tree
which represents the plan. At each level, an optimal plan
is selected according to a cost objective; for here, the es-
timated number of edge-walks. This is calculated based
on statistics of the graph (e.g., n-gram distributions of the
edge labels). In Tasweet, after detecting the common sub-
automata, the locally optimal plans for each of them are
found by Waveguide. These plans for the common sub-
automata then serve as “black-box” views during a second
pass with Waveguide to plan each RPQ. The cost of each
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black-box shared plan is treated as its actual estimated cost
divided by the number of queries which share that common
sub-automaton. While this is a simplistic, greedy approach,
it suffices well for the proof of concept for our methodology.
(Immediate future work is to improve this integration of the
Tasweet frontend and the Waveguide backend to provide
guarantees on the global optimality.)

4. RESULTS & DISCUSSIONS
We provide a preliminary benchmark of our Tasweet

framework by considering the optimization of a dRPQ D
which models a typical military intelligence workload: D
disjoins seven realistic, related RPQs—shown in Table 1—
over the encyclopedic dataset YAGO2s [9].

Q

1 ?p isMarriedTo/livesIn/isLocatedIn+/dealsWith+ Argentina
2 ?p hasChild/livesIn/isLocatedIn+/dealsWith+ Japan
3 ?p influences/livesIn/isLocatedIn+/dealsWith+ Sweden
4 ?p livesIn/isLocatedIn+/dealsWith+ United States
5 ?p hasSuccessor/livesIn/isLocatedIn+/dealsWith+ India
6 ?p hasPredecessor/livesIn/isLocatedIn+/dealsWith+ Germany
7 ?p hasAcademicAdvisor/livesIn/isLocatedIn+/dealsWith+ Netherlands

Table 1: Queries used in a military-intelligence dRPQ D.

Query D finds people-country pairs such that the people
related to locations or organizations which have connections
with given countries. Tasweet correctly identified a shared
sub-plan across all the RPQs in D, “livesIn/isLocatedIn+/-
dealsWith+”. Table 2 shows the difference in the number of
edge walks between executing plans in isolation by Wave-
guide, and as a dRPQ by Tasweet. (Note that fewer edge
walks performed result in proportionally faster execution.)

Q Tasweet WaveGuide ∆

1 260 39827 +39373
2 2288 24525 +22178
3 226 33397 +33046
4 4563 269495 +264932
5 2258 40924 +38379
6 4572 42261 +37610
7 4608 7185 +3827
Shared 269895 - -269895
Total 288670 457614 +169450 (+59%)

Table 2: Deltas in number of edge walks.

None of the (locally) optimal plans for the RPQs of D
evaluate the shared expression (as a sub-plan). Thus, its
evaluation is extra work. (This is Shared in Table 2.) But
as its materialization can be used by each of the RPQs, it
significantly speeds up evaluation of D overall. Execution of
the locally optimal plans cost 59% more edge walks over the
execution over the globally optimal plans that materialize
and share their common sub-expression. This is excellent
proof of concept for our methodology.

For future work, we have clear objectives. First is to
develop more robust, efficient means for global optimiza-
tion. Our second objective is to extend Tasweet to cluster
RPQs that arrive together in an application to maximize the
commonalities per group. This project is a small step in a
grander project to optimize well graph queries. Disjunctive
RPQ are a logical step between single RPQs and conjunctive
RPQs (cRPQs). Thus, our third objective is to extend the
Tasweet / Waveguide framework for optimizing cRPQs.

5. CONCLUSIONS
We have presented a proof of concept to show that by ex-

ploiting commonalities across RPQs which are meant to be
evaluated “in batch” with their answer sets to be unioned—
thus, a disjunction of RPQs (a dRPQ)—that their eval-
uation can be globally optimized significantly beyond lo-
cally optimized evaluation of each independently. To do
this is challenging. First, the commonalities must be effi-
ciently found. We have developed how to do this, which
we overviewed above. Second is how to push down reason-
ing about them into the cost-based optimizer (e.g., Wave-
guide). Our initial experimentation demonstrated a signif-
icant improvement of 59%.
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ABSTRACT
In Relational Algebra, the operator Division (÷) is an intu-
itive tool used to write queries with the concept of “for all”,
and thus, it is constantly required in real applications. How-
ever, the division does not support many of the needs com-
mon to modern applications, particularly those that involve
complex data analysis, such as processing images, audio
fingerprints, and many other “non-traditional” data types.
The main issue is intrinsic comparisons of attribute values,
which, by the very definition, are always performed by iden-
tity (=) in the division, while complex data must be com-
pared by similarity. Recent works focus on supporting simi-
larity comparison in relational operators, but our work is the
first one to treat the division. This paper presents the new
Similarity-aware Division (÷̂) operator. Our novel oper-
ator is naturally well suited to answer queries with an idea of
“candidate elements and exigencies”to be performed on com-
plex data from real applications of high impact. For exam-
ple, it can support agriculture, as we demonstrate through
a case study in this paper.

CCS Concepts
•Information systems → Query operators; •Theory
of computation → Database query processing and
optimization; •Applied computing → Agriculture;

Keywords
Relational Division; Similarity Comparison; Complex Data

1. INTRODUCTION
The Relational Algebra [3] defines a number of operators

to express queries on relations.The Division (÷) has an im-
portant role in this context because it is the simplest and
most intuitive way to represent queries with the idea of “for
all”, besides being the only algebraic operator that directly
corresponds to the Universal Quantification (∀) from the
Relational Calculus [3]. As a consequence, the division is

c©2017, Copyright is with the authors. Published in Proc. 20th Inter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

required in queries that are commonly performed by real
applications. For example, it answers the queries as follows:
(a) “What products have all requirements of the industrial
quality control?”, (b) “What bank clients paid all bills of
their loans?”, (c) “What cities have all the requirements to
produce a given type of crop?”. Unfortunately, the division
is restricted to work with traditional data only.

In this paper, we identify severe limitations on the usabil-
ity of the division to “non-traditional” data types that are
commonly used in modern applications. Today, many real
data sets include, besides the traditional numeric values and
small texts, more complex data objects such as images, au-
dio, videos, time series, long texts, fingerprints, and many
others [8, 6]. One central distinction between traditional
and complex data is that the latter must be compared by
similarity, since comparisons by identity are in most cases
senseless or unfeasible for data of a more complex nature.

Let us use the query of selecting cities well-suited to pro-
duce a given type of crop to exemplify the limitations of the
division. Figure 1 illustrates a toy dataset in which the con-
cept of division is required, but the existing operator cannot
handle. Relation CityRegions describes three cities, i.e., the
candidates to produce the crop, each one represented by a
set of satellite images taken from regions of the city. For
example, the city of Campinas contains regions with bare
soil, urban areas, silos and vegetation. Relation Require-

ments describes the needs to produce a given type of crop.
In this particular case, we assume that bare soil, water, si-
los and urban areas are required. The result of dividing
CityRegions by Requirements is relation Cities. It con-
tains the list of cities considered appropriate for the crop,
that is, those cities that have an image similar to each im-
age in Requirements. In this particular case, only the city
of S~ao Carlos satisfies all requirements.

Many researchers have been proposing strategies to sup-
port similarity comparison in Relational Database Systems
[2], commonly by extending Relational Operators. For ex-
ample, recent works focus on the Join [5], Selection [4],
Grouping [7] and Union [1]. However, to the best of our
knowledge, no one focuses on the Division. Here, we tackle
the problem by presenting the new Similarity-aware Di-
vision (÷̂) operator. Our main contributions are:

1. Operator Design and Usability – we present the
first division operator that is well suited to answer
queries with an idea of “candidate elements and exi-
gencies” to be performed on complex data from real
applications.

2. Formal Definition and Algorithm – we formally
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S~ao Carlos
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S~ao Carlos

Araraquara
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(a) CityRegions

÷̂

Region

(b) Require-
ments

=
City

S~ao Carlos

(c) Cities

Figure 1: Example of the similarity-aware division used to
spot cities suited to produce a crops by analyzing images.

TG1

TG2

TG3

*

*

*example of similar (=̂) tiles of water
extracted from remote sensing images

defined the new operator, and carefully designed a fast
and scalable algorithm for it;

3. Experiments – we validate our proposals by ana-
lyzing remote sensing images to support agriculture,
following our motivational query with cities and crops.
We also performed experiments to show that our algo-
rithm is fast and scalable.

2. RELATIONAL DIVISION
The relational division is expressed by T1 [L1 ÷ L2] T2 =

TR. Relations, T1, T2 and TR refer to the dividend, the
divisor and the quotient, respectively. L1 and L2 are lists
of attributes from T1 and T2, in that order. Both lists must
have the same number of attributes, and each attribute in
L1 must be union-compatible with its counterpart in L2.
The quotient relation TR has all the attributes of T1 except
for those ones listed in L1. That is, the schema of TR is
given by the relative complement L1 of L1 with respect to
Sch(T1), i.e., Sch(TR) = L1 = Sch(T1)− L1.

Remember that the quotient in the arithmetic operator
of division for integer numbers is the largest integer that,
multiplied by the divisor, defines a value smaller than or
equal to the dividend, i.e., quotient ∗ divisor ≤ dividend.
The remainder is the difference between the dividend and
the result of multiplying the quotient by the divisor, i.e.,
dividend − quotient ∗ divisor. The relational division is
defined in a very similar manner: the quotient relation TR is
the subset of π( L1 ) (T1) with the largest possible cardinality,

such that TR × T2 ⊆ T1. The remainder relation is given by
T1 − TR × T2.

3. THE SIMILARITY-AWARE DIVISION
To include comparison by similarity in the Relational Di-

vision, we must cover all cases of identity comparisons that
are performed intrinsically by the operator. The first case
consists in altering the operator to combine the tuples of T1

with similar values in the attributes of L1 to form a possible
candidate that might be in the result set. The second case
lies in relaxing the validation of the requirements by consid-
ering as satisfied those requirements in T2 with values that
are similar to their counterparts in T1. For the first compar-
ison case, consider again the example of selecting cities well-
suited to produce a given crop using remote sensing images.
One possible approach for this query is shown in Figure 2a.
In this case, the images of regions must be grouped by sim-
ilarity of their latitude and longitude coordinates in order
to form candidate cities for evaluation and validation of the
given crop requirements. However, a single region could be
shared by two different cities. Thus, this tuple containing
the image might be assigned to the group of city A, of city B,
of both or, even, of none of them. The second comparison
case is shown in Figure 2, where, given the image represent-
ing a crop production requirement, its satisfaction should be
evaluated through comparison by similarity of the images of
regions from the cities.

(a) Example of a region
shared by two different
cities.

(b) Image repre-
senting a region
of the city.

(c) Image rep-
resenting a crop
requirement.

Figure 2: Example of comparisons that could be validated
in the similarity-aware division shown Figure 1.

3.1 Formal Definition
This section defines formally the new operator involving

the concept“for all”based on Relational Division, appending
comparisons by similarity between attribute values — called
as Division by similarity (÷̂).

Definition 1. Two relations T1 and T2 are Union com-
patible if and only if they both have the same number of
attributes and each attribute from T1 has the same domain
of its counterpart in T2. We consider Ai to be the ith at-
tribute in the schema Sch(T ) of a relation T . The domain
of Ai is Dom(Ai). Any two relations T1 and T2 are Union
compatible if and only if:

( |Sch(T1)| = |Sch(T2)| ) ∧
(∀Ai ∈ Sch(T1), ∀Aj ∈ Sch(T2), i = j :

Dom(Ai) = Dom(Aj))

(1)

Definition 2. The similarity of attribute values (=̂) is
represented as a1 =̂ a2, in which a1 ∈ A1 and a2 ∈ A2. At-
tributes A1 and A2 must follow the same metric space M =
〈S, d〉 with S being the data domain and d : S × S → R+
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the distance function, so that S = Dom(A1) = Dom(A2)
and a1, a2 ∈ S. For a threshold ξ, values a1 and a2 are
similar if and only if:

a1=̂a2 ⇔ d(a1, a2) ≤ ξ (2)

Definition 3. The similarity of tuples (=̂̂=̂=̂=̂=̂=̂=̂=̂=) is represented
as t1 =̂̂=̂=̂=̂=̂=̂=̂=̂= t2, in which t1 and t2 are tuples from relations T1

and T2, respectively. One tuple is similar to another if and
only if their home relations are Union-compatible, and each
attribute of the former has a value that is similar to its coun-
terpart in the latter. We consider t[Ai] to be the value of an
attribute Ai for a tuple t. Formally, the similarity of tuples
is defined by:

t1 =̂̂=̂=̂=̂=̂=̂=̂=̂= t2 ⇔ ∀Ai ∈ Sch(T1), ∀Aj ∈ Sch(T2), i = j :

t1[Ai] =̂ t2[Aj ]
(3)

Definition 4. The set membership by similarity (∈̂)
is represented as t ∈̂T1, in which T1 is a relation and t ∈ T is
a tuple. T1 and T must be Union-compatible. Tuple t is an
element of T1 by similarity if and only if there exists at least
one tuple tj ∈ T1 that is similar to t. Formally, we have:

t ∈̂ T1 ⇔ ∃ tj ∈ T1 : t =̂̂=̂=̂=̂=̂=̂=̂=̂= tj (4)

Following the same idea, t is not an element of T1 by simi-
larity if and only if there is no tuple tj ∈ T1 that is similar
to t. Formally, it is given by:

t /̂∈ T1 ⇔ @ tj ∈ T1 : t =̂̂=̂=̂=̂=̂=̂=̂=̂= tj (5)

Definition 5. The Subset by similarity (⊆̂) is repre-
sented as T1 ⊆̂ T2, in which T1 and T2 are Union-compatible
relations. Relation T1 is a subset of T2 by similarity if and
only if every tuple ti ∈ T1 is also an element of T2 by simi-
larity. Formally, its is defined by:

T1 ⊆̂ T2 ⇔ ∀ ti ∈ T1 : ti ∈̂ T2 (6)

Definition 6. The Difference by similarity (−̂) is a bi-
nary operation represented as T1 −̂ T2 = TR, in which T1

and T2 are Union-compatible relations. The resulting rela-
tion TR has all tuples of T1 that are not members of T2, by
similarity. Formally, we have:

TR = {ti : ti ∈ T1 ∧ ti /̂∈ T2} (7)

Definition 7. A Group of similars TGk is a subset of a
given relation T1, such that each of its tuples is similar to at
least one other tuple in the group, taking into account only
a subset of attributes L ⊆ Sch(T1). Relation TGk is also
considered to be a group of similars if |TGk | = 1. Formally,
TGk is a group of similars if and only if:

(TGk ⊆ T1) ∧
((∀ ti ∈ TGk : (∃ tj ∈ TGk , i 6= j : ti[L] =̂̂=̂=̂=̂=̂=̂=̂=̂= tj [L]))∨

(|TGk | = 1))

(8)

Definition 8. One Similarity grouping TG is the set of
all groups of similars extracted from a relation T1, taking
into account a subset of attributes L ⊆ Sch(T1). The num-
ber of groups is κ = |TG|. Formally, we have:

TG = {TGi : TGi is a group of similars from T1 regarding L}
(9)

The restriction as follows applies:

T1 =

κ⋃
k=1

TGk (10)

Definition 9. The Similarity-aware division (÷̂) is a
binary operation represented as T1 [L1÷̂L2] T2 = TR, in
which T1, T2 and TR are relations that respectively corre-
spond to the dividend, the divisor and the quotient. L1 ⊆
Sch(T1) and L2 ⊆ Sch(T2) are lists of attributes, so that
relations π(L1)T1 and π(L2)T2 are Union-compatible. The

schema of TR is defined as Sch(TR) = L1 = Sch(T1) − L1.
The instance of TR is the union of π(L1)

TGk for the largest
possible number of groups of similars TGk ∈ TG, such that

TR × T2 ⊆̂ T1. Formally, the quotient TR is defined as:

TR =

κ⋃
k=1


π(L1)

TGk , if ∀tj ∈ π(L2)(T2) :

(∃ ti ∈ π(L1)(TGk ) : ti =̂̂=̂=̂=̂=̂=̂=̂=̂= tj)

∅, otherwise.

(11)

The remainder of the similarity-aware division is given by:

T1 −̂ TR × T2 (12)

3.2 Algorithm
This section presents a novel algorithm that we carefully

developed for the similarity-aware division. It has five input
parameters: T1, L1, T2, L2 and TG. Parameters T1 and
T2 are the dividend and the divisor. L1 and L2 respectively
identify the attributes of relations T1 and T2 to be compared
with each other, thus defining how to validate the candidate
groups with regard to the requirements. For each pair of
attributes for comparison, it must be informed the metric to
be used to measure similarity and the similarity threshold
ξ. Finally, parameter TG identifies the group TGk (or the
groups) that each tuple of relation T1 belongs to.

SimilarityDivision(T1, L1, T2, L2, TG);
Result: IDs of the valid groups.
begin

// all groups are valid at the begining
Gvid = {1, 2, ... |TG|};
foreach tuple tj ∈ π(L2)T2 do

T = IndexRangeQuery(T1, L1, tj);
Gqid = ∅;
foreach tuple ti ∈ T do

Gqid = Gqid ∪ ti.groupIDs;
end
Gvid = Gvid ∩ Gqid;

end
return Gvid;

end
Algorithm 1: Similarity-aware division.

Algorithm 1 is the pseudocode of the algorithm that we
propose. We assume that relation T1 has indexes known as
Metric Access Methods (MAM) ready to be used for the
attributes in L1. The algorithm works by iteratively updat-
ing a set Gvid with valid groups’ identifiers. All candidate
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groups are considered to be valid at the beginning, starting
with Gvid = {1, 2, ... |TG|}. Then, for each requirement tj
from T2, we perform a range query in T1 using the require-
ment itself as the query center and taking advantage of the
existing indexes to speed-up the execution. The query finds
every tuple ti ∈ T1 such that ti[L1] =̂̂=̂=̂=̂=̂=̂=̂=̂= tj . The next step is to
build a set Gqid with all identifiers of the groups that satisfy
requirement tj , that is, the groups of the tuples returned
by the query. Then, set Gvid is updated with the intersec-
tion of the valid groups from the previous iteration and the
groups that meet the current requirement. At the end of the
execution, only identifiers of candidate groups that meet all
the requirements remain in Gvid.

Time complexity: Algorithm 1 performs |T2| range queries
in relation T1. State of the art MAM indexes allow us to per-
form each range query in O(log |T1|) time. Therefore, the
total runtime of Algorithm 1 is O(|T2| log |T1|).

4. EXPERIMENTS
We performed a case study with remote sensing images

to allow a semi-automatic identification of cities well-suited
to produce particular types of crops. The scheme adopted
to perform this study was the same of our example from
Figure 1. The remote sensing images come from collabora-
tors of the Centre of Meteorological and Climate Research
Applied to Agriculture (CEPAGRI), Brazil, and the Brazil-
ian Agricultural Research Corporation (EMBRAPA). The
remote sensing images were already grouped by city limits.
The pre-processing started with the segmentation of each
original city image, and then we divided it into rectangular
region tiles. The dataset contains imagery from five Brazil-
ian cities, i.e., Sapezal-MT, Sorriso-MT, Anhanguera-GO,
Catolândia-BA and Volta Redonda-RJ.

For the image comparison between the crop requirements
and the region tiles, we use the Earth mover’s distance with a
similarity threshold of 0.05. The requirements were set as in
Figure 3, where four needs for a crop production were given,
i.e., (a) silo infrastructure, (b) bare soils, (c) water and (d)
urban area to support the production. The recognition of
these patterns, was performed through the segmentation of
the remote sensing images into six features, i.e., urban area,
water, dense vegetation, sparse vegetation, bare soil and silo.
After runing the query, only one city had successfully sat-
isfied all these requirements, the city of Sorriso-MT. The
other cities were able to satisfy some of the needs, but just
this city accomplished all the four requirements. The result
of the division algorithm can be validated visually through
Figure 4, where we illustrate the city of Sorriso-MT with all
requirements and one of the other cities that miss at least
one requirement. We also report that our algorithm scaled
linearly or even sub-linearly in experiments performed with
synthetic data, varying the sizes of the input and output
relations up to millions of tuples. Space limitations prevent
us from detailing these results.

5. CONCLUSION
In this paper we identified severe limitations on the usabil-

ity of the Relational Division to process complex data, and
tackled the problem by extending it into the new Similarity-
aware Division (÷̂) operator. We formally defined the new
operator and designed a fast and scalable algorithm for it.
To validate our proposals, we performed a case study on

Figure 3: The images selected for the divisor in the case
study, representing the requirements for a crop production.

(a)

(b)

(c)

(d)

Urban
area

Water Dense
vegetation

Sparse
vegetation

Bare
soil

Silo

(a) City of Anhanguera-MT
missing the silo requirement.

(b) City of Sorriso-MT with
all the requirements.

Figure 4: Example of the result over two cities.

the support of agriculture. Provided that our algorithm is
fast and scalable, we argue that the new similarity-aware
division is potentially useful to analyze very large amounts
of complex data, even in real-time. For example, it is po-
tentially useful to support agriculture, as presented in this
paper; to support genetic analyses, selecting animals that
satisfies all the genetic conditions required, and even to help
hiring personnel and identifying new clients in enterprises.

6. REFERENCES
[1] W. J. Al Marri, Q. Malluhi, M. Ouzzani, M. Tang, and

W. G. Aref. The similarity-aware relational database
set operators. Inf. Syst., 59(C):79–93, July 2016.
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ABSTRACT
In spatial crowdsourcing, spatial tasks are outsourced to a
set of workers in proximity of the task locations for efficient
assignment. It usually requires workers to disclose their lo-
cations, which inevitably raises security concerns about the
privacy of the workers’ locations. In this paper, we propose
a secure SC framework based on encryption, which ensures
that workers’ location information is never released to any
party, yet the system can still assign tasks to workers sit-
uated in proximity of each task’s location. We solve the
challenge of assigning tasks based on encrypted data using
homomorphic encryption. Moreover, to overcome the effi-
ciency issue, we propose a novel secure indexing technique
with a newly devised SKD-tree to index encrypted worker
locations. Experiments on real-world data evaluate various
aspects of the performance of the proposed SC platform.

Keywords
location privacy; spatial crowdsourcing; data encryption;
spatial index

1. INTRODUCTION
With the pervasiveness of mobile devices, the ubiquity of

wireless network and the improvement of sensing technol-
ogy, a new mode of crowdsourcing, namely Spatial Crowd-
sourcing (SC), has emerged [3]. In SC, task requesters regis-
ter through a centralized spatial crowdsourcing server (SC-
server) and request resources related to tasks situated in
specific locations. The SC server assigns tasks to registered
workers according to performance criteria. If a worker ac-

c⃝2017, Copyright is with the authors. Published in Proc. 20th Inter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

cepts the assigned task, he physically travels to the location
to perform the required task. Existing SC systems usually
require workers to disclose their location in the form of ei-
ther spatial points or approximate regions, which may have
serious privacy implications. For example, with the leakage
of location information, an adversary may invoke a broad
spectrum of attacks such as physical stalking, identity theft,
and breach of sensitive information [7]. Location privacy
is therefore a critical security issue and it is important to
develop secure SC frameworks to ensure maximum security.

Several approaches have been proposed to protect work-
ers’ locations using a trusted third party (TTP) [10]. How-
ever, once the TTP is compromised by adversaries, loca-
tion privacy is infringed. Alternatively, a TTP-free privacy-
preserving framework can be achieved by obfuscating each
worker’s location as a probabilistic distribution, as opposed
to a deterministic value [7]. Unfortunately, by simply ob-
serving location distributions, the SC server is able to ap-
proximately guess a worker’s location. In addition, the server
knows the final task assignment results, from which it can
infer worker locations with reasonable confidence.

The above observations motivate our work, which aims to
deliver a general trustworthy SC framework with improved
security by requiring workers and requesters to encrypt their
location data when registering with and exchanging informa-
tion through the SC server. Using the correct settings and
protocols, real location information is hidden in the cipher-
texts and is never disclosed to any party. Accordingly, we
can deliver a secure SC framework to sufficiently preserve
the location privacy of both workers and requesters based
on encryption.

Although encryption provides maximum security protec-
tion, the challenge is that the SC server has to assign tasks
(e.g., compute the distance between tasks and workers) based
on encrypted data. We solve the problem of computation on
ciphertexts with a homomorphic encryption scheme and in-
troduce a dual SC server design. To address the inefficiency
of encryption operations, we propose a secure indexing tech-
nique with a newly devised SKD-tree to index encrypted
worker locations for fast searching and pruning. We have
named our SC framework HESI, as it combines a homo-
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Figure 1: The HESI framework.

morphic encryption (HE) scheme and a secure indexing (SI)
technique.

2. THE HESI FRAMEWORK
Our secure SC problem can be considered as a secure out-

sourcing multi-party computation [5]. Our aim is to enable
the SC server to carry out all the computations while users
(workers/requesters) do nothing but perform a small num-
ber of encryptions and decryptions.

2.1 The Dual-Server Architecture
We have adopted a dual-server design and propose an SC

framework that consists of two non-colluding semi-honest
servers. The assumption of non-collusion between two ser-
vice providers, such as Google and Amazon, is reasonable
in practice [8], because the collusion of two well-established
companies may damage their reputation and consequently
reduce their revenues. According to the semi-honest model,
these two servers are curious but will follow the protocols.
A dual-assisted server setting can liberate users from heavy
computation and communication by allowing the server to
complete computation tasks. The security intuition behind
dual-server settings has been addressed in related domains
such as secure multi-party computation [9], secure kNN search
[2] and secure trajectory computation [4], and we refer in-
terested readers to these texts for further rationale.
Figure 1 illustrates the HESI framework. It consists of

workers, requesters, and two servers: the logistics server
(SL) and the encrypted data computing server (SC). In gen-
eral, the requesters submit their tasks to the SC platform
and the tasks are dispatched to appropriate workers. The
SL handles all logistics issues, including new user/task reg-
istration, data indexing maintenance (i.e., SKD tree), and
task assignment, whereas the computing server is an auxil-
iary server that handles the computation of encrypted data.
We assume that each server owns a pair of encryption keys,
i.e., (pkL, skL) and (pkC , skC), where pk is the public key
and the private key sk is known only to owner.
Let W and T denote the set of workers and tasks, respec-

tively. Each worker only accepts a limited number of tasks
at the same time and accepts only those within a certain
distance. The whole process is presented as follows:
(1) Worker Registration (WR). Workers register and sign

up with the SL. The SL will index all workers’ encrypted
locations using an interactive secure indexing (SI) technique

Table 1: The outline of the secure protocols

Scope Protocols Description

Index

SecInsert
Insert a node (worker’s encrypted
location) into an SKD-tree se-
curely.

SecSearch
Given a spatial range, output a set
of workers within this range.

Computation
SecDisCal

Calculate the distance of two loca-
tions securely.

Assignment SecAssign
Perform secure task assignment ac-
cording to some strategies.

and store them in a data structure called an SKD-tree, as
shown in Figure 1.

(2) Task Submission (TS). Apart from worker locations,
our framework also protects the privacy of requester/task
locations. The requesters submit their tasks to the SL, in-
cluding the task location and task mission.

(3) Distance Computation (DC). In order to assign work-
ers to tasks in close proximity, the SC platform needs to
know the distances between tasks and workers. The SL

and SC together perform an interactive protocol to compute
the distance based on the encrypted data using homomor-
phic encryption scheme [6]. The distance between tasks and
workers can be used for evaluation during task assignment,
while the real locations of tasks and workers are never re-
vealed to either the SL or SC . In addition, neither the SL

and SC are able to learn any sensitive information from the
intermediate result, unless they conspire which is not allowed
according to the protocol.

(4) Task Assignment (TA). Based on a distance matrix
M, where element mij represents the distance between task
ti and worker wj , and the task acceptance conditions of
workers, the SC-system assigns the tasks to workers with
the goal of maximizing the number of assigned tasks while
minimizing the workers’ travel costs. The task assignment
is carried out by an interactive protocol between the SL and
the SC , under conditions that both servers cannot learn any
sensitive information from the intermediate results.

(5) Task Notification (TN). The final stage is for the SL

to notify assignment results to corresponding workers. Be-
cause the SL does not know the exact locations of the tasks,
it needs to communicate with requesters as follows. The
SL first sends the workers’ public keys to the requester ac-
cording to the assignment results. For example, if a result
record is {ti : w1, . . . , wk}, ti will receive the corresponding
workers’ public keys. Next, the requester encrypts the task’s
location with the received public keys and sends them back
to the SL. The SL then notifies the worker wj with a mes-
sage containing encrypted task locatiosn and task mission.
When wj receives the message, he decrypts the ciphertext
using his own private key to obtain the task’s location. The
worker is then able to travel to the specified location and
perform the task according to the mission.

We briefly outline our proposed secure protocols in Table
1. These secure protocols are categorized into distance com-
putation, secure index and assignment. There are four main
protocols1: SecDisCal, SecInsert, SecSearch and SecAssign.
In the following, we focus on explaining the details of our
proposed secure indexing.

1The details of the protocols can be found in a full version
of this paper at https://goo.gl/1jkqCn
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2.2 Secure Indexing
Given only a small number of workers usually satisfy the

neighborhood condition of a task, instead of comparing all
worker-task pairs, the encrypted locations of workers are
indexed in advance, and unpromising workers are pruned
before computing the distances.
KD-tree [1] was the first, and most promising, indexing

technique we considered to tackle this purpose. Using a
KD-tree to construct our framework presents two major
challenges. First, all operations must be performed on en-
crypted data, to ensure that neither the SL nor the SC will
obtain any private location information during the indexing
process. Second, normal KD-trees hold a potential privacy
threat. The splitting dimensions of normal KD-trees are
pre-determined and public – nodes in odd levels split the
space with the x -dimension, and nodes in even levels split
with y-dimension. Consequently, the SL could deduce the
relative locations of all workers. For instance, it knows w1

is to the left side of w2 if w2 is an x-splitting node and w1 is
in the left subtree of w2. By continually observing the tree,
the possible spatial range of w1 can be shrunk to a small
region, if enough relative location information is collected.
Even though the location information is relative, not exact,
it is still insecure.
We have therefore developed a novel secure indexing tech-

nique based on KD-tree, called SKD-tree. One major dif-
ference between an SKD-tree and a normal KD-tree is that
SKD-tree is split into two parts and stored on the SL and
SC separately. The SL stores the tree structure informa-
tion (i.e., parent-child relationships) while the SC stores the
dimension splitting information in a dictionary. The split-
ting dimension of each node is selected randomly, allowing
nodes in the same level to split the space along different di-
mensions. This feature improves security by increasing the
difficulty of inferring the relative locations.
Figure 2 compares a normal KD-tree with an SKD-tree.

All worker locations are indexed by a normal KD-tree (left)
and an SKD-tree (right). Each line in the graph represents
a node that splits the space along a particular dimension.
In a normal KD-tree the splitting information is fixed in
advance. By contrast, each node’s splitting dimension is
randomly generated and separately stored in the SKD-tree
on the SC . The SL, preserving the tree structure, acquires
the dimension splitting information from the SC through se-
cure protocols. The shaded nodes in the SKD-tree represent
encrypted data. For example, while node 1 at the level 0
(i.e. root) is partitioned along x axis and node 2 at the
level 1 is partitioned along y axis in the normal KD-tree,
both node 1 and 2 in our SKD-tree are partitioned along
x axis according to the dimension dictionary stored at the
SC , which increases the difficulty for malicious adversaries
to infer the relative locations of workers.
Our SKD-tree is constructed by inserting nodes one by

one using the protocol SecInsert. By quering the SKD-
tree using SecSearch, we can obtain promising neighbor-
hood workers efficiently. In practice, the size of potential
worker set will be small as there are only limited number
of workers close to a task, which means generally a great
number of nodes can be pruned during each iteration.

3. PERFORMANCE EVALUATION

3.1 Benchmark Data
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Figure 2: An example of a normal KD-tree vs. an SKD-tree.

The Yelp dataset2 is a collection of user reviews about
local businesses, such as restaurants. It includes users’ com-
ments, check-ins and business information. We consider each
Yelp user as an SC worker with their check-in as the loca-
tion, and assume that the restaurants are the specified task
targets. The Gowalla dataset3 is a location-based social
network dataset where users share their locations with their
friends. Each Gowalla user is considered to be an SC worker,
and their location is the most recent check-in. Each check-in
point is also modeled as a task location.

In our experiments, 10, 000 workers and 5, 000 tasks were
chosen from both datasets. It is assumed that each worker’s
maximum number of tasks (Ti) and maximum travel dis-
tance (Di) are the same. By default, we set Ti to 5, set
Di = 1km for the Yelp dataset and Di = 10km for the
Gowalla dataset. We ran each experiment five times and
report the average runtime.

3.2 Experimental Results

3.2.1 SKD-tree Evaluation
We first evaluate the scalability of our tree construction

method. Two Paillier key sizes are used: K = 512 bits and
K = 1024 bits. We vary the number of workers from 1000
to 10, 000 and record the corresponding runtime for building
the SKD-tree. The results are presented in Figure 3 and
show that the runtime for tree construction achieves good
scalability on both datasets. In addition, we observe that the
encryption key size influences the performance significantly,
which justifies the fact that a trade-off between privacy and
efficiency exists. In the following experiments, we used 1024
as the default key size.

Next we evaluate the operations on SKD-tree. Because
deletion is very similar to insertion, only the results of inser-
tion and range search are presented. Figure 4a illustrates the
costs of inserting a node into trees of different size. The y-
axis represents the average runtime of inserting a node (i.e.,
worker) into the tree. It can be observed that the trend in-
creases quite slowly, showing that the insertion operation is
scalable to the tree size.

2https://www.yelp.com/dataset challenge
3https://snap.stanford.edu/data/loc-gowalla.html
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Figure 3: Evaluation of tree construction
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Figure 4: Tree operation evaluation

To evaluate range search, we invoked 100 random queries
with a default range size of 1km. Figure 4b reports the aver-
age search time with respect to the number of workers, which
demonstrates good scalability on both datasets. Moreover,
it costs less time to search the Gowalla dataset because it
is sparser than the Yelp dataset, more unnecessary compar-
isons are pruned at each step.

3.2.2 Overall Performance Evaluation
We compare the performance of HESI to the baseline

index-free framework which compares all worker-task pairs
for distance information. We set the number of tasks as 10
and vary the number of workers from 100 to 1000. It can
be seen in Figure 5 that the performance of the baseline
framework increases linearly with respect to the number of
workers. The HESI framework shows a clear advantage over
the baseline. This is mainly because HESI is able to prune
a large number of unnecessary distance computations with
the contribution of the secure indexing technique.

3.2.3 Communication Cost Evaluation
We evaluate the communication overhead between two

servers in the proposed framework. Specifically, we record
the total size of data that transferred during the executions
of the secure protocols. Table 2 shows the results with re-
spect to different numbers of workers and tasks. It can
be seen that the cost changes from 8.18MB to 26.25MB
when the number of workers varies from 2000 to 10000, and
changes from 5.24MB to 21.83MB when the number of tasks
varies from 1000 to 5000. The result shows that the extra
communication overhead due to the dual-server design is ac-
ceptable, and our proposed framework is feasible in practice.

4. CONCLUSIONS
In this paper, we proposed a novel privacy-preserving frame-

work for spatial crowdsourcing, which ensures that user lo-

0 200 400 600 800 1000
Number of Workers

0

2000

4000

6000

8000

R
u
n
 T

im
e
 (

s)

HESI

baseline

(a) Yelp

0 200 400 600 800 1000
Number of Workers

0

2000

4000

6000

8000

R
u
n
 T

im
e
 (

s)

HESI

baseline

(b) Gowalla

Figure 5: Performance Improvement

Table 2: Communication cost

#Workers Cost (MB) #Tasks Cost (MB)
2000 8.18 1000 5.24
4000 10.95 2000 8.63
6000 16.20 3000 13.35
8000 20.22 4000 17.39
10000 26.25 5000 21.83

cations are never released to anyone, yet the system is still
able to assign tasks to workers in an efficient way. The key
innovation of our framework, compared to existing work in
the field, is threefold: (1) a new encrypted data-based spa-
tial crowdsourcing framework for the SC community; (2)
a secure SKD-tree structure to store and index encrypted
data for fast search; and (3) ensured data privacy (including
worker and requester privacy) and data security, whereas
existing works only limit to worker privacy.
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ABSTRACT
Several stream processing and reasoning systems have
emerged in the last decade, motivated by the need to pro-
cess large volumes of data on the fly, as they are generated,
to timely extract relevant knowledge. Despite their differ-
ences, all these systems isolate the data that is relevant for
processing using (fixed size) windows that typically capture
the most recent data and assume its validity.

We claim that this paradigm is not flexible enough to ef-
fectively model several application domains and we propose
a novel abstraction that enables for explicit state represen-
tation and management. We model state as a collection of
data elements annotated with their time of validity and we
augment the traditional stream processing paradigm with
state-handling abstractions to declare how the input streams
affect the state of the system and how the state influences
the results of the processing.

Keywords
Stream Processing; Stream Reasoning; Event Processing;
Windows; State Management; Explicit State

1. INTRODUCTION
Several application domains require analyzing streams of

data on-the-fly, as new data become available, to extract
valuable knowledge. Examples include environmental moni-
toring, click stream analysis in Web sites, traffic monitoring,
credit card fraud detection, computer systems monitoring,
interaction analysis in social media, and smart cities.

In the last decade, this need led to a bloom of technologies
for stream processing and reasoning [6, 12], which introduce
(i) languages and programming abstractions to define how
to extract relevant knowledge from the input data; (ii) algo-
rithms and techniques to efficiently perform such task.

Stream processing and reasoning systems were developed
by researchers and practitioners active in diverse fields, such
as database systems [3], event-based systems [11], knowl-
edge representation [5], and Big Data processing [13]. As a

c©2017, Copyright is with the authors. Published in Proc. 20th Inter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

consequence, they present heterogeneous design choices and
characteristics.

Despite their differences, all these technologies build on
the implicit assumption that the most recent data is also
the most relevant for processing, and isolate recent data us-
ing window operators, for instance to limit the scope of the
analysis to the last ten elements of the stream or to the
elements that occurred within the last five minutes. Fur-
thermore, they often assume that all the information stored
in windows is valid when the processing takes place.

We believe that this paradigm is not flexible enough to
effectively model several application domains, since: (i) win-
dows with a predefined and fixed size might not be suitable
to define the portion of streaming data that is relevant for
processing, which might depend on the specific content of
the data; (ii) windows might include invalid or contradic-
tory information.

To motivate our claims, let us refer to some concrete use
cases. Consider a click-stream monitoring system that an-
alyzes the interactions of potential customers with an e-
commerce Web site. The system should trace a user from the
moment when she enters the Web site to the moment when
she leaves the Web site. A shorter observation time frame
would be meaningless for the application logic, whereas a
larger time frame could waste computational resources. This
simple example highlights that fixed-size windows are not al-
ways adequate to isolate relevant stream elements.

Consider now a security service to monitor the position
of visitors in a building, in which sensors signal a new event
every time a visitor enters a room. If we assume a fixed time-
window of five minutes, it is possible that a visitor moves
through multiple rooms within the scope of a single window.
Considering all the events generated within this fixed time
frame as valid would lead to the erroneous conclusion that
the visitor is simultaneously in multiple rooms. This exam-
ple shows that one might infer contradictory information if
she simply considers as valid all the data elements within a
window, without properly considering their mutual relations
—in our example, the most recent position invalidates and
updates any previous position of the same visitor—.

We believe that the above limitations could be overcome
with flexible abstractions to model state in stream process-
ing systems. For instance, the e-commerce scenario could
benefit from the presence of state information that records
which users are active at a given point in time. Similarly,
the security service could model the position of each visitor
as part of the state and update such a state whenever the
visitors move.

Poster Paper

 

 

Series ISSN: 2367-2005 482 10.5441/002/edbt.2017.50

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2017.50


Moving from these premises, we propose an extension to
stream processing and reasoning that makes state explicit
and captures it as a first class object. We model state as a
collection of data elements annotated with their time of va-
lidity. Then, we augment the traditional stream processing
model that defines transformations from input streams to
output streams with state-handling abstractions to (i) de-
clare how state information influences the results of the pro-
cessing —for instance, we want to monitor only active users
in the e-commerce scenario, where the set of active users is
defined as part of the state—; (ii) declare how the stream of
input data updates the state —for instance, a new event in
the security service invalidates previous information about
the position of a visitor and adds a new state element with
the current position of that visitor—.

We see several benefits from explicit state management in
stream processing systems. As motivated by the scenarios
above, the possibility to define and reference state informa-
tion has the potential to ease the modeling of the application
at hand. Furthermore, it might simplify the processing task
by activating some derivations only when specific conditions
on the state are met. Finally, the presence of an explicit
repository for state information would make the state avail-
able for query and retrieval.

The paper is organized as follows. Section 2 presents the
state-of-the-art systems for stream processing and reasoning,
with emphasis on their approaches to manage state informa-
tion. Section 3 presents the model we propose to explicitly
manage state. Section 4 surveys work that is related to the
topic of this paper, and Section 5 concludes the paper and
draws a road map for future work.

2. BACKGROUND
This section surveys the main models and technologies

for stream processing and reasoning, focusing on their state
management capabilities.

Perhaps the first processing model for streaming data is
CQL —Continuous Query Language— that builds on the
relational model [3]. CQL introduces window operators to
isolate finite blocks of the input streams and then applies
relational processing on such blocks. Windows typically in-
clude the latest elements received from the input streams:
as new data is received, the content of the windows changes,
and the processing is re-executed to update the results ac-
cordingly. The most widely adopted windows have a fixed
size in terms of number of elements —count windows— or
time span —time windows—. This model is the core of vir-
tually all Data Stream Processing Systems (DSMSs) [4].

The relational core of this model facilitates the inter-
operability of streaming data and static relational tables.
Although static tables could be theoretically employed to
store state information, the model does not include state-
management functionalities.

Complex Event Processing (CEP) systems consider each
stream element as the notification of occurrence of an event
at some points in time, and offer abstractions to define sit-
uations of interest as (temporal) patterns of events [6, 11].
Patterns are typically searched for within time windows or
include temporal constraints conceptually similar to time
windows.

Some CEP systems adopt interval time semantics, mean-
ing that the situations detected from the raw events can have
an associated time interval of validity [2]. Situations con en-

State

Input Streams Output Streams

State management
State management rules

Stream processing

Stream processing rules

Queries

Reasoning

Ontologies

Figure 1: Model of stream processing with explicit state
management

code the current state of the application environment and be
composed with further events during processing. Neverthe-
less, these systems do not offer specific abstractions to model
and update state information. Furthermore, situations are
not persisted and cannot be queried.

Stream reasoning extends the above approaches by ex-
ploiting the RDF data model to represent data elements
within the streams, which enables for complex forms of logic
inference —reasoning— [12], often trading off performance
for expressivity. Despite the use of a different data model
and more expressive processing, stream reasoning systems
inherit the windowing mechanisms of DSMSs and CEP sys-
tems. Furthermore, since they typically exploit all the infor-
mation in the current window to perform logical inference,
they might suffer from the presence of inconsistent data, as
discussed in the use cases in Section 1.

Big Data processing systems were originally designed to
batch process large volumes of data on large clusters of
commodity machines. Nowadays, they are shifting from
pure batch computation to streaming computations [14, 13].
These systems describe the computation as a directed graph
of operators. Input data elements traverse this graph and
get processed one by one or in small batches.

Similar to DSMSs, operators include windows to collect
portions of the streaming data. Interaction with static
databases is possible, but no abstraction is provided to
model and update state information.

3. A MODEL FOR EXPLICIT STATE MAN-
AGEMENT

Figure 1 presents the model we envisage to enable ex-
plicit state management in stream processing systems. The
data received from the input streams is analyzed both in
the state management component and in the stream pro-

cessing component. The former elaborates the input data
according to a set of deployed state management rules to
update the current state of the system, stored in the state

repository. The latter processes the input data —together
with the state information— to continuously produce new
results for the users according to a set of deployed continu-
ous queries or, more in general, stream processing rules.

Users can also query the state of the system by submit-
ting queries as in traditional database systems. Finally, a
reasoning system can extract implicit knowledge from the
explicit state information to augment the answers to both
stream processing rules and one-time queries. Reasoning is
based on a formal description of the application domain, in
the form of ontologies.
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3.1 Case study
We now exemplify the use of our model through a case

study. Let us consider a decision support tool to manage
an e-commerce Web site. The managers of the Web site
want to receive constant updates about the current trends
of product sales, the quality of service the Web site offers
—for instance, the average delay to deliver the products—,
and the status of the inventory.

Traditional stream processing systems can easily satisfy
these needs by periodically computing aggregates over slid-
ing windows. For instance, the current trend of sales could
be computed by summing up all the sales for each class of
products over a time window selected by the user.

Nevertheless, the products and their classification change
over time: new products are constantly added, new classes
are created, and previous classes of products are split or
merged. The information about the products and their clas-
sification is managed by a different division of the company,
which updates the management whenever it is needed.

The set of available products and their classification rep-
resent background state information that the management
needs to consider to correctly interpret the trends of sales.

Several approaches are possible to capture this state infor-
mation. On one extreme, state can be stored in a separate
database that is updated manually or semi-automatically
whenever new information about the products becomes
available. The stream processing system then accesses the
current data in the database during processing. On the other
extreme, the stream processing system might be responsible
to process both the information about the sales and the in-
formation about the products and their classification. This
approach complicates the stream processing rules, since they
need to take into account heterogeneous types of data —sales
and products classification— and their interaction. Further-
more, it becomes impossible to express all the processing by
means of computations over sliding windows. Indeed, the
system must ensure that all the information that builds up
the most recent classification of products is taken into ac-
count, independently from the time when such information
was generated.

In our model, we propose to explicitly store state informa-
tion and enable the stream processing system to access that
information during processing. We propose to encode the
logic that updates the state based on the input streaming
data into state management rules that the state manage-

ment component uses to automatically handle state changes.
This approach relieves the stream processing system from
analyzing information related to the products and their clas-
sification, thus simplifying the stream processing rules

that compute the selling trends.
Making the state explicit also enables the users to query

such state, which would not be possible if the state informa-
tion was only processed within the stream processing system.
We envision the possibility to implement the state compo-
nent as a temporal database, thus enabling the query and
retrieval of both the current state and historical data. In
our e-commerce case study, this enables the management to
retrieve and analyze past information about products and
sales to confront them with the current trends.

Finally, the state component can exploit domain infor-
mation —for instance in the form of ontologies— to derive
new knowledge from the explicit information it stores. For
instance, in the e-commerce example, the ontology might

include a taxonomy to organize the products according to
different classification criteria and to automatically derive
sub-classes relations.

3.2 The benefits of explicit state management
Based on the case study above, this section summarizes

the benefits we see in our proposed approach.

Separation of concerns. The proposed approach decouples
the management of state updates from the stream process-
ing logic. The former is encoded in the state management

rules while the latter is encoded in the stream process-

ing rules. This enables the developers of the system to
separately model these two orthogonal aspects.

Different abstractions. The separation of state management
from the stream processing logic enables the adoption of
separate abstractions for the two tasks. As discussed in Sec-
tion 1 and in Section 2, most stream processing languages
and systems are designed to express and perform contin-
uous computations over moving windows, and this is not
suitable to express state management tasks, since windows
might miss some relevant state information or include con-
tradictory data. By delegating the state management to
separate rules, our approach can adopt different formalisms
to express how the state is updated.

Queryable state. By making the state explicit, the proposed
model enables the users to query the state on-demand, po-
tentially referring to historical data. This would not be pos-
sible using only stream processing technologies that inter-
nally and implicitly store only the state required to execute
the stream processing rules, and do not offer primitives
to access such state. Also, queryable state can promote in-
teroperability, since stream processing systems can expose
their state and query the state of other systems.

Reuse of consolidated technologies. By clearly separating
state management from stream processing, the proposed
model can take advantage of consolidated technologies that
are optimized for these purposes. For instance, the stream

processing component can be easily implemented using
state-of-the-art stream processing languages and systems, as
presented in Section 2. Similarly, the state component can
adopt well studied algorithms and technologies to optimize
the evaluation of queries —coming both from the users and
from the stream processing component— and to perform
reasoning tasks.

3.3 Open research questions
This section highlights the open research questions that

we are currently investigating to concretely implement the
above model.

State management rules. The language used to express
state management rules greatly influences the expressiv-
ity of the system. In the simplest case, state transitions
are determined by some individual elements in the input
stream. For instance, in our e-commerce use case, an indi-
vidual input element might represent the new classification
for a product. However, we envision more complex situa-
tions in which a state transition is determined by multiple
streaming elements. We are currently investigating possible
abstractions to capture these scenarios.

State representation, query, and retrieval. An open research
question involves which state information to store —only
the current state or also historical data—, how to represent

484



this information —for instance, using a relational database
or a key-value store—, and which language to offer for state
query and retrieval.

Interaction between stream processing and state. Perhaps
the most challenging question is how to define the overall
semantics of the system, taking into account the possible
interactions between the state —and the state management

rules— and the stream processing rules. Considering
the e-commerce use case, we need to define how a change in
the classification of products might impact on the ongoing
streaming computation.

4. RELATED WORK
The limitations of fixed count or time windows in stream

processing is well known in the literature. To overcome
these limitations, some approaches propose windows that
are based on the content of input elements. Li et al. [10]
use content-based windows to define an effective evaluation
strategy for window aggregates. Similarly, predicate win-
dows [8] define views and support view maintenance in data
stream processing systems. They predicate on the content
of an input element to determine whether it has to be con-
sidered as new information, or as an update (or deletion) of
existing information for a given view. Frames [9] provide the
developers with built-in functions to simplify the statistical
analysis of data. Google Dataflow [1] proposes the concept
of session windows, which partition a stream based on some
user defined field —for instance, the identifier of a session
in an e-commerce Web site—. Our model builds on similar
ideas and takes a step forward by enabling the developer to
express state in a more general ways, using rules that define
how input elements impact on state.

Perhaps the closest work to our proposal is TEF-
SPARQL [7], an extension to the SPARQL query language
that distinguishes events from facts, where the latter are sim-
ilar to the timed data elements that build the state in our
model. TEF-SPARQL provides ad-hoc operators to com-
bine facts and events and a replace primitive to update the
set of facts. Nevertheless, TEF-SPARQL encodes the whole
logic to manage and update facts within stream processing
rules, whereas we separate the inference of new knowledge
—including new state elements— from stream processing
rules. Furthermore, we enable on-demand query of state.

5. CONCLUSIONS
Virtually all the state-of-the-art stream processing and

reasoning systems rely on fixed-size windows to isolate the
portions of input streams that are relevant for processing.
We move from the observation that this schema is not flexi-
ble enough to effectively model several application domains
and we propose a novel approach that enables the users of
a stream processing system to explicitly define and modify
the state of the application scenario at hand.

We believe that the approach we propose can advance the
state-of-the-art in stream processing and reasoning in two
orthogonal ways: on the one hand, it can ease the modeling
of application scenarios in which the state of the system
plays a fundamental role; on the other hand, it can simplify
the processing effort by limiting the amount of streaming
data that needs to be analyzed depending on the specific
state of the system.

In the near future, we plan to provide a more detailed

and precise formalization of our model, to implement the
model into a prototype stream processing system, and to
evaluate the befits of the proposed approach in terms of
modeling and processing. We will consider various real world
use cases with different requirements in terms of expressivity
and processing complexity.
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ABSTRACT
With the rise in adoption of massive graph data, it be-
comes increasingly important to design graph processing
algorithms which have predictable behavior as the graph
scales. This work presents an initial study of stability in
the context of a schema-driven synthetic graph generation.
Specifically, we study the design of algorithms which gener-
ate high-quality sequences of graph instances. Some desir-
able features of these sequences include monotonic contain-
ment of graph instances as they grow in size and consistency
of structural properties across the sequence. Such stabil-
ity features are important in understanding and explaining
the scalability of many graph algorithms which have cross-
instance dependencies (e.g., solutions for role detection in
dynamic networks and graph query processing). We imple-
ment a preliminary approach in the recently proposed open-
source synthetic graph generator gMark and demonstrate its
viability in generating stable sequences of graphs.

1. INTRODUCTION
Rising adoption of massive graph data (e.g., social net-

works, WWW, biological data) necessitates the development
of algorithms which are able to handle the vast amounts of
information stored in these datasets. Synthetic graph gen-
erators are a valuable tool for investigating the performance
of graph processing algorithms since it allows to generate a
sequence (or, a family) of graph instances of increasing sizes.
For performance studies to be useful and reproducible, it is
important to ensure the quality of the generated instances
themselves and the instance family, as a whole. The sim-
plest quality measure of the instance is its size. In some
cases (e.g., in benchmarking of naive graph serialization),
generation of different-sized independent random graph in-
stances is sufficient to demonstrate the performance charac-
teristics of the algorithm. However, in other cases (e.g., in

c©2017, Copyright is with the authors. Published in Proc. 20th Inter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

Figure 1: Node-level changes between instances. In graph
instances G1 and G2, node Angela is a “leader” with rel-
atively high in-degree. In G′

2, however, Angela does not
appear at all, while in G′′

2 , she is merely a “follower.”

benchmarking of query processing engines), stronger quality
guarantees are desired. For example, in addition to graph
size, a user-defined graph schema might include the enumer-
ation of node and edge labels along with their proportions
in the generated graph instances. Furthermore, in- and out-
degree distributions can be defined on top of the constraints
on source-target node pairs in a graph. Graph generation
approaches that produce graph instances which conform to
such extended schema are called schema-driven.

In benchmarking of graph algorithms it is often impor-
tant to control how relationships involving specific nodes
evolve between graph instances in the family. Ideally, given
a particular node, its structural properties should be stable
across the entire sequence of generated graph instances. For
example, queries which mention constants are common in
the design of benchmarks, as they allow fine-tuned control
of query selectivity and run-time behavior [4, 5, 8, 9, 12]. As
another example, in the study of solutions for role detec-
tion in social networks, it is often desirable that structural
features of individual nodes (i.e., individual actors in the
network) are stable as the network grows in size.

To concretely illustrate stability, consider the graph in-
stances shown in Figure 1. Here, G2, G

′
2, and G′′

2 have the
same size and are all larger than G1. Suppose that a given
schema (S) models a typical behavior of follows edges in a
social network. This schema defines the in-distribution of all
edges in the graph to be Zipfian and all nodes to be of type
Person. Observe that each of the instances G1, G

′
2, G

′′
2 , and

G2 satisfy S. Suppose, we fix a specific node in G labeled
Angela and trace its behavior across instances in Figure 1.
Specifically, Angela is a “leader” (followed by many) in G1

and G2, but is not present in G′
2 or is not a leader in G′′

2 .
Hence, using instance families {G1, G

′
2} and {G1, G

′′
2} would

lead to inconsistent results when studying the behavior of an
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algorithm which depends on Angela, e.g., in a performance
study of a query evaluation engine using a benchmark query
which specifically mentions Angela.

State of the art. The study of solutions for controlled gen-
eration of synthetic database instances has a long history in
the data management community [2, 10]. In the domain of
graph databases, synthetic generation of realistic graphs is
currently a topic of intense investigation [1,4,5,7,8,13,14]. In
this context, quality metrics on individual synthetic graphs
(with respect to a given real graph or a given schema) have
been proposed, e.g., [3,7,11,13,14]. To our knowledge, how-
ever, there has been no prior study of stability across se-
quences of graphs in synthetic instance generation.

Contributions. Motivated by these observations, in this
paper we initiate the study of stability in synthetic graph
generation. We consider basic properties of instance fami-
lies which are, to the best of our knowledge, not satisfied
by current schema-driven graph generators. We present the
preliminary design of a scalable solution for producing in-
stance families which are stable with respect to edge-type
degree distributions defined by a given schema (e.g., for the
Zipfian distribution in the family {G1, G2} of Figure 1).

The detailed structure and contributions of this paper
are as follows. We define two basic desirable properties of
generated graph instance families (§2.1) and design a novel
measure of distribution stability for a given family (§2.1).
We then present an algorithm for generation of stable in-
stance families and analyze its complexity (§2.2). We imple-
ment our approach in the state-of-the-art open-source gMark
graph generator [4, 5], and demonstrate that our solution
is scalable (§3.1) and produces instance families which are
significantly more stable than the original gMark instance
generator (§3.2).

2. STABLE GENERATION

2.1 Preliminaries
We study the following problem, on finite directed edge-

labeled graphs. Given a finite sequence of positive inte-
gers n1, . . . , nk such that ni < ni+1, for 1 ≤ i ≤ k, gen-
erate a sequence of graphs F = (G1, . . . , Gk) such that
|nodes(Gi)| = ni, for 1 ≤ i ≤ k, where nodes(G) denotes
the node set of graph G and |A| denotes the size of set A.
If we are additionally given a graph schema S as input, we
further require that each Gi is a valid instance of S.

In this initial study, we consider the following desirable
properties of generated graph sequences:
• Monotonicity. It holds that edges(Gi) ⊆ edges(Gi+1),

for 1 ≤ i ≤ k, where edges(G) denotes the edge set of
graph G.
• Distribution stability. If the degree structure of an edge

type follows a fixed distribution (e.g., edges labeled fol-
lows in a social network have a Zipfian in-distribution),
then the position of nodes in the distribution is stable
throughout the graph sequence F .

The degree (deg) of a node needs to be stable in its dis-
tribution in all graphs of a given sequence. To capture this,
we define the rank of a node n in graph G as:

rank(n,G) =
deg(n)

maxn∈nodes(G)(deg(n))

Figure 2: Generating the edges of one edge-type with five
subject nodes and three object nodes.

where the value of rank(n,G) ranges from 0 to 1. Let-
ting σn denote the standard deviation of the rank of n over
all instances in F , i.e., the standard deviation of the set
{rank(n,G) | G ∈ F}, we define the stability of n in F as:

stability(n,F) = 1− 2σn.

A stability(n,F) = 1 indicates that the rank of n never
changes, whereas stability(n,F) = 0 means that n is com-
pletely unstable, with respect to degree structure.

2.2 Generation Approach
The original gMark graph generator (gMarkGraphGen)

does not satisfy monotonicity of graph generation nor does
it guarantee distribution stability; the time complexity of
generation is linear in the number of nodes of the graph in-
stance [5]. We next propose an algorithm, MonStaGen, that
generates instance families which are both monotonic and
stable with respect to edge-type degree distributions defined
by a given schema. An analysis of this algorithm, however,
shows that the satisfaction of these properties comes at the
expense of increased time complexity (O(n logn), where n
is the number of nodes).

MonStaGen separately calls a procedure (Algorithm 1) for
each edge type in a given schema. As a consequence, the
generation of subgraphs that correspond to each edge type
can be executed in parallel. Consider the graph of a single
edge type as a bipartite graph with the two disjoint sets S
and T . Set S represents all the subject nodes of the edge
type, whereas set T represents all the object nodes of the
edge type. Graph generation proceeds by iteratively adding
edges from nodes in S to nodes in T .

Figure 2 shows an example of the generation of one edge-
type with five subject nodes (elements of set S) and three
object nodes (elements of set T ). This figure also introduces
our concept of interface connections. We call the connec-
tions (i.e., edges) that a node can potentially receive the
interface connections (ICs) of this node. Whenever a new
node is added to the graph, the degree distributions in a
given schema determine the number of ICs of this node de-
pending on whether it is a subject (out-degree) or an object
(in-degree). Whenever a new edge is added, the participat-
ing ICs for its subject and object nodes are closed.

Generated subject nodes, object nodes, and edges are
cached for subsequent processing by functions addSubjectN-
odes and addObjectNodes. Function addEdge decrements
the amount of open ICs of the subject node and the ob-
ject node by one. Observe that, by construction, the gener-
ated sequence of graphs satisfies the monotonicity property.
Next, we discuss the immediate challenges that need to be
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Algorithm 1 processEdgeType(edgeType, graph, prob-
ability p, #subjectNodes, #objectNodes)

graph.addSubjectNodes(#subjectNodes)
graph.addObjectNodes(#objectNodes)

if edgeType.subjectNodes is scalable xor ed-
geType.objectNodes is scalable then

updateICsForNonScalableNodes()
end if
if in- or out-degree distribution is Zipfian then

updateICsForNodesWithZipfianDistribution()
end if

vector vsrc, vtrg
for subject in graph.subjects do

for 1:subject.openICs do
vsrc.add(subject)

end for
end for
for object in graph.objects do

for 1:object.openICs do
vtrg.add(object)

end for
end for
shuffle(vsrc); shuffle(vtrg)

for i ∈ 1:min(vsrc.length, vtrg.length) do
with probability p, graph.addEdge(vsrc[i], vtrg[i], ed-

geType.predicate)
end for

return graph

met during schema-driven stable graph generation.

Subject-to-object scalability mismatch. Consider the
edge-type Persons live in a City, where the number of per-
sons scale with the graph size, i.e. the subject nodes are
scalable, and the number of cities is fixed. When the num-
ber of ICs are fixed for the non-scalable object nodes, we will
reach a point where new edges cannot be generated anymore.
This is because the total number of ICs in the City nodes
will remain the same when growing the graph, whereas the
total number of ICs in the Person nodes will grow. It is
still possible to grow the graph after this point, resulting in
more Person nodes with new ICs. However, these ICs can
never be used anymore, since all object nodes are not able
to receive any connection and new objects cannot can be
added. This problem is solved by updating the number of
ICs of the non-scalable nodes.

Skewed distributions. During the construction of the new
graph instance, the ICs of the nodes which participate in a
Zipfian distribution need to be updated to ensure that nodes
with a very high degree will be able to continue to receive
more connections.

We proceed by creating separate vectors for subject and
object nodes with as many entries for each node as it has
assigned ICs. We then randomly shuffle these two vectors.
Finally, with probability p, we add each edge from the source
vector to the target vector. Here, p ensures the balance

between the connectedness of the new instance with later
instances in the sequence, on one hand, and the quality of
the degree distributions, on the other.

3. EMPIRICAL STUDY
In this section, we report the results of three experimen-

tal studies of our approach. In all of the experiments, we
investigated the generation of graphs with skewed (Zipfian)
degree distributions. We selected Zipfian distribution pa-
rameter of 2.5, as it corresponds to structure found in many
real-world graphs [6]. The input parameter p to MonStaGen
(Algorithm 1) was set to 0.97.

3.1 Run-time
We design two experiments to demonstrate the running

time of MonStaGen compared to gMarkGraphGen. As noted
in §2.2, the complexity of MonStaGen is slightly higher
(O(n logn) vs. O(n)). Figures 3a and 3b show the differ-
ence in the running time for both approaches. In our first
experiment (Figure 3a), we benchmark the generation of an
instance family which consists of a single graph instance of
increasing size. Here, gMarkGraphGen slightly outperforms
MonStaGen due to increased complexity required by Mon-
StaGen to satisfy the monotonicity and stability properties
of instance families.

In our second experiment (Figure 3b), we generate fam-
ilies of increasing size with ten graph instances each F =
G1, . . . , G10. In MonStaGen, for producing graph Gi+1, the
previously generated graph Gi is used, instead of generat-
ing the whole graph from scratch. We recall that sequences
generated by gMarkGraphGen do not satisfy the monotonic-
ity property.

In Figure 3b, the x-axis corresponds to the total number
of nodes in the largest graph (G10) in the generated instance.
We set the number of nodes in graph Gi to a fraction i

10
x,

where x is the total number of nodes in graph G10.
As expected, MonStaGen is slower when generating a sin-

gle graph, whereas it supersedes gMarkGraphGen when gen-
erating multiple graphs. This means that MonStaGen scales
with the number of graphs in the sequence, while gMark-
GraphGen scales with the number of nodes in the graphs.
This behavior is quite interesting and leaves open the user’s
choice of which generator to employ in a given application.

3.2 Stability of nodes in degree distribution
We next consider generation of a graph sequence F =

(G1, . . . , G10), where the total number of nodes of Gi is i ·
1000, for 1 ≤ i ≤ 10. Figure 3c shows the stability of nodes
of a single edge type with Zipfian degree distribution, as
noted above, and 0.5n subject nodes, where n is the total
number of nodes in the graph.

The nodes added in the last graph are not taken into
account, because they will always have a stability of 1.
The total number of subject nodes taken into account is
0.5 · (10 − 1) · 1000 = 4500. The stability value for all of
these nodes, calculated and sorted on such a value, is illus-
trated in Figure 3c. We can see that the stability of nodes
in MonStaGen is significantly higher than gMarkGraphGen.
The long tail, which indicates a high number of nodes with
a high stability, is the effect of a Zipfian distribution, where
a node has a very high probability of having a very low de-
gree. This means that many nodes will have a low degree in
all the graphs of the sequence, resulting in a high stability.
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(a) Average run-time of the generation of
single graph instances. Each data point is
the average of four runs, after dropping the
highest and lowest values.

(b) Average run-time of the generation of a
graph sequence with 10 graphs with equal
increments. Averages taken as in (a).

(c) Stability comparison of all the nodes in a
Zipfian(2.5) degree distribution. A zoom of
the 210 nodes with worst stability is shown
inside the plot.

Figure 3: Experimental comparisons of gMarkGraphGen and MonStaGen.

If we consider the stability of nodes, we see that the min-
imal stability in MonStaGen is 0.9020 and the median value
is 0.9988. In the graphs generated by gMarkGraphGen, 210
nodes that have a lower stability value than our worst-case
0.9020 and 4393 nodes that have lower stability than our
median 0.9988. In other words, with gMarkGraphGen, over
97% of the nodes are more unstable than the median value
of those nodes generated with MonStaGen. The inner plot of
Figure 3c shows a zoom-in on the 210 most unstable nodes.

4. LOOKING AHEAD
In this preliminary study, we have highlighted the util-

ity of properties, such as stability, characterizing graph se-
quences rather than individual graphs. We have proposed
a first algorithm for generating graph sequences conform-
ing to a schema which satisfy the monotonicity property
and are significantly more stable than those generated using
gMark, a state-of-the-art synthetic graph generator. To our
knowledge, ours is the first schema-driven synthetic graph
generator having these properties.

Our study opens up several directions for future work. A
major direction is to establish further stability properties oc-
curring in real-world graphs, and extending our graph gener-
ation algorithm to capture these (e.g., stability with respect
to node-centrality measures). Further, in addition to edge
insertion, we plan to consider other natural aspects of graph
evolution such as edge deletion, batch updates, and tem-
poral dynamics. Finally, we would like to incorporate our
solutions in the open-source gMark framework.1
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ABSTRACT
Nowadays, a vast amount of data is generated and collected
every moment and often, this data has a spatial and/or
temporal aspect. To analyze the massive data sets, big
data platforms like Apache Hadoop MapReduce and Apache
Spark emerged and extensions that take the spatial charac-
teristics into account were created for them. In this paper,
we analyze and compare existing solutions for spatial data
processing on Hadoop and Spark. In our comparison, we
investigate their features as well as their performances in a
micro benchmark for spatial filter and join queries. Based
on the results and our experiences with these frameworks,
we outline the requirements for a general spatio-temporal
benchmark for Big Spatial Data processing platforms and
sketch first solutions to the identified problems.

1. INTRODUCTION
In the Big Data era, almost every piece of information

produced is also stored and used for analyses. The pro-
duced information can be of any kind: plain web server
logs, sensor readings from home or environment monitor-
ing, (mobile) location-aware devices that periodically report
their position, complex entities in Open Data sets like Wiki-
pedia/WikiData, or structured event information extracted
from news articles and other text sources. Often these types
have at least two features in common: a time and a location
component. For scalable processing of large datasets, data
parallel architectures like Hadoop MapReduce and Apache
Spark have been introduced and have widely been accepted.
However, their general data model does not take spatial or
temporal relations of the data items into account and there-
fore cannot efficiently answer spatial, temporal, or spatio-
temporal queries.

In this paper, we present results of an experimental study
comparing existing solutions for spatial data processing on
Apache Hadoop and Apache Spark. Particularly, we con-
sider the Hadoop extensions Hadoop-GIS [1] and Spatial-

c©2017, Copyright is with the authors. Published in Proc. 20th Inter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

Hadoop [2] as well as the Spark-based systems SpatialSpark
[3], GeoSpark [4], and our own implementation STARK1.
We investigate their features and also compare their per-
formance in a micro benchmark for spatial filter and join
queries. Finally, we will conclude with an outlook to a gen-
eral spatial and spatio-temporal benchmark.

2. EXISTING SOLUTIONS FOR BIG SPA-
TIAL DATA PROCESSING

The first approach to implement spatial operations as an
extension for Hadoop MapReduce is SpatialHadoop [2, 5].
It is built on top of Hadoop and provides spatial operators
for range queries, k nearest neighbors, and joins that can be
integrated into any Hadoop MapReduce program. Further-
more, spatial partitioning and indexing is available, too.

Another approach that extends the plain Hadoop MapRe-
duce framework with spatial operators is Hadoop-GIS [1].
Similarly to SpatialHadoop, Hadoop-GIS utilizes a two-level
indexing: a global partition indexing and an optional lo-
cal spatial indexing. The query processing engine RESQUE
(written in C++), uses these indexes to identify partitions
to load and to speed up processing the required partitions.
The RESQUE engine provides spatial operators for filters
and joins and is integrated into the Hive ecosystem.

While Hadoop is a very fault tolerant environment for par-
allel execution, writing all intermediate results to disk makes
the execution slow. Hence, the in-memory execution model
of Spark became very popular as it reduces the execution
time drastically, compared to MapReduce jobs. Currently,
there are two systems that implement spatial operators for
Spark: GeoSpark and SpatialSpark.

GeoSpark [4,6] is a Java implementation that comes with
four different RDD types: PointRDD, RectangleRDD, Poly-
gonRDD, and CircleRDD. These special RDDs internally main-
tain a plain Spark RDD that contains elements of the re-
spective type, i.e., points, rectangles, polygons, and cir-
cles. GeoSpark supports k nearest neighbor queries, range
queries, as well as joins and each of these queries can be
executed with or without using an index.

The main goal of the SpatialSpark approach described
in [3] is to provide a parallel join technique for large spatial
data sets. For this, they focus on data processing on parallel
hardware like multi-core CPUs and GPUs. SpatialSpark
implements a broadcast join, where the right relation is read
into memory and distributed to all workers. If the relation is

1https://github.com/dbis-ilm/stark

Poster Paper

 

 

Series ISSN: 2367-2005 490 10.5441/002/edbt.2017.52

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2017.52


Table 1: Feature comparison of Hadoop- and Spark-based Big Spatial Data processing platforms

Hadoop-GIS SpatialHadoop GeoSpark SpatialSpark STARK
Query Language / DSL X X × × X
Spatio-Temporal Data × × × × X
Spatial Partitioning X X X X X
Indexing X X X X X

Persistent Indexes X X × X X
Filter no partitioning

Contains X X X (X- w/o Index) X
ContainedBy X X × (X- w/o Index) X
Intersects X X X (X- w/ Index) X
WithinDistance X X × (X- w/o Index) X

Join X X (X- pred. limit.) (X- returns IDs) X
k Nearest Neighbors X X X × X
Clustering × × × × X

too big for main memory, a spatial partitioning and indexing
is utilized [7].

In the next sections, we will have a deeper look into the
supported features and limitations of the mentioned systems
and will also compare the performances of their operators.

3. FEATURE COMPARISON
The DE-9IM [8] defines all possible relations between two

spatial objects and the Open Geospatial Consortium re-
leased a standard for spatial data types and operations,
which is implemented in many spatial DBMS. In Table 1
we compare the five engines based on a subset of these stan-
dards and additionally include aspects like query language,
spatial partitioning, indexing, and data analysis operators.

Query Language.
Hadoop-GIS is integrated into Hive and implements the

SQL/Spatial MM standard and includes a complete set of
predicates, according to DE-9IM that can be used with filter
and join operators. For SpatialHadoop the authors intro-
duced the Pigeon [9] language that extends Pig Latin with
spatial functions. In Pigeon, fields of type bytearray are
implicitly converted to a geometry type when needed. Spa-
tialHadoop programs can also be written as plain MapRe-
duce programs, but as we did not find any documentation
we found it hard to set the correct classes to parse spatial
data and set parameters for a simple range query correctly.
Furthermore, SpatialHadoop provides a command line script
that can be used to run a single query/join.

GeoSpark can be used via its Java API, which however
does not integrate well into the Spark API. Unlike in Spark
where transformations are defined as methods on an RDD,
in GeoSpark users have to create extra instances of, e.g.,
PointRDD and pass in the base JavaRDD. For the operations,
again a new instance of the operator class, e.g., RangeQuery
has to be created which accepts the GeoSpark-RDD to work
on. This makes it tedious to write complex programs and to
represent a data flow. The main drawbacks of GeoSpark are
these special RDDs, which can only hold geometries of one
certain type (points in PointRDD, polygons in PolygonRDD,
...). On the one hand, this makes it impossible to load a
dataset that contains different geometry types in one column
and, on the other hand, all other columns are removed when
putting the data into these spatial RDDs. This also means

that it is not possible to process the data in subsequent
steps since related columns such as an ID are not available
anymore.

It seems that SpatialSpark should be used only via the
command line and run single queries/operations. However,
the internal Scala classes can be used in other programs as
well, although there is very little documentation.

STARK provides an integrated DSL (domain specific lan-
guage) for spatio-temporal query processing that seamlessly
integrates into any (Scala) Spark program. Spatial Joins
and filters can be called directly as transformations on stan-
dard RDDs. Additionally, it allows defining custom distance
functions and predicates for its operators.

To the best of our knowledge from the found literature and
provided documentation, only SpatialHadoop and STARK
are able to also process temporal or spatio-temporal data.

Spatial Partitioning and Indexing.
Hadoop-GIS comes with a recursive grid partitioning and

a global index (R-tree, R∗-tree). This index is stored in
the HDFS and used to identify partitions that need to be
loaded, i.e., that contribute to the result. Furthermore, ob-
jects within a partition (tile) can be indexed as well on de-
mand. SpatialHadoop also employs two index levels: on a
global level an index partitions data across all nodes while a
local index organizes data inside each partition. The indexes
hold a copy of the data to avoid random HDFS lookups [10].
The number of generated partitions is calculated depending
on the input file size, the HDFS block size, and an over-
head ratio. These indexes are used on read to eliminate
records that do not contribute to the final result. As index
structures, SpatialHadoop supports grid files, R-tree, and
R+-trees.

GeoSpark comes with several partitioning techniques: R-
tree partitioning as well as Voronoi, Hilbert, and fixed grid
partitioning. As described in [4], it supports R-trees and
quadtrees to create an ad hoc index on the RDDs. However,
during the evaluation, we found that choosing quadtrees is
not possible and respective settings are ignored. Persisting
indexes in GeoSpark seems not to be possible, since there is
no way to load and index or assign it to an RDD.

SpatialSpark includes a fixed grid partitioning, binary space
partitioning (BSP), as well as tile partitioning. Indexes have
to be created and written to disk/HDFS before they can be
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used within a program, i.e., there is no possibility for live
on-the-fly indexing.

STARK includes a fixed grid partitioner as well as a cost
BSP, which ensures partitions with almost same cost (amount
of data items). Indexes in STARK can be created on-the-
fly within a program and can also be materialized for later
use. However, in STARK an index that should be material-
ized can also be used within the same program, while in the
other frameworks, this index has to be created in an extra
run and then has to be explicitly loaded. Currently, STARK
uses only R-trees for indexing.

Spatial Filter & Join Operators.
Hadoop-GIS and SpatialHadoop are DE-9IM compatible

and spatial filter and join operators can be used with many
predicates.

GeoSpark only provides a contains and intersects predi-
cate for spatial filters. For spatial joins only contains and,
for joining two point data sets, withinDistance is supported.
For joins spatial partitioning is obligatory, but indexing can-
not be used.

SpatialSpark supports spatial filter queries with the pred-
icates contains, within (containedBy), and withinDistance.
However, a spatial partitioning cannot be applied in com-
bination with the filter operator. When querying a persis-
tent index for these range queries the intersects predicate
is compulsorily used. Internally, they expect RDDs with an
ID and a geometry object, which are processed when calling
the specific query object (like RangeQuery or BroadcastSpa-
tialJoin). SpatialSpark does not allow other payload fields
but the ID and, furthermore, the result of a join returns
only the matched pairs IDs, which requires additional joins
afterwards to retrieve the complete tuple in the application.

STARK includes a wide range of spatial predicates (that
can also be used for spatio-temporal data) which are applica-
ble for filter and join. While other systems neglect payload
data and only work with IDs and geometries, STARK keeps
any payload data throughout all operations.

Other Data Analysis Operators.
All considered frameworks support a k-nearest neighbor

operator, except SpatialSpark. However, they provide a
1-nearest-neighbor join predicate. A clustering operator is
only available in STARK, which implements DBSCAN.

4. PERFORMANCE EVALUATION
In the following experiments, we focus on a micro bench-

mark comparing the execution times for single operators
with different settings. The benchmarks are executed on
our cluster of 16 nodes with an Intel Core i5 processor and
16 GB RAM on each node. The nodes are interconnected
with a 1 Gbit/s network. The Spark jobs are executed with
32 executors and 2 cores for each executor. The data genera-
tor, test programs, settings, as well as more experiments and
results are available on GitHub2 . To run our experiments,
we first had to fix issues in GeoSpark3. The most important
problem was that operations that use an index for querying
returned the candidate set returned by the index (R-tree).
We added the candidate pruning step to obtain the correct
results. Furthermore, the contains predicate was actually a

2https://github.com/dbis-ilm/spatialbm
3We further had to use version 0.3 as the newer version 0.3.2
crashed with out-of-memory errors for the same settings.

containedBy (the operands were swapped).
The first experiment executes a spatial filter operator over

a 50,000,000 polygon data set (880 GB, uniform distribu-
tion) with a contains predicate to find those polygons that
contain a given query point. We used all available spatial
partitioners of each framework and executed the operation
without indexing as well as with live (on-the-fly) index cre-
ation, if possible. In this experiment, STARK performed
best with only 47 (BSP, live index) or 52 seconds (BSP, no
index). SpatialSpark is very limited in its usability as a spa-
tial partitioning is not allowed in combination with a filter.
The run without spatial partitioning and indexing took 3866
seconds (more than 1 hour). GeoSpark needed 1237 seconds
(20 minutes) without partitioning but was not able to pro-
cess this data set at all with a spatial partitioner and crashed
after several hours for each partitioner. While investigating
this problem we executed the program on a smaller poly-
gon data set with 1,000,000 entries (17,6 GB). In the best
case, it took 54 seconds with Hilbert partitioning. That is
the same time that STARK needed to process 880 GB. For
SpatialHadoop (as a representative of the Hadoop based sys-
tems) we used their command line program, but were not
able to receive a correct result: The program finished after
39 minutes with zero results. The problem is that a point
query option is not available and so we provided a point as
query range. A visualization of the execution times along
with a more detailed analysis that includes the overhead of
the partitioning can be found in our GitHub repository2 .

Our next experiment examines the influence of the query
range size to the execution time. For this, we used a point
data set with 50,000,000 points and executed a filter opera-
tor with a containedBy predicate to find all points contained
by a given polygon. While the data set has a value range
of [-180, 180] for x coordinates and [-90,90] for y, we exe-
cute the filter with 5 different squares created as polygons.
These squares have the side lengths: 1, 5, 10, 50, and 100.
Additionally, there is a query range that covers the com-
plete data space. Figures 1 to 3 show the execution times
for all partitioner/indexing combinations. Partitioners that
require setting the number of partitions in advance all use
the same amount (8100). This shows the impact of the prun-
ing step that the frameworks can take. If the query region
is small, only a single or very few partitions may contain re-
sult objects and other partitions do not have to be checked.
STARK makes use of this partition pruning approach where
ever possible and thus, is able to outperform the others that
do not seem to perform this action as they need the same
time for all six queries.

In the last experiment that we show here, we analyzed
the spatial join operation on two point data sets (1,000,000
points, uniform distribution) that finds equal points (same
exact location) in the two data sets. Figure 4 shows the
result for the Spark based frameworks with their best par-
titioner for the join with and without using an index. We
were not able to perform this test with SpatialHadoop as
the command line program crashed with an error and we
did not find any helpful documentation. For GeoSpark and
SpatialSpark the same partitioner performed best in both
cases. However, GeoSpark has a bug for Grid and R-tree
partitioning as in the final result 1 and ca. 10,000 tuples re-
spectively were missing (we also encountered different result
sizes for in each repetition of the experiment). It can also
be seen that for these frameworks, one cannot benefit from

492



1x1 5x5 10x10 50x50 100x100 360x180
Query range size

0

5

10

15

20

25

E
x
e
cu

ti
o
n
 t

im
e
 [

s]

SpatialSpark, No Partitioner, No Index

SpatialHadoop, No Partitioner, No Index

Figure 1: Exec. times for different range query sizes for Spatial-
Hadoop & SpatialSpark
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Figure 4: Exec. times for spatial join queries.

live indexing. This maybe because the speedup of querying
the point index is not big enough to compensate the time
required to build the index. For STARK, without using an
index the Grid partitioner performed best, but was slower
than SpatialSpark. With live indexing, however, the BSP
was best and outperformed the others. The reason here may
be that the BSP created partitions with an equal number of
elements and thus equal workload on the executors.

5. CONCLUSION
In this paper, we introduced Hadoop and Spark based en-

gines that allow processing Big Spatial Data. As the results
of our feature comparison and micro benchmark show, they
all differ in supported operations as well as in implemen-
tation and thus, in performance. However, the performed
micro benchmark should just be a starting point for a more
exhaustive spatial benchmark. For this, a more flexible data
generator is needed to easily create clustered data of differ-
ent sizes. Furthermore, a good benchmark should contain
micro benchmark tests, as shown in the previous section, as
well as a macro benchmark performing real world queries.
The macro benchmark is needed to (1) evaluate the real per-
formance and (2) to compare the functionality and usability
of the system. Although the queries may be formulated
in natural text leaving the task of the implementation to
the authors and developers of an engine, we believe that
the Pigeon [9] extension for Pig Latin in combination with
our Piglet [11] for code generation will provide a good and
portable user interface for such a benchmark.
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ABSTRACT 

Recent development of next generation sequencer (NGS) and 

algorithms for genomic analysis are contributing to the 

understanding of human genetic variation and thus to 

personalized medicine. In leveraging this genomic data, the 

difficult task of finding out the genes relevant to dedicated 

phenotypes, e.g., disease-causal gene analysis, is becoming 

increasingly important．In a previous work, we have introduced 

a user defined function called “genome type” into PostgreSQL 
open source relational database management system (RDBMS) to 

accelerate genetic analysis with the aid of an efficient data 

structure in which all the genotypes are packed into one record. 

However, there are still some challenges to be addressed in order 

to efficiently implement the proposed genome type when using 

real data. One problem is that, although the majority of variants 

are composed of three types of genotypes, this number is not fixed 

and can be highly skewed. Another problem is that the amount of 

genomic data necessary for accurate association analysis is huge 

and speed-up is necessary to make an iterative analysis feasible. 

To solve these problems, we developed a new method which 

efficiently stores and processes variants of variable sizes. We also 

applied query parallelization techniques and exploited instruction 

level parallelization (SIMD) on Intel Xeon processor. Our 

performance evaluation shows that the processing of very large 

scale genomic data can be reduced to some few seconds. 

1. INTRODUCTION 
Due to recent technological innovations on genome sequencing 

and analysis, the speed and cost of acquiring genome information 

have drastically reduced and thus huge amounts of genome 

information has been collected. Human DNA consists of 3 billion 

DNA sequences and is represented by a sequence of four base 

AGCTs. Currently, it is said that there are tens of millions of 

variations such as SNP (Single nucleotide polymorphism), 

INDEL (insert-deletion), CNV (Copy Number Variation) that 

derive individual differences in their phenotypes. In recent years, 

disease-causal gene studies such like cohort studies and case-

control studies that are based on statistical association analysis of 

gene variants and diseases, as well as lifestyle habits and physical 

characteristic have attracted much attention. In our work we focus 

on the large-scale statistical association analysis, as seen in 

Genome Wide Association Study (GWAS) that targets the entire 

genome-wide scale data, and propose new methods to speed up 

the statistical analysis of disease-causal gene study on relational 

databases.  

Disease-causal gene study aims at finding genotypes (types of 

gene variants) that are relevant to a target disease. This is done by 

dividing patients into a group with disease (case group) and 

another without disease (control group), and finding genotypes 

with different distributions between the two groups. For example, 

in Figure 1, there is no difference in genotype distribution 

between the case group and the control group for variants 0 and 

1. However, since a significant difference can be seen in the 

distribution for variant N, this variant may be relevant to the target 

disease. The association between the target disease and the 

variants is calculated by performing a significance difference test 

under the null hypothesis (Cochrane-Armitage test, χ2 test, etc.) 

for each gene variant, and when the p value falls below the 

significance level, the variant is considered relevant to the disease.  

The processing required for the described association analysis is 

thus executed in two steps: (1) aggregating to generate the 

genotype distribution and (2) significant difference test. For the 

huge amount of genome data available nowadays step (1) requires 

much processing, and the total analysis may require some days if 

naively executed. Tools such as plink [3] address the statistical 

processing used in GWAS, and the performance of those analysis 

has shown improvements recently. In those tools, it is common to 

use genome information in a flat format file such as VCF, pad, or 

bad format [3]. However, in association analysis, the selection of 

the population greatly affects the correctness of the statistical 

result. Therefore, to search for meaningful results, an iterative 

approach where the selection of the population and the 

corresponding statistical processing are repeated a number of 

times is necessary to obtain correct statistical results. In order to 

repeatedly select and process data, it would be much easier if all 

the necessary data such as the genome data as well as the physical 

characteristic data (sex, race, age, etc.), the medical treatment data 

(presence/absence of disease, diagnosis results, etc.) related to the 

analysis were stored and managed in a single RDBMS not in flat 

format files. Recently, some studies that store and manage the 

whole necessary data in RDBMS have been proposed [4] [5], but 

none of the studies focus on high-speed processing of large-scale 

data on those RDBMS. It motivated us to speed up the processing 

on the data in RDBMS. In the previous work [1], we proposed a 

novel genome type and aggregate function as extended user-

defined types of PostgreSQL and developed a new genotype data 
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Figure 1: Example of genotype distributions 
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structure for efficient aggregate processing. However, in order to 

handle actual data, here we extend our previous work to handle 

variants with variable number of genotypes and to further speed-

up the processing of large scale data.  

In this paper, we first review our genome type and aggregate 

function in Section 2. Then, we introduce a new data structure to 

handle variants with variable size genotypes, and parallelization 

to handle large scale data in Sections 3 and 4, respectively. We 

finalize with some concluding remarks in Section 5. 

2. Genome type and aggregate function 
In our previous work [1], we have introduced a new genome type 

and aggregate function as extensions of PostgreSQL, and verified 

that those extensions enabled efficient genome analysis on 

RDBMS. Figure 2 illustrates genome table TG where each row 

stores an individual ID and a field of genome type (GT) that packs 

the genotypes of all the N genome variants (GV0…GVN-1). 

Additional data on each individual such as clinical, demographic, 

lifestyle information, etc. can also be stored in other tables. Figure 

2 illustrates a clinical table TC that registers the disease of each 

individual. SQL 1 shows the SQL statement when executing 

aggregation using the genome type aggregate function 

fjgeno_count(). Since all the genotypes of the gene variants were 

packed in a single field, the genome aggregate function could 

efficiently count up through all genotypes of each individual at 

once. 

3. New data structure for genome type 

3.1 Dictionary-based encoding 

3.1.1 Data structure 
As illustrated in Figure 2, the genome type introduced in our 

previous work stored the genotype information in text format with 

all the genotypes as strings packed in one line and delimited by 

comma. In order to further improve its efficiency, here we 

introduce the utilization of a dictionary to compress data by 

numerically encoding the genotypes. Note that most gene variants 

can have a few variations of genotype patterns. For instance, a 

simple SNP can have three genotype patterns ‘A/A’, ‘A/C’ or 

‘C/C’. When represented in text format, a genotype ‘A/A’ plus a 
delimiter character would need four bytes. However, a numeric 

code requires only two bits and thus has a compression factor of 

1/16.  

Figure 3 illustrates a variant dictionary table (TV) that, for each 

of the N variants (GV0…GVN-1), maps the genotype to its numeric 

code. In this example, each GVi can have three types of genotypes 

(‘A/A’, ‘A/C’, ‘C/C’ for GV0, ‘G/G’, ‘G/T’, ‘T/T’ for GV1, …) 

and thus each GVi can be encoded using two bits ((01)2, (10)2, 

(11)2 ).  Therefore the genome table TG is represented as an array 

of 2N bits to store the genotypes of the N genome variants.  

3.1.2 Performance of the new data structure 
The proposed dictionary-based data structure also contributes 

to the acceleration of the aggregate processing by avoiding heavy 

text parsing processing. We measured the execution time of the 

query in SQL 1 using the genome type based on dictionary-

encoding and on text developed in our previous work. We 

executed the query on a PRIMERGY RX2540 M1 machine with 

Xeon E5-2660 3 @2.60GHz, 576GB memory, and shared buffers 

= 128GB for the PostgreSQL configuration parameter, using data 

of 100,000 individuals with 100,000 variants. As shown in Table 

1, while the execution time of aggregate processing takes about 

46 seconds when parsing text, it takes only about 8 seconds using 

the proposed dictionary method, which results in more than 5x 

faster execution.  

Table 1: Execution time of aggregate processing 

Genome Type Execution time (sec) 

Text parsing (Previous work) 45.743 

Dictionary based (This work) 8.331 

3.2 Support for variable genotypes  

3.2.1 Dynamic data structure 
As shown in 3.1, a dictionary encoding the genotypes to a fixed 

length bitwise code can compress data and improve the aggregate 

processing. As illustrated in Section 3.1, a large number of 

variants presents a small number of genotype patterns, namely 

three.  However, even some simple SNPs and INDELs can 

present more than three patterns, and especially STRs (short 

tandem repeat) have many repeated patterns and so can present 

more than a hundred patterns. We can easily come up with two 

naïve methods to handle the variable number of genotype patterns. 

One way is to use a fixed length code that is long enough to 

represent the maximum number of possible genotype patterns 

among all variants. Another way is to use different length codes 

for each of the variants so that each variant code is long enough 

to represent the maximum number of possible patterns for that 

variant. However, note that both approaches are static and require 

a prior knowledge of the maximum number of patterns for the 

variants. In case a new individual’s genome type is inserted with 

a new pattern that requires a longer variant code, both approaches 

require the reconstruction of the genome table as well as the 

dictionary. We believe that the preknowledge of the maximum 

number of genotype patterns is not practical in real genome 

analysis where new data emerges constantly. Since the 

reconstruction of dictionary and genome table are too heavy, we 

introduce a new dynamic method that efficiently handles new 

genotype patterns without prior knowledge.  

  Our dynamic approach handles new patterns that exceed the 

capability of initial bitwise codes by appending new bitwise codes 

at the end of our data structure. As illustrated in Figure 4, let’s 

SELECT fjgeno_count(TG.GT) FROM TG 

WHERE TG.ID = Tc.ID AND Tc.D0 = YES; 

SQL 1: Statement with genome type aggregation function 

Figure 2: Database schema of genome type 

Figure 3: Two-bit encoded genome type and variant 

dictionary table 
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suppose that for the first M individuals, all the N genome variants 

contain only three patterns that are represented by two-bit codes 

(01)2, (10)2 and (11)2. Therefore, for individuals 0 to M-1, GT is 

an array with two-bit spaces allocated to each of the N variants. 

Now, let’s suppose that an individual M with a genome pattern 
‘A/G’ for GV1, that is different to the previous patterns ‘G/G’, 
‘G/T’ and ‘T/T’ that appeared so far in GV1, is inserted. In that 

case, the genome array for individual M is extended with a new 

two-bit space, and ‘A/G’ is encoded as (01)2 for this new two-bit 

space for GV1, while the original two-bit space for GV1 is inserted 

with code (00)2 indicating that the necessary code is stored 

elsewhere in a new two-bit space. Note that the dictionary Tv is 

updated and a new entry gives that ‘A/G’ is encoded as (01)2 for 

GV1 and the code is located at the Nth two-bit space in GT array. 

Analogously, the procedure continues as follows: 

 When a fourth genotype pattern ‘G/G’ newly appears for 
GV2 by inserting individual M+1, another space is added 

for GV2 following the second space for GV1 with code 

(01)2, and the first space for GV2 is filled with (00)2; 

 When a fifth pattern ‘A/A’ newly appears for GV1 by 

inserting individual M+2, the code (10)2 is stored in the 

existing second space for GV1, and the first space for GV1 

is filled with (00)2; 

 When a sixth pattern ‘A/T’ for GV1 and a fifth pattern ‘G/T’ 
for GV2 appear by inserting individual M+3, they are 

stored in the existing second spaces for GV1 and GV2 as 

codes (11)2 and (10)2 , and the other spaces for GV1 and 

GV2 are filled with (00)2, respectively; 

 When a seventh pattern ‘C/G’ newly appears for GV1 by 

inserting individual M+4, a third space is needed for GV1. 

In this case, the third space for GV1 containing (01)2 is 

added following the second space for GV2, and (00)2 is 

inserted into the first and second spaces for GV1; 

Note that all these information are registered on the variant 

dictionary table Tv that is extended with a location field that gives 

the two-bit space in which a pattern for each of the variants is 

found. The physical address of such location is decided when 

loading the genome data, and then when new patterns are inserted 

and new space is needed to store them. 

In our method a fast array access is feasible because of its fixed 

length bitwise codes, and although the information for one variant 

is distributed among several spaces, each summation is efficiently 

processed over two-bit fixed elements. After the counts for each 

two-bit fixed element are processed, they are aggregated to 

generate the final counts for each variant by using the information 

on the variant dictionary table. 

3.2.2 Efficiency of the dynamic data structure 
To evaluate the efficiency of this method, we run the query on 

SQL 1 using the data distribution shown in Table 2. It emulates 

actual data containing 90,000 normal SNPs with three genotype 

patterns, 9900 irregular SNPs with six genotype patterns, and 100 

STRs with 55 genotype patterns.  

Table 2: Example of genotype size distribution 

Counts # of genotype pattern Supposed variant type 

90000 3 2-allelic SNPs 

9900 6 3-allelic SNPs 

100 55 STRs 

Table 3 shows the processing times when all variants have only 

three patterns (Fixed), and for the case of Table 2 (Variable). We 

found that even for the case of variable variant patterns, the 

processing time has only a 20% increase over the “ideal” case of 
fixed three patterns, which is proportional to the increase in table 

size. Therefore, we found that the proposed dynamic approach is 

very efficient in handling genome data without any prior 

knowledge on the number of variant patterns. 

Table 3: Times for fixed and variable patterns 

 Fixed Variable 

Time (sec) 8.331 9.958 

Size  (GB) 2.70 3.32 

4. Acceleration by parallelization 

4.1 Query parallelization 
With the aid of the increasing number of processors and cores 

in one machine, parallelization is a very effective way for 

processing speed acceleration. Here we show how the processing 

of our proposed genome data structures on PostgreSQL could 

take advantage of parallel processing. Since parallel query 

capabilities were introduced in the latest release 9.6 of 

PostgreSQL [2], we run the query SQL 1 on PostgreSQL 9.6. 

However, as a result of our trial, we found that the introduced 

parallelization is not effective for performance acceleration of 

that query. Figure 5 shows which processing are parallelized in 

the query execution plan created when running the query of SQL 

1. We can see that PostgreSQL 9.6 parallelizes the join between 

Figure 5: Parallelized query plan 

Figure 4: Adding genotype patterns 
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the genome table and the clinical table, however the subsequent 

aggregate of the large join result is not parallelized and thus can 

become the bottleneck of the total query processing.  

As we show later in Section 4.3, a more efficient parallel 

execution was achieved when using our original parallel function 

developed in a previous work [6] based on PostgreSQL 9.4. As 

shown in Figure 5, this function parallelizes the query execution 

plan from the topmost plan and thus both join and aggregation are 

parallelized, resulting in the acceleration of the total performance 

of the query. 

4.2 SIMD processing 
In addition, SIMD instructions of the processor could be used to 

parallelize the processing in the CPU instruction. Currently we 

can run 256-bit wide vector processing utilizing AVX2 which has 

been equipped from Sandy Bridge generation of Intel Xeon 

processors. The aggregate processing is mainly composed of two 

steps: taking the genotype patterns stored in each variant at the 

genome type structure, and then, counting the corresponding 

variant elements in a summation array.  In order to efficiently 

realize the vector processing, we introduce a lookup array which 

stores vectors corresponding to the pattern values of the genome 

type and that should be added to the summation array. Figure 6 

illustrates how the count-up processing uses the lookup array. 

First, the value (00010110)2 composed of four variant’s pattern 
codes is taken from the genome type. The decimal value of 

(00010110)2 is 22 and thus, the 22th element of the lookup array 

gives the vector with the bits where places corresponding to the 

four variant’s pattern values (GVn’s (00)2, GVn+1’s (01)2, GVn+2’s 
(01)2, GVn+3’s (10)2) are set to 1. Then, one counting cycle is done 

by adding the vector to the summation array with SIMD 

instruction. Note that all the 256 vector values that corresponds to 

the composition of the four variant’s pattern codes are prepared 

on the lookup array in advance.  

Because the element size of the summation array has to fit one 

SIMD vector, its size is restricted to 16-bit width. Thus when any 

element in the summation array achieves the maximum value of 

65535 in integer, all the element values are added to a “final 
summation array” whose elements are wide enough. The 

summation array elements are then cleared to continue the 

aggregate processing.  

4.3 Performance evaluation 
In this section, we evaluate how the parallel processing of the 

newly proposed genome type accelerates the aggregate 

processing. We used the same experimental environment in 

Section 3.1.2. The results are shown in Figure 7 when using 

PostgreSQL 9.6 and 9.4 extended with our parallel function.  

We can see that for one core, the newly released PostgreSQL 

9.6 was improved from the older 9.4. However, as we explained 

in 4.1, since PostgreSQL 9.6 cannot parallelize the aggregate that 

represents the heaviest operation in the query, its total time does 

not scale when increasing the number of cores. On the other hand, 

for PostgreSQL 9.4 with our parallel extension, the execution 

time of 8.3 seconds on single core improves to 2.1 seconds on 

eight cores, i.e. about four times faster. In addition, using SIMD 

instructions, the performance improves by 20% compared with 

simple aggregate processing using dictionary encoded genome 

type.  

5. Conclusion 
    In this paper, we present our new efforts on accelerating 

genomic analysis to deal with actual large-scale data. The 

dictionary-based data structure described in 3.1.2 enables dealing 

with genotype patterns of variable maximum number and resulted 

in 5 times faster aggregate processing. And as shown in the results 

in 4.3, query parallelization with 8-cores and SIMD processing 

resulted in 5 times faster aggregate processing, and thus resulting 

in a total acceleration factor of 25x. This results in an execution 

time of less than two seconds for the aggregation of genome 

variants for genome information of 100 thousands individuals 

with 100 thousands variants. In recent studies, it is reported that 

more than 10 million variants have been included in the human 

genome. For such huge data, our aggregate processing would 

require some hundreds seconds. We believe that meaningful 

association studies requires a try and error approach where a 

variety of conditions are run iteratively. We believe our method 

could contribute to the feasibility of such an iterative approach for 

genome analysis.  
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ABSTRACT
Given a social network of experts, we address the problem of dis-
covering a team of experts that collectively hold a set of skills re-
quired to complete a given project. Prior work ranks possible so-
lutions by communication cost, represented by edge weights in the
expert network. Our contribution is to take experts’ authority into
account, represented by node weights. We formulate several prob-
lems that combine communication cost and authority, we prove that
these problems are NP-hard, and we propose and experimentally
evaluate greedy algorithms to solve them.

1. INTRODUCTION
An expert network is a social network containing profession-

als who provide specialized skills or services. Expert network
providers include the employment-oriented service LinkedIn, the
repository hosting service GitHub, and bibliography-based Web-
sites such as DBLP and Google Scholar. A node in an expert net-
work corresponds to a person and node labels denote his or her
areas of expertise. Experts may be connected if they have previ-
ously worked together, co-authored a paper, etc. Edge weights may
denote the strength of a relationship, the number of co-authored
publications, or the communication cost between experts [4, 5].

There has been recent interest in the problem of finding teams of
experts from such networks; see, e.g, [3, 5]. A common approach
has been to find a subgraph of the expert network whose nodes col-
lectively contain a given set of skills and whose communication
cost is minimal. In this paper, we argue that in many practical ap-
plications, other factors should also be considered. For example,
experts may be associated with authority metric such as h-index or
number of publications. Here, we may want to minimize commu-
nication costs and maximize authority. Furthermore, in large social
networks, experts holding the desired skills may not be directly
connected. Thus, we may obtain a subgraph with some nodes, the
skill holders, corresponding to team members who have the desired
skills, and other nodes serving as connectors. The authority of con-
nectors may also affect the quality of the team; e.g., connectors
may serve as mentors for the skill holders.

For instance, consider the two teams of researchers in Figure 1,
both having expertise in social networks (SN) and text mining

c©2017, Copyright is with the authors. Published in Proc. 20th Inter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

Jialu Liu(SN)
h-index: 9 h-index: 139

Jiawei Han

Theodoros Lappas
h-index: 12

Dimitrios Kotzias (TM)
h-index: 3h-index: 5

Behzad Golshan (SN)

Team (b)

Team (a)

Xiang Ren (TM)
h-index: 11

Figure 1: Two teams with expertise in SN and TM.

(TM). Team (a) and (b) both have two skill holders and a connector
node; in this example, we use graduate students as skill holders and
professors as connectors. Assuming equal communication costs,
i.e., each edge having the same weight, previous work cannot dis-
tinguish between these two teams. However, the experts in team (a)
have higher authority (h-index). Furthermore, even if all the skill
holders were to have the same authority, team (a) may be preferable
because its connector has higher authority.

Our contributions are as follows.
1. We formally define the problem of authority-based team for-

mation in expert networks. We formulate three ranking ob-
jectives which optimize communication cost, skill holder au-
thority, connector authority and combinations of them. We
prove that optimizing these objectives is NP-hard.

2. Since these problems are NP-hard, we propose greedy algo-
rithms to solve them. We present an algorithm to optimize
communication cost over an expert networkG. We then give
a transformation which moves authority (node weights) onto
the edges of a new graph, G′, and prove that our algorithm
also optimizes the other objectives over G′.

3. We perform a comprehensive evaluation using the DBLP
dataset to confirm the effectiveness and efficiency of our ap-
proach. In particular, we show that the teams discovered
by our techniques perform higher-quality research than those
found using prior work.

2. PRELIMINARIES
Let C = {c1, c2, . . . , cm} be a set of m experts, and S =
{s1, s2, . . . , sr} be a set of r skills. An expert ci has a set of skills,
denoted as S(ci), and S(ci) ⊆ S. If sj ∈ S(ci), expert ci has skill
sj . Furthermore, a subset of expertsC′ ⊆ C have skill sj if at least
one of them has sj . For each skill sj , the set of all experts having
skill sj is denoted as C(sj) = {ci|sj ∈ S(ci)}. A project P ⊆ S
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Figure 2: The Proposed Approach

is a set of required skills. A subset of experts C′ ⊆ C covers a
project P if ∀sj ∈ P ∃ ci ∈ C′, sj ∈ S(ci).

We model the social network of experts as an undirected graph
G. Each node in G is an expert in C (we use the terms expert
and node interchangeably). Each expert ci has an application-
dependent authority a(ci). To convert authority maximization into
a minimization problem, we set a′(ci) = 1

a(ci)
. Furthermore, let

w(ci, cj) be the weight of the edge between two experts ci and cj .
Edge weights correspond to application-dependent communication
cost or relationship strength. There is no edge between experts who
have no relationship or prior collaboration. Formally:

Definition 1. Team of Experts: Given an expert network G
and a project P that requires the set of skills {s1, s2, . . . , sn},
a team of experts T is a connected subgraph of G whose nodes
cover P . With each team, we associate a set of n skill-expert pairs:
{〈s1, cs1〉, 〈s2, cs2〉, . . . , 〈sn, csn〉}, where csj is an expert in T
that has skill sj for j = 1, . . . , n.

The same expert may cover more than one required skill, i.e.,
csi can be the same as csj for i 6= j. Also, there may not be a
direct edge between some two experts csi and csj in G. Thus, T
may include connector nodes that may not hold any skill in P (e.g.,
Han and Lappas in Figure 1). Assuming that edge weights denote
communication costs, minimizing communication costs amounts to
minimizing the sum of the weights of the team’s edges [3].

Definition 2. Communication Cost (CC): Suppose the edges
of a team T are denoted as {e1, e2, . . . , et}. The communication
cost of T is defined as CC(T ) =

∑t
i=1 w(ei), where w(ei) is the

weight of edge ei.

Problem 1. Given a graph G and a project P , find a team of
experts T for P with minimal communication cost CC(T ).

This is an NP-hard problem [3] which has been studied before.
Extensions of this problem have also been considered, e.g., opti-
mizing personnel cost and proficiency of skill holders [2, 7], or
recommending replacements when a team member becomes un-
available [4]. However, to the best of our knowledge, existing ap-
proaches do not optimize the authority of skill holders and connec-
tors.

3. TEAM FORMATION FRAMEWORK
3.1 Foundations

We are interested in optimizing both communication cost and
authority. Note that we optimize the authority of connectors and
skill holders separately. Some applications may find the authority
of skill holders more important than that of the connectors (and vice
versa), e.g., those where skill holders execute the project and con-
nectors only provide guidance. Therefore, we optimize them with
different tradeoff parameters, γ and λ, with respect to the commu-
nication cost and to each other. Figure 2 summarizes the problems
we tackle and the remainder of this section discusses them in detail.
First, we define the connector authority of a team as the sum of the
inverse-authorities a′(ci) of its connectors.

Definition 3. Connector Authority (CA): Suppose that the
connectors of a team T (all nodes excluding skill holders) are de-
noted as {c1, c2, . . . , cq}. The connector authority of T is defined
as CA(T ) =

∑q
i=1 a

′(ci).

Problem 2. Given a graph G and a project P , find a team of
experts T for P with minimal connector authority CA(T ).

THEOREM 1. Problem 2 is NP-hard.
Due to space limitations, we refer the reader to the extended ver-

sion of this paper (technical report) for all proofs [6]. Furthermore,
we are interested in the bi-criteria optimization problem of mini-
mizing CC and CA. To do so, we combine these two objectives
into one with a tradeoff parameter γ (after normalizing edge and
node weights since they may have different scales).

Definition 4. CA-CC Objective: Given a team T and a tradeoff
parameter γ, where 0 ≤ γ ≤ 1, the CA-CC score of T is defined
as CA-CC(T ) = γ×CA(T ) + (1− γ)×CC(T ).

Problem 3. Given a graph G, a project P , and a tradeoff param-
eter γ, find a team of experts T for P with minimal CA-CC(T ).

THEOREM 2. Problem 3 is NP-hard.
We are also interested in optimizing the authority of skill holders.

Definition 5. Skill Holder Authority (SA): Suppose that the
skill holders of a team T are denoted as {c1, c2, . . . , cn}. The skill
holder authority of T is defined as SA(T ) =

∑n
i=1 a

′(ci).

Problem 4. Given a graph G and a project P , find a team of
experts T for P with minimal skill holder authority SA(T ).

Problem 4 can be solved in polynomial time: for each skill in P ,
we find an expert with the highest a (lowest a′), and then produce a
connected subgraph containing the selected experts. However, this
ignores communication cost and connectors’ authority. We now put
all three objectives together.

Definition 6. SA-CA-CC Objective: Given a team T and a
tradeoff parameter λ, where 0 ≤ λ ≤ 1, the SA-CA-CC objective
of T is defined as SA-CA-CC(T ) = λ×SA(T ) + (1 − λ)×CA-
CC(T ).

Problem 5. Given a graph G, a project P , and a tradeoff param-
eter λ, find a team of experts T for P with minimal SA-CA-CC(T ).

THEOREM 3. Problem 5 is NP-hard.
Since the tradeoff parameters γ and λ are application-dependent,

we leverage user and domain expert feedback to set and update
them over time (see experiment in Figure 5). Incorporating user
feedback is important for achieving high precision.

3.2 Search Algorithms
Since Problems 1, 2, 3 and 5 are NP-hard, we propose efficient

and effective greedy algorithms to solve them in polynomial time.
Optimizing CC: Algorithm 1 returns a subtree of G corre-

sponding to a team with optimized communication cost (sum of
edge weights). The for-loop in line 3 considers each expert cr as
a potential root node for the subtree (cr may end up being a skill
holder or a connector). To build a tree around cr , for each required
skill si, we select the nearest skill holder, denoted bestExpert,
that contains si (lines 9-13; assume DIST(v1,v2) finds the short-
est path, i.e., the smallest sum of edge weights, between two nodes
v1, v2). The method add in line 13 connects the bestExpert to
the current team, meaning that any additional nodes along the path
from the root to bestExpert are also added. The tree with the low-
est sum of edge weights is the best team (lines 14-17). To find the
shortest path between any two nodes in constant time, we use dis-
tance labeling, or 2-hop cover [1]. As a result, the complexity of
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Algorithm 1 Finding Best Team of Experts
Input: graph G with N nodes; project P = {s1, s2, . . . , st}; the set of experts
that contains each skill si, C(si), for i = 1, . . . , t.
Output: best team of experts
1: leastTeamCost←∞
2: bestTeam← ∅
3: for r ← 1 to N do
4: root← cr
5: teamCost← 0
6: team← ∅
7: set the root of team to root
8: for i← 1 to t do
9: minCosti ← minv∈C(si)

DIST (root, v)

10: bestExpert← argminv∈C(si)
DIST (root, v)

11: if bestExpert 6= ∅ then
12: teamCost← teamCost + minCosti
13: team.add(bestExpert)
14: if size(team) = t then
15: if teamCost < leastTeamCost then
16: leastTeamCost← teamCost
17: bestTeam← team
18: return bestTeam
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Figure 3: SA-CA-CC scores of different ranking methods(γ = 0.6)

Algorithm 1 isO(N×t×|Cmax|), where |Cmax| is the maximum
size of the expert sets C(si) for 1 ≤ i ≤ t. The N comes from
the for-loop in line 3, the t comes from the for-loop in line 8 and
the |Cmax| is due to computing the shortest path to each expert in
C(si) in lines 9 and 10. For finding top-k teams, we initialize a list
L of size k for the output. The list L is updated after each iteration
of the loop and the new team is added to L if its cost is smaller than
the last team in L. The runtime complexity remains the same as the
entire operation only needs an extra pass over L in each iteration.

To solve the other problems, we transform the expert network G
by moving authority (node weights) onto the edge weights and then
running Algorithm 1 on the transformed graph.

Optimizing CA-CC: For Problem 3, we transform G into G′

as follows. Let the edge weight between nodes ci and cj in G be
w(ci, cj). In G′, we transform each edge weight to w′(ci, cj) =
γ(a′(ci)+a

′(cj))+2× (1−γ)w(ci, cj). The DIST function now
finds shortest paths by adding up the transformed edge weights w′.
However, we only want to take connector authority into account,
not skill-holder authority. Therefore, in lines 9 and 10, we replace
DIST (root, v) byDIST (root, v)−γa′(v); note that v is always
a skill holder. If root contains skill si, then DIST is set to zero
and skill si is assigned to root. With this modification, we claim
that running Algorithm 1 onG′ optimizes CA-CC. Note that setting
γ = 1 solves Problem 2, i.e., optimizes CA.

Optimizing SA-CA-CC: Recall that SA-CA-CC is a linear
combination of communication cost, skill holder authority and con-
nector authority. We re-use G′ from above to capture commu-
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Figure 4: Precision of top-5 teams for different methods
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Figure 5: Sensitivity of normalized results to λ

nication cost and connector authority. Additionally, we need to
take λ into account and add the contribution of skill holder author-
ity. To do this, we replace DIST (root, v) in lines 9 and 10 with
(1 − λ)(DIST (root, v) − γa′(v)) + λa′(v). Note that we have
to subtract the authority of skill holders with parameter γ and then
add it with parameter λ. As before, if root contains skill si, then
DIST is set to zero and skill si is assigned to root. We claim that
running Algorithm 1 with this modification, along with using G′

instead of G, solves Problem 5.

4. EXPERIMENTAL RESULTS
In this section, we use Algorithm 1 and its various modifications

explained above to implement ranking strategies for team discovery
which optimize CC, CA-CC and SA-CA-CC. CC corresponds to
prior state-of-the-art, and our main goal is to show that CA-CC and
SA-CA-CC are more effective. We also implemented Random,
which randomly builds 10,000 teams and selects the one with the
lowest SA-CA-CC, andExactwhich performs exhaustive search to
find an (SA-CA-CC)-optimal solution. Note, however, that Exact
is intractable for large networks or large projects (containing many
required skills). The algorithms are implemented in Java and the
experiments are conducted on an Intel(R) Core(TM) i7 2.80 GHz
computer with 4 GB of RAM.

Similar to previous work, we use the DBLP XML dataset1 to
build an expert graph [2, 3]. For potential skill holders, we take
junior researchers with fewer than 10 papers and we label them
with terms that occur in at least two of their paper titles. This gives
us the areas of expertise. Similar to [2, 3], we set edge weights
between two experts ci and cj to 1−|

bci∩ bcj
bci∪ bcj

| (Jaccard Similarity)

where bci is the set of papers of author ci. We use h-index as the
node weight to denote authority. The resulting graph has 40K nodes
(experts) and 125K edges. The number of skills in a project is set
to 4, 6, 8 or 10. For each number of skills, we generate 50 sets of
skills, corresponding to 50 projects, and we report average results
over these 50 projects.

Exp-1 Effectiveness. We begin by comparing our SA-CA-CC
ranking strategy with Exact; for completeness, we also test CC,
1http://dblp.uni-trier.de/xml/
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Figure 6: Best team of CC, CA-CC and SA-CA-CC with "skills": analytics(Anl), matrix (Mat), communities(Com), object oriented(OR)

CA-CC and Random, and compute their SA-CA-CC scores. Fig-
ure 3 plots the SA-CA-CC scores of different ranking strategies for
different numbers of skills and different values of λ. For brevity,
we fix γ at 0.6 but different values led to similar conclusions. We
conclude that SA-CA-CC produces results that are close to those
of Exact (but note that Exact was only able to handle 4 and 6
skills and did not terminate in reasonable time for 8 and 10 skills).
Not surprisingly, SA-CA-CC has lower SA-CA-CC score than CC
and CA-CC. We also note CC, CA-CC and SA-CA-CC have sim-
ilar runtime since they use the same fundamental algorithm and
indexing methods. The runtime depends on the number of required
skills and is around a few hundred milliseconds (i.e., less than one
second) on average.

Exp-2 User Study. We conduct a user study to evaluate the top-
k precision of different ranking strategies. First, we create four
projects with different numbers of required skills. Then, for each
project, we run CC, CA-CC and SA-CA-CC and take the top-5 best
teams returned by each. We give these results to six Computer
Science graduate students, along with the average number of pub-
lications and the h-index of each expert included in the teams. We
asked the students to judge the quality of the top-5 teams using a
score between zero and one. Figure 4 shows the top-5 precision
of each method. In this experiment, we set both λ and γ to 0.6.
Both of our methods, CA-CC and SA-CA-CC, obtain better preci-
sion than CC for all tested projects.

Exp-3 Quality of Teams. We check if the top-5 teams returned
by CC and SA-CA-CC were successful in real life. To do so, we
examined the rankings of the publication venues of these teams ac-
cording to the Microsoft Academic conference ranking. Since we
used the DBLP dataset up to 2015 for team discovery, we only con-
sider papers published in 2016. We set γ and λ to 0.6 and generate
5 different projects with four different skills. From the teams that
co-authored papers in 2016, we found that 78% of the time the
teams found by SA-CA-CC published in more highly-rated venues
than those found by CC.

Exp-4 Sensitivity. Figure 5 shows the sensitivity of the results
to λ (the tradeoff parameter between skill holder authority and CA-
CC), specifically the sensitivity of the average h-index of skill hold-
ers (part a), the average h-index of connector nodes (part b), the
average team size (part c) and the average number of publications
(part d). Our methodology for evaluating sensitivity is as follows.
First, we examine the effect of λ on the top 5 teams returned by
SA-CA-CC. Given the project [analytics, matrix, communities, ob-
ject oriented], SA-CA-CC finds top-5 teams using different values
of λ. Second, we evaluate the effect of λ on a best team returned
by SA-CA-CC for m different projects. For this, we randomly gen-
erate five projects with four skills each. Then, for each value of λ,
SA-CA-CC finds the best team for each project. As shown in Figure
5, the measures change slowly as λ increases. We also observe that

changing the value of λ by less than 0.05 does not affect the results
and the quality of the team remains the same.

Exp-5 Qualitative Evaluation. Figure 6 illustrates the teams
returned by CC, CA-CC and SA-CA-CC for the project [analytics,
matrix, communities, object oriented]. Observe that CC returns a
team with lower authority (average h-index) and average number
of publications than CA-CC and SA-CA-CC. Moreover, Figure 6
shows that the skill holders of the team returned by CA-CC and
SA-CA-CC are connected through authors with a higher h-index,
and thus have a higher referral authority. We argue that the teams
returned by our algorithms are more effective than the one returned
by CC since it reveals a deeper connection among the experts that
may not have been discovered by existing team formation methods.
Note that connectors may not be directly involved in performing a
task, but may provide guidelines and support to skill holders.

5. CONCLUSIONS
In this paper, we studied the problem of team discovery from

networks of experts. We formulated new ranking objectives that
take communication costs among experts as well as expert authority
into account. We proved that satisfying these new objectives is
NP-hard and proposed heuristic algorithms. We demonstrated the
effectiveness of our techniques on the DBLP dataset. Another way
to jointly optimize the communication cost and expert authority
objectives is to find a set of Pareto-optimal teams. In the future, we
plan to develop algorithms to find such teams and rank them based
on relevant measures of interestingness.
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ABSTRACT

The field of data series processing has attracted lots of at-
tention thanks to the increased availability of unprecedented
amounts of sequential data. These data are then processed
and analyzed using a large variety of techniques, most of
which are based on the computation of some distance func-
tion. In this study, we evaluate the benefits of incorporating
into the distance functions correlation measures, which en-
able us to capture the associations among neighboring val-
ues in the sequence. We propose three such measures, in-
spired by statistical and probabilistic approaches. We ana-
lytically and experimentally demonstrate the benefits of the
new measures using the 1NN classification task, and discuss
the lessons learned.

1. INTRODUCTION
The field of data series processing has seen a tremendous

progress in the database community thanks to the increased
availability of an unprecedented amount of data [17, 3, 16,
18, 13]. Any data series complex analysis task can be re-
duced to modeling a distance measure that captures the
most discriminating features across different classes or pat-
terns in the data [12].

The most widely used distance models are variations of
the Euclidean distance and are characterized by the invari-
ant properties that they support. For example, the Dynamic
Time Warping (DTW) distance [1] allows accelerations and
decelerations of the signal along the x-axis, and the Longest
Common Subsequence (LCSS) distance [7] allows gaps in
the sequence. The Euclidean distance is widely used, and
has been shown to be very effective for large data collections,
performing equally well or outperforming new distance mod-
els (such as SpADe and TQuEST), as well as traditional
elastic distance measures (such as DTW)[9]. Therefore, in
this work we will concentrate on Euclidean distance.

We observe that the distance measures mentioned above
do not model the correlations that do exist among neigh-
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Figure 1: Euclidean distance fails to distinguish between

the X and Y series, given query Q.

boring points in the series. Nevertheless, previous work has
shown that modeling explicitly the correlation inherent in
the data series leads to better results [4, 5, 6]. An exam-
ple is illustrated in Figure 1. The graph shows four series,
namely X, Y , Z and Q. The point values of the series are
the following: X =< 2, 3, 2, 3, 2 >, Y =< 2,−1, 2,−1, 2 >,
Z =< −1,−2,−1,−2,−1 > and Q =< 1, 1, 1, 1 >. The Eu-
clidean distance between Q and the other series X, Y and
Z is the same,

√
11. The series X and Z are equally similar

to the series Q. Despite the larger deviations in the values
of series Y , the distance between Q and Y is exactly the
same. A similar result can be obtained for other Minkowski
distances and their extensions, such as the DTW and LCSS
distances, as well as for z-normalized series.
In this study, we answer the following question: can dis-

tance measures that take into account the neighboring-point
correlations in the series outperform the Euclidean distance
in mining tasks such as classification? As we will see, the
answer to this question is yes.
In this work, we make the following contributions. We

present distance models inspired by statistical and proba-
bilistic approaches that have been designed to capture the
correlation among neighboring points in a data series: auto-
correlation, Markov chains and value-difference histograms
defined over sliding windows. We combine the proposed
models with the Euclidean distance and provide an exper-
imental evaluation with real datasets, which demonstrates
the utility of the correlation-aware distance measures.

2. NEED FOR A NEW DISTANCE
A data series X is a sequence of real valued points X =

{xi}ni=1 where n is the length of X, and xi is the value of
data series X at position i. A data series is z-normalized (or
simply normalized)if its mean is equal zero and its variance is
equal to one. The Euclidean distance between data series X
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and Y is defined as follows: DEucl(X,Y ) =
√

∑n

i=1(xi − yi)2.
Though it is very efficient in many applications, euclidean
and euclidean-like distances cannot capture correlations among
neighboring data points in the sequence.

We note that the Euclidean distance between two series X
and Y , formally denoted by DEucl(X,Y ), is invariant to two
transform rules as defined below. First, a pair of correspond-
ing points xi and yi can be swapped with any other pair of
points xj and yj , i 6= j without any change in the distance
value. For example, the Euclidean distance between series
X =< 1, 2, 3, 4 > and Q =< 5, 6, 7, 8 > does not change
if we swap the second and the fourth values (obtaining se-
ries X ′ =< 1, 4, 3, 2 > and Q′ =< 5, 8, 7, 6 >, respectively),
though the new series are obviously not the same.

Second, the value of the Euclidean distance does not change
when new values x′

i and x′
j are assigned respectively to

points xi and xj , where x′
i and x′

j satisfy the following con-
dition:

(xi − yi)
2 + (xj − yj)

2 = (x′
i − yi)

2 + (x′
j − yj)

2

Consider for instance, the Euclidean distance between series
Q = {0, 0, 0, 0} and X = {5, 5, 5, 5} is the same to the Eu-
clidean distance between the seriesQ and Y = {4.3563, 5.5698,
4.3563, 5.5698}. The Euclidean norm distance for both pairs
Q,X and Q,Y is 10, while the shape of the series is drasti-
cally different.

We conclude that Euclidean distance fails to capture im-
portant semantics of data series, as shown in the above ex-
amples. In contrast, the correlation-aware distance measures
presented in Section 3 aim to reveal such differences.

3. PROPOSED DISTANCE MEASURES
In this section we introduce and describe four distance

measures which take into account the correlations among
neighboring points in the series.

3.1 Autocorrelation Distance (ACD)
The distance measure based on autocorrelation coefficient

is not new, it comes from the statistical domain and is widely
exploited in a data mining community [10]. In this work, we
calculate the autocorrelation vector R = {r(τ)}nτ=1, which
consists of autocorrelation coefficients r(τ) with different

lags up to n: r(τ) =
E[(xt−µ)(xt+τ−µ)]

σ2 , µ is a mean and σ2

is a variance of a data series X = xi. The distance between
two series is defined as the Euclidean distance between their
autocorrelation vectors. The length of aoutocorrelation vec-
tor n is a training parameter.

3.2 Markovian Distance
Markovian models are commonly used to capture corre-

lations among points of a data series. A Markov chain of
order k is a sequence of random variables, which satisfy
the Markovian property that the current state of the chain
depends only on the previous k states. In our study, we
consider Markov chains with alphabet size m = 32, and
treat the order as a parameter, which we need to estimate
during the training phase. For the testing phase, we esti-
mate a transition probability matrix M , which characterizes
a Markov chain by estimating the conditional probabilities
of the query X. We do this by looking across the series and
first calculating the frequencies of all sequences of length k

and k + 1, and then calculating all the conditional prob-
abilities: M(xt−k, xt−k+1..., xt) = Pr[xt|xt−1, ..., xt−k] =

Freq[xt,xt−1,...,xt−k]

Freq[xt−1,...,xt−k]
), where t = k + 1, ..., n, n is the length

of the series. We then identify the nearest neighbor, that is,
the series Y with the highest probability of being generated
by the model of the query series:

Pr(y1, ..., yn|M) = Pr[y1, ..., yk]
n
∏

t=k+1

M(yt−k, ..., yt), (1)

where Pr[y1, ..., yk] is the initial state of the Markov chain.
In order to avoid the accumulation of machine error caused
by the multiplications in Equation 1, we calculate the log of
the probabilities:

logPr(y1, ....., yn|M) ∼
n
∑

t=k+1

log[M(yt−k, yt−k+1..., yt)].

(2)
This leads to a natural distance measure, which is a probabil-
ity that one sequence is generated using a model of another
sequence. As logPr defined by Equation 2 is a similarity
measure, the distance between X and Y can be defined as
− logPr. Note that this distance can also be efficiently com-
puted in an online setting, where streaming series for very
large alphabet sizes should be compared, using Conditional
Heavy Hitters [15, 14] for estimating the most significant
elements of the transition probability matrix.

3.3 Local Distance Distribution (LDD)
In this section, we propose the Local Distance Distribution

(LDD), a ranking function that is based on the distribution
of Euclidean distances determined on sub-sequences from
candidate series Xi and query Q.

Given a series Xi, let X
[a,b]
i be the sub-sequence of Xi

between positions a and b. Let Wh(Xi, w) be the content of
the sliding window on series Xi of length w whose first point
is xh, i.e., Wh(Xi, w) =< xh, ..., xh+w−1 >. The set of dis-
tance samples betweenXi andQ is denoted byD(Q,Xi) and
is defined as: D(Q,Xi) = {Euclidean(Wh(Xi, w),Wh(Q,w)) :
h ∈ {1, ..., n−w+1}}, where Euclidean(Xi, Xj) denotes the
Euclidean distance between series Xi and Xj and n is the
length of the series. D(Q,Xi) is a set of pairwise point dis-
tances along the series Q and Xi. Let Hi be the equi-width
histogram composed of B buckets that summarizes the dis-
tance values in D(Q,Xi).

Given two series Xi and Xj , the probability that a ran-
dom distance value di ∈ D(Q,Xi) is lower than a random
distance value dj ∈ D(Q,Xj) can be estimated as follows:

Pr(di < dj) =
∑B

b=1 Hi,b

∑b

l=b+1 Hi,l, where Hi,l is the
value of the lth bucket of the equi-width histogram Hi. We
can now introduce the probability for a candidate series Xi

to be the nearest neighbor to a query series Q as:

PNN(Xi, Q) =
∏

j 6=i

Pr(di < dj), (3)

where di and dj are two random distance values fromD(Q,Xi)
and D(Q,Xj), respectively. The function PNN(Xi, Q) is a
ranking function that can be used to implement a nearest
neighbor classifier.

3.4 Using the Proposed Methods
Using the Euclidean distance for 1NN classification leads

to the fastest and simplest classification. In this work, we
combine Euclidean distance with the proposed techniques
for 1NN classification: when the discrimination confidence
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of the Euclidean distance is low, then we switch to using
our techniques. In this way, we aim to combine the speed of
Euclidean with the accuracy of the proposed techniques.

Given an oracle, we can choose to use our techniques only
when Euclidean fails. In practice though, we have to pre-
dict when this will happen. We use the following strat-
egy for this classification failure prediction [8]. First, we
compute a confidence value based on the distances to the
two nearest neighbors belonging to two different classes:
Conf = 1 − di

mini 6=jdj
, dj = min{dist(Q,Xj)|j ∈ C}. Then,

we use the proposed distance measures when this confidence
value is below some threshold. Our experiments show that
the accuracy of this prediction is slightly above 75%, and
fairly robust for thresholds between 0.2-0.8.

4. EXPERIMENTAL EVALUATION
We compare our methods to the simple and widely-used

Euclidean distance for the 1NN classification task. We re-
port the F1 measure: F1 = 2∗ precision∗recall

precision+recall
, with precision =

tp

tp+fp
and recall = tp

tp+fn
, where tp, fp and fn represent

true positives, false positives, and false negatives, respec-
tively. Precision and recall are calculated for each class sep-
arately, and their arithmetic mean is used to calculate the
mean F1 value.

We use 43 UCR datasets with normalized series of differ-
ent lengths from several domains [11].

4.1 Results
In the first set of experiments, we perform a sanity check

by comparing the accuracy of using the proposed distance
measures in a 1NN classifier, against the accuracy of a ran-
dom classifier. The results, depicted in Figure 2, show that
all three methods consistently outperform the random clas-
sifier (i.e., points above the diagonal). This is especially true
for the case where (with the help of an oracle) we use the
three proposed methods only when Euclidean distance fails
to identify the correct class (i.e., square green points).

We now focus on the performance of the ACD distance,
shown in Figure 3. As mentioned in Section 3.1, the autocor-
relation function is a cross-correlation of a data series with
itself within a given time lag. The resulting autocorrelation
vectors are then used to compute the Euclidean distance
between the series. Figure 3(a) shows that the ACD dis-
tance assisted by failure-prediction performs better than Eu-
clidean only for some of the datasets (i.e., points above the
diagonal). Failure-prediction is used in the way described in
Section 3.4, where we predict (with a less than perfect accu-
racy) the cases that the Euclidean-based classification fails.
A close look at the experimental results reveals that ACD
significantly improves the classification accuracy for several
datasets. One such dataset is Trace, for which the classi-
fication accuracy with ACD is 100%, while the Euclidean
distance based classification has an accuracy of only 76%.

Figure 3(b) shows that switching to ACD when we know
for sure that the Euclidean distance will fail leads to a re-
markable improvement in accuracy. Thus, using a perfect
oracle for predicting failure of Euclidean distance based clas-
sification and then switching to ACD based classification
shows significant accuracy improvement for all 43 datasets.

Classification based on the proposed Markovian distance
uses the transition probability matrix for each query data
series in order to capture the correlation among adjacent

points in the sequence. This transition probability matrix
is used to find the series of the training set, which is the
most likely to be generated by the query model. Since esti-
mating the Markov model requires data series with discrete
values, we used iSAX2.0 [2] to generate 32 discrete states for
our data series. The experiments focus on the effect of the
order of the Markov chain on classification accuracy. Our
cross validation experiments showed that the transition ma-
trix for chains of order 3 gives the best performance for most
datasets (though some datasets produce better cross valida-
tion results when using different orders). Based on this, we
used Markov chains of order 3 for the rest of our experiments
with the Markovian distance.
Figure 4(a) shows that the Markovian method with failure-

prediction outperforms the Euclidean distance in 20 datasets.
Moreover, switching to the Markovian distance only when
Euclidean truly fails (i.e., failure prediction with a perfect
oracle) results in a significant improvement in almost all the
datasets (refer to Figure 4(b)). This improvement signifies
that the Markovian distance is able to capture semantics
embedded in the series, which the Euclidean distance fails
to uncover.
Finally, we turn our attention to the LDD distance. This

method uses a series of distances calculated using a slid-
ing window over the query series Q and each series Xi in
the dataset. The distribution of the resulting sliding win-
dow based distances is represented as a histogram. We then
calculate the joint probability of each Xi being the nearest
neighbor (i.e., the corresponding LDD value is the smallest).
Maximizing this probability gives us the most probable class
Ci for a query Q. The sliding window sizes were set inde-
pendently for each dataset, and were selected during the
training phase by maximizing F1.
Figure 5(a) depicts the results of the comparison between

the combination of LDD with Euclidean (i.e., LDD is used
when Euclidean is predicted to fail), and Euclidean. As
with the other two proposed measures, the methodology that
uses the LDD distance is able to outperform Euclidean in
some, but not all datasets we tested. Once again, when
the failure of the Euclidean distance based classifier can be
perfectly predicted, then the advantage of switching to the
LDD measure is significant for all datasets.

5. CONCLUSIONS
In this work, we argued about the utility of taking into

account the correlations inherent among neighboring values
of a sequence, when designing distance measures for data
series. We proposed three different measures that are corre-
lation aware, based on autocorrelation, Markov chains, and
the subsequence distance distributions.
Our preliminary experimental results with 43 real datasets

show that these more complex distance measures have the
potential to compute distances more accurately, as demon-
strated using the 1NN classification results. This result is
explained by the fact that they can effectively encode infor-
mation about the sequentiality of the points in a data series,
which is completely ignored by the Euclidean distance.
In our future work, we plan to conduct more detailed ex-

periments for the characterization of the performance be-
havior of the proposed distances, as well as new ones. More-
over, we will study in depth the problem of when to use
the correlation-aware measures, and how to combine them
with other distance measures. This proves to be a critical
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(a) (b) (c)

Figure 2: Comparison of ACD, Markovian, and LDD to a random classifier

(a) (b)

Figure 3: Comparison for ACD distance

(a) (b)

Figure 4: Comparison for Markovian distance

(a) (b)

Figure 5: Comparison for LDD distance

step in order to exploit the benefits of the proposed distance

measures.
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ABSTRACT
In the last decade new scalable data stores have emerged in
order to process and store the increasing amount of data that
is produced every day. These data stores are inherently dis-
tributed to adapt to the increasing load and generated data.
HBase is one of such data stores built after Google BigTable
that stores large tables (hundreds of millions of rows) where
data is stored sorted by key. A region is the unit of distri-
bution in HBase and is a continuous range of keys in the
key space. HBase lacks a mechanism to distribute the load
across region servers in an automated manner. In this pa-
per, we present a load balancer that is able to split tables
into an appropriate number of regions of appropriate sizes
and distribute them across servers in order to attain a bal-
anced load across all servers. The experimental evaluation
shows that the performance is improved with the proposed
load balancer.

Keywords
Big Data, Key Value, HBase, Load Balancing, Performance

1. INTRODUCTION
During the last years new scalable data stores have emerged

in order to process and store the increasing amount of data
that is produced every day. These data stores also known as
NoSQL data stores remove most of the relational databases
properties in order to achieve high scalability. These data
stores are inherently distributed to adapt to the increasing
load and generated data. HBase [2] is one of such data
stores built after Google BigTable that stores large tables
(hundreds of millions of rows) where data is stored sorted
by key. Each table defines a set of column families and a col-
umn can be defined at any time (two rows may have different
columns). Data in HBase is organized into regions, which
are the unit of distribution. A region is a continuous range of
keys in the key space. HBase provides mechanisms for load

c©2017, Copyright is with the authors. Published in Proc. 20th Inter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

balancing across servers by moving regions among servers.
However, regions remain unchanged. That is, if a region be-
comes a hotspot, the HBase load balancing mechanisms will
not distribute the region among the servers. That region
will be managed by a single server. Another example where
this may happen is the case when a region hosts much more
keys than other regions (it manages more keys) and most of
the load targets that region. Paper [4] proposes a load bal-
ancing algorithm for HBase. The algorithm moves regions
across the servers to balance the load however, if a region
becomes a hot spot and most of the load (for instance, 90%
of the load) targets that region, moving the region would not
balance the load among the servers. The only way to bal-
ance the load is to partition that region into smaller regions
which then, will be moved to consecutive servers.

In this paper we target the partition of regions into regions
hosting a similar number of rows. This policy is effective
for those situations where a region becomes overloaded and
by applying the predefined load balancing mechanisms the
situation cannot improve. Our preliminary results loading
the database defined by TPC-C benchmark for 3000 ware-
houses in a cluster of ten servers for storing data show that
the throughput is increased one order of magnitude and the
latency decreases two orders of magnitude.

The rest of the paper is organized as follows. Section 2
presents an introduction to HBase. Section 3 describes the
proposed data partitioning algorithm. Section 4 describes
the performance evaluation and the cost of the proposed
approach. Finally, conclusions are presented in Section 5.

2. HBASE
HBase [2] is a sparse distributed scalable key-value data

store modelled after Google BigTable [1].
HBase organizes data in very large tables with billions of

rows and millions columns. Rows are uniquely identified by
a key. Columns are organized into column families, which
are defined at the time a table is created. Columns can be
defined at any time and can vary across rows. A cell is a
combination of {key, column family, column} and contains
a value and a timestamp which represents the value ver-
sion. Timestamps are automatically defined or can be user
defined. For instance, the cell {customerid, address:home}
references the last provided home address of the customerid,
which is stored in the column family address and column
home. Keys are bytes and rows are sorted alphabetically
based on their key.

Tables are distributed in a cluster through regions. Re-
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Figure 1: Rows group in regions and served by dif-
ferent servers [2]

gions are defined by key ranges. Regions can be automati-
cally split by HBase or manually by defining the start key of
a region. A Region Server manages the regions of a server.
Regions are automatically split into two regions when they
reach a given size or using a custom policy. Manual splitting
of regions can be done at table creation time (pre-splitting)
or later. This is advisable for instance when a hotspot is
created on a region. By partitioning the region, the data
can be handled by two or more servers.

Figure 1 shows an HBase deployment with three servers
(pink boxes), each one hosting one region server. The keys in
the table rows range from A to Z (on the left). Each region
server handles two regions. Region server 1 handles keys in
ranges T to Z and A to C. By default, tables have a unique
region when they are created. A region is split into two
regions automatically when it reaches a given limit. There
are several predefined split policies, which basically split a
region when the associated file reaches a given size or based
on the number of regions a region server hosts. A table can
be pre-split into regions either when it is created or later
providing the key ranges.

Internally, the HBase Master stores metadata for instance,
the location of the different regions of a table. The actual
data of a region (keys and associated information) is stored
in HFiles. There are as many HFiles as column families a
table has. HFiles are stored in HDFS [3] to achieve high
availability.

2.1 HBase Load Balancing Algorithms
HBase provides an automatic load balancer that runs on

the master and distributes regions on the cluster every five
minutes by default. HBase load balancer implements three
algorithms [2]:

• Simple Load Balancer. This algorithm takes into ac-
count the number of regions each region server is man-
aging and the load at each server. The goal is that all

region servers will handle a similar number of regions
by moving regions from the more loaded servers to the
least loaded regions servers.

• Favored Node Load Balancer. This load balancing al-
gorithm assigns favoured server for each region. The
primary region server hosts the region. There are also
secondary and tertiary region servers. HDFS uses the
favoured servers information for creating HDFS files
and placing the blocks of the file. When the primary
region server crashes, the secondary takes over provid-
ing low latencies.

• Stochastic Load Balancer. This algorithm searches a
region distribution that minimizes a cost function. This
function is computed taking into account the region
load, table load, data locality, MemStore sizes and
HFile sizes. This algorithm has several parameters,
for instance, to control the maximum number of re-
gions to be moved, minimize the number of times the
balancer will try to mutate all servers.

None of these HBase load balancers changes the region
configuration. They move regions among servers to dis-
tribute the load. However, if there are several regions that
become hotspots, these regions will not be split and dis-
tributed among region servers to distribute their load.

This is the goal of the Static Load Balancer we present in
the next section. The load balancer distributes the keys of a
table among regions in order to ensure that each region con-
tains the same amount of keys and distributes the regions
among all region servers.

3. STATIC LOAD BALANCER
The static load balancer goal is to create regions with a

similar number of rows and distribute them across all regions
servers in a cluster. For this purpose, the load balancer
needs the table size and the key distribution. The algorithm
generates a set of keys that define the new regions with
the same number of keys. Then, it splits current regions
according to the new regions provided by the load balancer
and assigns them uniformly among region servers.

3.1 Table Histogram
In order to divide a table into regions managing a simi-

lar number of keys, the total number of rows of the table
and the stored keys are needed. The table histogram scans
regions reading every x number of rows (for instance, every
1000 rows). For every x rows, it stores the key of that row.
For instance, if a region hosts 2500 rows and x = 1000, it
will store three keys, 1000, 2000 and 2500. The values as-
sociated to those keys will be the keys that are stored in
positions 1000, 2000 and 2500, respectively in that region.
The histogram runs as an HBase coprocessor [2] so, no data
is moved outside the server hosting the region.

The histogram information is used to calculate the number
of rows in the table, #RowsTable, the number of rows each
region is currently handling, #RowsRegion, the expected
number of rows per region, #ExpectedRowsRegion, the to-
tal number of rows that are wrongly placed, #WrongP lacedRows
and the standard deviation of rows wrongly placed,
%STDofWrongP lacedRows. This value is used to decide
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Figure 2: Load Balancer Example

whether the static load balancer should be executed. Cur-
rently, the system administrator defines a threshold,
%STDThreshold. If the standard deviation is greater than
the threshold, the load balancer is executed.

3.2 Load Balancer
The load balancer (Algorithm 1) uses the information gen-

erated by the histogram for defining the new regions. Given
the expected number of rows per region, #ExpectedRowsRegion,
the load balancer obtains the split points of the region by
traversing the histogram. The key stored every
#ExpectedRowsRegion positions will define the new re-
gions.

For instance, Figure 2 shows a table with 30000 keys. Ini-
tially there are three regions, Region 1, Region 2 and Region
3, which handle 5000, 17500 and 75000 rows, respectively.
Region 1 handles keys from 0 up to 5000, Region 2 manages
the keys in the range 5001 and 22500 and so on. The final
distribution the load balancer will define consists of three re-
gions each one managing 10000 keys (each region will store a
similar number of keys). If the histogram stores the keys ev-
ery 10000 rows (histogramPrecision), the splitPoints will
be the keys stored at position 10001 and 20001.

Then, the algorithm splits the regions using HBase HBaseAd-
min.split() method proving the split points. At this point
the previous regions and the new ones coexists. For instance,
there are 5 regions in the example in Figure 2-After splitting
table. That is, the old regions and the new ones coexists Re-
gion 2 is split into three regions, Region 2-1, Region 2-2 and
Region 2-3, with 5000, 10000 and 2500 rows each one. Only
Region 2-2 will be a final region after the load balancing fin-
ishes. The other two regions will be merged with Region 1
and Region 3, respectively in order to achieve the three final
regions with the same number of rows (Region 1’, Region 2’
and Region 3’) (Figure 2-After merging).

As a final step in Algorithm 1 the location of the regions
is stored in the Zookeeper instance running on HBase (Re-
gionsLocation). This step avoids that if HBase stops and
starts, by default, the regions are assigned randomly to re-

gion servers and then, the data files need to be moved to the
new server where the region is handled.

Algorithm 1 Load Balancing

Require: table, stdThreshold
1. histogramPrecision = 10000
2. generateHistogram(table)
3. #RS ← get#RegionServers()
4. #Regions← get#Regions(table)
5. #RowsTable← get#RowsTable(table)
6. #ExpectedRowsRegion ←

get#ExpectedRowsRegion(table)
7. %STDofWrongP lacedRows ←

getSTDofWrongP lacedRows(table)
8. if %STDofWrongP lacedRows > %STDThreshold

then
9. splitPoints← getNewSplitPoints(histogramPrecision,

#RowsTable,#RS,#ExpectedRowsRegion)
10. split(splitPoints)
11. merge(splitPoints)
12. majorCompact(table)
13. RegionsLocation(table)
14. end if

4. PERFORMANCE EVALUATION
In this section we present the performance evaluation of

the proposed load balancer. The evaluation has been con-
ducted in a cluster of 11 nodes; each node is 64 core AMD
Opteron 6376 @ 2.3GHz, equipped with 128GB of RAM,
1Gbit Ethernet and a direct attached SSD hard disk of
480GB running Ubuntu 12.04.5 LTS. One of the nodes is
used for hosting metadata servers, HDFS NameNode, HBase
Master and ZooKeeper. The rest of nodes are used as worker
nodes, each one running one HDFS Data Node and four
HBase-Region Servers. That is, there are 10 DataNodes
and 40 RegionServers. We use the Cloudera distribution of
Apache HBase with version CDH5.3.5.

The load balancer is evaluated loading the data defined
by TPC-C benchmark since there are different tables with
different number of columns and different number of rows.
The benchmark defines 9 tables. The number of warehouses
defines the sizes of the tables. In this initial evaluation, the
number of warehouses is 3000. The smallest table holds 3000
rows and the largest 765 million of rows. In order to evalu-
ate the benefits of the proposed load balancing algorithm we
evaluate the performance of HBase using TPC-C with the
tables split into regions with a random size. Then, we eval-
uate the performance of the benchmark when the regions
handle a similar number of rows.

The unbalanced configuration is presented in Table 1,
which shows for each table the total number of rows (#Rows),
the number of rows of the smallest and largest regions (#Rows
Small Region and #Rows Large Region) and the standard
deviation of the rows that are wrongly placed for each table
(#STD). For instance, warehouse and order line tables are
the smallest and largest tables, respectively.

Order line table stores 765 million of rows. The smallest
region for that table stores 11181 keys while the largest hosts
1214955735 rows (1212 millions of rows).
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Table 1: Data Distribution Before Load Balancing
Table #Rows #Rows small #Rows large #Rows

region region STD

warehouse 3000 6 234 63

district 30000 48 3267 795

item 100000 2 9388 22159

new order 27M 17749 2837997 619998

orders 90M 33865 9721682 2306951

ix orders 90M 22865 9721682 2306951

history 90M 2105753 2463901 172493

customer 90M 24592 7754305 2206718

ix customer 90M 24592 7754305 2206821

stock 300M 18376 31182657 7463525

ix stock 300M 113700 258520000 2509062

order line 765M 11181 121495735 87312734

ix order line 765M 557433 84431120 97324041

Table 2: Data Distribution After Load Balancing
Table #Rows #Rows small #Rows large #Rows

Region Region STD

warehouse 3000 75 75 0

district 30000 750 750 0

item 100000 2500 2500 0

new order 27M 500000 684408 28020

orders 90M 1980000 2260000 743379

ix orders 90M 1980000 2260000 43379

history 90M 2106778 2462829 172144

customer 90M 1975165 2260000 44120

ix customer 90M 1975165 2260000 18502

stock 300M 7202284 7510000 47762

ix stock 300M 7152000 7512000 55815

order line 765M 18940000 19134682 29743

ix order line 765M 18820457 19140014 48984

4.1 Load Balancer Evaluation
In this section we present how the load balancer distributes

the keys into regions given the previous distribution of data.
Then, we evaluate the performance of TPC-C with both
configurations and finally, we present the time for executing
the load balancing algorithm.

Table 2 shows the size of the smallest region (the one
hosting less keys) and the largest one for each table after
running the static load balancer. The results show that the
difference in number of keys hosted by these regions is less
than 1%. The smallest region of table Order line now stores
18940000 rows and the largest one stores 19134682 rows that
is, 18.9 million rows and 19.1 rows respectively. We can com-
pare those results with the ones in Table 1, which produced
for the same Order line a region with 11181 keys, while the
largest region hosts 1214 millions of rows.

Table 3 shows results in terms of throughput, in trans-
actions per minute, and latency of transactions, in millisec-
onds, of running TPC-C benchmark with the unbalanced
and balanced regions distribution. The throughput of TPC-
C with the unbalanced regions reaches 3296 transactions
with an average response time of 1550.805 ms. When the
regions have a similar size (i.e., after running the static load
balancer), the throughput is multiplied by 10, processing
36761 transactions per minute with an average response time
of 16.858 ms. That is, the response time is two orders of
magnitude lower.

Finally, the execution time of the load balancer for each
table of TPC-C is shown in Table 4. Table History is not
balanced by the Static Load Balancer because it is already
balanced (i.e., the

Table 3: TPC-C Execution
Before Load After Load
Balancer Balancer

Throughput (tpmCs) 3296 36761
Avg. Latency (ms) 1550.805 16.858

Table 4: Load Balancer Execution Times
Table #Rows Histogram Split Merge Regions

Table Regions Location

warehouse 3000 00:00:02.009 00:00:06.453 00:00:11.356 00:00:10.366

district 30000 00:00:02.754 00:00:08.484 00:00:09.687 00:00:10.366

item 100000 00:00:01.946 00:00:08.070 00:00:10.022 00:00:10.400

new order 27M 00:00:21.037 00:00:46.137 00:00:17.196 00:00:10.344

orders 90M
00:02:56.017

00:07:50.062 00:01:12.132 00:00:10.372
ix orders 90M 00:07:29.129 00:00:44.998 00:00:10.245

history 90M 00:00:31.911 00:00:10.380

customer 90M
00:03:11.329

00:12:35.812 00:04:23.994 00:00:10.402
ix customer 90M 00:12:41.747 00:03:11.593 00:00:10.251

stock 300M
00:10:19.886

00:39:10.252 00:07:12.418 00:00:10.312
ix stock 300M 00:09:10.791 00:04:41.104 00:00:10.328

order line 765M
00:37:53.463

01:59:57.023 00:11:23.552 00:00:10.421
ix order line 765M 00:29:52.061 00:26:18.463 00:00:10.316

%STDofWrongP lacedRows is below than 1%).
Most of the time is spent in the split process, which di-

vides regions into several regions. Each time a region is
split, a major compact process is executed in order to split
the stored files (HFiles) into two. This process is very ex-
pensive for large tables (more than 100 million rows).

5. CONCLUSIONS
In this paper we have presented a Load Balancer algo-

rithm that partitions regions into regions that manage a
similar number of keys. The performance evaluation shows
that this greatly improves performance. However, the exe-
cution of the load balancer is time consuming. This process
should be run seldom during off-peak periods. Fault toler-
ance for the algorithm remains as future work.
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ABSTRACT
Entity matching, or record linkage, is the task of identifying
records that refer to the same entity. Naive entity match-
ing techniques (i.e., brute-force pairwise comparisons) have
quadratic complexity. A typical shortcut to the problem is
to employ blocking techniques to reduce the number of com-
parisons, i.e. to partition the data in several blocks and only
compare records within the same block.

While classic blocking methods are designed for data from
relational databases with clearly defined schemas, they are
not applicable to data from Web tables, which are more
prone to noise and do not come with an explicit schema. At
the same time, Web tables are an interesting data source for
many knowledge intensive tasks, which makes record link-
age on Web Tables an important challenge. In this work,
we propose an unsupervised approach to partition the data,
that does not exploit any external knowledge, but only relies
on heuristics to select the blocking attributes. We compare
different partitioning methods: we use (i) clustering on bag-
of-words, (ii) binning via Locality-Sensitive Hashing and (iii)
clustering using word embeddings. In particular, the cluster-
ing methods show good results on a standard dataset of Web
Tables, and, when combined with word embeddings, are a
robust solution which allows for computing the clusters in a
dense, low-dimensional space.

Keywords
Instance matching; Web tables; blocking methods; word em-
beddings

1. INTRODUCTION
Entity matching aims at identifying different descriptions

in unstructured or (semi-)structured textual content that
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refer to the same real-world entity. Similarly, the dedu-
plication task (or record linkage) looks for nearly dupli-
cate records in relational data, usually amongst data points
that refer the same entity type. In both cases, if addressed
in a brute force fashion, the matching task has quadratic
complexity, as it requires pairwise comparisons of all the
records. The most widely adopted solution for this prob-
lem is to group records in blocks before comparing them, a
pre-processing step usually referred to as blocking. Blocking
offers a compromise between the number of comparisons to
perform and the number of missed entity matches [3].

Traditionally, a plethora of blocking techniques have been
proposed to reduce number of comparisons [5, 6, 12, 13],
especially for the deduplication task. These exploit specific
clues from the data schema, ad hoc similarity functions and
mapping rules, as well as background knowledge of the do-
main and of the type of the entities.

In this paper, we focus on Web tables (i.e., tables on
HTML pages), which stand in the middle ground between
unstructured Web content and relational data. From a struc-
tural point of view records in Web tables resemble records
in database tables. Nevertheless, they come with no schema
attached, making the direct usage of traditional blocking
techniques not applicable, since we cannot rely on any type
of assumption for the data nor have domain knowledge [3].
Thus, in this scenario, the high number of entity types and
the representational heterogeneity, even for entities of the
same semantic type, make traditional blocking techiques
hard to apply. Therefore, we argue for the need of a domain
agnostic representation of Web tables, which has the prop-
erty of being succinct and can be used in a similar fashion
as the signatures in the traditional blocking techniques. We
explore different heuristics based on bag of words and word
embeddings, combined with different clustering methods.

By using a publicly available gold standard (Section 4.1),
we measure the pair comparison reduction ratio and the pair
completeness of the instance matching task, when performed
after the blocking step. We show that the blocking based
on table embeddings leads to the best tradeoff between (i)
reduction ratio on the number of pair comparisons to per-
form and (ii) pair completeness (recall on entity matches).
Moreover, it is robust with respect to the type of table pre-
processing (Section 3.1), while also offering a succinct rep-
resentation for the tables.
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The main contribution of this work is twofold. First,
we propose a novel solution to represent tables in a latent
space using Neural Language Models (NLM). NLM have
been proved successful in replacing the classical bag of word
representation of text (binary feature vector, where each vec-
tor index represents one word) with a latent representation
with a lower vector dimensionality. Second, we exploit the
latent table representations to perform blocking in the con-
text of entity matching in Web tables.

2. STATE OF THE ART
Entity matching is a task with quadratic complexity, there-

fore, when applied to larger data collections, it is necessary
to reduce the number of comparisons to be performed. A
common way to reduce complexity is the use of so-called
blocking strategies to reduce the search space [13] and achieve
a reasonable compromise between the number of compar-
isons and the number of missed entity matches [3]. Tradi-
tionally, blocking techniques exploit specific criteria in the
data schema to split the data before performing entity com-
parisons, only utilizing the values of some key attributes. A
typical example is the Sorted Neighborhood Method (SNM)
[5], which performs sorting of the records according to a
specifically chosen Blocking Key.

Content based blocking strategies usually look for com-
mon tokens between two entities. The search for common
tokens can be performed in entities descriptions or it can
be restricted to the values of attributes that overall have
similar values [12]. In a naive scenario, each token defines
a new block and all entities that share the token end up in
that block (here, entities may belong to multiple blocks);
more sophisticated methods index and rank tokens, so that
the search is restricted to the n most frequent ones [8]. An-
other commonly used technique is Locality-Sensitive Hash-
ing (LSH), which produces effective signatures of records
to perform fast comparisons amongst entities. Specifically,
Duan et al. [4] used LSH to perform instance based ontol-
ogy matching. The underlying assumption of their work is
that discovering relationships in data from different sources
can only be achieved after correctly typing the data. Their
objective is to perform comparisons amongst entity types.
The representation of each type is the sum of all its entities,
which can be seen as a big document, where they can exploit
the tf-idf weighting schema to select relevant tokens.

Multi-Block is a blocking strategy that uses a multidimen-
sional index in which similar objects are located near each
other. In each dimension, the entities are indexed by a dif-
ferent property to achieve effect retrieval [6]. To boost recall,
data is enriched by interlinking to DBpedia [9].

Differently from available state of the art we propose a
strategy which is (i) completely agnostic w.r.t. the data
schema, (ii) does not rely on external knowledge and (iii)
performs only minimal preprocessing of the data.

3. A BLOCKING APPROACH USING TA-
BLE EMBEDDINGS

The blocking step is performed at table label. We propose
an adaptation of neural language models (NLM) to represent
table embeddings, which provide a succinct latent represen-
tation of tables without relying on any domain knowledge.
In the following, we describe the preliminary table prepro-
cessing step, followed by the proposed embedding strategy.

3.1 Table Preprocessing
As Web tables are different from relational tables, i.e.,

they are schema-free and prone to noise, preprocessing and
normalization are required. We reuse components from the
“Mannheim Search Join Engine” [10] to: (i) identify pseudo
key attributes (the subject column); (ii) recognize table header
structures; and (iii) identify data types.

To identify the subject column we apply the heuristic pro-
posed by [14] of choosing the column of type string with the
highest number of unique values. In case of a tie, the left-
most column is used. The subject column basically contains
entity names which act as pseudo-keys for the table [2, 15,
16]. In the example depicted in Table 1, the first column is
used as a subject column.

For detecting the headers, we assume that the header row
is the first non-empty row. In the example depicted in Ta-
ble 1, the first row is used as headers.

For data type detection, we use about 100 manually de-
fined regular expressions to detect numeric values, dates,
and links. Based on the data type, the values of each col-
umn are normalized, e.g., the string values are lower-cased
and special characters are removed. Furthermore, for this
work we replace numbers, timestamps, and geo-coordinates
with a static value, as our approach currently does not han-
dle numeric values. For example, given Table 1, the first
two columns will be recognized as strings, and the last two
columns as numerical. The first row will be recognized as the
header row, and the first column as the subject attribute.
After preprocessing, the table will look like Table 2.

Table 1: Example table of countries
Country Capital Population GDP (USD)
Germany Berlin 80M 46,268.64
France Paris 60M 42,503.30

United Kingdom London 64.1M 41,787.47

Table 2: Preprocessed table
h:country h:capital h:population h:gdp (usd)
v:germany v:berlin $NUM$ $NUM$
v:france v:paris $NUM$ $NUM$

v:united kingdom v:london $NUM$ $NUM$

3.2 Table Embeddings
NLMs are explicitly built to take into account the order of

words in text documents and to encode a stronger statistical
dependence amongst words which are closer in the sequence.
As the model is originally designed for raw text, where the
sequence of words is naturally derivable from the sentences,
we first need to transform tables to word sequences, which
can be used to train a NLM. We consider table values and
table attributes instead of word sequences. Thus, in order
to apply such approaches on table data, we first have to
transform the tables into sequences of values and attributes,
which can be considered as sentences. Using those sentences,
we can train the same neural language models to represent
each value and attribute in the table as a vector of numerical
values in a latent feature space.

We propose three general approaches to transform ta-
bles to sentences: (i) attributes model : the header row is
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converted into a sequence of attributes, e.g., for Table 2
the produced sequence is: “h:country h:capital h’:population
h:gdp (usd)”; (ii) entities model : the subject column is con-
verted into a sequence of entities, e.g., for Table 2 the pro-
duced sequence is: “v:germany v:france v:united kingdom”.
(iii) attributes and entities model : we convert the table into
a sequence of triples of the form <entity, header, value>,
where the entity is the subject, the header is the predicate,
and the corresponding value is the object; e.g. for Table
2 the produced sequence is: “v:germany h:capital v:berlin;
v:germany h:population $NUM$; ... ;
v:united kingdom h:gdp (usd) $NUM$”.

As NLM, we use word2vec [11] , a two-layer neural net
model that learns word embeddings from raw text. Specifi-
cally, we employ the skip-gram model, which tries to predict
the context words given a target word. Given a sequence of
words w1, w2, w3, ..., wT and a context window c, the objec-
tive of the skip-gram model is to maximize the following
average log probability:

1

T

T∑
t=1

∑
−c≤j≤c,j 6=0

logp(wt+j |wt), (1)

The probability p(wt+j |wt) is calculated using the softmax
function:

p(wo|wi) =
exp(v′Twovwi)∑V
w=1 exp(v′Tw vwi)

, (2)

where vw and v′w are the input and the output vector of the
word w, and V is the entire vocabulary.

Directly calculating the softmax function is inefficient, as
it is proportional to the size of V , therefore we used neg-
ative sampling as an optimization technique, following the
approach discussed in [11].

Once the training is finished, all words (i.e., table val-
ues and attributes in our case) are projected into a lower-
dimensional feature space, and semantically similar words
are positioned close to each other. We can then use the pro-
duced latent representation of tables to calculate the similar-
ity between two tables using the standard cosine similarity
measure.

4. EXPERIMENTS
The aim of the experiments is to verify how the proposed

table embeddings perform in reducing the complexity of en-
tity matching, specifically in reducing the number of per-
formed pair comparisons, without loosing recall. As entity
matching per se is not the focus of this paper, we only
consider the pair completeness, i.e., the number of entity
pairs that are contained in the same bucket identified by
the blocking mechanism. That way, we can directly eval-
uate the tradeoff between (i) the reduction ratio achieved
with the blocking and (ii) the pair completeness, i.e. the
ratio of matches that can be potentially identified.

4.1 The T2D Dataset
As a gold standard, we use the publicly available T2D

dataset1. T2D contains a subset of the Web Data Commons
Web Tables Corpus2 for which schema-level and instance-
level correspondences to DBpedia 2014 are provided. We
1http://webdatacommons.org/webtables/goldstandard.
html
2http://webdatacommons.org/webtables/

use the 233 tables of T2D for which rows are mapped to
entities in the DBpedia knowledge base (for a total 26,124
entity-level correspondences). As we are not interested in
matching to DBpedia as an external knowledge base, but
rather finding correspondences within a dataset, we trans-
form the matches to internal matches within the tables, i.e.,
for every pair of table rows mapped to the same DBpedia en-
tity, we create a correspondence amongst the two table rows.
This process produces 50,072 instance correspondences.

To build the table embedding models, we use the T2D
dataset and the WikiTables dataset3. The WikiTables dataset
has been extracted from Wikipedia pages in the course of the
WikiTables project [1]. The corpus consists of 1.35 million
Wikipedia tables. Additionally, we extracted 365, 194 ta-
bles from the Wikipedia 2015 dumps. We build Skip-Gram
models with the following parameters: window size = 10;
number of iterations = 15; negative sampling for optimiza-
tion; negative samples = 25; 500 latent dimensions. All the
models, as well as the code, are publicly available4.

4.2 Results
Overall, we compared two different representations for

tabular data. We use the classical bag of word model (bow)
and the table embeddings. We build all the representations
using four different input features, as identified in the table
pre-processing step (Section 3.1): (i) the full content of the
table, (ii) the table header, (iii) the table subject column
and (iv) the combination of the table subject column and
the table header. For (i) and (iii), we use the attributes and
entities model, for (ii), we use the attributes model, and for
(iii), we use the entities model, as described in section 3.2.
Once the representations are built, we use either unsuper-
vised clustering (k-means) or binning via Locality-Sensitive
Hashing (LSH) to partition tables into bins.

Table (3) shows the results of applying k-means to the rep-
resentations (according to the four different input features)
generated via table embeddings (shortened in the table as
emb) and bag of words (shortened in the table as bow). As
we are looking for a good tradeoff between the pair com-
parison reduction ratio and pair completeness of matched
instances, we also report the harmonic mean (hm) of those
two values for each run. The first observation concerns the
input features. In all scenarios the table headers alone are
not enough to perform effective binning. The subject col-
umn (also combined with the table header) instead leads
to good performance, regardless of the representation, with
comparable performance (>90%) for 10 and 20 bins. Fur-
thermore, we can observe that the word embeddings are also
competitive when using the full table as input, again with
performance >90% for 10 and 20 bins. This means that the
potentially expensive and error-prone detection of header
and key columns can be omitted when using that approach.

We also perform LSH using a java-LSH implementation5

both with the standard bow model as well as using the ta-
ble embeddings as input (using the Super-Bit algorithm [7]).
While the table embeddings representation outperformed
the standard bow, the general performance were quite low
(hm around 60%). This is a direct consequence of the size
of the gold standard. As we perform the binning at table
level and not at instance level, the dataset only contains 233

3http://downey-n1.cs.northwestern.edu/public/
4http://data.dws.informatik.uni-mannheim.de/table2vec/
5https://github.com/tdebatty/java-LSH
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Table 3: Pair comparison reduction ratio (rr) and
pair completeness (pc) of the instance matching task
and their harmonic mean (hm), when performed af-
ter blocking using either table embeddings (emb) or
simple bag of word model (bow), when run on either
the full content of the table (all), the table header
(h), the table subject column (k) or the table subject
column and the table header (k+h).

input #k rr-
emb

pc-
emb

hm-
emb

rr-
bow

pc-
bow

hm-
bow

all 5 0.75 0.98 0.85 0.74 0.89 0.81
all 10 0.85 0.98 0.91 0.83 0.5 0.62
all 20 0.91 0.97 0.94* 0.92 0.5 0.65
all 30 0.93 0.62 0.74 0.91 0.29 0.44
all 40 0.92 0.85 0.88 0.92 0.4 0.56
all 50 0.95 0.65 0.77 0.95 0.32 0.48
h 5 0.79 0.8 0.79 0.73 0.47 0.57
h 10 0.87 0.66 0.75 0.87 0.42 0.57
h 20 0.94 0.38 0.54 0.91 0.41 0.57
h 30 0.96 0.33 0.49 0.93 0.26 0.41
h 40 0.96 0.32 0.48 0 1
h 50 0.19 0.97 0.32 0 1
k+h 5 0.66 0.98 0.79 0.79 0.99 0.88
k+h 10 0.85 0.98 0.91 0.85 0.99 0.91
k+h 20 0.9 0.97 0.93 0.91 0.96 0.93*
k+h 30 0.92 0.96 0.94* 0.93 0.68 0.79
k+h 40 0.93 0.79 0.85 0.94 0.69 0.8
k+h 50 0.95 0.63 0.76 0.96 0.41 0.57
k 5 0.79 0.99 0.88 0.77 0.92 0.84
k 10 0.87 0.98 0.92 0.88 0.98 0.93*
k 20 0.92 0.97 0.94* 0.92 0.88 0.9
k 30 0.94 0.89 0.91 0.93 0.78 0.85
k 40 0.94 0.89 0.91 0.93 0.7 0.8
k 50 0.96 0.52 0.67 0.96 0.51 0.67

tables. In constrast, LSH is know to be effective for large
datasets, where the number of points in each bin is at least
100.

5. CONCLUSIONS AND FUTURE WORK
The paper presents a method to perform entity blocking

for the task of entity matching in Web tables, by represent-
ing tables in a latent space using Neural Language Models.
When compared to state of the art blocking methods table
embeddings prove to be a promising solution. The current
study has been performed on a set of 233 Web tables, man-
ually annotated with entities matches (for a total of 50,072
instance correspondences). In future work, we plan to re-
peat the experiment on a larger dataset of tables from the
Web Data Commons project by semi-automatically generat-
ing the gold standard, and to explore ways of meaningfully
exploiting other value types, such as numbers and dates.

Acknowledgments
This work is part of the project DS4DM (Data Search for
Data Mining) http://ds4dm.de, funded by the German Fed-
eral Ministry of Education and Research (BMBF).

6. REFERENCES
[1] C. S. Bhagavatula, T. Noraset, and D. Downey.

Methods for exploring and mining tables on wikipedia.
In Proceedings of the ACM SIGKDD Workshop on
Interactive Data Exploration and Analytics, IDEA ’13,
pages 18–26. ACM, 2013.

[2] M. J. Cafarella, A. Halevy, and N. Khoussainova.
Data Integration for the Relational Web. Proc. VLDB
Endow., 2:1090–1101, 2009.

[3] V. Christophides, V. Efthymiou, and K. Stefanidis.
Entity Resolution in the Web of Data. MORGAN &
CLAYPOOL PUBLISHERS, 2015.

[4] S. Duan, A. Fokoue, and O. Hassanzadeh.
Instance-Based Matching of Large Ontologies Using
Locality-Sensitive Hashing. pages 49–64, 2012.

[5] M. A. Hernandez and S. J. Stolfo. The merge/purge
problem for large databases. In CM SIGMOD
international conference on Management of data,
SIGMOD ’95. ACM, 1995.

[6] R. Isele, A. Jentzsch, and C. Bizer. Efficient
Multidimensional Blocking for Link Discovery without
losing Recall. (WebDB), 2011.

[7] J. Ji, J. Li, S. Yan, B. Zhang, and Q. Tian. Super-Bit
Locality-Sensitive Hashing. Advances in Neural
Information Processing Systems2012, pages 1–9.

[8] B. Kenig and A. Gal. MFIBlocks : An effective
blocking algorithm for entity resolution. 38:908–910,
2013.

[9] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch,
D. Kontokostas, P. N. Mendes, S. Hellmann,
M. Morsey, P. van Kleef, S. Auer, and C. Bizer.
DBpedia – A Large-scale, Multilingual Knowledge
Base Extracted from Wikipedia. Semantic Web
Journal, 2013.

[10] O. Lehmberg, D. Ritze, P. Ristoski, R. Meusel,
H. Paulheim, and C. Bizer. The mannheim search join
engine. Web Semant., 35(P3):159–166, Dec. 2015.

[11] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and
J. Dean. Distributed representations of words and
phrases and their compositionality. In Advances in
neural information processing systems, pages
3111–3119, 2013.

[12] G. Papadakis, E. Ioannou, T. Palpanas, C. Niedere,
and W. Nejdl. A Blocking Framework for Entity
Resolution in Highly Heterogeneous Information
Spaces. 25(12):2665–2682, 2013.

[13] V. Rastogi, N. Dalvi, and M. Garofalakis. Large-scale
collective entity matching. Proceedings of the VLDB
Endowment, 4(4):208–218, 2011.

[14] D. Ritze, O. Lehmberg, and C. Bizer. Matching html
tables to dbpedia. In Proc. of the 5th International
Conference on Web Intelligence, Mining and
Semantics, WIMS ’15, pages 10:1–10:6, 2015.

[15] P. Venetis, A. Halevy, J. Madhavan, M. Paşca,
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ABSTRACT

Many applications on time series data require solving the subse-

quence search problem, which has been extensively studied in the

database and data mining communities. These applications are

computation bound rather than disk I/O bound. In this work, we

further propose effective and cheap lower-bounds to reduce the

computation cost of the subsequence search problem. Experimen-

tal studies show that the proposed lower-bounds can boost the per-

formance of the state-of-the-art solution by up to an order of mag-

nitude.

1. INTRODUCTION
The subsequence search problem on time series data has exten-

sive applications in medical diagnosis, speech processing, climate

analysis, financial analysis, etc [1, 5]. Specifically, given a query

time series q and a target time series t, the subsequence search prob-

lem finds a subsequence tc of t such that it has the smallest distance

dist(q, tc) to q. Figure 1 illustrates the subsequence search prob-

lem. The typical distance measures are the Euclidean distance (ED)

and Dynamic Time Warping (DTW).

query q time series t 

result 

……

……Figure 1: Subsequence search on time series

Euclidean Distance (ED) is the most common similarity measure

[1, 5] due to its simplicity and applicability. The distance between

two time series of length m is given as follows.

ED(q, tc) =

√

√

√

√

m
∑

i=1

(q[i]− tc[i])2 (1)

∗indicates equal contribution

c©2017, Copyright is with the authors. Published in Proc. 20th Inter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

Dynamic Time Warping (DTW) is proposed to capture the similar-

ity of two sequences which may vary in time or have missing val-

ues. It has been shown to be an effective distance measure [2]. This

distance is defined as DTW (q, tc) =
√

DTWSQ(q, tc), where

DTWSQ(q, tc) is computed as follows.

DTWSQ(q, tc) = (q[1]− tc[1])
2+

min











DTWSQ(q[2...last], tc)

DTWSQ(q[2...last], tc[2...last])

DTWSQ(q, tc[2...last])

(2)

where q[2...last] denotes the subsequence of q containing values

from the 2nd to the last offset. To avoid pathological warping and

reduce the quadratic computational cost, many research work [5]

suggest to limit the warping length r such that q[i] is matched with

tc[j] if and only if |i − j| ≤ r. This reduces the complexity of

DTW from O(m2) to O(mr).
To the best of our knowledge, the UCR Suite [5] is the state-

of-the-art solution for arbitrary length subsequence search. Since

exact distance computations are expensive, the UCR Suite applies

a suite of lower-bounds to prune unpromising subsequences, be-

fore computing the exact distances for the remaining subsequences.

Nevertheless, the subsequence search problem is still a computa-

tion intensive problem, especially for increasingly long time series

nowadays. Even with the UCR Suite, the subsequence search on a

trillion-scale time series would take 3.1 hours (under the Euclidean

distance) or 34 hours (under Dynamic Time Warping) on a com-

modity PC [5].

To reduce the computation time of subsequence search, we pro-

pose effective lower-bounds based on the triangle inequality and

Piecewise Aggregate Approximation (PAA). The proposed lower-

bounds can be computed online and easily integrated into the UCR

Suite. According to our experimental evaluations, the proposed

methods can improve the performance of the UCR Suite by up to

an order of magnitude.

The paper is organized as follows. Section 2 formally defines

our problem and presents the state-of-the-art solution (i.e., the UCR

Suite). We present our online lower-bounds in Section 3. The ex-

perimental study is given in Section 4. Finally, we conclude the

paper in Section 5.

2. PRELIMINARIES

2.1 Problem Definition
In this work, we follow the suggestion of UCR Suite [5] that ev-

ery subsequence must be Z-normalized in order to capture the sim-

ilarity between the shapes of the sequences. Given a time series t,

the Z-normalized value of t[i] can be calculated as: t̂[i] = t[i]−µt

σt
,
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where t[i] is the i-th element of t, t̂[i] is the Z-normalized value

of t[i], and µt and σt are the mean and standard deviation of t,

respectively.

PROBLEM 1 (SUBSEQUENCE SEARCH PROBLEM). Given a

time series t of length n, a query time series q of length m, and

a distance function dist(·, ·), the subsequence search problem re-

turns a length-m subsequence tc ∈ t such that dist(q̂, t̂c) ≤
dist(q̂, t̂c′), ∀ tc′ ∈ t of length m.

A naïve solution for the subsequence search (cf. Problem 1) is

to calculate the distance n−m+ 1 times. The computation of the

subsequence search may become prohibitive for long sequences. It

should be noted that the search performance is closely related to

the distance function dist(·, ·).

2.2 The State-of-the-Art: UCR Suite
In the following, we briefly introduce how the UCR Suite can

boost ED-based and DTW-based subsequence search.

UCR-ED. For ED-based subsequence search, the UCR-ED [5] first

employs the early abandoning technique. In general, it attempts

to early terminate the distance computation when the accumulated

distance is already larger than the best-so-far distance. To further

improve the performance, the UCR-ED proposes reducing the Z-

normalization cost and prioritizing the accumulation order.

UCR-DTW. For DTW-based subsequence search, the UCR-

DTW [5] employs a filter-and-refinement framework. It evaluates

the DTW distance for a subsequence only if it survives from three

lower-bounds, i.e., LBKimFL, LB
EQ
Keogh and LBEC

Keogh. More

specifically, the lower-bounds are applied in an order starting from

quick-and-dirty one to slow-and-accurate one, as shown in Fig-

ure 2. We briefly introduce these lower bounds as follows.

����ி�ሺ1ሻ �����ℎா��ሺ�ሻ �����ℎா��ሺ�ሻ ����ሺ��ሻ
C3C2C1

Candidates

C

Figure 2: UCR-DTW framework

LBKimFL is based on a fact that the First and the Last offset must

be matched in DTW.

LB
EQ
Keogh is derived from the distance between the candidate sub-

sequence t̂c and the envelop of q̂. The envelop of q̂ is based on the

warping constraint r where q̂[i] can be matched with t̂c[j] subject

to |j − i| ≤ r. The upper and lower envelop can be calculated as,

q̂u[i] = maxi+r
j=i−r q̂[j] and q̂l[i] = mini+r

j=i−r q̂[j], respectively.

Accordingly, we have

LB
EQ
Keogh(q̂, t̂c) =

√

√

√

√

√

√

m
∑

i=1











(t̂c[i]− q̂u[i])2 if t̂c[i] > q̂u[i]

(t̂c[i]− q̂l[i])2 if t̂c[i] < q̂l[i]

0 otherwise

(3)

LBEC
Keogh is similar to LB

EQ
Keogh but the lower bound is derived

from the distance between the query q̂ and the envelop of t̂c. It

should be noted that the optimization techniques in UCR-ED can

be applied to compute LB
EQ
Keogh and LBEC

Keogh.

3. LOWER-BOUND OPTIMIZATIONS
In this section, we propose two online lower-bounds, i.e., taking

O(1) and O(φ) time1, to further improve the performance of the

UCR Suite for both ED and DTW.

3.1 Fast ED-based Subsequence Search
The UCR Suite does not employ any lower-bound for the Eu-

clidean distance (ED) [5], even though ED takes O(m) time. In

this section, we propose two lower bounds for ED, which can be

computed in O(1) and O(φ), respectively.

3.1.1 Lower-Bound by Triangle Inequality in O(1)
Time

As shown in Lemma 1, we can derive the Euclidean distance

lower-bound for the running candidate tc based on the exact dis-

tance of the last candidate (i.e., the consecutive subsequence tc−1)

by triangle inequality.

LEMMA 1 (LOWER-BOUND FOR ED). For two consecutive

candidate subsequences tc−1 and tc in t, we have:

ED(q̂, t̂c−1)− ED(t̂c−1, t̂c) ≤ ED(q̂, t̂c)

PROOF. It is trivial as triangle inequality holds for the Euclidean

distance.

We define LBTRI
ED (q̂, t̂c) as follows:

LB
TRI
ED (q̂, t̂c) = LBED(q̂, t̂c−1)− ED(t̂c−1, t̂c), (4)

where LBED(q̂, t̂c−1) is any lower bound which satisfies

LBED(q̂, t̂c−1) ≤ ED(q̂, t̂c−1).
With Lemma 1, we have LBTRI

ED (q̂, t̂c) ≤ ED(q̂, t̂c). Sup-

pose the LBED(q̂, t̂c−1) is known, we will elaborate how to

compute it shortly. LBTRI
ED (q̂, t̂c) can be computed in O(1) iff

ED(t̂c−1, t̂c) can be calculated in constant time. To achieve this,

it is sufficient to maintain five running sums: S1 =
∑m

i=1 tc−1[i],
S2 =

∑m

i=1 tc[i], S3 =
∑m

i=1 t
2
c−1[i], S4 =

∑m

i=1 t
2
c [i], and

S5 =
∑m

i=1 tc−1[i]tc[i], where these running sums can be main-

tained incrementally in O(1) time. With these running sums, we

can compute ED(t̂c−1, t̂c) in O(1) as follows.

ED(t̂c−1, t̂c) =
√

2m(1− ρ(tc−1, tc)) (5)

where ρ(tc−1, tc) is the Pearson correlation between tc−1 and tc.

ρ(tc−1, tc) =
mS5 − S1S2

√

mS3 − (S1)2
√

mS4 − (S2)2
(6)

3.1.2 Lower-Bound by PAA in O(φ) Time

The Piecewise Aggregate Approximation (PAA) [3] is a concise

representation for time series. Given a normalized subsequence t̂c,

its PAA representation is a φ-dimensional vector where the k-th

element is defined as follows.

et̂c [k] =
φ

ℓ

ℓ
φ
(k+1)−1
∑

x= ℓ
φ
·k

t̂c[x] (7)

The distance, LBPAA
ED (q̂, t̂c), between the PAA representations of

q̂ and t̂c is:

LBPAA
ED (q̂, t̂c) =

√

√

√

√

m

φ

φ−1
∑

k=0

(eq̂ [k]− et̂c [k])
2

1
The value of parameter φ is much smaller than m typically, i.e., φ ≪ m.
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According to [3], LBPAA
ED (q̂, t̂c) ≤ ED(q̂, t̂c). It can be cal-

culated in O(φ) time with the PAA representations of q̂, t̂c. Our

remaining challenge is to compute the PAA of a subsequence ef-

ficiently, where a straightforward solution takes O(m) time. To

avoid O(m) time cost, we transform Eq. 7 (i.e., expanding t̂c[x])
into the following equation.

et̂c [k] =
φ

m

m
φ

(k+1)−1
∑

x=m
φ

·k

t[c+ x]− µ(tc)

σ(tc)
(8)

Observe that µ(tc), σ(tc),
∑

t[c+x] can be calculated in O(1) time

by
∑

tc[i],
∑

t2c [i] and
∑

t[c+ x− 1], respectively. Thus we can

compute the PAA of t̂c in O(φ) incrementally. This optimization

is also utilized in [4].

3.1.3 Putting Them Altogether

Returning to the Equation 4, we require LBED(q̂, t̂c−1) ≤
ED(q̂, t̂c−1). Thus, LBED(q̂, t̂c−1) can be updated to

LBTRI
ED (q̂, t̂c−1), LB

PAA
ED (q̂, t̂c−1) and ED(q̂, t̂c−1).

Algorithm 1 shows the pseudo code for ED-based subsequence

search with our two novel lower bounds. We denote LBED as the

lower bound for the current candidate tc. We apply a cheap triangle

inequality bound (cf. Line 5), before applying a slightly expensive

PAA bound (cf. Line 7). If tc cannot be pruned by all lower bound

testings, then we compute the distance ED(q̂, t̂c) by calling UCR-

ED. Furthermore, the value of LBED in the current iteration will

be used to derive the bound in the next iteration.

Algorithm 1 ED-based subsequence search

Alg ED-search(Query q, Sequence t, Dimensionality φ)

1: os := −1, bsf := ∞, LBED := 0
2: for c := 1 to n − m + 1 do

3: if c > 1 and LBED > bsf then

4: LBED := LBED − ED(t̂c−1, t̂c) ⊲ O(1)

5: if LBED < bsf then

6: LBED := LBPAA
ED (q̂, t̂c) ⊲ O(φ)

7: if LBED < bsf then

8: compute ED(q̂, t̂c) using UCR-ED ⊲ O(m)
9: if ED(q̂, t̂c) < bsf then

10: os := c, bsf := ED(q̂, t̂c)

11: LBED := ED(q̂, t̂c)

12: return (os, bsf)

We illustrate Algorithm 1 using an example in Figure 3. Sup-

pose bsf = 2 and we can safely prune t1 by computing its lower-

bound, LBPAA
ED (q̂, t̂1) = 10. As ED(t̂1, t̂2) = 4 (i.e., using Equa-

tion. 5-6), thus we can derive LBED(q̂, t̂2) = (10 − 4) = 6.

Since LBED(q̂, t̂2) is larger than bsf , t2 is safely pruned. Based

on the triangle inequality, we have ED(q̂, t̂3) ≥ LBED(q̂, t̂2) −
ED(t̂2, t̂3) = (LBED(q̂, t̂1) − ED(t̂1, t̂2)) − ED(t̂2, t̂3). By

computing ED(t̂2, t̂3), we can derive LBED(q̂, t̂3) = (10− 4)−
3 = 3 > bsf , as a consequence, t3 can also be pruned safely.

subsequence t1 subsequence t2 subsequence t3

Dist

LB
= LBPAA

ED (q̂, t̂1)
= 10

= LBED − ED(t̂1, t̂2)
= 10 − 4 = 6

= LBED − ED(t̂2, t̂3)
= 6 − 3 = 3

Time O(φ) O(1) O(1)

Figure 3: Illustration of pruning techniques

3.2 Fast DTW-based Subsequence Search
The proposed lower-bounds in Section 3.1.1 can be adapted to

LB
EQ
Keogh(q̂, t̂c). In this section, we discuss two lower-bounds for

LB
EQ
Keogh whose computation cost are O(1) and O(φ), respec-

tively.

3.2.1 Lower-Bound by Triangle Inequality in O(1)
Time

As shown in Lemma 2, we can derive the lower-bound of

LB
EQ
Keogh(q̂, t̂c) based on the LB

EQ
Keogh(q̂, t̂c−1) by triangle in-

equality.

LEMMA 2 (LOWER-BOUND FOR LB
EQ
Keogh). Let tc−1 and

tc be consecutive candidates in t. We have:

LB
EQ
Keogh(q̂, t̂c−1)− ED(t̂c−1, t̂c) ≤ LB

EQ
Keogh(q̂, t̂c)

PROOF. For LB
EQ
Keogh, there exists a sequence a that is enclosed

by the envelop sequences q̂u and q̂l (i.e., q̂l[i] ≤ a[i] ≤ q̂u[i]),

such that LB
EQ
Keogh(q̂, t̂c) = ED(a, t̂c). With Lemma 3, we have

LB
EQ
Keogh(q̂, t̂c−1) ≤ ED(a, t̂c−1).

LB
EQ
Keogh(q̂, t̂c−1) ≤ ED(a, t̂c−1)

⇐⇒ LB
EQ
Keogh(q̂, t̂c−1)− ED(t̂c−1, t̂c)

≤ ED(a, t̂c−1)− ED(t̂c−1, t̂c)

Applying Lemma 1: ED(a, t̂c−1)− ED(t̂c−1, t̂c) ≤ ED(a, t̂c)

⇐⇒ LB
EQ
Keogh(q̂, t̂c−1)− ED(t̂c−1, t̂c) ≤ ED(a, t̂c)

⇐⇒ LB
EQ
Keogh(q̂, t̂c−1)− ED(t̂c−1, t̂c) ≤ LB

EQ
Keogh(q̂, t̂c)

LEMMA 3. LB
EQ
Keogh(q̂, t̂c) ≤ ED(a, t̂c), where sequence a

is enclosed by sequences q̂u and q̂l, i.e., q̂l[i] ≤ a[i] ≤ q̂u[i].

PROOF. Since q̂l[i] ≤ a[i] ≤ q̂u[i], for case (i) t̂c[i] > q̂u[i],
we have (t̂c[i] − q̂u[i])2 ≤ (t̂c[i] − a[i])2. Similarly, for case

(ii) t̂c[i] < q̂l[i], we have (t̂c[i] − q̂l[i])2 ≤ (t̂c[i] − a[i])2 as

a[i] ≥ q̂l[i] . Finally, 0 ≤ (t̂c[i]− a[i])2 always hold for case (iii)

q̂l[i] ≤ t̂c[i] ≤ q̂u[i].

Similarly, we define LBTRI
DTW (q̂, t̂c) as follows:

LB
TRI
DTW (q̂, t̂c) = LBDTW (q̂, t̂c−1)− ED(t̂c−1, t̂c), (9)

where LBDTW (q̂, t̂c−1) is any lower bound with

LBDTW (q̂, t̂c−1) ≤ LB
EQ
Keogh(q̂, t̂c−1). With Lemma 2,

we have LBTRI
DTW (q̂, t̂c) ≤ LB

EQ
Keogh(q̂, t̂c).

3.2.2 Lower-Bound by PAA in O(φ) Time

In section 3.1.2, we propose a technique to construct the PAA

representations for subsequences incrementally in O(φ) time.

Given the PAA representations, we can derive LBPAA
DTW (q̂, t̂c) as

follows.

LBPAA
DTW (q̂, t̂c) =

√

√

√

√

√

√

m

φ

φ−1
∑

x=0











(et̂c [x]− Û [x])2 et̂c [x] > Û [x]

(et̂c [x]− L̂[x])2 et̂c [x] < L̂[x]

0 otherwise
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where Û and L̂ are the PAA representation of the upper and lower

envelopes of q̂, respectively. In addition, its building cost can be

neglected as it is only computed once at the beginning of the search.

According to [2], we have LBPAA
DTW (q̂, t̂c) ≤ LB

EQ
Keogh(q̂, t̂c).

Returning to Lemma 2, we require LBDTW (q̂, t̂c−1) ≤

LB
EQ
Keogh(q̂, t̂c−1). Thus, LBDTW (q̂, t̂c−1) can be set to

LBTRI
DTW (q̂, t̂c−1), LB

PAA
DTW (q̂, t̂c−1) or LB

EQ
Keogh(q̂, t̂c−1).

3.2.3 Putting Them Altogether

Figure 4 illustrates the complete framework of our DTW-based

subsequence search. We first evaluate LBKimFL as in the UCR

Suite. We proceed to examine the lower-bound by triangle inequal-

ity if the candidates cannot be pruned by LBKimFL. As a remark,

LBTRI
DTW (q̂, t̂c) is computed only when LBDTW (q̂, t̂c−1) > bsf .

The surviving candidates are then evaluated by LBPAA
DTW (q̂, t̂c), its

cost is O(φ), before computing expensive LB
EQ
Keogh and LBEC

Keogh

(i.e., O(m)). Finally, we call DTW (q̂, t̂c) if t̂c is not pruned by

any above lower bounds.

����ி�ሺ1ሻ �����ℎா��ሺ�ሻ �����ℎா��ሺ�ሻ ����ሺ��ሻ
C3C2

C1

Candidate set

�����ோ��ሺ1ሻ �������ሺɸሻ��′ ��′′ Our proposed 

lower bounds

C

Figure 4: DTW-based subsequence search

4. EXPERIMENT
In this section, we compare our proposed techniques (denoted

as FAST-ED and FAST-DTW), with the UCR Suite (denoted as

UCR-ED and UCR-DTW).

Platform setting: All methods are implemented in C++. We evalu-

ate the performance on a machine running 64-bit Windows 10 with

a 3.16GHz Intel(R) Core(TM) Duo CPU E8500, 8 GB RAM.

Dataset: To evaluate the efficiency and scalability of our proposed

techniques, we use the random walk model as in [4, 5] to generate

both the query and the target time series. For each experimental

setting, we run each method by 10 query sequences, and report the

average execution time.

Result: We first test the performance of FAST-based subsequence

search methods by varying φ from 8 to 40, where query length is

1024 and data length is 2 millions. The maximum standard devia-

tion among these execution time is less than 3% in both FAST-ED

and FAST-DTW. Thus, we choose φ = 24 in the following experi-

ments.

Table 1 compares the pruning ratio of our proposed lower-

bounds with existing lower-bounds in the UCR Suite (in gray

color). The UCR-ED does not provide any lower-bound func-

tion whereas our proposed lower-bounds can prune at least 99%
of candidates. For example, it can prune 99.8% candidates when

query length equals to 512 (i.e., among them, 14.6% candidates are

pruned by LBPAA
ED and 85.2% candidates are pruned by LBTRI

ED ).

For subsequence search under DTW, our proposed lower-bounds

are applied after LBKimFL and before LB
EQ
Keogh (cf. Figure 4).

Thus, the proposed lower-bounds can absorb most the pruning

ability of LB
EQ
Keogh, but not other existing lower-bounds like

LBKimFL, LB
EC
Keogh. As shown in Table 1, our proposed lower-

bounds can nearly approach the pruning ability of LB
EQ
Keogh by us-

ing less CPU time. Recall that our proposed bounds take O(1) and

O(φ) time, whereas LB
EQ
Keogh takes O(m) time. Figure 5 shows

Table 1: Pruning ratios, on RW
Query Length 512 1024 2048 4096 8192

UCR-ED: N/A -

LBPAA
ED 14.6% 11.8% 9.4% 7.1% 5.4%

LBTRI
ED 85.2% 88.0% 90.3% 92.6% 94.2%

Total of proposed LBs 99.8% 99.8% 99.7% 98.7%99.6%

UCR-DTW: LB
EQ

Keogh
44.0% 56.9% 80.9% 74.1% 95.0%

LBPAA
DTW 12.0% 12.2% 12.1% 9.1% 7.9%

LBTRI
DTW 30.8% 43.2% 67.2% 63.7% 86.4%

Total of proposed LBs 42.8% 55.4% 79.3% 72.8%94.1%

the execution time of the FAST-based and the UCR-based subse-

quence search, by varying the query length, where data length is 2

million. The FAST-based search can be up to 11 and 3 times faster

than the UCR-based search on ED and DTW respectively. Note that

the performance gap between the FAST-based and the UCR-based

widens when the query length increases.
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Figure 5: Response time, on RW

5. CONCLUSION
In this paper, we propose two novel lower-bounds to speedup the

subsequence search over time series data. These lower-bounds are

based on the triangle inequality and PAA representations, respec-

tively, and can be easily integrated with the UCR Suite to further

improve its performance.
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ABSTRACT
Correlated failures in large-scale clusters have significant effects on
systems’ availability, especially for streaming data applications that
run continuously and require low processing latency. Most state-
of-the-art distributed stream processing engines (DSPEs) adopt a
blocking recovery paradigm, which, upon correlated failure, would
block the progress of recovery until sufficient new resources for
recovery are available. As the arrival of new resources is usually
progressive, a blocking paradigm fails to minimize the recovery
latency. To address this problem, we propose a progressive and
query-centric recovery paradigm where the recovery of the failed
operators would be carefully scheduled to progressively recover the
outputs of queries as early as possible based on the current avail-
ability of resources. In this work, we propose and implement a
fault-tolerance framework which supports progressive recovery af-
ter correlated failures with minimum overhead during the system’s
normal execution. We also formulate the new problem of recov-
ery scheduling under correlated failures and design effective algo-
rithms to optimize the recovery latency. The proposed methods are
implemented on Apache Storm and preliminary experiments are
conducted to verify their validity.

1. INTRODUCTION
Fault tolerance is critical to Distributed Stream Processing En-

gines (DSPEs), such as Apache Storm [14] and Spark Streaming [3],
mainly due to the long running time and the low latency require-
ment of streaming data applications. Previous researches in this
area are mainly focused on individual and independent node fail-
ures and ignore correlated failures [7, 8], where a number of nodes
fail within a short interval. Correlated failures can be caused by
failures of shared hardwares, such as switches, routers, and power
facilities, or by software problems, such as bad software patches
applied across a number of nodes. Although large-scale correlated
failures occur less frequently than independent ones, they have sig-
nificant effects on a system’s availability [7].

Correlated failures exhibit characteristics that are very different
from independent failures. First of all, correlated failures would
incur the unavailability of a large amount of resources. One cannot

c©2017, Copyright is with the authors. Published in Proc. 20th Inter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

assume an instant availability of sufficient resources to recover the
continuous queries from such failures. Repairing the failed nodes
or acquiring additional resources would take a significant amount
of time. For example, it may involve solving the software or hard-
ware problems, restarting the failed nodes, and adding them back to
the DSPE. Even if the DSPE is running on a cloud environment and
virtual resources can be easily allocated to replace the failed nodes,
negotiating and acquiring a large amount of new resources would
still incur a latency non-negligible for streaming data applications.
More importantly, the recovered or newly allocated nodes would
probably not become available simultaneously, but rather one after
another with noticeable time gaps between them. In other words,
the current assumption that all the resources needed for recovery
are available at the same time cannot be held.

Most existing DSPEs, such as Flink [1] and Storm [14], adopt a
blocking recovery approach in the sense that the recovery of all the
parallel operator partitions would be blocked until sufficient new
resources are acquired. However, due to the gradual availability
of resources in the recovery of correlated failures, such a blocking
approach fails to minimize the recovery latency. It is much more
desirable to adopt a progressive recovery approach, where the oper-
ator partitions can be recovered progressively upon the availability
of new resources. Furthermore, the existing systems also adopt an
operator-centric paradigm in the scheduling of the recovery, where
the operator partitions are scheduled for recovery individually in a
topological order. Note that the accurate outputs of a query can only
be generated if and only if all the operator partitions of this query
are executing normally, this operator-centric paradigm fails to min-
imize the latency of recovering the producing of query outputs. To
address the insufficiency of the existing approaches, we propose a
progressive and query-centric recovery paradigm where the recov-
ery of the failed operator partitions would be progressively sched-
uled to recover the outputs of queries as early as possible based
on the current availability of resources. More specifically, if corre-
lated failure happens, we gradually increase the number of recov-
ered queries following the arrival pace of the restarted or the newly
acquired nodes. Furthermore, unlike the operator-centric paradigm,
our query-centric paradigm attempts to schedule the recovery of the
failed partitions to produce the output of a query as soon as possi-
ble. This new paradigm would provide not only a shorter recovery
latency and earlier query results, but also a more responsive and
smoother transition from a failed state to a fully recovered one.

In summary, we propose a fault-tolerance framework that can
support progressive recovery during a correlated failure, which im-
poses minimum overhead during the system’s normal execution.
We also formulate the new problem of query-centric recovery schedul-
ing under correlated failures, which is an NP-hard problem. To
provide a solution for a large-scale job topology, we propose an ef-
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ficient and effective approximate algorithm. We implement the re-
covery framework and the scheduling algorithm on top of Apache
Storm, a popular and mature open-source DSPE and conduct mul-
tiple sets of experiments on Amazon EC2 to validate the effects of
progressive recovery.

2. RELATED WORK
Fault tolerance for DSPEs can be generally categorized into two

types [9]: passive approaches and active approaches. Passive tech-
niques include checkpoint [1], upstream buffer [6, 12] and source
replay [14, 1, 2]. Active approaches [4, 5, 13, 12] employ hot-
standby replicas to achieve faster failure recovery with higher re-
source consumption. The mainstream DSPEs, such as Samza [2],
Flink [1] and Storm [14] adopt source replay and checkpointing
techniques. Our checkpointing scheme is similar to the one used
in [1]. Both the works in [6, 12] combine checkpointing and up-
stream buffer to achieve fault tolerance as we do in this work, while
missing the optimization for recovery scheduling makes them not
suitable for progressively recovering large-scale correlated failures.
[13] presents a framework to combine both active and passive tech-
niques to maximize the accuracy of the fast tentative query outputs
in correlated failure. Different from [13], which mainly focuses
on optimizing resource assignment to improve the quality of ten-
tative outputs, our approach focuses on progressive recovery that
minimizes the latency of completely recovering correlated failures,
which is orthogonal to the problem studied in [13].

3. PRELIMINARIES
As in most of the mainstream DSPEs, such as Storm [14] and

Samza [2], we model a data tuple as a {key, value} pair, where
the default format of the key is string and the value is a blob that
is opaque to the system. The execution plan of a query consists of
multiple operators, each of which contains a user-defined function
and can subscribe the output streams of other operators. An oper-
ator can be parallelized into multiple operator partitions that have
identical computation logic defined by the user-defined function of
the operator. Each input stream of an operator is split into a set of
key groupings based on their keys. A union of the same key group-
ing from each of the input streams of an operator would form the
complete input of an operator partition, which is also referred to as
partition for simplicity throughout this work.

p11 p12 p13 p14
O1

p21 p22 p23 p24
O2

p31 p32
O3

Q1  Q2

Figure 1: An example topology which consists of two queries
Q1 and Q2, whose operator sets are {O1, O2} and {O1, O3},
respectively.

By denoting the operator partitions as vertex and data streams be-
tween the operator partitions as directed edges, the execution plan
of a query can be abstracted as a directed acyclic graph (DAG).
Figure 1 depicts an example DAG. The computation states, input
and output buffers for each partition are maintained separately from
each other. The output stream of an operator can be shared by
the execution plans of multiple queries. Therefore, the DAGs of
queries are connected by the shared vertex. We refer to the topology
that is composed by all the queries which are concurrently running
within the DSPE as the global topology. A user-specified prior-

ity, which is denoted as a numerical value (set as 1 by default), is
assigned to each query within the topology

4. FAULT TOLERANCE
In this section, we present the fault-tolerance framework that

supports progressive recovery and some implementation details.
Checkpointing We use punctuations to trigger checkpointing in

partitions and synchronize the progress of checkpoints. Punctua-
tions are generated periodically and inserted into the source streams
in a broadcasting fashion. On receiving the punctuations with the
same sequence number from all the input streams, a partition starts
the process of checkpointing and then broadcasts this punctuation
to its downstream neighboring partitions. As the punctuations are
not arriving simultaneously, data items arrive after the punctuations
must be buffered before the checkpoint is done. Assuming that the
last checkpoint of a partition is triggered by punctuation Pk−1, tu-
ples from Si which are received after Pk will be stored in the input
buffer. After receiving Pk from all the input streams, the partition
generates a checkpoint that stores its computation state and then
acknowledges the coordinator. The coordinator tracks the check-
pointing progress of the whole topology. Once the coordinator is
acknowledged that all the partitions have completed checkpointing
for punctuation Pk, it knows that a global synchronized checkpoint
of the entire topology for Pk, denoted by cp(Pk), is generated.

Adaptive Buffering. Source buffering is a widely adopted fault-
tolerance technique in DSPEs. With source buffering, the system
buffers the source data of which the processing state have not been
included in the latest global checkpoint. In other words, when a
global checkpoint of the entire topology is completely made, we
can trim the source buffers by removing those source data whose
processing are already reflected in the global checkpoint. It is im-
portant to note that the buffers for failure recovery differ from the
buffers used in data transfer. The latter can be easily trimmed
whenever the data are transferred to the downstream nodes. Due
to its simplicity and low overhead, the source buffering approach
is widely adopted in most existing operational DSPEs, including
Storm [14], Flink [1] and Samza [2]. Upstream buffering is an-
other bufffering technique that requires each partition to buffer its
own output until a global checkpoint is made. Due to its high over-
head during normal execution, this approach is not used in most
mainstream DSPEs.

However, source buffering cannot support progressive recovery,
because whenever we need to recover the state of a partition, we
have to replay the buffered data from the sources till the current
partition. Only recovering a part of the failed partitions makes
little sense because the recovery of any remaining one would re-
quire to redo the whole recovery again. This means the recovery
progress should be blocked until there are sufficient resources to
recover all the failed partitions. To solve the above problem, we
adopt an approach, called adaptive buffering, which would only in-
cur overhead during failure recovery. With adaptive buffering, we
only buffer at the sources during normal execution. Once a burst
of multiple node failures is detected within a time window, all the
partitions except for the sinks would buffer their outputs to support
progressive recovery. These output buffers are turned off when a
new global checkpoint is completely created, which indicates the
correlated failure is completely recovered.

Figure 2 presents an example of adaptive buffering. Before fail-
ure is detected, only the partition in the source operator (i.e., p1),
has output buffer. When partitions p3, p4, and p5 are detected to
be failed, at timestamp ts1, p3 and p4 are restarted and the out-
put buffer is turned on in partition p2 and p3. At ts2, after p5 is
restarted, it will first process the output buffer of partition p3. After
all the partitions are recovered, output buffer is turned off in the
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Figure 2: An example of adaptive buffering.

non-source partitions, only the output buffer in p1 is preserved.
Progressive Recovery. Once failure is detected, assuming that

Pk is the punctuation of the latest successful global checkpoint, the
failed partitions are restarted and the states of the whole topology
are restored or rollbacked with checkpoint cp(Pk). The system
would switch to the progressive recovery mode if the total number
of failed nodes is higher than a threshold within a specific time win-
dow, otherwise it would simply use the blocking recovery method.
With adaptive buffering, the output buffers in all the partitions are
now turned on and the input data with a greater sequence number
than Pk will be replayed from the sources. These output buffers
could be used to resume the progress of the failed partitions that
are recovered when new recovery resources arrive.

Note that node failures may not occur simultaneously during a
correlated failure. In other words, it is possible that additional fail-
ures could be detected before the current recovery is completed.
With the adaptive upstream buffers, instead of rolling back the
states of the whole topology to cp(Pk) again, we only restore the
states of the newly failed partitions with cp(Pk) and replay the data
buffered in their upstream neighbors. However, as the progress of
the newly restored partitions fall behind their downstream neigh-
bors that have been recovered, the downstream may receive dupli-
cated tuples and therefore have to perform duplicate elimination to
guarantee exactly-once processing.

However, for a partition pi with multiple input streams, as the
tuples from different upstream partitions may arrive in different or-
ders, pi may produce outputs in different orders across different re-
plays. To solve this problem, we enforce Order-Preserved process-
ing during recovery to ensure that pi processes its input in an iden-
tical order across different replays. The order-preserved processing
is turned on in the beginning of the recovery. The source-buffered
data would be divided into mini-batches and each partition attaches
a local sequence number that increases monotonically to each of
its output tuples. For a partition pi, tuples within the same batch
are stored in its input buffer. When it receives all the data from a
batch from all its inputs, pi starts processing these data from each
input stream in a predefined round-robin order. In this way, the or-
der of the output data are guaranteed to be identical across multiple
replays. With order-preserved processing, the downstream of pi
can skip duplicate tuples by checking the sequence numbers of tu-
ples from pi. After the recovery is completed, the order-preserved
processing will be turned off together with adaptive buffering.

Implementation. We implement our system on Enorm [11],
which is a distributed stream processing system built on Apache
Storm [14]. In our system, a special bolt, called control bolt, is
automatically generated and appended to the user-submitted job
topology. The responsibilities of the control bolt include collecting
workload statistics and handling node failure. The fault tolerance
coordinator in the control bolt detects node failures by checking
their heartbeats in ZooKeeper. Upon a failure is detected, the co-
ordinator calls the optimization algorithm presented in Section 5 to
schedule failure recovery following the pace of acquiring new re-
sources. The control bolt is stateless, if failed, it will be restarted
by Nimbus in Storm on another node and the interrupted recovery

scheduling will be resumed.

5. OPTIMIZING RECOVERY PLAN
In this section, we define the problem of optimizing the recovery

scheduling and present an outline of our optimization algorithm.
Given a global topology T , we denote the resource consumption
of operator Oi in T as Ci, the parallelization degree of Oi as mi

and the resource consumption of pij , the jth partition of Oi, as cij .
We have Ci =

∑mi
j=1 cij . Queries can be assigned with priorities

according to their importance and Qi’s priority is denoted by prti.
If the amount of available resources is not enough to recover

all the failed partitions of a correlated failure, we have to select a
subset of the failed partitions for recovery. Whenever a set of new
nodes are available, a set of failed partitions will be scheduled for
recovery, which is referred to as a partial recovery plan. A failed
query is called recovered if and only if all of its failed partitions
are recovered. We present a formal definition for the problem of
optimizing recovery plan as follows:

RECOVERY PLAN OPTIMIZATION: For a global topology T , a
set of failed queries QS, and the amount of computation resources
R available for failure recovery, choose a subset of the failed op-
erator partitions for recovery such that the sum of the priorities of
the recovered queries is maximized.

The RECOVERY PLAN OPTIMIZATION problem is NP-hard, as
it can be reduced from the Set Union Knapsack problem, which has
been proved to be NP-hard [10]

Considering that operators can be shared by multiple queries, it
is natural to prioritize recovering the queries whose operators are
shared by more queries. Furthermore, as the failed queries have
various recovery costs and priorities, we should consider the profit
that can be achieved by using per unit of resource while generating
the recovery plan. Taking the above two factors into consideration,
we define Profit Density, referred to as PDi, of query Qi and use
it to rank the recovery priorities of the failed queries. PDi is cal-
culated as follows:

PDi =
prti∑Ok∈Qj Ck

fk

In the above equation, Ck is the cost of recovering the failed par-
titions in operator Ok, fk is the frequency that Ok is shared by
the other failed queries. The approximate optimization algorithm
starts by calculating the profit density of each failed query. The
failed queries are put into a list and sorted in descending order ac-
cording to their profit density. Next, the list is traversed from the
beginning to find the query, Qi, whose recovery cost is smaller
than the amount of currently available resources. The failed parti-
tions belonging to Qi will be put into the recovery plan. The profit
density of the other failed queries will be updated and the list of
failed queries are re-sorted. The above loop continues until the re-
source constraint is reached. The time complexity of this algorithm
is O

(
M2 · logM

)
, where M is the number of the failed queries.

6. EVALUATION
All the experiments are conducted on Amazon EC2 using the

m3.large instance. We use a real data set consisting of 569,382
tweets crawled from Twitter, which are repeatedly emitted in order
into the source operator to emulate a long-standing application.

To explore the time of attaching new nodes to a cluster on a cloud
platform, e.g., Amazon EC2, we conduct experiments to record the
time interval between when the instance acquiring is started and
when the newly attached node is ready to host processing task. We
collect in total 180 samples and present their distribution in Fig-

520



 0

 10

 20

 30

 40

 50

2 3 4 5 6

P
er

ce
n

ta
g

e

Time (Unit : Minute)

Percentage

Figure 3: Distribution of time
cost of attaching new nodes to
a deployed cluster.

0

1

2

3

4

5

6

7

8

9

13

12

10

11

14Source Parser

Figure 4: Topology used in the
experiment of progressive re-
covery.

ure 3. One can see that, even on the cloud platform, the newly
attached nodes are not arriving simultaneously. The time to attach
a new node varies from 2 minutes to 6 minute. This result consoli-
dates our motivation for progressive recovery.
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Figure 5: Average relative latency of recovered queries and the
number of available queries after correlated failure.

Figure 4 shows the structure of the job topology used in the re-
covery experiments. There are 15 queries in this topology. The sink
operator of query Qi is denoted as Oi. The parallelization degree
is set as 1 for the Source and 5 for the other operators. The Source
operator emits tweets in the rate of 1000 tuples per second. On re-
ceiving a tweet, the Parser emits a tuple for each hashtag within the
tweet. Operator O1, O2, O3, and O4 conduct sliding-window ag-
gregates, which count the hashtag frequency with various window
settings and output the updates of the window instances. Opera-
tor Oi, 4 ≤ i ≤ 14, maintains the states of the sliding-window
aggregates it subscribes.

End-to-end processing latency is a critical performance metric
for most streaming data applications. As recovering a large-scale
correlated failure would inevitably incur significant increment on
processing latency, we propose two metrics that are relevant with
processing latency to measure the effectiveness of the compared re-
covery schemes. Assuming that the latencies of queries before the
failure are stable, we propose Relative Latency that measures the
difference of a query’s latency before and after failure. Denoting
ls as a query’s latency before failure and lr as that after failure,
its relative latency, RL, is calculated as lr

ls
. Therefore, after query

Qi is recovered, RLi would gradually approximate 1. Within a
time interval ∆T , if the average RLi of Qi is smaller than Θ, e.g.,
Θ = 1.2 in this set of experiments, Qi is considered as an Avail-
able Query, which means it has recovered to a normal state. The
cluster initially consists of 10 nodes, and we manually kill the 8
nodes where the sink operators of the 15 queries are deployed to
inject a correlated failure, and then 8 new nodes are acquired and
attached to the cluster to perform recovery.

Figure 5(a) and Figure 5(b) present the relative latency of the
recovered queries and the number of available queries using dif-
ferent recovery paradigms. In both figures, BestCase denotes the
case where all the new nodes become available simultaneously af-
ter 3 minutes and the recovery of all the failed partitions are started
immediately after that. Sample-1-PRG and Sample-2-PRG are two
different runs using progressive recovery and OPC represents the

blocking operator-centric recovery.
As one can see in Figure 5, BestCase outperforms the others

in both the relative recovery latency and the number of available
queries, this is because all the failed partitions are recovered only
3 minutes after the failure. On the contrary, OPC has the worst re-
covery performance as its recovery is started after all the new nodes
are ready, which results in that OPC has more input tuples buffered
than the others before the recovery is started. The relative latency
of OPC is nearly 50% higher than that of BestCase at the begin-
ning of the recovery, and it also takes more time for the average
relative latency of OPC to return to the stable level than BestCase.
The relative recovery latency and the number of available queries
with progressive recovery are between those of BestCase and OPC,
as the failed partitions are gradually recovered following the pace
of resource acquiring. This experiment shows that, compared to
the blocking and operator-centric recovery, adopting progressive
recovery brings better latency and less time for the failed queries to
become available.

7. CONCLUSION
In this work, we present a query-centric progressive recovery

framework to improve the efficiency of recovering correlated fail-
ure in DSPEs. Following the arriving pace of the newly acquired
resources after a correlated failure, failed partitions are scheduled
to be progressively recovered such that the outputs of failed queries
can be generated as early as possible. We present an effective ap-
proximate algorithm to optimize the recovery plan. Experimental
results show that, compared to the paradigm of blocking operator-
centric recovery, our approach exhibits significant advantages while
recovering correlated failures.
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ABSTRACT
We introduce optimal obstructed sequenced route (OOSR) queries,
a novel query type in spatial databases. For a given source and des-
tination locations and the sequence of required types of points of in-
terests (POIs) (e.g., first an ATM booth then a restaurant), an OOSR
query returns the locations of POIs, one from every required type,
that together minimize the obstructed trip distance (OTD) from the
source to the destination via the POIs. A pedestrian’s walking path
is obstructed by the presence of obstacles like a river, a fence or
a private property, and an obstructed distance is measured as the
length of the shortest path between two locations by avoiding the
obstacles. We develop the first solution to address OOSR queries.
We exploit elliptical properties and develop a novel OTD compu-
tation technique that does not retrieve the same obstacles multi-
ple times, reuses the already computed obstructed distances, and
minimizes the retrieval of the extra obstacles. We propose efficient
algorithms to evaluate OOSR queries with reduced IO and query
processing overhead. We perform experiments using a real dataset
and show a comparative analysis between OOSR algorithms.

1. INTRODUCTION
The widespread usage of location aware mobile devices has ex-

pedited the proliferation of location-based services in recent years.
Researchers have proposed variant of location-based queries [1, 4,
5, 6] to assist users in planning trips in an optimized manner. In this
paper, we introduce a new variant of trip planning query, an opti-
mal obstructed sequenced route (OOSR) query that allows pedes-
trians to plan trips with the minimum travel distance in presence
of obstacles like a river, a fence or a private property in the space.
For example, a tourist walking from an attraction to the hotel may
want to withdraw money from an ATM booth and then have din-
ner at a restaurant, or a pedestrian in the city may want to buy a
medicine from a pharmacy and then visit a shopping mall before
going to the bus station. An OOSR query returns the location of a
point of interest (POIs) for every required type (e.g., an ATM booth
or a restaurant) that together minimize the obstructed trip distance
(OTD) from a user’s source to the destination via the POIs. We
propose the first solution for OOSR queries.

c©2017, Copyright is with the authors. Published in Proc. 20th International
Conference on Extending Database Technology (EDBT), March 21-24,
2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Com-
mons license CC-by-nc-nd 4.0

Figure 1: An example of an OOSR query
Optimal sequenced route (OSR) queries have been addressed in

the unobstructed space that do not consider the presence of obsta-
cles and cannot facilitate trip planning for pedestrians. Figure 1
shows that POIs p1, p2

′, and p3 minimize the trip distance if obsta-
cles are not considered. On the other hand, the answer changes for
an OOSR query as in reality pedestrians cannot cross the interior
of obstacles and POIs p1

′, p2, and p3 minimize the OTD.
The efficiency of an OOSR algorithm depends on the OTD com-

putation technique and the number of POIs explored for finding the
optimal answer. The smaller the number of POIs retrieved from the
database while searching for the optimal query answer, the more
efficient the algorithm is. More importantly, the smaller number of
POIs reduces the number of OTD computations. In summary, the
contributions of our paper are summarized as follows:
• We introduce and formulate OOSR queries. To the best of

our knowledge, we first address the OOSR query.
• We develop a novel OTD computation technique that (i) does

not retrieve the same obstacles multiple times, (ii) reuses the
already computed obstructed distances, and (iii) minimizes
the retrieval of the extra obstacles.
• We combine the Euclidean lower bound and elliptical prop-

erties to prune POIs that cannot be part of the optimal an-
swer, and develop efficient algorithms for processing OOSR
queries with reduced IO and processing overheads.
• We compare the efficiency of our algorithms through exten-

sive experiments using real datasets.

2. PROBLEM FORMULATION
An OOSR query is formally defined as follows:
Definition: Optimal Obstructed Sequenced Route (OOSR)

Queries. Given a set of POIs P and a set of obstacles O in a 2-
dimensional space, a source location s, a destination location d,
and a set of m sequenced POI types T = {t1, t2, . . . , tm}, an OOSR
query returns A = {pt1 , pt2 , . . . , ptm}, a POI from every required
type, where A minimizes the obstructed trip distance (OTD).

An obstacle oi is a polygon in a 2-dimensional space and an
obstructed space does not allow a pedestrian to cross the obsta-
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cle like a river, a fence or a private property. An obstructed dis-
tance disto(., .) between two locations is measured as the length
of the shortest path between two locations by avoiding the ob-
stacles. An OTD T disto(s,d,A) is measured as disto(s, pt1) +
∑i=1

m−1disto(pti , pti+1)+disto(ptm ,d).
The set of POIs P and the set of obstacles O are indexed using

two separate R-trees, POI RTree and Obstacle RTree, respectively,
in the database of a location-based service provider (LSP). When
a user requests an OOSR query to the LSP, the LSP evaluates the
OOSR query and returns the answer to the user.

3. RELATED WORK
Trip planning queries [4] and variants [5, 6] have been exten-

sively studied in the literature. A trip planning algorithm was in-
troduced in [4], where a user can visit POIs in any sequence that
minimizes the trip distance. In [6], the authors first addressed an
optimal sequenced route (OSR) query that allows users to specify
the sequence of visiting POI types. In [7], the authors focus on pro-
tecting location privacy of users while evaluating an optimal trips.
However, none of the above approaches consider the presence of
obstacles while evaluating the queries.

Researchers have recently focused on developing algorithms for
processing variant queries in the obstructed space. In [3, 10], the au-
thors proposed algorithms for processing nearest neighbor queries
in the obstructed space. The approaches in [8, 9] evaluate group
nearest neighbor queries in the presence of obstacles, whereas the
focus of [2] is on obstructed reverse nearest neighbor queries.

Algorithm 1 CompOTD(s,d, pTrip)
Input: s, d, and a set of POIs pTrip = {pt1 , pt2 , . . . , ptm}
Output: The obstructed trip distance T distO(s,d, pTrip)
1: if distE(s, pt1)> distE(d, ptm) then
2: dmax← distE(s, pt1)
3: else
4: dmax← distE(d, ptm)
5: end if
6: for i← 1 to m−1 do
7: j← i+1
8: di j←ComputeMin(s,d, pti , pt j )
9: if di j +distE(pti , pt j )> dmax then

10: dmax← di j +distE(pti , pt j )
11: end if
12: end for
13: repeat
14: dprev← dmax

15: a← 2× dmax
(1−e)

16: O← IOR(s,d,a)
17: V G←ConstructV G(s,d, pt1 , pt2 . . . , ptm ,O)
18: disto(s, pt1)←CompObsDist(V G,s, pt1)
19: distsum← 0
20: for i← 1 to m−1 do
21: j← i+1
22: disto(pti , pt j )←CompObsDist(V G, pti , pt j )
23: distsum← distsum +disto(pti , pt j )
24: end for
25: disto(d, ptm)←CompObsDist(V G,d, ptm)
26: T distO(s,d, t)← disto(s, pt1)+distsum +disto(d, ptm)
27: dmax← T distO(s,d, pTrip)
28: until dmax == dprev
29: return T distO(s,d, pTrip)

4. AN OTD COMPUTATION TECHNIQUE
A major challenge of a query processing algorithm in the ob-

structed space is the complexity of computing the obstructed dis-
tance. The obstructed distance is computed as the length of the
shortest path between two locations by avoiding the obstacles.
There exist algorithms [10] to compute the obstructed distance
between two locations. However, computing obstructed distances
for pairs of locations independently by applying an existing al-
gorithm requires performing the same computations and the re-
trieval of same obstacles from the database multiple times. To over-
come the limitations, different optimization techniques [2, 9] have
been developed in the context of obstructed group nearest neighbor
(OGNN) and obstructed reverse nearest neighbor (ORNN) queries,
which are not applicable for OOSR queries.

Evaluating an OOSR query requires the computation of a large
number of OTDs, and an OTD is the summation of a number of
obstructed distances. We develop a novel OTD computation tech-
nique that incrementally expands the obstacle retrieval area as an
elliptical shape. We develop a technique to compute the length of
the major axis of the ellipse to guarantee that obstacles required
for every obstructed distance computation are simultaneously re-
trieved. Furthermore, we reuse the already retrieved obstacles and
computed obstructed distances for computing a new OTD. The in-
tuition behind using an elliptical region instead of any other shape
is to increase the probability of reusing the already retrieved obsta-
cles, and minimizing the retrieval of obstacles that are not required
for obstructed distance computations. We will show in the next sec-
tion that the refined POI search space in our proposed OOSR algo-
rithms expands as an elliptical region, and therefore there is a high
probability that the retrieved POI falls inside the area of the already
retrieved obstacles and the obstructed distances involving the POI
can be computed using already retrieved obstacles.

We use the existing technique [10] to compute the obstructed dis-
tance between two points using a visibility graph. The vertices of a
visibility graph are the corner points of polygons representing the
obstacles and the locations between which the obstructed distance
needs to be computed. There is an edge between two vertices if
no obstacle crosses the direct path between those vertices. The ob-
structed distance between two locations is the length of the shortest
path between two vertices representing the locations. It is not fea-
sible to pre-compute a visibility graph for a large set of obstacles.
We only retrieve those obstacles from the database that are relevant
to the OOSR query and construct the visibility graph.

Algorithm 1 shows the pseudocode for computing an OTD.
Without loss of generality, we explain the steps of computing
T disto(s,d, p1, p2) for an example shown in Figure 2. The algo-
rithm computes disto(s, p1), disto(p1, p2), and disto(p2,d) simul-
taneously. Using the function ComputeMin in Line 8, the algo-
rithm finds the Euclidean distance distE(p2,s) as the minimum
among distE(p1,s), distE(p2,s), distE(p1,d), and distE(p2,d).
Thus, distE(p2,s) is assigned to d12 and p2 becomes the center of
the circle used for computing disto(p1, p2) as shown in Figure 2(a).

In the next step, to compute disto(s, p1), disto(p1, p2), and
disto(p2,d), the algorithm retrieves obstacles inside the circles cen-
tered at s, p2 and d with radius distE(s, p1), distE(p1, p2), and
distE(p2,d), respectively. Figure 2(a) shows that there are overlaps
among the circles. Thus, to avoid the retrieval of same POIs mul-
tiple times, our algorithm computes an ellipse with foci at s and
d that includes three circles, and retrieves obstacles in the ellipse
as shown in Figure 2(b). To ensure the inclusion of the circles, the
periapsis, i.e., the smallest radial distance of the ellipse needs to
be greater than or equal to dmax, where dmax is the maximum of
disto(s, p1), d12 + disto(p1, p2), and disto(p2,d). Thus, the length
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(a) (b) (c) (d)
Figure 2: Steps of computing T disto(s,d, p1, p2)

of the major axis is computed as 2× dmax
(1−e) , where eccentricity e is

determined in experiments. The function IOR in Line 16 incremen-
tally retrieves nearest obstacles with respect to s and d, where the
distance is measured as the summation of the minimum Euclidean
distances of the obstacle from s and d, respectively.

The algorithm constructs the visibility graph and computes
disto(s, p1), disto(p1, p2), and disto(p2,d) based on the retrieved
obstacles. In Figure 2(c), we see that the radius of the circles cen-
tered at p2 and d increases to disto(p1, p2) and disto(p2,d) from
distE(p1, p2) and distE(p2,d), respectively. Since disto(s, p1) and
distE(s, p1) are equal, the circle centered at s does not change and
disto(s, p1) is finalized. The algorithm again retrieves obstacles so
that the new ellipse includes the circles as shown in Figure 2(d). We
observe that in Figure 2(d), though new obstacles are retrieves but
those obstacles do not increase any of the obstructed distance. Thus,
disto(p1, p2), and disto(p2,d) are finalized and T disto(s,d, p1, p2)
is computed in Line 26.

Algorithm 2 RRB_OOSR(s,d,T )
Input: A source s, a destination d, required POI types T
Output: The answer set A
1: Ainitial ← RetrieveInitialPOIs(s,d,T )
2: POITrips←CompTrips(Ainitial)
3: POITripsprev← POITrips
4: MinT Disto ← ∞

5: for each pTrip ∈ POITrip do
6: T Disto←CompOT D(s,d, pt)
7: if T Disto < MinT Disto then
8: MinT Disto← T Disto
9: A← pTrip

10: end if
11: end for
12: Maxd← FindMaxDist(Ainitial)
13: if Maxd < MinT Disto then
14: Arange← RetrievePOIs(s,d,T,MinT Disto)
15: POITrips←CompNewTrips(Ainitial ,Arange,POITripsprev)
16: for each pTrip ∈ POITrips do
17: T Disto←CompOT D(s,d, pTrip)
18: if T Disto < MinT Disto then
19: MinT Disto← T Disto
20: A← pTrip
21: end if
22: end for
23: end if
24: return A

5. OOSR ALGORITHMS
In this section, we present efficient algorithms for processing

OOSR queries. We develop a pruning technique to refine the POI
search space by exploiting the Euclidean lower bound and ellipti-
cal properties. A POI outside the refined POI search space cannot
provide the minimum OTD. The number of possible trips and OTD

computations decrease with the smaller number of retrieved POIs
from the database, i.e., the smaller POI search space.

According to the Euclidean lower bound property, the Euclidean
trip distance is smaller or equal to the OTD. On the other hand, ac-
cording to the elliptical property, the Euclidean distance between
two foci of an ellipse via a POI outside the ellipse is greater than or
equal to the length of the major axis of the ellipse. In our OOSR al-
gorithms, we represent the POI search space using an ellipse, where
the foci of the ellipse are at the source and destination locations of
a user, and the length of the major axis of the ellipse is equal to
the upper bound of the OTD. Thus, POIs outside the ellipse cannot
further minimize the OTD.

We propose two OOSR algorithms: RRB_OOSR (range re-
trieval based OOSR) and IRB_OOSR (incremental retrieval based
OOSR). The key difference between our algorithms, RRB_OOSR
and IRB_OOSR, is that RRB_OOSR computes the upper bound of
the OTD, refines the POI search space once, and then retrieves all
POIs inside the POI search region using a range query. On the other
hand, IRB_OOSR incrementally retrieves POIs and gradually re-
fines the search space. The advantage of IRB_OOSR is that it re-
trieves less number of POIs than RRB_OOSR.

Both RRB_OOSR and IRB_OOSR use a heuristic [7] to compute
the upper bound of the OTD. The heuristic retrieves an initial set
of POIs Ainitial that includes the nearest POI of every required type
from s and d. The Euclidean aggregate distance (EAD) of a POI
from s and d is computed as the summation of Euclidean distances
of the POI from s and d, respectively. In addition to the nearest
POI of every required POI type, Ainitial also includes other POIs of
required types that have EAD smaller than or equal to the maximum
of EADs of the nearest POIs from every required type.

Algorithm 2 shows the pseudocode for RRB_OOSR. The algo-
rithm retrieves initial POIs as Ainitial using the heuristic (Line 1),
computes the sets of possible combinations of POIs as POITrips
(Line 2), determines the OTD with respect to s and d for every set
using Algorithm 1 (Line 6), and finds the upper bound of the OTD
as MinT Disto in Line 8.

Next the algorithm computes Maxd in Line 12. The POIs that
falls inside the ellipse with foci s and d, and the major axis equal
to Maxd have been already retrieved. If Maxd ≥ MinT Disto, the
trip with the minimum OTD has been already found because a POI
that has EAD greater or equal to Maxd cannot further minimize
MinT Disto. Otherwise, the algorithm retrieves all POIs in the re-
fined POI search space (i.e., the POIs whose EADs from s and d are
smaller than MinT Disto), computes the set of new combination of
POIs by excluding the combinations that have already considered
(POITripsprev), and finds the set of POIs that provide the minimum
OTD with respect to s and d.

Algorithm 3 shows the pseudocode for IRB_OOSR. Instead of
retrieving all POIs in the refined POI search space, the algorithm
incrementally retrieves the next nearest POI with the smallest EAD
Maxd from s and d (Line 14). After retrieving a new POI, the algo-
rithm further minimizes the upper bound of the OTD as MinT Disto
in Line 20, if possible. The incremental retrieval of POIs continues
until the condition Maxd < MinT Disto is satisfied.
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Algorithm 3 IRB_OOSR(s,d,T )
Input: A source s, a destination d, required POI types T
Output: The answer set A
1: Ainit ← RetrieveInitialPOIs(s,d,T )
2: POITrips←CompTrips(Ainitial)
3: POITripsprev← POITrips
4: MinT Disto ← ∞

5: for each pTrip ∈ POITrips do
6: T Disto←CompOT D(s,d, pTrip)
7: if T Disto < MinT Disto then
8: MinT Disto← T Disto
9: A← pTrip

10: end if
11: end for
12: Maxd← FindMaxDist(Ainitial)
13: while Maxd < MinT Disto do
14: p← RetrieveNextPOI(s,d,T )
15: Maxd← dist(s, p)+dist(p,d)
16: POITrips←CompNewTrips(Ainitial , p,POITripsprev)
17: for each pTrip ∈ POITrips do
18: T Disto←CompOT D(s,d, pTrip)
19: if T Disto < MinT Disto then
20: MinT Disto← T Disto
21: A← pTrip
22: end if
23: end for
24: end while
25: return A

Table 1: Experimental Setup
Parameter Range Default Value
Distance between s and d 0.05% to 0.3% 0.15%

Total POI types 10, 15, 20, 25, 30 20

Required POI types 1, 2, 3, 4, 5 3

6. EXPERIMENTS
Since we first address OOSR queries, we compare our proposed

algorithms through experiments. We vary the distance between s
and d, the number of total POI types in the POI data set and the
number of required POI types in the query. Table 2 shows the
range and default value of each parameter that we used in our ex-
periments. When we vary a parameter in an experiment, we set
other parameters to their default values. We used the real dataset
of Germany, which consists of 34334 minimum bounded rectan-
gles (MBRs) of railway lines (rrlines) that represent obstacles and
307992 MBRs of hypsography data (hypsogr) that represent POIs
in our experiments. We normalized the total space into 10,000 ×
10,000 square units. We conducted each experiment for 50 samples
of OOSR queries and obtained the average experimental results. We
measured the processing time and IO cost using an Intel(R) Core
i5-5200U CPU (2.20 GHz) with 4 GB RAM.

Initially, we varied the values of eccentricity of the ellipse e as
0, 0.25, 0.5, 0.75 and 1, and run experiments for the default values
of other parameters. We found that the algorithms perform better in
terms of time and IOs for the value of e = 0.75. Therefore we set
this value as the default eccentricity (e) in our experiments.

Figure 3 shows that the processing time and IOs increases for
both of our algorithms with the increase of the distance between
s and d. This is because when the distance between s and d in-
creases, the areas for retrieving POIs and obstacles also increase.
We also observed that IRB_OOSR performs better in terms of both

time and IO cost than RRB_OOSR. This is expected as RRB_OOSR
retrieves more POIs than IRB_OOSR. Figures 4 and 5 show the
similar trends for varying the number of total POI types and the
number of required POI types, respectively.
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7. CONCLUSION
We developed a novel OTD computation technique, and OOSR

algorithms: RRB_OOSR and IRB_OOSR. Experiments show that
our approach can evaluate OOSR queries in real time, and on av-
erage IRB_OOSR requirers 2.1 times less processing time and 1.7
times less IOs than RRB_OOSR to process OOSR queries.
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ABSTRACT
Developing scalable real-time data analysis programs is a
challenging task. Developers need insights from the data to
define meaningful analysis flows, which often makes the de-
velopment a trial and error process. Data visualization tech-
niques can provide insights to aid the development, but the
sheer amount of available data frequently makes it impossi-
ble to visualize all data points at the same time. We present
I2, an interactive development environment that coordinates
running cluster applications and corresponding visualiza-
tions such that only the currently depicted data points are
processed and transferred. To this end, we present an al-
gorithm for the real-time visualization of time series, which
is proven to be correct and minimal in terms of transferred
data. Moreover, we show how cluster programs can adapt
to changed visualization properties at runtime to allow in-
teractive data exploration on data streams.

1. INTRODUCTION
The amount of available real-time data increases rapidly

with the growth of the Internet of Things. Such data is pro-
vided in the form of continuous data streams and includes
various kinds of information such as stock prices, Twitter
messages, Wikipedia edits, weather data, and GPS posi-
tions. Systems such as Apache Spark and Storm can pro-
cess huge amounts of data with low latencies in a cluster to
provide real-time analysis. Nevertheless, the development
of analysis programs for these platforms remains a complex
task, which requires insights about the processed data.

A visualization of the incoming datastream can provide
such insights, but visualizing big data in real-time is a chal-
lenge itself. Since display capabilities are limited to a cer-
tain plot resolution (height and width of the screen) and
local processing capabilities (e.g., a browser), it is usually
impossible to show all individual data points from a high
bandwidth data stream. For example, even though a time
series may consist of 2000 measurements per second, the vi-
sualization of a second in a line chart is limited to a certain

c©2017, Copyright is with the authors. Published in Proc. 20th Inter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

amount of pixel columns. Thus, a user has to trade off be-
tween the length of the shown history (time span covered
on the time axis) and the resolution of the provided plot
(available pixel columns per time) as shown in Figure 1a.

Interestingly, it is proven that the amount of data which
is required to plot a correct line chart depends only on the
number of pixel columns and not on the data. Jugel et al. [8]
derive standard SQL queries from a given plot resolution and
provide a loss-free plot from only four values per pixel col-
umn which reduces the computational load of the system.
We show how the same values can be computed in a parallel
dataflow program to allow the live visualization of incom-
ing streaming data. Additionally, we take care of differences
between event time and processing time as well as tuples ar-
riving out-of-order, which makes processing streaming data
a more complex task.

We integrate the efficient live visualization of time series
as line chart together with other types of visualizations in
I2, our interactive development environment which connects
distributed data analysis programs with the visualization of
the results.1 The name I2 emphasizes two types of interactiv-
ity: (i) through code changes and (ii) through an interactive
visualization GUI. With I2, developers can change and de-
ploy the code of analysis pipelines and corresponding result
visualizations in a one-click fashion. Moreover, running ap-
plications adapt to changes in the visualization, e.g., if the
user zooms into a map, and ensure that only the data points
which are depicted in the current visualization are processed
and transferred towards the front end. As a result, I2 de-
creases the workload in the cluster backend as well as the
visualization front end. Summarizing, our contributions are:

1. We present an interactive environment for visualiza-
tion supported development of streaming cluster ap-
plications.

2. We show that our solution significantly reduces the
amount of processed and transferred data while still
providing loss-free visualizations.

3. We provide an algorithm for the live visualization of
time series in line charts, which is proven to be correct
and minimal in terms transferred data.

In our demonstration, we use I2 for real-time event-based
sport analytics. We therefore explore a data set from the
DEBS 2013 Grand Challenge [10] consisting of more than
2.6 GB sensor data recorded at a football match with up to
2000Hz sampling rates. The data provides detailed real-time
information about all players as well as the ball.
1https://github.com/TU-Berlin-DIMA/i2
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(a) The tradeoff between depicted
history and plot precision.

(b) The M4 aggregation
technique for time-series data.

(c) Deriving a stream data flow program for the real-time
visualization of time-series data with M4.

Figure 1: Efficient real-time visualization of time series data.

Related Work. In contrast to existing data exploration
techniques [7], our demonstration combines three function-
alities within a single environment: (i) the rapid develop-
ment and deployment of cluster applications with streaming
data, (ii) the automatic adaptation of running cluster jobs
to changed visualization properties, and (iii) the efficient
reduction of data to prevent overload of the visualization
front-end. While other solution require an additional in-
termediate layer between database and visualization [4], I2

directly integrates into data analysis applications. Other
approaches like [1, 2, 9, 12] use sampling strategies for fast
visualizations of huge amounts of data, but as opposed to I2

disregard physical display properties and do not cover live
plots of streaming data. Wu et al. [14] take into account vi-
sualization properties and automatically derive SQL-queries,
but use a domain specific language. In contrast, I2 works
with any query language integrated in Apache Zeppelin.

In the remainder of this paper, we first present our so-
lution for the visualization of time-series in line charts in
Section 2. We then present the over-all architecture of I2 in
Section 3 and our demonstration in Section 4.

2. VISUALIZATION OF TIME SERIES
High volume time series data is omnipresent in many do-

mains such as banking, weather data, facility monitoring, or,
as in our demonstration, sport analytics. A naive approach
for the visualization of time series would send all available
data points towards the front end, which causes the visual-
ization to crash in case the amount of input data increases as
we will show in Section 4. The M4 aggregation technique [8]
overcomes this limitation and constantly transfers just four
values per pixel column. Furthermore, M4 is proven to pro-
vide loss-free plots compared to plots of the original data.

Figure 1b illustrates the functioning of the M4 aggrega-
tion. For each pixel column, M4 finds the minimum and
maximum value as well as the first and the last value (mini-
mum and maximum timestamp). All pixels which are crossed
by the line connecting the extracted data points are colored
and thus become foreground pixels. The intuitive approach
to take only the minimum and maximum values into consid-
eration would be insufficient. This would result in the red
dotted line in Figure 1b and cause the pixel errors E1, E3
(wrongly colored) as well as E2 (not colored).

In I2, we want to visualize streaming data in real-time.
While M4 only considers finite data stored in a relational
database, the real-time requirement adds several new chal-
lenges: instead of standard SQL queries, we now need par-

allelizable processing pipelines. Due to network delays and
failures, there might be a gap between event time (the point
in time a measure is taken) and processing time (the point
in time the data is processed). Since data points may ar-
rive out-of-order, we can never guarantee that the data for
a pixel column is complete and possibly need to update past
pixel columns in case of delayed input data. We address
these challenges, as we derive a complete stream processing
pipeline from a given plot resolution and the length of the
depicted history as shown in Figure 1c. The pipeline mainly
consists of four steps each of which can be executed as an
operator with possibly multiple parallel instances.

Watermarks. Watermarks flow through the pipeline
alongside the regular data and propagate the progress of
event time. A watermark of time tw means that no later
processed event will have a timestamp te < tw. We input
watermarks at the data source of our pipeline to mark the
smallest timestamp which is still covered by the live plot.
Hence, we update pixel columns in case data arrives out-of-
order. However, we avoid unnecessary processing of out-of-
order data which arrives so late that the corresponding pixel
column of the live chart is no longer displayed.

Windowing. We apply a time window function which
splits the stream into finite data chunks spanning the time
of one pixel column. We then compute the M4 aggregates
over these windows and respectively for each pixel column.
For the lack of space, we omit further details about the pro-
cessing of out-of-order events and refer the reader to [5].

Value compression. Finally, we map the results of the
aggregation to the value space of the y-axis which allows us
to represent each value with less bytes.
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Figure 2: The required bandwidth for an 800x600px plot.

Figure 2 shows the savings in the input bandwidth of the
visualization assuming an 800x600px plot showing 4 byte
integer values. Note that the bandwidth required by M4 is
independent from the frequency of the underlying raw data
and solely depends on the length of the depicted history. The
longer the depicted history, the more data is aggregated into
one pixel column, which causes the required bandwidth to
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Figure 3: I2 architecture overview.

decrease. In the next section, we show how our streaming
ready M4 aggregation pipeline is integrated into the overall
architecture of the I2 development environment.

3. I2 DEVELOPMENT ENVIRONMENT
The I2 development environment aims to seamlessly con-

nect live data visualization with the development of stream-
ing data analysis pipelines. We, therefore, directly link a
development environment and result visualizations within
in a single front end (Figure 3). Developers can deploy data
analysis pipelines as well as visualizations in a one-click fash-
ion. While the visualization is provided within the same
GUI as the code editor, the analytics pipeline is deployed
on an Apache Flink cluster to be capable of processing high
bandwidth streams in parallel.

Apache Flink [3, 5] is an open source platform for big
data batch and stream processing. The basis of Flink is a
fault tolerant execution engine. Programs are represented as
operator graphs and the full processing pipeline is executed
concurrently. Thus, the output tuples of an operator can be
processed immediately by succeeding operators. Flink al-
lows operators to have state. An asynchronous snapshot al-
gorithm [6] ensures exactly once processing guarantees even
in case of failures. Flink fits perfectly to I2 since we need
stateful operators to store current visualization parameters
and low latency processing to quickly adapt running jobs to
changes.

Apache Zeppelin. The I2 front end is based on Apache
Zeppelin, but was extended to support automatic data re-
duction depending on current visualization parameters. In
general, Zeppelin aims to support quick development of pro-
grams, enabling interactive analytics in web based note-
books. It is similar to IPython [11], but focuses on large
scale datasets and distributed computing. Zeppelin note-
books are data driven, interactive, and can be edited collab-
oratively by multiple users. Moreover, Zeppelin supports a
variety of execution back ends. Zeppelin is not limited to
classical dashboards; it also allows to develop source code,
submit jobs directly to the cluster, and retrieve results im-
mediately.

Runtime Adaptive Operators. I2 informs running
Flink jobs about changes of the visualization parameters.
For example, if the user zooms into a map or changes the
length of the depicted history of a time series plot. The run-
ning cluster program has to adapt to such changes with low
latency in order to immediately provide the required data
for the visualization. Since a redeployment of a job in the
cluster can take more than a minute, we need to adapt jobs
at runtime.

We push changes of the visualization parameters as con-
trol messages in a separate stream to the running Flink job.
Only the type of an operator (e.g., filter or aggregation) is

Figure 4: A runtime adaptive filter operator for variable
thresholds in Apache Flink.

defined a priori, while we allow to adjust the parameters of
the operator (e.g., filter predicate or aggregate function) on
the fly at runtime. We use Flink’s CoMap operators to pro-
cess the control messages and the actual data points together
in a shared runtime adaptive operator.

Flink’s CoMap operators consume two input streams while
input items from each stream are processed by separate
user defined functions (UDFs). Nevertheless, both UDFs
can access a shared operator state which is used to commu-
nicate between them. Figure 4 shows how we can utilize
a CoFlatMap operator to adapt to changed properties: in
this example, one input stream consists of control messages
containing changes to the threshold of a filter operation.
The responsible UDF saves the current threshold as oper-
ator state (Figure 4, 1). Each value from the actual data
stream is compared to the currently stored threshold and
all smaller values are filtered out (Figure 4, 2). In general,
arbitrary changes to a selection criteria, aggregation func-
tion, windowing semantics, and other operations are possible
using this architecture.

4. DEMONSTRATION
In our demonstration, we allow the visitor to experience

the fast visualization supported development with I2. This
covers the development of the Flink job running in the clus-
ter as well as changing the visualizations. At the same time,
we continuously show the savings in terms of the transferred
data volume which are archived by I2. When we increase the
data rates of the input streams, I2 will hide that workload
from the visualization while without using I2 the front end
would first become unresponsive and finally crash.

Data. We replay the data set which was provided with
the DEBS Grand Challenge 2013 [10]. This data set consists
of sensor data, which was recorded at a football match. The
speed, acceleration, and position of the ball are tracked with
a frequency of 2000Hz. In addition, each player has two
sensors close to his shoes which are tracked with a 200Hz
frequency. In total, roughly 15.000 data points are provided
for each second of the match.

Demonstration. We show an interactive dashboard to
analyze the performance of individual players in detail. Users
can either select a player manually or automatically follow
the ball possession, which involves detecting peaks in the
measures of the ball sensor as well as correlating these peaks
with the data from the player sensors. Our dashboard shows
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(a) Interactive Dashboard (b) Development Environment
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Figure 5: Selected screenshots from the I2 demonstration.

different metrics (e.g, acceleration and speed) for the se-
lected player as well as the player’s current position on the
football field (Figure 5a).

We first try to run our dashboard without using I2, mean-
ing that no data reduction is applied and all data - roughly
15.000 tuples/sec. - is transferred towards the frontend. As
shown in Figure 5c (left), the UI works only for a short mo-
ment before it becomes unresponsive due to a CPU overload.

We now run the same dashboard with I2, pushing the cur-
rent visualization properties to the running Flink job as de-
scribed in Section 3. This information is then used by Flink
to apply different data reduction techniques: knowing the
currently selected player enables adaptive filtering as shown
in Figure 4 and knowing the plot resolution of line charts
allows to apply the M4 aggregation technique we presented
in Section 2. The soccer field map combines different data
reduction techniques. We reduce the precision of the posi-
tion reports based on the plot resolution and at the same
time apply load shedding [13] to reduce the data rate to the
current frame rate of the visualization. As shown on Fig-
ure 5c (right), the presented dashboard runs fluently when
using I2 with close to 60 frames per second and a CPU uti-
lization below 50%.

Interactivity. We demonstrate the two types of interac-
tivity provided by I2. First, we show that visualization prop-
erties can be changed easily in the dashboard and that the
running Flink job adapts with low latency to e.g., changes
in the player selection or the length of the depicted history
of line charts.

Second, we demonstrate the interactivity through code
changes. Interactive code changes allow an even more flex-
ible data exploration and the rapid development of cluster
applications. We first show how the code for the visualiza-
tions can be adapted and directly deployed without a need
to restart the running Flink job. We then show how we can
connect an additional data source for twitter messages and
how these messages can be correlated to the data we used
before. The extended Flink job is directly deployed to the
cluster with just one click.

Evaluation. We exemplary compared the performance of
I2 for the dashboard described above (Figure 5c). Our exper-
iment showed that the amount of transferred data, the mem-
ory utilization, the CPU load, and the frame rate remain
constant throughout the game when I2 is active. Switching

of I2 causes the visualization to become unresponsive imme-
diately due to the massive amount of arriving data. With
activated I2, the bottleneck is no longer the visualization,
but the power of the used Flink cluster.

5. CONCLUSIONS
I2 enables two types of interactivity: first, the user can

specify real-time analysis programs and change them on
the fly. Second, the interactive visualization of the results
adapts currently running cluster applications without a need
to restart. Using I2, the amount of data points to be pro-
cessed and transferred to the front end can be reduced sig-
nificantly without quality loss, enabling the live visualiza-
tion of high bandwidth data streams. The capabilities of
I2 have been demonstrated in an interactive example using
real-world data.
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ABSTRACT
Big Data applications are becoming more complex and expe-
riencing frequent changes and updates. In practice, manual
optimization of complex big data jobs is time-consuming and
error-prone. Maintenance and management of evolving big
data applications is a challenging task as well. We demon-
strate HDM, Hierarchically Distributed Data Matrix, as a
big data processing framework with built-in data flow op-
timizations and integrated maintenance of data provenance
information that supports the management of continuously
evolving big data applications. In HDM, the data flow of
jobs are automatically optimized based on the functional
DAG representation to improve the performance during ex-
ecution. Additionally, comprehensive meta-data related to
explanation, execution and dependency updates of HDM ap-
plications are stored and maintained in order to facilitate
the debugging, monitoring, tracing and reproducing of HDM
jobs and programs.

Keywords
Big Data; Data Flow Optimization; Provenance Manage-
ment

1. INTRODUCTION
We are experiencing the era of big data that has been fu-

elled by the striking speed of the growth in the amount of
data that has been generated and consumed. Several big
data processing frameworks (e.g., MapReduce [2], Spark [6]
and Flink [1], etc.) have been introduced to deal with the
challenges of processing the ever larger data sets [3]. These
frameworks significantly reduce the complexity of writing
large scale data-oriented applications. However, in practice,
as big data programs and applications have become more
and more complicated, it is almost impossible to manually
optimize the performance of programs written by diversified
programmers. Therefore, built-in optimizers are crucial for
tackling the challenges of improving the performance of ex-
ecuting those hand-written programs and applications. At

c©2017, Copyright is with the authors. Published in Proc. 20th Inter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
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the same time, realistic data analytics applications are con-
tinuously evolving in order to deal with the non-stop changes
in the real world. In practice, managing and analyzing those
continuously evolving big data applications have resulted in
big technical debts [4]. Therefore, there are increasing re-
quirements for data provenance to support analyzing, trac-
ing and reproduction of historical versions of data analytics
applications.

In this paper, we demonstrate HDM, (Hierarchically Dis-
tributed Matrix) [5], a big data processing framework with
built-in data optimizations for execution and data prove-
nance supports for managing continuously evolving big data
applications. In particular, HDM is a lightweight, functional
and strongly-typed data representation which contains com-
plete information (such as data format, locations, dependen-
cies and functions between input and output) to support
parallel execution of data-driven applications [5]. Exploit-
ing the functional nature of HDM enables deployed appli-
cations of HDM to be natively integrable and reusable by
other programs and applications. In addition, by analyzing
the execution graph and functional semantics of HDMs, mul-
tiple optimizations are provided to automatically improve
the execution performance of HDM data flows. Moreover,
by drawing on the comprehensive information maintained
by HDM graphs, the runtime execution engine of HDM is
also able to provide provenance and history management for
submitted applications.

2. HDM FRAMEWORK

2.1 System Overview
Fig 1 shows the system architecture of the HDM runtime

engine which is composed of three main components:

• Runtime Engine: is responsible for the management of
HDM jobs such as explaining, optimization, schedul-
ing and execution. Within the runtime engine, the
AppManager manages the information of all deployed
jobs. TaskManager maintains the activated tasks for
runtime scheduling in the Schedulers; Planner and Op-
timizers interpret and optimize the execution plan of
HDMs in the explanation phases; HDM manager man-
ages the information and states of the HDM blocks in
the entire cluster; Execution Context is an abstraction
component to support the execution of scheduled tasks
on either local or remote nodes.

• Coordination Service: is composed of three types of co-
ordinations: cluster coordination, block coordination
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Figure 1: System Architecture of HDM Framework.

and executor coordination. They are responsible for
the coordination and management of node resources,
distributed HDM data blocks and executors on work-
ers, respectively.

• Data Provenance Manager : is responsible to interact
with the HDM runtime engine to collect and main-
tain data provenance information (such as Dependen-
cyTrace, JobPlanningTrace and ExecutionTrace) for
HDM applications. Those information can be queried
and obtained by client programs through messages for
the usage of analysis or tracing.

2.2 HDM Data Flow Optimization
One key feature of HDM is that, the execution engine

contains built-in planners and optimizers to automatically
optimize the functional data flow of submitted applications
and jobs. During explanation of HDM applications, the data
flow are represented as DAGs with functional dependencies
among operations. The HDM optimizers traverse through
the DAG to reconstruct and modify the operations based on
optimization rules to obtain more optimal execution plans.
Currently, the optimization rules implemented in the HDM
optimizers include: function fusion, local aggregation, oper-
ation reordering and data caching for iterative jobs [5].

• Function fusion. During optimization, the HDM plan-
ner combines the lined-up non-shuffle operations into
one operation with high-order function so that the se-
quence of operations can be compute within one task
rather than separate ones to reduce redundant inter-
mediate results and task scheduling. This rule can be
applied recursively on a sequence of fusible operations
to form a compact combined operation.

• Local Aggregation. Shuffle operations are very expen-
sive in the execution of data-intensive applications. If
a shuffle operation is followed with some aggregations,
in some cases, the aggregation or part of the aggrega-
tion can be applied before the shuffling stage. During
optimization, HDM planer tries to move those aggre-
gation operations forward before the shuffling stage to
reduce the amount of data that needs to be transferred
during shuffling.

• Operation reordering/reconstruction. Apart from ag-
gregations, there are a group of operations which fil-
ter out a subset of the input during execution. Those

operations are called pruning operations. The HDM
planner attempts to lift the priority of the pruning op-
erations while sinking the priority of shuffle-intensive
operations to reduce the data size that needs to be
computed and transferred across the network.

• Data Caching. For many complicated and pipelined
analytics jobs (such as machine learning algorithms),
some intermediate results of the job could be reused
multiple times by the subsequent operations. There-
fore, it is necessary to cache those repetitively used
data to avoid redundant computation and communica-
tion. In this case, HDM planner counts the reference
for the output of each operation in the functional DAG
to detect the potential points that intermediate results
should be cached for reusing by subsequent operations.

During optimization process, the rule above are applied
one by one to reconstruct the HDM DAG and the optimiza-
tion can last multiple iterations until there is no change in
the DAG or it has reached the maximum number of itera-
tions. The HDM optimizer is also designed to be extendable
by adding new optimization rules by developers when it is
needed.

2.3 Data Provenance Supports in HDM
It is normally tedious and complicated to maintain and

manage applications that are continuously evolving and be-
ing updated. In HDM, drawing on comprehensive meta-
data information maintained by HDM models, the runtime
engine is able to provide data provenance supports includ-
ing execution tracing, version control and job replay in the
dependency and execution history management component.

Basically, the HDM server maintains three types of meta-
data about each submitted HDM jobs including Execution-
Trace, JobPlanningTrace and DependencyTrace.

• DependencyTrace. For every submitted HDM program,
the server stores and maintains the dependent libraries
required for execution. The dependencies and update
history are maintained as a tree structure. Based on
this information, users are able to reproduce any ver-
sion of the submitted applications in the history.

• JobPlanningTrace. The HDM server also stores the
explanation and planning traces for every HDM appli-
cations. JobPlanningTrace includes the logical plan,
optimizations applied and final physical execution plan
after being parallelized.
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Figure 2: Dataflow Visualization of HDM Applica-
tions.

• ExecutionTrace. During execution, the HDM server
also maintains all the runtime information (execution
location, input/output, timestamps and execution sta-
tus, etc.) related to each executed task and job. These
information are very meaningful to monitor and trace
back the process of execution of historical jobs and
applications.

Drawing on the three types of information maintained in
the HDM server, client-side programs can send messages to
query and obtain the history and provenance information, so
that users and administrators can profile, debug and apply
analysis to the deployed applications throughout their life
cycles.

3. DEMONSTRATION SCENARIOS
In this demonstration, we will present to the audience

the HDM framework1 from four main aspects: cluster re-
source monitoring, visualisation data flow optimization, exe-
cution history tracing, version-control and dependency man-
agement. The demonstration will be conducted on AWS
EC2 with one M3.Large instance as the master and 10 nodes
M3.XLarge instances as the workers.

To show how HDM optimizes the data flow and provides
data provenance support for its applications, we will present
an example of Twitter analysis scenario that consists of the
following two Tweets analysis programs2:

• The first program, presented in Listing 1, looks for the

1The source code of the HDM framework is available on
https://github.com/dwu-csiro/HDM
2A demonstration screencast is available on https://youtu.
be/Gsz7z5bQ1zI

Tweets that are related to recent election events by
checking the hashtag of the input Tweets.

• The second program, presented in Listing 2, finds out
the Tweets that are related to two candidates: “Trump”
and “Hillary” and count the amount for each of them.

Listing 1: Code Snippet of Finding out Tweets

val input = HDM("hdfs ://10.10.0.100:9091/ user/tweets")

val tweets = input.map{ line =>

val seq = line.split(",")

Tweet(seq)

}

val grouped = tweets.groupBy(t => t.hashTag)

val results = grouped.findByKey(_.contains("election"))

Listing 2: Code Snippet of Hashtag Counting for
Interested Tweets

val input = HDM("hdfs ://10.10.0.100:9091/ user/tweets")

val tweets = input.map{ line =>

val seq = line.split(",")

Tweet(seq)

}

val grouped = tweets.groupBy(t => t.hashTag)

val trumpN = grouped.findByKey(_ == "Trump").count

val hillaryN = grouped.findByKey(_ == "Hillary").count

println(trumpN / hillaryN)

Cluster Resource Management. In the first part of the
demo, we will show the cluster resource monitor of the HDM
manager. The HDM server maintains the resource-related
information of all the workers within the cluster. In the
HDMConsole, it is able to monitor the resource utilization
information (such as CPU, Memory, Network and JVM) for
each worker in real time. Therefore, cluster administrator
is able to use these information and easily supervise and
understand the status of every worker as well as the entire
cluster.

Dataflow Optimizations. The second part of the demo
shows how the Tweets programs are represented in the HDM
DAG and how it is explained, optimized and parallelized by
the planner.

• For the first program, the HDM optimizer applies op-
erations reordering to lift the pruning operation find-

ByKey to be in front of the shuffle operation groupBy.
Then the optimizer applies function fusion rule to com-
bine map and findBy into a single composite operation.

• For the second program, the HDM optimizer applies
operation reordering to move the findByKey operation
to be in front of groupBy then applies local aggrega-
tion count by adding local count in front of groupBy.
Lastly, it detects the input tweets that are reused by
two operations so that the optimizer can add a cache
point after the compute operation that generates the
output of tweets.

The HDM server maintains all the related meta-data (such
as the creator, original program, logical plan, physical plan,
etc.) to all the submitted HDM applications. In the demon-
stration, the HDM console visualizes the original logical
flow, optimized logical flow and parallelized physical graph
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Figure 3: Execution Traces of HDM Applications.

Figure 4: Dependency Management and Version Control of HDM.

for each execution instances of the HDM applications (Fig-
ure 2).

Execution History Tracing. In the third part of the demo,
we will show how the execution process can be tracked dur-
ing and after execution. The HDM server collects and stores
the runtime information for each execution task and struc-
tures them into DAG based on the task dependencies. Dur-
ing or after the execution of the tasks, the HDM server also
updates the status in the stored meta-data when it has re-
ceived the notification messages. The HDM console also
summarizes those information and presented it into a view
of execution lanes for each core of the workers (Figure 3).

Dependency Management and Version Control. In the last
part of the demo, we will show how the HDM server manages
the dependencies and provides version control for submitted
applications. The dependency and history manager stores
all the updating history of each HDM applications and or-
ganizes them into a tree based structure. As a result, ad-
ministrator users are able to query, analyze and reproduce
the historical HDM applications using those dependencies
information (Figure 4).

Besides the framework demonstration, we will also dis-
cuss in more details about the design choices that we have
made on defining the different components of the framework.
In addition, performance comparison with the Spark frame-

work [6], using the example scenario, will be presented to
demonstrate the efficiency of the HDM optimization tech-
niques.
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ABSTRACT
Despite their wide use and importance, target functional de-
pendencies (fds) are still a bottleneck for the state-of-the-art
Data Exchange (DE) engines. The consequences range from
incomplete support to support at the expense of an impor-
tant overhead in performance. We demonstrate here Chase-
FUN, a DE engine that succeeds in effectively mitigating
and taming this overhead, thus making target fds affordable
even for very large-sized, complex scenarios. ChaseFUN is
a custom chase-based system that essentially relies on ex-
ploiting chase step ordering and constraint interaction, so as
to piecemeal process, parallelize and dramatically speed-up
the chase. Interestingly, the structures and concepts at the
core of our system moreover allow it to seamlessly uncover
a range of usually opaque details of the chase. As a result,
ChaseFUN’s two main strengths are: (i) its significant scala-
bility and performance and (ii) its ability to provide detailed,
granular insight on the DE process. Across our demonstra-
tion scenarios, we will emphasize our system’s practical per-
formance and ability to scale to very large source instances
and sets of constraints. Furthermore, we will aim at pro-
viding the user with a novel, behind-the-scenes view on the
internals of the ongoing chase process, as well as on the in-
trinsic structure of a DE scenario.

CCS Concepts
•Information systems Ñ Data exchange;

1. INTRODUCTION
Over the last decade, a plethora of mapping systems, in-

cluding commercial ones such as IBM Rational Data Archi-
tect and research prototypes [1], have been developed for
data transformation and data integration tasks. Data Ex-
change (DE) is one of the core processes of data transforma-
tion, relying on first-order logic and as such mainly pursued
in research implementations. It revolves around translating
data adhering to a source schema into data compliant with a
target schema, and satisfying a set of logic-based constraints.
These constraints typically include: source-to-target (s-t)
tuple-generating dependencies (tgds) and target constraints

c©2017, Copyright is with the authors. Published in Proc. 20th Inter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
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such as target tgds and target equality-generating depen-
dencies (egds). Target egds in turn include primary keys,
and more general functional dependencies (fds) on the target
schema. The produced solution of a DE process, called tar-
get solution, is generally obtained using the chase algorithm.
Such algorithm iteratively applies s-t and target constraints
until a fix point (i.e termination) is reached; the chase result
upon termination then yields the target solution.

Existing DE engines span from completely covering all
the above classes of constraints to supporting only subsets
thereof. Indeed, custom chase engines [3] have been con-
ceived for computing DE solutions under a wide range of
constraints. While such engines may show high efficiency
when dealing with tgds and other complex constraints, tar-
get fds yet hinder their performance and scalability. Alter-
natively, to aim for performance, DE engines like [4] have
focused on outputting a set of SQL queries whose execution
yields the target solution. While fast indeed, this approach
is, however, mostly limited to s-t constraints. Extensions
to subsets of target fds were shown possible, but typically
requiring the additional input of source constraints [4].

Contributions. We demonstrate ChaseFUN, a novel
chase-based engine for Data Exchange in the presence of ar-
bitrary target fds and in the absence of source constraints.
Our demonstration’s first focus will be on emphasizing our
system’s performance on such DE scenarios. Indeed, as we
will show, ChaseFUN is able to dramatically speed-up fd
evaluation by leveraging constraints’ interaction and chase
step ordering, and exploiting the granular processing and
parallelization opportunities yielded by such concepts. By
showcasing our system’s performance and scalability on large
and complex DE scenarios, we then aim at showing that effi-
cient support is yet attainable for general target fds, despite
the overhead brought in by these constraints.

Interestingly, the concepts that stand at the core of Chase-
FUN’s performance endorse our system with an additional
property: the ability of shedding light on the internals of
DE scenarios and the corresponding chase sequences. To
this end, ChaseFUN offers several features allowing the user
to consult and examine scenario and chase-related data, in-
cluding a particularly informative step-by-step execution of
the chase procedure. Accordingly, our demonstration’s sec-
ond focus will be on showcasing such features, thus providing
the user with a novel, behind-the-scenes view on the under-
pinnings of DE. To the best of our knowledge, such view has
never been previosuly proposed by a chase-based DE engine.

Paper layout. We present an overview of ChaseFUN in
Section 2 and the demonstration details in Section 3.

Demonstration
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(i) Source Instance I

Active Actors
name surname age

Leonardo Di Caprio 40
John Redmayne 33

Awarded Actor
name surname oscarName year
John Redmayne Best Actor 2014

Wallace Beery Best Actor 1932
Fredric March Best Actor 1932
Marlon Brando Jr Best Actor 1954
Marlon Brando Jr Best Actor 1972

Actor Collaboration
name1 surname1 name2 surname2

Leonardo Di Caprio Matthew David
Fredric March Miriam Hopkins

(ii) Dependencies (uppercase for existential variables)

m1 :
Active Actorspn, s, aq Ñ Actorpn, s, Y1, Y2q

m2 :
Awarded Actorpn1, s1, p1, w1q Ñ

Actorpn1, s1, T, T1q ^Oscar Prizepp1, w1, T q
m3 :
Actor Collaborationpn2, s2, n3, s3q Ñ

Actorpn2, s2, E1, E2q ^Actorpn3, s3, E3, E2q

e1 :
Actorpn, s, p, wq ^Actorpn, s, p1, w1q Ñ
pp “ p1q ^ pw “ w1q

e2 :
Oscar Prizepp, w, zq ^Oscar Prizepp, w, z1q Ñ pz “ z1q

(iii) Target Instance (Solution) J
(values Nx are labelled nulls)

Actor
name˚ surname˚ idRewarding idClub
John Redmayne N5 N6

Wallace Beery N7 N8

Marlon Brando Jr N13 N14

Leonardo Di Caprio N15 N16

Matthew David N17 N16

Fredric March N7 N19

Miriam Hopkins N20 N19

Oscar Prize
oscarName˚ year˚ idActor
Best Actor 2014 N5

Best Actor 1932 N7

Best Actor 1954 N13

Best Actor 1972 N13

Figure 1: Running example: DE scenario involving actors, prizes and collaborations.

m1

a1m1= {n : Leonardo, s : Di Caprio, a : 40, Y1 : N1, Y2 : N2}
a2m1= {n : John, s : Redmayne, a : 33, Y1 : N3, Y2 : N4}
m2

a1m2= {n1 : John, s : Redmayne, p1 : BestActor, w1 : 2014, T : N5, T1 : N6}
a2m2= {n1 : Wallace, s : Beery, p1 : BestActor, w1 : 1932, T : N7, T1 : N8}
a3m2= {n1 : Fredric, s : March, p1 : BestActor, w1 : 1932, T : N9, T1 : N10}
a4m2= {n1 : Marlon, s : Brando Jr, p1 : BestActor, w1 : 1954, T : N11,

T1 : N12}
a5m2= {n1 : Marlon, s : Brando Jr, p1 : BestActor, w1 : 1972, T : N13,

T1 : N14}
m3

a1m3= {n2 : Leonardo, s2 : Di Caprio, n3 : Matthew, s3 : David,
E1 : N15, E2 : N16, E3 : N17}

a2m3= {n2 : Fredric, s2 : March, n3 : Miriam, s3 : Hopkins,
E1 : N18, E2 : N19, E3 : N20}

(i) Set of assignments in their initial form (values Nx are labelled nulls)

S1= {a1m1, a1m3}
S2= {a2m1, a1m2}
S3= {a2m2, a3m2, a2m3}
S4= {a4m2, a5m2}

(ii) Saturation Sets

a1m1= {n : Leonardo, s : Di Caprio,
a : 40, Y1 : N15, Y2 : N16}

a1m3= {n2 : Leonardo, s2 : Di Caprio,
n3 : Matthew, s3 : David,
E1 : N15, E2 : N16, E3 : N17}

(iii) S1 after chase

Actor:
Leonardo Di Caprio N15 N16

Matthew David N17 N16

(iv) Materialization of S1 after chase

Figure 2: Assignments and Saturation Sets for the DE scenario in Figure 1.

2. SYSTEM OVERVIEW
Main algorithmic concepts. To efficiently produce DE
solutions, ChaseFUN relies on a series of algorithmic con-
cepts which we synthetically illustrate hereafter1 by means
of a DE example depicted in Figure 1: Figure 1(i) shows
the source instance I; (ii) shows the s-t tgds (m1, m2, m3)
and target fds (e1 and e2); finally, (iii) shows the target so-
lution J . This example shows a recurring transformation
task, that of taking overlapping data across source tables
(e.g. the actors who are active, who collaborate with each
other, and win prizes) and injecting them into one or two
target tables by merging duplicates via target functional de-
pendencies. Transformations of this kind, involving general
target fds and no source constraints, are indeed crucial in
DE. Using our example, we describe hereafter the key con-
cepts and tools used by ChaseFUN:
• Chase and assignments. Our chase flavor relies on the

construction, selection and modification of a set of full s-t
tgd assignments corresponding to the DE scenario. Each
assignment is initially a mapping of universal variables in
the s-t tgd body to source constants, further enriched with
a mapping of existential variables in the s-t tgd head to
fresh labelled nulls. Initial assignments for our running ex-
ample are illustrated in Figure 2(i). Chase steps with s-t
tgds consist in the selection of a yet available assignment,
which is marked as no longer available and added to a target
set. Chase steps with egds (fds) in turn modify assignments
within the current target set. Upon termination of the chase,

1A detailed description of these concepts is available in [2].

the target set comprises the final (i.e. potentially modified
by egd application) form of all assignments. We obtain the
tuples in the target instance J by materializing this final
form, i.e. by replacing variables in the tgds heads with their
assigned values.

• Saturation Sets and chase order. One of the main rea-
sons behind ChaseFUN’s performance is its ability to tame
the size of the intermediate target set during the chase, thus
systematically reducing the egd application scope. To achieve
such reduced size, we group assignments that are estimated
to be at some point interacting via fds. We call such groups
of assignments Saturation Sets. The chase of a Saturation
Set will typically alternate between tgd steps and series of
egd steps, applied to termination (i.e., until no egd remains
applicable). Each Saturation Set thus acts as an indepen-
dent chase unit that provides a part of the target solution.
Figure 2(ii) shows a possible partition of the assignments in
our running example into four Saturation Sets. We further
show, in Figure 2(iii), the result of chasing S1 (two s-t tgd
steps corresponding to the assignments’ selection, followed
by an egd step with e1 that modifies a1m1). Materializ-
ing this chase result yields the Actor tuples in Figure 2(iv).
Note that these are indeed part of the target instance J in
Figure 1(iii).

• The Conflict Graph and parallelization. To efficiently
build Saturation Sets, our system uses a statically-built data
structure called the Conflict Graph. Conflict Graph nodes
correspond to s-t tgds, whereas edges witness the fact that
the two s-t tgds, representing the connected nodes, have
assignments that should potentially belong together in the
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same Saturation Set. We call this kind of relation a conflict
between two s-t tgds. The Conflict Graph further charac-
terizes, via conflict areas adorning vertices, the interaction
we would expect between assignments of the respective s-t
tgds. The Conflict Graph for our running example is de-
picted below, with vertices v1, v2, v3 corresponding to s-t
tgds m1, m2, m3.

v1v2 v3

Areaspv1q “ tca
1
1 “ xpn, sq, e1yu.

Areaspv2q “ tca
1
2 “ xpn

1, s1q, e1y, ca
2
2 “ xpp

1, w1q, e2yu.
Areaspv3q “ tca

1
3 “ xpn

2, s2q, e1y, ca
2
3 “ xpn

3, s3q, e1yu.

By v1 and v2’s adornments we infer that any assignments
of m1 and m2 may trigger the fd e1, if they agree on the
values for n and n1, respectively s and s1. Thus, since they
exhibit such agreement, a2m1 and a1m2 must belong to-
gether in the same Saturation Set, i.e. S2 in Figure 2(ii).

Besides its important role in Saturation Set construction,
the Conflict Graph also provides very interesting paralleliza-
tion opportunities. Indeed, one can show that a Satura-
tion Set can never span across several connected compo-
nents of the graph. ChaseFUN thus proceeds to Saturation
Set construction and chase in parallel for each of the Con-
flict Graph’s connected components. Coupled to the Satura-
tion Set-chase paradigm, parallel processing in turn further
boosts our system’s speed and scalability.

Implementation and assessment. We have implemented
ChaseFUN in Java (JVM version 1.8) using a JDBC inter-
face for communication with an underlying PostgreSql9.4
DBMS system. To stress-test ChaseFUN we have used sev-
eral scenarios generated by using iBench[1], a novel data
integration benchmark for generating arbitrarily large and
complex schemas and constraints. We have considered three
types of scenarios, in increasing complexity order: (i) OF
scenarios generated with the default iBench object fusion
primitive; (ii) OF` scenarios, generated by combining the
iBench object fusion and vertical partitioning primitives; (ii)
OF`` scenarios, obtained by further modifying OF` to yield
s-t tgds with up to three atoms in the head. To further pro-
vide scale and assess the signficance of ChaseFUN’s perfor-
mance, we comparatively ran, on the same scenarios, one of
the best DE engines currently available, namely the Llunatic
system[3]. Figure 3 shows several measures obtained during
this comparative evaluation2.

Scenarios
SCENARIO s-t tgds OF OF+ OF++ # source tuples

A 15 5 egds 10 egds 15 egds 500K
C 45 15 egds 30 egds 45 egds 1.5M
F 90 30 egds 60 egds 90 egds 3M

Figure 3: Evaluation and comparative assessment.

2We ran experiments on a 4-cores, i7-6600U 2.6 Ghz, 8GB
RAM machine. We set a 15min timeout for all runs. We
used the latest, most optimized version of Llunatic, as pro-
vided by its authors.

DE workflow. Our system runs the DE process as a tran-
sition among four states, detailed hereafter.
• 1. Initial state: waiting to load scenario. Prior to any in-
teraction, ChaseFUN bootstraps with loading a Data Ex-
change scenario, comprising source and target schemas, con-
straints (s-t tgds and target fds) and source instance tuples.
• 2. Ready to chase state. Once a scenario has been loaded,
the Conflict Graph and the initial assignments are further
computed. The system then reaches the Ready to chase
state, where the user can browse scenario-related data: source
and target schemas, source instance, s-t tgds and their as-
signments, target fds, as well as the Conflict Graph.

Figure 4: Ready to chase state for Scenario 2.

ChaseFUN provides windows and subwindows where base-
line information can be selectively displayed by clicking on
the corresponding tabs. Details can be further obtained by
clicking on displayed elements. Figure 4 shows some of the
system’s visual feedback in the Ready to chase state for our
demonstration Scenario 2.
• 3. Chase in progress state. Pressing the Start Chase but-
ton triggers the start of the chase procedure, with a choice
among three chase modes. The first two modes both imply
a continuous run, corresponding to a serial (sequential) and
respectively parallel processing of the connected components
in the Conflict Graph. The third mode in turn is aimed at
allowing the user to peak into the chase, via a step-by-step
execution. We detail this mode at the end of this section.

Figure 5: Progress information for Scenario 2.

Throughout the chase, our system displays a range of useful
information regarding the current state and evolution of the
chase. This comprises progress bars for each connected com-
ponent, the time spent chasing so far, as well as the evolving
size of the solution so far constructed, by progressive mate-
rialization of completed Saturation Sets. Figure 5 illustrates
such progress-related information.
• 4. Final state: chase completed. Upon chase completion,
in addition to previously available information, the user has
access to the contents of the solution, as well as to a wide
range of time and size statistics. She may export these
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statistics and/or wraparound to the initial state to run Chase-
FUN on a new DE scenario.

Step-by-step chase. An essential feature of ChaseFUN is
that of providing a detail-oriented, debug-like, step-by-step
chase mode, aimed towards learning and understanding how
the chase goes and what ChaseFUN’s unit actions are. When
the step-by-step option is selected, a new window pops up,
allowing the user to incrementally run and inspect the results
of each Saturation Set’s construction and chase, alternating
between tgds and egds. To improve the understanding of
this process, ChaseFUN will provide a range of additional
status information and visual cues.

Figure 6: Step-by-step chase for Scenario 1

Figure 6 shows a snapshot of the step-by-step chase for our
demonstrated Scenario 1. This scenario corresponds to our
running example in Figure 1 and we refer the reader to the
detailed description of this example above. The snapshot
corresponds to the construction and chase of the Satura-
tion Set S1. In particular, it depicts the state reached after
the addition of the assignment a1m3 to S1. The user has
thus previously launched two tgd steps, namely for m1 and
m3, whose corresponding Conflict Graph nodes have accord-
ingly changed colour. Furthermore, the last tgd to add an
assignment being m3, its corresponding node is emphasized
(enlarged). The edge linking m1 and m3 is equally empha-
sized (shown in blue), since a1m3 has been added because
of its estimated interaction with an assignment of m1 (i.e.
a1m1). A subwindow displays the tuples obtained by the
materialization of the current Saturation Set. Since after
each tgd step egds must be applied, this is signaled to the
user via the status information and the available button.
Expectedly, once the user launches the next egds step, the
tuples shown in Figure 6 will evolve to become the tuples
shown in Figure 2(iv).

The step-by-step chase is importantly made available by
our system’s “by design” granular processing of the chase,
keeping the user-intended information small enough to re-
main easily accessible and understandable. To account for
large-sized scenarios, ChaseFUN additionally provides pause/
continue-like interactions, by letting the user alternate be-
tween the continuous serial and the step-by-step mode over
the course of a single chase sequence.

3. DEMONSTRATION OVERVIEW
Scenarios. We will demonstrate our system on scenarios of
increasing complexity in terms of both the number of con-
straints and the source instance size, namely one synthetic
and three iBench-based[1] DE scenarios detailed hereafter.
• Scenario 1 is our simplest scenario, corresponding to our

running example in Figure 1 and comprising 9 tuples in the
source, 3 s-t tgds, 2 egds and a single connected component
in the Conflict Graph.

• Scenario 2 is on the mid-low side of the complexity spec-
trum. It comprises 400K tuples in the source and is built

using twice the iBench default object fusion primitive (see
Section 2), yielding 6 s-t tgds, 2 egds, and 2 connected com-
ponents in the Conflict Graph.

• Scenario 3 increases the source instance size to 1M tu-
ples, and further raises complexity by (i) increasing the num-
ber of iBench object fusion primitives applied and (ii) fur-
ther plugging-in the vertical partitioning iBench primitive
(in terms of Section 2 notation, this is an OF` scenario). It
includes 30 s-t tgds, 30 egds, and 10 connected components
in the Conflict Graph.

• Scenario 4 raises the bar to 3M tuples in the source,
and a larger yet number of constraints: 90 s-t tgds and 90
egds, yielding a Conflict Graph of 30 connected components.
We obtain this scenario by plugging in both object fusion
and vertical partitioning primitives and further increasing
the number of atoms in the s-t tgds heads. Scenario 4 is in
fact our OF`` stress-test scenario F in Figure 3.

Showcased features and messages conveyed. On the
above scenarios, we will demonstrate our system’s features
and interactions described in Section 2, emphasizing Chase-
FUN’s two main strengths:

• Performance. We will showcase our system’s processing
speed and ability to scale for large and complex Data Ex-
change scenarios with target fds. As also witnessed by our
experimental assessment, we are indeed not aware of a pre-
vious DE engine able to equate or outperform ChaseFUN in
such settings. Since parallelization is one of our key perfor-
mance factors, we will moreover show its impact and benefits
by providing comparative runs using the parallel and serial
chase modes offered by ChaseFUN. To present performance
results, we will in particular focus on Scenarios 3 and 4. We
also offer the possibility of live running comparative assess-
ments of our system, such as the one charted in Section 2.

• User-intended view on the DE internals. We will show-
case the available Conflict Graph metadata, enabling a global,
synthetic view on the links and interplay of constraints in the
demonstrated DE scenarios. We will further emphasize the
usefulness of the chase progress information provided by our
system, as a first and important solution against the opac-
ity problem of the chase operated by DE engines. Finally,
we will extensively present the step-by-step chase mode de-
scribed in Section 2, aimed at offering a novel, behind-the-
scenes, refined view of the “low-level” granular operations of
the DE process. We will showcase these capabilities on all
demonstrated scenarios, and use Scenario 1 for an end-to-
end presentation of the step-by-step run. Our demonstration
will particularly focus on these detail and introspection op-
portunities provided by ChaseFUN. Indeed, to the best of
our knowledge, ours is the first DE engine to provide the
users with such informative and instructive features.
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ABSTRACT

Given a document collection, existing systems allow users to locate

documents either using search keywords or by navigating through

some predefined organization of the collection. Other approaches

help the user understand a collection by generating summaries or

clusters of the documents at hand. However, often users would like

to understand how the documents may be related to each other and

access them in some logical order. In this work, we present an

interactive reading recommendation system, called GnosisMiner.

Given a collection of documents and a theme, the system returns

a partial order of documents relevant to that theme organized from

more general to more specific. The recommended reading order

resembles the human approach of learning as we typically start our

path to knowledge from more general documents that help us un-

derstand the domain and then we proceed with more specific, more

specialized documents to increase our knowledge of the matter.

1. INTRODUCTION
Given a document collection, existing systems allow users to

locate documents either using search keywords or by navigating

through some predefined organization of the collection. However,

search engines hide document relationships, and navigational inter-

faces capture only fixed relationships that do not dynamically adapt

to the users’ specific needs. Therefore, while these systems work

fine when users try to locate specific documents, they are insuffi-

cient when users would like to understand how the documents may

be related to each other and access them in some logical order.

We advocate that given a document collection, it is very useful to

recommend to a user a possible reading order over this collection

so that she can access the documents in an organized, structured

way. In the past, there have been efforts towards helping a user

understand and access a corpus of documents in some meaning-

ful way. These efforts include corpus summarization approaches,

which try to generate a textual summary of the collection [9, 10],

hierarchical document clustering methods, which segment the cor-

pus [6, 7, 11], and document linking, which connect documents

through specific types of links such as ‘consequence of’ or ‘follow-

up’ [2, 8]. Google’s advanced search interface [3] organizes search

c© 2017, Copyright is with the authors. Published in Proc. 20th Inter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

results into three reading levels: basic, intermediate, and advanced,

offering a very coarse document ordering.

In this work, we present an interactive reading recommendation

system, called GnosisMiner. Given a collection of documents and

given a theme (i.e., a set of keywords), our system returns a par-

tial order of documents relevant to that theme organized from more

general to more specific. The recommended reading order resem-

bles the human approach of learning as we typically start our path

to knowledge from more general documents that help us under-

stand the domain and then we proceed with more specific, more

specialized documents to increase our knowledge of the matter.

GnosisMiner represents a reading order as a tree and users may

select which path on the tree they would like to follow and, hence,

which documents they would like to read in order. To help them

further, the system shows the topics found in each document as

well at each level of the tree. Users may modify the recommended

reading orders through parameters that determine how fine-grained

the ordering should be. Finally, the system provides several visual-

izations of the underlying collection aimed at the expert user who

would like to gain insights into the similarities and topics of the

documents and tune the recommendations accordingly.

Recommending reading orders is useful in many areas, such as

(a) education, for organizing online educational material, (b) patent

searching, for helping users (e.g. patent attorneys) to understand

which patents have more general cover than others, (c) research, for

organizing publications or news articles to help researchers study a

topic, (d) publishing, for helping editors select and organize articles

to publish on a web site, and so forth.

2. RECOMMENDING READING ORDERS
Given a collection of documents, a reading order is a partial or-

der of the documents from general to more specific documents. In

this partial order, there are two types of document relationships,

equivalence and precedence, which can be informally described as

follows. If two documents are about the same topics, then they are

considered equivalent, denoted a ↔ b, and are grouped together. If

they are about related topics but document b is more specific than

a, then a precedes b in the order, denoted a → b.

As an example, consider the following documents: a is an in-

troduction to data mining, b is on classification methods, and c is

another introductory document on data mining. Both a and c cover

the same topic to a similar extent and hence they are considered

equivalent. Consequently, one can choose to read any of them.

However, b is more focused, hence it has precedence relationships

to the other documents: a → b and c → b.

We quantitatively define the equivalence and precedence rela-

tionships in a reading order using two metrics: document generality

and document overlap. We will first describe the metrics and then

show how the two relationships are defined with their help.

Demonstration
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Given documents a and b, the document generality for a doc-

ument a is captured by the generality score, g(a), a real number

such that higher values mean higher generality. In other words, a is

more general than b iff g(a) ≥ g(b). The document overlap for the

pair a and b is captured by the overlap score, o(a, b), a real number

typically in the range of [0, 1], where 0 means no overlap between

a and b, and 1 means maximum overlap.

We measure document overlap and generality based on the doc-

uments’ topical relationships. To derive the topics describing the

documents, we use topic modeling. Topic models [1] are based

upon the idea that documents are mixtures of topics, where a topic

is a probability distribution over words. A topic model aims at dis-

covering the hidden thematic structure of a collection of documents

by finding how topics are assigned to documents, and how topics

are described by words in the documents. Representing a document

using topics rather than document keywords is more effective be-

cause it allows capturing implicit relationships between documents,

not just the explicit similarity of their common words.

Document generality. We compute the document generality as a

measure of the document’s entropy over the topics it covers. The

basic intuition behind the entropy is that the higher a document’s

entropy is, the more topics it covers in less depth hence the more

general it is. Given a collection D of n documents and s topics,

we denote Fn×s the document-topic matrix that captures how the s

topics are assigned to the n documents in D. Fij ∈ [0, 1] with i ≤
n and j ≤ s describes how well topic tj describes document ai.

Using the Shannon entropy, the generality score g(ai) of document

ai can be defined as follows:

g(ai) = H(ai) =
∑

j

−Fij log(Fij) (1)

Document overlap. The topic overlap o(a, b) of two documents

a and b can be defined using the weighted Jaccard score [4]. The

weighted Jaccard extends the classic Jaccard index, which is de-

fined as the size of the intersection divided by the size of the union

of the topic sets assigned to each document, by taking into account

how well a topic represents a document. The topic overlap can be

defined as follows:

o(a, b) = Jaccard(a, b) =
Fa · Fb

|Fa|2 + |Fb|2 − Fa · Fb

(2)

where Fa (Fb) is the topic vector associated with a (b, resp.). Larger

values indicate more common topics between two documents.

Note that other metrics for measuring document generality and

overlap are possible. For example, instead of the Shannon entropy,

we could use the residual entropy (entropy of non-common terms)

or the distribution entropy (entropy of the location of common,

non-common, or both types of terms throughout the document).

Now we can formally define the document equivalence and prece-

dence relationships in a reading order as follows:

document equivalence: a ↔ b iff |g(a)− g(b)| ≤ κ∧ o(a, b) ≥ τ

(3)

document precedence: a → b iff g(a) > g(b) ∧ o(a, b) > 0

∧ (|g(a)− g(b)| > κ ∨ o(a, b) < τ)
(4)

τ defines the minimum topic overlap between two equivalent doc-

uments and κ defines the maximum difference of their generality

scores.

Figure 1(a) shows an example reading order over six documents.

A user can follow different reading paths following the document

relationships, such as the example reading path: d1 → d4 → d6,

shown in the figure. Furthermore, there may be more than one read-

ing orders for the same set of documents. For example, consider

(b)(a)

d1 d5

d4 d3

d2 d6

d1 d2

d3

d2 d3

d1

Figure 1: Example reading orders

Figure 2: System architecture

documents d1, d2 and d3, which have some overlap and d1 ↔ d2
and d2 ↔ d3 but d1 is not equivalent to d3. Figure 1(b) shows two

possible reading orders.

3. SYSTEM OVERVIEW
We present GnosisMiner, a prototype system for recommend-

ing ordered readings over document collections. The system ar-

chitecture is depicted in Figure 2. Its main components are: pre-

processing, topic extraction, reading recommendation, and visual-

ization. The users interact with the system through the visualiza-

tion component to specify the document collection and the theme of

their interest, interact with the recommended reading order and the

documents, modify the recommendation parameters, and examine

the various visualizations over the collection.

Next, we describe the main components of our system. For more

details on the algorithms used for topic extraction and reading order

recommendation we refer the interested reader to [5].

3.1 Pre-processing
Pre-processing removes noisy and stop words, performs stem-

ming, and transforms each document to a term vector using a tf-idf

weighting scheme. We perform this task incrementally; we skip

documents already processed in a previous run and only work on

documents never processed before.

3.2 Topic extraction
To measure the generality and overlap of the documents, and

identify the topical relationships among them, we first derive the

topics that describe the documents. The topic extraction module

works in two phases. First, it extracts the topics that occur in the

documents using the Latent Dirichlet Allocation (LDA) model with

Gibbs sampling [1]. However, topic models often misassign or miss

topics for documents. To reduce such errors, subsequently, the topic

extraction uses a score propagation method that allows the topic

scores of a document to be influenced by the topics of its most sim-

ilar neighbors. This module leverages the content similarity of the

documents by comparing their term representations and propagates

document-topic scores between strongly similar documents on the

basis that due to their similarity they likely have similar topics.

For this purpose, this module first builds the document similar-

ity graph, where each node maps to a document, and each edge

between two documents captures their similarity (i.e., the similar-

ity of their term-based representations) in the edge weight. Then,

the document-topic scores, returned by LDA during the first step

of topic extraction, are propagated over the document similarity

graph, so the potential topics of a document take into consideration

the topic scores of their neighbors (which in turn, depend on the

scores of their respective neighbors, and so on). The algorithm iter-

atively updates the topic scores of a node (document) based on the

weighted average of the scores of its neighbors.
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Figure 3: Collect and Mine components

3.3 Reading Recommendation
The reading recommendation uses the document-topic scores

learnt from the topic extraction module to determine the equiva-

lence and precedence relations among the documents and mine a

reading order for them. This module takes as input a set of doc-

uments, the document-topic assignments, and the parameters τ ,

which defines the minimum topic overlap between two equivalent

documents, and κ, which defines the maximum difference of their

generality scores. The module uses an iterative method to build a

tree that represents the recommended reading order.

In this tree, nodes correspond to the input documents and edges

capture precedence relationships between the documents. In par-

ticular, a node maps a non-empty set of equivalent documents. An

edge between nodes A and B signifies that documents belonging

to the corresponding document set of A precede the documents be-

longing to the respective node B.

For the root of this tree, the method puts together the most gen-

eral, equivalent documents (i.e, documents whose generality dif-

ference is small (< κ) and whose overlap is high (> τ )). From

the remaining documents, the method creates clusters of documents

that can be grouped together because they overlap with each other

and they also have some overlap (0 < and < τ ) with the root of

the tree. Each of these clusters will be used to grow a subtree that

will be connected to the current node (let’s call it the parent node

of the cluster) in subsequent rounds. The reading recommendation

module takes each of the clusters created in the previous cycle and

selects the most general, equivalent documents. This set becomes a

new node that is added under the parent node of the cluster. Then,

the remaining documents are clustered. Note that in each cluster-

ing step, documents that were un-clustered before may get grouped

now. This process repeats until no more tree growing is possible

and there are no documents unprocessed.

3.4 Visualization
The visualization component allows the user to interact with the

system. The user can specify the document collection they would

like to explore and the theme of their interest (e.g., as a set of key-

words), interact with the recommended reading order of the docu-

ments, modify the recommendation parameters, and examine vari-

ous visualizations over the collection.

GnosisMiner visualizes a reading order as a tree, where each

node corresponds to a set of equivalent documents. The system

shows the topics found in each document as well as at each node of

the tree. The user can interact with the tree in a table-of-contents

manner, and choose which documents to read in the proposed or-

der. The user can modify the recommended reading order through

parameters that determine how fine-grained the ordering should be.

These parameters include the number of topics to use for describ-

ing the documents of interest, the minimum topic overlap (τ ) be-

tween equivalent documents, and the maximum difference (κ) of

their generality scores.

Finally, the system provides several visualizations of the un-

derlying collection that offer a look under the hood at the doc-

ument relationships as well as at the operation and performance

of the system. The user can visually examine the topics describ-

ing the selected set of documents, how these topics are assigned to

documents, the document content similarities, and their generality

scores. For instance, the document content similarities are visual-

ized using a heatmap. The user can also review details regarding

the operation of the various components of the system, such as ex-

ecution times, number of iterations of the topic extraction, number

of iterations of the reading recommendation, and so forth.

4. OUR PRESENTATION
Our presentation will demonstrate GnosisMiner’s features us-

ing a collection of data management related papers as our corpus.

Our demonstration script starts with a small number of representa-

tive examples. With these examples we will show how a user can

choose a collection and specify which part of the collection she is

interested in. For example, Figure 3 shows an example navigation

and run of the system, using a collection of papers, example param-

eters for topic extraction, and an example filter limiting the search

to 200 papers with a theme ‘XML Tree Patterns’. When a reading

order has been generated, it is shown in the View component.

Figure 4 shows a snapshot of an abridged result for this example.

The left panel contains the tree representing the reading order cho-

sen. Each node contains a set of topics along with links to papers

related to those topics. Hovering over a node shows the complete
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Figure 4: View component (main picture) and example analysis chart: similarity heatmap (bottom-left corner)

list of topics of the node. In the figure, the root node of the tree

contains the paper entitled “M. Hachicha, J. Darmont: A Survey of

XML Tree Patterns. IEEE Trans. Knowl. Data Eng. 25(1): 29-46

(2013)”, which is a survey paper on the specified subject matter,

and it covers several topics in XML patterns. We observe that un-

der this node, nodes 001 and 002 cover more focused topics: the

former related to tree pattern mining, frequent patterns, structure

mining, and so forth, and the latter related to XML queries, twig

patterns, query evaluation, etc.

Selecting a paper link in a node opens the right panel, which

shows the recommended list of papers for the corresponding set of

topics and a summary listing of these topics. Choosing a paper from

the list, shows the text in a viewer. For instance, in the figure, the

document entitled “Twig Patterns: From XML Trees to Graphs” is

viewed. A user can read the paper, perform a text search, and so on.

There is also a show/hide topics feature that highlights the relevant

topics in the text (enabled in the figure).

The advanced user may use the Analyze component to examine

analysis charts (e.g., document-topics assignments, document sim-

ilarities, performance statistics) to get insights into the document

collection and refine the mining process if needed. The bottom-

left corner of Figure 4 shows an example snapshot of a similarity

heatmap for the 8 documents shown in the reading tree of Figure 4.

For instance, one can see how documents 02 - 05 are closer in sim-

ilarity to 01, which is the root of the tree in the figure, while 06 - 08

are more distant. One could also see that a slightly more flexible

similarity threshold could group documents 06 - 08 together.

Finally, for off-script presentation and discussion, we will pro-

vide interactivity, where the participants can explore the data set

themselves and experiment with GnosisMiner.
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ABSTRACT
In this demo, we present MovieFinder, a user-friendly movie
search system with following characteristics: it (1) searches movies
on social networks via the technique of top-k graph pattern match-
ing; (2) supports distributive computation to handle sheer size of
real-life social networks; (3) applies view-based technique to op-
timize local evaluation, and employs incremental computation to
keep cached views up to date; and (4) provides graphical interface
to help users construct queries, explore data and inspect results.

1. INTRODUCTION
In recent years, social networking sites have experienced fast

development, and are endowed with enormous commercial value.
One key issue to achieve commercial goals via social networks is
how to help uses find their interested objects on big social data.
In light of this, a host of techniques are developed, among which
graph pattern matching defined in terms of subgraph isomorphism
has been widely used and verified to be effective [5].

However, it is nontrivial to efficiently conduct graph pattern
matching on social networks due to the following reasons: (1)
graph pattern matching with subgraph isomorphism is computa-
tionally expensive as it is an NP-complete problem [3], and more-
over, there may exist exponentially many matches of a pattern
query Q in a data graph G; (2) real-life graphs are typically large,
e.g., Facebook has 1.18 billion daily active users, and the average
number of friends is 155 [1], it is hence prohibitively expensive to
query such big graphs; (3) social networks are often distributively
stored, which makes graph pattern matching more challenging or
even infeasible; (4) social networks evolve constantly, it is often
expensive to recompute matches starting from scratch when social
networks are updated with minor changes.

Example 1: Consider a fraction of IMDb [2] collaboration network
depicted as graph G in Fig. 1(a). Each node in G either denotes a
performer (p) (resp. director (d)), labeled by id, name; or a movie
(m), with attributes title, genres (g), rating (r) and release time (t).
Each directed edge from a performer (resp. director) to a movie in-
dicates that the performer (resp. director) played in (resp. directed)

c⃝2017, Copyright is with the authors. Published in Proc. 20th Inter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

Figure 1: Pattern query Q, Views V and collaboration network G

the movie, where the edges connecting directors and movies are
marked in red. The graph G is geo-distributed to three sites S1, S2

and S3, each storing a fragment of G.
Suppose that one is looking for movies that he is interested in,

then the search conditions can be expressed as a pattern query Q
(Fig. 1(b)) as follows: (1) movies M should have high ratings, e.g.,
r > 7.0, and are with genres “action” and “adventure”; (2) the M
should be played by experienced performers P1 and P2. Specifi-
cally, P1 (resp. P2) played movie M1 (resp. M2) with r > 7.0,
g = “action” (resp. g = “adventure”) and t1 < t (resp. t2 < t),
where t (resp. t1, t2) is the release time of the M (resp. M1, M2).;
and (3) the M is marked as “output node” with “*”, i.e., users only
require the matches of M to be returned as search results.

The matches of Q, denoted as M(Q,G), consists of a set
of subgraphs in G that are isomorphic to Q. For exam-
ple, M(Q,G)= {{(P1,p11)(P2,p2)(M1,m9)(M2,mi)(M,m8)|i ∈
[3, 5]}, {(P1,p13)(P2,p11)(M1,m12)(M2,mj)(M,m16)|j ∈ [8, 9]},
{(P1,p11)(P2,p13)(M1,mk)(M2,m12)(M,m16)|k ∈ [8, 9]}}. Ob-
serve that (1) it takes O(|G|!|G|) time to compute M(Q,G), where
|G| is the size of G [3]; due to high computational cost, optimiza-
tion techniques, e.g., view based evaluation, are needed to speed up
query evaluation; (2) since the graph G is distributively stored, no
match can be found in a single site, which indicates that data has
to be shipped from one site to another to find matches. With this
comes the need for distributive techniques for graph pattern match-
ing; (3) as the “query focus” of Q is M, “At World’s End” and “Sky-
fall” are returned as query results. While in practice, users may be
interested in the best matches, rather than the whole set of matches
of “query focus” M, then a metric is needed to rank matches. For
example, compared with “At World’s End”, “Skyfall” and its corre-
sponding isomorphic subgraph have higher comprehensive rating,
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which makes it a better match than “At World’s End”. 2

In light of these, we present MovieFinder, a novel system to ef-
fectively identify movies in social networks via top-k graph pattern
matching. In contrast to previous graph search systems (see [7] for
a survey), MovieFinder (1) supports graph pattern matching with
subgraph isomorphism [3], and combines graph pattern matching
with result ranking, (2) evaluates top-k graph pattern matching in a
parallel manner, and (3) optimizes local evaluation by using mate-
rialized views, and maintains views via incremental techniques [6].

To the best of our knowledge, MovieFinder is among the first
efforts to search movies on large and distributed social networks
via graph pattern matching. It should also be remarked that movie
searching is just one application of the technique, one may apply
the technique to find e.g., people, hotels, restaurants and so on.

2. DISTRIBUTED TOP-K GRAPH PAT-
TERN MATCHING

We first review the notion of subgraph isomorphism. We then
introduce graph fragmentation, followed by the problem of dis-
tributed top-k graph pattern matching.

Subgraph isomorphism. Given a data graph G = (V,E, fA) and a
pattern query Q = (Vp, Ep, fv) , a match of Q in G via subgraph
isomorphism is a subgraph Gs of G that is isomorphic to Q, i.e.,
there is a bijective function h from Vp to the node set of Gs such
that (1) for each node u ∈ Vp, fv(u) = fA(h(u)); (2) (u, u′) is an
edge in Q if and only if (h(u), h(u′)) is an edge in Gs. We denote
by G[M(Q,G)] to be the union of all the matches Gs in M(Q,G).

To find matches of query focus, we extend Q by specifying one
node in Q as output node, denoted as uo. Then, the answer to Q in
G, denoted by M(Q,G, uo), is the set of nodes h(uo), that match
the output node uo of Q in Gs, for all matches Gs of Q in G.

Distributed graphs. A fragmentation F of a graph G = (V,E, fA)
is (F1, · · · , Fn), where each fragment Fi is specified by (Vi ∪
Fi.O,Ei, fAi) such that (1) (V1, · · · , Vn) is a partition of V ; (2)
Fi.O is the set of nodes v′ such that there exists an edge e = (v, v′)
in E, v ∈ Vi and node v′ is in another fragment; we refer to v′ as a
virtual node and e as a crossing edge; and (3) (Vi ∪Fi.O,Ei, fAi)
is a subgraph of G induced by Vi ∪ Fi.O. We assume w.l.o.g. that
each Fi is stored at site Si for i ∈ [1, n].

Distributed Top-k Graph Pattern Matching. Given an integer k, a
pattern query Q with output node uo and a fragmentation F of a
graph G, the distributed top-k graph pattern matching problem is
to find the best k matches to uo of Q in G.

We next show how MovieFinder supports distributed top-k
graph pattern matching via parallel computation that integrates
asynchronous message passing with optimized local evaluation.

3. THE SYSTEM OVERVIEW
The architecture of the MovieFinder, shown in Fig. 2, consists

of the following three components. (1) A Graphical User Interface
(GUI), which provides a graphical interface to help users formulate
pattern queries, manage data graphs and understand visualized re-
sults. (2) A coordinator that communicates with GUI and workers
(to be introduced shortly). Specifically, the coordinator (a) for-
wards various requests, received from GUI, to workers for their
local processing; (b) assembles partial results from workers; (c)
ranks matches and returns best k ones as search results. (3) Mul-
tiple worker machines (a.k.a.workers [4, 8]), which employ Query
Executor (QE) to compute local matches, and Incremental Com-
putation Module (ICM) to keep materialized views up to date. We
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Figure 2: Architecture of MovieFinder

next present the components of MovieFinder and their interactions.

Graphical User Interface. The GUI helps to interact with users,
e.g., graph data manipulation, pattern query formulation, and result
browse. Specifically, (1) It provides a task-oriented panel to facil-
itate users to manage graph data. (2) It is equipped with a query
panel, which allows users to (a) manually construct a pattern query
Q from scratch by drawing a set of query nodes and edges; (b)
specify the search conditions of query nodes (e.g., title=“Skyfall”,
g=“action & adventure”; r ≤ 7.0; t > t1); (c) indicate the par-
ticular “output” node for which users want to find matches (e.g.,M
in Example. 1); (d) specify the number k of matches to the “out-
put” node; and (e) designate query target from a list of data graphs.
(3) The GUI visualizes query results by layout algorithm, hence the
users can browse the matches with more intuition.

Coordinator. The coordinator interacts with GUI and workers
as following. It (1) sends users’ requests, received from GUI to
workers for their local precessing, and returns query results to GUI
for visualization; (2) collects partial results from workers, ranks
matches based on the ranking metric, and identify best k matches.

Results Ranking. As there may exist a large set of matches of the
output node uo, and users may be only interested in the best k ones.
The coordinator hence uses a ranking function to identify top-k
matches. Intuitively, the ranking function follows one observation
from social networks, that’s the higher the rating of v and the total
rating of Gs are, the better v is. To be more specific, given a pattern
query Q with output node uo, and a match Gs of Q with node v as
the match of uo, the rank of v is defined as:

f(v, uo) = v.r ∗ Σvi∈Gsvi.r

where v.r (resp. vi.r) indicates the rating of v (resp. vi).

Example 2: Recall Example 1, the highest rating of the match in
M(Q,G) that contains m8 (resp. m16) is 8.9+7.3+7.1=23.3 (resp.
7.2+7.3+7.8=22.3). Then “Skyfall” makes the top-1 match since
f(m16, uo) = 7.8 ∗ 22.3 = 173.94 is greater than f(m8, uo) =
7.1 ∗ 23.3 = 165.43. 2

Note that, though we used node attribute, e.g.,, movie rating, to
define f(), while in general cases, other metrics which can be used
to measure the “goodness” of matches can also be applied, and
readily supported by the system.

Workers. Each worker has two modules: Query Executor (QE)
and Incremental Computation Module (ICM).

543



Query Executor. The main task of the QE is query evaluation. As
local information may not be sufficient to find matches, and query
evaluation is computational expensive, the QE hence (1) applies
multithreaded computation to collect necessary information from
other sites, and integrates collected information with current frag-
ment to conduct local evaluation; and (2) employs view-based tech-
nique to optimize evaluation of graph pattern matching.

(1) Local evaluation. Upon receiving pattern query Q from coor-
dinator, the QE starts one thread to do the following. (a) It checks
whether each virtual node v at current fragment Fi is a candidate
match of some pattern node u, i.e., v satisfies search conditions
specified by u. (b) For each candidate match v, it then sends node
pair ⟨u, v⟩ to the site Sj , where v accommodates; and requests
the subgraph GN

j (u, v) of fragment Fj , where GN
j (u, v) contains

neighborhood information of v in Fj , (see below for more details
about computation of GN

j (u, v)). (c) After all the GN
j (u, v) are

received and merged with Fi, the QE computes matches with algo-
rithm VF2 [3], and sends local results to the coordinator.

To response requests from other sites such that local evaluation
can be processed in parallel at each site, the QE at site Sj constantly
waits for messages from other sites, and initializes new threads
to compute GN

j (u, v) when receiving messages ⟨u, v⟩ from other
sites. Specifically, when message ⟨u, v⟩ sent from other site is
received by site Sj , a new thread is started by the QE at Sj to
conduct restricted breadth first search from v and u in Fj and Q,
respectively. For any node v′ (resp. u′) encountered during the
traversal in Fj (resp. Q), if v′ is a candidate match of u′, then v′

is inserted in GN
j (u, v), and also connected to its neighbor nodes,

which are already in GN
j (u, v).

Example 3: Recall pattern query Q in Example 1. Upon re-
ceiving Q, the QE at S2 identifies m15 and m16 as the candidate
match of the pattern nodes M1, M2 and M, and sends node pairs
⟨M1,m15⟩, ⟨M2,m15⟩, ⟨M,m15⟩, ⟨M1,m16⟩, ⟨M2,m16⟩, ⟨M,m16⟩
to S3. Once receiving requests, S3 computes GN

3 (u, v) as re-
sponse, e.g., GN

3 (M,m16), which includes two edges (p13,m12)
and (p13,m16) are returned to S2. After receiving the response,
the QE at S2 then merges GN

3 (u, v) with F2, invokes VF2 to com-
pute M(Q,F2), and sends result {(P1, p11)(P2, p13)(M1, mi)(M2,
m12)(M, m16)|i ∈ [8, 9]} to the coordinator. 2

(2) Optimization technique. As local evaluation involves subgraph
isomorphism checking, which is an NP-complete problem and often
computationally expensive, MovieFinder caches query results of
commonly issued pattern queries at workers and adopts view-based
technique to optimize local evaluation.

Suppose a set of view definitions V = {V1, · · · ,Vn} have their
extensions M(V, Fi) = {M(V1, Fi), · · · ,M(Vn, Fi)} cached at
site Si. Given pattern query Q, the QE at site Si computes matches
of Q using V and M(V, Fi) as following. It first verifies whether Q
can be answered using V by checking whether Q is the same as the
union of Q[M(Vk, Q)] (k ∈ [1, n]). If Q can be answered by using
V , the algorithm Match, which takes Q, V and M(V, Fi) as input
is then invoked to compute matches. Specifically, Match first ini-
tializes an empty pattern query Qs and an empty set S as the match
set of Qs. It then iteratively invokes Procedure Merge to “merge”
Qs with Vk, and matches in S with matches in M(Vk, Fi). In par-
ticular, Merge checks whether matches m1 of Qs can be merged
with matches m2 of Vk following the mapping λ that guides the
“merge” of Qs and Vk. If so, a new match m0 of the newly formed
pattern query Qs (merged with Vk) is formed by merging m1 with
m2, and the set S is updated by replacing m1 with m0. When the
termination condition, i.e., Qs = Q is met, the set S is returned as

Fragment at site 1 Cached views of Q with 5 nodes and 4 edges at site 1 Director with name Movie with genres

Construct pattern queries Update data graphs Summary of the fragmentPartition data graphs

Figure 3: Visual interface: MovieFinder Manager

the match set of Q at Si.

Example 4: Recall view definitions V = {V1,V2}, shown in
Fig. 1(c), their extensions M(V, F3) at S3 are listed in table below.

View definitions Extensions

V1 {(P1, p13)(M1, m12)(M, m16)}
V2 {(P1, p13)(M1, m12)(M, m16)}

At site S3, the QE computes matches of Q (see Fig. 1(b)) using
V and M(V, F3), as following. (1) It first determines that Q can be
answered using V since Q is the same as

∪
i∈[1,2] Q[M(Vi, Q)].

(2) It then invokes Match to compute matches. Since no match of
V1 and V2 can be merged, following the mapping which guides the
merge of V1 and V2, then no match of Q exists at site S3. 2

Incremental Computation Module. Real-life social networks
change constantly, hence the cached views M(V, Fi) at site Si

need to be updated, in response to the changes to Fi. However,
due to that subgraph isomorphism is computationally expensive
and the input, i.e., Fi, is often large, it is costly to recompute
M(V, Fi ⊕ ∆Fi) for each V ∈ V , where Fi ⊕ ∆Fi denotes Fi

updated by ∆Fi. Instead of recomputation, the ICM incrementally
identifies changes to M(V, Fi), in response to ∆Fi. As ∆Fi

is often small in practice, the incremental computation hence is
far more efficient than batch computation. The ICM applies the
incremental subgraph isomorphism algorithm of [6] to update
cached views, for both unit and batch updates.

Example 5: Recall Q, G in Example 1. Suppose that an edge e1
(marked in red in Fig 1(a)) is inserted into G , then the change to G
incurs four new matches: {(P1, p13)(P2, p11)(M1, m15)(M2, mi)(M,
m16)|i ∈ [8, 9]}, and {(P1, p11)(P2, p13)(M1, mj)(M2, m15)(M,
m16)|j ∈ [8, 9]}. Instead of recomputing M(Q,G ⊕ ∆G) from
scratch, the ICM only visits nodes that are 3 hops away from p13,
and identifies the new matches. 2

Remark. The MovieFinder identifies all the matches of Q by exact
algorithms, i.e., VF2 or our view-based technique, at all workers,
hence can find top-k matches of uo with 100% accuracy.

4. DEMONSTRATION OVERVIEW
The demonstration is to show the following: (1) the use of GUI

to formulate pattern queries and browse query results; (2) the effi-
ciency of computation of M(Q,G) and top-k matches of uo when
G is distributively stored; (3) effectiveness of view-based optimiza-
tion technique employed by the QE; and (4) efficiency of the incre-
mental technique applied by the ICM.
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Figure 4: Visual interface: Pattern Builder

Setup. To show the performance of MovieFinder, we used a frac-
tion of IMDb [2] with |V |=1.1M, |E|=1.7M, randomly partitioned
it into a set of fragments controlled by the number of fragments |F|.
The system is implemented in Java and deployed with fragments on
a cluster of 8 machines with 2.9GHz CPU, 8GB Memory.

Interacting with the GUI. We invite users to use the GUI, from
pattern query construction to intuitive illustration of query results.
(1) The Manager panel, which is the main control panel of
MovieFinder, is used to manipulate the system. As shown in Fig. 3,
users can access each module of the MovieFinder as listed in the
Tools menu, view both summarized and detailed information, e.g.,
fragment summary, node attributes, of the selected site.
(2) The Pattern Builder (PB) panel, shown in Fig. 4, facilitates
users’ construction of pattern queries. Specifically, the PB (a) pro-
vides users with a canvas to create new query nodes (resp. edges),
(b) allows users to specify search conditions on the query nodes,
set output node uo and the number k of its matches, and (c) sup-
ports users to save pattern queries, and reuse them afterwards.
For example, a pattern query Q, shown in Fig. 4, is constructed
to find movies that are (a) with genres “Drama” and “Comedy”,
(b) played by people (marked by node “0”) who had performed
“Romance” movies (marked by node “2”), and (c) directed by
people (marked by node “1”) who had directed “Action” movies
(marked by node “4”). The query focus is marked as “output” node
with dark border (node “3”). The pattern query Q can be saved for
future use if it is frequently issued.
(3) The GUI provides intuitive ways to help users interpret query
results. In particular, the GUI allows users to browse (a) all the
matches w.r.t. Q, and (b) top-k matches w.r.t. uo. As an example,
the query results of Q, given in Fig. 4, are shown in Fig. 5, and the
top-2 movies, i.e., “White Collar” and “Our Footloose Remake”
are marked with thickened border.

Performance of query evaluation. We also aim to show (a)
the performance of the parallel computation supported by the
MovieFinder, and (b) the performance of Query Executor (QE) and
Incremental Computation Module (ICM) supported by workers.

Performance of parallel computation. We will show efficiency and
scalability of parallel computation supported by MovieFinder. As
will be seen, when the number |F| of sites increases from 4 to 8,
the query time is reduced by 35%, in average.

Figure 5: Visual interface: Query results

Performance of QE. We will show (a) the efficiency of QE by re-
porting its performance on IMDb; and (b) how substantial the per-
formance is improved when view-based technique is applied. We
show that in average the query time can be reduced by 70% with
optimization technique.

Performance of ICM. We will also show the improvement of the
ICM compared to batch computation that recomputes the material-
ized views in response to updates. In particular, we will report the
performance of incremental computation by varying data graphs
with unit update (single edge insertion/deletion) as well as batch
updates (a list of edge insertions/deletions). As will be seen, the
ICM performs significantly better than its batch counterparts, when
data graphs are changed up to 30%.

Summary. This demonstration aims to show the key ideas and
performance of the movie search system MovieFinder, based on
the technique of distributed top-k graph pattern matching. The
MovieFinder is able to (1) evaluate pattern queries defined in terms
of subgraph isomorphism in parallel and identify top-k movies on
large, distributively stored social networks; (2) efficiently com-
pute matches with view-based technique; (3) incrementally main-
tain materialized views for dynamic social graphs; and (4) facilite
users’ use and understaing with intuitive graphical interface. These
together convince us that the MovieFinder can serve as a promising
tool for movie search on real-life social networks.
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ABSTRACT
Visual analytics plays a leading role in data-driven research.
This requires systems for fast and intuitive data exploration.
In this paper we demonstrate Vat, a system for Visualizing,
Analyzing and Transforming spatio-temporal data. The sys-
tem consists of a distributed back end for low-latency pro-
cessing and a web front end that allows creating workflows of
computations in an exploratory fashion. A novel quality of
the system is the combination of scientific processing while
simultaneously tracking the provenance of the data and ag-
gregating a list of data citations. These features make a
visual analytics approach for large, heterogeneous spatio-
temporal data feasible.

CCS Concepts
•Information systems→Geographic information sys-
tems; Data analytics; Information integration; •Human-
centered computing → Visualization;

Keywords
Scientific Workflows, Provenance, Interactive Analysis

1. INTRODUCTION
Visual analytics plays a leading role in data-driven re-

search. Especially in geoscience, researchers investigate spa-
tio-temporal data by means of interactive exploration. As
data sizes increase rapidly, there is a growing demand for
exploratory tools with fast response time. To gain insights
from the data, researchers want to examine different research
ideas by expressing queries and evaluating the delivered re-
sults. However, there are multiple challenges for a scientist
as detailed in the following.

Data from the geoscience domain is inherently heteroge-
neous. There are several data formats for vector and raster
data as well as different reference systems for space and
time. This makes data integration and data correlation a

c©2017, Copyright is with the authors. Published in Proc. 20th Inter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

very cumbersome and time-consuming tasks for researchers
even before tackling the actual research problem.

Scientific work itself and also the recent trend of jour-
nals to encourage data sharing make correct citations of
data sources indispensable. Furthermore, it is necessary to
ensure validity and reproducibility of computations. Both
tasks become hard to accomplish when working in an ex-
ploratory fashion. As new ideas for additional data pro-
cessing steps arise mostly when reviewing intermediate re-
sults, an upfront specification of the whole computation is
not feasible. Recreating the computation steps afterwards is
laborious and error-prone. To solve this, a system that of-
fers scientific data processing should keep track of the whole
path of processing steps also known as workflows. In ad-
dition, all references of incorporated source data should be
aggregated as a list of citations.

To cope with these challenges, we demonstrate the Vat
system in this paper, a system for Visualizing, Analyzing
and Transforming spatio-temporal data in biodiversity sci-
ence. It facilitates interactive data exploration and cleansing
by creating and executing so-called exploratory workflows.
For this, it offers processing building blocks for filtering,
transforming, visualizing, and creating statistics. It enables
users to join heterogeneous data and to work with time-
series. They can (1) visualize data, (2) export data in con-
solidated formats for further analysis in custom tools, and
(3) share reproducible workflows.

The Vat system is already in use in GFBio, a German
national infrastructure project for managing, archiving, and
providing access to biodiversity data [5]. The project aims
to provide a sustainable service architecture for German
research projects in biodiversity science. Vat enables re-
searchers to identify interesting scientific topics, geographic
regions and time spans by providing added value services
for data visualization and analysis. It furthermore aims to
facilitate reproducibility and data re-usage.

In the following, Section 2 gives an overview of the Vat
system’s architecture. Section 3 summarizes the function-
ality of the system and Section 4 describes the proposed
demonstration scenario. Section 5 concludes the paper.

2. ARCHITECTURE
Vat has a client-server architecture that consists of a back

end called Mapping and a web-based front end Wave. (c.f.
Figure 1). The complete architecture is described in more
detail in our previous work [1, 2].

Mapping (Marburg’s Analysis, Processing, and Prove-
nance of Information for Networked Geographics) is a dis-
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Figure 1: A condensed view on the system architec-
ture

tributed scientific workflow processing system for low-la-
tency processing of spatio-temporal data. It includes a work-
flow processing engine and various operators written in C++.
For the sake of performance improvement, Mapping utilizes
OpenCL to massively parallelize parts of the processing on
the GPU. It also manages heterogeneous data and allows
processing of raster as well as vector data. For easy access,
Mapping implements important parts of the standardized
OGC1 protocols. This allows many tools to access compu-
tation results via a standard interface.

Wave (Workflow, Analysis and Visualization Editor) is
an interactive web application for visual analytics and data
cleansing which creates exploratory workflows [3]. It offers a
reactive user interface where users apply actions on data via
operators and review the results. The interface builds up on
Angular 22 and OpenLayers 33, and uses an implementation
of Google’s Material Design components to offer appealing
and touch-compatible control elements for desktop and mo-
bile usage.

3. FUNCTIONALITY
The main scope of Vat is to support visualizing and pro-

cessing collections of geo objects. These are points, lines,
polygons and rasters. Examples for these data types are
species occurrences for points, rivers for lines, forest regions
for polygons and temperature grids for rasters. Additionally,
each object has a temporal validity.

3.1 Exploring Data
Wave provides data visualization and interactive data ex-

ploration by applying operators. Operators fall into three
categories: There are source operators that allow including
data either from a repository of hosted environmental raster
data and species related vector data, or from custom CSV
files. Then, there are operators for filtering, combining and
transforming data, e.g. attribute or point-in-polygon filters.
Finally, there are statistics operators that allow creating fig-
ures like scatter plots and histograms. Additionally, the
user can incorporate R scripts to extend the statistics func-
tionality. The first two operator categories produce object
collections that are presented in the form of layers on a map
and a data table (arranged above each other, c.f. Figure 2).

1Open Geospatial Consortium, www.opengeospatial.org
2www.angular.io
3www.openlayers.org

Wave presents the results of the latter as plots on a sidebar
of the application.

For displaying large object collections, Vat offers data re-
duction techniques by compressing raster and vector data.
It computes raster images in preview resolutions to reduce
response times. As there is only a limited amount of pix-
els available on the user’s screen, the loss of accuracy has
no impact on the visualization. Vat uses a visual cluster-
ing approach (an adaptation of the method presented by
Jänicke, et al. [6]) to reduce the amount of point data to
be transferred and visualized. This technique facilitates rec-
ognizing the density of the data objects on the map. The
data table shows aggregates of theses clusters for non-spatial
attributes. Both techniques provide more accurate results
when processing data of smaller areas. This means, zoom-
ing into interesting data reveals more detailed information
and is therefore the intended exploration method. In the
end, for scientificly valid results, Vat offers the functional-
ity to compute the whole workflow in full resolution.

3.2 Combining Heterogeneous Data
In Vat, each object of a collection has three components:

a spatial reference, a temporal reference and attributes. The
spatial reference specifies a geometric object (e.g. a point)
that corresponds to a coordinate reference system. The tem-
poral reference specifies an interval from start to end time
using a reference system (e.g. the Gregorian Calendar). The
list of attributes contains different data types (e.g. strings or
floating points). The spatial and temporal reference system
is uniform for all objects within a collection. Because of the
presence of temporal references in each object collection, a
collection is considered as a time series. In a raster time
series, each grid of cells has the same spatial and temporal
reference.

To join object collections, the data needs to be in a unified
reference systems. Mapping offers operators to transform
data of one reference system into another. While this is usu-
ally very cumbersome for the user, Wave automatically ap-
plies these transformations whenever necessary. This makes
it easy to apply operators to join initially heterogeneous ob-
ject collections. Additionally, Wave suggests and restricts
valid operator inputs (e.g. users can only select points and
polygons for a point-in-polygon check).

Every combination operator has to consider the time series
semantics. An example is the combination of a raster time
series of monthly temperatures with point data (which have
irregular time intervals). An input point has to be split into
multiple points with different time intervals, if and only if it
overlaps at least the end of one month. For instance, if an
input point is valid from the first of January to the end of
February, it will result in one point with temperatures from
January and one from February.

Another example is to compare the temperature of the
current date with the temperature of the same day of the
previous year. For this, Mapping offers temporal operators
for shifting the temporal context. By shifting relatively one
year to the past, Vat can compute a difference expression
on a single raster time series.

Wave uses a user-defined point in time to visualize the
data of a time series. It uses it to select a time-slice of
the series and retrieve only the data objects with matching
validity. When a user changes the time, Wave triggers an
update for each view, i.e. the map, the data table and the
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Figure 2: An overview of WAVE. The central map component shows clustered point data and a raster. Below
is the data table. On top is a menu bar for data and operator selection. On the left-hand side is a list of map
layers. On the right-hand side is a plot area containing a histogram.

Figure 3: A lineage graph for a small workflow

plots. A video mode for uniform time steps of an interval
(e.g. monthly) allows visualizing the changes over time.

3.3 Provenance Tracking
Provenance tracking is of utmost importance for the repro-

ducibility of computations. Wave allows data exploration
by interactively applying operators on data. Users can uti-
lize different views to evaluate results of computations. They
can form new ideas and discard dead ends. We use the
notion of exploratory workflows that describe the path of
computations from the sources to a final result as a rooted
tree. Wave automatically updates corresponding workflows

on every user action. The user is able to look up the full
processing path at any time in the so-called lineage graph.
Figure 3 shows an example of a series of applied operations
in an exploratory workflow. The data flows from the source
operators at the top to the resulting layers (blue boxes).
Vat uses a workflow representation in the human-readable
and interchangeable JSON data format.

The workflow data structure makes it furthermore possi-
ble to share computations and results with other researchers.
This means either publishing fixed parametrized workflow
results for reproducibility reasons or configurable workflows
that allow other researchers to use validated workflows for
their own data processing.

3.4 Collecting Citations
Correctly citing all sources of a workflow is indispensable

for scientific work. While this task is complex in generic
scenarios when querying database systems [4], Vat can take
advantage of the custom implementation of each operator.
In Vat, the tracking of citations is an inherent part of every
operator’s implementation.

More precisely, there is a default method that applies a
duplicate eliminating union operator to the citations of the
input operators. Certain operators, for instance source op-
erators with filtering option, can change this behavior to
only include citations for selected data. However, it is es-
sential to never remove any citation of a data object that is
incorporated in generating a result. An example could be
a point data subtraction, where a data object is responsible
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for removing another object and needs therefore to be in-
cluded in the citation list. Mapping’s workflow framework
guarantees this restriction.

3.5 Data Export
When exporting data sets for further usage, Vat bundles a

ZIP file containing three components. The first is the result
of the workflow in a raster (GeoTIFF) or vector format (CSV
or GeoJSON), computed in full resolution. The second is the
workflow description itself, containing the parametrization
of each operator. The third one is a complete list of ag-
gregated citations. Vat allows several metadata formats for
workflow descriptions and citations like CSV or JSON.

4. DEMONSTRATION SCENARIO
In this section, we present two real-world scenarios that

exemplify working with exploratory workflows in Vat. Be-
cause of the brevity of this paper we will show only the
success case. Of course, one can easily imagine that the
user took many wrong turns in order to achieve the result.
Because of the automatic tracking of the workflow, the user
can always trace back the steps.

4.1 Data Cleansing
The user is interested in the distribution of animals of

the cat family, e.g. Felis silvestris (wildcat) from GBIF4 in
Europe. For this, the user adds occurrence data from the
repository with the intend to cleanse it. The data occurs as
a layer on the map and the user recognizes possible outliers
by visually inspecting the clustering on the map.

For a first outlier removal (e.g. zoo animals), the user
looks up so called expert ranges from IUCN5 that outline the
expected habitat of a species. The user filters the occurrence
points by applying the point-in-polygon filter operator using
the expert ranges. The result is a new layer which contains
all occurrences contained by the expert ranges.

When looking at the data table, there are aggregates of
default parameters from GBIF. From literature, the user
knows that the species lives between sea level and a certain
height. However, there is currently no elevation information
present. The user adds hosted elevation raster data from
WorldClim6 as a new layer to Wave. Then, the user attaches
the raster data by applying the raster-value-extraction op-
erator on both layers. The result is an enriched layer that
serves then as an input for creating a histogram plot. The
user applies a numeric range filter to remove all outlier oc-
currences which are not in the expected range.

The next step is exporting the resulting cleansed data and
inspecting the file. It contains the data, the workflow and
all citations that were included into the computation.

4.2 Statistical Analysis of Time Series
This part of the demonstration shows the impact of time

series computations by observing bird movements. For this,
the user starts in a clean project in Wave and adds a layer of
a migratory bird species, e.g. Sterna paradisaea (Arctic tern)
occurrence points, to the map. The user first adds hosted
environmental data of averaged monthly temperatures from

4Global Biodiversity Information Facility, www.gbif.org
5The International Union for Conservation of Nature, www.
iucn.org
6Global Climate Data, www.worldclim.org

WorldClim to the map. Then, the user inspects patterns
where these birds have clusterings in the world and assumes
a movement that is correlated with temperatures. As a third
step, the user applies the raster-value-extraction operator to
enrich the occurrence points with the corresponding temper-
atures. The user then applies a temporal operator to form
a small temporal interval around the bird occurrences. The
associated temperature values in the data table change over
time when traversing in monthly intervals. To get a bet-
ter understanding of the temperature attribute distribution,
the user plots a histogram and observes a dense peak in the
diagram.

To compare the observation, the user adds data of a resi-
dent bird, e.g. Columba oenas (Stock dove), to the map. As
this is a species is stationary, there should be different results
when using the same workflow. The user simply changes the
source of the previous workflow and Vat computes new re-
sults. The map and the diagram show significantly different
distribution patterns.

5. CONCLUSIONS
In this demo paper we presented Vat, a system for vi-

sualizing, analyzing and transforming spatio-temporal data
while tracking citations and provenance information. We
showed a brief system overview and pointed out the most
important features. In our usage scenario, we presented two
real-world applications of the field of biodiversity that also
reveal interesting research opportunities for the database
community.
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ABSTRACT
The secure deletion of data is becoming increasingly im-
portant to individuals, corporations as well as governments.
Recent advances in worldwide laws and regulations now re-
quire secure deletion for sensitive data in certain industries.
Data leaks in the public and private sector are commonplace
today, and they often reveal data which was supposed to be
deleted. Secure deletion describes any mechanism that ren-
ders stored data unrecoverable, even through forensic means.
In the past this was achieved by destroying storage media or
overwriting storage sectors. Both of these mechanisms are
not well suited to today’s multi-tenant cloud storage solu-
tions.

Cryptographic deletion is a suitable candidate for these
services, but a research gap still exists in applying cryp-
tographic deletion to large cloud storage services. Cloud
providers today rarely offer storage solutions with secure
deletion for these reasons. In this Demo, we present a work-
ing prototype for a cloud storage service that offers crypto-
graphic deletion with the following two main contributions:

A key-management mechanism that enables cryptographic
deletion an on large volume of data, and integration with
Trusted Platform Modules (TPM) for securing master keys.

Keywords
secure data deletion, cryptographic deletion, data erasure,
records management, retention management, key manage-
ment, data shredding, trusted platform module, TPM

1. BACKGROUND
Cloud based storage solutions are popular services today

especially among consumers. They are used for synchroniz-
ing data across devices, for backup and archiving purposes,
and for enabling access at any time from anywhere. But the
adoption of such storage services still faces many challenges
in the government and enterprise sector. The customers,

c©2017, Copyright is with the authors. Published in Proc. 20th Inter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

as well as the providers, have a desire to move storage sys-
tems, or parts of these systems, to cloud environments in
order to reduce cost and improve the service. But security
issues often prevent customers from adopting cloud storage
services.

The providers often address these issues by offering some
type of data encryption. They differ in three aspects: i)
where the data encryption happens, ii) who has authority
over the encryption keys, and iii) how keys are managed.

In most offerings, the provider has authority over master
keys and encryption happens on the provider side [1]. This
allows the provider to read the customer’s data and enables
them to offer more advanced services and up-sell customers
in the future. If client side encryption is used and customers
have authority over master keys, no provider access is pos-
sible and less trust in the provider is required. Client side
encryption with customer side key authority enables the use
of cloud storage services for especially sensitive data.

We propose a cloud storage systems that employs client-
side encryption of content in order to address confidentiality
concerns of customers. We further propose a key manage-
ment that enables cryptographic deletion in order to assure
customers’ legal and regulatory compliance.

In this demo, we present a cloud storage system with the
two main contributions:

1. Transparent data encryption with support for crypto-
graphic deletion.

2. Trusted Platform Module integration that provides se-
cure deletion and confidentiality for master keys.

2. CRYPTOGRAPHIC DELETION
An often overlooked security aspect of cloud storage sys-

tems is the secure deletion of data. Secure deletion de-
scribes any mechanism that renders deleted data unrecov-
erable, even through forensic means. Recent advances in
worldwide regulation make secure deletion a requirement in
many industries like banking and law enforcement [2, 4, 5].
Even industries without explicit regulation have an interest
in securely removing deleted data in order to prevent fu-
ture leaks and exposure [6]. In the past, secure deletion was
achieved by destroying storage media or overwriting stor-
age sectors. Both of these mechanisms are not well suited
to today’s multi-tenant cloud storage solutions. Identifying
the physical disks that need to be destroyed, or the blocks
that need to be overwritten, becomes difficult to impossi-
ble [7]. In this work, we assume an untrusted cloud storage
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Figure 1: Cryptographic deletion: Delete data indi-
rectly by securely deleting their encryption key.

system in which all deleted data can be restored later by
forensic means. Cryptographic deletion is a suitable can-
didate for these services, but a research gap still exists in
applying cryptographic deletion to large cloud storage ser-
vices [8]. As shown in Figure 1, cryptographic deletion works
by encrypting the data prior to storing it in an untrusted
location. The encryption key must be kept in a secure lo-
cation and can later be deleted in order to indirectly delete
the data. This requires that data encryption happens in the
customers trusted environment and that the customer has
authority over the encryption key. Cryptographic deletion
is therefore a function of the key management mechanism in
client-side encryption solutions.

2.1 The Key-Cascade
Our “Key-Cascade” key management mechanism is based

on a tree structure in which each node contains encryption
keys and child nodes are encrypted with a key from their
parent [3, 10]. Figure 4 shows an example of this structure
with Key 0 as the master key. Each inner node contains a
list of encryption keys and each key is used to encrypt one
of the node’s children. E.g. in Figure 4, Key 1 is used to
encrypt the child node containing Keys 17 through 21. Be-
cause this child node is encrypted with Key 1, it is called
Node 1. The leaves of this tree are nodes containing encryp-
tion keys for the actual data objects. Each (encrypted) node
is stored as an object inside the object store and identified
by its node ID. The IDs for keys, nodes, and objects are
used for accessing the Key-Cascade data structure. The IDs
are assigned so that only an object ID is needed to calcu-
late the list of node and key IDs along the path to this leaf.
This allows decoupling the retrieval and processing of the
encrypted nodes.

Figure 2 shows how cryptographic deletion is realized on
this data structure. The purpose of the Key-Cascade is
to transfer the property of secure deletion from the mas-
ter key (stored in TPM) to the large number of object keys.
This is achieved through the hierarchical dependency be-
tween the keys. Once a key becomes inaccessible, all its
child nodes become inaccessible as well, leading to cryp-
tographic deletion of the corresponding objects. Once the
master key is securely deleted (by the TPM), all the nodes
of the tree become inaccessible and all the objects become
securely deleted as well.

We use the logarithmic height of the tree in order to cryp-
tographically delete individual objects with minimal over-
head: Figure 2 shows how Object 7 is deleted by generating
a new (and deleting the old) master key and modifying a
path of nodes. The nodes along the path from master key
to Object 7 get copied and modified in two ways: i) internal
nodes are copied while the key for the child node on this
path is replaced by a newly generated one. ii) leaf nodes
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Figure 2: the Key-Cascade data structure after dele-
tion of object 7.

contain the object keys. This node is copied as well but the
object key (which should be deleted) is not copied. In both
cases the copied nodes are then re-encrypted with their new
parent key. All off-path branches remain unaffected and are
now accessible through the new master key and modified
nodes.

All the old nodes and objects become inaccessible because
the old master key was securely deleted by the TPM. It is
not possible to restore these deleted objects even if all the
old nodes can be restored, because the old master key is no
longer available. This recursive “re-keying” of nodes always
includes replacing the master key. In order to reduce cost,
deletions can be processed in batches. The master key then
only needs to be replaced once per batch.

2.1.1 Key-Cascade properties
The properties of the Key-Cascade are determined by two

parameters: The tree height h and the node size Sn. These
properties include the maximum number of object keys, the
number of nodes, and the size of the whole data structure.
In the following, we give two examples for these properties.
Each key has a size of 32 bytes in these calculations because
we use the AES256 encryption algorithm.

Example 1:
Tree height h = 2, node size Sn = 22 = 4.

This results in a cascade consisting of 5 nodes with
space for 16 object keys. When fully utilized, the Key-
Cascade needs 640 bytes to store the nodes. Re-keying
requires up to 12 operations. With data objects of 100
kilobytes average size, this cascade can store keys for
1.6 megabytes of data. The cascade therefore imposes
a storage overhead of 0.04%

Example 2:
Tree height h = 3, node size Sn = 28 = 256.

This more realistic parameter setting results in a cas-
cade consisting of 65,793 nodes with space for 16,777,216
object keys. When fully utilized, the Key-Cascade
needs 514 megabytes to store the nodes. Re-keying re-
quires up to 774 operations (note that these are small
in-memory operations). With data objects of 100 kilo-
bytes average size, this cascade can store keys for 1.6
terabytes of data. The cascade therefore imposes a
storage overhead of 0.03%
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3. THE MICRO CONTENT MANAGEMENT
SYSTEM (MCM)

In this demo, we present our proof-of-concept and bench
marking application MCM1. MCM’s functionality is based
on on-premise Enterprise Content Management systems like
IBM FileNet P8, but is designed to use outsourced cloud
storage and client-side encryption. MCM stores objects and
files inside storage containers in the Swift2 object store.
Whole containers can be transparently encrypted with a
key-management mechanism that allows secure deletion of
individual objects. MCM supports uploading and retriev-
ing files, setting retention dates and scheduling deletion, ex-
tracting and viewing metadata, and analyzing and graphing
analyses on this metadata. Our user interface also features
interactive visualizations of the underlying key management
data structures, which will be used in this Demo.

Figure 3 shows the high level architecture of MCM. The
central component for this Demo is SDOS, the Secure Delete
Object Store, which implements encryption as well as the
key management for cryptographic deletion and also has the
integration with the TPM.

We use three data management systems (bottom row of
Figure 3): An Apache Kafka streaming platform for loosely
coupled communication, an SQL database for storing and
analyzing unencrypted metadata, and a Swift object store
that holds all the encrypted data objects. Metadata is stored
unencrypted in MCM because this allows us to execute queries
on the cloud. The user can decide what metadata should be
extracted from files, depending on their sensitivity. Cloud
resources can then be used to query, search, filter, and an-
alyze this metadata. File and container names are always
stored as unencrypted metadata. If no further metadata
is extracted, users must always retrieve (and decrypt) files
before their content can be searched or analyzed locally.

1https://github.com/timwaizenegger/mcm-sdos
2http://docs.openstack.org/developer/swift/

Figure 4: Screenshot of the interactive visualization
for the key management data structure. Key 0 is
secured by the TPM.

We use the Swift REST-API protocol for our internal
components in MCM, as shown by the blue lines in Fig-
ure 3. This protocol is used by the Swift object store and
other large key/value stores (e.g. Ceph3) and their clients.
Encryption and cryptographic deletion are handled by our
SDOS component which is realized as such a Swift API-
proxy. This enables us to use any unmodified Swift backend
(e.g. SaaS) as well as any existing Swift clients. The API-
proxies form a flexible pipeline. All MCM components can
run multithreaded or distributed to enable horizontal scaling
and high availability.

The Kafka streaming platform is used for triggering the
execution of jobs for metadata extraction and replication as
well as scheduled deletion of old objects. We use a relational
database as a replicated metadata warehouse, as Swift lacks
advanced querying capabilities for metadata (only retrieving
and listing is possible). All the object metadata is primar-
ily stored in Swift and then replicated to the RDBMS for
analysis.

The location where the components from Figure 3 run is
critical to the security of the system. In order to guarantee
the secure deletion property, the content of the stored ob-
jects must never leave a trusted environment in unencrypted
form. The same must be guaranteed for the encryption keys.
Our SDOS encryption uses a tree structure for key manage-
ment of which only the root key must be kept secure. All
other keys are stored encrypted on Swift together with the
data objects.

One possible separation of trusted/untrusted environment
is given by the red line in Figure 3. It shows that all the data
storage system can be outsourced to the public (untrusted)
environment, because all sensitive data are encrypted. The
master key for our key management mechanism is stored in,
and never leaves the TPM.

3http://docs.ceph.com/docs/jewel/radosgw/swift
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4. TRUSTED PLATFORM MODULES (TPM)
Trusted Platform Modules are a type of hardware security

module that is used in PCs, Laptops, and Servers. They are
already ubiquitous in those devices today and will achieve
even higher spread in the future since Microsoft now lists a
TPM as a mandatory hardware requirement for its Windows
10 operating system4. TPMs implement a specification by
the Trusted Platform Group that defines core capabilities
and security requirements [9]. TPMs generally contain a
small storage as well as processing unit inside a tamper re-
sistant physical package. Their most important feature is
that certain areas of their storage unit can only be accessed
by the internal processor. This means that some encryp-
tion keys can never leave the TPM but can only be used to
de/encrypt data that is loaded into the TPM. TPMs fur-
thermore have the capability to securely delete stored keys,
and replace them with newly generated ones. This provides
a secure basis for cryptographic deletion since a key is pos-
itively unrecoverable if it never leaves the TPM and is se-
curely deleted inside the TPM later on.

The TPM’s intended purpose is to support local disk and
data encryption, as well as verified device identification. For
data encryption, an encryption key is stored on disk but en-
crypted with the TPM master key. This encryption key
can only be used after it was decrypted by an authenticated
TPM. The actual data de- and encryption is then done by
the main CPU, only de and encryption of the key is done
inside the TPM. For device identification, TPMs contain an
“endorsement key” that was signed by a trusted manufac-
turer master key. Remote services can challenge the TPM
and verify the endorsement key in order to identify a cer-
tain machine. This is used for enterprise asset tracking as
well as licence management for digital media (digital rights
management).

TPMs can be used in custom applications with the lim-
itation that no custom code can be run inside the TPM.
Only the basic cryptographic operations are supported by
the processor inside the TPM [11]. TPMs offer physical
security and tamper resistance and can be used to secure
master keys to custom cryptographic applications.

In MCM we use a TPM in order to store the master key
on the SDOS core component. This master key (Key 0 in
Figure 4) encrypts the first level of keys in a tree. The master
key never leaves the TPM and is only used to en/decrypt
the first level of the tree by loading this node into the TPM
for processing.

5. DEMO OVERVIEW
This Demo will present a working prototype of a cloud

storage system that offers transparent encryption with cryp-
tographic deletion. We will show the theory behind our key-
management mechanism (Key-Cascade), present the archi-
tecture of the cloud storage system, and demonstrate the
integration with a Trusted Platform Module.

In our demo scenario we will first explain the layout of
the system and the physical location of the individual com-
ponents. We will then create new data containers with and
without cryptographic deletion and show data ingestion and
retrieval with different client applications. We will show
how the encryption keys for new objects are generated and

4https://msdn.microsoft.com/en-us/library/windows/
hardware/dn915086(v=vs.85).aspx

how they fit into the hierarchical Key-Cascade. We present
the operations on the Key-Cascade including cryptographic
deletion, show the capacity of the data structure as well as its
scaling behavior. We then show how the Trusted Platform
Module is integrated with the Key-Cascade and operations.

In this demo, the audience will learn about cryptographic
deletion and its application to practical storage systems.
Our integration of Trusted Platform Modules is relevant for
applications outside of cryptographic deletion as well. Any
system that employs cryptography can increase certain se-
curity aspects by integrating a TPM. Therefore, this demo
is also relevant for researchers working in other areas of ap-
plied cryptography. Finally, our solution makes heavy use of
the Swift object store and its REST-API which makes this
demo relevant for researchers interested in Swift as well.

Screenshots of the user interface, all the application code,
as well as more details about their capabilities, can be found
on our Github page: https://github.com/timwaizenegger/
mcm-bluebox
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ABSTRACT
We present a demonstration of instant recovery, a family of
techniques to enable incremental and on-demand recovery
from different classes of failures in transactional database
systems. In contrast to traditional ARIES-based algorithms,
instant recovery allows transactions to run concurrently to
recovery actions—not only permitting earlier access to data
that requires recovery but also using the post-failure access
pattern to actually guide the recovery process. This mecha-
nism prioritizes data needed most urgently after a failure,
thus dramatically reducing the mean time to repair per-
ceived by any individual transaction.

We have implemented instant recovery in an open-source
storage manager and developed a Web-based interface to
showcase its recovery capabilities. Users of this demo ap-
plication are able to control the execution of various bench-
marks and inject different types of failures arbitrarily, ob-
serving the system behavior and recovery progress live in
a dashboard utility. Furthermore, since traditional ARIES
recovery is also implemented, users can select the type of
recovery and obtain a live graphical comparison of the dif-
ferent techniques.

1. INTRODUCTION
Database availability is a key challenge of scalable and re-

liable information systems. Improvements in availability can
be achieved on two main fronts: increasing mean time to fail-
ure (MTTF) and decreasing mean time to repair (MTTR).
Large businesses and Internet-scale services have invested
heavily on the first front with highly redundant hardware
configurations. The latter front, however, has not seen sub-
stantial improvements in the last decades, especially when
considering the algorithms for logging and recovery in trans-
actional database systems.

The vast majority of commercial and open-source database
systems rely on techniques similar in essence to the ARIES

c©2017, Copyright is with the authors. Published in Proc. 20th Inter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

family of recovery algorithms [5]. While ARIES works very
well on traditional disk-based architectures with moderate
transaction throughput and limited main-memory capacity,
modern hardware and the systems designed to fully exploit
its potential reveal severe limitations of traditional logging
and recovery. These limitations include: long time to repair
due to inefficient access patterns during recovery, inability
to incrementally recover and enable access to most impor-
tant data first, and high overhead on normal transaction
processing.

Instant recovery was proposed recently as an alternative
to ARIES that addresses its limitations on both traditional
and modern hardware scenarios. Instead of being restricted
to system failures and restart, it is designed to recover from
all classes of failures known in the database literature. Fur-
thermore, like ARIES, it relies on write-ahead logging with
physiological log records, which means it can be incremen-
tally implemented on an ARIES system, retaining all its
capabilities while eliminating its limitations. For further
elaboration on the limitations of previous techniques, the
contribution of instant recovery, and empirical evaluation of
the techniques, we refer to previous publications [1, 2, 7, 8].

This paper describes an interactive demo application de-
signed to showcase the benefits of instant recovery in com-
parison with ARIES. After a brief overview of instant recov-
ery in Section 2 below, the architecture and functionality of
the demo application is described in Section 3. We provide a
high-level description of the application and its interaction
with the underlying transactional system, focusing on the
user interaction and what attendees of the demonstration
can expect to see. Finally, Section 4 provides a summary
and some concluding remarks.

2. INSTANT RECOVERY IN A NUTSHELL
Instant recovery [1] is a family of algorithms designed to

address different classes of failures in transactional systems.
Table 1 summarizes such failure classes and their typical
causes and effects. Details of the specific recovery mecha-
nisms employed for each class are beyond the scope of our
demonstration and have been explored extensively in previ-
ous research [1, 2, 7, 8]. This section discusses the fundamen-
tal characteristic common to all instant recovery techniques:
the support for recovery actions that are executed concur-
rently to normal processing, provide incremental access to
already-recovered data items, and exploit workload access
patterns to guide recovery and prioritize data needed most
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Failure class Loss Typical
cause

Response

Transaction Single-
transaction
progress

Deadlock Rollback

System Server process
(in-memory
state)

Software
fault,
power loss

Restart

Media Stored data Hardware
fault

Restore

Single page Local integrity Partial
writes,
wear-out

Repair

Table 1: Failure classes, their causes, and effects (from [8])

urgently. In order to summarize these techniques and pro-
vide an overview of how instant recovery works, we discuss
the case of restart after a system failure.

When a system failure occurs, the in-memory state of the
database server process is lost and must therefore be recov-
ered when the system comes back up. As in ARIES recovery,
this boils down to determining which transactions must be
rolled back in the UNDO phase (i.e., active transactions) and
which pages must have their updates replayed in the REDO

phase (i.e., dirty pages). Such information is collected with
a sequential log scan in the log analysis phase, which covers
the interval from the most recent checkpoint up to the last
persisted log record.

In essence, the key characteristic that distinguishes in-
stant restart from ARIES restart is that, once log analy-
sis information is collected, the REDO and UNDO phases
can be performed on a per-page and a per-transaction ba-
sis, respectively. In other words, recovery actions can be
scheduled according to a variety of policies, and not just the
schedule dictated by a sequential REDO or UNDO log scan.
This means that as soon as log analysis is complete (which
usually only takes a few seconds), transactions can immedi-
ately be admitted to the system and, as soon as they touch
a page in need of recovery (i.e., a page marked dirty dur-
ing log analysis) or incur a lock conflict with a transaction
in need of rollback (i.e., a transaction marked active dur-
ing log analysis), that single page or that single transaction
can be recovered on demand. The basic design features that
enable such on-demand recovery are (i) a per-page chain of
log records that is also the basis of single-page recovery [2];
and (ii) tracking acquired locks during checkpoints and log
analysis.

Fig. 1 illustrates the process of on-demand recovery dur-
ing instant restart. In this scenario, log analysis has de-
tected two dirty pages, A and B, whose expected page LSN
is x and y, respectively. Furthermore, two pre-failure active
transactions, T1, holding locks with identifiers b and d, and
T2, with lock on f , were also detected. After log analysis,
a new transaction is initiated—shown here as the gray box
on the top left corner. This transaction attempts to fix page
B in the buffer pool; because this page is marked as need-
ing recovery, on-demand REDO processing kicks in and log
records pertaining to this page are replayed by following a
backward chain of log records (which is exactly the same
process employed for single-page recovery [2]). Log replay
of this single page happens concurrently with replay of any
other page; in fact, it may even happen with asynchronous,
ARIES-style REDO based on a forward log scan.

...

PID  LSN

Locks TID

Figure 1: On-demand recovery in instant restart

After page B is restored, the new transaction attempts
to acquire a lock on f . In this case, the lock table yields
a conflict with transaction T2; since this transaction is a
pre-failure one, its rollback is triggered by this lock conflict.
Because rollback of a pre-failure transaction works exactly in
the same way as a transaction abort during normal process-
ing (e.g., due to deadlock), the same logic is applied. Once
such rollback is completed, the locks held by T2 are released
and the lock is finally granted to the waiting post-failure
transaction.

The on-demand and incremental recovery schedules essen-
tially reduce the MTTR as perceived by a single transaction
by multiple orders of magnitude. ARIES restart recovery,
in contrast, usually requires at least a full REDO log scan—
which is typically the longest phase of recovery by far [6]—
before the first post-failure transaction can complete1.

In the next section, we describe the demo application pro-
posed by this paper. It is the first interactive user interface
ever developed for instant recovery, which can not only re-
produce some of our empirical measurements, but also allow
the user to interact with the workload, observe the system
behavior graphically, and, most importantly, inject failures
arbitrarily.

3. DEMONSTRATION
Instant recovery techniques such as single-page recovery,

instant restart, and instant restore have been implemented
over the past three years in the Zero 2 storage manager pro-
totype, which is a fork of the well-known Shore-MT [3]3.
Zero has also been incorporated into the MariaDB database
system (a modern fork of MySQL) as a storage engine mod-
ule that can be used as an alternative to the popular InnoDB
engine.

Our demonstration will provide a hands-on experience to
interact with these systems under a variety of benchmark
workloads. Focusing mainly on the logging and recovery
aspects, the demo program enables users to inject different
types of failures in a database workload running on Zero and
observe the recovery process live in an intuitive graphical
interface. Combined with a choice of parametrized work-
loads, this rich interface allows users to interactively explore

1Improvements to the ARIES algorithm aimed at enabling
earlier access during recovery have been proposed [5, 4], but,
in summary, none of them provides fully on-demand and in-
cremental recovery to fine-granular objects, especially those
needed most urgently by the application. The limitations
of these “extended” versions of ARIES are also discussed in
previous work [1, 8]
2https://github.com/caetanosauer/zero
3https://sites.google.com/site/shoremt/
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Figure 2: Architecture of the demo program

the potential of instant recovery techniques in improving
database reliability.

To demonstrate the various instant recovery techniques
and compare them with traditional ARIES-based recovery,
we have developed a Web-based interface to control the exe-
cution of benchmarks and display relevant system statistics
in a graphical way. This section describes how our demo
program is organized, how it achieves these goals, and how
the user can interact with it.

3.1 Demo program architecture
The diagram in Fig. 2 illustrates the main components of

the demo program and their interaction. The Web interface
serves two main purposes: first, it sends commands to the
Zero storage manager (which may be running either inde-
pendently or as a storage engine inside MariaDB) to con-
trol the execution of workloads as well as adjust system and
benchmark parameters dynamically; and second, it serves as
a “dashboard” to visualize real-time statistics.

The communication between Web client and server is im-
plemented with a JSON-based REST API. Commands are
available to start and stop a certain benchmark workload
and—especially for the purposes of instant recovery—inject
system crashes and persistent storage failures. System crashes
cause the immediate destruction of all in-memory data struc-
tures of the server process—most importantly buffer pool,
transaction manager, and lock table. In Fig. 2, the process
of receiving a command via the REST API and forward-
ing it to the storage manager kernel is illustrated by arrow
number 1. The following paragraphs discuss the remainder
of the demo program architecture by referring to the num-
bered arrows.

While the storage manager kernel processes transactions,
it generates two types of information which are relevant for
the demo. First, a collection of system counters (arrow 2) is
used to keep track of system events for which only the total
number of occurrences is of interest. For example, counters
of transaction commits, page reads and writes, log volume
generated, number of active transactions, number of dirty
pages, etc. are typical measures of interest.

The second collection mechanism is through the transac-
tion log (arrow 3). By continuously analyzing the logs and
performing various aggregations, events can be collected in
a time-dependent manner, allowing more detailed statistics
than those provided by simple counters. The information
collected from the system counters and the transaction log
is stored in a collection of statistic tables (arrows 4 and 5),
which are finally serialized into the JSON format for display
in the demo (arrow 6).

3.2 Visualizing the recovery process
As mentioned above, the demo application provides com-

mands to inject failures into the running workload. We
support injection of three of the four classes summarized
in Table 1: system, media, and single-page failures. The
remaining class—transaction failure—is not supported be-
cause there is not much to demonstrate in that case, as the
abort of a single transaction does not cause any noticeable
impact on system behavior.

When injecting a failure, the user may also choose which
recovery method to employ: traditional ARIES or instant
recovery. In addition to system failures, users can also in-
ject a failure on persistent storage (e.g., single-page or whole-
device failures) independently of system failures—i.e., differ-
ent failure modes can be mixed and matched freely. Further-
more, failures can be re-injected at any time during recovery
from a previous failure, demonstrating the independence and
idempotency of recovery modes.

Regardless of whether recovery activities are being car-
ried on or not, the dashboard of the demo program con-
stantly displays statistics collected from the statistic tables
described above, some of which can be selected for plotting.
For instance, the user can observe the transaction through-
put along with the buffer pool hit ratio. During instant
restart after a system failure, these values should gradually
rise as on-demand, incremental recovery progresses.

In addition to statistics available during normal process-
ing, special statistics are collected and displayed during the
recovery process—for instance, progress bars indicate the
percentage of completion of each recovery phase (log analy-
sis, REDO, and UNDO).

3.3 Screenshot walk-through
Fig. 3 shows a screenshot of our demo application in which

a TPC-C workload is running and two recovery processes are
currently active: instant restart (from a system failure) and
instant restore (from a media failure). At the top, the IP ad-
dress of the server process is provided along with the chosen
workload—in this case TPC-C. An additional button opens
up a pop-up window in which system and workload param-
eters can be adjusted—some of which can also be changed
while the benchmark runs. Below that, three red buttons
are provided to inject a system, media, or single-page fail-
ure. In the latter case, the user can additionally specify what
kind of page should be selected for failure (in this case, a
root page of an index). These buttons remain available even
when recovery is already being carried out, allowing users
to simulate failure-on-failure scenarios.

The middle part of the screenshot shows the graphical
display component, in which three statistics are currently
selected—transaction commit rate, page reads, and page
writes. Using the“Choose counters”button on the top, users
can select different statistics to plot. A text output of all
stats and counters is also available but omitted here.

Finally, the bottom part shows the progress of currently
ongoing recovery processes. In this case, a system restart
is being carried on, and the progress bars show how much
of the REDO and UNDO phases has been completed. Be-
low that, a single progress bar displays the progress of a
concomitant restore process, in which segments of the failed
device are also restored incrementally. Note that transac-
tions are running despite the ongoing recovery—this is the
crucial feature of instant recovery.
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Figure 3: Screenshot of the Instant Recovery Demo

4. SUMMARY AND CONCLUSIONS
Instant recovery drastically improves database system avail-

ability in the presence of failures, allowing incremental and
on-demand recovery. Using a prototype transactional stor-
age manager, we aim to demonstrate how these new recovery
techniques behave in a real system. The demo application
proposed here will enable attendees at the conference to in-
teractively inject failures into a running workload and ob-
serve the instant recovery process live. The dashboard util-
ity constantly collects relevant statistics from the database
server process and displays them graphically according to
customized selections made by the user. The Zero storage
manager on which the demo is based is the first—and so
far only—implementation of instant recovery. Therefore,
the demo application will also provide a novel experience
to most attendees.
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ABSTRACT

User-generated content in social media can offer valuable insights

into local trends, events, and topics of interest. However, navigating

through the vast amounts of posts either to retrieve certain pieces of

information or to obtain an overview of the existing content, is often

a challenging and overwhelming task. In this work, we present

µTOP, a system for detecting and summarizing locally trending

topics in microblog posts based on spatial, temporal and textual

criteria. Using a sliding window model over an incoming stream of

posts, µTOP detects locally trending topics, and associates each one

with a spatio-temporal footprint. Then, for each spatial region and

time period in which a certain topic is trending, the system generates

a summary of the relevant posts, by selecting top-k posts based on

the criteria of coverage and diversity. µTOP includes a Web-based

user interface, providing a comprehensive way to visualize and

explore the detected topics and their spatio-temporal summaries

via a map and a timeline. The functionality of the system will be

demonstrated using a continuously updated dataset containing more

than 30 million geotagged tweets.

1. INTRODUCTION
Millions of posts are generated daily by users in social media, in-

cluding text messages, photos, location check-ins, etc. These posts

comprise textual content (typically, short text messages or tags),

temporal information (the post’s timestamp), and often spatial in-

formation (the post’s geolocation). These spatial-temporal-textual

objects are valuable pieces of information for revealing insights

and trends regarding topics and events the users are interested in.

However, given the sheer volume of this content, and its inherent

redundancy and noise, retrieving relevant information or browsing

and obtaining an overview of what is happening, is often a chal-

lenging and overwhelming task.

One solution to restrict the amount of incoming posts and focus

©2017, Copyright is with the authors. Published in Proc. 20th Inter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

ω

t

ω

β

Web App

Twitter

Stream

Topic

Detection

Module

Topic

Summarization

Module

Storage

System

memory

index

disk

index

topics

repository

Post

Similarity

Module
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on more relevant information is to filter out posts according to

specified textual, spatial and/or temporal filters, as for example in

publish/subscribe systems (e.g., [6]). However, given that social

media content often involves new and emerging topics and events,

the user may not know in advance what is interesting or relevant,

and thus may not be able to specify a suitable geographic area, time

period, or keywords for search.

To make it easier for users to get a quick grasp of the most

important or interesting information, a common practice is to detect

and present to the users a set of popular or trending topics (e.g., sets

of hashtags in Twitter) that have high frequency (overall, or currently

with respect to the past). However, the popularity of a topic is often

not uniformly distributed across space and time; instead, a given

topic may only be popular within specific geographic regions and

over certain periods of time. In fact, recently there has been a lot

of interest in finding local topics and events in Twitter (e.g., [1, 2,

3]). Nevertheless, even if a topic is detected as popular or trending,

the posts belonging to it may still be in the order of hundreds

or thousands. Hence, besides topic detection, generating topic

summaries is also of high importance.

In this work, we presentµTOP, a system for detecting and summa-

rizing locally trending topics in streams of microblog posts. Each

topic is represented by a set of one or more keywords (e.g., hashtags
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in the case of Twitter), and is associated with a spatio-temporal foot-

print, i.e., a set of geographic regions and time periods over which

this topic is identified to be popular. Thus, the spatio-temporal

evolution of each detected topic is explicitly captured, and can be

further explored. In fact, for each of these spatial regions and time

intervals for which a topic is popular, µTOP can generate a summary

of relevant tweets to describe the topic in more detail.

The discovery of locally trending topics is based on the approach

presented in [5]. This method segments the space into a uniform

grid and detects a set of trending topics in each cell by processing the

incoming stream of posts applying a sliding window model. Thus,

the topics are generated and monitored across space and time as

new posts arrive and old ones expire, resulting in an evolving spatio-

temporal footprint for each identified topic. Moreover, given a topic

and its footprint, the system can generate a summary of relevant

tweets. For this purpose, the relevant tweets are first retrieved using

a spatial-temporal-textual filter, and then the top-k ones are selected

according to the criteria of coverage and diversity, following the

approach presented in [4].

Figure 1 presents an overview of the system architecture, which

comprises the following main components. The storage system,

detailed in Section 2, is responsible for ingesting the microblog

posts (e.g., from Twitter’s streaming API), and storing them in main

memory and later on disk. In addition, this system maintains all

topics and their spatio-temporal footprints. The core components

of µTOP are the three data processing modules: Topic Detection,

Topic Summarization, and Post Similarity, which are discussed in

Section 3. Finally, the Web App, presented in Section 4, consists of

the web-based user interface that allows users to issue queries, via

invoking the appropriate modules, and visualize their results.

In the following sections, we describe in more detail the sub-

systems of µTOP, and present some usage examples in Section 5.

2. STORAGE SYSTEM
Each ingested post is represented as a spatial-temporal-textual

object D = 〈u, loc, t,Ψ〉, where u is the identifier of the user

making the post, loc = (x, y) is the post’s geolocation, t is the

post’s timestamp, and Ψ is a set of keywords representing the post’s

textual content.

To allow for efficient real-time detection of locally trending topics

and the exploration (retrieval, summarization) of past topics and

posts, we adopt a hybrid data indexing structure, involving both the

main memory and the disk. This structure, depicted in Figure 2,

indexes along all four attributes, latitude, longitude, time, and text.

A 3-dimensional grid provides access along the first three attributes,

while within each cell an inverted index provides efficient retrieval

by keyword.

Each grid cell has size g×g×β, where g is a fixed arc range (for

latitude and longitude) partitioning the world (or the spatial area of

interest), and β is a fixed time interval. The inverted index of each

cell associates each keyword with a list of posts in that cell that

contain it. A slice of the grid in the temporal dimension containing

posts that were published in an interval of β time units (e.g., one

hour) is called a pane. The pane collecting the most recent posts is

called the head pane.

The main memory index only stores the latest ω/β panes, and

thus indexes posts that were published within a sliding window of

ω time units (e.g., one day) in the past. This part of the grid is used

by the topic detection module (Section 3.2). On the other hand,

the disk-based index stores all panes except the head. This index

is used by the topic summarization and the post similarity modules

(Sections 3.3 and 3.4).

Besides this hybrid index structure, the storage system of µTOP

ω

th

th−ω

β

head pane

in main memory

on disk

time

sliding

window 

of size

pane size

longitude latitu
de

ψ1 {D2, D4, . . . }

ψ2 {D1, D3, . . . }

.

.

.

.

.

.

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

Spatio-temporal Grid

In-cell

Inverted Index

Figure 2: Overview of indexing scheme in µTOP.

includes a repository archiving all trending topics, along with their

spatio-temporal footprints. The repository receives the continuous

output of the topic detection module, and provides input to the topic

summarization module when requested.

3. SYSTEM MODULES

3.1 Preliminaries
First, we need to define textual, spatial and temporal distance

functions between posts. Given two posts Di and Dj , their textual

distance δψ is measured by the Jaccard similarity between their

keyword sets:

δψ(Di, Dj) = 1−
|Di.Ψ ∩Dj .Ψ|

|Di.Ψ ∪Dj .Ψ|
.

The spatial and temporal distances are measured, respectively, by the

Euclidean distance d of the posts’ locations and the time difference

of the posts’ timestamps. To be able to aggregate distance scores

across dimensions, we normalize spatial and temporal distances

to values in the range [0, 1] (notice that δψ ∈ [0, 1]). For that

purpose, we assume that the posts under consideration are enclosed

by a bounding box with diameter length γ and a time interval of

length τ . Then, we define the (normalized) spatial distance δs and

temporal distance δt as follows:

δs(Di, Dj) =
d(Di.loc ,Dj .loc)

γ
, δt(Di, Dj) =

|Di.t−Dj .t|

τ
.

3.2 Topic Detection
In µTOP, topic detection is based on the work presented in [5].

We briefly describe the main aspects of the process below.

To process the incoming stream of posts, a lightweight, in-

memory spatial index comprising a uniform spatial grid is used,

as explained in Section 2. Upon arrival, each incoming post D is

assigned to the corresponding grid cell c according to its geolo-

cation D.loc. In each cell, the local stream of posts is processed

to generate and maintain locally popular topics with respect to a

sliding window W of range ω and sliding step β.

A topic C is characterized by a set of keywords (e.g., hashtags)

C.Ψ and is associated with the grid cell c and the time window

W in which it is detected. The popularity C.pop of a topic C
within the cell c and time window W is determined by the number

of users having posts in c and W that textually match this topic.

We say that a post D matches a topic C if their textual similarity

δψ(D.Ψ, C.Ψ) is above a specified threshold θψ ∈ [0, 1]. The

popularity score of a topic is normalized by the total number of

users having posts within the cell c and window W . If an incoming
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post does not match any of the existing topics in the current cell

and time window, a new topic is created having as keywords those

appearing in this post. Eventually, those topics with popularity

higher than a specified threshold θu ∈ [0, 1] are marked as locally

trending, and are returned.

If the same topic is detected in multiple cells and/or time win-

dows, these are merged to construct the topic’s spatio-temporal

footprint C.F = {(ci,Wi)}. Hence, this process not only detects

locally popular topics but also explicitly associates each one with

the exact geographic region(s) and time period(s) within which it

was popular.

3.3 Topic Summarization
Once topics are detected, the next step is to get a summarized

overview of each topic. A summary of a topic is already provided

by the set of keywords defining it and its spatio-temporal footprint.

However, a list of representative posts may also be needed in order

to describe the topic in more detail.

For this purpose, µTOP can generate a summary, comprising k
posts, for any part of the topic’s spatio-temporal footprint. In other

words, it can compute a set of k representative posts for any region

and time window in which the given topic has been popular. The

size of each summary, i.e., the value of the parameter k, can be

specified by the user, and can be different for each summary.

The selection of the k representative posts to be included in the

summary is based on the criteria of coverage and diversity. In

particular, each summary is constructed by executing a Coverage

& Diversity Aware Top-k Spatial-Temporal-Keyword (kCD-STK)

query, following the approach presented in [4]. We outline the main

aspects of this process next.

Formally, a kCD-STK query is defined by a tuple of the form

Q = 〈R, T,Ψ, k〉, where R is a spatial region, T is a time interval,

Ψ is a set of keywords, and k is the number of results to return.

In our case, the filters R, T and Ψ are derived from the topic’s

keyword set and spatio-temporal footprint, while k is determined

by the desired summary size. The distinguishing aspect of the

kCD-STK query is that instead of selecting the top-k posts ranked

by relevance, it selects a more representative set of k posts using

the criteria of coverage and diversity, which are defined below.

Let DF denote the set of all posts satisfying the spatial, temporal

and textual filters R, T and Ψ in the query Q. The coverage of a

post D ∈ DF is defined as the ratio of relevant posts that are within

spatial distance θs and temporal distance θt from D, i.e.:

cov(D,DF ) =
|{D′ ∈ DF : ds(D,D′) ≤ θs ∧ dt(D,D′) ≤ θt}|

|DF |
.

This is a measure of how representative this particular post is with

respect to other relevant posts. Moreover, this is extended to mea-

sure the coverage of a set of selected posts R ⊆ DF of size k:

cov(R,DF ) =
1

k

∑

D∈R

cov(D,DF ).

Essentially, the criterion of coverage favors the selection of posts

from locations that contain a large number of relevant posts.

On the other hand, to avoid a high degree of redundancy, the

criterion of diversity is used to increase the dissimilarity among

the selected posts. Specifically, the diversity of a pair of posts

Di, Dj ∈ DF is defined as:

div(Di, Dj) = α · ds(Di, Dj) + (1− α) · dt(Di, Dj),

where α ∈ [0, 1] is an adjustable weight parameter between the

spatial and the temporal distances. Furthermore, the diversity of a

set of posts R ⊆ DF of size k is calculated as:

div(R) =
1

k · (k − 1)

∑

Di,Dj∈R,i 6=j

div(Di, Dj).

Based on the above, the kCD-STK query returns a set of k posts

R∗ that maximizes a combined measure of coverage and diversity:

R∗ = argmax
R⊆DF ,|R|=k

{(1− λ) · cov(R,DF ) + λ · div(R)},

where λ ∈ [0, 1] is a parameter determining the tradeoff between

maximum coverage (λ = 0) and maximum diversity (λ = 1).

3.4 Retrieving Similar Posts
The above process provides a flexible and adjustable way to get a

summary of representative and diverse posts for a topic across the

whole extent of its spatio-temporal footprint. Then, the user can

further drill down into the topic, by selecting any of the posts in

the presented summary that seems interesting, and requesting other

similar posts to it. That is, the posts contained in each summary can

serve as seeds for further exploration of the topic’s contents.

This is performed by executing a standard top-k spatial-temporal-

keyword query Q = 〈loc, t,Ψ, k〉, where loc, t, and Ψ are, re-

spectively, the location, the timestamp and the keyword set of the

selected post D, and k is the number of similar posts to be retrieved.

In this case, the query returns the top-k results ranked by relevance

determined by an aggregate distance score δ combining the partial

distance scores in the spatial, temporal and textual dimensions, i.e.:

δ(D,D′) = ws · δs(D,D′) + wt · δt(D,D′) + wψ · δψ(D,D′)

where ws ∈ [0, 1], wt ∈ [0, 1] and wψ = 1−ws −wt are weights

determining the relative importance of each distance score.

4. USER INTERFACE
The user interface is shown in Figure 3. The map continuously

depicts locally trending topics as discovered by the topic detection

module. Topics are shown as stars, with brightness indicating pop-

ularity. Hovering over a star reveals the topic’s spatial footprint,

whereas clicking on it shows its keywords together with two op-

tions (Figure 4 left). The first option is to invoke the post similarity

module to retrieve a ranked list of similar posts (in terms of spatial

proximity, time closeness, and textual relevance). The resulting

posts are displayed in a pop-up window on the right, and also as

orange dots on the map and on the timeline located at the bottom.

The second option for a locally trending topic is to explore its

spatio-temporal footprint by invoking the topic summarization mod-

ule. The sidebar on the left displays a form detailing the spatial and

temporal ranges for the summary, as well as the keywords and the

number of returned results (default is ten). Naturally, the user can

specify her own summarization request. The summarization results

are listed in a pop-up window on the right, where the user can filter

them by the top keywords shown at the top. The spatial and temporal

distributions of the results are shown on the map and on a timeline

at the bottom using orange bullets, respectively. The height of the

purple bars in the timeline indicates the average coverage in the cor-

responding temporal range. Similarly, the purple rectangles on the

map illustrate the average coverage in the corresponding regions.

The darker the color, the higher the coverage in the area.

Further exploration of the topic summarization results is pro-

vided by two means. First, the timeline allows the user to filter the

results by selecting a temporal sub-range. This issues a new topic

summarization request and updates the results. Second, by clicking

on a result on the map, besides showing its content and a link to
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Figure 3: The user interface showing the results of a topic summarization request.

the post, µTOP displays two additional links (Figure 4 right). The

one issues a retrieve similar posts request, while the other allows

the user to further explore the highlighted spatio-temporal region

issuing a new topic summarization request.

5. DEMONSTRATION
To demonstrate the efficiency and effectiveness of µTOP, tweets

are continuously being collected from the public Twitter Streaming

API1; the current dataset contains over 30 million geotagged tweets

with worldwide coverage. The topics are monitored on a stream

arriving at an average rate of approximately 500,000 tweets per day.

A live demo2 of µTOP is available online, accompanied by a video3

explaining and demonstrating its functionality.

Next, we outline a typical usage scenario for demonstration. Ini-

tially, the user interface shows locally trending topics on a map,

depicted by star icons. Clicking on a star icon reveals the topic’s

hashtags, for example “#trump #president”, as shown in Figure 4.

The explore link is then used to summarize the topic. It issues a

topic summarization request that displays the resulting tweets in a

list, on the map and on the timeline. Alternatively, the user may

enter query parameters manually using the form in the sidebar on

the left, for example to increase the spatial area and time interval.

At the top of the result list a set of keywords is shown that

are popular among the result set. This reveals new keywords that

are frequently used together with the query keywords Trump and

President. For example Clinton is used in 20% of the results. We

can click on it to view only those posts that contain this word.

1https://dev.twitter.com/streaming/public
2http://mtop.imp.fu-berlin.de
3https://youtu.be/OmXJUGndaQA

Figure 4: A locally trending topic, and a post summarizing it.

When a topic is summarized, the average coverage is shown as

purple blocks and bars in addition to the results. This allows to

easily identify spatial regions and time intervals where the topic

is popular. For example, Figure 3 shows that the topic is popular

around New York City and between the 18th and 22nd of August.

This spatial region and time interval can be further explored by

issuing another topic summarization request, for example by moving

the blue markers on the map or selecting a temporal range on the

timeline. We can return to the previous result set by clicking the

back-arrow button in the Query History, shown in the sidebar.

Instead of summarizing a particular topic, we can also explore

a topic by invoking a post similarity search without limiting the

spatial and temporal range. By clicking the Find similar link, a list

of posts similar in spatial, temporal, and textual content is compiled.
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ABSTRACT
Lightweight data compression is frequently applied in in-
memory database systems to tackle the growing gap be-
tween processor speed and main memory bandwidth. In re-
cent years, the number of available compression algorithms
has grown considerably. Since the correct choice of one
of these algorithms requires understanding of their perfor-
mance behavior, we systematically evaluated several state-
of-the-art compression algorithms on a multitude of differ-
ent data characteristics. In this demonstration, the attendee
will learn our findings in an interactive tour through our ob-
tained measurements. The most important insight is that
there is no single-best algorithm, but that the choice depends
on the data characteristics and is non-trivial.

1. INTRODUCTION
The continuous growth of data volumes is a major chal-

lenge for the efficient data processing. With the growing
capacity of the main memory, efficient analytical data pro-
cessing becomes possible [6]. However, the gap between com-
puting power of the CPUs and main memory bandwidth
continuously increases, which is now the main bottleneck
for an efficient data processing. To overcome this bottle-
neck, data compression plays a crucial role [1, 11]. Aside
from reducing the amount of data, compressed data offers
several advantages such as less time spent on load and store
instructions, a better utilization of the cache hierarchy, and
less misses in the translation lookaside buffer.

This compression solution is heavily exploited in modern
in-memory column stores for efficient query processing [1,
11]. Here, relational data is maintained using the decom-
position storage model [3]. That is, an n-attribute relation
is replaced by n binary relations, each consisting of one at-
tribute and a surrogate indicating the record identity. Since
the latter contains only virtual ids, it is not stored explicitly.
Thus, each attribute is stored separately as a sequence of val-
ues. For the lossless compression of sequences of values (in
particular integer values), a large variety of lightweight algo-

c©2017, Copyright is with the authors. Published in Proc. 20th Inter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

rithms has been developed [1, 2, 7, 8, 9, 10, 11]1. In contrast
to heavyweight algorithms, lightweight algorithms achieve
comparable or even better compression rates. Moreover,
the computational effort for the (de)compression is lower
than for heavyweight algorithms. To achieve these unique
properties, each lightweight compression algorithm employs
one or more basic compression techniques such as frame-of-
reference [11] or null suppression [1], which allow the appro-
priate utilization of contextual knowledge like value distri-
bution, sorting, or data locality.

In recent years, the efficient vectorized implementation of
these lightweight compression algorithms using SIMD (Sin-
gle Instruction Multiple Data) instructions has attracted a
lot of attention [7, 8, 9, 10], since it further reduces the
computational effort. To better understand these vectorized
lightweight compression algorithms and to be able to select
a suitable algorithm for a given data set, the behavior of the
algorithms regarding different data characteristics has to be
known. In particular, the behavior in terms of performance
(compression, decompression and processing) and compres-
sion rate is of interest. Therefore, we have done an experi-
mental survey of a broad range of algorithms with different
data characteristics in a systematic way. We used a multi-
tude of synthetic data sets as well as two commonly used
real data sets. While we have already published selected re-
sults of our exhaustive evaluation in [5], this demonstration
makes use of our entire corpus of measurements, which we
obtained from an even larger collection of data characteris-
tics than we could discuss in [5]. More precisely, the goals
of this demonstration are the following:

1. We present our experimental methodology. This in-
cludes our selection of data characteristics and algo-
rithms as well as our benchmark framework [4].

2. We explain the employed implementations of the com-
pression algorithms and thus provide background knowl-
edge for understanding the empirical results.

3. We explore various visualizations of the results of our
systematic evaluation using an interactive web-interface.

4. Finally, we provide detailed insights into the behavior
of the considered lightweight compression algorithms
depending on the properties of the uncompressed data.

The remainder of the paper is organized as follows: In Sec-
tion 2, we provide some important background knowledge
on the area of lightweight data compression. An overview of

1Without claim of completeness.

Demonstration

 

 

Series ISSN: 2367-2005 562 10.5441/002/edbt.2017.70

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2017.70


our underlying systematic evaluation is given in Section 3.
Finally, Section 4 describes what attendees will experience
in our demonstration.

2. LIGHTWEIGHT DATA COMPRESSION
This section gives an overview of the basic concepts of

lightweight data compression. We distinguish between com-
pression techniques and compression algorithms, whereby
each algorithm implements one or more techniques.

2.1 Techniques
There are five basic lightweight techniques to compress

a sequence of values: frame-of-reference (FOR) [11], delta
coding (DELTA) [7], dictionary compression (DICT) [1, 11],
run-length encoding (RLE) [1], and null suppression (NS)
[1]. FOR and DELTA represent each value as the differ-
ence to either a certain given reference value (FOR) or to
its predecessor value (DELTA). DICT replaces each value by
its unique key in a dictionary. The objective of these three
well-known techniques is to represent the original data as a
sequence of small integers, which is then suited for actual
compression using the NS technique. NS is the most stud-
ied lightweight compression technique. Its basic idea is the
omission of leading zeros in the bit representation of small
integers. Finally, RLE tackles uninterrupted sequences of
occurrences of the same value, so called runs. Each run is
represented by its value and length. Hence, the compressed
data is a sequence of such pairs.

Generally, these five techniques address different data lev-
els. While FOR, DELTA, DICT, and RLE consider the
logical data level, NS addresses the physical level of bits
or bytes. This explains why lightweight data compression
algorithms are always composed of one or more of these
techniques. The techniques can be further divided into two
groups depending on how the input values are mapped to
output values. FOR, DELTA, and DICT map each input
value to exactly one integer as output value (1:1 mapping).
The objective of these three techniques is to achieve smaller
numbers which can be better compressed on the bit level.
In RLE, not every input value is necessarily mapped to an
encoded output value, because a successive subsequence of
equal values is encoded in the output as a pair of run value
and run length (N:1 mapping). In this case, a compression is
already done at the logical level. The NS technique is either
a 1:1 or an N:1 mapping depending on the implementation.

2.2 Algorithms
The genericity of these techniques is the foundation to tai-

lor the algorithms to different data characteristics. There-
fore, a lightweight data compression algorithm can be de-
scribed as a cascade of one or more of these basic techniques.
On the level of the algorithms, the NS technique has been
studied most extensively. There is a very large number of
specific algorithms showing the diversity of the implemen-
tations for a single technique. The pure NS algorithms can
be divided into the following classes [10]: (i) bit-aligned, (ii)
byte-aligned, and (iii) word-aligned.2 While bit-aligned NS
algorithms try to compress an integer using a minimal num-
ber of bits, byte-aligned NS algorithms compress an integer
with a minimal number of bytes (1:1 mapping). The word-

2[10] also defines a frame-based class, which we omit, as the
representatives we consider also match the bit-aligned class.

aligned NS algorithms encode as many integers as possible
into 32-bit or 64-bit words (N:1 mapping).

The logical-level techniques have not been considered to
such an extent as the NS technique on the algorithm level.
In most cases, they have been investigated in connection
with the NS technique. For instance, PFOR-based algo-
rithms implement the FOR technique in combination with
a bit-aligned NS algorithm [11]. These algorithms usually
subdivide the input in subsequences of a fixed length and
calculate two parameters per subsequence: a reference value
for the FOR technique and a common bit width for NS.
Each subsequence is encoded using their specific parame-
ters, thereby the parameters are data-dependently derived.
The values that cannot be encoded with the given bit width
are stored separately with a greater bit width.

3. SYSTEMATIC EVALUATION
The effective employment of these lightweight compression

algorithms requires a thorough understanding of their be-
havior in terms of performance and compression rate. There-
fore, we have conducted an extensive experimental evalua-
tion of several lightweight compression algorithms on a mul-
titude of different data characteristics. Furthermore, we
have already published some of the results in [5]. In this
section, we present the key facts about our systematic eval-
uation, which is the basis of the demonstration. Besides
the considered algorithms and data characteristics, we also
provide details on our experimental setup.

3.1 Considered Algorithms
Our selection of algorithms follows two principal goals:

Firstly, all five techniques of lightweight data compression
should be represented. Secondly, the implementations should
reflect the state-of-the-art in terms of efficiency.

Regarding efficiency, the use of SIMD (Single Instruction
Multiple Data) instruction set extensions such as Intel’s SSE
and AVX plays a crucial role. These allow the application of
one operation to multiple elements of so-called vector regis-
ters at once. The available operations include parallel arith-
metic, logical, and shift operations as well as permutations.
These are highly relevant to lightweight compression algo-
rithms. In fact, the main focus of recent research [7, 8, 9,
10] in this field has been the employment of SIMD instruc-
tions to speed up (de)compression. Consequently, most of
the algorithms we evaluated make use of SIMD extensions.

Regarding the techniques, we consider both, algorithms
implementing a single technique and cascades of one logical-
level and one physical-level technique. Since implementa-
tions of the logical-level techniques are hardly available in
isolation, i.e., without the combination with NS, we use
our own vectorized reimplementions of RLE, DELTA, and
FOR, and a sequential reimplementation of DICT. Concern-
ing the physical-level technique NS, however, there are sev-
eral publicly available high-quality implementations, e.g.,
the FastPFOR-library by Lemire et al.3. We used such avail-
able implementations whenever possible and reimplemented
only the recently introduced algorithm SIMD-GroupSimple
[10], since we could not find an implementation of it. Table 1
gives an overview of the NS algorithms in our systematic
evaluation. Note that all three classes of NS are represented
in this selection. Due to space limitations, we cannot elab-

3https://github.com/lemire/FastPFOR
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Class Algorithm Ref. Code origin SIMD

bit- 4-Gamma [9] Schlegel et al. yes
aligned SIMD-BP128 [7] FastPFOR-lib3 yes

SIMD-FastPFOR [7] FastPFOR-lib3 yes
byte- 4-Wise NS [9] Schlegel et al. yes
aligned Masked-VByte [8] FastPFOR-lib3 no/yes

word- Simple-8b [2] FastPFOR-lib3 no
aligned SIMD-GroupSimple [10] our own code yes

Table 1: The considered NS algorithms.

orate further on these algorithms. Instead, we recommend
to read [5], which contains high-level descriptions of these.

To enable the systematic investigation of combinations of
logical-level and physical-level algorithms, we implemented
a generic cascade algorithm, which can be specialized for
any pair of compression algorithms. This cascade algorithm
partitions the uncompressed data into blocks of a certain
size and does the following for each block: First, it applies
the logical-level algorithm to the uncompressed block storing
the result to a small intermediate buffer. Second, it applies
the physical-level algorithm to that intermediate buffer and
appends the result to the output. The decompression works
the opposite way. We choose the block size such that it fits
into the L1 data cache in order to achieve high performance.

To sum up, we investigated 4 logical-level algorithms, 7
physical level algorithms, and 4 × 7 = 28 cascades, yield-
ing a total of 39 algorithms. For each of these algorithms,
we consider the compression and decompression part. Ad-
ditionally, we implemented a summation of the compressed
data for each algorithm as an example of data processing.

3.2 Considered Data Sets
We made extensive use of synthetic data, since it allows

us to carefully vary all relevant data properties. More pre-
cisely, we experimented with various combinations of the
total number of data elements, the number of distinct data
elements, the distribution of the data elements, the distribu-
tion of run lengths, and the sort order. We employed random
distributions which are frequently encountered in practice,
such as uniform, normal, and zipf. Additionally we intro-
duced different amounts of outliers. For each data set, we
vary one of these properties, while the others are fixed. That
way, we can easily observe the impact of the varied property.
To give an example, one of our data sets consists of 100 M
uncompressed 32-bit integers, 90% of which follow a nor-
mal distribution with a small mean, while 10% are normally
distributed outliers for which we vary the mean.

Additionally, we employed two real data sets which are
commonly used in the literature on lightweight compression:
the postings lists of the GOV2 and ClueWeb09b document
collections.

3.3 Experimental Setup
All algorithms are implemented in C/C++ and we com-

piled them with g++ 4.8 using the optimization flag -O3. Our
Ubuntu 14.04 machine was equipped with an Intel Core i7-
4710MQ (Haswell) processor with 4 physical and 8 logical
cores running at 2.5 GHz. The L1 data, L2, and L3 caches
have a capacity of 32 KB, 256 KB and 6 MB, respectively.
We use only one core at any time of our evaluation to avoid
competition for the shared L3 cache. The capacity of the

DDR3 main memory was 16 GB.
All experiments happened entirely in main memory. The

disk was never accessed during the time measurements. We
conducted the evaluation using our benchmark framework
[4]. The synthetic data was generated by our data gener-
ator once per configuration of the data properties. During
the executions, the runtimes and the compression rates were
measured. To achieve reliable measurements, we emptied
the cache before each algorithm execution (by copying an
array much larger than the L3 cache) and repeated all time
measurements 12 times, whereby we used the wallclock-time.

4. DEMONSTRATION SCENARIO
For our demonstration we will use an interactive web-

interface (Fig. 1a). This interface is based on jupyter4,
a tool widely used for interactive scientific data processing.
While we are able to present how we conducted our sys-
tematic evaluation using our benchmark framework [4], the
main focus of the demonstration will be the exploration of
the collection of measurements.

Our demonstration offers several opportunities for involv-
ing the attendee. He or she can select the algorithms to be
compared as well as the data characteristics (Fig. 1a). Op-
tionally, the attendee can define a trade-off between the pos-
sible optimization goals of lightweight compression. For in-
stance, there are scenarios in which the decompression speed
is most relevant, while the compression speed is not of inter-
est, or in which the compression rate is more important than
the speeds. Defining such a trade-off can help to determine
the best algorithm for a given use case.

Regarding the available data sets, we already have a very
large collection of measurements, which we obtained in our
systematic evaluation as mentioned in Section 3.2. These
reflect a multitude of combinations of relevant data proper-
ties. Nevertheless, if the attendee wishes so, he or she can
also define a configuration of data characteristics, we have
not considered so far. In this case, we would simply run the
evaluation on the fly.

While it is possible to investigate any of the considered
compression algorithms on any data in an interactive and
spontaneous way, we would like to highlight the following
prepared scenarios:

• Impact of the data distribution on the physical-level al-
gorithms (Fig. 1b). In this scenario, the attendee will
learn about the general behavior of null suppression
algorithms depending on their class. Furthermore, he
or she will find out, how different data distributions
influence this behavior additionally.

• Impact of the logical-level algorithms on the data char-
acteristics (Fig. 1c). Here, the attendee can observe
how the application of purely logical-level algorithms
such as RLE and FOR changes the properties of the
underlying data. For this purpose, we employ, e.g., vi-
sualizations of the data distributions. We will discuss
with the attendee, in how far these changed properties
are suited for the following application of a physical-
level algorithm.

• Cascades of logical-level and physical-level algorithms
(Fig. 1d). Finally, the attendee will learn that the com-
bination of logical-level and physical-level algorithms

4http://www.jupyter.org
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Figure 1: Screenshots of our demonstration web-interface.

can yield significant improvements in terms of speed or
compression rate, but not necessarily both. Defining
a trade-off can help to make a final decision. More-
over, depending on the data, not all combinations are
beneficial. The attendee will understand that even if
the logical-level technique is fixed, the choice of the NS
algorithm can make a significant difference.

By the end of the demonstration, the attendee will ap-
preciate that there is no single-best lightweight compression
algorithm, but that the choice depends on the data charac-
teristics as well as the optimization goal and is non-trivial.
At this point, the results of our systematic evaluation can
help to select the best algorithm for a given data set.
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ABSTRACT

As business decisions and strategies become more and more
automated, real-time, and data-driven, enterprises need to
create, manage and execute end-to-end analytics workflows
that process increasing data volumes, from new heteroge-
neous data sources, on specialized processing engines. De-
signing and optimizing such workflows is a challenging task
since they span a variety of systems and tools. To address
these needs, we present the Platform for Analytics Workflows
(PAW). PAW enables workflow design, execution, analysis
and optimization with respect to time efficiency, over multi-
ple execution engines and storage repositories. In this paper,
we focus on the demonstration of the functionality of PAW
related to multi-workflow optimization. We demonstrate the
functionality of PAW for users with various expertise and its
capabilities with respect to workflow analysis and optimiza-
tion. We employ several scenarios of running workloads of
workflows with and without PAW’s optimization on real use
cases and data from the telecommunication domain and web
analytics, but also on synthetic use cases and data.

1. INTRODUCTION
The analysis of Big Data is a core and critical task in multi-

farious domains of science and industry. Such analysis needs
to be performed on a range of data stores, both traditional
and modern, on data sources that are heterogeneous in their
schemas and formats, and on a diversity of query engines.
Moreover, such analysis is also intensive and systematic. This
means that many users access the same data at the same time
with different or similar target results, and, such results are
the output of an analytics process. Thus, a system that en-
ables such analytics processes on Big Data needs to be able
to manage several workflows and execute them in an optimal
manner. Workflow execution can be extremely resource- and
time-consuming. Therefore, the optimization of the execu-
tion of a single workflow but also of the joint execution of
several workflows is very important for the efficiency of such
a system.

Commercial Extract-Transform-Load (ETL) tools (e.g. [3],
[2]) provide little support for automatic optimization. They
provide hooks for the ETL designer to specify for example
which flows may run in parallel or where to partition flows

©2017, Copyright is with the authors. Published in Proc. 20th Inter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

for pipeline parallelism. Some ETL engines such as Pow-
erCenter [3] support PushDown optimization, which pushes
operators expressed in SQL from the ETL flow down to the
source or target database engine. The rest of the transforma-
tions are executed in the data integration server. The chal-
lenge of optimizing the entire workflow remains unsolved.

Towards this direction, HFMS [4] performs optimization
and execution across multiple engines. Work related to HFMS [5]
focuses on optimizing flows for several objectives: perfor-
mance, fault-tolerance and freshness over multiple execution
engines. HFMS uses many optimization strategies, such as
parallelization, recovery points, function shipping, data ship-
ping, decomposition, etc. However, HFMS does not focus on
managing or optimizing in a joint manner multiple workflows.

We demonstrate a novel technique for multi-workflow op-
timization that is implemented as part of our system called
PAW (Platform for Analytics Workflows), a platform for the
design, analysis and execution of analytics workflows. To the
best of our knowledge, there is no previous work on multi-
workflow optimization. The first version of PAW is presented
in [1]. A workflow created in PAW is prepared for execu-
tion in three steps: First, the tasks are analyzed and the
workflow is augmented with associative tasks; the new ver-
sion of the workflow, which we call the analyzed workflow,
represents not only the logic flow of the analytics process
but also its execution semantics. Second, workflows are ma-
nipulated by swapping, composing/decomposing and factor-
izing/distributing transitions, in order to achieve workflows
that have equivalent outputs with their original state, but
have a form that can result in optimized execution. Third,
PAW schedules the execution of a set of workflows follow-
ing the novel technique of multi-workflow optimization, on
which we focus in this demonstration. This technique is
based on the joint execution of the common parts of two
or more workflows. PAW can be employed on top of any
system that executes analytics processes on big data sources.
The platform mediates between users and a set of available
data management technologies, such as relational DBMSs,
key-value stores and column stores.

2. OVERVIEW OF PAW
PAW is a part of a larger system, called Adaptable Scalable

Analytics Platform (ASAP) [6], but it can also stand as an in-
dependent tool for workflow management and optimization.
Other ASAP components include execution, monitoring, vi-
sualization of results, online adaptation, etc. PAW presents
a unified interface for users to create, modify, analyze, opti-
mize and execute analytics workflows over a diverse collection
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Figure 1: The architecture of PAW

of data stores and processing engines. Figure 1 depicts the
architecture of PAW, as well as its interaction with the rest
of ASAP. The components of PAW communicate using the
internal workflow representation and are:

Operators library. This library contains operators, and
their corresponding implementations with cost functions. The
operators are classified as, either logical operators, which per-
form the core analytics jobs over the data, or the associative
operators, which serve as ‘glue’ between different engines and
perform move and transformation operations.

Interface. The GUI allows users to interactively create
and/or modify a workflow, and add new operators to the
Library. The user designs a workflow graph in the inter-
active tool and describes data and operators in the Tree-

metadata language, which captures structural information,
operator properties, and so on.

Optimizer. The orchestration of the optimization process
is performed by the Planner. It takes as an input a workflow
from the Interface and sends it to the Decision Making mod-
ule, that returns back an optimized version of a workflow. All
possible versions are produced in the Versions Space Gener-

ator and their costs are estimated by the Cost Estimator.
The Decision Making module chooses the version with the
minimal cost as an optimal one.

Executor. The executor performs several tasks. The
Enforcer schedules workflows for execution, generates exe-
cutable code and dispatches workflow fragments to execu-
tion engines. The Monitor observes the system state, tracks
the progress of executing workflows and stores History Logs

of runs. These logs are used to construct more precise cost

functions of operators through the Profiling module. This
module in PAW is external, it is also developed as a part of
ASAP project, and called IRES [10].

PAW implements a novel workflow model [7, 8]. A work-
flow W is a directed, acyclic graph (DAG) G = (V,E). The
vertices V represent data processing tasks and the edges E

represent the flow of data. Each task is a set of inputs, outputs
and an operator. Data and operators need to be accompa-
nied by a set of metadata, i.e., properties that describe them.
Such properties include input data types and parameters of
operators, the location of data objects or operator invocation
scripts, data schemas, implementation details, engines etc.

3. MULTI-WORKFLOW OPTIMIZATION
Our technique of multi-workflow optimization (MWO) is

based on the joint execution of the common parts of work-
flows. Specifically, a set of workflows is combined to one joint
workflow, so that one or more common subgraphs in these
workflows, appear only once in the joint workflow and, there-
fore, are executed only once. The technique consists of four
steps: (1) for each workflow generate all possible equivalent
workflow versions and prune them using heuristics; (2) de-
tect common tasks and find the common parts in workflow
versions; (3) estimate the processing cost of joint executions;
(4) choose workflow versions and common parts in them for
the joint execution.

3.1 Generating workflow versions
Two workflow versions are equivalent if they produce the

same output, given the same input. We generate all possible
versions by applying the following transitions:
Swap. The swap transition applies to a pair of vertices,

v1 and v2, which occur in adjacent positions in a workflow
graph G, and produces a new graph G′ in which the positions
of v1 and v2 have been interchanged. The goal of swap is to
change the execution order of tasks.
Compose. The compose transition takes as input two

vertices and produces one new vertex that includes the tasks
of both initial vertices. The goal of compose is to allow for a
united optimisation of the tasks included in the two vertices,
e.g. joint micro-optimization on an execution engine.
Decompose. The decompose transition takes as input one

vertex and produces two new vertices that, together, include
all the tasks of the initial vertex. The new vertices may or
may not be connected. The goal of decompose is to lead to
separate optimisation of subgroups of the tasks.
Factorize. The factorize transition replaces multiple iden-

tical vertices that all feed (or are fed by) one branching ver-
tex and take as input different datasets, with one such vertex
that is performed on the output (input) data of the branch-

ing vertex. The optimization derives from the fact that the
operation of the replaced vertices is performed only once in-
stead of several times, and, moreover, on a reduced in size
aggregated dataset.
Distribute. The distribute transition replaces one ver-

tex with multiple identical ones, which are distributed on
the input (or output) paths of a preceding (or succeeding)
branching vertex. The optimization opportunity is created
either by the parallelization of the execution of the identical
vertices, their distribution over the input dataset, or even by
the reduction of size of the aggregated input data due to their
being pushed toward the root of the workflow.
If the version space is big, exploration methods more effi-

cient than exhaustive search are required. We improve search
performance by pruning the space with several heuristics
based on the following categorization of operators:

• Blocking operators require knowledge of the whole dataset.

• Non-blocking operators process each tuple separately.

• Restrictive operators output a smaller data volume than
the incoming data volume.

R1-2 are a list of rules, following which the process of gen-
erating the search space speeds up. Heuristics H1-2 prunes
the search space.

• R1: Find branching operators and check if they are con-
nected with operators that are identical instances of a log-
ical operator. Try to factorize this set of operators.

• R2: Find (linear) paths and try to swap the operators in
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Figure 2: Example of multi-optimization of three workflows

Figure 3: Independently executable and not independently
executable subgraphs

each of such paths.

• H1: Move restrictive operators to the root of the workflow,
e.g. change extract → function → filter to extract → filter

→ function, if possible.

• H2: Group non-blocking operators together and separately
from blocking operators, e.g., change filter → sort → func-

tion → group to filter → function → sort → group.

3.2 Creating the joint workflow
A set of workflows W = {W1, . . . ,Wm} may be combined

in a joint workflow denoted as Wo = W1 ◦ · · · ◦ Wm. We
find common parts in the workflows and use them as joint
subgraphs connected with the rest of the workflow graphs.
Figure 2 depicts three workflows W1, W2, W3 and a joint
workflow of them, Wo. CP1 and CP2 represent common
parts of W1, W2 and W1, W3, respectively, and A..G are the
remaining parts of workflows.

3.2.1 Finding common parts

A common part consists of common tasks. Two common
tasks consist of the same operators, inputs and outputs. We
detect common tasks by comparing properties of metadata
of tasks, such as input and output data schemas, parameters
of operators etc.

After detecting common tasks, we look for subgraphs con-
sisting only of common tasks and compare their structures. If
such subgraphs are identical, then they constitute a common

part. Formally, the latter is defined as follows:

Definition 1. A common part CP (W1, . . . ,Wm) of a set
of workflows {W1, . . . ,Wm} is a subgraph S, so that S is part
of every one of the workflows, i.e. S ∈ W1 ∧ · · · ∧ S ∈ Wm,
and operators of corresponding vertices in a subgraph S of
every workflow are identical.

3.2.2 Evaluation of a common part

After finding a common part, we determine if it can be used
for the creation of the joint workflow. We do this based on
the concepts of execution state and independently executable

subgraph.
An execution state ES of a workflow W is a state for which

some of the vertices are assumed to have been executed and
no vertices are executing. An independently executable sub-

graph S ∈ W with respect to some execution state ESW , is a
subgraph that can be executed without executing any vertex
in W \ (ESW ∪ S).

Figure 3 depicts two workflows W1 and W2. In W1, sub-
graph A is independently executable with respect to the ex-
ecution state, the executed vertices of which are colored in

Figure 4: Mutual arrangement of subgraphs A and B

blue. In W2, subgraph A is not independently executable
with respect to any execution state, because vertex 4 cannot
be executed before vertex 2, and vertex 2 cannot be executed
before vertex 3, so vertex 2 has to be executed between ver-
tices 3 and 4.

The creation of a joint workflow Wo of a set of workflows
W = {W1, . . . ,Wm} that have one common part CP , is pos-
sible if CP is independently executable for some execution
state for every W ∈ W.

3.2.3 Evaluation of a set of common parts

A set of workflows to be composed may contain not one,
but several common parts. There can be cases for which not
all of the common parts can be used for the creation of the
joint workflow. To evaluate if a set of common parts CP can
be used in combination for the creation of the joint workflow,
we check the mutual arrangement of common parts in this
set in pairs CPi, CPj ∈ CP.

A vertex v is reachable from another vertex u if there is a
directed path that starts from u and ends at v. A subgraph S

depends on vertex v if there exists a vertex u in the subgraph
and u reachable from v. The possible mutual arrangement of
the subgraphs corresponding to two common parts CPi and
CPj is one of the following (Figure 4):

1. Independent, if there does not exist a pair of vertices {vi, vj},
vi ∈ CPi, vj ∈ CPj for which CPi depends on vj or CPj

depends on vi.

2. CPi depends on CPj , if there is a vertex v ∈ CPj and CPi

depends on v, but there is not a vertex in CPi so that CPj

depends on it.

3. CPi and CPj are cross-dependent if there are vertices vi ∈
CPi, vj ∈ CPj and CPj depends on vi and CPi depends
on vj .

Depending on their mutual arrangement in the set of work-
flows, a pair of common parts can be selected for the con-
struction of the joint workflow or not: If the common parts
are mutually arranged as (1) in all workflows, both can be
selected; if they are mutually arranged as in (3), even in one
workflow, they cannot be both selected. If they are mutually
arranged as in (2) in some of the workflows, they can be both
selected if they have the same dependency in all these work-
flows. Hence, in some cases, we are forced to select only some
of the common parts. We do this based on the estimation
of processing cost of different choices for the construction of
the joint workflow.

3.3 Estimation of processing costs
We estimate the performance and cost of operators by ac-

tually running the operator in representative configuration
combinations. Using these measurements, surrogate estima-
tor models are trained that can be used to approximate op-
erators performance for non-tested configurations. The pro-
cessing cost of a workflow W , CW , is the sum of the cost of
the its tasks: CW =

∑n

i=1
CTi

.
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Let us consider a pair of workflows {W1, W2} with a com-
mon part CP and execution states ES1 and ES2, respec-
tively. The cost of the joint workflow Wo = W1 ◦ W2 is
the sum of the cost of execution states C(ES1) and C(ES2),
the cost of the common part C(CP ), the costs of the rest
of workflows C(W1 \ {CP,ES1}), C(W2 \ {CP,ES2}), and
a synchronization cost C(sync), which captures the cost for
creating the joint workflow:

C(W1 ◦W2) = C(ES1) + C(ES2) + C(CP ) + C(sync)+

+C(W1 \ {CP,ES1}) + C(W2 \ {CP,ES2}) =

= C(W1) + C(W2)− C(CP ) + C(sync)

The processing cost of workflows W = {W1, . . . ,Wm} with
common parts {CP1, . . . , CPn} is:

C(W1 ◦ · · · ◦Wm) =

=
m∑

i=1

C(Wi)−
n∑

i=1

((ni − 1)C(CPi)− C(synci))

where ni is the number of occurrences of common part
CPi in W. After estimating the processing costs of all work-
flow versions and common parts, exhaustive search chooses
common parts and workflows with the lowest cost.

3.4 Online Multi-Workflow Optimization
MWO is applicable, when the user launches multiple work-

flows simultaneously. Usually, a frequent case is when PAW
receives new workflows one by one or in batches, while some
workflows are currently executing. To cover this case PAW
offers an Online Multi-Workflow Optimization (OMWO). It
re-optimizes currently running workflows on each addition of
a new workflow to our platform. As soon as a new work-
flow is inserted to PAW the optimizer gets the current states
of execution of workflows, i.e. which vertices have been ex-
ecuted, are executing and have not yet started execution.
Next, it applies MWO to a set of workflows, that consist of
the new workflow and not-executed parts of workflows that
are currently executing. Their intermediate results are used
as inputs in these partial workflows.

4. DEMONSTRATION
In the following, we describe the proposed demonstration.
System setup. PAW is demonstrated on a cluster,

with the following configuration: The cluster consists of 4
server-grade physical nodes. Each one of those is equipped
with a 3rd generation i5 CPU (@ 2.90 GHz) and 16GB of
physical memory and an array of two HDDs on RAID-0. The
operating system is Debian 6 (squeeze) Linux. For the time
being, three software platforms are running: Hadoop (CDH
4.6.0), Spark (1.4.1) and Weka (3.6.13).

Workloads. The demonstration uses synthetic and
real workflows on real data. The synthetic workflows are
constructed based on ETL benchmarking [9]. Real work-
flows and data come from the two use cases of ASAP [6]
and belong to the domains of telecommunications and web
analytics. Figure 5 displays one of the telecommunication
workflows. The telecommunication use case involves process-
ing anonymised Call Detail Records (CDR) data collected in

Rome for 2015 year and stored in HDFS. All workflows’ op-
erators have implementations in Spark and Postgres. The
web analytics use case involves anonymization of web con-
tent (WARC files) stored in ElasticSearch. The workflows
are implemented in Spark and run over varying data set sizes
ranging from 1 million to 4 billion rows. There are two types
of workflows: one models entity recognition/disambiguation
and k-means, and another models continuous processing of
incoming data, e.g., subscription/notification at scale.
Demonstration scenarios. The demonstration focuses

on the multi-workflow optimization functionality of PAW. It
includes three types of scenarios that aim to show a distinct
view of the benefit of our novel technique and create discus-
sion on the potential of multi-workflow optimization. The
demonstration is interactive with the audience. The partic-
ipants are invited to experience all functionalities of PAW,
create workflows from scratch or change existing ones, watch
the automated management of the workflow as well as re-
view the internals of the platform, e.g. internal workflow
representation. They are also enabled to play with the man-
agement of multiple workflows, by selecting workflows for op-
timization and execution, pausing and resuming execution,
selecting common parts for optimization, etc.
Scenarios A. Their goal is the comparison of single and

multi-workflow optimization. We show exemplary cases of
small sets of workflows, in which the versions selected by
single-workflow optimization differ or identify with the ver-
sions selected by multi-workflow optimization.

Scenarios B. Their goal is to show the overall perfor-
mance of multi-workflow optimization for a variety of work-
flow workloads. The workloads include workflows with a va-
riety of tasks, short-running and long-running, in a variety
of combinations, with an emphasis on long chain paths or
numerous parallel paths. Also, the scenarios show how the
existence of common parts affects optimization, by varying
their number and their size.

Scenarios C. Their goal is to show the continuous arriv-
ing, optimization and execution of workflows. We create time
series of workflows from scenarios B. We emphasize in the
effect of ranging the size of the window on the arrival time-
line, within which workflows are optimized by online multi-
workflow optimization.
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ABSTRACT
For Big Data processing, Apache Spark has been widely ac-
cepted. However, when dealing with events or any other
spatio-temporal data sets, Spark becomes very inefficient as
it does not include any spatial or temporal data types and
operators. In this paper we demonstrate our STARK project
that adds the required data types and operators, such as
spatio-temporal filter and join with various predicates to
Spark. Additionally, it includes k nearest neighbor search
and a density based clustering operator for data analysis
tasks as well as spatial partitioning and indexing techniques
for efficient processing. During the demo, programs can be
created on real world event data sets using STARK’s Scala
API or our Pig Latin derivative Piglet in a web front end
which also visualizes the results.

1. INTRODUCTION
Spatio-temporal data is used in various application ar-

eas: for example by (mobile) location aware devices that
periodically report their position as well as in news articles
describing events that happen at some time and location.
Spatio-temporal event data can, e.g., be extracted from text
documents using spatial and temporal taggers that identify
the respective expressions in a text corpus. The extraction of
the structured event data from text is just a first step and
data needs to further be analyzed using appropriate data
mining operations to gain new insight.

As the event data sets may become very large, scalable
tools are needed for the event analysis pipelines. Apache
Spark has become a very popular platform for such Big Data
analytics because of its in memory data model that allows
much faster execution than with Hadoop MapReduce pro-
grams. However, Spark has a general data model which does
not take the spatial and temporal aspects of the data into
account, e.g., for partitioning. Furthermore, dedicated data
types and operators for this spatio-temporal are missing.

In this paper we demonstrate our STARK1 framework for

1https://github.com/dbis-ilm/stark

c©2017, Copyright is with the authors. Published in Proc. 20th Inter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

scalable spatio-temporal data analytics on Spark, with the
following features:

• STARK is built on top of Spark and provides a domain
specific language (DSL) that seamlessly integrates into
any (Scala) Spark program.
• It includes an expressive set of spatio-temporal opera-

tors for filter, join with various predicates as well as k
nearest neighbor search.
• A density based clustering operator allows to find groups

of similar events.
• Spatial partitioning and indexing techniques for fast

and efficient execution of the data analysis tasks.

In contrast to similar existing solutions for Spark, STARK
is the only framework that addresses not only spatial but
also spatio-temporal data. Unlike other frameworks, STARK
is seamlessly integrated into the Spark API so that spatio-
temporal operators can directly be called on standard RDDs.
Furthermore, we provide a Pig Latin extension in our Piglet
engine to create (spatio-temporal) data processing pipelines
using an easy to learn scripting language. A web front end
supports users with interactive graphical selection tools and
also visualizes the results. We evaluated STARK in a mirco
benchmark against other solutions and showed that we can
outperform them.

2. THE STARK FRAMEWORK
STARK is tightly integrated into the Apache Spark API

and users can directly invoke the spatio-temporal operators
and their RDDs. To achieve this, we created new data type
and operator classes that make use of already existing Spark
operations, but also extend internal Spark classes. Figure 1
gives an overview of STARK’s architecture and its integra-
tion into Spark.

In the following, we describe the internal components for
spatial partitioning and indexing as well as the API/DSL
for spatio-temporal operations and integration into Spark.

2.1 Partitioning
Partitioning has a significant impact in data parallel plat-

forms like Spark. If the partitions sizes, i.e., the number
of elements per partition, are not balanced, a single worker
node has to perform all the work while other nodes idle.

Spark already includes partitioners, but they do not ex-
ploit the spatial (or spatio-temporal) characteristics. Spatial-
temporal partitioning means that partitions are not created
by using, e.g., a simple hash function, but by considering
the location in space and/or time of occurrence. Thus, after
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Figure 1: Overview of STARK architecture and integration into
Spark.
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Figure 2: Internal workflow for converting, partitioning, and query-
ing spatio-temporal data

a spatio-temporal partitioner was applied on a data set, a
partition contains all elements that are near to each other
in time and/or space and the bounds of a partition repre-
sent a spatial region and/or temporal interval which cover
all items of that partition. This bound is very useful to de-
termine what partitions actually have to be processed for a
query. For example, an intersects query only has to check
the items of partitions where the partition bounds them-
selves intersect with the query object. Such a check can
decrease the number of data items to process significantly
and thus, also reduce the processing time drastically.

When the spatial and temporal objects of a data set are
not points or instants, respectively, these regions and in-
tervals may span across multiple partitions. There are two
options to handle such scenarios:

• The item is replicated into every of these partitions and
the resulting duplicates have to be pruned afterwards.

• The items are assigned to only one partition and the
partition bounds are adjusted accordingly which re-
sults in overlapping partitions.

STARK uses the latter approach by assigning polygons to
partitions based on their centroid point. Beside the parti-
tion bounds, we keep an additional extent information that
is adjusted with the minimum and maximum values of the
respective objects in each dimension. We decide which par-
tition has to be checked during query execution based on
this extent information and prune partitions that cannot
contribute to the final result.

In its current version, STARK only considers the spa-
tial component for partitioning. The partitioners implement
Spark’s Partitioner interface and can be used to spatially
partition an RDD with the RDD’s partitionBy method.

Grid Partitioner.
The first partitioner included in STARK is a fixed grid

partitioner. Here, the data space is divided into a number of
intervals per dimension resulting in a grid of rectangular cells
(partitions) with equal dimensions. The bounds of these
partitions are computed in a first step and afterwards with a
single pass over the data, each item is assigned to a partition
by calculating in which grid cell this item is contained.

Cost-Based Binary Space Partitioner.
As the fixed grid partitioner created partitions of equal

size over the data space, it might create some partitions
that contain the majority of the data items, while other
partitions are empty. As an example consider the world
map where events only occur on land, but not on sea. With

a grid partitioning, there might be empty cells on sea and
overfilled partitions in densely populated areas. To overcome
this problem, we implemented a cost based binary space
partitioning algorithm, based on [1]. This partitioner divides
the space into two partitions with equal cost (number of
contained items). If the cost for one partition exceeds a
threshold, it is recursively divided again into two partitions
of equal cost. This way, large regions with only a few items
will belong to the same partition, while dense regions are
split into multiple partitions. The recursion stops when a
partition does not exceed the cost threshold or the algorithm
reached a granularity threshold, i.e., a minimum side length
of a partition.

2.2 Indexing
Just as in relational DBMS, indexing the content can sig-

nificantly improve query performance. STARK uses the
JTS2 library for spatial operations. This library also pro-
vides an R-tree implementation (more accurately, an STR-
tree) for indexing. STARK can use this index structure to
index the content of a partition. A spatial partitioning is
not mandatory to use index, but might bring additional
performance benefits. Basically, STARK has three index-
ing modes, that can be chosen by the user:

No Indexing.
The partitions are not indexed and all items within a par-

tition have to be evaluated with the respective predicate
function.

Live Indexing.
When a partition is processed for evaluating a predicate,

the content of that partition is first put into an R-tree and
then, this index is queried using the query object. Since the
results of the R-tree query are only candidates where the
minimum bounding boxes match the query, these candidates
have to be checked again if they really match the query
object. During this candidate pruning step, the temporal
predicate is evaluated as well, if needed. Live indexing can
be used in a program by calling the liveIndex method on an
RDD. This method takes the order of the tree as well as an
optional partitioner as parameters, in case the RDD should
be repartitioned before indexing.

Persistent Indexing.
Creating an index may be time consuming and often the

same index will be reused in subsequent runs of the same
or in another program. For such cases, STARK allows to

2http://tsusiatsoftware.net/jts/main.html
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persist the index to disk/HDFS using Spark’s method to
save binary objects. An indexing that should be persisted
can also be used by that same program. Thus, users don’t
need to do an extra run to just persist the index, but can
already perform their operations. Such an index mode is
done using the index method, which also takes the order of
the tree as well as an optional partitioner as parameter.

2.3 DSL
One important design goal of STARK was to create an

DSL that can be intuitively used by users within any (Scala)
Spark program. This DSL provides all required operations
for flexibly working with spatio-temporal data. This means
that raw data loaded from HDFS or any other source can
easily be processed by spatio-temporal operators and may
be spatially partitioned and optionally indexed. The parti-
tioning and indexing is transparent to the subsequent query
operators which means they can be executed with or with-
out spatial partitioning and indexing (and any combination
thereof). Furthermore, the created indexes can be material-
ized, e.g., to HDFS, and be re-used within other programs.
Figure 2 gives an overview of these possibilities.

In order to represent spatio-temporal data, STARK pro-
vides the STObject class. This class has only two fields: (1)
geo that stores the spatial attribute and (2) and optional
time field which holds the temporal information of an ob-
ject. The time is optional to support spatial-only data that
does not need any temporal information.

Beside these fields, the STObject class provides methods
which check the relation to other spatio-temporal objects:

intersect(o) checks if the two instances (this and o) inter-
sect in their spatial and/or temporal component,

contains(o) tests if this object completely contains o in
their spatial and/or temporal component, and

containedBy(o) which is implemented as the reverse op-
eration of contains

A formal definition for two objects o and p of type STOb-

ject and a predicate Φ can be given as:

Φ(o, p) ⇔ Φs(s(o), s(p)) ∧ ( (1)

(t(o) = ⊥ ∧ t(p) = ⊥) ∨ (2)

(t(o) 6= ⊥ ∧ t(p) 6= ⊥ ∧ Φt(t(o), t(p)))) (3)

Where s(x) denotes the spatial component of x, t(x) the
temporal component of x, Φs and Φt denote predicates that
check spatial or temporal objects, respectively, and ⊥ stands
for undefined or null. This says that the predicate Φ is true
for two spatio-temporal objects o and p, if the predicate
on the spatial components of o and p is true (1), and both
temporal components are not defined (2), or they are defined
and the predicate on the temporal components of o and p is
true as well (3).

To add the spatio-temporal operations to an RDD, STARK
implements a special helper class called SpatialRDDFunc-

tion that has one plain Spark RDD as attribute and imple-
ments the supported spatio-temporal operations. In plain
Spark, when an RDD contains 2-tuples of (k,v) an implicit
conversion method creates a PairRDDFunction object, which
provides, e.g., the join functionality using k as the join key.
STARK follows the same approach: for an RDD of 2-tuples
(k,v) we create a SpatialRDDFunction object implicitly, if

k is of type STObject3. This implicit conversion is trans-
parent to users and creates a seamless integration into any
Spark program. Users don’t have to explicitly create an in-
stance of any of STARK’s classes (except STObject ) to use
the spatio-temporal operators.

STARK has an intersects, contains, and containedBy pred-
icate. In addition to that, we support a withinDistance oper-
ation, which finds all elements that are within a given max-
imum distance around the query object. Here, the distance
function can be passed as a parameter so that users can
implement their own function and adjust STARK to their
requirements. However, we also include standard distance
functions that can be used out of the box. Furthermore,
there is a k nearest neighbor search operator.

An important data mining operation is clustering. STARK
implements the DBSCAN algorithm for Spark inspired by
MR-DBSCAN for MapReduce described in [1]. The im-
plementation exploits the spatial partitioning: points that
are within ε-distance from the partition border (where ε is
the DBSCAN parameter), are replicated into the respective
neighboring partition. In a next step a local partitioning
is performed locally and in parallel on each partition. In a
subsequent merge step, these local clusterings are merged
using the replicated points, which may connect two clusters
to a single one.

The following example shows the usage the spatio-temporal
operator on an RDD with STARK. Consider an input file
with a schema (id: Int, category: String, time: Long, wkt:
String). After pre-processing, we get an RDD of exactly that
type: RDD[(Int, String, Long, String)]. We then cre-
ate an STObject representing the location from the WKT
string and time of occurrence from the time field of each
entry:
val events = rawInput.map {
case (id, ctgry, time, wkt) =>

( STObject(wkt, time), (id, ctgry) ) }

The events RDD of type RDD[(STObject, (Int, String))]

and can now be used with any supported spatial-temporal
predicate function:

val qry = STObject("POLYGON((...))", begin, end)
val contain = events.containedBy(qry)
val intersect = events.liveIndex(order = 5)

.intersect(qry)

We create a query object with a spatial polygon defined as
a WKT string and a temporal interval. Here begin and
end are Long values that describe the begin and end of a
temporal time window for querying. With the containedBy
function we can find all items in the events RDD that are
contained by the query object. In the second example, the
RDD is indexed using live indexing with an order of the R-
tree of 5. We can then simply call the intersects (or any
other supported function) on that indexed RDD.

3. EVALUATION
We evaluated our STARK implementation against other

existing Hadoop- and Spark-based solutions for spatial data
processing. In this evaluation we looked at provided features
and further performed a micro benchmark. During this eval-
uation we found that not only do some systems have serious
bugs and produce wrong results, but they are also not intu-
itively to use and have a very limited or even no API (only a

3i.e., RDD[(STObject , V), where V can be any type.
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Figure 3: The user interface for querying data from the repository.
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Figure 4: Execution times for self join operation for best parti-
tioner and indexing.

command line interface). Figure 4 shows the result of a self
join operation on a data set with 1,000,000 points comparing
STARK with the Spark-based frameworks SpatialSpark [2]
and GeoSpark [3]. The figure shows the execution time with-
out partitioning as well as for the partitioner that resulted in
the fasted execution time. For GeoSpark we experienced dif-
ferent result counts in each repetition of the experiment for
two spatial partitioners. The results show that STARK out-
performs the other frameworks in both cases. More results
of the performance evaluation can be found in our GitHub
repository4.

4. DEMONSTRATION SCENARIOS
STARK is integrated into a larger project in which event

information is extracted from text articles, stored as struc-
tured data, and analyzed using STARK’s operators. We will
prepare real world data sets with events from Wikipedia
(created in the context of that project) as well as other

4https://github.com/dbis-ilm/spatialbm

spatio-temporal data sets with different contents. During
the demonstration, visitors will be able to create and exe-
cute simple queries and complex data analysis pipelines or
choose from prepared programs using our web front end. For
that we will prepare different real world use case queries that
include (reverse) geocoding, spatio-temporal join and aggre-
gation, as well as clustering/co-location. Figure 3 shows
the web front end with the query interface which supports
the formulation of the spatio-temporal components by pro-
viding graphical selection tools using maps and date/time
pickers that make the selected values available in the pro-
gram. Queries and pipelines can be created as Scala pro-
grams, but we also allow to create these programs as Pig
Latin scripts using our Piglet [4] engine that extends the
original Pig Latin language with the before mentioned data
types and operators. The results of the queries will be dy-
namically visualized in the web front end.
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ABSTRACT
How many times did you wish the radio programming was
more aligned with your interests or current situation? How
many times did you feel the need to change the channel be-
cause of a non-interesting content on your favorite station?
Did you ever feel distracted by the audio programming in
your car at a busy intersection? We present a platform for
proactive personalization of linear audio content within a
hybrid content radio framework. Hybrid content radio pro-
gramming aims at enhancing the traditional broadcast radio
experience and augmenting it with audio content related to
the listener’s context. It allows enrichment of the broad-
caster’s program schedule with context-aware, personalized
audio content, with the goal of improving the users’ listening
experience, decreasing their propensity to channel-surf, and
giving them more targeted content, such as local news, en-
tertainment, music and also relevant advertisements. Differ-
ently from most of the popular commercial recommendation-
based streaming music services, hybrid content radio sys-
tematically and automatically adds audio content to an ex-
isting, linear audio structure. More specifically, part of the
linear content is replaced, in a proactive way, with content
relevant to the user’s current context – i.e., profile, emotional
state, activity, geographical position, weather, or other fac-
tors contributing to the state of the listener. In addition
to enabling functional enhancement of the radio experience,
the presented framework also supports network resource op-
timization, allowing effective use of the broadcast channel
and the Internet.

CCS Concepts
•Information systems→ Recommender systems; Lo-
cation based services; Multimedia streaming; Speech
/ audio search;

c©2017, Copyright is with the authors. Published in Proc. 20th Inter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

Figure 1: The hybrid content radio audio replace-
ment concept, and a view of the prototype app play-
ing the clip.

Keywords
Personalization; Recommender Systems; Context-based rec-
ommendations; Location-based services; Radio.

1. INTRODUCTION
We present a novel platform for context-aware proactive

personalization of linear audio content within a hybrid con-
tent radio framework, so we specifically focus on audio con-
tent delivery. The Proactive Personalyzed Hybrid Content
Radio (or PPHCR) system we present is part of the evo-
lution of traditional linear radio, as described at the In-
ternational Broadcasting Convention in 2015 [6] and in [7,
10]. PPHCR is based on the live radio streams and associ-
ated metadata from Rai, the Italian Public Service Media
Company. Beside dealing with all the intermediate scenarios
where the broadcaster provides a linear programming, hy-
brid content radio recommends enriching and context-based
online content.

1.1 Context-Driven Content-Delivery in Hy-
brid Content Radio

Hybrid content radio aims at making linear broadcast ra-
dio more flexible, allowing seamless replacement of parts
of the broadcast audio content with relevant audio content
mined from recent podcasts and content archives. The basic
metadata descriptions enabling this service come from the
ETSI Standards created by the RadioDNS Project, see [9].
Figure 1 illustrates the content replacement concept, with
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Figure 2: Audio content is recommended following
contextual information, such as listener’s position
and route. When the user’s car starts moving, the
system predicts a travel duration ∆T , and tries to
allocate the most relevant content for the available
time ∆T , recommending media items A, B, C, D.
Item B is also relevant to location LB the user will
reach.

the user interface of the prototype client app.
Context-aware recommender systems have been subject to

increasing attention in the last few years, see [2]. Some stud-
ies specifically focus on location awareness, specially those
related to the mobile context, see for example [14] and [11].

The proposed PPHCR prototype takes advantage of a
novel proactive recommender system (PRS), see [5, 13],
capable of deciding the time of the recommendation delivery,
as described in Section 1.2. The recommender system pro-
vides contextually-relevant alternative audio content that
will replace part of the broadcast content thus increasing
the user’s satisfaction and decreasing her tendency to switch
channels. Using linear radio as the basic building block for
personalized radio has two main advantages:

• the relevance of the content for the listeners increases,
enriching their experience, while they keep on listening
their favorite radio station

• the efficiency of content delivery can be optimized, if
the device allows using a broadcast technology to re-
ceive the audio from the broadcast channel

The core novelty of the proposed service, compared to other
existing approaches, consists in the joint usage of linear radio
personalization and in the type of proactive context-based
recommendations, based on the listener’s location, move-
ment and preferences. PPHCR creates personalized audio
content suggestions accounting for uncertainties in the mo-
bile user’s future path as well as driving conditions during
the scheduling and delivery of a highly relevant and enjoy-
able, and yet non-distracting hybrid-audio content.

Figure 2 illustrates an example of proactive recommenda-
tion for a driver: the system predicts the route and travel
duration and maximizes the relevance of the recommended
media items, based on a combination of learned user prefer-
ences and geographic relevance of the content. As illustrated
in this example, effective delivery of personalized linear ra-
dio, with context-based content recommendations, requires
to solve the problem of integrating linear schedule timings,
spatial information and listeners’ preferences, making the
solution innovative with respect to existing proposals [4].

1.2 System Description
The functionality of the system relies on the server archi-

tecture shown in Figure 3 and on the client PPCHR app
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Figure 3: Simplified architecture of the context-
aware personalized radio system

that provides the user interface and collects data relevant
to discover the context. The content server is the integra-
tion of several components cooperating to offer a real-time,
personalized radio service. Radio Rai, the radio division of
Rai Public Service Media Company, directly provides 10 live
96kbps audio streams [1], the editorial version of more than
100 podcasts created every day and the associated sched-
ule metadata are used to populate the content repository
and the metadata DB. The podcasts are classified by the
clip data management component according to their cat-
egories. News programs, including large parts of speech, are
analyzed using an automatic speech recognizer trained with
the Italian language. The extracted text is then classified
with a Bayesian classifier trained with a set of news, ac-
cording to a set of 30 categories spacing from art to culture,
music, economics.

User data are organized by the user management com-
ponent. The user’s demographic details are stored in the
profiles DB. The feedbacks DB hosts content navigation
logs sent by the listener’s app together with the implicit or
explicit rating given by the user. The tracking data DB is
a PostGIS based spatial DB with the listener’s geographical
information. The amount of GPS data arriving to the track-
ing data DB requires to periodically process and simplify
them, extracting a compact, discrete model which describes
destination, trajectory, speed, frequency, time of the day and
complexity. Major staying points on the driving paths are
calculated using a density based location clustering [8] and
complexity is calculated analysing the trajectory simplified
using the Ramer-Douglas-Peucker algorithm (RDP).

Contextually relevant linear content recommendations are
provided by the recommender system component using
both user and audio data clusters. For each user the recom-
mender filters a candidate set of media items using content-
based relevance based on past listener’s feedbacks. Then
a compound relevance score is calculated through weighted
combination of the content-based relevance and the context-
based relevance (location, trajectory, speed and time infor-
mation). The recommender system then uses the this score
to identify the recommendation set of content to be deliv-
ered to the listener according to a relevance objective func-
tion and temporal scheduling and presentation constraints,
taking into account driving conditions as well as driver’s pro-
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jected distraction levels at intersections and roundabouts at
user’s projected driving path.

1.3 Client Android App
The client PPHCR app, whose interface is shown on the

right side of Figure 1, has been implemented on Android
mobile OS. The listener can choose one of the live radio ser-
vices, change service, pause, or skip content. While the user
is listening to the service, a positive implicit feedback is pe-
riodically sent for that audio content. In contrast, each skip
action generates a negative feedback. The app synchronizes
metadata and implements buffering and synchronization to
ensure that the selected live audio is seamlessly replaced by
the recommended clips.

The controls are shown in Figure 1: the user can manu-
ally give a feedback, skip current program or navigate the
favorite media items.

2. DEMONSTRATION OUTLINE
The demonstration is centered on the personalization of

live radio for a listener on the move, in her car. The move-
ment can be real or simulated using an Android third party
app providing fake locations (see for example [12]). The
personalization works in a proactive way, using a proac-
tive recommender system as described in [13, 3, 5]. The
PPHCR App collects and sends to the user management
module user’s preference data and the GPS locations of the
moving listener, allowing to predict the trajectory she’s fol-
lowing. Using the listener’s feedback and the routes collected
when she moves, the system learns to suggest and play con-
tent independently from an explicit user action. The key
tasks enabled by the prototype are the following:

implicit and explicit user feedback the user can give im-
plicit feedback to the content skipping it, or explicit
feedback with the like/dislike buttons

manual skip users can skip live programs and, thanks to
buffering synchronized with program schedule meta-
data, seamlessly replace them with recommended con-
tent

proactive recommendations destination, trajectory, speed
and available time predictions allow to proactively sug-
gest a list of media items; geographic information is
also used to refine recommendations

editorial recommendations injection the editor can se-
lectively choose and inject recommended audio content
to specific users

2.1 Demonstration Scenarios
We present two demonstration scenarios: in the first one,

the content change is manually triggered by the listener; in
the second, the enrichment of the audio content is triggered
by a real-time change in the listener’s context – more specif-
ically, listener’s movement in space.

2.1.1 Manual Program Change
While listening to linear radio, from a broadcast channel

such as analog FM or digital DAB+, or from the Internet,
the user can sometimes wish to listen different content. Greg
is passionate about technology and economy, often listening
to programs on this topic during the day. This morning
there is an endless discussion about football results on his

Program	1

AUDIO	BUFFERING

LILLY	LISTENS

LIVE	RADIO

Program	2 Program	3
10:42:30 10:55:00 11:10:00 11:20:00

11:00:00 11:15:00 11:25:00
Program	1 Program	2 Program	3

RECOMMENDED	AUDIO	CLIP CLIP	

CLIP	

Figure 4: The app recommends an audio clip while
Lilly is driving to work (timeline).

Figure 5: Control Dashboard: map with the last
listener’s movements

favorite radio channel. He is about to zap channel, but now
his radio app allows him to skip the live program and surf
a list of suggested audio clips. After two skips Greg reaches
one of his favorite programs: “Wikiradio”.

2.1.2 Contextual Proactive Recommendation
Lilly is a young researcher and an appreciated amateur

chef. She always tries new recipes and lets her colleagues
taste the results. Lilly also likes listening radio while she
drives from home to work in the morning and from work to
home in the evening. Sometimes music, more often radio
talks and discussions on several subjects, especially to those
related to food, recipes and cookery. In the past it was diffi-
cult to find an interesting program. She tried to record audio
programs in the evening for the morning, but it was tricky.
This morning is different: her radio app had an update some
weeks ago. After she has been driving for some minutes, the
PPHCR App automatically plays the last news and, after
this, an audio clip from ”Decanter” program, discussing the
differences between French Champagne, Spanish Cava and
Italian Prosecco. After that she is pleased to hear the jokes
of the time shifted live ”The rabbit’s roar”: the program be-
gan 20 minutes ago, but the app can still smoothly present
it after ”Decanter”. She listens, pleased and interested, for-
getting the skip button. Figure 4 shows the time-line of
the personalization process for Lilly. The suggestions are
based on her previous skip history and the knowledge of the
context.

2.2 Control Dashboard
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Figure 6: Control Dashboard: list of recommenda-
tions to send to a specified user

During the demonstration a web-based control dashboard
will be used to visualize the users’ behavior during the ex-
perimentation. The website visualizes the user’s past trajec-
tories, content preference, and the details of the recommen-
dation process (see Figure 5). The dashboard also allows to
manual injection of recommendations help test recommen-
dations (Figure 6).

3. CONCLUSIONS AND FUTURE WORK
We presented a Proactive Personalized Hybrid Radio sys-

tem, capable of enhancing the linear radio stream, proac-
tively proposing targeted audio content. The recommended
audio items list and the time to show it is generated using
the listener’s past preferences and the prediction of her cur-
rent movement. The key contributions are the location and
movement information awareness to decide both the time
and items to recommend, and the integration of live broad-
cast and personalized audio content. The system allows a
listener-centric radio experience, with the possibility of ex-
plicit content skips and proactive audio content recommen-
dations, while preserving the appeal and sense of connection
between listeners of traditional broadcast radio. During the
demonstration, the audience will be able to observe both the
user experience (through the client mobile app) as well as the
data-flow and recommendation generation process (through
the web based control dashboard).

For the future, we are planning to estimate the geographic
relevance of audio items available in the archives. This oper-
ation involves the analysis of informative and entertainment
content as well as advertisements, validated by a user trial.
Furthermore, we plan to create recommendations list taking
into account richer contexts: time, activity, weather, and
the ensemble effect of the recommendations list.
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ABSTRACT

In this demo we present a prototype of an experimental platform for
evaluating item recommendation algorithms. The application do-
main for our system is that of digital city guides. Our prototype
implementation allows the user to explore different algorithms and
compare their output. Among the algorithms implemented is MPG,
which aims at providing a diverse set of recommendations better
aligned with user preferences. MPG takes into consideration the
user preferences (e.g., reach willing to cover, types of venues in-
terested in exploring etc.), the popularity of the establishments as
well as their distance from the current location of the user by com-
bining them into a single composite score. We provide a web in-
terface, which outputs on a map the recommended locations along
with metadata (e.g., type and name of location, relevance and diver-
sity scores, etc.). It also illustrates the potential of the Preferential
Diversity approach on which MPG is based.

1. INTRODUCTION
The task of item recommendations is central to many applications

in a variety of domains. At the core of these recommendation en-
gines is a ranking of the items based on some quality features. The
drawback of such an approach is that it does not allow for a diverse

set of recommendations; similar items – with respect to some la-
tent features – will tend to have similar rankings and hence, the top
items will be similar to each other with high probability. Here diver-
sity refers to latent attributes of the recommended items that cannot
necessarily be captured by the single rating that the item has. This
lack of diversity can further impact the effective choice set of the
user, given that many of the recommended items will offer similar
experiences.

In this work we develop a prototype system that serves as an ex-
perimental platform for exploring various approaches for the item
recommendation problem. Our system is focused on the problem
of recommending a set of venues to a user based on her current lo-
cation and preferences. The system supports a number of differ-
ent approaches for solving this recommendation problem, including

c© 2017 Copyright is with the authors. Published in Proc. 20th Inter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0.

Figure 1: Our interface allows for experimenting with and com-

paring different recommendation algorithms.

our own algorithm, namely, Mobile Personal Guide (MPG), based on
Preferential Diversity (PrefDiv) [2]. The platform developed (Fig. 1)
allows us to compare the output of different recommendation en-
gines, both visually (i.e., by presenting the recommended venues
on a map) as well as based on traditional evaluation metrics (i.e.,
through a summary dashboard).

Our current implementation includes the well known algorithms
DisC Diversity [4], K-Medoid and a PageRank-based recommenda-
tion engine, as well as PrefDiv’s variations used in the MPG system
[3]. While we have implemented the same diversity scheme for all
the algorithms, our implementation is flexible and allows for differ-
ent diversity and indexing schemes. Our prototype system is built
using Java and the Google Maps API.

2. BACKGROUND
In this section, we introduce central concepts for the system.
Relevance: We represent the degree or score of relevance of an

item o to a user u by the Preference Intensity Value (Iou).

DEFINITION 1. A Preference Intensity Value (I) is a decimal

value used to express a negative preference [−1, 0), a positive pref-

erence (0, 1], or equality/indifference using 0.

Diversity: We capture the diversity of a set of items S by computing
the dissimilarity, measured through a semantic distance measure, of
the pairs of items in S.

DEFINITION 2. Let S be the set of items. Two objects oi and

oj ∈ S are dissimilar to each other dsm̺(oi, oj), if dt(oi, oj) > ̺
for some distance function dt and a real number ̺, where ̺ is a

distance parameter, which we call radius.

Venue Flow Network: In our algorithms we will examine the in-
tegration of a flow network Gf between venues in a city as captured
through the aggregate mobility of city-dwellers.

Demonstration
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Figure 2: The system flow diagram of MPG.

DEFINITION 3. The venue flow network Gf = (V, E), is a di-

rected network where a node vi ∈ V represents a venue and there

is a directed edge eij ∈ E from node vi to node vj , iff vj has been

visited immediately after vi.

Gf captures the aggregate mobility of dwellers and their transition
flows across venues in the city. We integrate the PageRank π of Gf

in the definition of a popularity-based intensity value for venue v.

3. SYSTEM DESIGN
Our experimental system consists of two modules (Fig.2); a back-

end server (Sec. 3.1) and front-end interface (Sec. 3.2) that commu-
nicate through JSON. The back-end includes the implementation of
the core recommender engines. The front-end interface (Fig.1) in-
cludes controls that allow the users to provide input parameters and
obtain the queried recommendations.

3.1 Back-end Server
The problem at the epicenter of our experimental platform is for-

mally defined as follows, where a point represents a venue (POI):

PROBLEM 1. Given a set of geographical points V = {v1, .., vl},

a popularity index ξvi for location vi, a query point q, a reach r, and

a profile set that encodes user preferences P = {p1, p2, . . . , pn},

identify a set V ∗ ⊆ V (|V ∗| = k) with maximized diversity ∆(S),
while a set of constraints h(V ∗,P, q, r, ξ) is satisfied.

The back-end currently implements and supports comparison among
the following algorithms: DisC Diversity [4], K-Medoid, a PageRank-
based recommendation engine, and PrefDiv’s variations proposed in
the MPG system [3]. The PrefDiv’s variations differ in the way they
compute the venues’ intensity values used to rank the venues.

Range Queries: One of the main operation in the algorithms im-
plemented in back-end server is to generate a nearest neighbor set.
While several indexing schemes can be used, we utilize the M-tree

spatial index structure [1] that has been used in DisC Diversity im-
plementation [4]. M-tree is a balanced tree index that is designed
to handle multi-dimensional dynamic data in general metric spaces,
and it uses the triangle inequality for efficient range queries.

Ranking: MPG takes into consideration the user’s preferences as
captured through a hierarchical profile P . The first level of P cap-
tures the preferences of the user expressed in terms of their (normal-
ized) propensity to types of venues. The second layer of the user
profiles further provides the propensity for specific establishments
for the different types of venues. Fig. 3 presents a sample profile for
a user. In our prototype implementations, the propensity values will
be directly inputted by the user. However, in a real-world implemen-
tation these preferences can be inferred from historic data of visita-
tions from the users (e.g., from the user’s checkins on Foursquare).
MPG further defines a set of intensity values of the items, i.e.,

venues, to be recommended, based on the different objectives as-
sociated with Problem 1. For example, by considering the distance
between the current location q of the user and venue v can also be
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Figure 3: The first level of a user’s profile corresponds to the

coarse-grain preference profile (P1), while each one of the sub-

trees stemming from P1 corresponds to the preferences within

each category (e.g., preference P2 corresponds to the “Cafe”

venue type).

used to obtain an intensity value for v. In particular with dvq being
the normalized distance between q and v’s location the distance-
based intensity value can be defined as:

I
v
d = 1−

dvq

r
(1)

In similar ways we can define a popularity-based intensity value
Ivp by considering the number of visitations to venue v. We can
also incorporate additional popularity information by considering
the Page Rank score πv of venue v in the venue flow network. We
also define a preference-based intensity value Ivu . In our experimen-
tal system, we have implemented the computation of these intensity
values as well as combinations of them, thereby providing a plat-
form to compare between the different options (Table 1).

Diversification: The (dis)similarity between two venues is mea-
sured using two similarity distances: a syntactic distance based on
the category structure of venues in Foursquare and a semantic dis-
tance based on the venue name.

Category Tree: The category tree is built to capture the category
structure of venues in Foursquare. Each internal node in the category
tree represents a type of venue, where each internal node represents
the subcategory of the parent node with each leaf node representing
the actual venue. There are in total 10 categories at the top-level
of this hierarchy. Each internal node in a category tree contains the
following attributes: ID of the category it represents, name of the
category, a pointer to the parent node and a list of pointers to each
of its children nodes. Since the degree of a node in the category tree
is not bound, all the children node pointers are stored as hash tables,
with the venue ID as the key and the pointer as the value.

The category tree can then be used to calculate the similarity dis-
tance between two venues vi and vj as follows:

Similarity(vi, vj) = 1−
Ancestors_Path

Longest_Path
(2)

where Ancestors_Path is the number of common ancestors between
the venues vi and vj and Longest_Path is the number of nodes on
the longest path to the root from either vi and vj .

Word2Vec: Although the category tree is able to measure the sim-
ilarity between two venues, this measurement is not very accurate
as it cannot distinguish the difference between two venues that are
under the same subcategory. In order to overcome this limitation,
MPG utilizes the Word2Vec framework [5], an advanced NLP tech-
nique. Its word vector representation captures many linguistic reg-
ularities, and its computing model is based on the Neural Net Lan-
guage model and more specifically the Continuous Bag-of-Words

model (CBOW), which predicts the current word based on the sourc-
ing words to generate all word vectors. The difference between two
words under Word2Vec are calculated through the cosine similarity
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Table 1: MODEL ABBREVIATION

Models Description

PD(pref) Uses preference-based intensity value as the relevance score for PrefDiv.

PD(pop+dist) Uses popularity and distance from the user current location as the relevance score for PrefDiv.

PD(pref+dist+pr) Uses preference-based intensity value, distance and PageRank as the relevance score for PrefDiv.

PD(dist+pref) Uses preference-based intensity value and distance as the relevance score for PrefDiv.

PD(composite+PageRank) Uses composite intensity value and PageRank as the relevance score for PrefDiv.

PD(composite) Uses composite intensity value as the relevance score for PrefDiv.

PageRank Only uses the result of PageRank as the final ranking without using PrefDiv.

DisC Uses diversification method DisC [4] to generate recommendations, no PrefDiv involved.

K-medoids Generate recommendations based on K-medoids clustering.

Random Selection Uniformly select k items from all venues that with in the given radius from the query location.

Figure 4: The user specifies the type of venues she wants to visit,

i.e., the query input, and the algorithms to be used.

of two-word vectors.
The current word vectors we adopted support phrases that con-

sist of up to two words. For venue names that have more than two
words or are not contained in the word vectors, we split the phrases
into single words and then obtain word vectors for each individual
word in the phrases. The final vector of a phrase is obtained through
the average of all vectors for each word in this phrase. Since the ac-
curacy of Word2Vec is strongly dependent on the quality of the word
vectors, a large real-world corpus is needed in order to obtain high
quality word vectors. The best suitable word vectors we obtained
were generated from the entire English Wikipedia that consists of
55 GB of plain text. The resulting word vectors contain over 4 mil-
lion entries. In order to effectively query the word vectors, MPG
stores all the word vectors in memory as a hash map.

Our back-end server combines all of the above components and
delivers relevant yet diverse recommendations to the user through
the front-end described in the following section.

3.2 Front-end Interface
The front-end is implemented using the Google Maps API for

visualizing the results on a map. It currently supports the cities of
New York and San Francisco. The recommended points of interests
(POIs) are numbered and colored to match the number and the color
of the algorithm making the recommendation.

The interface consists of four different panels, namely, “Input”,
“Algorithms”, “Profile” and “Results” (see Figs.4-6). The four first
panels provide the options of selecting or setting the input parame-
ters, the user profile, the recommendation algorithm(s), respectively.
The last one shows the performance characteristics of the selected
algorithms in tabular form as well as in a scatterplot. The listed
characteristics in terms of quality are the relevance score of the se-
lected venues, their diversity and the radius of gyration for the rec-

Figure 5: The user has the ability to choose one of the pre-loaded

profiles for the type of venues she is looking for.

Figure 6: Results are displayed on a map, while also providing a

numerical comparison of the chosen algorithms as well.

ommended set. We also report the run time taken for each algorithm
as an indicator of interactivity.

4. DEMONSTRATION PLAN
During the demonstration, we will run the front-end interface of

the system on one or more laptops and the backend would be hosted
on a remote sever. The participants will be have the opportunity to
interact in different modes, that of an application end-user and of an
experimental researcher.

Application end-user: In this scenario, attendees will experience
the effectiveness of our system through the view of an ordinary user.
Specifically, they are able to provide the initial location (i.e., coordi-
nates) for their POIs recommendation query (Fig.7), while and they
can use the “Input” panel to provide additional information for the
query, i.e., radius willing to cover, types of venues interested in ex-
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Figure 7: The user can mark her location of interest.

Figure 8: The user can tweak the pre-loaded profiles by altering

the preference values at the various venue types.

ploring etc. (Fig.4). Then, attendees can use the “Profile" panel to
select a preference profile out of a set of predefined ones such as
ArtLover, FoodLover and OutdoorsLover (Fig.5). Finally, attendees
can choose one or more algorithm among the different ones cur-
rently implemented (see Table 1) through the “Algorithms” menu
(Fig.4). Once the algorithms for the experiment are chosen, they
can submit the POIs recommendation query for execution via the
“Algorithms" panel. The POIs returned will be visualized on a map
and color-coded based on the algorithm used for making the recom-
mendation (Fig.6).

Experimental researcher: In this scenario we will demonstrate
the platform’s ability to be used for exploration and comparison of
the trade-offs between different parameter configurations and rec-
ommendation algorithms. This would enable the “expert" users (i.e.,
researchers) to explore the characteristic of different algorithms and
parameters. Specifically, researchers can customize a selected pref-
erence profile by adjusting the values on the corresponding category
sub-tree (“Customize" pop-up, Fig.8). Furthermore, researchers are
provided with knobs for tuning the parameters that are used in cal-
culating the composite intensity value Ivp,d,u, which is obtained by
combining the popularity intensity value Ivp , the distance intensity
value Ivd,q and the preference-based intensity value Ivu .

Researchers can also choose to run multiple algorithms simulta-

Figure 9: The user can navigate and compare the current rec-

ommendations with those of the previous setting.

Figure 10: An option for visualizing the performance evaluation

of the chosen algorithms is also available to the user.

neously, and take the advantage of a dashboard where results will be
presented with respect to the relevance score of the selected venues,
their diversity, the radius of gyration for the recommended set, as
well as the run time taken for the algorithm (“Results” panel, Fig.6).
The researcher also has the option to visualize the results on a scat-
terplot (Fig.10) that makes it straightforward to compare the various
schemes. The “Results” panel also has an option called “compare,”
which enables the user to compare the results of the present query
with the previous one (Fig.9). The researcher can further explore
and compare other algorithms by choosing them from the “Results”
panel. This will simply overlay the new results over the existing
ones.

5. CONCLUSIONS
In this paper, we presented a prototype platform that allows users

to experiment with different recommendation schemes that aim at
providing a diverse, yet relevant to the user preferences, set of ob-
jects. Our prototype allows the implementation and experimenta-
tion with new recommender algorithms (e.g., ranking and similarity
schemes) as well as different implementations of the various back-
end units (e.g., indexing).

As an experimental platform, we have utilized a static dataset col-
lected from Foursquare’s API. However, in a real-world application,
using static datasets will certainly affect the quality of recommen-
dations since it will be based on possibly stale information. As a
real-world application the system must pull the data needed for pro-
viding recommendations either periodically (e.g., once a day) or in
real-time, e.g., in order to utilize how many people are checked-in
at a given time at a venue.
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ABSTRACT
Data- and model-driven computer simulations are increas-
ingly critical in many application domains. These simula-
tions may track 100s or 1000s of inter-dependent parame-
ters, spanning multiple layers and spatial-temporal frames,
affected by complex dynamic processes operating at differ-
ent resolutions. Because of the size and complexity of the
data and the varying spatial and temporal scales at which
the key processes operate, experts often lack the means to
analyze results of large simulation ensembles, understand
relevant processes, and assess the robustness of conclusions
driven from the resulting simulations. Moreover, data and
models dynamically evolve over time requiring continuous
adaptation of simulation ensembles. The simDMS platform
aims to address the key challenges underlying the creation
and use of large simulation ensembles and enables (a) execu-
tion, storage, and indexing of large ensemble simulation data
sets and the corresponding models; and (b) search, analysis,
and exploration of ensemble simulation data sets to enable
ensemble-based decision support.

Keywords
Simulation ensembles, multivariate time series

1. INTRODUCTION
Data- and model-driven computer simulations are increas-

ingly critical in many application domains.

∗
Research is supported by NSF#1318788 “Data Management

for Real-Time Data Driven Epidemic Spread Simulations”,

NSF#1339835 “E-SDMS: Energy Simulation Data Management Sys-
tem Software”, NSF#1610282 “DataStorm: A Data Enabled System

for End-to-End Disaster Planning and Response”, NSF#1633381
“BIGDATA: Discovering Context-Sensitive Impact in Complex
Systems”, and “FourCmodeling”: EU-H2020 Marie Sklodowska-Curie

grant agreement No 690817.

c©2017, Copyright is with the authors. Published in Proc. 20th Inter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

Figure 1: Simulation ensembles are (a) multi-
variate, (b) multi-modal (temporal, spatial, hi-
erarchical, graphical), (c) multi-layer, (d) multi-
resolution, and (e) inter-dependent (i.e., observa-
tions of interest depend on and impact each other)

Epidemic Simulation Ensembles: For example, for pre-
dicting geo-temporal evolution of epidemics and assessing
the impact of interventions, experts often rely on epidemic
spread simulation software such as (e.g., GLEaM [2] and
STEM [3]). The GLEaM simulation engine, for example,
consists of three layers: (a) a population layer, (b) a mo-
bility layer which includes both long-range air travel and
short-range commuting patterns between adjacent subpop-
ulations, and (c) an epidemic layer which allows the user to
specify parameters (such as reproductive number and sea-
sonality) for the infectious disease, initial outbreak condi-
tions (e.g. seeding of the epidemic and the immunity profile
of the subpopulation), and intervention measures.
Building Energy Simulation Ensembles: Similarly, ef-
fective building energy management, leading to more sus-
tainable building systems and architectural designs with
monitoring, prioritization, and adaptation of building com-
ponents and subsystems, requires large data-driven simula-
tions involving (a) location and climate information for the
city in which the building is located, (b) building construc-
tion information, such as building geometry and surface con-
structions (including exterior walls, interior walls, partitions,
floors, ceilings, roofs, windows and doors), (c) building use
information, including the lighting and other equipment (e.g.
electric, gas, etc.) and the number of people in each area of
the building, (d) building thermostatic control information,
including the temperature control strategy for each area, (e)
heating, ventilation, and air conditioning (HVAC) operation
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Figure 2: simDMS system overview (instantiated with
epidemic simulation ensembles)

and scheduling information, and (f) central plant informa-
tion for specification and scheduling of boilers, chillers, and
other equipment. EnergyPlus software, for example, relies
on the description of the building’s physical make-up and
associated mechanical and other systems and includes time-
step based simulation for many energy-related building pa-
rameters [1].

1.1 Challenge: Ensemble based Decisions
While, in most cases, very powerful simulation software

exist, using these simulation software for decision making
faces several significant challenges: (a) Creating correct sim-
ulation models is a costly operation, and it is often the case
that the designed simulation models are incomplete or im-
precise. (b) Also, the execution of a simulation can be very
costly, given the fact that complex, inter-dependent param-
eters affected by complex dynamic processes at varying spa-
tial and temporal scales have to be taken into account. (c) A
third major source of cost is the simulation ensemble anal-
ysis: because of the size and complexity of the data and
the varying spatial and temporal scales at which the key
processes operate, experts often lack the means of analyzing
results of large simulation ensembles, understanding relevant
processes, and assessing the robustness of conclusions driven
from the resulting simulations.

As visualized in Figure 1, the key characteristics of the
simulation data sets include the following: (a) multi-variate,
(b) multi-modal (temporal, spatial, hierarchical, graphical),
(c) multi-layer, (d) multi-resolution, and (e) inter-dependent
(i.e., observations of interest depend on and impact each
other). In particular, simulations may track 100s or 1000s
of inter-dependent parameters, spanning multiple layers and
spatial-temporal frames, affected by complex dynamic pro-
cesses operating at different resolutions. Moreover, generat-
ing an appropriate ensemble of stochastic realizations may
require multiple simulations, each with different parameter
settings corresponding to slightly different, but plausible,
scenarios. As a consequence, running simulations and inter-
preting simulation results (along with the real-world obser-
vations) to generate timely actionable results are difficult.

We argue that these challenges can be significantly alle-
viated using a data-driven approach that addresses the fol-
lowing fundamental questions:

• Given a large parameter space and fixed budget of sim-
ulations, can we decide which simulations to execute
in the ensemble? Can we revise the ensemble as we
receive a stream of real world observations?

• Can we compare a large number of simulation en-
sembles and observations (under different parameter

(a) Query and exploration interface

(b) Simulation visualization interface

Figure 3: simVIZ simulation query, visualization,
and analysis interfaces (instantiated with epidemic
simulation ensembles): visualizing an epidemic sim-
ulation as a multi-variate time series and the key
robust multivariate (RMT) events [9] identified on
a given simulation

settings) to identify their similarities and differences?
Can we analyze one or more simulation ensembles
to discover patterns and relationships between input
parameters, key events/interventions, and simulation
outcomes? Can we discover key events and summarize
a large simulation ensemble to highlight these events?
Can we classify these key events?

• Can we search and explore simulation ensembles based
on the underlying key events or the overall simulation
similarities? Can we keep track of the most relevant
and most outlier simulations in an ensemble as we re-
ceive a stream of real world observations?

1.2 simDMS Overview
The simDMS system (Figure 2) and its visualization engine

simVIZ (Figure 3) aim at assisting users to explore large
simulation ensembles while limiting the impact of aforemen-
tioned challenges [4, 5, 6, 7, 8]. In particular, simDMS sup-
ports

• analysis and indexing of simulation data sets, includ-
ing extraction of salient multi-variate temporal fea-
tures from inter-dependent parameters (spanning mul-
tiple layers and spatial-temporal frames, driven by
complex dynamic processes operating at different reso-
lutions) and indexing of these features for efficient and
accurate search and alignment;
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FOR $p in fn:collection(’EpidemicSimulationEnsemble’) ^

LET $diseaseModel := $p/project/scenario/model/disease ^
LET $triggerModel := $p/project/scenario/trigger ^

LET $epidemicScenario := $p/project/scenario ^
WHERE
$diseaseModel/transmissionRate <= 0.6 and

$diseaseModel/transmissionRate >= 0.3 and
$diseaseModel/recoveryRate = 0.5 and

$triggerModel/@type="Vaccination" and
($epidemicScenario/infector/@targetISOKey="US-CA" or

$epidemicScenario/infector/@targetISOKey="US-NY" ) and
($epidemicScenario/graph = "mobility_graph_7.xml" or
$epidemicScenario/graph = "mobility_graph_8.xml") ^

RETURN
$diseaseModel/transmissionRate,

$diseaseModel/recoveryRate,
$epidemicScenario/graph ^
STATE={AZ,CA,NM};

MODEL={SEIR,SIR};
PROPERTIES={Infected,Incidence,Deaths};

FROM ={01/01/2012 12:00:00}; TO={08/31/2012 12:00:00};
BY={1-D}; FUNCTION ={avg};

Figure 4: A metadata query over an epidemic sim-
ulation ensemble

• parameter and feature analysis, including identification
of unknown dependencies across the input parameters
and output variables spanning the different layers of
the observation and simulation data. These, and the
processes they imply, can be used for understanding
and refining the parameter dependencies and models.

Query and visualization interfaces for the epi-
demic (epiDMS) and building energy (eDMS)
instantiations of the simDMS platform can be
found at http://aria.asu.edu/epidms and
http://aria.asu.edu/edms, respectively. You can watch a
tutorial at https://youtu.be/9w-4nDhXv3k .

2. DEMONSTRATION SCENARIOS
We will demonstrate the system on (a) epidemic simula-

tion data sets created using the Spatiotemporal Epidemio-
logical Modeler (STEM) [3] and (b) building energy simula-
tion data sets, created using the EnergyPlus building energy
simulation program [1]. The simulations will be stored in
simDMS and will be visually analyzed during the demonstra-
tion using simVIZ.

2.1 Simulation Ensemble Planning
A simulation ensemble (consisting of a set of simulation

instances sampled from an input parameter space) can be
seen as defining an outcome-surface for each of the out-
put variables (such as the number of deaths that will re-
sult from an epidemic): each outcome-surface describes the
probability distribution of the potential outcomes for the
corresponding variable. These simulation ensembles, con-
sisting of potentially tens of thousands of simulations, are
expensive to obtain: therefore we need sampling strategies

for the input parameter spaces that eliminate irrelevant sce-
narios in such a way that more accurate simulation results
are obtained where they are more relevant. Moreover, these
simulation ensembles need to be continuously revised and
refined as the situation on the ground changes: (a) revisions
involve incorporating real-world observations into existing
simulations to alter their outcomes; (b) refinements involve
identifying new simulations to run based on the changing
situation on the ground. Therefore, we will demonstrate
data-driven sampling strategies to decide (given a budget
of simulations) which simulations to run and incremental
non-uniform sample-based data construction techniques to
revise outcome-surfaces. We will specifically highlight how
to assign utility- and cost-functions for each potential sample
(based on how well the observed data are fitting the previ-
ous simulations, how likely a new simulation at the given
sample improves the accuracy of fit, and how costly the cor-
responding simulation would be) and use these functions to
decide the optimal re-sampling strategy.

2.2 Scenario- and Similarity-based Querying
A basic function of the simDMS system is to retrieve simula-

tions based on a user-specified scenario description. Figure 4
presents a sample query:

• The“FOR”statement allows the user to select the sim-
ulation dataset to query. In this example, the user
focuses on the stored simulation set “EpidemicSimula-
tionEnsemble”.

• The “LET” statement allows the user to associate
variables representing disease and intervention trigger
models with epidemic scenarios.

• The “WHERE” clause allows the user to specify con-
ditions on the simulation models to filter those simu-
lations that are relevant for the current analysis. In
this example, the user specifies that for the returned
simulations, the transmission rate parameter should
be between 0.3 and 0.6, the recovery rate parameter
should be set to 0.5, and that a“vaccination” type trig-
ger should be included in the simulation model. The
user also specifies that epidemic should have started
in California (CA) or New York (NY) and the “mo-
bility graph 7.xml” or “mobility graph 8.xml” should
have been used to generate the simulations.

• The “RETURN” clause lists the simulation parame-
ters to be returned in the result. In this example, the
user is interested in the transmission rate, recovery
rate, the mobility graph for each returned simulation.
In addition, the query asks the system to return the
time series corresponding to the“infected”, “incidence”,
and“deaths”simulation output parameters for Arizona
(AZ), California (CA), and New Mexico (NM).

• The user further specifies that s/he is interested in only
the first 8 months of the simulation.

• Finally, the user specifies that the system returns daily
(1-D) averages of the simulation parameters for the
specified duration.

Note that, in order to process this single query, simDMS com-
bines data of different forms (structured, semi-structured,
and temporal), stored in different back-end storage engines.

In addition to scenario-based filtering and search, the plat-
form also enables searching and/or triggering based on par-
ticular temporal patterns on the ensembles. This feature

584



(a) Exploration hierarchy

(b) Comparing selected simulations

(c) Metadata comparison (d) Feature-based comparison

Figure 5: Sample interfaces for exploring ensembles

allows the expert to identify relevant subsets of stored simu-
lations that match actual real-world observations or specific
targets for intervention measures.

2.3 Analysis and Exploration of Ensembles
Once the query is executed and the relevant simulations

are identified, the system then organizes the results into a
navigable hierarchy, based on the temporal dynamics of the
simulation results (Figure 5): Since simulation data sets can
be viewed as multi-variate time series, simVIZ focuses on vi-
sual analysis (e.g. event detection, similarity and difference
analysis) of single and multiple multi-variate simulation data
sets. Scenarios that result in similar patterns are grouped
under the same branch, while simulations that show major
differences in disease development are placed under differ-
ent branches of the navigation hierarchy. The user can then
navigate this hierarchy using “drill-down” and “roll-up” op-
erations and pick sets of simulations to study and compare
the corresponding scenarios in further detail.

The interface presents both conventional series plots as
well as heatmap visualizations, where each series is shown
as a row of pixels. It is important to note that, while
the temporal (i.e., horizontal) axis is ordered, the vertical
axis corresponding to the different states is not ordered, in
that two nearby states according to user mobility may not
be neighboring rows on the interface due to the complex-

ity of the mobility graph. The interface also highlights,
on the heatmap, the major robust multi-variate time se-
ries (RMT) features (optimized for supporting alignments
of multi-variate time series, leveraging known correlations
and dependencies among the variates [9]) identified on the
heatmap. An RMT feature is a part of the time series that
is different in structure from its immediate context in time
and/or variate relationships. A key property of these RMT
features is that they are robust against noise and common
transformations, such as temporal shifts or missing variates.
This is illustrated in Figure 5(d), which shows two differ-
ent epidemic simulations, with the same starting state, but
different disease parameters and interventions. While the re-
sulting disease evolutions are visibly different in shape, the
same multi-variate feature (corresponding to the onset of
the disease on the same nearby states) is identified on both
simulations. This robustness property of RMT features en-
ables various simVIZ functions, such as search, clustering,
classification, and summarization of simulations and large
simulation data sets [4, 5, 6, 7, 8].

3. CONCLUSIONS
The simDMS platform provides metadata and event-driven

analysis and visualization of simulation ensembles to assist
decision makers to query and explore ensemble simulations
and decide which additional simulations to execute.
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ABSTRACT
In the present paper we demonstrate a novel approach to handling
small updates on Flash called In-Place Appends (IPA). It allows the
DBMS to revisit the traditional write behavior on Flash. Instead of
writing whole database pages upon an update in an out-of-place
manner on Flash, we transform those small updates into update
deltas and append them to a reserved area on the very same physi-
cal Flash page. In doing so we utilize the commonly ignored fact,
that under certain conditions Flash memories can support in-place
updates to Flash pages without a preceding erase operation.

The approach was implemented under Shore-MT and evaluated
on real hardware. Under standard update-intensive workloads we
observed 67% less page invalidations resulting in 80% lower garbage
collection overhead, which yields a 45% increase in transactional
throughput, while doubling Flash longevity at the same time. The
IPA outperforms In-Page Logging (IPL) by more than 50%.

We showcase a Shore-MT based prototype of the above approach,
operating on real Flash hardware – the OpenSSD Flash research
platform. During the demonstration we allow the users to inter-
act with the system and gain hands-on experience of its perfor-
mance under different demonstration scenarios. These involve var-
ious workloads such as TPC-B, TPC-C or TATP.

1. INTRODUCTION
A well-known property of Flash memory is the erase-before-

overwrite principle. In order to update the content of a certain
Flash page, the corresponding Flash block must be erased first and
all valid pages must be written back. Since this results in huge I/O
latencies and rapid wear-out, all modern SSDs utilize some vari-
ant of an out-of-place update strategy. The updated Flash pages

©2017, Copyright is with the authors. Published in Proc. 20th Inter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0
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Figure 1: Write-amplification: traditional vs IPA.

are always written to a new physical location, while the old pages
are simply invalidated and the occupied space eventually gets re-
claimed by the garbage collection (GC). Although, this allows post-
poning expensive erases and page migrations and executing them in
the background, the on-device write-amplification produced by the
GC is a major performance bottleneck of modern Flash SSDs [4].
Another source of the write-amplification in traditional DBMSs are
the write behavior and I/O granularity. Regardless of the size of
the updated information on a database page, the whole page is writ-
ten out to stable storage (Figure 1). Our analysis of the standard
OLTP benchmarks (TPC-B/-C and TATP), as well as social net-
work workload based on LinkBench has shown that in more than
70% of evicted dirty 8KB-pages, less than 100 bytes of net data is
modified. Thus, for 100 modified bytes in total the DBMS writes
out the whole 8KB database pages. This results in the DBMS write-
amplification (ratio of written and actually changed bytes) of about
80x. The file system underneath can further increase this value [9].

To handle both kinds of write-amplification on Flash we pro-
posed an approach called In-Place Appends (IPA) [5]. Its basic
idea is to transform small in-place updates performed by DBMS
transactions into delta-records upon page eviction. Furthermore,
those delta-records are appended to a reserved area on the very
same physical Flash pages along with the original content. In
doing so we utilize the commonly ignored fact that under certain
conditions physical Flash pages can be updated in-place without a
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preceding erase operation. By relaxing this erase-before-overwrite
principle we can significantly reduce the number of page invali-
dations and out-of-place updates. Furthermore we reduce the GC
overhead (page migrations and erase operations) and achieve lower
I/O latencies. Additionally, the DBMS write-amplification is re-
duced by a newly defined command write_delta, which allows the
DBMS to write out only the delta-records instead of whole pages.

The IPA [5] was implemented in Shore-MT. Although the IPA
is well applicable to traditional black-box SSD architectures, we
have implemented it as an extension of open NoFTL architecture
[6], due to the clear performance advantages of the latter. The
NSM page layout was accordingly modified to “accommodate” the
delta-record area, while buffer and storage management took the
responsibility for creating and applying of delta-records for page
reconstruction. The use of NoFTL regions [7] allows applying IPA
selectively, only to certain database objects that are dominated by
small-sized updates. The evaluation is performed on the OpenSSD
Jasmine hardware: a research SSD platform with programmable
controller and MLC Flash modules. Throughout the experiments
under standard OLTP workloads (TPC-C, TPC-B and TATP) we
observed up to 45% improvement of transactional throughput by
performing up to 80% less page migrations and erase operations
as compared to the traditional approach. Besides the clear perfor-
mance advantages, the reduction of GC overhead results in dou-
bling the longevity of Flash SSD.

In-Page Logging [8] is a well-known approach and the closest
competitor of IPA. A major difference to IPA is the way the delta-
records (or update logs in IPL) are persisted. IPL writes out the up-
date logs either upon the page eviction or fullness of in-memory log
buffer. The logs are written to the separate, reserved Flash pages on
the same Flash block the original data is. Thus, to reconstruct the
up-to-date version of the database page multiple Flash pages must
be read (Flash page(s) with the original data and the one or more
Flash pages with update logs). Under modern OLTP workloads
with 70% to 90% reads, doubling the read load causes significant
performance bottlenecks. In contrast, IPA does not produce any
additional read overhead, since delta-records are co-located with
the original content on the same Flash page. Furthermore, IPA
performs 23% to 62% less writes and 29% to 74% less erases as
compared to IPL on a range of OLTP workloads.1

2. REVISITING ERASE-BEFORE-
OVERWRITE PRINCIPLE

The elementary unit of Flash memory is a single Flash cell - a
floating gate (or a charge trap in 3D NAND). The cells of each
Flash block are connected in the form of a lattice (see Figure 2),
where rows are known as wordlines and columns as bitlines. Cells
of each wordline build one (SLC) or several (MLC) physical Flash
pages. This physical layout of NAND Flash is optimized for the
fast access to the whole Flash pages, since writing and reading is
done on per wordline basis.

It is worth, however, to look deeper into the write process on the
Flash. To program a Flash page, at first, the corresponding word-
line (e.g. WL30 on the Figure 2) is selected by applying a high
voltage (e.g. 20V) to it. Then, depending on the value of each
bit of data being programmed, the voltages on the corresponding
bitlines are selected respectively. Thus, for instance, by applying
the VCC voltage to a bitline, the corresponding cell on selected
wordline is left unprogrammed, i.e. no charge is “inserted” into

1The IPL versus IPA comparison was done by using the original
IPL simulator and the Flash memory configuration from [8] on
traces recorded from running TPC-B/-C and TATP benchmarks.
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Figure 2: Organization of SLC NAND Flash memory and ISPP.

this cell, while by applying 0V voltage the corresponding cell will
be programmed to a certain charge. Further, the programming of
each particular cell is done in multiple steps. This technique is ap-
plied by all modern Flash SSDs and is known as Incremental Step
Pulse Programming (ISPP) [3]. The charge of programmed cells is
increased incrementally in small “portions”, while after each pro-
gramming iteration the cell is sensed (read) to check if the desired
charge level is achieved. It is important to note, that to increase
the charge of any individual cell no foregoing erase operation is re-
quired. Only if the charge level needs to be decreased - the whole
corresponding Flash block must be erased (i.e. all cells are reseted).
The probability that a random update on a Flash page results only
in increase of the charge levels of corresponding cells2 is negligi-
bly small. Therefore, in the common case the updates can not be
performed in-place (erase-before-overwrite principle).

But what if an update on a Flash page is performed in the form
of an append? Assume, for instance, the 8KB Flash page is pro-
grammed initially with only 6KB data. In this case, the cells that
correspond to the remaining 2KB are left unprogrammed. Now,
the original 6KB of data are augmented with the 2KB of new data.
This new version of the page (original data & append) can actu-
ally be written (programmed) in-place, i.e. by “overwriting” the
append area of the original Flash page without foregoing erase op-
eration. This is possible because all newly programmed cells only
increase their charge. The existing charge within the cells storing
the original data is left unchanged during the overwrite.

3. BRIEF OVERVIEW OF IN-PLACE APPENDS
The main idea is to transform small-size updates on DB pages

into delta-records upon page eviction from the buffer pool. The
delta records are then appended to the reserved space on a page,
so-called delta-record area, while the original content of the page
is left unchanged. By doing so, the database page can be written to
the very same physical Flash address without page invalidation or
foregoing erase operation. The major “points of attack” by the im-
plementation of the approach are: (i) delta-record format, flexible
configuration of IPA and database page layout; (ii) DBMS oper-
ations - fetching, modification and eviction; (iii) error-correction
codes (ECC) on Flash; (iv) program interferences on Flash.

Delta-record, N×M scheme and database page layout.
Delta-records store information needed to reconstruct the up-to-
date version of the page. Updates are “logged” in byte-granularity,
2On SLC Flash this means that all updated bits change from 1 to 0
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Figure 3: Database page-format, supporting IPA on Flash

i.e. each updated byte is represented in delta-record as a <new_value,
offset> pair. The configuration parameter M determines the max-
imum number of such pairs stored in a single delta-record. Fur-
thermore, each delta-record contains: (i) a control_byte - a flag
representing the presence of the delta-record, and (ii) the modi-
fied version of page metadata: header and footer (see Figure 3). To
“accommodate” the delta-records on the page we reserve a certain
amount of space at the end of the page – the so-called delta-record
area. The number of delta-records per page is controlled by the
configuration parameter N . Thus, the delta-record area size for a
particular N×M configuration is: N × (1 + 3M + ∆metadata).

Page operations. IPA requires certain modifications in the tra-
ditional operations on database pages. Before the page is placed
into the buffer frame upon being fetched, the storage manager checks
if it contains delta-records. If so, those are applied by changing
the original bytes at defined offsets to their updated values from
the delta-records. Now the page body is in its up-to-date state.
Similarly, the page metadata is updated to its actual version from
∆metadata in the delta-record. Finally, the resulting page is placed
into the buffer frame.

When a transaction updates the content of the page, the buffer
manager checks if it conforms to the IPA N×M scheme. Thus, the
total number of delta-records (including the existing) cannot exceed
N , while the number of changed bytes per delta-record should not
exceed M . If those conditions are fulfilled, the update is performed
as usual, while the offsets of changed bytes are stored in the delta-
record(s). The traditional behavior of the buffer manager is not
affected by IPA, since the buffer contains always the up-to-date
version of the page, and all updates are done as usually in-place.
The violation of one of the above conditions means that upon evic-
tion the page cannot be written out using IPA, and will therefore be
written in a traditional out-of-place manner on Flash. In this case,
the out-of-place flag is set, and further updates are not tracked until
eviction.

On page eviction from the buffer pool, the storage manager checks
whether the out-of-place flag is set. If so, the delta-record area is
reset, and the up-to-date version of the page is written out in an out-
of-place manner. Otherwise, the page can be overwritten in-place
by using in-place appends. In this case, only the delta-record(s)

is transmitted to the Flash storage by using the write_delta() com-
mand.

write_delta( LBA, offset, delta_length, delta_bytes[ ] );
The delta-record(s) will be appended to the very same physical

Flash page containing the original database page. This is possible
since the original content of the page is left unchanged, while all
updates are coalesced in the appended delta-record. The sole trans-
fer of delta-records (instead of whole pages) significantly reduces
the DBMS write-amplification, whereas appending those delta-records
to original Flash pages eliminates the need to perform page in-
validations and out-of-place writes, which further reduces the GC
overhead (on-device write-amplification). IPA is also applicable to
conventional SSDs with block-device interface (see Section 4).

Please note that the regular database functionality (e.g. recovery,
locking, etc.) is NOT impacted by the proposed approach. Further-
more, it introduces negligible or no overhead to the DBMS, since
(i) it can be selectively applied only to specific database objects
using NoFTL Regions; (ii) change tracking in the buffer produces
min. computational overhead.

Flash types and program interference. In-Place Appends
can be applied to all modern types of Flash memory, namely SLC,
MLC/eMLC and TLC in 3D NAND. On SLC NAND Flash IPA
can be applied without specific limitations. The reason is that the
difference between different threshold voltages (indicating differ-
ent logical bit-codes of the Flash cell: 1 and 0) is large enough to
compensate small deviations which might appear due to program
interference (parasite capacitance-coupling), while (re-)programming
the Flash-page (appending the delta-record). The MLC Flash is
more susceptible to the program interference errors, due to the
shorter distances between different voltage thresholds. To safely
apply In-place Appends on MLC Flash without increasing pro-
gram interference we propose two configuration modes. First, the
MLC Flash can be used in pseudo-SLC mode (pSLC): the Flash
capacity halved as very second page of Flash memory is effec-
tively used (LSB-pages). In this mode the MLC Flash is as tolerant
to program interference errors as SLC Flash. Under the second,
also called odd-MLC mode, the whole MLC Flash capacity is uti-
lized. However, IPA are only applied to LSB pages (odd numbered
pages), whereas MSB pages (even numbered pages) still need to
be programmed in standard out-of-place manner. 3D NAND Flash
addresses program interference issues by using new manufactur-
ing technologies. According to Samsung their 3D V-NAND chips
are: "Bitline Interference Free" and "Wordline Interference Almost
Free" [2]. Therefore, IPA is applicable to 3D NAND using the
above SLC/pSLC or odd-MLC techniques.

4. DEMONSTRATION
During the demonstration we introduce the audience to basics of

the proposed approach and let them evaluate it interactively on real
hardware. The demonstration system consists of the Flash storage
- the OpenSSD research Flash board3 connected to a host PC run-
ning Shore-MT storage engine (Figure 4). Using an intuitive GUI
(Figure 5) the audience can configure a sequence of tests and ex-
perience live the performance advantages of the IPA. The proposed
demonstration scenarios are as follows.

Demo-Scenario 1 – Baseline.
The audience picks one of the three available OLTP benchmarks

3Four dual-die Samsung K9LCG08U1M 8GB packages per mod-
ule. Each package consists of 4096 erase units each holding 128
16KB Flash pages [1].
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Figure 4: Demonstration system with the OpenSSD board.

Figure 5: GUI for the evaluation of IPA.

(TPC-B, TPC-C or TATP), selects the desired scaling factor (lim-
ited by 64GB of Flash storage) and the duration of the test. The
DBMS executes the benchmark using the traditional approach as a
baseline, i.e. every updated DB-page results in one or more out-of-
place writes on Flash. During the benchmark run the audience can
observe the current transactional throughput. At the end detailed
statics of performed I/Os are visualized.

Demo-Scenario 2 – IPA for conventional SSD.
In this scenario the audience examines IPA designed for con-

ventional SSDs. Its implementation assumes the use of traditional
block-device interface. The DBMS writes out whole pages in the
format: page body + delta-record area. After the main parame-
ters of IPA have been selected (N×M scheme and the mode of IPA
on MLC Flash: pSLC or odd-MLC), and the Flash SSD is com-
pletely formatted (low-level formatting) the benchmark is run with
the same scaling factor and for the same duration as in the base-
line test. The audience can compare the output results of both ap-
proaches (throughput, I/O statistics).

Demo-Scenario 3 – IPA for native Flash.
This scenario is similar to the previous one, however, the DBMS

Table 1: TPC-B: traditional approach (no In-Place Appends
[0×0]) vs. [2×4] scheme in modes pSLC and odd-MLC.all

Page 1

33/67 51/49

Host Reads (16KB) 3 779 926 5 540 034 +47 4 875 961 +29

Host Writes (16KB) 2 028 626 3 047 538 +50 2 372 017 +17

GC Page Migrations  605 047  153 201 -75  315 228 -48

GC Erases  15 839  7 401 -53  7 625 -52

0.2983 0.0503 -83 0.1329 -55

GC Erases per Host Write 0.0078 0.0024 -69 0.0032 -59

Transactional Throughput 260 380 +46 313 +20

0x0
Absolute

2x4
Absolute

pSLC

2x4
Relative
pSLC [%]

2x4
Absolute
odd-MLC

2x4
Relative

odd-MLC [%]

Out-of-Place Writes vs. 
In-Place Appends

Page Migrations
per Host Write

utilizes IPA designed for native Flash (e.g. NoFTL architecture).
In this case only the delta-records are transferred to the Flash stor-
age. Both IPA scenarios #2 and #3 result in the same reduction
of GC overhead, since in both cases updates are performed as in-
place appends reducing the number of page invalidations. However,
here IPA uses write_delta command, which significantly reduces
the DBMS write-amplification and the amount of transferred data.

Table 1 shows the comparison results of TPC-B benchmark run-
ning for two hours on OpenSSD board (during the demonstration
the durations of 5 or 10 minutes are sufficient for a comparison).
The experiments were performed (i) without IPA ([0×0] column),
and with IPA using (ii) pSLC and (iii) odd-MLC modes with [2×4]
configuration scheme. Under TPC-B, IPA outperforms the tradi-
tional approach by executing up to 70% less erases and up to 85%
less page migrations. This reduction of GC overhead has two major
advantages: (i) the increase of the transactional throughput of up to
45%, and (ii) doubling the Flash SSD lifetime.
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ABSTRACT
We demonstrate the first full-fledged context-aware event
processing solution, called CAESAR1, that supports applica-
tion contexts as first class citizens. CAESAR offers human-
readable specification of context-aware application seman-
tics composed of context derivation and context processing.
Both classes of queries are only relevant during their re-
spective contexts. They are suspended otherwise to save
resources and to speed up the system responsiveness to the
current situation. Furthermore, we demonstrate the context-
driven optimization techniques including context window
push-down and query workload sharing among overlapping
context windows. We illustrate the usability and perfor-
mance gain of our CAESAR system by a use case scenario
for urban transportation services using real data sets [2, 1].

1. INTRODUCTION
Context-Aware Event Stream Analytics. Complex

Event Processing (CEP) is a prominent technology for sup-
porting time-critical applications. Traditionally, CEP sys-
tems consume an event stream and continuously evaluate
the same query workload against the entire event stream.
However, the semantics of many streaming applications is
determined by contexts, meaning that the system reaction
to one and the same event may significantly vary depending
on the context. Therefore, most event queries are appro-
priate only under certain circumstances and can be safely
suspended otherwise to save valuable resources and reduce
the latency of currently relevant queries.

Running Demonstration Scenario. With the grow-
ing popularity of Uber and Lyft, their real-time systems

1CAESAR stands for Context-Aware Event Stream Analyt-
ics in Real time.

c©2017, Copyright is with the authors. Published in Proc. 20th Inter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

face a wide range of challenges, including but not limited
to extracting supply/demand sequence patterns from event
streams, real-time aggregation, geospatial prediction, traffic
data monitoring and alerting. These data intensive event
queries continuously track the status of drivers, riders, and
traffic, such as driver dispatched, rider waiting for pickup,
road congestion, etc. An intelligent event processing system
receives both vehicle and rider position reports and their
associated messages, analyzes them, infers the current sup-
ply and demand situation in each geolocation, and reacts
instantaneously to ensure that riders reach their destina-
tions in a timely and cost-effective manner. Early detection
and prompt reaction to critical situations are indispensable.
They prevent time waste, reduce costs, increase riders’ sat-
isfaction and drivers’ profit.

Figure 1: The CAESAR model

System reaction to a position report should be modulated
depending on the current situation on the road. Indeed,
if HighDemand is detected, all drivers close by are noti-
fied and a higher fee is charged in this area to attract more
drivers and reduce the waiting time of riders (Figure 1). If
a road segment becomes Congested, drivers may be alerted
and alternate routes should be advised so as to smooth traf-
fic flow. If a road segment is Normal, none of the above

Demonstration

 

 

Series ISSN: 2367-2005 590 10.5441/002/edbt.2017.77

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2017.77


actions should take place. Clearly, current application con-
texts must be rapidly detected and continuously maintained
to determine appropriate reactions of the system at all times.

The hierarchical application logic in Figure 1 is drilled
down into the HighDemand specification, while the inte-
rior structures of all other processes are rolled up and thus
abstracted to increase readability. Three contextual stages
are differentiated during the HighDemand context. First,
all drivers in proximity are notified and a higher base fee
is computed (Preparation). Afterwards, only new nearby
drivers are notified and the high base fee is used to compute
the cost of each trip (Operation). Lastly, the base fee is re-
duced once demand is satisfied (Completion). Appropriate
event queries are associated with each context. For example,
new drivers are detected during the Operation phase in a
high demand geolocation (Figure 1).

Conditions implying an application context can be com-
plex. They are specified on both the event streams and the
current contexts. For example, if over 50 cars per minute
move with an average speed less then 40 mph and the current
context is no Congestion then the context-deriving query
updates the context to Congestion for this geolocation. To
save resources and thus to ensure prompt system responsive-
ness, such complex context detection should happen once.
Its results must be available immediately and shared among
all queries that belong to the detected context. In other
words, context-processing queries are dependent on the re-
sults of context-deriving queries. A synchronization mecha-
nism ensuring their correct execution must be employed.

Challenges. To enable real-time responsiveness of such
applications, the following challenges must be tackled.

Context-aware specification model. Many streaming ap-
plications have context-driven semantics. Thus, they must
support application contexts as first class citizens and enable
linkage of the appropriate event query workloads to their re-
spective contexts in a modular format to facilitate on-the-fly
reconfiguration, easy maintenance, and avoid fatal specifica-
tion mistakes.

Context-exploiting optimization techniques. To meet the
demanding latency constraints of time-critical applications,
this context-aware application model must be translated into
an efficient physical query plan. This is complicated by the
fact that the duration of a context is unknown at compile
time and potentially unbounded. Furthermore, contexts are
implied by complex conditions. They are interdependent
and may overlap.

Context-driven execution infrastructure. An efficient run-
time execution infrastructure is required to support mul-
tiple concurrent contexts. To ensure correct query execu-
tion, the inter-dependencies between context-deriving and
context-processing queries must be managed effectively.

State-of-the-Art Approaches. Traditional CEP win-
dows fail to express variable-length inter-dependent context
windows. Indeed, tumbling and sliding windows [8] have
fixed length, while predicate windows [6] are defined inde-
pendently from each other.

Most graphical models express either only the workflow [4]
or only single event queries [3]. Some models and event lan-
guages can express contexts by procedures [7] or queries [5].
However, they do not allow for the modular specification of
context-driven applications – placing an unnecessary bur-
den on the designer [9, 10]. Furthermore, optimization tech-
niques enabled by contexts are yet to be developed.

Contributions. We demonstrate the following contribu-
tions of the CAESAR technology: (1) The easy-to-use graph-
ical interface to illustrate the powerful CAESAR model [9,
10]. It visually captures application contexts, transitions be-
tween them, context-deriving and context-processing queries.
(2) The optimization techniques enabled by contexts sus-
pend those queries that are irrelevant to the current con-
text and share computations between overlapping contexts.
(3) The CAESAR infrastructure guarantees correct and effi-
cient context management at runtime. (4) We illustrate the
usability and performance gain of the CAESAR technology
using the real-world urban transportation scenario [2, 1].

2. CAESAR SYSTEM OVERVIEW
Figure 2 provides an overview of the CAESAR system.

Figure 2: The CAESAR system

Specification Layer. The designer specifies the CAE-

SAR model (Section 3.1) using the visual context editor. The
model is then translated it into an algebraic query plan.

Optimization Layer. The query plan is optimized us-
ing the context-driven optimization techniques (Sections 3.2
and 3.3) to produce an efficient execution plan.

Execution Layer. The optimized query plan is for-
warded to the scheduler that guarantees correct context deriva-
tion and processing at runtime (Section 3.4).

Storage Layer. Context windows and history are com-
pactly stored and efficiently maintained at runtime.

3. KEY INNOVATIONS OF CAESAR

3.1 Context-aware Event Query Model
While the CAESAR model is formally defined in [9, 10],

below we briefly summarize its key components and benefits.
Application Contexts are real-world higher-order situ-

ations the duration of which is not known at their detection
time and potentially unbounded. This differentiates con-
texts from events. The duration of an application context
is called a context window. For example, Congestion is a
higher-order situation in the traffic use case. Its bounds are
detected based on position reports of cars in the same area
at the same time. As long as a road remains congested,
the context window Congestion is said to hold. Hence, the
duration of a context window cannot be predetermined.

At each point of time, the CAESAR model re-targets all ef-
forts to the current situation by activating only those context-
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deriving and context-processing queries which handle the
current contexts. Irrelevant queries are suspended to save
resources. For example, Uber surge pricing kicks in only
during HighDemand on a road. This query is neither rele-
vant in the Normal nor in the Congestion contexts. Thus,
it is evaluated only during HighDemand and suspended in
all other contexts.

Context-Deriving Queries are associated with a par-
ticular context and determine when this context is termi-
nated and when a particular other context is initiated based
on events. For example, once many slow cars on a road are
detected during the Normal context the system transitions
into the Congestion context. Thereafter, the query detect-
ing Congestion is no longer evaluated. All event queries that
are evaluated during Congestion leverage the insight de-
tected by the context-deriving query rather than re-evaluating
the Congestion condition at each individual query level.

Context-Processing Queries react to events that ar-
rive during a context in an appropriate way. Contexts pro-
vide queries with situational knowledge that allows to specify
simpler event queries. For example, if the query comput-
ing surge pricing is evaluated only during the HighDemand
context, the complex conditions that determine that there is
a high demand in this geolocation are already implied by the
context. Thus, there is no need to repeatedly double-check
them in each of the context-processing queries.

3.2 Context Window Push-Down Optimization
Our CAESAR algebra consists for the following six oper-

ators: Context initiation, context termination, context win-
dow, filter, projection, and pattern [10]. With filter, pro-
jection and pattern common in stream algebras [12], tra-
ditional multi-query optimization techniques [11] are ap-
plicable to our CAESAR queries. In addition, we propose
two context-driven optimization techniques, namely we push
context windows down and share workloads of overlapping
contexts. Pushing context windows down in a query plan
prevents the continuous execution of operators “out” of their
respective contexts and thus reduces the costs. To guarantee
correctness, we group event queries by contexts. By defini-
tion, a context window specifies the scope of its queries.
Thus, pushing a context window down in each group of
queries does not change the semantics of these queries.

In contrast to traditional predicates, context windows are
not just filters on a stream that select certain events to be
passed through. Context windows suspend the entire query
plan “above them” as long as the application is in different
contexts. Furthermore, our context-driven stream router
directs entire stream portions during contexts to their re-
spective queries (Section 3.4) rather than filtering events
one by one at the individual event level which is a resource-
consuming process.

3.3 Context Workload Sharing Optimization
Similar computations may be valid in different contexts.

For example, an accident on a road is detected during all
contexts in Figure 1. In such cases, substantial compu-
tational savings can be achieved by sharing workloads be-
tween overlapping contexts. For example, Congestion and
HighDemand may overlap. To avoid repeated computa-
tions and storage, we split the original user-defined over-
lapping context windows into finer granularity context win-
dows and group them into non-overlapping context windows

by merging their workloads. Within each newly produced
non-overlapping context window, we apply traditional multi-
query optimization techniques [11]. Our context window
grouping strategy divides the query workload into smaller
groups based on their time overlap. As additional benefit,
the search space for an optimal query plan within each group
is substantially reduced compared to the global space.

3.4 CAESAR Execution Fabric
The core of the CAESAR execution fabric consists of the

context derivation, context-aware stream routing, context
processing, and scheduling of these processes (Figure 2).
While we briefly describe these components below, we refer
an interested reader to our full paper [10] for more details.

Context Derivation. For each stream partition (a ge-
olocation in the traffic use case), the context bit vector W
maintains the currently active contexts. This vector W has
a time stamp W.time and a one-bit entry for each context.
The entry 1 (0) for a context c means that the context c
holds (does not hold) at the time W.time. Since contexts
may overlap, multiple entries in the vector may be set to 1.
W.time is the application time when the vector W was last
updated by the context-deriving queries. This time stamp is
crucial to guarantee correctness of interdependent queries.

Context-Aware Stream Routing. Based on the con-
text bit vector, the system is aware of the currently active
contexts. For each current context c, the system routes all
its events to the query plan associated with the context c.
Query plans of all currently inactive contexts do not receive
any input. They are suspended to avoid waste of resources.

Context Processing. The CAESAR model uses contexts
to specify the scope of queries. When a user-defined con-
text ends, all associated queries are suspended and thus will
not produce new results until they become activated again.
Hence, their partial results, called Context history, can be
safely discarded. However, if a user-defined context c with
its associated query workload Qc is split into smaller non-
overlapping contexts c1 and c2, then partial results of the
queries Qc must be maintained across these new contexts c1
and c2 to ensure completeness of the queries Qc.

Correctness. Context-processing queries are dependent
on the results of context-deriving queries. To avoid race
conditions and ensure correctness, these inter-dependencies
must be taken into account. To this end, we define a stream
transaction as a sequence of operations that are triggered by
all input events with the same time stamp. An algorithm
for scheduling read and write operations on the shared con-
text data is correct if conflicting operations2 are processed
by sorted time stamps. While existing stream transaction
schedulers could be deployed in the CAESAR system, we
currently deploy a time-driven scheduler.

4. DEMONSTRATION SCENARIO
In this section, we demonstrate the above key innovations

of the CAESAR system based on the urban transportation
services using two real data sets [2, 1] that contain millions
of taxi and Uber trips in New York city in 2014 and 2015.

Visual CAESAR Model Design. The audience will
view and edit CAESAR models using simple drag-and-drop
interaction tools. Figure 1 shows that the model captures

2Two operations on the same value such that at least one of
them is a write are called conflicting operations.
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the complex application logic in a succinct and readable
manner. The audience can view the specification at dif-
ferent levels of abstraction. There are three composed con-
texts, namely, Normal, Congestion, and High Demand. All
other contexts are atomic. The composed contexts can be
collapsed and expanded with a click of a button. For ease
of follow-through, color schemas of composed contexts and
their interior structures are consistent. To keep the model
clean and readable, the contexts and transitions between
them are depicted in the middle panel separately from their
respective context-deriving and context-processing queries
shown in the bottom panel. When the cursor is over a tran-
sition, its corresponding context-deriving query appears as
a label of the transition. When the designer clicks on a
label, (s)he can conveniently edit it in the bottom panel.
Similarly, when the designer clicks on a context, the list of
context-processing queries appears in the bottom panel. We
will demonstrate the ease with which CAESAR models can
be dynamically reconfigured by editing contexts, transitions
between them, and their respective queries.

Execution Visualization. At runtime, the model view
provides insights into event-driven context transitions (Fig-
ure 1). The current context and triggering transitions are
temporally highlighted. Besides the real-time monitoring,
the model view offers a slow-motion-replay mode that allows
the users to step-through the history of prior execution to
better understand, debug, and reconfigure the model. This
functionality provides the audience a visual opportunity to
learn how the CAESAR model functions.

Figure 3: Analytics view

Execution Optimization. The analytics view will al-
low the audience to monitor the effect of the context-driven
optimization techniques. The audience will first chose to
show statistics either about contexts, or drivers, or riders in
the top panel of Figure 3. Also, the audience can specify
the time interval of interest in the top panel. Thereafter,
charts visualizing runtime statistics will appear in the mid-
dle panel. They provide a summary about the chosen topic
during the time interval of interest. For example, to summa-
rize the contextual information, the number of high demand
occurrences, average duration of this context, as well as the
price, wait time, and driver vs. rider ratio during 8 hours
are compactly presented in Figure 3.

Interactive City Map offers the audience an abstract
view of the current situation by highlighting the areas in
different colors depending on their contexts. For example, a
high demand area is identified in the middle panel in Figure 4
highlighted by a red circle. Green and blue circles visualize
riders outside of the high demand area. In addition to the
map, runtime statistics are shown in the top panel. They

include the number of current high demand or congested
areas, the number of recent requests and current trips, the
number of available drives and waiting riders.

In addition to the complex events that are automatically
derived by queries, the audience will learn about common
manual actions which include area specific information such
as accidents, road construction, gas prices, police cars etc.
This information will be added by clicking on the respective
location on the map and choosing the information in a drop-
down menu. A respective icon will appear on the map. For
example, one traffic hazard is depicted in Figure 4. Based
on this information, travel time and cost will be estimated
to compute the best route of each trip.

Figure 4: Map view

Conclusion. The CAESAR technology offers a principled
end-to-end solution for context-aware stream analytics.
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ABSTRACT

This paper discusses the next generation of digital maps,
by positing that maps in future will intelligently self-update
themselves based on distinctive events extracted dynami-
cally from social media streams or other crowd-sourced data.
To realize this concept, the challenges include developing a
scalable and efficient system to deal with a variety of un-
structured data streams, applying NLP and clustering tech-
niques to extract relevant information from these streams,
and inferring the spatio-temporal scope of detected events.
This paper demonstrates Hadath, a system that extracts live
events from social data by encapsulating incoming unstruc-
tured data into generic data packets. The system imple-
ments a hierarchical in-memory indexing scheme to support
efficient access to data packets, as well as for memory flush-
ing purposes. Data packets are then processed to extract
Events of Interest (EoI), based on a multi-dimensional clus-
tering technique. Next, we establish the spatial scope and
the level of abstraction of each event. This allows us to show
live events in correspondence to the scale of the view – when
viewing at a city scale, we see events of higher significance,
while zooming in to a neighborhood highlights events of a
more local interest. The final output creates a unique and
dynamic map browsing experience.
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1. INTRODUCTION
While it is the norm nowadays to use digital mapping

applications to use live data to find directions, traffic con-
gestion states or places of interest, we posit that the next
generation of maps will contain the additional functionality
of showing live events at different spatio-temporal resolu-
tions, and which are extracted dynamically from a variety of
sources, starting from online social media and crowd-sourced
data, to open governmental data and other online news
sources. Within this context, there is a real opportunity
to enrich current maps with knowledge extraction tools that
take advantage of information retrieval, data management,
and sentiment analysis techniques. Analyzing crowdsourced
data can provide deep insights about surrounding events of
interest (EoI). For instance, with the explosive growth in size
of microblog data (e.g., Twitter, Flickr, and Yelp), fruitful
insights can be extracted and displayed (examples of discov-
ered findings are illustrated in Figure 1). However, design-
ing an efficient and scalable system that extracts live events
and infers their spatial and temporal scopes, so that they
can be displayed in a clear, non-cluttered manner, remains
a challenging task.
The challenge of displaying live events on a map is three-

fold. Firstly, these events need to be extracted from un-
structured data streams efficiently, while preserving accu-
racy and conciseness. Secondly, to display such events on
a map, their spatial scope must be established, so that as
a user changes the zoom level, only events of appropriate
scope are displayed. For example, a soccer match may be
displayed at the city scale, the opening of a new restau-
rant at sub-urban scale, and a house-warming party at the
neighborhood scale. Thus, not only is it necessary to ex-
tract the events themselves, but also to establish their spa-
tial scope, so that they can be displayed appropriately in
a clutter-free manner. Finally, all of this has to be done in
real-time so that live streams can be handled, and up-to-date
events at multiple resolutions can be detected. To address
these challenges, we propose Hadath, a system that han-

Demonstration

 

 

Series ISSN: 2367-2005 594 10.5441/002/edbt.2017.78

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2017.78


Figure 1: Conceptual illustration of Event-Enriched
Maps: Findings automatically discovered from live
streams, such as a restaurant opening, a neighbor-
hood party, an accident prone road segment, warn-
ings on demonstrations and emergency cases.

dles unstructured social streams, particularly Twitter data,
and implements different algorithms for the efficient extrac-
tion, clustering, and mapping of live crowdsourced events.
Hadath consists of several components as follows. Data col-
lection involves gathering social data with different forms:
data chunks and streams. The data wrapping and cleaning
component digests streaming data, and prepossesses data to
generate structured data packets from unstructured streams.
The data manager stores data by implementing a indexing
scheme to allow efficient and scalable access to raw data, as
well as to extracted events. The events of interest detection
module classifies and extracts events based on a multidimen-
sional and hierarchical clustering technique, which defines
the spatial scope and the level of abstraction of detected
events. The query engine creates best query plan based on
map zoom level, spatial and temporal characteristics, and
executes the query plan in order to retrieve EOIs efficiently.
The visualizer provides a new dimension to existing maps by
illustrating extracted knowledge from live collected data as
live events at different levels of abstraction. The remainder
of this paper is as follows. Section 2 highlights related work
and challenges from different perspectives. Section 3 intro-
duces our proposed architecture with results; while Section
4 draws conclusions and discusses future work.

2. RELATED WORK
This section highlights different challenges and state-of-

the-art techniques related to: 1) digital mapping, 2) events
of interest detection, and 3) performance and scalability per-
spectives.

1. State-of-the-art mapping technologies: Today’s
maps are often crowd-sourced, and make use of ‘Volunteered
Geographic Information (VGI)’, where users can seed maps
with their own content. Researchers, authorities, and indus-
tries generate thousands of map-based analytics every year
to meet their social and economic needs [6]. In addition,
‘Live Maps’ now contain real-time updates of bus schedules,
traffic conditions, restaurant opening hours, and road acci-
dents, among others. With the wide spread of social net-
works, people start to post their own social contributions
on live maps, such as Foursquare check-ins, Flickr images,

tweets [7], and Yelp reviews. Moreover, NLP techniques
were embedded to extract spatially-referenced news from on-
line newspapers and tweets [10]. However, current maps still
lack intelligence in extracting knowledge about new events
occurring at different spatio-temporal resolutions.
2. Discovering Events of Interest along with Spatio-

Temporal Scope: Detection of irregular happenings and
trends from social data, mainly Twitter data, is already a
topic of many scientific articles [2]. This mainly includes: 1)
earthquake detection along with their centers or other nat-
ural disasters; 2) extracting and localizing breaking news
from tweets as presented in TwitterStand [10]; 3) discover-
ing incidences related to traffic conditions [8] from twitter
and user generated data; and 4) detection of unspecified hot
topics based on text similarity [1], density or with wavelet
spatial analysis [5]. The work presented in [4] is very close
to our work with respect to detecting spatial/temporal ex-
tents of events, but was only distinguishing between local
and global scales, without putting focus on mapping those
events to the different spatio-temporal resolutions in digital
maps.
3. Performance and Scalability Perspectives: Sev-

eral works have presented systems that visualize geo-tagged
social streams on maps, such as Flickr images1, tweets [7],
Yelp reviews, and spatially-referenced news [10]. Partic-
ularly, NewsStand [10] is a scalable system that extracts
news from RSS feeds and visualize them on a world wide
map. Furthermore, the system can apply spatio-temporal
and keyword-based filtering of news. However, this system
displays news at different spatial scales by only ranking them
based on the number of views, without detecting and clus-
tering events of interest along with their spatial scope. With
the large volume of incoming streams, data indexing and the
distributed processing of data represent an essential part of
any system that implements ‘event-enriched maps’.

3. SYSTEM OVERVIEW
This section presents Hadath, a system that retrieves data

streams from social data (here we focus on Twitter data),
efficiently manages and processes those streams in order to
find Events of Interest (EoI), and visualizes those events in
correspondence to their spatial and temporal scopes, thus
creating ‘multi-resolution event-enriched maps’. Figure 2
illustrates the main components of our system architecture,
which are described as follows:
• Data collection involves gathering data with different

format. This includes digesting data streams and data chunks
(i.e., historical tweets) from Twitter. In data chunks mode,
we download the files that contain partial or full datasets.
Digesting data streams is performed by running crawlers
that collects bulks of streams based on windows of a speci-
fied temporal extent w (e.g., 30 minutes window).
• The data wrapper provides an efficient and generic mech-

anism with the aim of allowing new data sources (e.g., Flickr)
to be easily plugged, by supporting new crawlers at the data
collection level without affecting the other processing com-
ponents. Major tasks for the data wrapper are: 1) to clean
irrelevant fields and digest incoming streams into a unique
data packet format; 2) to use specified string matching tech-
nique that detect and match candidate packets with our
event classifier corpus in order to identify potential event

1https://www.flickr.com/map
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Figure 2: Hadath Architecture

classes and properties; and 3) to apply unspecified topic de-
tection method that extract spatio-temporal peaks and un-
usual happenings based on the top frequent words. Figure
3 shows an example of data packets generated from twitter
data with potential event flag, event class name, and event
properties. Packets that show no relevancy with respect to
the above steps are discarded at this phase.

• The data manager implements an in-memory spatial in-
dexing scheme to allow efficient and scalable access to data
packets. The spatial index is a multi-resolution data struc-
ture (similar to a partial quad tree [9]). Leaves in this data
structure correspond to cells that represent the minimum
bounding rectangles comprising data packets. Figure 4 dis-
plays a snapshot of indexed data packets at a fine level of
the hierarchal tree, and with a single day specified as a time
threshold. Cells are colored lighter to darker based on data
packet counts; darker-colored cells are further expanded at
deeper levels in the tree as compared to lighter-colored cells.
Hadath employs a big data mechanism that continuously
process data packets within the different cells on several ex-
ecution nodes. The manager also indexes detected EoIs in
order to fetch them efficiently based on the map zoom level
and scope. Using this multi-resolution indexing scheme, hi-
erarchical clustering of events can be applied for efficient
determination of their content and spatial scopes. For tem-
poral aspects and cleaning of EoIs, we took three parame-
ters: a) ‘birth time’ that indicates the existence of a new
event in our system whenever we calculate the first cluster
of data packets related to that event; b) ‘time of occurrence’
that marks the actual happening time of the event (e.g., next
Monday); and c) ‘time to live’ (TTL) is the survival time
of an event in our system. Whenever we receive new data
packets related to an existing event, we increase its TTL by
T number of hours. Moreover, processed data packets are
moved to disk based on temporal and memory thresholds.
The main task of disk indexer is to index outdated data
packets and events on disk using an R*-tree spatial index to
allow efficient retrieval for historical queries.

• The event detector module starts from leaf cells within
the multi-resolution data structure to detect events at a lo-
cal spatio-temporal scope. Within each leaf cell, our system
adopts the graph analogy where each potential event data
packet is considered as a node and the value of ‘text sim-
ilarity (TF-IDF)’ between data packets as a weight of the
bidirectional edge. Data packets with a high text similarity
value are clustered using the graph-specific Louvain cluster-

Figure 3: Sample Data Packet from Twitter Streams

ing algorithm [3]. The Louvain algorithm is suitable in our
approach as, unlike most of the other clustering methods, it
does not require a prior knowledge of the minimum number
of clusters. For unspecified events that are not matching
our training corpus, the NLP module detects frequent tags
and keywords within local cells, in order to identify peaks
at local and global scales.
As events can be discovered more efficiently on small-scale

regions (starting from leaf nodes), a bottom-up approach for
clustering close-by and similar events is developed, so that
redundant events on different spatial resolutions can be ag-
gregated, and their spatial scope can be upgraded. Visu-
alization of EoIs with the same spatial resolution on maps
does not make sense, since these events have different sig-
nificance from spatio-temporal perspectives. For instance,
events of someone’s birthday cannot be displayed at a na-
tional level, except is this person is a celebrity, and that
happening had spread throughout the country. Our hier-
archical clustering technique for event aggregation works as
follows. Starting from events at neighborhood/district level
(i.e., which corresponds with leaf cells in our tree), the sys-
tem clusters identical events at higher levels of abstraction,
and incrementally increases their spatial scope. Local clus-
ters are first compared with their siblings in the hierarchical
tree, with the aim of aggregating and updating the scope of
similar events. Merging two clusters (Cl1, Cl2) from two
different cells (C1,n, C2,n) at a depth level n in the tree,
will result in upgrading their spatial scope from zoom level
k (e.g., corresponds to district level on map) to zoom level
k − 1 (e.g., corresponds to city level). An event cluster Cli
is represented as follows:
Cli = 〈id, ptGeom, eventClass, eventProperties, packetIDs,

imageURLs, iconId, zoomLevelStart, zoomLevelEnd〉
where ‘id’ is cluster identifier, ‘pointGeom’ is the centroid

point location, ‘eventClass’ and ‘eventProperties’ depict the
event class(es) and a list of top frequent meaningful words
within the cluster, ‘packetIDs’ is the list of data packets
identifiers forming that cluster, ‘imageURLs’ is the list top
selected image URLs, ‘iconId’ is the icon identifier related to
the event class, and ‘zoomLevelStart, zoomLevelEnd’ corre-
spond to the multiple resolutions where this event is avail-
able to be displayed on map.
• Hadath’s query engine supports efficient retrieval of in-

memory and disk indexed events based on the main query-
ing attributes, that are, the spatial, temporal dimensions,
and the map levels of detail. The visualizer provides a new
dimension to existing maps by illustrating extracted knowl-
edge from live streams in the form of live events at different
levels of abstraction. Figure-5 illustrates an example out-
put of Hadath system by showing EoIs at different zoom
levels including a) ‘Grand Opening’ at city-scale; b) ‘Traf-
fic Incident’ at a locality-level and c) ‘Birthday Party’ at a
neighborhood-level. The final output creates a unique and
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Figure 4: A snapshot of indexed data packets at a
fine level of the hierarchical tree

dynamic map browsing experience.

4. DEMONSTRATION SCENARIO
Attendees will be able to interactively use our Hadath

system, and enjoy discovering events of different levels of
abstraction on a world wide map with a smooth and fast
panning and zooming capabilities. Either (near) real-time
or historical events can be browsed on map with a calen-
dar option specifying a certain time threshold. This demo
is intended to show the usage and efficiency of our pro-
totype. For this purpose, several visualizations are made
possible including: i) interactive tag/word clouds of events
that are dynamically adapted when changing the specified
spatio-temporal scope (i.e., by zooming, panning or apply-
ing a rectangular range selection); ii) statistical plots and
histograms that illustrates the number of raw data packets
as well as clusters of events at different zoom levels; and
finally 3) the multi-resolution event-enriched map visualiza-
tion, where events of higher significance are displayed at
higher abstraction levels.

5. CONCLUSION
This paper introduces a system, called Hadath, that builds

multi-resolution event-enriched maps by handling social data
streams, and by developing different algorithms for the effi-
cient extraction, clustering, and mapping of live events. Ha-
dath wraps incoming unstructured data streams into data
packets, that is, a generic structured format of a potential
event. These packets are then processed to extract EoIs
based on a hierarchical clustering technique, which defines
the spatio-temporal scope for each event. The system can
provide valuable knowledge from crowd-sourced data to au-
thorities, market firms, event organizers, and end-users to
help in decision making. In future, we plan to merge more
data sources (e.g., Flickr, online newspapers) to increase cor-
rectness and conciseness of detected events. Furthermore,
an extensive performance evaluation of the different solu-
tions need to be conducted with respect to closely-related
systems.
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ABSTRACT
With the recent resurgence of interest in graph data man-
agement, there has been a flurry of research on the design
and engineering of graph query languages. On the design
side, there is a large body of theoretical results that have
been obtained regarding graph languages. On the engineer-
ing side, many sophisticated scalable solutions for graph
query processing have been developed and put into practice.
While both areas are focusing on the study of graph query
languages, there has been relatively little work bridging the
results on both sides. This tutorial will survey the state of the
art in this landscape with a particular focus on uncovering
and highlighting indicative research issues that are ripe for
collaboration and cross-fertilization between the engineering
and theoretical studies of graph database systems.

1. MOTIVATION
The mathematical concept of a graph is somewhat a re-

discovered old friend in the database community. Predating
relational database systems, the CODASYL network data
model resembles essentially graph data. In the 1980s and
early 1990s, with the rise of object-oriented programming and
advent of object-oriented database systems, research consid-
ered graph-based data models and graph query languages [2].
With the continued dominance of relational DBMSs, none of
these efforts got any sustainable traction in industry. In the
last decade, however, the graph concept has a considerable
revival with three major trends driving it.

The first driver is the Semantic Web movement [8]. The
idea of the semantic web gave rise to the RDF [38] data model,
which structures data as a labeled graph. This propelled
the publication and maintenance of thousands of open RDF
datasets on the internet, most famously DBpedia [3]. It also
sparked research in every corner of the database community –
ranging from works investigating the fundamental properties
of query languages for labeled graphs to the design of storage
structures and query engines for RDF data.

c©2017, Copyright is with the authors. Published in Proc. 20th Inter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

The second driver is agility with respect to the management
of data. New application domains (e.g. [16, 39]) as well as
novel development methods [7] increased the demand for
data models that are less rigid and schema-oriented but
more ad-hoc and data-oriented. Graph data models typically
excel in this regard as new nodes and edges can be added
anytime, regardless of their properties. This propelled the
proliferation of the Property Graph model and corresponding
DBMSs, such as Neo4j1 and Apache TinkerPop Blueprints2

implementations. By now also major DBMS vendors such as
IBM and Oracle have put their weight behind the Property
Graph model and are developing Property Graph-based data
management solutions.

The third driver is a shift in interest of analytics from
merely reporting towards data-intensive science and discov-
ery [17]. One major method in this discipline is network
analysis, which puts the focal point of interest on the connec-
tivity of entities. The toolbox of network analysis offers a rich
set of algorithms and measures. These tools give incentives
to consider the graph structure of data collections in a wide
range of application fields, further increasing the demand for
scalable graph data management solutions.

Today, graph data management has become a major topic
in the database community, in research as well as industry.
There are several new challenges of graph data management
which fundamentally distinguish it from tabular or nested
(XML, JSON) data. An exemplification of how much trac-
tion graph data management has gained is the Linked Data
Benchmark Council (LDBC).3 In LDBC, research and indus-
try are jointly developing standardized benchmarks for graph
data management workloads to accelerate the maturing of
graph management systems by increasing competition.

A rather new LDBC initiative is the Graph Query Lan-
guage Standardization Task Force. The query language is one
of the most crucial elements of a DBMS. It defines the func-
tionality of a DBMS and how it is exposed to the user. At the
same time, it sets the tone for the DBMS implementation by
requiring certain functionality. Establishing a standardized
graph query language, such as SQL for relational systems, is
the next step towards more competition and progress. The
task force brings together a group of researchers from engi-
neering and theory as well as developers and representatives
from industry.

One early lesson learned in the task force is that there exist
two disparate bodies of work surrounding graph query lan-

1http://neo4j.com/
2http://tinkerpop.apache.org/
3http://ldbcouncil.org/
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guages. One body of work focuses on the foundational issues
arising in the design of graph query languages, their function-
ality, semantics, and formal properties such as decidability,
query complexity, and containment. The other body of work
focuses primarily on the engineering of systems, considering
the design of storage and indexing solutions and scalable
query processing engines for graph data. Due to this divide
in research, it is clear that we will not get the best systems
possible with the knowledge available. With both sides rather
oblivious to more recent advances of the other, particularly
challenges at their intersection often remain untouched.

This tutorial aims at uncovering and highlighting indica-
tive research issues that are ripe for collaboration and cross-
fertilization. In the core fields of design of declarative query
languages and query processing, we will give an overview of
recent advances. We will also point out their rich connec-
tions and new research challenges which arise from bringing
theory and engineering together. Overall, we aim to moti-
vate and stimulate such bridges, towards a broader coherent
understanding and further improvements in the design and
engineering of graph database systems.

2. SCOPE OF THE TUTORIAL

Audience. The tutorial is relevant for EDBT as well as
ICDT attendees. The intended audience of the tutorial
includes:

• Researchers interested in novel open challenges in graph
data management or who are particularly interested
in collaboration and cross-fertilization between theory
and practice and want to have a kick start.

• Professionals that work in graph database system en-
gineering and graph query language design and are
interested in foundational background and broadening
their scope of interesting query features.

Apart from basic knowledge about graph and database con-
cepts there are no special requirements for this tutorial.

Coverage. The attendees of this tutorial will take home:
(i) an overview of the landscape of declarative graph query

languages covering the most important features with
their different functionality and properties from a prac-
tical as well as theoretical standpoint;

(ii) a survey of the foundations and recent advances ac-
complished by engineering and theory in graph query
processing and optimization; and,

(iii) insights into open challenges for both foundational and
engineering work and in particular for research topics
at the intersection of both.

Scope. We scope the tutorial to core topics in graph query
language design and processing. We look at the selected
topics from a data management perspective, i.e., the focus
is on concepts and techniques relevant to the engineering
of graph data management system with a declarative query
language interface. With this specific focus, there is already
a wealth of results and open research challenges.

In particular, we will not discuss the design of streaming,
distributed, federated, or parallel processing solutions. We
will also not cover analytical topics such as graph search,
graph clustering, graph pattern mining, etc. It would be
impractical to also cover these topics in a focused 3-hour

tutorial. Furthermore, there have been excellent tutorials on
these topics recently (e.g., [19, 20, 21, 42]).

3. TUTORIAL OUTLINE
After a short illustrative introduction to the distinctive

properties of graph data and graph queries, the tutorial
will cover two core research areas in graph query languages:
language design and query processing including data repre-
sentation and query optimization aspects. Within each area,
we will present the current state of the art in both theory
and engineering and discuss important bridges between the
bodies of work in these areas.

3.1 Graph query languages

Advances in theory. As indicated already, there is a long
history of the study of graph query languages. The theoretical
study of graph query languages (expressive power, evaluation
complexity) has advanced ahead of the engineering of graph
databases, e.g., the study of regular path queries since the
1980s. We will give a systematic presentation of the current
design space of graph query languages in the theory commu-
nity, including a historical perspective on this development.
Major languages here include subgraph matching queries,
path algebras, regular path queries, and reachability [4, 6,
10, 12, 13, 24, 34, 35, 40, 43].

Advances in engineering. With the recent proliferation of
graph database system such as Neo4j, Virtuoso4, and many
others in industry and open source communities, there is a zoo
of graph query languages available today. All of them offer
some flavor of subgraph matching and reachability querying
functionalities. We will give a structured overview of the
major players in the field such as SPARQL 1.1, openCypher5,
declarative pattern matching in Gremlin, and PGQL [37]
and point out their main functional and distinctive features.
A look at the LDBC benchmark [11] queries will complement
this to a summary of the functional features available and
required from a practical, use case-driven standpoint.

Challenges. By contrasting the theoretical design space
with practical query languages and use cases, we point out
certain matches and mismatches, that give opportunities for
knowledge transfer or give rise to new research challenges.
Recently, for instance, practical query languages such as
SPARQL 1.1 and openCypher have introduced support for
regular path queries, which are very well studied in theory,
while there is much room for aligning practical languages
with this literature. Another area where many open research
challenges remain is in aligning recent engineering efforts
centered around the Property Graph model, on the one hand,
with theoretical results applying mainly to labeled graphs,
on the other. In particular, the impact which operations
on graph properties might have on fundamental language
properties must be considered. Finally, practical querying
languages demand for functionalities is not considered in-
depth from a theory perspective yet, such as aggregation
queries, top-k queries, or diversity in path queries. Other
aspects we will cover are: closedness/composability versus
views; and, path logics versus traversal DSLs.

4http://virtuoso.openlinksw.com/
5http://www.opencypher.org/
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3.2 Graph query processing

Advances in theory. The complexity of static query analy-
sis (query containment, equivalence) is well understood for
variations of graph path queries [9, 22, 34]. We will provide
tutorial participants with an overview of the fundamental
results for the languages surveyed in Section 3.1, with a partic-
ular focus on the demarcation between decidable and undecid-
able extensions of regular path queries. Tractable language-
independent characterizations of graph query languages have
been established in terms of the structure of a given graph
instance. These characterizations are the basis for index
data structures for path query evaluation/acceleration. We
will provide an overview of recent advances in the theory
of structural indexing and compression methods for graph
data and their formal connections to the graph query lan-
guages [15, 25]. We will also discuss recent advances in the
theory of worst-case optimal joins algorithms, as applied to
graph query processing [1, 29].

Advances in engineering. In query processing, algorithms
and graph representation go hand in hand. Node and edge
tables, compressed sparse row format, and triple tables are
the most common techniques used for primary graph data
representation. Recent works considered various refinements
of these techniques to increase efficiency by compression [1,
28], partitioning [31], triple indexing [23, 28, 44], and path
indexing [14, 36]. Other advances concern the updatability
of the data structures used [26, 28, 44]. Within the tutorial,
we will give a crisp intro into the common base techniques
and provide an overview of main ideas of the refinements.
On the algorithm side, we will concentrate on advances in
join processing for graph queries, since these advances are
relevant for many of the query classes from the design space.
In the tutorial, we will cover automata [41] and two-way
join-based approaches [23, 26, 28, 33] as well as approaches
that improve the utilization of high combined selectivities
in graph queries, such as sideways information passing [27]
and worst-case optimal n-way joins [1, 30]. We also highlight
current challenges in scalability and efficiency [5].

Challenges. Research on worst-case optimal joins actually
stretches from theory to engineering and excellently exem-
plifies the benefits of bridging both realms. We will use this
example to illustrate to the tutorial participants how bridg-
ing effort can result in coherent understanding and advanced
solutions. With this motivation in place, we point out further
bridging challenges. For instance, while structural indexing is
a very promising method from theory it has not been echoed
much in system implementation. In engineering, though, up-
datability is an important concern, which theory is challenged
to give more consideration. Further bridging challenges we
will point out are n-way joins with multiset semantics and
algorithmic applications of static query analysis.

3.3 Looking ahead
We will round out the tutorial with a discussion of promis-

ing research advances which have not yet bridged the gap
between the theory and engineering of graph query languages.
These include topics such as the decidability, complexity, and
containment of graph query languages involving node and
edge creation [18, 32], features which are particularly ap-

propriate in the context of the Property Graph data model.
These developments have good potential for research impact
in the intersection of engineering and theoretical investiga-
tions of graph query languages.

The tutorial will conclude with a recap of the major areas
that we see for collaboration and cross-fertilization between
engineering and theory.

4. BIOGRAPHY OF THE PRESENTERS
George Fletcher is an associate professor of computer sci-
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ABSTRACT

As more businesses realized that data, in all forms and sizes,
is critical to making the best possible decisions, we see the
continued growth of systems that support massive volume of
non-relational or unstructured forms of data. Nothing shows
the picture more starkly than the Gartner Magic quadrant
for operational database management systems, which as-
sumes that, by 2017, all leading operational DBMSs will of-
fer multiple data models, relational and NoSQL, in a single
DBMS platform. Having a single data platform for man-
aging both well-structured data and NoSQL data is bene-
ficial to users; this approach reduces significantly integra-
tion, migration, development, maintenance, and operational
issues. Therefore, a challenging research work is how to
develop efficient consolidated single data management plat-
form covering both relational data and NoSQL to reduce
integration issues, simplify operations, and eliminate migra-
tion issues. In this tutorial, we review the previous work on
multi-model data management and provide the insights on
the research challenges and directions for future work. The
slides and more materials of this tutorial can be found at
http://udbms.cs.helsinki.fi/?tutorials/edbt2017.

1. INTRODUCTION
In recent years the term big data has become a phe-

nomenon that breaks down borders of many technologies
and approaches that have so far been acknowledged as ma-
ture and robust for any conceivable application. One of
the most challenging issues is the “Variety” of the data. It
may be presented in various types and formats – structured,
semi-structured and unstructured – and produced by differ-
ent sources, and hence natively have various models.

To address the Variety challenge, probably the first type of
respective specific database management systems (DBMS)
are NoSQL databases [34] which can be further classified1 to

∗Supported by the MŠMT ČR grant PROGRES.
1http://nosql-database.org/
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soft (e.g., object or XML DBMSs), and core (e.g., key/value,
document, column, or graph DBMSs). From another point
of view we can classify them to single-model and multi-

model. The latter type enables to store and process struc-
turally different data, i.e. data with distinct models, which
corresponds to the Variety aspect of big data. This approach
can be considered as an opposite idea to the “One Size Does

Not Fit All” argument [39]. However, it can be also under-
stood as a way of re-architecting traditional database mod-
els, namely the relational model, to handle new database
requirements that were not present during its establishment
decades ago [24]. Nothing shows the picture more starkly
than the Gartner Magic quadrant for operational database
management systems [18], which assumes that, by 2017, all
leading operational DBMSs will offer multiple data models,
relational and NoSQL, in a single DBMS platform.
In this tutorial, we review the previous work on multi-

model data management and give insights on the research
challenges and opportunities. First, we show that the idea
of multi-model DBMSs is not a brand new approach. It can
be traced back to Object-Relational Data Management Sys-
tems (ORDBMS) in the early 1990s and in a more broader
scope even to federated and integrated DBMSs in the early
1980s. An ORDBMS system can manage different types of
data such as relational, object, text and spatial by plugging
domain specific data types, functions and index implementa-
tions into the DBMS kernels. For instance, PostgreSQL [6]
can store relational, spatial and XML data. Recently, we
can observe a new trend among NoSQL databases in the
support of multiple data models against a single, integrated
backend, while meeting the growing requirements for scal-
ability and performance. For example, OrientDB [7] is a
graph database extended to support multi-model queries,
while ArangoDB [10] is moving from purely document model
to the support of also key-value, graph and JSON data.
Second, we dive in three key aspects of technology in a

multi-model database system including (1) storage strategies
for multi-model data; (2) query languages accessing data
across multiple models; and (3) query evaluation and its
optimization in the context of multiple data models.
Finally, we provide comparison of features of the existing

multi-model DBMSs and we discuss related open problems
and remaining challenges.
To the best of our knowledge this is the first tutorial to dis-

cuss the state-of-the-art research works and industrial trends
in the context of multi-model data management. Recent tu-
torials related to the big data world include SQL-on-Hadoop
Systems [12], open-source on big data [16], knowledge bases
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in big data analytics [40], or big time-series data manage-
ment [35], i.e., different aspects of big data challenges.

2. COVERED TOPICS

2.1 Background, History and Classification
In the first part of the tutorial we first provide a mo-

tivating example of a multi-model application and briefly
describe most common data models used in the world of
multi-model DBMSs (mainly key/value, relational, JSON,
XML, and graph). Next, we focus on their history and clas-
sification.

The world of multi-model DBMSs can be divided into
single-database and multi-database (see Figure 1), depend-
ing on whether the multiple models are handled in a single
DBMS or there exist a number of cooperating or centrally
managed DBMSs, each handling own data model(s).

Figure 1: Classification of multi-model data man-
agement systems

The first approaches towards multi-model multi-database
data management can be seen in integrated DBMSs [37] and
federated DBMSs [20, 36]. Both types of systems can be
characterized as a meta-DBMS consisting of a collection of
(possibly) heterogeneous DBMSs which can differ in data
models, constraints, query languages, and/or transaction
management. The data integration is usually based on the
idea of mediators [43]. The main difference is that in fed-
erated systems the DBMSs are autonomous and cooperate.
Thus federated databases provide a compromise between no
integration (where the users must explicitly interface with
multiple autonomous DBMSs) and total integration (where
the users can access data through a single global interface
but cannot directly access a DBMS as a local user) [36].

Recently there has appeared a successor of federated data-
bases – so-called polystore systems [38]. The key represen-
tative, system BigDAWG [17], also enables users to pose
declarative queries that span several DBMSs. However, it
consists of islands of information, i.e. collections of DBMSs
accessed with a single query language (e.g., relational or ar-
ray). Cross-island queries are supported using casting (e.g.,
tables to arrays or vice versa).

Another recent related approach from the area of big data
analytics represent so-called multistore systems [23, 44]. For
example system MISO [23] involves two types of data stores
– a parallel relational data warehouse and a system for mas-
sive data storage and analysis (namely HDFS with Apache
Hive). The aim is to combine their capabilities in order to
gain more efficient query processing.

Multi-model single-database DBMSs can also be further
classified. Probably the most natural classification is ac-

cording their origin [2] (see Figure 1). Similarly to XML
databases, we can distinguish native and extended DBMSs
depending on whether the support for multiple models was
the initial feature of the system, or it was added later. In
the latter case we can find representatives amongst all four
core types of NoSQL databases as well as traditional DBMS.

2.2 Overview and Comparison
In the second part of the tutorial we take a closer look

at particular multi-model single-database DBMSs from the
point of view of three key aspects of a database system.
The first database challenge is to develop a strategy to

store distinct data models. Approaches used in the ex-
isting multi-model DBMSs can be classified according to
the combination of used models. The main group (systems
such as, e.g., PostgreSQL or Microsoft SQL Server [9]) is
naturally represented by the (object-)relational model ex-
tended towards other data models, such as JSON, XML etc.
From the set of NoSQL databases we can observe the ten-
dency towards multi-model data management among col-
umn stores [4], key/value stores [11], or graph databases [7].
And there are also representatives of native hierarchical data
stores [5] which support other types of data models.
The second database challenge is a query language capa-

ble of accessing and combining data having distinct models.
Naturally, having a single language for managing queries
over both (semi-)structured and NoSQL data is convenient
to users. And again, in general, this is not a new fea-
ture of a query language, as we can see, e.g., in the case
of the SQL/XML [21] extension of SQL. Most of the cur-
rent NoSQL multi-model databases across the spectrum of
storage strategies [6, 4, 7] support an SQL-like language.
However, as we will show, despite this approach is natural
and user-friendly, there are significant differences as well as
persisting limitations. There also exist XML or JSON query
language extensions towards other data models (e.g., Mark-
Logic’s XPath for JSON [3]), as well as specific languages
like, e.g., SQL++[31], JSONiq [33], or FSD domain-specific
language [24]. In a more broader scope paper [32] identifies
a subset of SQL for access to NoSQL systems or paper [13]
evaluates the possibilities of using declarative structures in
NoSQL data processing. We also discuss other techniques,
like, e.g., [14, 32, 41].
The third challenge corresponds to query evaluation and

optimization. As expected, the world of multi-model DBMSs
exploits and extends verified database approaches such as in-
dices (B+ tree, inverted, range, spatial, full text, etc.), views
and materialization, hashing etc. In this part of the tutorial
we overview and compare the query optimization technolo-
gies used in the previously discussed systems. We also intro-
duce the related area of benchmarking multi-model database
systems. As more and more platforms are proposed to deal
with multi-model data, it becomes important to have bench-
marks specific for this next generation of database systems.
We mention several systems for benchmarking big data sys-
tems including YCSB [15], TPCx-BB [19], Bigframe [22],
and UniBench [25].
We conclude this part with comparison of features of the

state-of-the-art systems in the form of system-feature ma-
trices and a timeline demonstrating their evolution.

2.3 Open Problems and Challenges
In the last part of the tutorial we focus on open problems
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that must be addressed to ensure the success of multi-model
DBMSs. The key areas to be discussed involve:

• Unified query processing and index structures,

• Multi-model main memory structure,

• Multi-model schema extraction, design, and optimiza-
tion, especially in the context of schema-less DBMSs,

• Evolution management and model extensibility,

• Benchmarking and standardization.

In each of these areas we first briefly overview the solutions
in the world of single-model DBMSs as well as eventually ex-
isting (partial) solutions among multi-model DBMSs. Then
we explain the related problems in the context of multi-
model databases, eventually with existing preliminary solu-
tions. We assume that this part will raise questions to be
discussed in the end of the tutorial.

3. TUTORIAL ORGANIZATION
The tutorial is planned for 1.5 hours and will have the

following structure:
Motivation (5’). We motivate the need for multi-model
data management by several examples in the era of big data.
History and classification (10’). We introduce the his-
tory and classification of multi-model databases, including
ORDBMS [9], NoSQL databases [7, 10] and Polyglot per-
sistence [38, 43].
Multi-model data storage (10’). We introduce vari-
ous methods to store multi-model data, including object-
relational model, graph model, document model and native
hierarchical model.
Multi-model data query languages (15’). We compare
languages for multi-model data processing, such as AQL [10],
SQL++ [31], OrientDB SQL [7], and SQL/XML [21].
Multi-model query processing (15’). We overview the
multi-model extensions of traditional query processing ap-
praoches and indexes, such as B+ tree [1, 30], inverted in-
dex [8], schema discovery [42, 24], and cross-model query
processing [10, 7].
Multi-model database benchmarking (15’). We in-
troduce the previous and on-going benchmark systems for
multi-model data, such as TPCx-BB [19], Bigframe [22],
YCSB [15], or UniBench [25].
Open problem and challenges (20’). We conclude with
a discussion of open problems and challenges for database
research in the area of multi-model data management [29].

4. GOALS OF THE TUTORIAL

4.1 Learning Outcomes
The main learning outcomes of this tutorial are as follows:

• Motivation, classification and historical evolution of
multi-model DBMSs.

• An overview of technologies and algorithms used by
the current multi-model DBMSs including storing, query
languages, and query optimization.

• Comparison of features of current multi-model DBMSs.

• A discussion of research challenges and open problems
of multi-model data management.

4.2 Intended Audience
This tutorial is intended for a wide scope of audience,

e.g. for developers and architects to get insights from the
emerging industrial trends and its connections to scientific
research, for stakeholders to make wise and informed de-
cisions on investments in multi-model DBMS products, for
motivated researchers and developers to select new topics
and contribute their expertise on multi-model data, and, of
course, for new developers and students to quickly gain a
comprehensive picture and understand the new trends and
the state-of-art techniques in this field.
Basic knowledge in relational and NoSQL databases is

sufficient to follow the tutorial. Some background in semi-
structured and graph query optimization would be useful,
but is not necessary.
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ABSTRACT
Although outsourcing data to cloud storage has become po-
pular, the increasing concerns about data security and pri-
vacy in the cloud blocks broader cloud adoption. Ensuring
data security and privacy, therefore, is crucial for better and
broader adoption of the cloud. This tutorial provides a com-
prehensive analysis of the state-of-the-art in the context of
data security and privacy for outsourced data. We aim to
cover common security and privacy threats for outsourced
data, and relevant novel schemes and techniques with their
design choices regarding security, privacy, functionality, and
performance. Our explicit focus is on recent schemes from
both the database and the cryptography and security com-
munities that enable query processing over encrypted data
and access oblivious cloud storage systems.

1. INTRODUCTION
Recent advances in cloud technologies have made outsour-

cing personal and corporate data to cloud storage servers
increasingly popular and attractive, due to its promise of
high scalability and availability. However, this increase in
utility comes with a risk of exposing data to a number of se-
curity threats. For example, a curious administrator might
snoop on private data or an adversary might gain unautho-
rized access to sensitive information. Therefore, potential
customers remain skeptical about joining the cloud due to
existing confidentiality and privacy concerns [17]. For broa-
der adoption of cloud services, concerns about data security
and privacy must be addressed. The question here is how to
ensure security and privacy of outsourced data while main-
taining the ability to execute queries efficiently.

Providing secure and privacy-preserving data services over
outsourced data is challenging. Both the database and the
cryptography communities have shown great interest in pro-
viding privacy-preserving and secure data services, but there
is no one scheme that solves all the security and privacy
problems. Different schemes and models have different secu-
rity and privacy guarantees, and these protection guarantees
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come at a cost: decrease in performance and functionality.
There is an obvious trade-off between security/privacy and
functionality/performance. Sacrificing functionality and per-
formance completely for the sake of security and privacy
makes outsourcing services impractical. Therefore, any data
related service needs to seek a proper balance in the space of
security, privacy, functionality and performance. In this tu-
torial, we aim to cover common security and privacy threats
for outsourced data, and relevant state-of–the-art solutions
from the database and the cryptography literature. We also
discuss their limitations, open problems and further rese-
arch directions for secure and private cloud storage systems.
This tutorial explicitly focuses on the ability to query data
in a cloud storage, while maintaining data confidentiality
and access privacy.

2. TUTORIAL OUTLINE
This tutorial presents recent schemes from both the data-

base and the cryptography and security communities in the
context of outsourced data in the cloud. In particular, we
focus on two aspects of outsourced data in the cloud: query
processing over encrypted data and access oblivious cloud
storage systems. The tutorial consists of three main secti-
ons: 1) security and privacy threats for outsourced data,
2) query processing over encrypted data, and 3) access pri-
vacy for oblivious storage. The tutorial is intended to last
3 hours. The initial section highlights security and privacy
concerns for outsourced data services. The next sections
provide a broad survey of research in the area concerning
security/privacy models, proposed techniques/schemes, and
associated problems and challenges.

2.1 Security and Privacy Threats in the Cloud
The cloud is a popular and tempting attack target. It

hosts many businesses at different scales using a shared in-
frastructure. When an attacker attacks the cloud, it has
access to consolidated data, which can have great financial
value. To develop secure and privacy-preserving systems,
the system designers must first develop a clear understan-
ding of the possible threats. Therefore, the tutorial starts
with a general overview of possible security and privacy thre-
ats in the context of storage services. The cloud service is
assumed to be untrusted. Any unauthorized access or the
cloud provider will be considered as an honest-but-curious
adversary, where the adversary runs the protocol correctly,
but may try to learn as much as possible about data. After
highlighting possible security and privacy threats, to draw
attention to the significance of the concerns, we will cover a
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few recent data breaches in terms of their vulnerabilities and
consequences [1, 2]. Security and privacy are required, but
performance and functionality are also essential for cloud
storage systems and these conflict with security and pri-
vacy requirements. The question that concludes the section
is “What is the proper balance between privacy, security,
functionality, and performance?”.

2.2 Query Processing over Encrypted Data
Storing encrypted data in a hostile environment provides

strong data confidentiality. However, the ability to perform
practical query processing on encrypted data remains a ma-
jor challenge. Both the database and the cryptography re-
search communities have shown great interest in querying
encrypted data including keyword search [45, 14], equality
queries [51], range queries [28, 30], and order preserving en-
cryption [5, 37]. These methods sacrifice some degree of
data confidentiality for more effective querying on encryp-
ted data and provide different levels of security guarantees.
Other proposals sacrifice query efficiency for stronger data
confidentiality. Examples include homomorphic encryption
and predicate encryption, which enable numerical computa-
tions on encrypted data without the need for decryption [21,
22, 34]. These have been shown to be quite expensive, and
thus not practical [43].

Recent tutorials that appear in VLDB, ICDE and SIG-
MOD [4, 3, 41, 7] present detailed surveys of systems that
perform query processing on encrypted data. In this tu-
torial, our approach is slightly different from these earlier
works. We cover concepts that have seen significant interest
recently in the security and the cryptography communities
such as Symmetric Searchable Encryption (SSE). We revi-
sit some important privacy and security concepts and cover
important papers from the main security venues like S&P
and CCS while still presenting recent results in the data-
base community.

Initially, various primitive encryption schemes are intro-
duced since they form the building blocks for other system
developments. The functionality and security guarantees of
non-deterministic and deterministic encryption scheme are
presented using Advanced Encryption Standard (AES) [38].
Homomorphic encryption provides a desirable and interes-
ting feature which allows computations directly over encryp-
ted data. However, to date, only specific functionality, e.g.
aggregation, can be performed efficiently. The need for dif-
ferent encryption schemes for specific tasks has resulted in
various proposals such as order preserving encryption [5] and
encrypted keyword search [45]. Both the database and the
cryptography communities still show great interest in deve-
loping more efficient schemes for specific tasks.

Keyword search over encrypted data has received consi-
derable attention in the cryptography and the security com-
munities as well as the database community. Song et al. [45]
propose a foundational technique for keyword search, also
known as the first SSE scheme. This work has been fol-
lowed upon by various competing new security definitions
and constructions in the context of SSE [23, 19, 16, 32, 12,
39]. In this part of the tutorial, we start with [19] which
provides security definitions for SSE for both adaptive and
non-adaptive adversarial settings and proposes constructi-
ons for both adversarial settings. In recent work, Cash et
al. [12] introduce a dynamic SSE solution which supports the
modification of data. It supports storing large data and has

optimal and parallelizable search complexity. Another dyn-
amic SSE solution is proposed by Naveed et al. [39] and is
based on a notion of Blind Storage. In an interesting study,
Cash et al. also show that it is possible to extend the SSE
approach to handle boolean queries in [13]. We discuss how
such an extension might be a guide for further developments
in different contexts.

Range queries are widely used as fundamental database
operations to retrieve records between an upper and a lower
boundary (e.g., retrieving students who have grades between
A and B). A canonical SQL query for such a query is “se-
lect * from students where grade ≤ B and grade ≥ A”. In
spite of its wide utilization, performing range queries in a
privacy-preserving manner is still challenging. Agrawal et
al. introduce order preserving encryption (OPE) [5] to sup-
port range queries efficiently. Unfortunately, OPE is vulne-
rable to statistical attacks and is limited in terms of furt-
her modifications. Since it was first proposed, there have
been a large number of proposals that aim to provide more
secure solutions while still being efficient [29, 37, 10, 35,
33, 20]. Modular order preserving encryption (MOPE) [10]
adds a secret offset to the data before encryption to shift the
ciphertext (in a ring), and to hide the real location of the
encrypted data in their distribution. In [37], an improved
version of MOPE has been proposed. It uses fake queries
over the gap between the maximum and minimum values
to improve the security of MOPE against attacks that ana-
lyze the query patterns to detect the max/min values among
the encrypted data. Improvements in SSE have also benefi-
ted the database community. Similar to [13], which handles
boolean queries by extending SSE, Demertzis et al. [20] re-
cently proposed a range query solution that uses SSE. To
take advantage of SSE, Demertzis et al. propose three types
of indexing approaches with different space requirements in
terms of domain size: quadratic, linear and logarithmic. We
again discuss the proposed schemes in terms of their compu-
tational and space overheads, supported functionality, and
security guarantees.

We finish this section of the tutorial by discussing full-
fledged secure systems [8, 40, 6, 49]. CryptDB [40] is a
secure system that processes different types of database que-
ries using layers of different encryption mechanisms and re-
moves layers of encryption to an appropriate layer for solving
a specific query. MONOMI [49] follows CryptDB’s approach
of using different encryption schemes for specific queries. On
the other hand, it is designed for executing analytical que-
ries. Cipherbase [6] and TrustedDB [8] are full-fledged da-
tabase system proposals that benefit from secure hardware.
We discuss the advantages and disadvantages along with the
security guarantees of these systems.

2.3 Oblivious Storage
Although it is necessary, encryption alone is not sufficient

to solve all privacy challenges posed by the outsourcing of
private data. Indeed, if access patterns are not hidden from
the cloud provider, the provider could detect, for example,
whether and when the same data item is repeatedly accessed,
even if it does not learn the actual content of the item. This
is a real threat to the privacy of outsourced data, as data
access patterns can leak sensitive information using prior
knowledge. For example, Islam et al. [31] showed a concrete
inference attack against an encrypted e-mail repository ex-
ploiting access patterns alone. Oblivious RAM (ORAM) –
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a cryptographic primitive originally proposed by Goldreich
and Ostrovsky [24, 25] as a solution for software protection –
is the standard approach to make access patterns oblivious.
ORAM shuffles and re-encrypts data in each data access,
making access patterns from any two equally long sequences
of read/write operations completely indistinguishable. Hi-
ding access patterns was initially considered in the context
of memory access [25]. While classical ORAM schemes with
small client memory apply directly to the memory access set-
ting, in cloud applications a client has more storage space
and is capable of storing more data locally and more impor-
tantly can outsource the storage of a large dataset to the
cloud. The novel features and fast adoption of the cloud
gave impetus to the research community to develop new se-
cure data services in the past several years and many ORAM
schemes have been constructed for secure cloud storage sys-
tems [11, 36, 50, 47, 46, 9, 42]. Recent works from both the
database and cryptography literature present a comprehen-
sive analysis of ORAM schemes as oblivious cloud storage [9,
42, 15].

This section of the tutorial starts with the definition of
access patterns. We explicitly define the notion of securing
an access pattern. This is followed by a famous attack by
Islam et al. [31] that shows how the leakage of access pat-
terns can be harmful to sensitive data. Why should we care
about access patterns? Why do we need to achieve oblivi-
ous access? After the motivation, we move to the details of
ORAM constructions, which ensure oblivious accesses. To
date, two main types of ORAM constructions exist: hier-
archical and tree-based. The first hierarchical ORAM to be
discuss is GO-ORAM [25]. Follow-up hierarchical ORAM
constructions improve different aspects of GO-ORAM such
as reduced overhead and faster shuffling [27, 26]. Next, we
cover the tree-based ORAM constructions which have been
proposed relatively recently and extended in a large num-
ber of works [44, 48, 18]. Tree-based constructions orga-
nize the memory as a tree. The current state-of-the-art
construction, Path ORAM [48], will be covered as a pro-
totype of tree-based ORAMs. Both GO-ORAM and Path
ORAM were designed for a single client and such systems do
not fit the requirements of cloud deployments, since accesses
to the storage are performed sequentially. Therefore, after
explaining the building blocks of single client hierarchical
and tree-based ORAMs, we will discuss how to construct
ORAMs in such a way that they simulate real-world storage
scenarios by inheriting features like multi-client concurrent
access, asynchronicity, and, of course, security.

PrivateFS by Williams et al. [50] increases the throughput
of storage by enabling parallel accesses to the storage. We
present the PrivateFS framework and then focus on how it
allows multiple clients to obliviously access data in parallel
along with its limitations. Follow-up improvements for more
practical oblivious storage schemes [46, 9, 42] will be consi-
dered in the context of system design, performance, correct-
ness and security. Stefanov and Shi propose ObliviStore [46]
which provides a definition for asynchronous ORAM and
introduces a proxy based approach where the proxy medi-
ates the communication between clients and the server. In
a recent study, Bindschaedler et al. [9] present a subtle se-
curity issue in ObliviStore and propose a modular oblivious
storage system, called CURIOUS. In our recent work [42], we
show that the security definition used by both ObliviStore
and CURIOUS does not capture asynchrony when multiple

clients access storage concurrently in a realistic deployment
scenario. We, therefore, propose TaoStore, a new tree-based
ORAM scheme that processes client requests concurrently
and asynchronously in a non-blocking fashion.

At the end of this section, we provide a detailed analysis of
the current state of secure cloud storage, the open problems
and challenges, and further research directions towards pro-
viding more practical oblivious cloud storage systems.

3. INTENDED AUDIENCE
This tutorial aims to provide a broad survey on data secu-

rity and privacy, and is intended to be beneficial for anyone
interested in data security and privacy. We intend to in-
troduce to the database community state-of-the-art results
from the security literature that are particularly relevant for
databases. The tutorial is self-contained and does not re-
quire any prior knowledge about data security and privacy.
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ORAM with Õ(log2(n)) overhead. In ASIACRYPT ’14,
Proceedings, Part II, pages 62–81. Springer Berlin
Heidelberg, 2014.

[19] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky.
Searchable symmetric encryption: Improved definitions and
efficient constructions. CCS ’06, pages 79–88. ACM, 2006.

[20] I. Demertzis, S. Papadopoulos, O. Papapetrou,
A. Deligiannakis, and M. Garofalakis. Practical private
range search revisited. SIGMOD ’16, pages 185–198. ACM,
2016.

[21] T. Ge and S. Zdonik. Answering aggregation queries in a
secure system model. VLDB ’07, pages 519–530. VLDB
Endowment, 2007.

[22] C. Gentry. Fully homomorphic encryption using ideal
lattices. STOC ’09, pages 169–178. ACM, 2009.

[23] E.-J. Goh. Secure indexes. Cryptology ePrint Archive,
Report 2003/216, 2003. http://eprint.iacr.org/2003/216/.

[24] O. Goldreich. Towards a theory of software protection. In
CRYPTO ’86, pages 426–439. Springer-Verlag, 1987.

[25] O. Goldreich and R. Ostrovsky. Software protection and
simulation on oblivious rams. J. ACM, 43(3):431–473, 1996.

[26] M. T. Goodrich, M. Mitzenmacher, O. Ohrimenko, and
R. Tamassia. Oblivious storage with low I/O overhead.
CoRR, abs/1110.1851, 2011.

[27] M. T. Goodrich, M. Mitzenmacher, O. Ohrimenko, and
R. Tamassia. Practical oblivious storage. CODASPY ’12,
pages 13–24. ACM, 2012.
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ABSTRACT
While named entity recognition is a much addressed re-
search topic, recognizing companies in text is of particular
difficulty. Company names are extremely heterogeneous in
structure, a given company can be referenced in many dif-
ferent ways, their names include person names, locations,
acronyms, numbers, and other unusual tokens. Further, in-
stead of using the official company name, quite different col-
loquial names are frequently used by the general public.

We present a machine learning (CRF) system that reli-
ably recognizes organizations in German texts. In partic-
ular, we construct and employ various dictionaries, regular
expressions, text context, and other techniques to improve
the results. In our experiments we achieved a precision of
91.11% and a recall of 78.82%, showing significant improve-
ment over related work. Using our system we were able to
extract 263,846 company mentions from a corpus of 141,970
newspaper articles.

1. FINDING COMPANIES IN TEXT
Named entity recognition (NER) defines the task of not

only recognizing named entities in unstructured texts but
also classifying them according to a predefined set of entity
types. The NER task was first defined during the MUC-
6 conference [8], where the objective was to discover gen-
eral entity types, such as persons, locations, and organi-
zations as well as time, currency, and percentage expres-
sions in unstructured texts. Subsequent tasks, such as entity
disambiguation, question answering, or relationship extrac-
tion (RE), rely heavily on the performance of NER systems,
which perform as a preprocessing step.

This section highlights the particular difficulties of finding
company entities in (German) texts and introduces our in-
dustrial use-case, namely risk management based on company-
relationship graphs.

1.1 Recognizing company entities
Although there is a large body of work on recognizing

c©2017, Copyright is with the authors. Published in Proc. 20th Inter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

entities starting from persons and organizations, to entities
like gene mentions or chemical compounds, the current re-
search often neglects the detection of more fine-grained sub-
categories, such as person roles or commercial companies.
In many cases, the “standard” entity classes turn out to be
too coarse-grained to be useful in subsequent tasks, such
as automatic enterprise valuation, identifying the sentiment
towards a particular company, or discovering political and
company networks from textual data.

What makes recognizing company names particularly dif-
ficult is that in contrast to person names they are immensely
heterogeneous in their structure. As such, they can be refer-
enced in a multitude of ways and are often composed of many
constituent parts, including person names, locations, and
country names, industry sectors, acronyms, numbers, and
other tokens, which makes them especially hard to recognize.
This heterogeneity is expected to be true particularly for the
range of medium-sized to small companies. Regarding ex-
amples like “Simon Kucher & Partner Strategy & Marketing
Consultants GmbH”, “Loni GmbH”, or “Klaus Traeger”, which
all are official names of German companies, one can easily
see that they vary not only in length and types of their con-
stituent parts but also in the position where specific name
components appear. In the example “Clean-Star GmbH &
Co Autowaschanlage Leipzig KG” the legal form “GmbH &
Co KG” is interleaved with information about the type of
the company (carwash) and location information (Leipzig,
a city in Germany). What is more, company names are not
required to contain specific constituent parts: the example
“Klaus Traeger” from above is simply the name of a person.
It does not provide any additional information apart from
the name itself, which leads to ambiguous names that are
difficult to identify in practice.

Additionally, and in contrast to recognizing named en-
tities from English texts, detecting them in German texts
presents itself as an even greater challenge. As pointed out
by Faruqui and Padó, this difficulty is due to the high mor-
phological complexity of the German language, making tasks
such as lemmatization much harder to solve [5]. Hence, fea-
tures that are highly effective for English often lose their
predictive power for German. Capitalization is a prime ex-
ample of such a feature. Compared to English, where capi-
talization of common nouns serves as a useful indicator for
named entities, in German all nouns are capitalized, which
drastically lowers the predictive power of the feature.

We propose and evaluate a named entity recognizer for
German company names by training a conditional random
field (CRF) classifier [13]. Besides using different features,
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Figure 1: An example of a company graph.

the fundamental idea is to include domain knowledge into
the training phase of the CRF by using different real-world
company dictionaries. Transforming the dictionaries into
token tries enables us to determine efficiently whether the
analyzed text contains companies that are included in the
dictionary. During a preprocessing step, we use the token
trie to mark all companies in the analyzed text that occur in
the used trie. In addition, we automatically extend the dic-
tionaries with carefully crafted variants of company names,
as we expect them to occur in written text.

1.2 Use case: Risk management using com-
pany graphs

Among the many possible applications for a company-
focused NER system, we focus on modern risk management
in financial institutions as one that would benefit from such
a system. Named entity recognition and subsequent rela-
tionship extraction from text for the purpose of risk man-
agement in financial institutions is particularly important
in the context of illiquid risk [1]. Illiquid financial risks ba-
sically represent contracts between two individuals, e.g., a
bank granting a credit over 1 Mio USD (creditor) to a private
company (obligor). Because the risk that the credit-taking
company will not honor its repayment obligations cannot be
easily transferred to other market participants, assessing the
creditworthiness of an obligor is of major importance to the
relatively small number of its creditors and other business
partners. Also, insights gained by one bank on the obligor’s
ability to pay back are usually not shared. Hence, obtaining
adequate and timely information about non-exchange-listed
obligors becomes a difficult task for creditors.

To circumvent this difficulty, financial institutions rely on
the so-called “insurance principle”: pooling a huge number
of independent gains or losses ultimately results in the di-
versification of risk, which in turn eliminates almost all of
it. Unfortunately, risk mitigation based on the insurance
principle relies on the independence assumption between in-
dividual gains or losses. At the latest with the financial crisis
of 2008/2009, this low dependency assumption has turned
out to be devastatingly wrong. Information on the economic
dependency structure between contracting parties and assets
can be seen as the holy grail of financial risk management.

Traditionally, the internal and external data sources used
to assess credit risk focus on individual customers, not on
the relationships between them. Dependency information is
inferred from exposure to common risk factors and thus is
inherently symmetric. Direct non-symmetric dependencies,
such as supply chains, are not captured.

Fortunately, with the growing amount of openly avail-
able data sources, there is justified hope that dependency
modeling becomes significantly easier by leveraging this vast
amount of data. Sadly, most of those data sources are text-
based and require considerable effort to extract the con-
tained knowledge about relationships and dependencies be-
tween the entities of interest. The desired outcome of such
an extraction effort can be organized in a graph as shown in
Figure 1. The figure shows an example of an actual company
graph. To be able to automatically extract such graphs from
large amounts of unstructured data, a reliable NER system
constitutes the first decisive prerequisite for a following re-
lation extraction step.

As pointed out at the beginning, the described use case is
merely one of many possible use cases, others might include
semantic role labeling, machine translation, and question
answering systems.

1.3 Contributions and structure
We address the problem of recognizing company names

from textual data by incorporating dictionary matches into
the training process using a feature that represents whether
a token is part of a known company name. Our evaluation
focusses on analyzing the impact of using a perfect dictio-
nary and different real-world dictionaries, as well as the ef-
fects of different ways to integrate the knowledge contained
in the dictionaries on the performance of the NER system.
In particular, we make the following contributions:

• Creation of a NER system capable of successfully rec-
ognizing companies in German texts with a precision
of 91.11% and a recall of 78.82%.

• Analysis of the impact of various dictionary-based fea-
ture strategies on the performance of the NER.

The remainder of this paper is organized as follows: Sec-
tion 2 discusses related work, while Section 3 presents the
baseline configuration for the CRF. In Section 4 we give an
overview of the text corpus and the dictionaries we used.
We describe the key data structures and technical aspects
of the approach in Section 5. Finally, Section 6 presents our
experimental results and Section 7 concludes the paper.

2. RELATED WORK
Since its first appearance on the MUC-6 conference [8],

the problem of named entity recognition (NER) has become
a well-established task leading to many systems and meth-
ods that have been developed over time [16]. Before dis-
cussing the differences of our approach to the most related
approaches, we start by giving an overview of the related
work.

Most existing NER systems can be classified into rule-
based [3, 21], machine learning-based [15, 27], or hybrid sys-
tems [10, 22]. While rule-based systems make use of care-
fully hand-crafted rules, machine learning approaches tend
to train statistical models, such as Hidden Markov Models
(HMM) [27] or Conditional Random Fields (CRF) [13], to
identify named entities. Hybrid systems combine different
methods to compensate their individual shortcomings. They
try to incorporate the best parts of the applied methods to
reach a high system performance.

Currently, many approaches to the NER problem rely on
CRFs [5, 12, 15]. One of the most popular and freely avail-
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able NER choices for English texts is the Stanford NER sys-
tem [6]. It recognizes named entities by employing a linear-
chain CRF to predict the most likely sequence of named
entity labels. While this system shows good performance on
English texts, it’s performance values decrease when applied
to German texts. This effect has also been pointed out by
Benikova et al. [2], who argue that German NER systems are
not on the same level as their English counterparts despite
the fact that German belongs to the group of well-studied
languages. This difficulty arises from the fact, that the Ger-
man language has a very rich morphology, making it espe-
cially challenging to identify named entities. Besides the
already mentioned problem of capitalization, the German
language is capable of creating complex noun compounds
like “Vermögensverwaltungsgesellschaft” (asset management
company) or “Industrieversicherungsmakler” (industry insur-
ance broker), which make the application of traditional NLP
methods even harder.

Nonetheless, German NER systems exist, and some were
presented at the CoNLL-2003 Shared Task [23]. With the
participating systems achieving F1 scores between 48% and
73%, the winning system [7] obtained an overall F1-measure
of 72.41% on German texts and 64.62% on recognizing or-
ganizational entities. Since the creation of systems for the
CoNLL-2003 Shared Task more than ten years ago, one
of the most successful NER systems for the German lan-
guage was introduced by Faruqui and Padó [5]. It reaches
overall F1 scores between 77.2% and 79.8% by using dis-
tributional similarity features and the Stanford NER sys-
tem. Even more recently, additional German NER sys-
tems were presented at the GermEval-2014 Shared Task [2].
The GermEval Shared Task specifically focuses on the Ger-
man language and represents an extension to the CoNLL-
2003 Shared Task. The three best competing systems were
ExB [9], UKP [19], and MoSTNER [20]. All of them apply
machine learning methods, such as CRFs or Neural Nets,
which leverage dependencies between the utilized features.
Additionally, they use semantic generalization features, such
as word embeddings or distributional similarity to alleviate
the problem of limited lexical coverage, which, according
to [26], is triggered by the often insufficient corpus size used
in the training phase of statistical models. To summarize
the performance of these systems, they operate in the range
of 73% to 79% F1-measure.

Considering the role of dictionaries in the process of build-
ing NER systems, Ratinov and Roth [18] argue that they are
crucial for achieving a high system performance. The pro-
cess of automatically or semi-automatically creating such
dictionaries from various information sources has been ad-
dressed by [11, 18, 24]. Their research focuses on automat-
ically creating large dictionaries, also known as gazetteers,
from open and freely available data sources, such as Wiki-
pedia. The general idea is to establish and assign category
labels for each word sequence representing a viable entity
by using the information contained in corresponding Wiki-
pedia articles. According to [24], dictionaries can be sepa-
rated into two different classes, so-called trigger dictionaries,
which contain keywords that are indicative for a particular
type of entity, and entity dictionaries, which are comprised
of the entire entity labels. For example, a trigger dictionary
for companies would most likely contain legal-form words for
companies, such as “GmbH” (LLC) or “OHG” (general part-
nership), whereas an entity dictionary would contain the

entire representation of the entity itself, e.g., “BMW Ver-
triebs GmbH”. For our approach we decided to employ entity
dictionaries, because there are many openly available data
sources from which they can be constructed. Similar to se-
mantic generalization features, features generated from dic-
tionaries aim to mitigate the unseen word problem resulting
from the low lexical coverage of statistically learned models.

Many systems make use of dictionaries to increase their
performance. All systems mentioned above use dictionaries
at some point in their process [9, 19, 20]. Most of the cur-
rently existing systems integrate the knowledge contained in
dictionaries by constructing features that represent a dictio-
nary lookup. Since each dictionary accounts for a particular
type of entity, the constructed feature encodes to which dic-
tionary the word currently under classification belongs and,
therefore, implicitly provides evidence for its correct classifi-
cation. These features are subsequently used in the training
process of statistical models, such as CRFs or HMMs.

Another way of integrating dictionary knowledge into the
training process of an NER system is described by Cohen
and Sarawagi [4]. They present a semi-Markov extraction
process capable of classifying entire word sequences instead
of single words. By doing so, they effectively bridge the
gap between NER methods that sequentially classify words
and record linkage metrics that apply similarity measures to
compare entire candidate names.

While the previously mentioned systems focus on detect-
ing entities belonging to the entity class“organization”, which,
apart from companies, includes sports teams, universities,
political groups, etc., our system, driven by our use case,
specifically excludes such entities and solely focuses on de-
tecting commercial companies. By using a preprocessing
step that utilizes external knowledge from dictionaries, we
annotate already known companies, which enables us to con-
struct a feature that we use to train a CRF classifier. We
concentrate on integrating the knowledge contained in the
dictionary into the training process of the classifier. In this
way, we use dictionaries from different sources and examine
their impact on the overall system performance. Addition-
ally, we report on strategies to integrate the domain knowl-
edge provided by the dictionaries into the training process.

3. CONDITIONAL RANDOM FIELDS AS
NER BASELINE

For the construction of our company-focused NER sys-
tem, we use the CRFSuite Framework1 to implement a con-
ditional random field model (CRF), as one of the most pop-
ular models for building NER systems.

For the baseline configuration of the system, we used var-
ious features, such as n-grams, prefixes and suffixes, that
are based on those used in the Stanford NER system [6].
Besides regarding different window sizes for each feature,
we considered a variety of additional features, for example a
token-type feature reducing the type of a token to categories
like InitUpper, AllUpper etc., a feature that concatenates
different prefix and suffix lengths for each token or features
that try to capture some specific characteristic of German
company names. However, these features did not result in
additional improvements of our baseline configuration. In
the end we arrived at a baseline configuration that consists
of the following features:

1http://www.chokkan.org/software/crfsuite/
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The auto maker VW AG is now. . .
words : w−3, w−2, w−1, w0, w1, w2, w3,
pos-tags : p−2, p−1, p0, p1, p2,
shape : s−1, s0, s1
prefixes : pr−1, pr0,
suffixes : su−1, su0,
n-grams : n0,

Here, the w symbol encodes the word token features of
a text with its subscript marking the position of a token.
Thus, w0 refers to the current token whereas w−1 and w1

refer to the previous and next tokens, respectively. The
symbols p and s represent the part-of-speech and word shape
features with analog subscript notation.

For the creation of POS tags we used the Stanford log-
linear part-of-speech tagger [25]. As the name suggests, the
shape feature condenses a given word to its shape by sub-
stituting each capitalized letter with an X and each lower
case letter with an x. Thus the word “Bosch” would be
transformed to “Xxxxx”. We also added prefix and suffix
features (pr, su) for the current and previous word. These
features generate all possible prefixes and suffixes for the
specific word. As the last feature we include the set n0 of all
n-grams of the term with n between 1 and the word length
of the current word. This feature set yielded the best perfor-
mance metrics for our baseline configuration without adding
any external knowledge besides POS tags.

The baseline system achieves an F1-measure of 80.65%.
More detailed performance metrics of the baseline are pre-
sented later in Table 2, in the context of our overall experi-
ments.

4. CORPUS & DICTIONARIES
Before describing our approach in Section 5, we introduce

and examine the text corpus and the different information
sources we used for building our dictionaries.

4.1 Text corpus
Our evaluation corpus consists of 141,970 documents con-

taining approximately 3.17 million sentences and 54 million
tokens. The documents were collected from five German
newspaper websites, namely Handelsblatt, Märkische All-
gemeine, Hannoversche Allgemeine, Express, and Ostsee-
Zeitung. We intentionally selected not only large, national
newspapers but also smaller, regional ones; we observe that
larger newspapers have a tendency to report more about
larger companies or corporations, while the regional press
also mentions smaller companies due to their locality in the
region. Thus, we expect to increase our chances of discov-
ering smaller and middle tier companies (SMEs) in the long
tail by using regional articles in our training process. We
extract the main content from the articles by using jsoup2

and hand-crafted selector patterns, which give us the raw
text without HTML markup. Using our final NER system,
we were able to extract a total of 263,846 company mentions
from this corpus.

4.2 Dictionaries
To build our dictionaries we used two official information

sources: the Bundesanzeiger (German Federal Gazette)3 and
2https://jsoup.org
3https://www.bundesanzeiger.de

the Global Legal Entity Identifier Foundation (GLEIF), which
hosts a freely available company dataset4. Additionally,
we used DBpedia5 to account for large businesses and the
German Yellow Pages6 to cover middle-tier and local busi-
nesses. To simulate a best-case scenario, we composed a
“perfect” dictionary containing all manually annotated com-
panies from our testset. Finally, our last dictionary con-
sists of the union of all dictionaries except the perfect one.
Although the information sources discussed below contain
many different attributes, we use only the company name
for the creation of each dictionary.

Bundesanzeiger (BZ). The Bundesanzeiger is the of-
ficial gazette for announcements made by German federal
agencies. Among other things in contains official announce-
ments from companies of various legal forms, such as cor-
porations, limited liability companies, and others including
those of foreign companies. Regarding this function, the role
of the Bundesanzeiger, as well as the information it provides,
is comparable to the U.S. Federal Register. By crawling the
BZ company announcements we obtained 793,974 company
names, their addresses, and their commercial register ID.

GLEIF (GL). The Global Legal Entity Identifier Foun-
dation (GLEIF) was founded by the International Financial
Stability Board7 in 2014. It is a non-profit organization set
up to aid the implementation of the Legal Entity Identi-
fier (LEI). The LEI is designed to be a globally unambigu-
ous, unique identifier for entities that partake in financial
transactions. In this context, the dataset of legal entities
assigned with a unique LEI is made available for public use
by GLEIF. An entry in the provided dataset is, among
other data, comprised of the LEI number, legal name, legal
form, and address of a legal entity. At the time of writing,
the dataset consists of 413,572 legal entities from all global
countries that have been assigned a LEI. The subset for
German legal entities (GL.DE) consists of 42,861 entries.

DBpedia (DBP). The DBpedia project is an effort to
systematically extract information from Wikipedia and pro-
vide it to the public in a structured way [14]. Structuring
the data contained in Wikipedia pages enables us to use
query languages like SPARQL to answer complex queries
based on data originated from Wikipedia. We queried for
the names of all companies contained in the German DB-
pedia database, yielding a dictionary of 41,724 entries. The
resulting dataset contains only companies that have a corre-
sponding Wikipedia page. Thus, we expect that most of the
collected company names in this dataset belong to larger,
more important companies. Since the extracted names orig-
inating from Wikipedia pages, they are very often already in
their colloquial form. Also, the dataset contains some addi-
tional aliases, such as “VW” for the “Volkswagen AG”, which
are difficult to generate automatically.

Yellow Pages (YP). As a marketing solutions provider,
the German Yellow Pages maintains a large company reg-
ister, which mainly contains information about small and
middle-tier businesses. Using the web pages provided by
the register, we were able to extract information, such as
the company name, address, email address, phone number,
and industrial sector for each company listed in the Yellow

4https://www.gleif.org
5http://wiki.dbpedia.org
6http://www.gelbeseiten.de
7http://www.fsb.org/
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Pages. The dataset consists of 416,375 company entries.
Perfect Dictionary (PD). For evaluation purposes, we

manually labeled company mentions in 1,000 documents (see
Sec. 6.1 for details). The perfect dictionary contains exactly
the 2,351 manually annotated companies from our training
and testset. Because of their origin, the company names
contained in this dictionary are already in their colloquial
form. Hence, by using this dictionary in our approach, we
were indeed able to correctly identify all companies occur-
ring in our testset. Furthermore, this dictionary enables us
to simulate the best case scenario in which the dictionary is
comprised of all companies occurring in our testset.

All aforementioned dictionaries contain large sets of Ger-
man company names, so we expect them to overlap. To
gain a better understanding of our dictionary’s coverages,
we computed their mutual containment. We calculated the
overlaps using exact match and a fuzzy match. The latter
constitutes a more realistic matching scenario accounting
for typos and other noise. For computing the matches we
applied the method described in [17]. Summarizing their
approach, the authors compute the similarity between two
strings by splitting them up into n-grams and using sim-
ilarity measures like Dice, Jaccard, or cosine similarity to
determine their similarity using a threshold α. For our cal-
culations we chose a trigram tokenization of the strings and
cosine similarity as our metric. We calculated the fuzzy over-
laps using different thresholds, and observed that a value of
θ = 0.8 performs best on our data.

The pairwise overlaps are shown in Table 1 on the left for
exact matches and on the right for fuzzy matches. Sur-
prisingly, even in the case of fuzzy overlaps, the highest
overlap was only 11.24%, namely between the BZ and the
GL dictionary. All other overlaps were below this value,
except in cases where they were contained in each other
(GL.DE⊂GL). The exact matching overlaps scored even lower
with a maximum overlap of 1.37%.

We identified three possible reasons for these low over-
laps. The first and most obvious reason is that our quite
simplistic fuzzy matching is not sufficient to recognize many
correct matches. Secondly, each of the dictionaries favors
a different kind of company names and company sizes. For
example, the DBpedia dictionary contains mostly colloquial
names whereas the Bundesanzeiger refers to companies us-
ing their full legal name. Finally, the dictionaries where
crawled at slightly different points in time, hence some of
them may contain companies that no longer exist and are
thus missing from the other dataset. As a consequence, we
created an additional dictionary where we combined all of
the mentioned dictionaries into one:

All Dictionaries (ALL). This dictionary is the union
of all company names from all other dictionaries. In total it
comprises 1,713,272 company names.

5. COMPANY RECOGNITION USING
GAZETTEERS

Named entity recognition (NER) is a sequence labeling
task that aims to sequentially classify each word in a given
text as belonging to a specific class, e.g., person or company.
As mentioned, we make use of the CRFSuite Framework
to construct our NER system. First, we describe our alias
generation process, which extends the given dictionaries, in

Section 5.1. Then, Section 5.2 describes how we create the
dictionaries and how we efficiently integrate the contained
domain knowledge into the training process of the CRF.

5.1 Alias generation
Unfortunately, company names acquired from web sources

contain noise, such as country names, legal forms, and other
spurious terms. That is, they often differ significantly from
their colloquial names. Here the “colloquial name” is to
be understood as the name by which a company is com-
monly referred to in text. For example, while “Dr. Ing. h.c.
F. Porsche AG” represents the official company name of the
automobile manufacturer, we most often refer to the com-
pany by its colloquial name, which is simply “Porsche”. As-
suming that articles mention companies more frequently by
their colloquial name then their official name, it becomes
necessary to automatically derive such alternative names, in
the following referred to as aliases, from a company’s official
name.

Regarding the alias generation, special attention should be
paid to the fact that one company often possesses more then
one alias. Considering again the example from above, the
company Porsche has at least four valid and common aliases,
namely“Dr. Ing. h.c. F. Porsche AG”, “Ferdinand Porsche AG”,
“Porsche AG”, or just plain“Porsche”. Furthermore, there are
a number of non-trivial aliases that are particularly difficult
to anticipate by using an automated process. For example
the automobile manufacturer “Volkswagen” is also referred
to as “VW” or even “die Wolfsburger”, referring to the the
town of Wolfsburg, in which Volkswagen’s headquarters is
located.

Our alias generation process consists of the following five
steps, using the example of TOYOTA MOTORTMUSA INC..

Step Example
1 Removal of legal form

designations
TOYOTA
MOTORTMUSA

2 Removal of special char-
acters

TOYOTA MOTOR USA

3 Normalization Toyota Motor USA
4 Country name removal Toyota Motor
5 Stemming of company

names
no change

Each of the Steps 1–4 yields one new alias for the currently
processed company name resulting in four aliases per name.
Note that some of the four aliases are identical and identi-
cal copies are removed. The fifth and final stemming step
adds another five aliases by stemming the company name
itself and all previously generated aliases. This means that
a maximum of nine aliases could be generated by applying
the five processing steps to a given company name.

1 & 2: Legal form & special character cleansing.
We start to infer the aliases by using a rule-based approach
based on regular expressions to strip away a company’s le-
gal form. The regular expressions we use are derived from
the description of business entity types, found on Wikipe-
dia8. The derivation process consists of looking at the busi-
ness entity types for selected countries and manually cre-
ating regular expressions that are able to match the legal
forms of the selected countries. We chose the countries based
on the most frequent legal forms occurring in our datasets.

8http://en.wikipedia.org/wiki/Types of business entity
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Exact match overlaps Fuzzy match overlaps (cosine, θ = 0.8)

BZ DBP YP GL GL.DE PD BZ DBP YP GL GL.DE PD

BZ 796,389 - - - - - 796,389 4,746 114,958 122,308 119,514 4,900
DBP 333 41,724 - - - - 2,436 41,724 2,049 3,472 1,775 857
YP 14,689 757 416,375 - - - 38,170 3,141 416,375 7,988 7,741 330
GL 16,420 792 2,166 413,572 - - 25,419 4,569 6,546 413,572 43,838 504

GL.DE 16,370 452 2,130 42,861 42,861 - 23,372 1,907 6,128 42,861 42,861 249
PD 62 633 105 50 31 2,351 232 821 207 248 125 2,351

Table 1: Exact and fuzzy match dictionary overlaps. For instance, of 796,389 BZ entries, only 333 find and
exact and 2,436 find a similar entry in DBP.

For example, the business entity types we used to derive
the regular expressions for Germany include “Gesellschaft
bürgerlichen Rechts (GbR)”,“Kommanditgesellschaft (KG)”, or
“Offene Handelsgesellschaft (OHG)”.

Step 2 further cleanses the names by removing various
special characters, such as “ R©”, “tm” and parentheses.

3: Normalization of company names. In Step 3, we to-
kenize the company name and “normalize” each token that
has a length greater than four characters and is written in all
capital letters. This normalization step consists of first low-
ercasing and then capitalizing each token that matches the
aforementioned criterion. As an example, the normalization
step would transform “VOLKSWAGEN AG” into “Volkswagen
AG” and “BASF INDIA LIMITED” into “BASF India Limited”.

4: Country name removal. During fourth step we re-
move all country names appearing in a company’s name us-
ing a list of country names and their translations to other
languages9. Although in general more intricate transforma-
tion rules can be created, we found that the ones presented
here are sufficient for our purposes.

5: Stemming. Unfortunately, the technique described in
the next section, which we employ to verify whether a token
sequence is contained in a dictionary has some drawbacks.
Using an exact matching strategy to match company names
that deviate only slightly from the aliases stored in a dictio-
nary can produce suboptimal results. For example, consider
the name “Deutsche Presse Agentur”, which can also occur
as “Deutschen Presse Agentur”, depending on the grammati-
cal context. To mitigate these matching issues, we generate
additional aliases by stemming each token in a company’s
name and all its generated aliases using a German Snow-
ball Stemmer10. Using this strategy we generate the alias
“Deutsch Press Agentur”, which can in turn be used to match
both representations of the aforementioned name. Adding
the resulting aliases to a dictionary increases the chances
to match a slightly varying company name to an entity con-
tained in the dictionary while using an exact match strategy.

Our experiments shall show that using a stemmed dictio-
nary has only a limited impact on the overall system perfor-
mance. As the concepts of stemming and lemmatization are
closely related, we also expect similar performance using a
lemmatized dictionary and thus abstain from lemmatization.

5.2 Dictionary and feature construction
For the creation of the dictionary, we decided to use entity

dictionaries, solely containing entire entity names, instead

9https://en.wikipedia.org/wiki/List of country names in
various languages

10http://snowball.tartarus.org/algorithms/german/
stemmer.html
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Figure 2: An example of a token trie. Double circles
indicate final states.

of using trigger dictionaries, which consist mostly of simple
keywords. Using this approach simplifies the creation of
dictionaries, because we need to add only a given company
name to the list, instead of manually creating triggers.

To make use of the information contained in a dictionary
during the CRF training process, we create a feature that
encodes whether the currently classified token is part of a
company name contained in one of the dictionaries. To effi-
ciently match token sequences in a text against a particular
dictionary we tokenize a company’s official name and all its
aliases and insert the generated tokens, according to their
sequence, into a trie data structure. During the insertion, we
mark the last inserted token of each token sequence with a
flag, denoting the end of the inserted name. In this manner,
we insert all company names into the token trie. Figure 2
shows an excerpt of such a token trie after inserting some
company names. After its creation, the token trie functions
as a finite state automaton (FSA) for efficiently parsing and
annotating token sequences in texts as companies.

We perform the matches in a greedy fashion by always
choosing the longest possible match. The outlined approach
is crucial when using entity dictionaries. In contrast to trig-
ger dictionaries which contain only single tokens, entity dic-
tionaries mark the entire token sequence representing an en-
tity (e.g., “Volkswagen Financial Services GmbH”) and there-
fore need to keep track of their matching state to determine
if a match occurred.

6. EXPERIMENTS
In this section we describe our experiments and present

the results generated by our system. In Section 6.1 we dis-
cuss the setup of our experiments by introducing our test
data, annotation policy, and the validation method used.
Our overall goal is to evaluate the effect of using dictionar-
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ies for NER. Section 6.2 presents the evaluation results of
our baseline system without the use of dictionaries, as well
as a comparative evaluation against the Stanford NER sys-
tem. The results of using only the generated dictionaries
to discover companies in our test data are discussed in Sec-
tion 6.3. Section 6.4 then shows and discusses the results
of integrating the domain knowledge contained in the dic-
tionaries into our baseline system. Finally, we discuss the
case of a perfect dictionary in Section 6.5. The performance
results in terms of precision, recall and F1 measure for all
analyzed system configurations can be found in Table 2.

6.1 Experimental setup
For the evaluation of our system we randomly selected

1,000 articles for which we could confirm that they contain at
least one company mention. We manually annotated these
articles by assigning the company-label to each token rep-
resenting a company mention in the text. We used a very
strict annotation policy for tagging the company names in
each document; the goal of the policy is to distinguish be-
tween mentions referring to a company and mentions refer-
ring to related products, persons, or brands. To this end,
we considered the context of a company mention to identify
a “real” company like BMW, as opposed to a mention ap-
pearing as part of another phrase, such as BMW X6, which
we did not annotate. In this case, the token X6 identifies
the token BMW as part of a product mention. During the
annotation process, we discovered and marked 2,351 com-
pany mentions in the chosen documents, each consisting
of one or more tokens. Links to the news articles of this
corpus together with titles and labeled entities are avail-
able at https://hpi.de/en/naumann/projects/repeatability/
datasets/corpus-comp-ner.html.

To evaluate the performance of our system, we performed
a ten-fold cross-validation by splitting the annotated doc-
uments into ten folds, each fold containing 900 articles for
training and 100 articles for testing. For each fold, we mea-
sure precision, recall, and F1-measure. As usual, the overall
performance of the trained model is calculated by averaging
the performance metrics over all folds.

We conduct a series of experiments to evaluate our sys-
tem as well as the impact of different dictionary versions on
the systems performance. The results of all experiments are
given in Table 2. As our first experiment we compared the
performance of our baseline system to the Stanford NER
system as described in Section 6.2. Subsequently, we con-
ducted multiple experiments to evaluate the impact of dif-
ferent dictionary versions on the performance of the gener-
ated CRF model. Therefore, we generated multiple dictio-
nary versions, which correspond to the rows in Table 2. We
created three different dictionary versions for the Bunde-
sanzeiger, GLEIF, GLEIF(DE), Yellow Pages and DBpedia.
The first dictionary version contains the original company
names obtained from the crawled sources. The second ver-
sion, marked with “+ Alias”, additionally includes all aliases
generated by the process described in Section 5.1. The last
version, marked with “+ Alias + Stem”, also incorporates a
stemmed version of each company name and all its generated
aliases. We excluded the perfect dictionary from the alias
generation process, since it contains the manually tagged
colloquial company names. Hence, the approximation of
colloquial company names through alias generation is not
necessary.

We evaluated each of the generated dictionary versions
in two scenarios, illustrated by the two columns “Dict only”
and “CRF” in Table 2. In the “Dict only” scenario, described
in Section 6.3, we use each dictionary on its own to identify
the companies contained in our testset. The “CRF” scenario
is discussed in Section 6.4 where we focused on integrating
the different dictionary versions into the training process of
the CRF and use the generated model to discover company
names.

6.2 No dictionaries
We started our experiments by evaluating the baseline

configuration introduced in Section 2. Using the basic fea-
tures mentioned there, we were able to achieve a perfor-
mance of F1=80.65% without adding any additional domain
knowledge to the system (see Table 2 for details).

We additionally compare our baseline system to the Stan-
ford NER system [6] as one of the most popular NER sys-
tems. We used the Stanford system to train a new model on
the same training and test documents as for our system, us-
ing the configuration suggested on their web-page11. Using
the resulting model, the Stanford system achieves a slightly
better F1 score of 81.76%. This result is 1.36 percentage
points below the precision and 2.68 percentage points above
the recall metrics, due to slight variations in the features
used.

6.3 Dictionaries only
Next, we used the generated dictionaries on their own to

discover the company mentions contained in our testset, as
described in Section 5.2. The left, “Dict only” part of Ta-
ble 2 represents the results of our experiments. The highest
precision of 74.23% could be achieved by using the Bunde-
sanzeiger dictionary in its original form. Using the DBpedia
dictionary in its original form resulted in the highest F1-
measure value of 51.51%. It is worth noting that using this
dictionary in combination with our baseline system and the
generated aliases also yielded the best results as described in
the following section. Not surprisingly, the highest recall of
72.16% was achieved by combining all dictionaries (except
PD) that include the generated aliases and the stemmed
name versions.

To understand the impact of alias generation, we compare
the average recall of all basic dictionaries, which is 22.92%,
with the average recall of all dictionary-extended dictionar-
ies, which is 42.97% (data not shown). The difference of
20,06 percentage points is sufficiently high to justify the use
of aliases in principle. Analogously, we analyzed stemming.
The average improvement caused by using the dictionaries
that include aliases as well as the stemmed names accounted
for another increase of 0.21%. However, the improvements
of recall are accompanied by an average decrease in preci-
sion of 13.46% from the no-aliases to the aliases version,
and a further decrease by 14.44 percentage points to a total
decrease of −18.28% when including the stemmed versions.
In summary, we suggest the use of aliases but refrain from
including company name stems in a dictionary.

In addition, we experimented with a dictionary that con-
tained only the company names and their stemmed versions,
but no aliases, to assess the impact of stemming on the
dictionary-only approach. Here, the precision decreased by
18.94 percentage points while the recall increased only by

11http://nlp.stanford.edu/software/crf-faq.shtml
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Dictionary Dict only CRF

P R F1 P R F1

Baseline (BL) – – – 91.38% 72.25% 80.65%
Stanford NER – – – 90.02% 74.93% 81.76%

BZ 74.23% 3.23% 6.15% 90.90% 75.79% 82.63%
BZ + Alias 16.20% 39.27% 22.91% 91.09% 75.74% 82.63%
BZ + Alias + Stem 6.38% 39.77% 10.98% 90.93% 76.03% 82.78%
GL 34.61% 2.92% 5.37% 90.91% 75.76% 82.62%
GL + Alias 41.71% 50.55% 45.67% 90.78% 77.43% 83.55%
GL + Alias + Stem 18.79% 50.77% 27.39% 90.83% 77.07% 83.36%
GL.DE 68.91% 1.17% 2.29% 90.92% 75.82% 82.66%
GL.DE + Alias 55.78% 21.58% 31.02% 90.97% 76.89% 83.30%
GL.DE + Alias + Stem 39.54% 21.58% 27.85% 90.83% 77.07% 83.36%
YP 16.11% 15.01% 15.53% 91.02% 75.88% 82.73%
YP + Alias 18.34% 21.26% 19.68% 90.92% 75.89% 82.67%
YP + Alias + Stem 7.05% 21.34% 10.58% 90.29% 75.92% 82.72%
DBP 63.13% 43.61% 51.51% 91.25% 78.54% 84.40%
DBP + Alias 44.18% 53.38% 48.29% 91.11% 78.82% 84.50%
DBP + Alias + Stem 29.79% 53.47% 38.24% 91.14% 78.76% 84.48%
ALL 20.07% 71.56% 31.33% 90.60% 77.36% 83.43%
ALL + Alias 20.11% 71.80% 31.39% 90.61% 77.33% 83.41%
ALL + Alias + Stem 8.15% 72.16% 14.64% 90.94% 76.93% 83.32%

PD (perfect dict.) 81.67% 100.00% 89.90% 94.68% 96.47% 95.56%
PD (perfect dict.) + Stem 81.67% 100.00% 89.90% 94.68% 96.47% 95.56%

Table 2: Results of including different dictionaries into the CRF training process

0.08 percentage points (not shown in Table 2). Hence, we
conclude that the stemming of company names has a nega-
tive impact on the precision of the dictionary-only approach
and does not lead to significant improvement of recall.

When averaging over all the different dictionary versions
(without PD) we arrive at an overall performance of 32.39%
precision and 36.36% recall. Considering these metrics, it
becomes clear that a dictionary-only approach is not suffi-
cient for discovering company names in textual data.

Regarding the perfect dictionary, it is interesting to see
that while a recall of 100% could be achieved, the precision
reached only a maximum of 81.67%, which is owed to false
positives. These are mostly of the form mentioned earlier,
where a company name is part of a product name or role
description (the VW executive was ...). We expect such errors
to be eliminated by the combination with the CRF approach,
which makes use of a terms’s context.

6.4 Combining dictionaries and CRF
We now discuss the results achieved by combining the do-

main knowledge contained in the dictionaries and the CRF
training process. Overall, we were able to improve the over-
all performance over the no-dictionary and the dictionary-
only approaches, regardless of which dictionary we used.
Regarding the right columns of Table 2, we achieved the
best results in recall and F1-measure by using the dictionary
generated from the DBpedia including the generated aliases
(DBP + Alias) data. Using this dictionary, the system was
able to reach an F1 score of 84.50% with precision and recall
values of 91.11% and 78.82%, respectively. By combining the
colloquial names already contained in the DBpedia dictio-
nary with the additionally generated alias names, we are able
to match more companies than with any of the other dictio-
naries, explaining our high recall. Interestingly, the initial
intuition that combining all dictionaries into one would re-
sult in the best performance of our system, turned out not
to be true. A more concise dictionary, such as DBpedia,

yields the slightly better results.
As we have done in the previous section, we calculated

the average change in precision, recall, and F1-measure. Ta-
ble 3 shows the average change in performance for gradually
evolving our baseline system by including the different dic-
tionary versions. We calculated these values to determine
which of the extension steps described in Section 5.1 had the
largest impact on system performance. As can be seen, the
average change in performance increases significantly mov-
ing from the baseline system to a system that uses additional
domain knowledge by integrating the basic dictionary ver-
sion without aliases or stemming. Using additional domain
knowledge, the system’s precision slightly decreased by 0.45
percentage points, whereas recall and F1-measure improved
on average by 4.28 and 2.43 percentage points, respectively.

Using the dictionary versions containing the generated
aliases for each company name, the system gained on average
another 0.26 percentage points in F1-measure. With respect
to average precision and recall, the recall increased by 0.49
percentage points while precision slightly decreased by 0.02
percentage points. Due to the alias generation process that
condenses a given company name according to the rules de-
scribed in Section 5.1, we were able to increase the recall
while at the same time sustaining precision: we achieved a
maximum increase of 6.57 percentage points for recall while
the precision decreased only slightly by 0.28% using the
DBpedia dictionary including generated alias names. The
largest increase of 3.85 percentage points in F1-measure was
also recorded while using the same dictionary. The results
suggest that by further improving the alias generation pro-
cess it should be possible to increase the recall while sus-
taining high precision.

Regarding dictionaries containing the stemmed version of
the original company names and their aliases, we conclude
that stemming has only a limited impact; the results pro-
duced by including stemmed names are not significantly bet-
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Transition Avg. Precision Avg. Recall Avg. F1

BL −→ BL + Dict −0.45% +4.28% +2.43%
BL + Dict −→ BL + Dict + Stem +0.05% −0.06% −0.09%
BL + Dict −→ BL + Dict + Alias −0.02% +0.49% +0.26%

BL + Dict + Alias −→ BL + Dict + Alias + Stem −0.09% −0.05% −0.01%

Table 3: Performance change for different dictionary versions, averaged over all dictionaries except PD

ter. For a dictionary version that included only the company
names and their stemmed version, the improvements were
so low or even negative, that we report only on the aver-
age change of using this dictionary in Table 3. As it turned
out, the reduction of company names to their stemmed form
accounts only for a very limited number of cases. For in-
stance, the airline Lufthansa can be referred to as “Deutsche
Lufthansa”or“Deutschen Lufthansa”, depending on the gram-
matical context. By using the common stemmed version
(“Deutsch Lufthansa”) of these two aliases, it is possible to
match both company names. However, such circumstances
occur much fewer times for company names than expected.

Because the dictionary feature might add a bias towards
labeling known tokens as a company, we also examined how
many novel named entities we find, i.e., ones that are not
already included in the dictionary. For this experiment, we
used each testset in our 10 folds, each consisting of 100 doc-
uments not used during the training of the corresponding
model. Using the DBpedia including aliases model trained
on the remaining 900 documents of each fold, we were able to
discover on average 328 company mentions. Examining how
many of these company mentions are already contained in
the dictionary yielded, that on average 45.85% (≈ 150 com-
panies) of the discovered companies were already included in
the dictionary, whereas the remaining 54.15% (≈173) were
newly discovered. This shows that although the dictionary
feature adds a bias towards already known companies, it is
still able to generalize to entities which are not part of the
used dictionary.

6.5 Perfect dictionary
To simulate a scenario in which the dictionary can be used

on its own to identify the company names in a given text,
we use the perfect dictionary. As already mentioned in Sec-
tion 4, the perfect dictionary consists of all manually anno-
tated company mentions from our test and training sets.

Although using this dictionary yields the highest scores for
precision, recall, and F1-measure, the F1-measure does not
reach 100%. The reason for this behavior can be explained
by our strict annotation policy. By using this annotation
scheme it becomes hard for the algorithm to avoid producing
false positives. Consider the case of recognizing the airline
Boeing in the mentions “Boeing” and “Boeing 747”. In both
cases “Boeing” would be recognized as a company, producing
one true positive and one false positive. Hence, a drawback
of our system is that the dictionary feature introduces a bias
towards companies contained within the dictionary, inducing
some false positives if the dictionary feature turns out to
be wrong. This problem translates to all other dictionaries
that we use. Therefore, we argue that even under ideal
circumstances where the dictionary contains all entities that
we want to discover, it is not possible to sustain a high
precision value by using the dictionary on its own.

Nonetheless, as can be seen by comparing the results in

Table 2, using dictionaries to incorporate domain knowledge
into the CRF method yields superior results over using them
on their own to recognize company names. Considering the
average precision, recall, and F1-measure, the combination
of dictionaries and CRF performs significantly better then
the pure dictionary approach described in Section 6.3. In-
tegrating the domain knowledge contained in the DBpedia
dictionary we achieved a precision of 91.11% and a recall
of 78.82%. Regarding the subsequent application or rela-
tionship extraction we consider this result as sufficient for
recognizing companies in textual data.

7. CONCLUSION & FUTURE WORK
We described a named entity recognition system capable

of recognizing companies in textual data with high lexical
complexity, achieving a precision of up to 91.11% at a recall
of 78.82%. Besides creating the NER system, the particu-
lar focus of this work was to analyze the impact of different
dictionaries containing company names on the performance
of the NER system. Our investigation showed that signif-
icant performance improvements can be made by carefully
including domain knowledge in the form of dictionaries into
the training process of an NER system. On average we were
able to increase recall and F1-measure by 6.57 and 3.85 per-
centage points, respectively, over our baseline that did not
use any external knowledge. Additionally, we showed that
applying an alias generation process leads to an increase in
recall while sustaining a high precision.

While working with company names, it became increas-
ingly clear that a more sophisticated alias generation process
would be needed to handle some of the extremely complex
company names. Thus, our future work shall address this is-
sue by including a nested named entity recognition (NNER)
step into the preprocessing phase of the dictionary entities.
By doing so, we hope to gain semantic knowledge about the
constituent parts that form a company name, enabling us to
not only increase dictionary quality but to also better deter-
mine the colloquial name of a company, which in turn would
increase the matches of company names in a given text. An-
other improvement would be to include entities of different
entity types (e.g., brands or products) into the token trie,
treating them as a blacklist that can then be used to deter-
mine whether a sequence of tokens should be marked as a
company or not.

The observation that using the smallest dictionary yielded
the best results on our newspaper corpus, could indicate
that it is important to match the characteristic of the used
dictionary with the characteristic of the text corpus. Thus
it could be promising to investigate additional corpora, e.g.,
legal documents, and determine whether dictionaries that
are closer to the characteristic of the new corpora also result
in a higher system performance.
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ABSTRACT
The temporal linkage of census data allows the detailed anal-
ysis of population-related changes in an area of interest. It
should not only link records about the same person but also
support the linkage of groups of related persons such as
households. In this paper, we thus propose a new approach
to both temporal record and group (household) linkage for
census data and study its application for change analysis.
The approach utilizes the relationships between individu-
als to determine the similarity of groups and their members
within a graph-based method. The approach is also itera-
tive by first identifying high quality matches that are sub-
sequently extended by matches found with less restrictive
similarity criteria. A comprehensive evaluation using histor-
ical census data from the UK indicates a high effectiveness
of the proposed approach. Furthermore, the linkage enables
an insightful analysis of household changes determined by
so-called evolution patterns.

1. INTRODUCTION
Census data provides valuable information about individ-

uals and households within cities or regions at a specific
point in time [18]. Moreover, the temporal linkage of dif-
ferent census datasets allows analyzing the changes that oc-
cur in a population which is of increasing importance for
social, demographic, economic and health-related studies
[8, 13, 18]. In general, the temporal analysis of changing
information about individuals and other entities is seen as
a major requirement and challenge for future data analysis
[6].

There is a large number of available census datasets for
different regions of interest. Normally such census datasets
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are collected on a regular basis, e.g., every ten years, so
that multiple successive versions can be utilized to analyze
population- and household-related changes. A key prerequi-
site for such change studies is the temporal linkage of per-
son records as well as of households, representing a group
of individuals living together. There has been a modest
amount of previous work on such temporal linkage problems,
mainly focusing on temporal record linkage taking into ac-
count that linkage-relevant attributes such as surname, ad-
dress or occupation may change over time [2, 5, 15, 17] (see
Section 6). These studies mostly ignore the relationships be-
tween individuals, e.g., people living together in a household.
Moreover, they do not consider the linkage and evolution of
groups of related individuals, such as in a household, which
is a main focus of this paper.

Fig. 1 illustrates the problem for two successive histori-
cal census datasets from 1871 and 1881. In each dataset,
individuals are associated to a single household and have a
household-specific relationship or role, such as head of house-
hold or daughter (of the head of household). These relation-
ships can be represented in household graphs as shown in
the lower part of Fig. 1. To understand the changes between
the two considered points in time, one has to find matching
individuals and their changes which is challenging, in par-
ticular due to the occurrence of frequent names (first names
like ’John’ and ’Elizabeth’ or surnames like ’Ashworth’ and
’Smith’ in our dataset) and attribute changes. Of course,
we also need to identify people who occur only in one of
the datasets because of deaths, emigration, births and im-
migration. Obviously, a person in one census dataset should
match to at most one person in another census dataset so
that temporal linkage aims at a 1:1 mapping between person
records. Moreover, we want to identify household-related
changes, e.g., to what degree the individuals in a household
have stayed together or moved to other households. In this
case, we have to identify a many-to-many mapping between
households.

In our example in Fig. 1, the daughter of the head of
household in ga1871 (Alice) married Steve from household
gb1871 and they both moved into the new household gc1881
as shown in the 1881 census data (see blue nodes in house-
hold graphs). John Riley died within the considered time
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𝑫𝟏𝟖𝟕𝟏 groupID recordID first name surname sex age role address

𝑔1881
𝑎

1881_1 john ashworth m 49 head
fearn hill 

terr
1881_2 elizabeth ashworth f 47 wife

1881_3 william ashworth m 12 son

𝑔1881
𝑏 1881_4 john smith m 48 head hippins 

terrace1881_5 elizabeth smith f 44 wife

𝑔1881
𝑐

1881_6 steve smith m 20 head

thorn hill1881_7 alice smith f 18 wife

1881_8 mary smith f 1 daughter

𝑔1881
𝑑

1881_9 john ashworth m 49 head

fearn hill1881_10 elizabeth ashworth f 47 wife

1881_11 william ashworth m 72 father

𝑫𝟏𝟖𝟖𝟏groupID recordID first name surname sex age role address

𝑔1871
𝑎

1871_1 john ashworth m 39 head

fern hill 

terrace

1871_2 elizabeth ashworth f 37 wife

1871_3 alice ashworth f 8 daughter

1871_4 william ashworth m 2 son

1871_5 john riley m 72 father in law

𝑔1871
𝑏

1871_6 john smith m 38 head
hippins 

terrace
1871_7 elizabeth smith f 34 wife

1871_8 steve smith m 10 son

Elizabeth Ashworth
1871_2

John Riley 
1871_5

William Ashworth 
1871_4

wife father 
in law

𝒈𝟏𝟖𝟕𝟏
𝒂

𝒈𝟏𝟖𝟕𝟏
𝒃

daughter son

wife son

head 
John Ashworth

1871_1

Alice Ashworth
1871_3

head 
John Smith

1871_6
Elizabeth Smith

1871_7
Steve Smith

1871_8

Elizabeth Ashworth
1881_2

William Ashworth 
1881_3

wife son

wife

head 
John Ashworth

1881_1

head 
John Smith

1881_4
Elizabeth Smith

1881_5

wife

head 
Steve Smith

1881_6
Alice Smith

1881_7
Mary Smith

1881_8

𝒈𝟏𝟖𝟖𝟏
𝒂

𝒈𝟏𝟖𝟖𝟏
𝒃

𝒈𝟏𝟖𝟖𝟏
𝒄

Elizabeth Ashworth
1881_10

William Ashworth 
1881_11

wife father

head 
John Ashworth

1881_9

𝒈𝟏𝟖𝟖𝟏
𝒅

daughter

Figure 1: Example census data for two points in time (1871 and 1881). Red / green / blue colored nodes
denote individuals who disappear / newly appear / moved to another household.

period (red node for the first census), while the child Mary
Smith was born (green node for the second census). Further-
more, a new family (household gd1881) moved into the region.
Note that the groups ga1881 and gd1881 have highly similar at-
tribute values, but only ga1871 should be linked to ga1881. To
overcome such ambiguities of person-related attributes, our
linkage approach will utilize stable attributes (such as birth
year) as well as stable relationships between records, such
as family relations or age differences.

In this paper, we propose and evaluate a novel approach
for temporal group and record linkage for historical cen-
sus data that considers the relationships between individ-
uals. Moreover, we use the linked information for an initial
change analysis for individuals and households. Specifically,
we make the following contributions:

• We propose a new graph-based approach to linking
households and person records between successive ver-
sions of census data. The approach works in sev-
eral steps and utilizes an approximate record match-
ing approach to identify pairs of related households.
The linkage of households is based on their graph rep-
resentation, and identifies common subgraphs refer-
ring to individuals with stable attributes and relation-
ships. The final record links are derived from the
linked subgraphs. The approach is iterative and de-
termines group and record links in multiple rounds
with decreasing restrictiveness. In this way we start
with finding the best matches and apply less restric-
tive similarity criteria only for the more difficult to
match records and groups.

• We utilize the determined record and group links for
an initial change analysis based on different evolution
patterns, including the splitting and merging of house-
holds.

• We apply and evaluate the proposed approaches for six
historical UK census datasets. The evaluation shows
that the proposed linkage approaches are highly effec-
tive and that they allow insightful observations regard-
ing the changes over time.

In the next section, we formalize our problem of tempo-
ral record and group linkage. The linkage approach is de-
scribed in Section 3, while Section 4 discusses the use of evo-
lution patterns for change analysis. In Section 5, we evaluate
our temporal linkage approach and analyze the evolution of
households for the considered census datasets. We then dis-
cuss related work and conclude.

2. PROBLEM DEFINITION
Our approaches to temporal linkage and evolution analy-

sis work on a set of census datasets D referring to different
points in time. Each dataset Di of time ti consists of a set of
person records Ri and a set of groups Gi representing house-
holds. The records in Ri are homogeneously structured and
have attributes such as first name, surname, age, occupation,
and so on. A group gi ∈ Gi consists of associated person
records (household members) of Ri as well as relationships
between them. Each record is part of one group (household)
only, i.e., groups are not overlapping.

Groups are represented as (household) graphs gi=(Vi,Ei)
where the vertices of Vi correspond to the group members
and the edges of Ei represent their relationships. Relation-
ships (edges) have attributes or properties, in particular a
relationship type or role, e.g., daughter. Such relationships
can be part of the input data (as in Fig. 1) or can be derived
later, e.g., the age difference between two persons. For our
example, we may record in the graph for group ga1871 not only
the role daughter between Alice and her father John but also
the age difference 31 (39-8). Our algorithm not only deter-
mines additional properties such as age differences but also
additional relationships among group members, e.g., that
Alice and William are siblings with an age difference of 6.

Given these datasets and graphs, we want to determine
for each pair Di = (Ri, Gi) and Di+1 = (Ri+1, Gi+1) of suc-
cessive census datasets a so-called record mapping Mi,i+1

R

and a group mapping Mi,i+1
G . The record mapping Mi,i+1

R

includes all pairs of records referring to the same real-world
person (person links). The mapping is of cardinality 1:1
since each person in Ri can match with at most one person
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in Ri+1 and vice versa:

Mi,i+1
R : = {(ri, ri+1)|(ri, ri+1) ∈ Ri ×Ri+1∧

∃(ri, r′i+1) ∈MR → r′i+1 = ri+1∧
∃(r′i, ri+1) ∈MR → r′i = ri}

(1)

A group mapping Mi,i+1
G consists of group pairs where a

group gi of Gi corresponds completely or partially to a group
gi+1 of Gi+1 according to the common records:

Mi,i+1
G : = {(gi, gi+1)|(gi, gi+1) ∈ Gi ×Gi+1} (2)

Group mappings can be of cardinailty many-to-many (N:M)
since persons of a household can match persons of several
households in a different census.

For our running example of Fig. 1, the record mapping in-
cludes seven person links between the white and blue colored
graph vertices, e.g. link (1871 1, 1888 1) for John Ashworth
and (1871 3, 1888 7) for the link between Alice Ashworth
and Alice Smith. The two groups in the first census dataset
are split among two groups each in the second dataset, so
that there are four group links including (ga1871, g

a
1881). In our

evolution analysis, we will also consider person records and
groups that are not reflected in these mappings, e.g. relating
to newly occurring or disappeared persons and households.

3. TEMPORAL GROUP LINKAGE
Determining the record and group mappings for the tem-

poral linkage of census datasets is challenging not only due
to changing attribute values for the same person (e.g., for
surname or occupation) but also due to the high ambiguity
and frequent occurrence of certain attribute values, as well
as because of data quality issues, e.g., misspelled names,
errors for age etc. Group linkage has hardly been studied
before 1 and requires a flexible approach to determine many-
to-many mappings taking into account that households may
split or merge. Similar in spirit to collective entity reso-
lution [1, 20], we determine the similarity between records
not only based on attribute values but also considering re-
lationships between records (persons) within a graph-based
approach. Furthermore, we not only address record linkage
but solve record and group linkage jointly within a combined
approach. To better deal with the partially low similarity of
matching person records and the need to determine many-
to-many group mappings we propose an iterative approach
for temporal linkage. We first identify safe matches with
a high similarity and then continuously relax the similarity
criterion to find additional record and group links.

Algorithm 1 describes our approach for determining a
group mapping Mi,i+1

G and a record mapping Mi,i+1
R be-

tween two successive census datasets Di and Di+1. The
input of the algorithm includes two similarity functions for
record matching and parameters for the iterative adjustment
of a similarity threshold δ. We first give a high-level descrip-
tion of the algorithm and its main steps. These steps are
then explained in more detail in the four following subsec-
tions of this section.

1We are only aware of one approach for group-based linkage
of census data [8] that is non-iterative and less sophisticated
regarding the use of relationships. In our evaluation in Sec-
tion 5, we will compare the results for this scheme with our
approach.

At first, we enrich the graphs for each group (household)
in the two input datasets by adding implicit relationships
between group members, such as derivable family relations.
Moreover, we compute for each relationship between persons
the age difference as an additional relationship property for
later use in the similarity computations.

The main part of the algorithm is a loop to iteratively
identify and extend the group mappingMi,i+1

G and the record

mappingMi,i+1
R . In each iteration, we first apply a similar-

ity function Sim func to determine an initial linking and
clustering of person records based on attribute similarities
only (pre-matching step). The similarity function Sim func
specifies the person attributes, a weighting vector ω, and a
similarity threshold δ (i.e., two persons are considered to
match if the weighted sum of their attribute similarities ex-
ceeds δ). In the first iteration, we apply a high value δ high
for δ to start with identifying safely matching persons as a
basis for also finding safe group matches. Group matches
are only determined for pairs of groups connected by at
least one (initial) person link. For such group pairs, we
apply a subgraph matching to determine shared subgraphs

Algorithm 1: Iterative record and group linkage

Input:
-Di: old census dataset
-Di+1: new census dataset
-Sim func: similarity function for initial record matching
-∆: delta for relaxing similarity threshold
-δ high: upper bound of similarity threshold
-δ low: lower bound of similarity threshold
-Sim funcrem: similarity function for remaining records
Output:

-Mi,i+1
R : record mapping

-Mi,i+1
G : group mapping

// initialization

1 Mi,i+1
R ← ∅,Mi,i+1

G ← ∅
2 Mp

R ← ∅,M
p
G ← ∅

3 Gi ←completeGroups (Gi)
4 Gi+1 ←completeGroups (Gi+1)
5 Sim func.δ ← δ high

// iterative subgraph matching
6 repeat

// identification of candidates
7 C ← prematching (Ri, Ri+1, Sim func)

// subgraph matching and criteria computation
8 SubG ←subgroups (C, Gi, Gi+1, Sim func)

9 Mp
G ←selectGroupMatches (SubG)

// extend group mapping

10 Mi,i+1
G ←Mi,i+1

G ∪Mp
G

// extend record mapping

11 Mp
R ←extractRecordMapping (Mp

R, SubG, Ri, Ri+1)

12 Mi,i+1
R ←Mi,i+1

R ∪Mp
R

// extract unlinked records and records that are
related to unlinked records

13 Ri ← nonMatchedRecords (Ri,Mi,i+1
R )

14 Ri+1 ← nonMatchedRecords (Ri+1,Mi,i+1
R )

15 Sim func.δ ← Sim func.δ −∆

16 untilMp
G = ∅ ∨ Sim func.δ < δ low

// match remaining records

17 Mp
R ←match (Ri, Ri+1, Sim funcrem)

18 Mi,i+1
R ←Mi,i+1

R ∪Mp
R

19 Mi,i+1
G ←Mi,i+1

G ∪ extractGroupLinks(Mp
R, Gi, Gi+1)

20 return <Mi,i+1
R ,Mi,i+1

G >
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with both matching persons and matching relationships. In
general, a group of the first census dataset has several can-
didate group matches in the second dataset so that we select
the best group matches considering multiple criteria such as
the degree of record and relationship similarity. The match-
ing subgraphs of linked groups are then used to extract the
matching records for inclusion into the record mapping (line
10 of Algorithm 1).

Further iterations only process records not yet included
in the record mapping determined so far. We continuously
relax the similarity threshold by a decrement ∆ until a
minimal similarity threshold δ low is reached (or no fur-
ther group links are identified). Using such relaxed similar-
ity thresholds aims at finding additional matches between
records and groups even in the presence of erroneous or
changed attribute values.

After all iterations are performed we have finished sub-
graph -based group linkage. For the remaining records not
yet associated within matching subgraphs, we apply a sec-
ond attribute-based similarity function Sim funcrem to iden-
tify further person links for inclusion into the record map-
ping (line 17). Moreover, we extend the group mapping by
adding the group pairs that are now linked by the newly
found record links Mi,i+1

G (line 19).
In the following subsections, we describe the discussed

steps in more detail. We start with explaining the pre-
processing step to enrich the existing household graphs by
implicit relationships and additional relationship properties
(Subsection 3.1). In Subsection 3.2, we describe the pre-
matching step of records. In Subsection 3.3, we outline our
subgraph matching approach to identify common subgraphs.
We then introduce the criteria and algorithm used to select
the group matches (Subsection 3.4).

3.1 Group Enrichment
In the initialization phase, we enrich each household group

by adding implicit relationships and stable properties such
as age differences between persons. In our case, each in-
dividual of a household is given a role related to the head
of household (which is a special role). This role may not
be preserved in future census datasets since individuals may
become members of a different household and the head of
household may change as well. Hence, comparing house-

Rnew

groupID recordID first name surname sex age role address

𝑔1871
𝑏

1871_6 john smith m 38 head
hippins 

terrace
1871_7 elizabeth smith f 34 wife

1871_8 steve smith m 10 son

𝒈𝟏𝟖𝟕𝟏
𝒃

wife son
head 

John Smith
1871_6

Elizabeth Smith
1871_7

Steve Smith
1871_8

Group Enrichment

rel_type: husband-wife
age_diff: 4

John Smith
1871_6

Elizabeth Smith
1871_7

Steve Smith
1871_8

rel_type:son-father
age_diff: 28

rel_type: son-mother
age_diff: 24

Figure 2: Example of the group enrichment phase
for group gb1871.

holds based on these relations only is insufficient in the pres-
ence of household changes. We therefore enrich the house-
hold graphs by implicit relationships for each record pair
of the original group and replace the head-dependent rela-
tionship types by a unified type. To increase the semantics
of a relationship, we further add the age difference between
two household members as a time-independent relationship
property. Fig. 2 shows an example of the group enrichment
phase for group gb1871. The relationship between Elizabeth
Smith and Steve Smith is added. Moreover, the age differ-
ences age diff between persons as well as the relationship
types rel type are added to the relationships.

3.2 Pre-Matching
Pre-matching clusters similar records in the census data-

sets based on their attribute similarity and assigns a cluster
label to each record. These labels are utilized to simplify
subgraph matching since the labels identify similar records
without further similarity computation.

Pre-matching first applies similarity function Sim func
to compare each record of Ri with each record of Ri+1. The
similarity function specifies the attributes to be compared
as well as the attribute-specific similarity function, e.g., q-
gram string matching [4]. Furthermore, it uses a weighting
vector ω and a required minimum similarity δ. Applying the
attribute-specific similarity functions to a pair of records ri
and ri+1 results is a similarity vector ~sim(ri,ri+1). Using ω
we determine an aggregated similarity agg sim(ri,ri+1) by
calculating a weighted sum of the attribute similarities:

agg sim(ri,ri+1) = ω · ~sim(ri,ri+1) (3)

We then keep only the record pairs whose similarity is above
the specified threshold δ as potential record matches. Fur-
thermore, we determine the transitive closure or connected
components of these match pairs (record links) to cluster
together all directly and indirectly matching records. We

Cluster label recordID first name surname

A

1871_1 john ashworth

1881_1 john ashworth

1881_9 john ashworth

B

1871_2 elizabeth ashworth

1881_2 elizabeth ashworth

1881_10 elizabeth ashworth

C

1871_4 william ashworth

1881_3 william ashworth

1881_11 william ashworth

D
1871_6 john smith

1881_4 john smith

E
1871_7 elizabeth smith

1881_5 elizabeth smith

F
1871_8 steve smith

1881_6 steve smith

G 1881_8 mary smith

H 1871_5 john riley

I 1871_3 alice ashworth

K 1881_7 alice smith

Figure 3: Pre-matching result for running example.
Records with the same cluster label represent simi-
lar records.
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assign to each record of a cluster a unique label, so that
records of the same cluster have the same label.

Fig.3 shows the resulting clusters for the running exam-
ple by using the attributes first name and surname, ω =
(0.5, 0.5) and similarity threshold 1. Pre-matching results
in the shown ten clusters where all records of a cluster share
the same first name and surname. We then assign the cluster
labels A, B etc. to the respective records of the clusters.

3.3 Subgraph Matching
Subgraph matching looks for common subgraphs in each

pair of groups gi and gi+1 of Gi ×Gi+1 to determine likely
group links. To avoid the computation of the cross product
between Gi and Gi+1, subgraph matching is only applied
for pairs of groups sharing at least one similar record, i.e.,
having the same cluster label.

The subgraph gsub between two groups gi and gi+1 (repre-
sented by their enriched graphs with gi=(Vi,Ei) and gi+1=
(Vi+1,Ei+1) consists of a set of vertices Rsub and a set of
edges Esub. Each vertex in Rsub represents a pair of equally
labeled (i.e., similar) records vi from Vi and vi+1 from Vi+1.
Two vertices (v1i, v1i+1) and (v2i, v2i+1) of Rsub are con-
nected by an edge of Esub if both the old records v1i, v2i

and the new records v1i+1, v2i+1 of these vertices are con-
nected within their enriched graphs of gi and gi+1, respec-
tively. Furthermore, we require that these edges must have
the same relationship type and highly similar relationship
properties, in our case regarding the age differences.

Fig. 4 illustrates subgraph matching for group ga1871 from
the first census dataset and the two groups ga1881 and gd1881
from the second dataset. For the group pair (ga1871, g

a
1881)

we have three matching vertices with labels A, B and C.
The three edges have the same relationship types and the
same or very similar age differences. The second group pair
(ga1871, g

d
1881) also shares three vertices with labels A, B and

C but only one of the edges has the same relationship type
and similar age difference. Hence the common subgraph is
reduced to the one shown in the bottom right of Fig.4.

3.4 Selection of Group Links
Subgraph matching generates candidates for group link-

age based on common subgraphs for different group pairs.
There may be several linkage candidates per group in Gi

and in Gi+1 so that we have to find the best matching group
pairs. The necessary selection should especially guarantee
that each record of a group is only linked to one record of
another group (This is not the case for the example in Fig.4
where we have two linkage candidates for members of group
ga1871). However, a group can link to more than one group
if their subgroups are disjoint.

To select for a certain group gi the best-matching groups
in Gi+1 we consider all subgraphs gsub=(Rsub,Esub) involv-
ing gi and apply an aggregated similarity measure. This
measure combines three scores capturing the record similar-
ity (Eq. 5), edge similarity (Eq. 6) and the uniqueness (Eq.
7) of a subgroup gsub. The results of the similarity functions
are aggregated according to Eq. 4 whereby α determines the
influence of record similarity and β represents the weight of
edge similarity.

g sim = α · avg sim+ β · e sim+ (1− α− β) · unique
(4)

• Average Record Similarity

For this score we determine the average of the aggre-
gated similarities agg sim for the record pairs of Rsub.
These aggregated similarities are already determined
during pre-matching for each record pair (see section
3.2) and can be obtained from the respective clusters
in C .

avg sim(gi, gi+1, gsub) =

∑
(ri,ri+1)∈Rsub

agg sim(ri,ri+1)

|Rsub|
(5)

• Edge Similarity
The edge similarity e sim evaluates the similarity of
the relationship properties rp sim in the edges in a
subgraph, for example the similarity of the age differ-
ences between two individuals in the older group gi vs.
the age difference in the newer group gi+1. Further-
more, we apply an aggregation measure similar to the
Dice-Coefficient to relate the edge similarities to the
total number of relationships of the considered groups
gi and gi+1 thereby giving higher weight to those sub-
graphs covering a large portion of their relationships.

e sim(gi, gi+1, gsub) =

2 ·

∑
e∈Esub

rp sim(oldEdge(e), newEdge(e))

|Ei|+ |Ei+1|

(6)

• Uniqueness
If two group pairs are similar w.r.t both the aver-
age record similarity as well as the edge similarity, we
like to prefer the group link between the two groups
containing records that are less ambiguous than the
records of other group pairs. Therefore, we define the
uniqueness for a group pair based on the number of
vertices of Rsub of gsub and the aggregated number of
records that are assigned to the same label like the
records of Rsub. The uniqueness is defined as follows:

unique(gi, gi+1, gsub) = 2 · |Rsub|∑
ri∈Rsub

|label(ri)| (7)

The uniqueness of a group pair gi and gi+1 is 1, if the
labels are only assigned to the common records of gi
and gi+1 and there exists no other record of Ri or Ri+1

that has the same label.

For the example of Fig. 4, we obtain the following similar-
ity values for the group pairs (ga1871, g

a
1881) and (ga1871, g

d
1881):

avg sim(ga1871, g
a
1881, gsub) =

1 + 1 + 1

3
= 1

e sim(ga1871, g
a
1881, gsub) = 2 · 1 + 1 + 1

10 + 3
= 0.46

unique(ga1871, g
a
1881, gsub) = 2 · 3

3 + 3 + 3
= 0.66

avg sim(ga1871, g
d
1881, gsub) =

1 + 1

2
= 1

e sim(ga1871, g
d
1881, gsub) = 2 · 1

10 + 3
= 0.15

unique(ga1871, g
d
1881, gsub) = 2 · 2

3 + 3
= 0.66

(8)
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A1871_1

B1871_2

I1871_3 C1871_4

E1871_5

husband_wife
age diff1871 = 2
age diff1881 = 2

𝑔1871
𝑎

𝑔1881
𝑑 A1881_9

B1881_10 C1881_11

𝑔1881
𝑎 A1881_1

B1881_2 C1881_3

sf- 37 

son_father- 23

daughterInLaw_fatherInLaw-2

1871_2, 1881_2 1871_4, 1881_3

son_father
age diff1871 = 37
age diff1881 = 37

son_mother
age diff1871 = 35
age diff1881 = 35

1871_1, 1881_9

1871_2, 1881_10

husband_wife
age diff1871 = 2
age diff1881 = 2

Sub
graphs

𝑔1871,
𝑎 𝑔1881

𝑎 𝑔1871,
𝑎 𝑔1881

𝑑

1871_1, 1881_1
A

B C B

A

Figure 4: Subgraphs for group pairs (ga1871, g
b
1881) and (ga1871, g

d
1881) of the running example. For (ga1871, g

d
1881), the

red-coloured edges are not matched due to a different relationship type or non-similar age difference.

Algorithm 2: Selection of group links

Input:
-SubG: set of quadruples of <gi, gi+1, gsub, g sim>
Output:
-Mp

G: partial group mapping

1 Mp
G ← ∅

2 lookup← ∅
// initialize priority queue ordered by g_sim

3 for (gi, gi+1, gsub, g sim) ∈ SubG do
4 pq ← pq.insert(gi, gi+1, gsub, g sim)

5 while pq 6= ∅ do
6 < gi, gi+1, gsub, g sim >← pq.max()
7 pq ← pq.remove()

// sets of linked records of gi and gi+1

8 linked Ri ← lookup.get(gi)
9 linked Ri+1 ← lookup.get(gi+1)

// records of gi and gi+1 contained in gsub
10 Ri

sub ← getOldRecords(gsub)

11 Ri+1
sub ← getNewRecords(gsub)

12 if linked Ri ∩Ri
sub = ∅ ∧ linked Ri+1 ∩Ri+1

sub = ∅ then
13 Mp

G ←M
p
G ∪ {(gi, gi+1)}

14 linked Ri ← linked Ri ∪Ri
sub

15 linked Ri+1 ← linked Ri+1 ∪Ri+1
sub

16 lookup← lookup.update(gi, processed Ri)
17 lookup← lookup.update(gi+1, processed Ri+1)

18 returnMp
G

The aggregated similarity of these values reaches a higher
value for group pair (ga1871, g

a
1881) than for (ga1871, g

d
1881) due

to the higher edge similarity of the former pair. As a re-
sult, we would only include group pair (ga1871, g

a
1881) in the

group mapping and derive the record mapping only for the
common subgraph of this pair.

After the determination of the introduced similarity val-
ues per subgroup, we apply Algorithm 2 for the selection
of the best-matching group pairs. The algorithm follows
a greedy strategy by considering subgraphs in the order of
their aggregated similarity score. It also considers the dis-
jointness of subgraphs and can determine group mappings
of cardinality N:M.

In each iteration, we select the group pair with the highest
group similarity from a priority queue pq. The selected pair

(gi, gi+1) is added to the group mapping Mp
G if the over-

lap between the already linked records of gi as well as gi+1

and the records of the record pairs of gsub is empty (line
12). Thus, we ensure that a record is linked at most to one
record. The linked records are represented by linked Ri

resp. linked Ri+1. Moreover, the records of gi and gi+1

that correspond to a record pair of Rsub of gsub are repre-
sented by the sets Ri

sub and Ri+1
sub . These sets are returned

by getOldRecords and getNewRecords respectively for a
certain subgroup gsub. If a group link is added, we update
sets of linked records linked Ri and linked Ri+1 for gi resp.
gi+1 (line 14 to 17).

Based on the selected group matches, we are able to iden-
tify the record matches contained in the corresponding sub-
graph gsub. The record links are included in each vertex of
gsub since Rsub is defined as a set of pairs ri and ri+1. These
pairs are the most appropriate links since the related groups
are linked.

4. EVOLUTION ANALYSIS
We will now use the results of the temporal record and

group linkage to detect changes between different census
datasets in order to support the comprehensive evolution
analysis of temporal census data. Such a change analysis
should not be restricted to a low-level evaluation of indi-
vidual links but should be realized at a higher, application-
specific level to generate relevant and expressive change pat-
terns. We will also include disappearing as well as newly
appearing records and groups that are not reflected in the
identified mappings but appear only in one of the census
datasets. The analysis should further not be limited to two
datasets but involve a series of successive census datasets
covering longer periods of time.

In this initial study, we use the given census datasets and
the determined linkage results to identify a set of basic and
more complex changes for records and groups of records that
can be identified with the help of so-called evolution pat-
terns (Subsection 4.1). Furthermore, we propose the use
of a so-called evolution graph (Subsection 4.2) to provide
an aggregated change representation that is extensible to
more than two census datasets. Such an evolution graph
is a promising basis for advanced graph mining techniques,
e.g., to determine frequent or unusual change scenarios.
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Figure 5: (a) Record and group evolution patterns for the running example. (b) Evolution graph and patterns
for two successive census datasets Di and Di+1. Gray dotted lines represent record links, blue arrows indicate
evolution patterns between related households.

4.1 Evolution Patterns
We define evolution patterns on individual records and on

groups of records. There are three record evolution patterns
called preserveR, removeR and addR. We identify these
patterns by utilizing the record mapping M i,i+1

R as well as
record sets Ri and Ri+1 for two successive census datasets
Di and Di+1 as follows:

• preserveR is a record pair representing one individual
linked between Ri and Ri+1.
∀ri, ri+1 ∈ Ri ×Ri+1 :
preserveR(ri, ri+1)↔ ∃(ri, ri+1) ∈Mi,i+1

R

• addR denotes an individual ri+1 ∈ Ri+1 that is not
linked to any record of Ri.
∀ri+1 ∈ Ri+1 : addR(ri+1)↔ @(ri, ri+1) ∈Mi,i+1

R

• removeR denotes an individual ri ∈ Di that is not
linked to any record of Di+1.
∀ri ∈ Ri : removeR(ri)↔ @(ri, ri+1) ∈Mi,i+1

R

To analyze the dynamics of groups, we further define group
evolution patterns based on changes within groups. These
patterns are addG and removeG as well as the more complex
patterns preserveG, move, split and merge. The patterns
preserveG and move both relate to pairs of linked groups
but differ on whether the linked groups contain at least two
preserved members (preserveG) or only one (move). Each
pattern is identified by utilizing the census datasets, the
group mapping Mi,i+1

G and the record mapping Mi,i+1
R :

• addG denotes a new group gi+1 ∈ Gi+1 that did not
exist in Di. Thus, the group mappingMi,i+1

G does not
contain any link with gi+1.

• Similarly, removeG contains a group of gi ∈ Gi that
does not exist in Gi+1 anymore.

• preserveG is a group pair connected by a 1:1 link.
Moreover, each group consists of at least 2 individ-
uals satisfying the preservedR pattern. This condi-
tion allows us to identify preserving households across

censuses. The requirement that a ’preserved’ house-
hold should have at least two remaining members is
influenced by real-world situations such as households
where only the parents remain after their children have
moved to another household.

• move identifies pairs of linked groups with only one
member in common (determined by the preserveR pat-
tern) that has moved from the old to the new group
(household).

• split identifies a change situation between a group gi ∈
Di from the old dataset and a set of groups gai+1,
gbi+1, ..., g

k
i+1 ∈ Gi+1 in the new dataset, where at least

two individuals of gi must overlap with each of the
groups from Gi+1. Note, that each individual record
can only be contained in one group, i.e., gai+1, g

b
i+1, ...,

gki+1 are disjoint.

• merge covers the opposite situation between a set of
groups gai , gbi , ..., g

k
i ∈ Gi from the old dataset and

one group gi+1 ∈ Gi+1 from the new dataset, where at
least two individuals from groups in Gi must overlap
with the merged group gi+1. Each individual record
can only be contained in one group, i.e., gai , g

b
i , ..., g

k
i

are disjoint.

Fig. 5(a) shows the corresponding record and group evo-
lution patterns for our running example from Fig. 1. Seven
records have been preserved from D1871 to D1881. Moreover,
there are 4 record additions and one removal. According to
the defined group evolution patterns, two groups have been
preserved (ga and gb), two groups newly appeared in 1881
(addG for gc and gd) and two persons, Alice (1871 3) and
Steve (1871 8), moved from their parents’ households (ga1871
and gb1871) to their own new household gc1881.

4.2 Evolution Graph
Based on the evolution patterns we want to realize further

comprehensive evolution analyses for dynamically changing
family structures and individual person histories. We pro-
pose the use of a so-called evolution graph reflecting the
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history of households across two or more successive census
datasets. The graph G Evolution captures both the records
and groups per census dataset as vertices and interconnects
them across successive datasets by edges that are typed ac-
cording to the identified evolution patterns (change types).
Fig. 5(b) shows a sample evolution graph and evolution pat-
terns for two successive versions Di and Di+1. Blue boxes
represent group vertices and blue arrows represent group
evolution patterns, i.e., the changes between households.
Two groups have been preserved and are linked via the group
pattern preserveG and one household has been split into
two households. One individual moved between two house-
holds that are thus connected in the evolution graph. The
figure also shows the mapping between individual records
(gray dotted lines) as well as a new (addR) and a removed
(removeR) record without incoming/outgoing edges.

The evolution graph enables the application of several
graph mining approaches such as cluster analysis, pattern
matching or finding frequent subgraphs. One analysis might
be to identify households that are preserved across several
census periods. A second use case is to identify clusters of
related households that can be used for studies of genetic
diseases. In Fig. 5(b), a simple computation of connected
components on the exemplary evolution graph for two points
in time leads to two components consisting of 4 (CC1) and
3 (CC2) households, respectively. Running such a compu-
tation for larger households graphs for many successive ver-
sions can produce longer chains of connected households,
e.g., indicating relationships between many generations of
families.

5. EVALUATION
In this section, we evaluate the introduced approaches for

temporal record and group linkage for different historical
census datasets from the UK that have also been used in
a previous study [8]. We first describe these datasets and
the evaluation setup in Subsection 5.1. We then evaluate
the linkage quality of the new approaches for different con-
figurations (Subsection 5.2). In Subsection 5.3 we compare
our approach with the results of the previous study [8] as
well as with the collective record linkage approach [14]. Fi-
nally, we discuss results of an initial evolution analysis for
the considered census datasets.

5.1 Datasets and Setup
In our evaluation, we use six census datasets collected

from 1851 to 1901 in ten-year intervals from the district of
Rawtenstall in North-East Lancashire in the United King-
dom. Table 1 shows an overview of these datasets according
to the number of records and households for the different
time periods. The table also shows the number of unique
value combinations of the first name and surname attributes
to illustrate the degree of ambiguity for these attributes.
Furthermore, we report the ratio of missing attribute values.
The table shows that the number of households and persons
has almost doubled within the 50 years period indicating a
substantial population growth. There is a high degree of
name ambiguity since each combination of first name and
surname is far from unique but has an average frequency of
up to 2.23 (for 1851) with a highly skewed frequency dis-
tribution due to the presence of frequent surnames such as
Ashworth and Smith. Up to 6.5% of the attribute values are

missing, which leads to in additional difficulties for finding
correct temporal links.

ti 1851 1861 1871 1881 1891 1901
|Rti

| 17033 22429 26229 29051 30087 31059
|Gti

| 3298 4570 5576 6025 6378 6842
|fn + sn| 7652 10198 13198 15505 17130 19910
ratiomv 4.67% 4.19% 3.03% 4.09% 6.33% 6.51%

Table 1: Overview of the census datasets according
to the number of records, households, unique com-
binations of first name and surname |fn+sn| and the
ratio of missing values ratiomv.

To evaluate the quality of the group and record mappings
in terms of precision, recall and F-measure [4], we use the
reference mapping determined in [8]. It covers a subset of
1250 matching households from the 1871 and 1881 datasets
that consist of 6864 and 6851 members resp. These house-
hold were manually linked by experts by focusing on person
records found in both datasets.

In our evaluation, we compare different settings for the
similarity function considering the string similarity for five
attributes and different weight vectors ω1 and ω2 as shown
in Table 2. We also evaluate different similarity thresholds
for pre-matching as well as different weights for determining
the aggregated group similarity for selecting group links.

Attribute Matching method ω1 ω2

First name q-gram 0.2 0.4
Sex exact 0.2 0.2
Surname q-gram 0.2 0.2
Address q-gram 0.2 0.1
Occupation q-gram 0.2 0.1

Table 2: Compared set of attributes and the corre-
sponding weighting vector ω to identify the set of
blocks B that are used for the subgraph matching.

5.2 Linkage Evaluation
We first analyze the influence of different similarity func-

tions during pre-matching and then discuss the impact of
different similarity functions for selecting matching group
pairs. Afterwards we study the effectiveness of incremental
linkage.

5.2.1 Influence of pre-matching configuration
The proposed linkage approach builds on the initial record

matching and clustering performed in the pre-matching step.
We thus start our analysis by comparing the results for de-
termining the attribute similarities based on the two weight-
ing schemes ω1 and ω2 (Table 2) and different lower similar-
ity threshold bounds δ low. For iterative matching we use
a start value δ high = 0.7 for the similarity threshold δ and
∆ = 0.05 for decrementing the threshold until the minimal
value δ low is reached.

Table 3 shows the resulting group and record mapping
quality in terms of precision, recall and F-measure for the
two weighting schemes and four values of δ low ranging
from 0.4 to 0.55. We observe for all configurations high
F-Measure results between 94% and 96% for both the deter-
mined record mappings and the group mappings, indicating
a very high effectiveness of the proposed approach. The best
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parameter
ω ω1 ω2

δ low 0.4 0.45 0.5 0.55 0.4 0.45 0.5 0.55

group mapping
Precision (%) 96.1 96.5 96.7 97.0 97.1 97.1 97.3 97.3
Recall (%) 92.2 92.2 92.0 91.7 94.8 94.8 94.8 94.6
F-measure (%) 94.1 94.3 94.3 94.2 96.0 96.0 96.0 95.9

record mapping
Precision (%) 96.6 96.8 96.8 96.8 97.5 97.5 97.5 97.5
Recall (%) 91.9 91.9 91.9 91.8 93.7 93.7 93.7 93.7
F-Measure (%) 94.2 94.3 94.3 94.3 95.6 95.6 95.6 95.5

Table 3: Quality of group and record mappings for different weighting vectors ω and lower bounds δ low.
parameter (α, β) (1.0,0.0) (0.0,1.0) (0.5,0.5) (0.33,0.33) (0.2,0.7)

group mapping
Precision (%) 92.3 96.7 96.6 96.7 97.3
Recall (%) 89.1 94.1 94.3 94.4 94.8
F-Measure (%) 90.7 95.4 95.5 96.0 96.0

record mapping
Precision (%) 96.2 97.4 97.3 97.3 97.5
Recall (%) 89.8 93.4 93.4 93.4 93.7
F-Measure (%) 92.9 95.4 95.3 95.3 95.6

Table 4: Quality of the group and record mappings for different weights α and β to select matching groups.

F-measure results are generally achieved for δ low = 0.5, al-
though the differences are small for the other choices. The
simple weighting scheme ω1 giving equal weight to each of
the five considered attributes is consistently outperformed
by the alternate approach giving higher weight to attribute
first name and only reduced weight for the less stable at-
tributes address and occupation. Pre-matching with weight
vector ω2 thus improves F-measure by around 1.7% for the
group mapping and up to around 1.3% for the record map-
ping.

Of course, there are many more possibilities to define the
similarity function and we could also apply learning-based
methods to find a near-optimal weight vector [4]. Still our
results show that using the similarity function with weight
vector ω2 and δ low = 0.5 achieve good and stable results
making it an effective default configuration.

5.2.2 Similarity weights for selecting matching groups
We now evaluate the influence of the different weights

α and β for determining the aggregated group similarity
g sim = α · avg sim + β · e sim + (1 − α − β) · rel driving
the selection of matching groups. Table 4 shows the results
of the different weights. The quality of the group mapping
highly depends on the edge similarity underlining the im-
portance of considering the structural similarity within our
household graphs. Without considering the edge similarity
(β = 0), the F-measure for the group mapping drops to
90.7%, i.e. around 5.3% less than for the best configura-
tion (α = 0.2, β = 0.7) and also far less than when ignoring
the record similarity (α = 0). The uniqueness score can
also improve the overall F-measure. For (α = 0.2, β = 0.7)
its weight is 0.1 which helped to achieve an improved F-
measure compared to the three configurations where it is
ignored (when the sum of α and β equals already 1). The
best record mapping is also achieved for (α = 0.2, β = 0.7)
making it a good default configuration for our datasets.

5.2.3 Iterative vs non-iterative linkage
We now want to analyze to what degree the iterative

group and record linkage with decreasing similarity thresh-
olds is really helpful compared to a non-iterative, one-shot
approach applying only a fixed minimal similarity threshold.

method non-iterative iterative

group
mapping

Precision (%) 94.5 97.3
Recall (%) 93.1 94.8
F-measure (%) 93.8 96.0

record
mapping

Precision (%) 91.8 97.5
Recall (%) 93.1 93.7
F-measure (%) 92.5 95.6

Table 5: Quality of the group mapping and record
mapping by using the iterative vs. non-iterative ap-
proach.

To evaluate such a non-iterative approach we apply similar-
ity functions with ω2, δ high = 0.5 and δ low = 0.5 resulting
in only one iteration. The results are shown in Table 5. We
observe that the iterative approach indeed outperforms the
non-iterative approach with an F-Measure improvement of
≈ 2.2% for the group mapping and 3.1% for the record map-
ping. The improved quality mainly results from a substan-
tially higher precision of more than 97% for both the group
and record mapping. This is achieved because the iterative
approach finds high-quality matches for the more restrictive
thresholds while the more relaxed similarity threshold, with
an increased risk of finding wrong matches, is limited to a
subset of the records.

5.3 Comparison with Existing Approaches
We compare our approach with two previously proposed

methods: the collective entity resolution approach of [14] to
determine a record mapping as well as the previous group
linkage approach [8] for census data.

In [14], the authors propose a collective approach that is a
specialization of [1]. It initially determines seed record links
by applying a high record similarity. The seed links are used
to incrementally identify additional links from the neighbor-
hood of the linked records based on their attribute similar-
ity and relational similarity. The overall algorithm follows
a greedy strategy that selects in each iteration the record
pair with the highest similarity. The related records update
their similarities according to the selected record pair. In
our implementation, we use the same similarity function as
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method CL iter-sub
Precision (%) 93.5 97.5
Recall (%) 81.2 93.7
F-measure (%) 86.9 95.6

Table 6: Comparison of our approach with the col-
lective linkage approach of [14] (CL) to determine a
record mapping.

method GraphSim iter-sub
Precision (%) 97.6 97.3
Recall (%) 90.1 94.8
F-measure (%) 93.7 96.0

Table 7: Comparison of our approach with the
household linkage approach of [8] (GraphSim).

in our approach (Table 2). Moreover, we filter all record
pairs where the normalized age difference is more than 3
years2. To generate the seed link, we select the record links
with a minimal similarity of 0.9. Table 6 shows the results of
the record mapping obtained by collective linking. Our ap-
proach outperforms the collective approach w.r.t the record
mapping quality by 8.6% for F-measure. The difference be-
tween our approach and the collective approach is that we
can better link moved records with changed attribute values
since we do not only link highly similar records (which is
not sufficient for temporal linkage). Furthermore, our sub-
graph matching utilizes different relationships more compre-
hensively and benefits from incremental linkage.

The previous group linkage approach of [8] initially gener-
ates a highly selective record mapping consisting of 1:1 corre-
spondences only. Based on this record mapping, the method
calculates an average record similarity and an edge similar-
ity between each group pair. Contrary to our approach, they
calculate the similarities based on the initial 1:1 mapping. If
correct record pairs are filtered out due to the 1:1 constraint,
the approach is not able to identify these links. Hence, this
filter step influences the average record similarity as well as
the edge similarity, so that correct group links are not iden-
tified. Table 7 shows the results of the quality of the group
mappings. Our approach achieves a significantly better F-
measure for the group mapping compared to [8] (≈3.7%).
This improvement is mainly because of a much higher recall
that is limited in the previous approach mainly because of
the use of the initial 1:1 mapping.

5.4 Analysis of Household Dynamics
Finally, we analyze the evolution of households from 1851

to 1901. For this purpose, we determine the evolution pat-
terns for each successive census dataset pair based on the
identified group and record mapping with the best parame-
ter setting. Fig. 6 shows the frequency of each group evolu-
tion pattern for each pair of census datasets. In general, we
observe an increasing number of households since the num-
ber of addG patterns is higher than the number of removeG
patterns for each new census. Moreover, we observe an in-
creasing number of preserveG patterns due to the general
increase in the number of households over time. From 1891
to 1901, there is also a high number of removeG patterns

2In our approach, subgraph matching ensures that such age
differences are not accepted.
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Figure 6: Quantitative Analysis of evolution pat-
terns for census datasets from 1851 to 1901.

time interval |preserveG|
10 15705
20 7731
30 3322
40 1116
50 260

Table 8: Number of preserving households
|preserveG| according to different time intervals (in
years) from 1851 to 1901.

(up to ≈ 2200) indicating that many households may have
moved to a new region. The complex patterns such as split
and merge occur only rarely with an average occurrence of
≈ 100 for split and ≈ 70 while the move patterns are more
frequent (≈ 1600 on average).

To analyze dependencies between households for the whole
time period, we exploit the evolution graph and determine
the largest connected component representing all households
from 1851 to 1901 that are connected by group patterns.
We identified the largest connected component with 17150
households over the complete interval from 1851 to 1901
thereby covering ≈52% of all households. Furthermore, we
identify the number of preserved households according to
different time intervals for the whole time period from 1851
to 1901. For instance, if we like to identify households that
are preserved for 20 years, we define a graph pattern that
consists of 2 edges with the pattern type preserveG since the
difference between two census datasets is 10 years. Table 8
shows the number of preserved households for the different
time intervals. The number of preserving households for all
10 year intervals (1851-61, 1861-71, 1871-81 etc.) represents
the overall number of preserveG patterns of the quantitative
analysis. Moreover, 260 household are preserved over the
whole time period from 1851 to 1901.

6. RELATED WORK
Record linkage or entity resolution has been intensively

studied in the past (see [4, 7, 12] for overviews). While
the majority of approaches focus on evaluating the simi-
larity of record attributes only, collective or context-based
approaches additionally consider the similarity of relation-
ships between entities for improved linkage decisions (e.g. [1,
8, 11, 14, 20, 23]). This idea has also been utilized in our
approach but in a tailored way for use within groups such as
households. Our approach is especially powerful as it con-
siders different kinds of semantic relationships as well as the
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similarity of relationship attributes. Previous collective ap-
proaches have also not addressed temporal record linkage in
contrast to our scheme.

Relatively few studies have investigated temporal record
linkage (e.g., [2, 15, 17]) to link records within dynami-
cally changing data. Existing approaches explicitly consider
changing attribute values when matching individual records
over time, e.g., by computing value transition probabili-
ties [15]. Temporal clustering approaches as proposed in [3]
group temporal records that belong to the same entity to re-
flect the entity history. Temporal record linkage approaches
typically focus on matching individual person records while
we also match groups of individuals and identify a record
as well as group mapping to interconnect temporal records
from census data.

Most closely related to our work is the group-based ap-
proach of [8] for matching households in historical census
datasets. Our evaluation in Subsection 5.3 has shown that
this previous scheme is outperformed by our approach due to
its novel features such as an iterative group linkage and sub-
graph matching based on different semantic relationships.
Richards and colleagues investigate in [21] the use of learning-
based methods to optimize the use of attribute similarities
for temporal record linkage (not group linkage) for census
datasets. The observations of this study are complementary
to ours and could be used for choosing alternate similarity
functions for record matching.

Our work is further related to research on time and evolu-
tion-based analysis that is gaining increasing interest. For
instance, there are studies analyzing historical web contents
to find interesting patterns and trends [25], analyzing per-
son histories on Twitter [16], or collecting and analyzing
temporal knowledge from Wikipedia [24]. Our definition of
change patterns is further related to previous work in the do-
main of ontology evolution [10, 22], in particular regarding
change detection and diff computation (e.g. [9, 19]). These
approaches typically identify basic and complex change op-
erations between different ontology versions. We used this
idea to identify time dependent patterns between groups of
records to represent the semantics of changes in households
over time. Based on the change patterns we are able to real-
ize more comprehensive analysis, e.g., on complex evolution
graphs.

7. CONCLUSIONS
We outlined and evaluated a new approach for temporal

record and group linkage for the analysis of census data.
The approach follows an iterative linkage strategy that first
identifies high quality links thereby limiting the more error-
prone identification of links between less similar records and
groups to subsets of the input data. Group linkage is based
on the identification of common subgraphs between groups
such as households where we utilize the semantic relation-
ships within groups and relationship properties such as the
age differences between individuals. The evaluation showed
the high effectiveness of the proposed approach that also
outperforms a previous approach for linking census data.

We showed that the linkage results support a detailed evo-
lution analysis of census data at both the level of individu-
als and groups. We proposed several evolution patterns to
identify relevant changes including different kinds of group
changes such as splits, merges and the movement of individ-
uals from one group to another. All changes can be main-

tained within an evolution graph that can be used for a wide
spectrum of change analysis, e.g., to identify frequent change
patterns or to find connected groups over several census pe-
riods.

In future work, we plan to extend the change analysis
of census data using the evolution graph and graph mining
techniques. We also aim to apply and evaluate the proposed
approach on larger census datasets. Furthermore, we want
to study additional applications for group linkage, e.g., to
analyze the changes in research teams or groups of coauthors
over time.
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ABSTRACT 
In this paper, we propose an efficient in-DBMS solution for the 
problem of sub-trajectory clustering and outlier detection in 
large moving object datasets. The method relies on a two-phase 
process: a voting-and-segmentation phase that segments 
trajectories according to a local density criterion and trajectory 
similarity criteria, followed by a sampling-and-clustering phase 
that selects the most representative sub-trajectories to be used as 
seeds for the clustering process. Our proposal, called S2T-
Clustering (for Sampling-based Sub-Trajectory Clustering) is 
novel since it is the first, to our knowledge, that addresses the 
pure spatiotemporal sub-trajectory clustering and outlier 
detection problem in a real-world setting (by ‘pure’  we mean 
that the entire spatiotemporal information of trajectories is 
taken into consideration). Moreover, our proposal can be 
efficiently registered as a database query operator in the context 
of extensible DBMS (namely, PostgreSQL in our current 
implementation). The effectiveness and the efficiency of the 
proposed algorithm are experimentally validated over synthetic 
and real-world trajectory datasets, demonstrating that S2T-
Clustering outperforms an off-the-shelf in-DBMS solution 
using PostGIS by several orders of magnitude. 

CCS Concepts 
• Information systems ➝  Information systems applications ➝  
Data mining ➝  Clustering • Information systems ➝  Information 
systems applications ➝  Spatio-temporal systems 

Keywords 
Mobility data mining; Sub-trajectory clustering; Trajectory 
segmentation; Trajectory sampling; MOD engines 

 

 

 

1. INTRODUCTION 
Knowledge discovery in mobility data [11][29][46][42] exposes 
patterns of moving objects exploitable in several fields. For 
instance, in both mature (transportation, climatology, zoology, 
etc.) and emerging domains (e.g. mobile social networks), 
scientists work with mobility-aware (mostly GPS-based) data, 
resulting in trajectories of moving objects stored in Moving 
Object Databases (MOD). Although during the recent years, 
there have been made significant achievements in the field 
[11][29][46][42], ongoing research calls for new methods aiming 
at deeper comprehension and analysis of mobility. For instance – 
and acting as motivation of this work – enhancing MOD 
engines, such as Secondo [1] and Hermes [31], with data mining 
operators is challenging [11][29] and is subject to the indexing 
extensibility interface of the corresponding ORDBMS on which 
they are implemented (see GiST [14][20], for example).   

In the literature of trajectory-based mobility data mining, one 
can identify several types of mining models used to describe 
various collective behavioral patterns. As such, there exist works 
that identify various types of clusters of moving objects 
[10][26][21][32] and variations [4][17][22][44]. Related line of 
research is the one that builds representatives out of a trajectory 
dataset, either by generating artificial data [21][32] or by 
sampling the dataset itself [33][28]. 

Focusing on trajectory clustering, the majority of related work 
proposes a variety of distance functions, utilized by well-known 
clustering algorithms to identify collective behavior among 
whole trajectories [26][32][30]. Α parallel line of research tries 
to discover local patterns in MOD, i.e. patterns that are alive 
only for a portion of moving objects’ lifespan: some of those 
techniques simplify the given trajectories, however focusing on 
the spatial and ignoring the temporal dimension, such as 
TRACLUS [21], which is considered as the current state-of-the-
art sub-trajectory clustering technique. 

Figure 1 illustrates a working example that motivates our 
research: a dataset consisting of four trajectories, T1, …, T4. (In 
this figure, the time dimension is ignored for visualization 
reasons.) Among the sub-trajectories that compose the dataset, 
our goal is to identify two clusters (in red and blue, respectively) 
and five outliers (in black). In particular, the first (red) cluster 
consists of the tails of trajectories T1, T2 and T3, the second 
(blue) cluster consists of the main bodies of trajectories of 
trajectories T1, T2, T3 and T4, while the rest portions of the 
trajectories (namely, the tail of T4 and all four heads) are 
recognized as outliers.  
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(a) 
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Figure 1. (a) a MOD of 4 trajectories; (b) the MOD split in 2 
clusters (in red and blue) and 5 outliers (in black). 

Such clustering sounds impossible to be achieved by 
TRACLUS. This is due to the inherent design of that algorithm 
that, as delineated by the authors, discovers linear patterns only 
and fails to identify complex (e.g. snake-like) patterns like the 
ones that appear in Figure 1. In other words, when applied to this 
dataset, TRACLUS would eventually discover five to six linear 
clusters (one new cluster each time the snake-like motion 
changes direction). On the contrary, we wish to be able to follow 
these direction changes without assuming underlying constraints 
on the complexity of the shape of sub-trajectories found nor 
posing geometrical and temporal constraints, in terms of 
algorithm parameters, as those required by related work, e.g. 
[4][17]. For those having experimented with those techniques, 
parameters like disc radius, minimum duration and cardinality of 
patterns, are hard to be set in advance. For instance, a small 
detour of an object belonging to one of the clusters, would 
probably result in either the lack of those patterns or the 
formation of smaller ones.  

Inspired by the above, in this paper we study an important 
problem in the mobility data management and exploration 
domain [29], that of sub-trajectory clustering and outlier 
detection. Informally, we aim at a methodology that builds 
clusters around (and detects outliers far away from) 
appropriately selected sub-trajectories that preserve the 
properties and the mobility patterns hidden in a MOD, as much 
as possible. Towards this goal, we introduce a novel clustering 
methodology exploiting on the voting, segmentation and 
sampling concepts proposed in [28]. More specifically, we 
devise an efficient voting process that allows us to describe the 
‘representativeness’ of a trajectory in a MOD as a smooth 
continuous descriptor [28]. Using these descriptors (their 
‘representativeness’), we result in the automatic segmentation of 
trajectories into ‘homogenous’ sub-trajectories. Next, a 
deterministic sampling procedure selects only those sub-
trajectories that optimally describe the entire MOD. Finally, we 
devise a method for sub-trajectory clustering driven by the 
aforementioned representative sample of sub-trajectories.  

The design of such a clustering methodology is subject to two 
indispensible requirements that challenged our research: we seek 
for (a) an efficient and scalable solution that (b) should be able 
to operate on a real-world DBMS rather than being an ad hoc 
implementation using a sophisticated access method. This is in 

order for the proposal to be practical and useful in real-world 
application scenarios, where concurrency and recovery issues are 
taken into consideration. Both requirements call for a MOD 
engine; therefore, our proposal is implemented as a query 
operator in Hermes [16], implemented on top of PostgreSQL. To 
our knowledge, it is the first time in the literature that GiST is 
used to index trajectory-based mobility data for the above 
purposes. Therefore, we argue that this is an important step 
towards bridging the gap between MOD management and 
mobility data mining, as state-of-art approaches [25][40][12] 
could make use of the efficiency and the advantage of our 
proposal to execute in-DBMS clustering via simple SQL.  

Our contribution is summarized below:  

• we formulate the problem of sub-trajectory clustering (and 
outlier detection) in a MOD as an optimization problem; 

• we propose an efficient solution, the so-called S2T-
Clustering algorithm, driven by a deterministic sampling 
methodology, with the number of clusters being 
automatically detected by the algorithm;  

• in order to speed up clustering tasks in MOD systems, we 
implement S2T-Clustering as a query operator over an 
expensible DBMS, namely PostgreSQL, based on access 
methods that exploit on the GiST indexing extensibility 
interface. (For validation purposes, we also implement S2T-
Clustering using PostGIS, an off-the-shelf in-DBMS 
alternative solution.)  

The rest of the paper is organized as follows: Section 2 presents 
related work and Section 3 formulates the problem of sub-
trajectory clustering (and outlier detection). Sections 4 and 5 
present our proposal and its in-DBMS realization, respectively. 
Experimental results that evaluate S2T-Clustering using synthetic 
and real trajectory datasets from urban and vessel traffic 
domains are provided in Section 6. Section 7 concludes the 
paper. 

2. RELATED WORK 
During the past decade, the field of MOD has emerged as a 
strong candidate for the efficient management of trajectory data 
exploiting on the robust architecture of extensible DBMS; 
Secondo [1] and Hermes [31] are typical examples of this 
paradigm. Nevertheless, extending a DBMS does not reduce the 
complexity of understanding their concurrency and recovery 
protocols, and as such, does not reduce the implementation effort 
of an external access method when compared to a built-in one, 
assuming that identical levels of concurrency, robustness and 
integration are desired [20]. Actually, complexity is the main 
reason that almost none of the numerous access methods for 
mobility data that have been proposed in the literature, 
[34][36][13] to name but a few representatives, have been 
integrated in a real Object-Relational DBMS. Even GiST [14] 
that has been proposed to serve access method extensibility has 
not been used so far in the context of mobility data. Mainly due 
to the above reasons, although a lot of research has been carried 
out in the field of MOD regarding efficient indexing and query 
processing, almost no related work exists in the field of mobility 
data mining in-DBMS [29].  

Focusing on plain (i.e. outside DBMS) implementations, the 
common building block of trajectory clustering approaches is the 
use of different similarity functions as the means to group 
trajectories into clusters. Such a similarity function is proposed 
in [8] for the efficient processing of most-similar trajectory 
(MST) queries. T-OPTICS [26] incorporates a similar distance 
function into the well-known OPTICS [3]. In [5], probabilistic 
techniques based on EM algorithm are proposed for clustering 
(short) trajectories using regression mixture models. In [32], the 

T2 

T3 T4 

T1 

T2 

T3 T4 

T1 

633



authors propose CenTR-I-FCM, a variant of Fuzzy C-means 
(FCM) for MOD, while in [39] introduce the concept of 
uncertain group pattern. Both approaches propose specialized 
similarity functions having as goal to tackle the inherent 
uncertainty of trajectory data. In [8], the authors introduced the 
vector field k-means trajectory clustering technique whose 
central idea is to use vector fields to induce a notion of similarity 
between trajectories, letting the vector fields themselves define 
and represent each cluster. In [41], a multi-kernel-based 
estimation process leverages both multiple structural information 
within a trajectory and the local motion patterns across multiple 
trajectories in order to face challenges in case of large variations 
within a cluster and ambiguities across clusters. In [15], the 
Clustering and Aggregating Clues of Trajectories (CACT) 
pattern mining framework has been proposed for discovering 
trajectory routes that represent the frequent movement behaviors 
of a user. The approach exploits on a similarity measure for 
trajectories with silent durations (i.e., the time durations when no 
data points are available to describe the movements of users), 
which is used in a clue-aware clustering algorithm, where clues 
are some spatially and temporally close data points that capture 
certain common partial movement behaviors of the user. 

TRACLUS [21] is a partition-and-group framework for 
clustering 2D trajectories (i.e. it ignores the time dimension), 
enabling the grouping of similar sub-trajectories, according to a 
trajectory partitioning step that uses the minimum description 
length principle. In its core, it uses a variant of DBSCAN [7], 
operating on the partitioned directed line segments. This work 
was the first to tackle the problem of identifying sub-patterns in 
trajectory data; however, it presents certain limitations (as 
discussed earlier) under the prism of the specifications we posed. 
In [24] the authors introduce an incremental trajectory clustering 
that exploits on TRACLUS. 

Another line of research includes works that aim to discover 
several types of collective behavior among moving objects, 
forming a group of objects that moves together for a certain time 
period, such as moving clusters [18], flocks [4], convoys [17], 
swarms [23], traveling companion [36][37], gathering [44][45], 
and platoon [22] patterns. Although these approaches provide 
lucid definitions of the mined patterns, their main limitation is 
that they search for special collective behaviors, defined by 
respective parameters. 

Our approach also finds commonalities to well-known 
approaches of clustering algorithms of point (vector) data 
[43][35], which sample the dataset at a pre-processing step and 
then perform the core clustering process aiming at high 
efficiency. However, these vector-based algorithms are not 
applicable to MOD due to the complex structure and properties 
of mobility data. Moreover, there is an essential difference 
between those techniques and our approach: while those mainly 
rely on random sampling, in our approach the clustering is 
driven by a sample resulted by an optimization formula, thus 
leading to a deterministic solution of the sub-trajectory 
clustering problem. 

As already discussed, plain (sub-)trajectory clustering 
implementations leave concurrency and recovery outside the 
scene of requirements, as such setting limitations to their usage 
in real-world applications. In contrast, in this work we provide 
efficient in-DBMS solutions ready to be used by domain experts 
maintaining their volumes of data in state-of-the-art DBMS. 

3. PROBLEM FORMULATION 
Let D = {T1, T2,…, TN} be a dataset consisting of N trajectories 
of moving objects (we assume that the objects move in the xy- 
plane). Let pk,i = (xk,i, yk,i, tk,i) be the i-th sampled point, i ∈ {1, 2, 

…, Lk} of trajectory Tk, k ∈{1, 2, …, N}, where Lk denotes the 
length of Tk (i.e. the number of points it consists of), the pair 
(xk,i, yk,i) and tk,i denote the 2D location and the time coordinate 
of point pk,i, respectively. We consider linear interpolation 
between two successive sampled points, pk,i and pk,i+1, so that 
each trajectory turns out to be a sequence of 3D line segments, 
ek,i = (pk,i, pk,i+1), of cardinality Lk – 1, where each segment 
represents the continuous movement of the object during 
sampled points. Table 1 summarizes the definitions of the 
symbols used in this paper. 

Table 1. Table of Symbols 
Symbol Definition 

D A dataset, D = {T1, … , TN}, of N trajectories 
Tk k-th trajectory of D 
pk,i i-th point of trajectory Tk, pk,i = (xk,i, yk,i, tk,i) 
Lk Number of points forming trajectory Tk 
ek,i i-th (3D) line segment of Tk, ek,i = (pk,i, pk,i+1) 
LPk Number of sub-trajectories partitioning Tk 
Pk Set of the sub-trajectories partitioning Tk 
Pk,i i−th sub-trajectory of trajectory Tk 
P Set of sub-trajectories in dataset D, P = ∪Pk 
Vk Voting descriptor of trajectory Tk 
V Set of voting descriptors in dataset D, V = ∪Vk 

VPk,i Voting descriptor of sub-trajectory Pk,i 
Nlk,i Normalized lifespan descriptor of sub-trajectory Pk,i w.r.t. 

lifespan of Tk 
C Clustering of sub-trajectories in M clusters, C = {C1, …, 

CM}, Ci ⊂ P, Ci ∩ Cj = ∅, i ≠ j 
S Sampling set of representatives, S = {R1,..., RM}, S ⊂ P, 

with sub-trajectory Rj representing cluster Cj 
M Cardinality of C (and S) 

SR(S) Representativeness function of S 
V(Pk,i, Rj) Voting descriptor of Pk,i ∈ P−S w.r.t. sub-trajectory Rj ∈ 

S 
Out Set of outlier sub-trajectories, Out = P−C 

Informally, the objective of sub-trajectory clustering is to 
partition trajectories into sub-trajectories and then form groups 
of similar ones, while at the same time, separating those that 
cannot fit in a group (called outliers). However, searching for 
entire trajectory similarity may be misleading since real-world 
trajectories may be long and consisting of heterogeneous 
portions of movement [6]. On the other hand, clustering at the 
sub-trajectory level sounds much more effective.  
Rephrasing the previous discussion, if we consider trajectory Tk 
as a sequence of successive sub-trajectories Pk,i of arbitrary 
length (Pk,i is the i-th sub-trajectory of trajectory Tk), the 
objective of sub-trajectory clustering (and outlier detection) is to 
partition sub-trajectories into groups of similar ones and isolate 
the ones (called outliers) that are very dissimilar from the others. 
To achieve this, assuming a cluster is represented by its 
representative (or centroid) sub-trajectory, we define clustering 
as an optimization problem where the optimization criterion is to 
maximize the following expression: 

𝑆𝑅𝐷 =    𝑉 𝑃!,! ,𝑅!
!!,!∈! !!!!∈!

 (1) 

The formula to be maximized, namely Sum of 
Representativeness of Dataset (SRD), uses set S = {R1, ..., RM} 
of the representative sub-trajectories and the corresponding 
clusters C(Rj) built around them, and is calculated upon 
𝑉 𝑃!,! ,𝑅! , i.e. the mean similarity (or average number of votes, 
according to our terminology) of sub-trajectory Pk,i with respect 
to Rj.  

Given the above formulation, the problem in hand is formalized 
as follows: 
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Problem 1 (Sub-Trajectory clustering in a MOD): Assuming a 
dataset D = {T1, T2,…, TN} consisting of N trajectories, where 
each of them is considered as a sequence Pk of successive sub-
trajectories of arbitrary length, the problem of sub-trajectory 
clustering is defined as the task of partitioning the set P = ∪Pk 
of sub-trajectories into (i) a clustering C = {C1, …, CM} of M 
clusters, Ci ⊂ P, Ci ∩ Cj = ∅, i ≠ j (i.e. hard clustering), where 
each cluster is represented by its representative sub-trajectory Rj 
∈ P, j = 1, …, M, and (ii) a set Out of outliers, by maximizing 
Eq. (1). ∎  

It is important to note that maximizing Eq. (1) is not trivial at all 
since one has to define, among others, (i) the criterion according 
to which a trajectory is segmented into sub-trajectories, (ii) the 
technique for selecting the set of the most representative sub-
trajectories, (iii) whose cardinality M is unknown, to name but a 
few challenging sub-problems.  

4. THE S2T-CLUSTERING ALGORITHM 
In this section, we propose a solution for Problem 1 defined 
above, which is called S2T-Clustering (for Sampling-based Sub-
Trajectory Clustering). Our proposal (listed in Algorithm 1) 
consists of two phases: first, we apply the so-called 
Neighborhood-aware Trajectory Segmentation (aka NaTS) 
method that is able to detect homogenized sub-trajectories 
applying trajectory voting and segmentation; then, we apply the 
so-called Sampling, Clustering, and Outlier detection (aka 
SaCO) method that selects the most representative among the 
sub-trajectories detected in the previous phase in order for them 
to serve as the seeds of the clusters to be produced. 

Algorithm 1. S2T-Clustering 
Input: trajectory dataset D = {T1 , T2, … , TN }, voting influence 
σ, threshold ε 
Output: sampling set S, clustering C, set of outliers Out. 
 // Initialization phase 
1.  Reset set V of voting descriptors in D  
 // NaTS phase (Neighborhood-aware Trajectory 

Segmentation) 
2.  for each trajectory Tk ∈ D do  
3.   Update set V of voting descriptors in D w.r.t. Tk and σ 

4.   Partition Tk in set Pk of sub-trajectories w.r.t. Vk 
 // SaCO phase (Sampling, Clustering, and Outlier 

detection) 
5.  Find sampling set S consisting of the M most 

representative sub-trajectories 
6.  Using set S and threshold ε, partition P = ∪Pk in a set C of 

M clusters and a set Out of outliers 
7.  return (S, C, Out) 

It is important to note that the number M of representatives 
(hence, the number of clusters) is not user-defined; rather, it is 
the algorithm that estimates it (in Line 6). As for parameters σ 
and ε that appear in Algorithm 1 (Line 3 and Line 7, 
respectively), σ controls how fast the voting influence decreases 
with distance, whereas ε acts as a lower bound threshold of 
similarity between representative and non-representative sub-
trajectories, thus deciding whether a (non-representative) sub-
trajectory will be flagged as outlier or not. These parameters will 
be explained in detail in the subsections that follow. 

4.1 NaTS: Neighborhood-aware Trajectory 
Segmentation 
We extend the concept of density-biased sampling (DBS), which 
was originally proposed for point datasets [18], to be applied to 
trajectory segments. According to DBS, the local density for 
each point of a set is approximated by the number of points in a 
surrounding region, divided by the volume of the region. In our 
case, adopting a voting process of trajectories in MOD as 

defined in [28], we define the representativeness of a 3D 
trajectory segment ek,i of a given trajectory Tk to be the number 
of ‘votes’ this segment collects from other trajectories w.r.t. their 
mutual distance. The overall voting collected by a segment (a 
value ranging from 0 to N) has the physical meaning of the 
number of other trajectories that co-exist with the trajectory that 
segment belongs to, both spatially and temporally. Intuitively, 
the voting results can be post-processed in order for us to be able 
to identify homogeneous (w.r.t. representativeness) sub-
trajectories. 

Formally, let Vk be the voting trajectory descriptor along the line 
segments of Tk, consisting of a series of Lk–1 components. Each 
component Vk,i of this vector corresponds to the number of votes 
(“representativeness” value) that segment ek,i, i ∈ {1, …, Lk–1}, 
collected by the segments of the other trajectories. This 
representativeness value is based on a distance function d(ek,i, ej) 
between two line segments ek,i and ej, k ≠ j. This distance 
function is defined as the definite integral of the time-varying 
distance Dj(t) between the two segments during their common 
lifespan [tj,start, tj,end), following the approach proposed in [8]: 

𝑑 𝑒!,! , 𝑒! = 𝐷! 𝑡

!!,!"#

!!,!"#$"

𝑑𝑡 (2) 

As Dj follows a trinomial, this integral is efficiently 
approximated by the Trapezoid Rule: 

𝐷! 𝑡!,!"#$" + 𝐷! 𝑡!,!"# ∙ 𝑡!,!"#$" − 𝑡!,!"# 2 

and can be computed in O(1), as it has been already proved in 
[8].  

Given the above distance function, the representativeness value 
is provided by the following voting function. 

𝑉 𝑒!,! , 𝑒! = 𝑒!
!! !!,!,!!

!∙!!  (3) 

As already mentioned, parameter σ > 0 controls the “voting 
influence”, i.e. how fast 𝑉 𝑒!,! , 𝑒!  decreases with distance. It 
also holds that 𝑉 𝑒!,! , 𝑒!  is bounded in [0, 1]: it gets value 1 
when the distance of the two segments is zero (i.e. the segments 
are identical) while very high distance results in voting value 
close to zero. 

After the voting process takes place, the trajectory segmentation 
process gets into action. The goal of this step is to partition each 
trajectory into homogenous representativeness sub-trajectories, 
irrespectively of their shape complexity (recall the discussion 
about the snake-like trajectories in Figure 1). In order to perform 
neighbourhood-aware trajectory segmentation, we adopt the 
Trajectory Segmentation Algorithm (TSA), proposed in [28]. In 
other words, the result of the voting process is given as input to 
TSA, which provides as output the sub-trajectories along with 
their voting descriptors. More technically, let Pk,i, i ∈ {1, …, 
LPk}, be the i-th sub-trajectory of Tk, where LPk denotes the 
number of partitions of Tk. Then, VPk,i is the voting descriptor 
formed by the representativeness values of the segments that 
belong to Pk,i. In other words, VPk,i shows how many trajectories 
find themselves to be similar to Pk,i. The interested reader is 
referred to [28] for the technical details of TSA. 

Back to the example of Figure 1, the NaTS phase results in 
segmenting trajectory T1 into three sub-trajectories (coloured 
red, blue, and black, respectively, in Figure 1(b)); similar for the 
other trajectories of the dataset. Thus, the overall result of this 
phase consists of 12 sub-trajectories along with their voting 
descriptors. 
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4.2 SaCO: Sampling, Clustering, and 
Outlier detection 
As already mentioned, trajectory segmentation aims to provide 
homogeneous sub-trajectories according to their 
representativeness, i.e. with respect to their local similarity with 
other trajectories. On the other hand, the goal of sub-trajectory 
clustering is to partition the dataset into groups (clusters) of 
similar sub-trajectories. Therefore, in our proposal, we first 
select the appropriate sampling set S and then tackle the problem 
of clustering according to the following idea (quite popular, also 
in traditional data clustering): each sub-trajectory in the 
sampling set is considered to be a representative around which a 
cluster will be formed. So, our goal is that the sampling set 
should contain highly voted trajectories of the MOD which, at 
the same time, would cover the 3D space occupied by the entire 
dataset as much as possible in order for Eq. (1) to be maximized.  

In order to achieve this goal, we propose the sampling to be done 
by maximizing a formula (see Eq. (4)) that would take into 
account the votes VPk,i collected by each sub-trajectory. 
Formally, let S denote the sampling set, so that Sk,i is one, if sub-
trajectory Pk,i belongs to the sampling set, and zero otherwise. 
According to the previous discussion, the number of sub-
trajectories that are represented in the sampling set S, should be 
maximized. This is formalized in Eqs. (4)-(6).  

𝑆𝑅(𝑆) = 𝑆!,! ∙ 𝑆𝑅!"#$(𝑘, 𝑖)
!"!

!!!

!

!!!
 (4) 

where 

𝑆𝑅!"#$(𝑘, 𝑖) = 𝑉𝑃!,!,!! ∙ 𝑁𝑙!,!,!

|!!,!|

!!!

∙ (1 − 𝑉𝑃!,!,!! ) (5) 

𝑁𝑙!,!,! = 𝑙𝑖𝑓𝑒𝑠𝑝𝑎𝑛 𝑒!,!,! 𝑙𝑖𝑓𝑒𝑠𝑝𝑎𝑛 𝑇!  (6) 

More precisely, SRgain(k,i) expresses the gain in SR(S) if we add 
Pk,i in S, |Pk,i| denotes the number of line segments of Pk,i, 𝑉𝑃!,!,!!  
and 𝑉𝑃!,!,!!  denote the votes in P and the votes in S, respectively, 
of the j-th line segment of Pk,i and are calculated according to 
Eq. (3). As for Nlk,i, it denotes the normalized lifespan descriptor 
of sub-trajectory Pk,i w.r.t. lifespan of Tk, namely Nlk,i,j is the 
fraction of the duration of the j-th line segment of Pk,i with 
respect to whole lifespan of Tk.  

For this purpose, we follow the ideas included in the Sub-
trajectory Sampling Algorithm (SSA), proposed in [28]. 
However, SSA is not appropriate for an efficient in-DBMS 
solution, which is one of our main objectives. Thus, we keep the 
main characteristics of the algorithm and adapt it in order to 
meet our specifications (described in detail in Section 5.2). In 
principle, the input of sampling algorithm is the set P of all sub-
trajectories Pk, the set voting VPk,i and the normalized lifespan 
Nlk,i vectors of these sub-trajectories, all provided by the NaTS 
phase. The output of the sampling step is the sub-trajectory 
sampling set S consisting of M samples. Back to the example of 
Figure 1, this step results in selecting two sub-trajectories 
(samples), one out of the three red and one out of the four blue 
sub-trajectories.  

As already mentioned, the population M of the samples is not 
user-defined; in contrary, it is dynamically estimated by SSA 
algorithm. As such, it provides a deterministic solution, in 
contrast to other probabilistic [18][27] or user-supervised, 
explorative sampling techniques [2].  

What follows is the clustering step, which takes into account the 
sampling set S and the vector of votes (i.e. representativeness) 
V(Pk,i, Rj) between, on the one hand, the non-representative Pk,i 
∈ P−S and, on the other hand, the representative sub-trajectories 

Rj ∈ S. Technically, V(Pk,i, Rj) consists of |Pk,i| elements, where 
each element represents the voting that takes place between the 
segments of Pk,i and Rj. As illustrated in Eq. (1), we use the 
mean value 𝑉 𝑃!,! ,𝑅!  of the vector values V(Pk,i, Rj). Each of 
those values is computed by measuring the distance of the 
corresponding segment of Pk,i from its nearest to Rj and then by 
applying the voting function of Eq. (3). Thus, it holds that 
0 ≤ 𝑉 𝑃!,! ,𝑅! ≤ 1. 

Concluding the discussion about Algorithm 1, in order to find 
the clusters that maximize Eq. (1), the sub-trajectories that are 
assigned to cluster C(Rj) represented by sub-trajectory Rj ∈ S, 
are the ones that fulfil the following property: 

 𝐶 𝑅! = 𝑃!,! ∈ 𝑃 − 𝑆:  𝑉 𝑃!,! ,𝑅! ≥ 𝑉 𝑃!,! ,𝑅!   ∀𝑅! ∈

𝑆 ∧   𝑉 𝑃!,! ,𝑅! ≥ 𝜀   
(7) 

and 
𝐶 =  ∪ 𝐶 𝑅!    (8) 

On the other hand, the sub-trajectories that are considered 
outliers (thus forming the outliers set Out) are those failing to be 
assigned to a cluster, formally: 

𝑂𝑢𝑡 =   𝑃 − 𝐶   (9) 
As already discussed, parameter ε controls how far from a 
representative a non-representative should be positioned in order 
for the latter to be flagged as outlier. Back to the example of 
Figure 1, the clustering process presented above results in two 
clusters, formed around the red and the blue, respectively, 
representative sub-trajectory found in the sampling step. As a 
side effect, the black sub-trajectories are left out of the two 
clusters, thus they are flagged as outliers. 

5. S2T-CLUSTERING IN-DBMS 
In this section, we present our methodology for the efficient in-
DBMS development of S2T-Clustering algorithm proposed in 
Section 4. 

5.1 NaTS in-DBMS 
NaTS phase of S2T-Clustering algorithm (Lines 2–4 in 
Algorithm 1) consists of two steps: (a) voting among trajectory 
segments and (b) trajectory segmentation based on the resulted 
voting descriptors. An efficient in-DBMS solution should focus 
on the voting step (Lines 2–3), since TSA [28] that implements 
the segmentation step (Line 4) poses no special challenges; it is 
an efficient in-memory algorithm applied only on the voting 
descriptor of a single trajectory. 

Back to the voting step, to meet its requirement we need an 
algorithm that takes as input a dataset D = {T1, T2, …, TN} of 
trajectories, a trajectory Tk ∈ D and σ > 0 parameter, and 
provides as output a voting descriptor (vector) Vk consisting of 
Lk–1 components, each corresponding to segment ek,i, i ∈ {1, ..., 
Lk–1}, of trajectory Tk. For efficiency purposes, [28] 
implemented the demanding voting process by using an 
incremental nearest neighbour (INN) algorithm. However, given 
the specifications posed in the introduction of this paper, INN is 
not a choice due to the fact that the access methods supported by 
real ORDBMS (e.g. the GiST interface in PostgreSQL) do not 
support the incremental paradigm. This implies that, in our case, 
we are directed to queries natively supported by ORDBMS, such 
as typical range and NN queries. 

Let us now discuss the design and implementation options we 
have in-DBMS. Dataset D corresponds to a relation with tuples 
in the form <t_id, s_id, ek,i>, where t_id (s_id) is the trajectory 
(segment, respectively) identifier and ek,i corresponds to the 3D 
segment, upon which a 3D-R-tree index is built. Nevertheless, 
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this setting is straight-forwardly realized in the well-known 
PostGIS spatial extension of PostgreSQL using 3D GiST. (Note, 
however, that PostGIS handles time- dimension as simply as a 
(third) z- spatial dimension, next to x- and y- dimensions.) An 
important issue has also to do with the realization of Eq. (3) that 
provides the voting between two segments: theoretically, a 
segment may vote (though close to zero) even if it is found very 
far from the target segment. However, this is not realistic in 
DBMS implementations. As such, we introduce s_buffer, a 
spatial threshold for distance between two segments, above 
which there is no need to calculate this distance. In the case 
where the application user has limited knowledge about space-
time properties of the dataset, this parameter can be tuned to be 
the maximum value resulting in a very low (close to zero) voting 
as computed by Eq. (3). This is achieved as follows: by 
reversing Eq. (3), we obtain Eq. (10) that defines an upper bound 
for s_buffer. 

𝑑 ≤    −2𝜎! ∙ ln  (𝜀) (10) 

Thus, d values higher than the upper bound set in Eq. (10) are 
not expected to contribute to the quality of the clustering.  

Given the above setting, voting can be implemented using at 
least two alternatives, called Baseline-I and Baseline-II, 
respectively. Baseline-I solution performs 𝐿! − 1!  range 
queries in the 3D-R-tree, where each query window corresponds 
to the MBB of a segment, enlarged by s_buffer; hence, the total 
number of range queries equals to the total number of segments 
in D, a fact that turns this solution to be expensive in disk 
accesses. On the other hand, Baseline-II solution performs N 
range queries in the 3D-R-tree, where each query window 
corresponds to the MBB of a trajectory, again enlarged by 
s_buffer; hence, the total number of range queries equals to the 
number of trajectories in D. Obviously, the second solution is 
much cheaper in disk accesses regarding the index but, 
unfortunately, imposes a heavy refinement step because of the 
volume of the trajectory MBB. Anyway, both approaches need a 
refinement step to calculate voting descriptor Vk,i, which 
involves distance calculations. 

In the following paragraphs, we present an alternative (third) 
approach for addressing the voting step, which is the most 
demanding step in S2T-Clustering algorithm and, as such, it 
needs special care. In particular, we follow a filter-and-
refinement approach that utilizes a range-like query, called 
Trajectory Buffer Query (TBQ). TBQ takes as input a trajectory, 
enlarges it by s_buffer, and returns the segments that overlap 
with the sequence of the enlarged MBBs of the trajectory’s 
segments. The TBQ rationale is to efficiently retrieve those 
segments in D that are “around” a given trajectory, where 
“around” is defined by s_buffer. Figure 2 illustrates the 
Trajectory Buffer TBk of a trajectory Tk.  

 
Figure 2. The Trajectory Buffer TBk (i.e. the sequence 

of the blue MBBs) of a trajectory Tk. 
It is obvious that our proposal follows a trajectory-based 
approach (i.e. similar to the Baseline-II technique), but for each 
trajectory it minimizes the filtering step by diminishing the dead 
space of the query, and thus minimizes the expensive refinement 
step. In turn, this implies changing the default search strategy of 
the 3D-R-tree over GiST that will reduce the time needed to 
compare a node entry with the trajectory buffer that is passed as 
predicate to the index. This is achieved by the Consistent method 

of the GiST extensibility interface [14], which contains the 
comparison logic between an index node entry of GiST and the 
trajectory buffer. Algorithm 2 outlines TBQ whereas Algorithm 
3 presents the adapted Consistent method of the GiST interface.  

Algorithm 2. Trajectory Buffer Query (TBQ) 
Input: pg3D-R-tree root, trajectory Tk, parameter s_buffer 
Output: set of segments that overlap with TBk 
1.  TBk ← TrajectoryBuffer(Tk, s_buffer) 
2.  root.depth-first-search(Consistent, TBk) 

 
Algorithm 3. Consistent 
Input: Trajectory Buffer TBk, current index entry E 
Output: Boolean 
1.  if E is in a leaf node then 
2.   if MBB(E.segment) overlaps MBB(TBk) then 
3.     for each MBBi ∈ TBk do 
4.      if E.segment overlaps MBBi then 
5.       return true 
6.  else // E is in a non-leaf node 
7.   if E.box overlaps MBB(TBk) then 
8.     for each MBBi ∈ TBk do 
9.      if E.box overlaps MBBi then 
10.       return true 
11.  return false 

 
Recall that Consistent decides whether the depth-first search 
should visit a child of the current entry or not (if the entry 
belongs to a non-leaf node) or, in case the entry belongs to a leaf 
node, checks whether to return the segment pointed by the leaf 
entry. After this remark, the depth-first search driven by 
Consistent in Algorithm 3 is easy to be followed: Consistent 
returns true if the MBB of the entry overlaps with one of the 
MBBs forming the trajectory buffer TBk (Lines 5 and 10, for leaf 
and non-leaf nodes, respectively). Before this check takes place, 
a brute filtering is applied by checking whether the MBB of the 
entry overlaps the entire MBB of TBk (Lines 2 and 7, 
respectively). 

5.2 SaCO in-DBMS 
In this section, we discuss the in-DBMS development of SaCO, 
i.e. the second phase of S2T-Clustering. SaCO phase (Lines 5–6 
in Algorithm 1) also consists of two steps: (a) sampling of the 
most representative sub-trajectories (Line 5) and (b) clustering 
around samples and outlier detection (Line 6).  

Regarding the sampling step, we adopt the SSA algorithm [28] 
as a starting point and we improve it with two crucial 
modifications, focusing on the efficiency and the quality, 
respectively, of the samples selected. The first improvement is 
that the voting method that is inherent in the sampling process 
follows the much more efficient approach presented earlier 
rather than the one presented in [28]. The second modification is 
about the selection of an even better set of representatives; as 
proposed in [28], SSA selects representatives as long as (a) the 
top-k number of representatives is less than a user-defined 
threshold (i.e. parameter M that acts as an upper bound for the 
selected representatives) and (b) the optimization criterion is 
satisfied (see Eq. (4) and (5)). In fact, SSA selects the highly 
voted sub-trajectories, while at the same time it tries to penalize 
sub-trajectories that are very close to already selected 
representatives. Sometimes this automatic penalization fails, 
resulting to very similar representatives. In contrast, in our case, 
as the representatives are employed as cluster pivots, when a 
new representative is selected, it is further examined whether it 
is similar with one of the already selected representatives. In 
such a case, it is not selected and the algorithm evaluates the 
next candidate sub-trajectory. The similarity criterion is the same 
with the one adopted for the clustering, i.e. Eq. (7). 
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What follows is the final step, that of clustering and outlier 
detection. For this purpose, we follow an index-based, greedy 
approach that takes advantage of the TBQ query, which is 
applied on the results of the SSA algorithm, so as to form 
clusters around the sampled sub-trajectories. To this end, we 
propose the so-called Sub-trajectory Clustering Algorithm 
(SCA). SCA, listed in Algorithm 4, receives as input set P of 
sub-trajectories, set S of representatives, as it was produced by 
the (modified) SSA, and threshold parameter ε. The output of the 
method is the final result of S2T-Clustering, i.e. sets C and Out, 
with the clusters and outliers, respectively.  

Algorithm 4. SCA 
Input: set P of sub-trajectories, set S of representatives, parameter 
ε 
Output: set C of clusters, set Out of outliers 
1.  Out = P − S 
2.  for each Rj ∈ S do 
3.   Cj ← {Rj} 
4.  for each Rj ∈ S do 
5.   TBQj ← TBQ(Out, Rj, s_buffer) 
6.    for each ej,f ∈ Rj do 
7.     TBQj,f ← overlaps(TBQj, extend(ej,f, s_buffer)) 
8.    for each Pk,i in {TBQj,f}, f ∈ [1, |Rj|] do 
9.     v ←   𝑉 𝑃!,!  ,𝑅!  
10.     if v > ε and v > old_vk,i then 
11.      Cj ← Cj ∪ {Pk,i} 
12.      flag Pk,i as clustered in Out 
13.      old_vk,i ← v 
14.  for each Pk,i in Out do 
15.   if Pk,i is flagged as clustered then 
16.     Out ← Out − {Pk,i}; 
17.  return (C, Out) 
 
Initially, the sub-trajectories are organized in two sets 
(implemented as relations in DBMS), one containing the 
sampling set sorted by the order of their selection and the other 
containing the remaining data, while each cluster is initialized by 
a representative sub-trajectory from the sampling set. As such, 
each representative sub-trajectory constitutes the first member 
(seed) of the corresponding cluster (Lines 1-3). Then, we apply a 
two-step filtering procedure so as to increase the efficiency of 
the algorithm. At the first step, for each cluster seed Rj, we apply 
a TBQ query, which returns the segments that are “close” to the 
cluster seed (Line 5). Subsequently, for each segment ej,f 
belonging to the specific representative Rj, we apply a 
spatiotemporal range query with the same spatial component as 
that of the TBQ query (Line 7). This spatiotemporal range query 
is performed in order to identify the segments that are “close 
enough” to ej,f and, hence, qualify to proceed to the voting 
procedure w.r.t. Rj. Subsequently, for each non-clustered Pk,i, we 
calculate the average voting that Rj receives (Line 9). By taking 
into account parameter ε discussed earlier, we assign it to cluster 
Cj mastered by Rj (Line 11) and mark it as clustered (Line 12). 
Through this process, in the case where Pk,i belongs to the result 
of more than one TBQ searches, it is assigned to the 
representative that has achieved the highest voting. 

6. EXPERIMENTAL STUDY 
In this section, we present the results of our experimental study. 
All experiments were conducted on an Intel Xeon X5675 
Processor 3.06GHz with 48GB memory, running on Debian 
Release 7.0 (wheezy) 64-bit. The proposed algorithms were 
implemented on top of a PostgreSQL 9.4 server with the default 
configuration for its memory parameters. We should clarify that 
in our implementation, which exploits on the extensibility 
interface given by PostgreSQL, we have defined and 
implemented from scratch datatypes and operands conforming to 
the whole discussion so far, resulting in the so-called 

Hermes@PostgreSQL [16], which is completely independent 
from PostGIS. This implies that the 3D-R-tree has also been 
implemented from scratch (on top of GiST); we call it pg3D-R-
tree (see the input of TBQ in Algorithm 2).  

A notable difference of our pg3D-R-tree from the PostGIS 
implementation of the 3D-R-tree is that, in our case, the entries 
of the leaf nodes are 3D segments rather than 3D boxes. This is 
an implicit assumption in the Consistent algorithm (see e.g. Line 
2 in Algorithm 3), which allows us to avoid additional I/O 
operations. The outline of our experimental study is as follows: 
First, we study the robustness of S2T-Clustering by using a 
synthetic dataset (where we know the ground truth) in order to 
(a) evaluate the sensitivity of our proposal w.r.t. various 
parameters and (b) validate whether our approach succeeds to 
discover the underlying clusters (and outliers). Then, a set of 
experiments is performed in order to evaluate the efficiency and 
scalability of S2T-Clustering. These experiments are performed 
using three different approaches: the two baseline solutions and 
our solution based on TBQ, as they were presented in Section 5. 

6.1 Datasets 
The three datasets we used in our experimental study, one 
synthetic (SMOD) and two real datasets (IMIS, GeoLife), are 
presented in the following paragraphs.  

SMOD - Synthetic MOD (SMOD)1 consists of 400 trajectories 
and is used for the ground truth verification (see the discussion 
about ground truth below). The creation scenario of the synthetic 
dataset is the following: the objects move upon a simple graph 
that consists of the following destination nodes (points) with 
coordinates: A(0,0), B(1,0), C(4,0) and D(2,1). Half of the 
objects move with normal speed (2 units per second) and another 
half move with high speed (5 units per second). Figure 3 
illustrates the 2D map of the SMOD consisting of three one-
directional (A → B, B → D, D → C) and one bi-directional road 
(B ⇆ C). All objects move under the following scenario, for a 
lifetime of 100 seconds: 

• (normal movement – 99% of the trajectories) All objects start 
from point A towards point B; the high-speed objects start at t 
= 0 sec and the normal-speed objects start at t = 20 sec. When 
an object arrives at B, it ends its trajectory with a probability 
of 15%; otherwise, it continues with the same speed to the next 
point. If there exist more than one option for the next point, it 
decides randomly about the next destination. 

• (abnormal movement – 1% of the trajectories) A few outlier 
objects follow a random movement in space (other than these 
roads) with a speed that is updated randomly.  

 
Figure 3. The 2-D map of SMOD. 

The ground truth of the clusters that are hidden in SMOD can be 
inferred by the description of the dataset itself. In particular, 
eight clusters of sub-trajectories (as well as a set of outliers) are 
identified. Table 2 lists the eight clusters along with their spatial 
(2nd column) and temporal projection (3rd column). 

                                                             
1 Publicly available at chorochronos.datastories.org repository under the 

name ‘smod’. 
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Table 2. The ground truth hidden in SMOD 
Cluster  Path Time periods (clusters) 
#1, #2 A→B [0, 0.2], [0.2, 0.7] 
#3, #4 B→C [0.2, 0.8], [0.7, 1.2] 
#5, #6 B→D [0.2, 0.52], [0.7, 1.2]  

#7 C→B [0.8, 1] 
#8 D→C [0.52, 1] 

As for real datasets, GeoLife [47] consists of the trajectories of 
178 users in a period of more than four years; this dataset 
represents a wide range of movements, including not only urban 
transportation (e.g. from home to work and back) but also 
different kinds of activities, such as sports activities, shopping, 
etc. Finally, IMIS2  is a real AIS dataset consisting of the 
trajectories of 637 ships moving in the Greek seas for one week. 
Table 3 presents the statistics of the three datasets. 

6.2 Quality of Clustering Analysis 
In this section, we perform a sensitivity analysis in order to 
explore the effect on the quality of clustering when setting 
different values on certain parameters. The quality of the 
clustering is calculated through two different measures: 
QMeasure [21] and SRD (see Eq. (1)). We should mention that 
the lower the QMeasure the higher the quality; on the other 
hand, the higher the SRD the higher the quality. Regarding 
parameter settings, as our approach shares similar concepts with 
the sampling methodology of [28], we followed the best 
practices presented in that work. More specifically, parameter σ 
was set to 0.1% of the dataset diameter while ε was set to 10-3. 
Regarding s_buffer, it was automatically set according to Eq. 
(10) as default value and we experimented with values around 
the default. 

Table 3. Dataset Statistics 
Statistic SMOD GeoLife IMIS 

# Trajectories 400 18,668 5110 

# Segments 35,273 24,159,325 443,657 

Dataset Duration 
(hh:mm:ss) 0:02:00 1932 days 22:59:48 6 days 19:59:53 

Avg. Sampling Rate 
(hh:mm:ss) 0:00:01 0:00:08 0:18:02 

Avg. Segment Length 
(m) 8 72 1545 

Avg. Segment Speed 
(m/s) 7.83 5.01 7.03 

Avg. Trajectory Speed 
(m/s) 2.86 3.91 4.52 

Avg. # Points per 
Trajectory 89 1295 88 

Avg. Trajectory 
Duration (hh:mm:ss) 0:01:28 2:43:15 11:33:45 

Avg. Trajectory Length 
(m) 691 93,046 134,148 

 

                                                             
2 Publicly available at chorochronos.datastories.org under the name 

‘imis1week’. 
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(b) 

 
(c) 

Figure 4. The effect on (a) QMeasure, (b) SRD, (c) the 
discovered number of clusters, when varying s_buffer 

parameter around its default value. 

The first set of experiments is about the sensitivity of S2T-
Clustering w.r.t. s_buffer. Figure 4 illustrates the results over the 
IMIS dataset. In particular, we used the default value (labelled 
100% in the x-axis of the charts) as well as 6 values around it 
(labelled 40%, 60%, 80%, 120%, 140%, 160%). As one can 
easily observe, the quality of the clustering, measured either by 
QMeasure or SRD, remains more or less stable and follows the 
trend of the number of clusters identified. Moreover, in both 
QMeasure and SRD, the best quality appears when s_buffer is 
set to its default value (d).  

We repeated the same experiment over GeoLife and resulted in 
similar conclusions. Considering the above analysis, the value 
for s_buffer used in the remainder of our experimental study is 
the default value provided by Eq. (10). 

In a second set of experiments, we applied our proposal to the 
SMOD dataset, which is ideal for the purposes of testing the 
quality of our algorithm. In order to measure the stability of our 
method to noise effects, we have added Gaussian white noise of 
different Signal to Noise Ratio (SNR) levels, measured in db, to 
the spatial coordinates of SMOD. All the subsequent 
experiments have been repeated with SNR = 30db and SNR = 
50db and the results were the same. Therefore, we present only 
the case with the SNR =30db. 
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(a) 

 
(b) 

 
(c) 

Figure 5. Visualization of the clusters’ representatives 
provided by: S2T-Clustering in (a) 2D and (b) 3D, (c) 

TRACLUS, when applied to a subset of SMOD 
consisting of 2 patterns. 

First, we applied both S2T-Clustering and TRACLUS [21] over 
a subset of SMOD that consists only of the trajectories that move 
throughout the whole lifespan of the dataset, thus limiting the 
ground truth to two clusters. In Figure 5(a) and Figure 5(c) we 
visualize only the representatives of each cluster, while in Figure 
5(b) we provide a 3D illustration of the data used in the case of 
Figure 5(a). Note that S2T-Clustering discovers the two clusters, 
while TRACLUS discovers several linear patterns; see Figure 
5(a) vs. Figure 5(c). 

Subsequently, we applied both S2T-Clustering and TRACLUS to 
the entire SMOD, for which we have knowledge of the ground 
truth. In Figure 6(a) and Figure 6(c), we present the results of the 
S2T-Clustering and TRACLUS, respectively. Moreover, in order 
to better comprehend the temporal dynamics of the dataset we 
provide a 3D illustration in Figure 6(b). According to this 
experiment, S2T-Clustering effectively discovers all eight 
clusters (as well as the noisy sub-trajectories, depicted in black 
color in Figure 6(b)), thus S2T-Clustering is not affected by the 
trajectories’ shape, yielding an effective and robust approach for 
the discovery of linear and non-linear patterns. On the contrary, 
TRACLUS fails to identify the hidden ground truth in this 
SMOD due to the fact that it ignores the time dimension. 
Interestingly, TRACLUS discovers almost the same sets of 
representatives when applied to either a subset of or the entire 
SMOD; see Figure 5(c) vs. Figure 6(c). 

 
(a) 

 
(b) 

 
(c) 

Figure 6. Visualization of the clusters’ representatives 
provided by: (a) S2T-Clustering in (a) 2D and (b) 3D, 

(c) TRACLUS, when applied to the entire SMOD 
consisting of 8 patterns. 

In order to evaluate the accuracy of our proposal in a quantified 
way, we further employed F-Measure in SMOD. In detail, we 
built 8 datasets, with the first consisting of the sub-trajectories of 
the first cluster only, the second consisting of the sub-trajectories 
of the first and the second cluster only, and so on, until the 
eighth dataset, which consisted of the sub-trajectories of all eight 
clusters; all eight datasets appeared in two variations: including 
or not the set of outliers. For each dataset, we applied S2T-
Clustering and calculated F-Measure; Figure 7 illustrates this 
quality criterion by increasing the number of clusters. It is 
evident that S2T-Clustering turns out to be very robust, achieving 
always precision and recall values over 92.3%, while the outliers 
are always detected correctly. 

 

Figure 7. Quality of S2T-Clustering w.r.t. number of clusters. 
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6.3 Efficiency and Scalability 
In order to study the efficiency and scalability of our proposal 
we followed two competing approaches: Hermes@PostgreSQL 
[16], implemented according to the discussion in Section 5, vs. 
PostGIS extension of PostgreSQL that simulated the two 
baseline solutions presented in Section 5.1.  

We have noticed that the implementation of the 3D-R-tree in 
PostGIS suffers from rounding errors because it uses 32-bit 
IEEE floating-point numbers to store the coordinates [35]. In our 
experiments we observed that the MBB of a trajectory or a 
segment was always enlarged due to this rounding, thus making 
the overlap query in PostGIS return more segments than our 
implementation. Since this made the comparison between the 
two systems unfair, we simulated PostGIS inside Hermes, in 
other words, also the baseline solutions were simulated inside 
Hermes (thus, making all solutions run under the same 
framework). 

In the charts that follow, we denote the implementation of 
Baseline-I and Baseline-II solutions implemented both in 
Hermes and in PostGIS as {Hermes | PostGIS}-Baseline-{I | II}, 
i.e. four different implementations.  

In particular, Figure 8 illustrates the execution time of the voting 
step for the IMIS dataset when varying the dataset size (i.e. the 
number of trajectories). Obviously, the two implementations 
present similar performance, with the PostGIS implementation 
performing slightly better mainly due to the fact that the size of 
index node entries in PostGIS (which uses 32-bit numbers for 
storing the temporal dimension) is slightly less than that of 
Hermes (which uses 64-bit numbers).  

(a) 

(b) 

Figure 8. Comparing the performance of baseline solutions: 
(a) Baseline-I; (b) Baseline-II. 

We repeated the same experiment with the GeoLife dataset and 
the results lead to similar conclusions, thus they are excluded 
due to space limitations.  

Based on the above results, in the remainder of the experimental 
study, the scalability study is conducted using the Hermes 
implementation of the algorithms. As illustrated in Figure 9(b), 
all three approaches (Baseline-I, Baseline-II and TBQ, presented 
in Section 5.1) perform similarly on the IMIS dataset as far as it 
concerns the segmentation, sampling and clustering steps of the 
algorithm (please note that y-axis is at log scale). The crucial 
difference is at the expensive voting step, where TBQ 
significantly outperforms the two baseline solutions by almost 
two orders of magnitude; this is illustrated in Figure 9(a) 
whereas in Figure 9(c) we present the accumulated processing 
time. 

Due to the fact that the overall performance is dominated by the 
performance of the voting step, we further studied this step over 
the GeoLife dataset. As it can be observed in Figure 9(d), the 
behavior of the voting step of S2T-Clustering over GeoLife is 
slightly different from that over IMIS. TBQ still outperforms 
both Baseline-I and Baseline-II solutions by several orders of 
magnitude, but in the case of GeoLife, Baseline-II outperforms 
Baseline-I. This can be explained by the fact that GeoLife 
consists of trajectories with significantly larger number of 
segments than IMIS (recall the statistics in Table 3). This fact 
leads Baseline-I to perform considerably more lookups in the 
index. 

7. CONCLUSIONS 
In this paper, we discussed the problem of sub-trajectory 
clustering and outlier detection in trajectory databases, aiming to 
take both space and time information into consideration. In 
particular, we proposed S2T-Clustering that is novel not only 
because it solves the problem more effectively than the state-of-
the-art (namely, TRACLUS), but also for an additional, quite 
important reason: our proposal is designed in-DBMS, i.e., it 
performs as a query operator in a real MOD engine over an 
extensible DBMS (namely, PostgreSQL in our current 
implementation). Having such functionality in their hands, data 
scientists are able to perform cluster analysis via simple SQL in 
real DBMS, where concurrency and recovery issues are taken 
into consideration. Moreover, our algorithm is boosted by an 
efficient index-based Trajectory Buffer Query (TBQ) that speeds 
up the overall process, resulting in a scalable solution, 
outperforming the state-of-the-art in-DBMS solutions supported 
by PostGIS by several orders of magnitude.  

As a next step, inspired by the research agenda of the big data 
era, we plan to investigate real-time and incremental solutions, 
exploiting on modern in-memory DBMS architectures. 
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(a) 

(b) 

(c) 

(d) 
Figure 9. Step-by-step execution time of S2T-Clustering: (a) 

voting over IMIS; (b) segmentation/sampling/clustering over 
IMIS; (c) overall over IMIS; (d) voting over GeoLife. 
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ABSTRACT
In recent years, the industry landscape surrounding data
processing systems has been significantly impacted by Big
Data. Core technology and algorithms for data analysis have
been adjusted and redesigned to handle the ever increasing
amount of data. In this paper we revisit the concept of join
index, a base mechanism in relational DBMS to support the
expensive join operator, and analyze how it can be effectively
integrated and combined with other mechanisms widely de-
ployed for large-scale data processing. In particular, we show
how the data store Informatica IDV, originally designed to
facilitate backup and archival of application data, can bene-
fit from join indices to give fast SQL-based access to archival
data for discovery purposes. Informatica IDV supports both
horizontal and vertical partitioning – two mechanisms that
are widely used in modern data stores to speed up large-scale
data processing. However, this requires us to reexamine join
index design and usage. In this paper, we propose a scalable,
partitioned, columnar join index that supports parallel exe-
cution, ease of maintenance and a late materialization query
processing approach which is efficient for column-stores. Our
implementation based on Informatica IDV has been evalu-
ated using a TPC-H based benchmark, showing significant
performance improvements compared to executions without
join index.

CCS Concepts
•Information systems → Join algorithms;

Keywords
join indices; predicate evaluation; archive stores;

1. INTRODUCTION
The past decade has seen a surge in data analytics, pri-

marily driven by Big Data. Gartner predicts the market
forecast for BI & Analytics sector to reach $16.9 billion in
2016, an increase of 5.2 percent from 2015 [6]. Falling disk

c©2017, Copyright is with the authors. Published in Proc. 20th Inter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

storage prices [12] and off-the-shelf hardware costs in gen-
eral have resulted in an increasing number of organizations
taking the Big Data leap. The unprecedented abundance of
data and the demand to process them efficiently and eco-
nomically has resulted in various emerging trends.

Big Data frameworks like the Hadoop ecosystem, a promi-
nent technology to process large amount of unstructured
data, are engineered to run on clusters that can be easily
built from off-the-shelf commercial hardware without need-
ing any specialized and costly components. They also make
fault tolerance concepts, such as persisting intermediate re-
sults, stateless worker tasks, shared and replicated storage
etc., a fundamental part of their design. Most Big Data
applications are centered around use cases that have very
little update to existing data and hence, can exploit storage
structures optimized for appends. Data is usually parti-
tioned horizontally, allowing the framework to process the
various data partitions independently in parallel.

RDBMS vendors, on the other hand, have started feel-
ing the pinch to reduce the amount of I/O incurred during
query processing as the data sizes grew. A fundamental rea-
son for the high I/O has been due to the row-based storage
of data, that often results in reading a lot of attributes from
disk that are not required. This is where column stores have
found their resurgence, as they store each column in separate
blocks in the disk, often referred to as vertical data partition-
ing. [1] and [10] demonstrate that column-stores perform
better than row stores for analytical queries. These obser-
vations have forced the leading row-based RDBMS vendors
to incorporate many features of column stores [22]. However
[1] concludes that such optimizations on row-stores still fall
short of the column-store performance. The time point the
resultset of a query is materialized has a particular impact
in the performance. Row stores traditionally use early ma-
terialization, i.e., building the final resultset’s attributes as
early as possible whenever they access a potentially relevant
row for the first time (even if the row might be later dis-
regarded), while [2] shows that column-stores benefit from
late materialization, where the output columns for a tuple
are only retrieved when it is ensured that the tuple qualifies
all predicates, leading to a significant reduction in I/O.

A further player in the large-scale data processing domain
are Data Warehouses (DW). Although originally conceived
to process analytical queries on historical data, the need for
more up-to-date information in the form of real-time Busi-
ness Intelligence and event-driven processing has increased
the complexity of the DW systems both in terms of software
and hardware. The latter, for instance, is often character-
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ized by large main memory, multi-processor servers attached
to fast, reliable storage such as SSDs. However, the resulting
higher price tag might be prohibitive for many application
domains, given that many DW vendors consider storage size
as a major factor for pricing their market offerings.

Therefore, organizations started looking whether their archive
stores, that were traditionally seen only as an infrastruc-
ture to facilitate backup and retirement of application data
that has some retention requirements, could be leveraged
to perform data discovery. Given that the source systems
for archive stores are predominantly RDMBS applications,
they inherit the semantic structure and data quality from
the source systems - a principal difference with typical Big
Data systems of today that are predominantly tailored to
process unstructured data. As a result, it is more natural
for archive stores to offer the familiar SQL query interface,
and behave more like an RDBMS – which appears attrac-
tive as RDBMS have shown to outperform BigData systems
like MapReduce when it comes to performing relational op-
erations [18]. Thus, the potential for query optimization,
in particular, when the archive store follows a column-store
approach, is high.

Additionally, as data is typically appended as chunks, and
later seldom updated, archive stores have the potential to
benefit from horizontal partitioning in a similar way as Big
Data Frameworks, facilitating shared storage and stateless
computing tasks design, and allowing for parallel and fault-
tolerant query processing. Therefore, building on the lessons
from Big Data systems and Column-stores, we can observe
that archive stores, in particular when they deploy both ver-
tical and horizontal partitioning, stand to gain by taking a
leaf from both of these technologies.

However there is an important part of query processing in
relational systems that is also very costly - joins! Among
other techniques, some RDBMS have employed an auxil-
iary data structure known as join index to address join
performance. A join index represents a fully pre-computed
join between two or more relations by storing some form
of source table row identifier for each resultset tuple [16].
While join indices can occur significant maintenance over-
head when the source tables change frequently, they are an
attractive proposition for archive stores where data is typi-
cally appended incrementally and existing data might only
be changed in batches, thus making it possible to do efficient
batch maintenance on join indices. Also, and as we will see
in this paper, appropriately designed join indices lend them-
selves well to partitioned data, thus providing great poten-
tial for scalability.

Therefore, in this paper, we hypothesize that join indices
can be highly beneficial for archive stores and develop an im-
plementation for a columnar, highly-scalable, archive data
store, Informatica IDV, analyzing carefully how data distri-
bution and the columnar architecture affects the join-index
design. Our approach naturally follows the horizontal parti-
tioning approach deployed in IDV, and performs join index
maintenance on a partition basis. We leverage the existing
columnar storage structure by persisting the join indices as
special system tables whose columns are rowids of tuples of
the different relations that join. We also implement new
query execution workflows that can utilize the join indices
which is in concordance with the way partitions are pro-
cessed currently in IDV, facilitating parallel processing of
join queries. Furthermore, we develop a new methodology

of evaluating selection predicates which addresses the costs
associated with redundant predicate processing. Finally, we
implement a late materialization strategy where projection
attributes of matching tuples are retrieved as late as possible
to take advantage of the columnar storage.

Our tests using a TPC-H1 based benchmark with differ-
ent queries and database configurations show conclusively
that using our join index does indeed offer significant per-
formance improvements on join query processing compared
to non-join index based joins in terms of execution times
and CPU, I/O and memory usage.

In short, our paper makes the following contributions.

• A join index design for a partitioned, scalable and
columnar database leveraging the existing storage struc-
tures for simplified implementation and maintenance.

• A holistic query execution strategy with improved se-
lection predicate processing that avoids redundant eval-
uations of selection predicates in multi-partition joins.

• A late materialization based approach for generating
the output result leveraging on the columnar storage.

• A detailed analysis of the performance of our join index
implementation using the TPC-H benchmark suite.

2. BACKGROUND AND RELATED WORK
Join is one of the most fundamental – and one of the

most costly, operations in relational query processing. Most
common is the equi-join where the join attributes are the
primary key and foreign key of the respective relations to be
joined. A join can be defined over multiple relations whereby
an N -way join can be computed as a series of N − 1 2-way
joins. Furthermore, complex SQL queries typically com-
bine joins with selection predicates on individual attributes
of the participating relations (WHERE clause of SQL state-
ments), and have the result set only project on a subset of
all possible attributes (SELECT clause of SQL statements).
Thus, it is not only crucial to find efficient ways of execut-
ing the join operations themselves [16] but also to integrate
join execution with selection and projection tasks.

There exists a variety of physical join mechanisms follow-
ing different query processing strategies [15, 7], and target-
ing various data characteristics and DBMS architectures. In
general, join mechanisms can be classified as (i) not depend-
ing on specialized data structures - such as nested join, sort-
merge join, hash join algorithms and their variants; (ii) or
depending on specific data structures such as indices that
need to be built and maintained. The most prominent join-
specific data structures can be broadly classified as links [9,
19], materialized views [20] and join indices [23, 5, 21, 17,
14]. For the sake of brevity, we will confine our background
discussions to some of the fundamental approaches of join
indices and query processing, as is relevant to this paper.

2.1 Join Index
Join indices in its current familiar form were defined by

Valduriez in [23] as a special relation that represents the ab-
straction of the join of two relations. Though other variants
[5, 21, 17, 14] exist, the primary design concept of join in-
dex remains more or less the same. A join index for two

1http://www.tpc.org/tpch/spec/tpch2.15.0.pdf
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Figure 1: Join index impl. according to Valduriez

relations is a relation with two attributes where each tuple
of the index represents a pair of tuples of the base relations
that join according to the join criteria. For an equi-join of
two relations R and S, the join index relation JI can be
represented using the definition adapted from [23] as

JI = { (ri[rowid], sj [rowid]) | ri[attR] == sj [attS ] }
Where ri and sj are tuples from the relations R and S

respectively, attR and attS are the attributes over which the
join is defined, and rowid is a database generated surro-
gate that is used to uniquely identify the tuples within the
particular relations. A join index can also be regarded as
a special form of a materialized view [17] as it represents
a pre-computed join between tables with only their rowid
attributes materialized.

A join index needs further processing to build the result-
set by accessing the required attributes of the selected tuples
from the underlying tables. This operation will have to be
performed with significant efficiency, otherwise any perfor-
mance advantage of having the joining tuples pre-computed
will be lost. If the join index has to be used in combina-
tion with tuple selection based on either of the relations,
Valduriez suggested that two copies of join index be main-
tained with each one clustered on the rowids of one of the
relations [23]. Fig. 1 shows an example of two join indices
built between NATION and REGION, one clustered on NATION

(JI_N) and the other one (JI_R) clustered on REGION. Now
assume the following join query over these two relations that
additionally contains a selection predicate on REGION.

SELECT *
FROM REGION JOIN NATION
ON REGION.REGION_KEY = NATION.REGION_KEY
WHERE R_NAME = ’ASIA’

For this query, the REGION table and the index JI_R can
be scanned sequentially and in tandem. The scan on REGION

will determine that only the rowid 2 of REGION qualifies the
selection predicate, and thus, only the last two rows in JI_R

are relevant. Therefore, only the NATION tuples with rowids
2 and 3 will be retrieved to build, together with the already
loaded tuple of REGION with rowid 2, the result set.

[17] describes a bitmap-based join-index that is suited for
star schema joins. In this approach, a join index is created
such that for each record in the dimension table, a bit string
that corresponds to the length of the fact table is stored in
the join index (i.e., the number of bits equals the number
of rows in the fact table). Individual bits on the bit string
map to the rowids of the fact table. A bit is set if that fact

table row joins with the row corresponding to the dimension
table entry.

[24] also proposes a join index that is suited for a star
schema. It applies a hybrid storage model in which the fact
table is maintained as a row store, whereas frequently ac-
cessed dimension tables are stored in a columnar fashion.
The fact table is transformed into a join index by replac-
ing the dimensional attributes stored in the fact table with
references to the corresponding tuple in the dimension table.

[5] proposes a composite attribute and join index which
is a variation of the concept of links described in [9]. The
index structure, termed Bc-tree is based on the concept of
a B+-tree. The leaf nodes of the Bc-tree contain references
(in principal, pointers to the physical locations) to all the
tuples in the database which share the same data values of a
common domain. Thus, the structure serves as a secondary
index on an attribute as well as a multi-way join index. Bc-
tree can also be used to enforce integrity constraints, since
the values of the domain are stored as part of the tree struc-
ture. Joins are performed by accessing the tuples via the
references stored in each of the leaf nodes. For joins with-
out additional selection, the search is performed by means of
a sequential traversal of the leaves of the Bc-tree [5]. Com-
pared to the regular join index [23], this implementation can
support multiple joins based on the same attribute simulta-
neously.

Comparative studies of the performance of join indices,
materialized views and join algorithms have been described
in [3] and [16]. [3] concluded that the method of choice
to implement joins was dependent on various environmental
characteristics like join selectivity2, main memory availabil-
ity, volatility of the attributes of base relations etc. Al-
though there are various optimizations of join algorithms, it
has been established that in most scenarios, join indices can
provide better performance compared to other join mecha-
nisms in traditional RDBMS [13].

Little work on join indices exists outside the scope of row-
based RDBMS. An exception is [4] where join indices are
created on the fly during query processing for the column-
based DBS MonetDB. The approach has some similarities
to ours due to both being based on a column storage which,
as we discuss below, brings advantages in terms of late ma-
terialization. But our approach is more general as it also
considers horizontal partitioning, carefully integrates with
selection operators, and stores join indices persistently.

2.2 Query Processing Approaches
In this section, we point at two fundamental approaches

related to scalability and performance that are of interest
for us in our join index design, namely operator pipelining
and materialization techniques.

2.2.1 Pipelined Operation for Efficiency
Most RDBMS support pipelined query processing, where

operators pass their output (often using intermediate buffers)
as they are produced to the next operator in the processing
step. This improves performance as operators can work in
parallel producing results faster, and in some scenarios pro-
viding the first rows while the query is still processing the
remaining records. But this tightly coupled query processing

2The selectivity factor is defined as the ratio of the number
of result tuples of a join operation to the number of tuples
in the Cartesian product of the underlying relations.
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Figure 2: Impact on pipelining due to horizontal
partitioning

approach comes at a cost to fault tolerance. A failure in one
of the operator tasks can result in having to reprocess the
entire query workflow. With traditional RDBMS this was
not a significant issue, as with small number of computing
nodes, the rate of failures were very low to be of concern.

Looking more closely at the execution of the SQL join
query given in the previous section, we can see the pipelined
approach, depicted on the left side of fig. 2. The selection
operator reads records from REGION and pipelines the qual-
ifying tuples to the operator that looks-up the join index
JI_R. This operator produces the matching rowids of NATION
in its output, which are further pipelined to an operator that
reads the corresponding tuples from the NATION table.

However, this pipelined approach does not necessarily scale
well on a horizontally partitioned system. If NATION had two
partitions, then, if we want to achieve parallelism via scale-
out, we want to process both partitions at the same time. A
trivial design approach is to have each of the partitions to
be joined separately with REGION table in a pipelined fash-
ion. However, this will require the selection operator to be
applied twice on the same data of REGION as shown on the
right side of fig. 2.

In fact, if tables T1, T2, . . .Tn are joined in that order, with
each of them having p1, p2, . . . pn number of partitions, then
the number of duplicate selection predicate evaluations for a

table Ti has an upper bound of (
i∏

j=1

pj)−pi : i > 1. This can

translate to unnecessary I/O in a system with large number
of partitions. We will discuss how we tackle this effectively
in our query processing approach in the next section.

2.2.2 Materializing Strategies
Once determined in which order operators are executed

in the execution tree the question arises what information
is exactly transmitted from one operator to the next. If a
system that stores all attributes of a row in a single chunk
(row-based storage), it makes sense to retrieve all attributes
of a row that are needed for further processing the first time
any operator accesses this specific row and include them in
the data that is moved to the next operator. This early
materialization that grabs all attributes that might be po-
tentially useful in the first disk read can reduce the overall
I/O costs, as later steps, for example when generating the
final attributes to be returned, do not need to read the tuple
again, which might lead to additional I/O.

As an example, let’s have a look at the query

SELECT N_NAME , POP
FROM REGION JOIN NATION
ON REGION.REGION_KEY = NATION.REGION_KEY
WHERE R_NAME = ’ASIA’ AND N_NAME LIKE ’C%’

For this query, the NATION record for CHAD fulfills the se-
lection operator, and thus, early materialization will retrieve
the N_NAME and POPULATION attributes and forward them to
the join operator. However, this tuple will not find a match-
ing REGION tuple and thus, will be eliminated by the join.
Thus, the I/O cost for reading the attributes from disk and
forwarding them to the next operator is an overhead that
we incur in our efforts to avoid re-reading the same data
disk blocks later to generate the output list. Holistically,
any data that is read from the disk, but later not used for
query processing (because the tuple was discarded at a later
step), leads to wastage of resources.

It is in this context where column-stores, with their late
materialization approach, provide better results. In a colum-
nar model, each of the attributes is stored separately in a
different data block (or set of data blocks). Hence, when
looking for nations with N_NAME LIKE ’C%’, the selection
operator only needs to read the data blocks associated with
N_NAME. It can then produce the rowids that qualify the selec-
tion in its output and transmit this set to the join operator.
Similar approach holds for the selection operation to deter-
mine the set of rowids with R_NAME = ’ASIA’. The join op-
erator can then determine the join index tuples that contain
rowids from both the sets. This can be then consumed by
a result generator which can lookup the attributes required
in the output and construct the output tuples. Albeit a bit
more complex than early materialization, we can see that
with large scale data processing systems, this avoids wast-
ing precious I/O. For example, in the example above, the
data blocks for the attributes NATION_KEY and REGION_KEY

do not need to be read at all, and neither does the POP at-
tribute value for the record with N_NAME equal CHAD.

Work done in [2, 1] demonstrates how late materializa-
tion strategy provides performance boost for column-stores
over the early materialization based approach of traditional
row-stores. In summary, an advantage of column-stores is
that they are naturally suited for late materialization as all
the columns are stored in separate data blocks [1]. Thus,
column-stores can perform joins and selections by reading
just the columns required for the joins/selections without
fetching any other attributes. And then, for the final pro-
jection, only the projection attributes from matching tuples
need to be retrieved. This makes them I/O efficient com-
pared to row-stores that always retrieve the entire record
upon the first access.

2.3 IDV in a Nutshell
Informatica IDV serves as a relational archive store for

Informatica’s ILM Application suite, and provides access to
the archived data via standard SQL interfaces. The data
store follows a distributed architecture offering parallel exe-
cution of SQL queries. IDV provides columnar storage (ver-
tical partitioning) as well as horizontal partitioning. New
data gets appended as additional (horizontal) partitions in
immutable file structures3 [11]. The data files follow a pro-

3IDV supports logical delete by storing information about
deletions as extensions to the partition as well as facilitates
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prietary format called Segment Compacted Table (SCT) and
are usually stored in shared/distributed filesystems, decou-
pling the storage and computation aspects of the database.
An abstract depiction of this storage structure is shown in
fig. 3.

The high level architecture of IDV (fig. 4) bears a lot
of resemblance to Big Data frameworks. Clients interact
with the database server which generates tasks to execute
query plans and places them in the execution queue. The
server uses the metadata (data location and partitioning,
data statistics, etc.) stored locally to determine the exe-
cution plans. The agent processes run on computing nodes.
They pick up tasks and spawn worker tasks to execute them.
The worker tasks are stateless by design and read data from
the shared storage and persist the output back to the shared
storage. This facilitates multi-step query processing, paral-
lelism, fault tolerance, etc., quite similar to Big Data frame-
works like MapReduce. The final output is sent back to the
client via the agents and server, the latter also consolidating
results from various tasks.

The conventional join query processing in IDV follows a
pipelining approach where N -table joins are executed as a
sequence of 2-table joins and selections on tables are per-
formed before the tuples are fed into the join operator. By
default, IDV uses a merge join. For instance, assuming a
3-table join over tables T1, T2, T3 with having p1, p2, p3 par-
titions respectively, there is a worker task for each combina-
tion of partitions of T1 and T2 (i.e., p1 ∗ p2 worker tasks).
Each of these worker tasks applies the selection predicates

rebuilding the whole partition to purge them, but this does
not have significant bearings in our approach and hence will
not be discussed in depth.

relevant to the partition(s) it is working on, constructing
a memory resident bit vector called Tuple Selection Vec-
tor (TSV) [8]. TSVs indicate which rows qualify from a
partition by turning on the corresponding row’s bit posi-
tion and are stored in compressed format to reduce memory
footprint. The TSV approach is conceptually similar to vec-
torized query processing described in [1]. The worker task
then uses the information from the TSVs to retrieve the re-
maining attributes required to perform the actual join and
generate the result set. The resulting tuples then build an
output partition that is one of the input partitions for the
next set of worker tasks. The second set of worker tasks join
the partitions generated by the first join with the partitions
of T3 again building TSVs for T3 as needed. There is a total
of p1 ∗ p2 ∗ p3 such worker tasks.

As selections are performed in a pipelined fashion by the
worker tasks that also do the join, and every partition joins
with many other partitions, there is a redundant execution
of selections as discussed in section 2.2. We will see how to
avoid this in our join implementation. Furthermore, IDV
currently performs early materialization, which is not nec-
essarily beneficial and can be avoided in column-stores.

3. COLUMNAR JOIN INDEX
In this section we present the design and implementation

of our join index that works together with IDV’s column-
based partitioning to support late materialization and hori-
zontal partitioning to support parallel computation. It also
clearly separates the selection operation from the join in or-
der to avoid redundant computation. Our design does not
only support 2-table join indices but arbitrary N -table join
indices. The idea is to create an N -table join index when-
ever the application has many queries that join these N
tables. Additionally, our N -table join index does not only
serve queries that join exactly these N tables but also poten-
tially queries that join a subset or a superset of these tables.
Furthermore, as IDV updates the data on a partition ba-
sis, the index join maintenance can be done incrementally,
so that the addition or the modification of a partition only
requires a partial regeneration of the join index.

3.1 Join Index Creation
We create join indices in a partitioned fashion by creat-

ing a join index partition for each combination of base table
partitions. Fig. 5 portrays the structure of the join index for
a three-table, many-partition join based on a subset of the
TPC-H schema, consisting of relations REGION, NATION and
CUSTOMER that are connected through foreign key relation-
ships. The join index has a total of 6 partitions. Our IDV
based implementation stores each of the join index partitions
in a columnar fashion as special system tables, making use
of the existing database storage APIs. An important advan-
tage of maintaining the join index in partitioned format is
that each join index partition can be processed by a different
worker task, providing ample opportunity for parallelism.

Number of Join Index Partitions. In the general case,
assuming a N -table join index should be created for base
tables T1, T2, . . .Tn, with each of them having p1,p2, . . . pn
number of partitions, respectively, we will create potentially
n∏

j=1

pj join index partitions. There will be
n∏

j=1,j 6=i

pj join

index partitions mapped to a given partition of Ti.
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Figure 5: 3-Table Join Index Example

However, in many scenarios the number of actual join in-
dex partitions will be potentially much lower than this the-
oretical upper bound. This is because, in many real world
scenarios, many combinations of source table partition joins
will not yield any records in the output due to the associa-
tive nature of data in partitions across related tables. For
example, consider an ORDER table, and a related LINEITEM

table, which lists for each order in the ORDER table the items
purchased under this order. As partitions of both ORDER and
LINEITEM tables are added to the system as the orders are
created, e.g., on a per-day basis, all ORDER and LINEITEM

records with the same ORDERDATE will be in the same par-
titions. Thus, there will be a 1 : 1 mapping between the
partitions of both the tables, and all tuples of a partition of
LINEITEM will only match with the one corresponding parti-
tion of ORDER. Any joins between the rows in partitions with
different values for ORDERDATE will yield no output.

Join Index Maintenance. We can maintain the join in-
dex in an incremental fashion. Whenever a new partition is
added to a table, say to CUSTOMER, only this partition has
to be joined with all existing partitions of the other tables
to create new join index partitions. The existing join index
partitions are not affected. The removal of a partition has
as effect the removal of the join index partitions that are
involved with the deleted partition.

As each combination of source table partitions is mapped
to a different join index partition, it reduces the storage
requirements by having to store only the rowid and not the
partition numbers, as the later can be captured as metadata.

3.2 Query Processing Using Join Index
We modified IDV’s query processing approach presented

in section 2.3 to execute N -table join queries using our join
indices. The modified query processing workflow consists of
two steps as depicted in fig. 6. In the first step, all predicate
selections declared in the query are performed. This involves
generating and persisting TSVs for each partition of the par-
ticipating relations. This can be performed in parallel. Once
the TSV generation step is completed, the actual join index
query processing takes place. This step is also capable of
parallel execution so that multiple join index partitions are
processed in tandem. These two steps constitute the pri-
mary components of the new join query workflow, and are
independent of the number of tables involved in the join,
contrary to the regular join workflow which involves N − 1
steps. In the following, we discuss in detail these two steps,
and how they differ from the original query processing.

3.2.1 Evaluating selection predicates
The original query execution process performed joins by

joining each partition of the first relation with each partition
on the second relation. Evaluating selection predicates was
tightly coupled with each of these partition-partition joins.
That is, for two partitions T1i and T2j of tables T1 and T2 to
be joined where there is a selection predicate on the tuples
of T1, the IDV worker task performs the selection predicate
evaluation by retrieving the column(s) on which the condi-
tion is specified, testing for validity, and constructing the
TSV for T1i. An important drawback of the current imple-
mentation is that the TSVs are not shared between worker
tasks, even if they are working on the same table partition,
evaluating the same selection predicates. As a single table
partition is involved in as many joins as there are partitions
of the joining (intermediate) table, this introduces a lot of
redundant TSV generations, at times depending on the na-
ture of the joins in the query and the predicates applied.
I.e, if p1 is the number of partitions in table T1 and it is be-
ing joined with a (intermediate) table T2 with p2 partitions,
then we are looking at a possible p1 × (p2 − 1) redundant
TSV evaluations for the partitions of table T1.

In general, it can be shown that if tables T1, T2, . . .Tn are
joined in that order, with each of them having p1,p2, . . . pn
number of partitions, then the redundant TSV evaluations
of the ith table Ti has an upper bound of:

≤


(

2∏
j=1

pj)− p1 : i = 1

(
i∏

j=1

pj)− pi : i > 1

When using a join index for join query processing, we still
need to evaluate the selection predicates, as a join index in
general is built with just an equijoin between the relations
and contains entries for all joining tuple combinations. In
order to achieve maximum parallelism, we need to employ
a worker task to process each join index partition. Follow-
ing the current approach on tight integration of selection
predicate evaluation with the join process will only result in
aggravating an already existing problem of redundant TSV
evaluations. In general, each of the tables Ti would con-

tribute to pi × (
n∏

j=1,j 6=i

pj − 1) redundant TSV evaluations

towards the join query. The total number of redundant TSV
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evaluations for the query can be given by.

n∑
i

(pi × (

n∏
j=1,j 6=i

pj − 1)) = n(

n∏
j=1

pj)−
n∑

j=1

pj

In order to overcome this design predicament, we decided
to separate the TSV generation step, which was tightly inte-
grated with the join processing, into a separate step, and to
have the TSVs persisted in shared disks for reuse so that the
same partitions undergo only one selection predicate evalua-
tion. This method avoids all the redundant TSV generations
and generates the bare minimum number of TSVs required,
which is the same as the total number of partitions across

all the participating tables in the join, i.e.,
n∑

j=1

pj . Another

advantage of this strategy is that the TSVs for all the par-
titions of all the tables can be processed in parallel, as they
are independent of each other, thereby reducing the overall
processing time.

Implementation Details. As mentioned previously, the
TSVs were originally designed as memory resident bit vec-
tors, which were compressed and optimized for sequential
access. However, as we will observe later, when we use the
TSVs in connection with the join index, the lookup of bit po-
sitions in the TSV follows a random access. Our prototype
testing of random access on the compressed list implemen-
tations of TSV proved this to be a potential bottleneck as
lists used in the compressed format are not suited for ran-
dom lookups. Thus, we switched to using uncompressed
TSVs, which are stored as a contiguous 64-bit integer array,
with each integer representing the status of 64 tuples in the
partition. As in IDV the maximum number of records in a
partition is 2 billion, the theoretical maximum size of an un-
compressed TSV is 268 MB, which we consider acceptable
given the performance gain of now being able to access a bit
position in Θ(1). In case there are no predicate selections
on a partition or all bits would be 1 (all tuples in the parti-
tion qualify), we do not maintain the TSV, as all tuples are
selected. Instead, in the absence of a TSV, a TSV lookup is

always set to return true.

3.2.2 Join index query task
The actual join execution is depicted in fig. 7 for a join

over the four tables A − D containing selection predicates
for attribute A1 of table A and C1 of table C, that is, the
previous execution step has created TSVs for tables A and
C. Furthermore, the query projects on attributes A1 and
A2 of table A and B1 of table B, i.e., A1, A2 and B1 need
to be in the result set. We assume a join index that covers
exactly the four tables A − D. Each partition of the join
index is assigned to a different worker task that performs
the join and the generation of the result set in three phases.

Phase 1. In phase 1, the worker task performs pre-processing
steps aimed at reducing the I/O and CPU processing over-
head by determining the set of tables and their attributes
that are relevant for the query. The worker task goes through
TSVs and the projection list specified in the query, and
builds a reduced list of source tables. Only those tables
are relevant that have a column in the projection list (ta-
bles A and B) or that have a TSV which results in tuple
elimination (tables A and C). Thus, the join index columns
corresponding to the rowids from tables A, B and C must be
read by the worker task, in order to be able to check whether
the bit for this rowid is set in the corresponding TSV, and
if yes, retrieve the corresponding result set attributes. In
contrast, there is no need for the worker task to read the
join index column corresponding to the rowids from table D
as it was not involved in the projection or selection. Thus,
the reduced source table list consists of only A, B and C.

Phase 2. In this phase, the join index iterator determines
the list of qualifying join index tuples. It will only read those
columns from the join index system table that refer to the
rowids of the tables appearing in the reduced source table
list. For each of the join index tuples it checks whether the
tuple qualifies for output which is the case if all selection
predicates are fulfilled. More precisely, a join index tuple
qualifies to generate output for the query, if all rowids in
that join index tuple map to a 1 bit in the TSV of the corre-
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Figure 7: join index query task processing

sponding source table partition. For tables without selection
predicate, this bit lookup always returns 1 because all tuples
of that table qualify.

Phase 3. A qualifying index tuples is then passed to phase
3, which comprises of the resultset generator. It uses rowids
from the join index tuple to retrieve the attributes specified
in the column projection list from the corresponding source
table partitions to create the output result set.

Performance Discussion. The join index tuple selection
(phase 2) and output resultset generation (phase 3) happen
in a sequential pipeline, so that the process starts generat-
ing the output records before the join index is completely
traversed. This helps significantly in reducing the first row
generation time, as we do not wait for all the selected join
index tuples to be processed before producing any output.
Thus, the client does not have to wait for the completion of
the query to start receiving the first results. This not only
reduces the perceived response time but is also beneficial
when only a sample of records is needed by the client.

The join index iterator reads the entire join index only
once per query in a sequential fashion, ignoring columns of
tables that were pruned in the pre-processing step.

Furthermore, only the source table blocks pertaining to
the attributes required for the projection list or for evalu-
ation of selection predicates will be read from disk. That
is, our approach follows for a truly late materialization ap-
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Figure 8: Multi-table join indices and foreign key
relationships

proach and is in tune with the principles of column-stores by
avoiding I/O on irrelevant attributes. As any block fetched
from disk is cached in memory, further lookups on the block
do not incur a further physical I/O if the processing job is
not memory bound.

3.3 One join index, many joins
Reducing the source table list to only relevant tables has

some additional advantages. We can, under certain condi-
tions, use an N -way join index over tables T1, T2, ....Tn to
evaluate queries that only join a subset of these tables. To
understand this better, let us consider a simpler, single par-
tition system of the 3-table join index described in fig. 5.
The number of partitions are irrelevant for our discussion.
The new join index arrangement is shown in fig. 8. Here we
have a 1 : N mapping from REGION to NATION and 1 : M
mapping from NATION to CUSTOMER. If all the foreign keys of
the referencing relations in the join are not nullable, then we
can make use of the original 3-table join index for a query
that only joins CUSTOMER and NATION. This is because, if the
foreign key column is not nullable, then the equi-join be-
tween the referencing relation and the referenced relation
will always yield the same cardinality in the output relation
as the original referencing relation. In the particular exam-
ple, if every NATION tuple must refer to a REGION, then a
join between NATION and REGION will have the same num-
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ber of tuples as NATION. Hence the contents of a 2-table
join index between CUSTOMER and NATION will be identical
to the 3-table join index in fig. 5 without the rowid column
for REGION, which in columnar storage can be ignored while
reading.

Additionally, we can use an N -table join index over ta-
bles T1, T2, ....Tn to evaluate queries that join a superset of
these tables, i.e., joins that contain at least all tables cov-
ered by the N -table join index. In this case, the query can
be processed by first using the join index and evaluating the
N joins over T1, ...Tn, persisting an intermediate relation T
that contains the necessary attributes from these N rela-
tions and then joining T with the remaining relations using
the conventional query processing steps.

4. SYSTEM EVALUATION

4.1 System configuration
The test environment databases was setup on a Dell XPS

9100 system having 8 IntelR© CoreTMi7 CPU 960 @ 3.20GHz
processors with 4 cores, 12 GB 1333 MHz DDR3-SDRAM, 1
TB Western Digital WD10EALX 6 GB/s 7200RPM SATA
storage, running Linux - Kubuntu 14.04 with 12 GB swap.

4.2 Benchmark
Our evaluation is based on the TPC-H benchmark as the

industry-wide standard for decision support benchmarking.
It has been widely used for benchmarking column stores like
C-Store [21] and MonetDB [4]. Most of our experimental
runs are performed against TPC-H databases of scale factor
(SF) 1, 2, 4, 8, 12, 16, 20, 25 and 50. Our tests attempt to
understand each of the different features of our design and
how they work together. Thus, most tests consider only a
single partition per table in order to focus on other dimen-
sions. Whenever more than one partition per table is used,
we state this explicitly.

We used modified versions of the TPC-H queries focusing
on the selection predicates, the joins and the projection of
simple attributes but without any aggregation components.
We did not integrate this functionality into our prototype
result set generator, as we are only interested in understand-
ing the performance implications of the actual join and its
interaction with selection and projection.

4.3 Experiments and Results

4.3.1 Two-table single partition joins
For this base experiment, we had only a single partition

per table and we only consider the TPC-H queries Q12-
14, Q16-17 and Q19, that are defined over two tables. We
created a 2-table join index for each of these queries.

Additionally, the fact that each table has only a single par-
tition also eliminates any redundant TSV evaluations in the
original implementation. This a performance overhead that
we discussed in section 3.2.1 with the original join query
processing workflow. Therefore, with respect to the TSV
evaluation strategy, this test case benefits the original im-
plementation over the join index approach. This is because
the original implementation performs the TSV evaluation
and join in the same step, whereas our modified join work-
flow utilizing the join index performs the TSV evaluation
first and persists the TSV. The join is performed only in the
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Figure 9: 2-table 1-partition join using queries
Q12,13,14,16,17,19

next step, introducing a small overhead for this test case for
our join index based approach.

Fig. 9 shows the total across all queries for execution time,
CPU, I/O and memory consumption for executions with no
join index (No JI) and with using the join index (JI) for
the different scale factors of the database. Overall, by using
the join indices, queries run about 60% faster than without
join index. This is mainly due to the lower CPU costs of the
join index based execution, as can be seen from the CPU
utilization chart. Using the join index consumed only about
55% of the CPU compared with no index executions.

The I/O utilization, however, does not show any signifi-
cant deviation when join indices are used by the query. This
is because the worker tasks need to process an additional
data structure that stores the join index system table, and
any I/O savings that could be attributed to avoiding join
computation is amortized over the cost of reading the join
index. To understand this, we should consider that in the
TPC-H database schema the key columns of the relations
are of integer domain. While a query not using any index
has to read the join attributes in order to compute the join,
a query using a join index needs to read the rowids from the
join index system table which are also of integer domain.
Hence, intuitively, both kinds of queries have to execute ap-
proximately the same amount of I/O, in the absence of other
influencing factors like projection attributes.

Analyzing the memory utilization, we notice about 45%
reduction in the memory consumed by the worker tasks
when using a join index. This can be attributed to the fact
that in the absence of a join index, the worker tasks need to
load the key columns into memory buffers to facilitate the
merge join. With the join index based approach, our sequen-
tial scan technique requires only the current block (which
is being processed) of the join index to be in the memory.
Thus, the size of the join index does not have any signifi-
cant memory impact. Also, sequential iteration of the join
index is a CPU cache - friendly operation, a property that
lends itself to faster program execution. Such cache con-
scious techniques of performance enhancements have been
successfully employed in other column stores before [4].
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Figure 10: multi-table 1-partition joins

4.3.2 Multi-table single partition joins
Most of the real-world decision support queries are de-

fined over many tables. Hence, for this test case we use
two queries from the TPC-H benchmark suite. Q02 is a five
table join between Part, Supplier, Partsupp, Nation and
Region. Q03 is a three table join between Lineitem, Or-

ders and Customer. To support these queries, we create the
corresponding five-table and three-table join indices respec-
tively. We use single partitions to isolate and observe the
performance impact of having multiple tables in the join.

Fig. 10 shows the execution time for both queries again
with increasing scale factor. Q03 runs 60% faster with the
join-index based execution, similar to what we observed for
two-table joins. Q02, however, behaves differently. The ta-
bles involved in Q02 are small in comparison to other tables
like Lineitem or Orders which are involved in most of the
other queries. The largest table involved in Q02 is partsupp
at 20 million records for a scale factor 25 database. Also,
the query itself only returns about 0.08% of the records, be-
ing very highly selective with its predicates. The selection
predicate on the part table causes record elimination in the
first join step with partsupp, resulting in reducing the size of
intermediate tables in the succeeding join steps. Thus, this
query is inherently fast in nature and, as can be observed by
the execution time provided in the figure, takes only a few
seconds even for large databases. This performance benefit
of the join index based execution results from a combina-
tion of avoiding the join computation costs along with sav-
ings from late materialization. The later has a significant
impact on this query’s performance as it retrieves a signif-
icant number of attributes from different tables, making it
an ideal candidate for savings from late materialization.

4.3.3 Two-table multi-partition joins
Multi-partitioned tables are the most common scenario

in very large databases like the ones typically supported by
IDV. For this test case, we setup 2, 3, 5 and 10 partition
versions of the database having a scaling factor of 50, to
facilitate the execution of the 2-table join query Q12. This
query joins Lineitem and Orders tables which are the two
largest tables in the TPC-H database. Further, the selection
predicates on Lineitem limit the number of records retrieved
by the query to 2.74% of Lineitem table. Having no join
index, all partition combinations have to be joined, leading
to the creation of m × n worker tasks, each performing the
join of one partition combination.

In the case of using a join index, as discussed in sec-
tion 3.1, due to the associative nature of data in partitions
across related tables, we can often determine at index cre-
ation time, that a certain combination of partitions does not
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Figure 11: two-table multi-partition join query Q12

result in any joining tuples, and thus, in an empty join index
partition. In fact, this was the case for our test database.
For a 10 partition database, where both the tables involved
in the join were partitioned to 10 equal size partitions, our
index creation process materialized only 19 join index par-
titions instead of the theoretical maximum of 10× 10 = 100
partitions. Thus, at the time of the join, only 19 worker
tasks need to be spawned.

From fig. 11 we can see that the join index execution is
always at least two times as fast as an execution without join
index, and the performance gap increases with increasing
number of partitions (top left figure).

At low number of partitions the performance benefit is
due to the generally lower CPU and memory demands of
the join index based execution as discussed in the previous
experiments. When we now increase the number of parti-
tions up to 5 partitions per table, performance improves for
both strategies as the different partitions can be executed in
parallel taking advantage of all cores and the ample avail-
able main memory. However, with 10 partitions, while the
execution time of the join index implementation stagnates,
performance becomes worse for the execution without join
index. The reason for the latter are the much higher CPU
and memory requirements (see the top and bottom right fig-
ures) as so many more partitions have to be read into main
memory and joined even if they do not result in match-
ing tuples. Once all compute cores and main memory have
been used to exploit maximum parallelism a further increase
in number of worker tasks due to the increase in partition
combinations leads to too much contention and thus, per-
formance decreases.

In contrast, the increase in CPU and memory overhead
with increasing number of partitions is relatively small for
the join index based execution. The reason is that the num-
ber of join index partitions per source table partition in-
creases only slightly with the number of partitions (left bot-
tom figure) and thus, the overall number of join index parti-
tions remains relatively small. Our current system configu-
ration can exploit the increased parallelism when increasing
the number of partitions from 2 to 5, and still does not see
any deterioration when there are 10 partitions.
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Figure 12: late materialization

4.3.4 Late materialization
To understand the impact of late materialization, we used

the three table join query Q03 that joins Lineitem, Orders
and Customer. For this test case, we created two versions of
the query. The first version, Q03 ALL selects every attribute
from Orders and Customer (the two relations joined first
when no join index is used). The second version Q03 KEY
selects only key attributes, reducing any impact due to late
materialization. Thus, any increase in resource utilization
from Q03 KEY to Q03 ALL will be the cost associated with
materializing the extra attributes that are in the projection
list of Q03 ALL. The queries were executed on single parti-
tion tables.

Fig. 12 shows execution times with increasing scale factor.
Again, using a join index is always better than not using
the index which is to be expected based on the previous test
cases. Comparing the ALL version against the KEY version,
we can observe that generating a result set with many at-
tributes is generally expensive in both implementations. For
the join index based execution, execution time for Q03 ALL
compared to Q03 KEY for a database with scale factor 25
increases by 244 seconds, while it increases by 485 seconds
when no index is used. Given that the attribute extraction
proves to be a major part of the execution time, the benefit
of late materialization becomes very apparent. The analysis
performed on the difference in CPU consumption and I/O
utilization correlate with our observation for query execu-
tion timings.

4.3.5 Query selectivity
To test the influence of query selectivity on performance,

we took again the 2-table join query Q12 which joins LineItem
and Order tables but changed its selection predicate on LineItem

so that the percentage of records selected varied from 0.05%
to 100%. Both the tables were composed of a single parti-
tion each. Fig. 13 shows the execution times for a scaling
factor of 50. At 0.05%, the join-based implementation is
18% better than having no join index, but the gains quickly
increase with larger selectivity percentages. That is, the
benefits of using a join index increase with the number of
records joined. The reason is that the join index execution
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Figure 13: query Q12 at different selectivity

needs to iterate over the entire index irrespective of the se-
lection predicates, whereas the non-index based approach
can reduce the number of records to be joined by apply-
ing the selection predicates in advance, reducing the CPU
consumption for the join computation itself.

5. CONCLUSIONS
In this paper, we propose a join index implementation for

a columnar archive store to facilitate faster query response
times. Our implementation integrates seamlessly with the
horizontally partitioned nature of the system which facili-
tates scalability and the columnar structure which allows for
later materialization. N -join indices can be also exploited
in an efficient manner for joins with less or more then N
tables. Our performance evaluation using a TPC-H based
benchmark over a variety of database and query character-
istics demonstrate significant savings in execution time, and
CPU and memory usage compared to an execution without
join index.

We are presently exploring more efficient ways of storing
rowids in the join index system table as well as runtime
clustering of join index partitions at the query processing
stage to increase main memory cache hit rates.

6. REFERENCES
[1] D. J. Abadi, S. R. Madden, and N. Hachem.

Column-Stores vs. Row-Stores: How Different Are
They Really? In ACM SIGMOD, pages 967–980, 2008.

[2] D. J. Abadi, D. S. Myers, D. J. DeWitt, and S. R.
Madden. Materialization Strategies in a
Column-Oriented DBMS. In Proc. of the IEEE Int.
Conf. on Data Engineering (ICDE), pages 466–475,
2007.

[3] J. A. Blakeley and N. L. Martin. Join Index,
Materialized View, and Hybrid-Hash Join: a
Performance Analysis. In Proc. of the IEEE Int. Conf.
on Data Engineering (ICDE), pages 256–263, 1990.

[4] P. A. Boncz. Monet; a Next-Generation DBMS Kernel
For Query-Intensive Applications. PhD thesis,
University of Amsterdam (UvA), May 2002.

[5] B. C. Desai. Performance of a Composite Attribute
and Join Index. IEEE Transactions on Software
Engineering, 15(2):142–152, 1989.

[6] Gartner. Worldwide Business Intelligence and
Analytics Market 2016. Published at
http://www.gartner.com/newsroom/id/3198917, 2016.

[7] G. Graefe. Query Evaluation Techniques for Large
Databases. ACM Computing Surveys, 25(2):73–169,
1993.

654



[8] R. Grondin, E. Fadeitchev, and V. Zarouba.
Searchable Archive, Feb. 26 2013. US Patent
8,386,435.

[9] T. Haerder. Implementing a Generalized Access Path
Structure for a Relational Database System. ACM
Transactions on Database Systems, 3(3):285–298,
1978.

[10] S. Harizopoulos, V. Liang, D. J. Abadi, and
S. Madden. Performance Tradeoffs in Read-Optimized
Databases. In VLDB, pages 487–498, 2006.

[11] Informatica Corporation. Informatica Data Archive
Manage Application Data throughout its Lifecycle.
https://www.informatica.com/content/dam/
informatica-com/global/amer/us/collateral/
data-sheet/data-archive data-sheet 6955.pdf, Aug.
2014.

[12] M. Komorowski. A history of storage cost (update).
http://www.mkomo.com/cost-per-gigabyte-update,
2014.

[13] Z. Li and K. A. Ross. Fast Joins Using Join Indices.
The VLDB Journal-The International Journal on
Very Large Data Bases, 8(1):1–24, 1999.

[14] S. Manegold, P. Boncz, N. Nes, and M. Kersten.
Cache-Conscious Radix-Decluster Projections. In
VLDB, pages 684–695, 2004.

[15] K. P. Mikkilineni and S. Y. W. Su. An evaluation of
Relational Join Algorithms in a Pipelined Query
Processing Environment. IEEE Transactions on
Software Engineering, 14(6):838–848, 1988.

[16] P. Mishra and M. H. Eich. Join Processing in
Relational Databases. ACM Computing Surveys,
24(1):63–113, 1992.

[17] P. O’Neil and G. Graefe. Multi-table Joins Through
Bitmapped Join Indices. ACM SIGMOD Record,
24(3):8–11, 1995.

[18] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J.
DeWitt, S. Madden, and M. Stonebraker. A
comparison of approaches to large-scale data analysis.
In ACM SIGMOD, pages 165–178, 2009.

[19] H. A. Schmid and P. A. Bernstein. A Multi-Level
Architecture for Relational Data Base Systems. In
VLDB, pages 202–226, 1975.

[20] O. Shmueli and A. Itai. Maintenance of Views. In
ACM SIGMOD Record, volume 14, pages 240–255,
1984.

[21] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen,
M. Cherniack, M. Ferreira, E. Lau, A. Lin, S. Madden,
E. O’Neil, et al. C-Store: a Column-Oriented DBMS.
In VLDB, pages 553–564, 2005.

[22] Teradata. Teradata Columnar. Published at
http://www.teradata.com/teradata-columnar, 2016.

[23] P. Valduriez. Join Indices. ACM Transactions on
Database Systems, 12(2):218–246, 1987.

[24] Y. Zhang, S. Wang, and J. Lu. Improving Performance
by Creating a Native Join-Index for OLAP. Frontiers

of Computer Science in China, 5(2):236–249, 2011.

655



RDF Keyword-based Query Technology  
Meets a Real-World Dataset 

Grettel M. García1,2, Yenier T. Izquierdo1,2, Elisa S. Menendez1,2,  
Frederic Dartayre1, Marco A. Casanova1,2 

1Instituto TecGraf – Pontifícia Universidade Católica do Rio de Janeiro 
2Departamento de Informática – Pontifícia Universidade Católica do Rio de Janeiro 
Rua Marquês de São Vicente, 225 – Rio de Janeiro, RJ – Brazil     CEP 22451-900 

+55-21-3527-1500
ggarcia@inf.puc-rio.br, yizquierdo@inf.puc-rio.br, emenendez@inf.puc-rio.br, 

fdartayre@tecgraf.puc-rio.br, casanova@inf.puc-rio.br

ABSTRACT 
This paper presents the results of an industrial project, conducted 
by the TecGraf Institute and Petrobras (the Brazilian Petroleum 
Company), to develop a tool to facilitate access to a large database, 
with hydrocarbon exploration data, by combining RDF technology 
with keyword search. The tool features an algorithm to translate a 
keyword query into a SPARQL query such that each result of the 
SPARQL query is an answer for the keyword query. The algorithm 
explores the RDF schema of the RDF dataset to generate the 
SPARQL query and to avoid user intervention during the 
translation process. The tool offers an interface which allows the 
user to specify keywords, as well as filters and unit measures, and 
presents the results with the help of a table and a graph. Finally, the 
paper describes experiments which show that the tool achieves very 
good performance for the real-world industrial dataset and meets 
users’ expectations. The tool was further validated against full 
versions of the IMDb and Mondial datasets. 

CCS Concepts 
Information systems → Information retrieval → Information 
retrieval query processing → Query reformulation 

Keywords 
Keyword search; SPARQL; RDF. 

1. INTRODUCTION 
Keyword search is typically associated with information retrieval 
systems, especially those designed for the Web. The user just 
specifies a few terms, called keywords, and it is up to the system to 
retrieve the documents, such as Web pages, that best match the list 
of keywords. These systems also usually offer an advanced search 
interface, which the user may take advantage to specify Boolean 
expressions involving the keywords, or limit the search to a subset 
of the documents, such as an Internet domain. Information retrieval 
systems typically implement algorithms to rank the results of a 
keyword search so that, hopefully, the user will find the most 
interesting documents at the top of the list. The success of such 
systems may therefore be credited to: (1) a very simple user 

interface; (2) an efficient document retrieval mechanism; and (3) a 
ranking algorithm which meets user expectations.  

By contrast, database management systems offer sophisticated 
query languages to access structured data. It is up to the database 
applications to create user interfaces that hide the complexity of the 
query language. User interfaces are often designed as a stack of 
pages with numerous “boxes” that the user must fill with his search 
parameters. This traditional design may end up with uncomfortable 
user interfaces, which are amply justified, though, when the user 
has to specify exact data, such as a flight number and a flight date. 

Hitting the middle ground, we find database applications that offer 
keyword search interfaces over conventional databases or, in short, 
keyword search database applications. These applications should 
reach a performance similar to information retrieval applications, 
despite the fact that the underlying data is stored in a conventional 
database. Furthermore, they should free the user from filling 
“boxes” with exact data by compiling keyword searches to the 
query language supported and by ranking the results in a 
meaningful way from the user point of view. 

Keyword search applications over relational databases have been 
studied for quite some time. More recently, examples of such 
applications designed for RDF datasets have emerged. The 
adoption of RDF as the underlying data model has some interesting 
advantages. The most obvious is the flexibility RDF offers by 
modeling data as RDF triples of the form (s,p,o), which asserts that 
resource s has property p with value o. Of special interest for 
keyword search is the fact that RDF imposes no strict distinction 
between data and metadata, that is, a keyword may match the name 
or description of a class or of a property in the same way as it 
matches a data value. RDF management systems also sometimes 
offer an inference layer so that one may expand the stored RDF data 
with derived data in ways that surpass (relational) views. Thus, a 
keyword may match derived data as much as stored data. Lastly, an 
RDF dataset may be treated as a graph, which allows the use of 
graph concepts and algorithms to explore the data. 

The paper summarizes the results of an industrial project, 
conducted by the TecGraf Institute and Petrobras (the Brazilian 
Petroleum Company), to facilitate access to a large relational 
database, with hydrocarbon exploration data, by combining RDF 
technology with keyword search. The prototype application is 
being deployed to the production environment to be tested on a 
large scaled by the target users.   

The contributions of this paper are as follows. First, the paper 
defines the concept of an answer for a keyword-based query over 
an RDF dataset. Second, the paper introduces an algorithm to 
translate keyword-based queries to SPARQL queries that takes 
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advantage of the schema of the RDF dataset to avoid user 
intervention and achieve good performance, even for large RDF 
datasets. Third, it describes an interface that allows the user to 
specify keywords with the help of an auto-completion feature, as 
well as filters and unit measures, such as “wells with depth between 
1,000m and 2,000m”. The interface presents an answer to the user 
in a way that reduces the cognitive overhead required to navigate 
through an RDF graph. Lastly, the paper describes experiments that 
show that the tool achieves very good performance for the real-
world industrial dataset and meets users’ expectations. The tool was 
further validated against full versions of the IMDb and Mondial 
datasets.  

The remainder of this paper is organized as follows. Section 2 
summarizes related work. Section 3 provides a brief background on 
RDF and defines the basic concepts of keyword-based queries. 
Section 4 covers the translation algorithm and the user interface. 
Section 5 describes experiments to assess the performance and 
usability of the tool. Finally, Section 6 contains the conclusions. 

2. Related Work 
Keyword-based query processing. Tools that implement keyword-
based queries over relational databases and RDF datasets have been 
investigated for some time. We may distinguish between tools that 
are schema-based, in the sense that they use information about the 
conceptual schema to compile a keyword-based query into an SQL 
or SPARQL query, from those that are graph-based, in the sense 
that operate directly on the data. We may also identify pattern-
based tools, which hit the middle ground, in the sense that they 
mine patterns from the RDF dataset to be used in lieu of the 
conceptual schema. It is also useful to distinguish between fully 
automatic tools from tools that resort to user intervention during 
the processing of the keyword-based queries. 
BANKS [1] and BLINKS [11] are examples of early relational 
graph-based tools. Relational schema-based tools explore the 
foreign keys declared in the relational schema to compile a 
keyword-based query into an SQL query with a minimal set of join 
clauses, based on the notion of candidate networks (CNs). This 
approach was first proposed in DISCOVER [12] and DBXplorer 
[2] and adopted in a quite a few tools, including recent ones [15].  
SPARK [28] offers an example of an early pattern-based RDF 
graph-based tool. Tran et al. [21] combine the idea of generating 
summary graphs for the original RDF graph, using the class 
hierarchy, to generate and rank candidate SPARQL queries. Zhang 
et al. [26] investigated a solution to this problem, backed up by 
experiments over a subset of the original IMDb, a selection of 
articles from Wikipedia, and the Mondial dataset. More recently, 
Yang et al. [24] proposed to mine tree patterns that will then 
connect together the keywords specified by the user; the tree 
patterns are ordered by relevance using their size, the pagerank of 
the nodes and the quality of keyword match. Zheng et al. [27] 
proposed a systematic method to mine semantically equivalent 
structure patterns to summarize the knowledge graph and, thereby, 
circumvent the lack of an RDF schema. Finally, De Virgilio [7] 
proposed an RDF keyword-based query processing strategy based 
on tensor calculus, later extended to a distributed environment [8]. 
QUICK (QUery Intent Constructor for Keywords) [25] is an RDF 
schema-based tool designed to translate keyword-based queries to 
SPARQL queries with the help of the users, who choose a set of 
intermediate queries, that the tool ranks and executes. 
The tool described in this paper is schema-based and fully 
automatic. We borrowed from the early relational graph-based 
tools the idea of minimizing the number of equijoins by generating 

a Steiner tree of a graph induced by the RDF schema. However, we 
introduce the (new) concept of a nucleus, consisting of a class, a 
list of properties, and a list of property values, which is in some 
sense analogous to a tuple and helps translate keyword-based 
queries to SPARQL queries. The Steiner tree will then connect the 
classes of the nucleus that cover the keywords. 
QUICK is the tool closest to ours in so far as both tools explore the 
RDF schema to synthesize SPARQL queries. However, differently 
from QUICK, we opted for a fully automatic translation. This was 
possible essentially because our tool was designed to operate over 
an RDF dataset which has a rich schema and whose data exhibits 
low ambiguity.  
Triplification of the relational database. Triplification, the process 
of mapping a relational database to an RDF dataset, is based on 
well-established technologies, backed up by a standardized 
mapping language, R2RML [6]. However, relational databases are 
usually normalized and, therefore, should not be directly mapped 
to RDF. To deal with this issue, we followed the strategy proposed 
in [22], which suggests to first create relational views that define 
an unnormalized relational schema and then write the R2RML 
mappings on top of these views.  
In fact, the judicious design of the RDF schema helps the 
translation process from keyword-based queries to SPARQL 
queries. This requires additional comments. First, the assumption 
that the RDF dataset has a known schema should not be viewed as 
a demerit. Indeed, a large fraction of the LOD datasets do have a 
known schema (vocabulary or ontology) [17]. Furthermore, in a 
corporate environment, such as ours, RDF datasets are frequently 
triplifications of relational databases. Second, even when one 
cannot change the (relational or RDF) schema, one may add a 
conceptual layer, defined with the help of views, that hide 
normalizations, in the relational case, or poorly designed RDF 
schemas, which in both cases would lead to ambiguities when 
processing keyword-based queries. 
Benchmarks. Coffman and Weaver [4] describe a benchmark 
which uses a simplified, relational version of IMDb, a subset of 
Wikipedia, and a subset of the Mondial dataset. The keyword 
queries are mostly very simple.  
Guo et al. [9] introduced LUBM, a benchmark for OWL knowledge 
base systems, which consists of an ontology for the university 
domain, synthetic OWL data scalable to an arbitrary size, and 14 
SPARQL queries. More recently, an ontology-based data access 
benchmark, the NPD Benchmark [13][20], was constructed using 
real data from the Norwegian Petroleum Directorate (NPD) 
FactPages. The benchmark generates, from the NPD data, datasets 
of increasing size; the SPARQL queries were formulated by 
domain experts from an informal set of questions provided by 
regular users of the FactPages. Finally, Qiao and Özsoyoğlu [18] 
published the RBench, an application-specific RDF benchmarking 
tool that takes an RDF dataset from any application as a template, 
and generates a set of synthetic datasets and different types of 
queries systematically. 
Although our tool was designed for a specific RDF dataset, we 
decided to test it against other datasets. However, a direct 
comparison with other keyword search tools turned out to be 
problematic, for two basic reasons. First, contrasting with 
Coffman’s benchmark setting, our tool takes advantage of more 
complex RDF schemas and of keyword-based queries with a fairly 
large number of keywords – the query profile of our typical users – 
to avoid user intervention during the synthesis of the SPARQL 
query. Second, our tool presently does not incorporate reasoning 
features, i.e., we deal with a standard dataset and not with a 
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knowledge base. In the end, we opted to further test our tool against 
the full versions of IMDb and Mondial, which feature conceptual 
schemas with a complexity closer to the schema of the target 
industrial dataset. We used the same list of keyword queries as in 
Coffman’s benchmark, albeit they are much simpler than those 
expected from our typical users, as already pointed out. 

3. BASIC DEFINITIONS 
3.1 RDF Essentials 
In this section, we summarize some basic concepts pertaining to the 
Resource Description Framework (RDF) [5]. The reader familiar 
with RDF may skip this section. 
An Internationalized Resource Identifier (IRI) is a global identifier 
that denotes a resource. We will use the terms IRI and resource 
interchangeably. A literal is a basic value, such a string, a number, 
or a date. A blank node acts as a local identifier; a blank node can 
always be replaced by a new, globally unique IRI (a Skolem IRI). 
An RDF term is either an IRI, a blank node or a literal. The sets of 
IRIs, blank nodes and literals are disjoint. In the rest of this paper, 
IRI denotes the set of all IRIs and L the set of all literals. 
RDF models data as triples of the form (s,p,o), where s is the 
subject, p is the predicate and o is the object of the triple. An RDF 
triple (s,p,o) says that some relationship, indicated by p, holds 
between the subject s and object o. The subject of a triple is an IRI 
or a blank node, the predicate is an IRI, and the object is an IRI, a 
blank node or a literal.  
A set T of RDF triples, or an RDF dataset, is equivalent to a labeled 
graph GT such that the set of nodes of GT is the set of RDF terms 
that occur as subject or object of the triples in T and there is an edge 
(s,o) in GT labeled with p iff the triple (s,p,o) occurs in T. Therefore, 
we will use the concepts of RDF dataset and RDF dataset graph 
interchangeably. Note that an IRI may occur both as a node and as 
an edge label in the same graph.  
RDF offers enormous flexibility but, apart from the rdf:type 
property, which has a predefined semantics, it provides no means 
for defining application-specific classes and properties. Instead, 
such classes and properties, and hierarchies thereof, are described 
using extensions to RDF provided by the RDF Schema 1.1 (RDF 
Schema or RDF-S) [3]. In RDF-S, a class is any resource having 
an rdf:type property whose value is the qualified name rdfs:Class of 
the RDF Schema vocabulary. Likewise, a property is any resource 
having an rdf:type property whose value is the qualified name 
rdfs:Property. The rdfs:domain property is used to indicate that a given 
property applies to a designated class, and the rdfs:range property is 
used to indicate that the values of a particular property are instances 
of a designated class or, alternatively, are instances (i.e., literals) of 
an XML Schema datatype. RDF-S also offers the rdfs:subClassOf 
and the rdfs:subPropertyOf  properties that allow the specification of 
sub-class and sub-property axioms. Finally, RDF-S features a 
property, rdfs:comment, used to associate a comment with a 
resource, and a property, rdfs:label, used to assign a name to a 
resource. 
An RDF schema is a set S of RDF triples that use the RDF-S 
vocabulary to declare classes, properties, property domains and 
ranges, and sub-class and sub-property axioms. Viewed as a set of 
RDF triples, S is also equivalent to a labelled graph GS.  
A simple RDF schema is a RDF schema that contains only class 
declarations, object and datatype property declarations and sub-
class axioms (and no sub-property axioms). We then introduce a 
labelled graph, DS, called an RDF schema diagram, defined as 
follows: (1) the nodes of DS are the classes declared in S; and (2)

there is an edge from class c to class d labelled with subClassOf iff 
c is declared as a subclass of d in S, and there is an edge from class 
c to class d labelled with p iff p is declared in S as an object property 
with domain c and range d. 
Very briefly, we say that an RDF dataset T follows an RDF schema 
S iff we have: (1) S  T; (2) all classes and properties used in T, 
except those in S itself, are declared in S; and (3) the triples in T, 
again except those in S, satisfy all restrictions imposed by the 
declarations in S [3]. Note that, by this definition, the RDF schema 
is contained in the RDF dataset, which is convenient for our 
purposes (see Section 3.2). 
Finally, SPARQL is a query language specifically designed to 
access RDF datasets [10]. SPARQL offers two types of queries. A 
SELECT query returns tabular data, whereas a CONSTRUCT query 
returns a set of RDF triples. The body of a SPARQL query is a list 
of triple patterns, defined like RDF triples, except that the subject, 
predicate or object can be a variable. The evaluation of a SPARQL 
query Q against an RDF dataset T binds values to the variables 
using a solution mapping  in such a way that the WHERE clause of 
Q generates a subgraph of T. An answer of Q is an instantiation of 
the variables in the target clause of Q generated by . 

3.2 Keyword-Based Queries 
Let T be an RDF dataset and GT be the corresponding RDF graph. 
We assume that T follows an RDF schema S, with S  T.  
A keyword-based query K is simply a set of literals, or keywords.  
Recall that L is the set of all literals. Let match: LL  [0,1] be a 
similarity function between literals such that match(s,t)=j indicates 
how similar s and t are: j=1 says that s and t are identical, and j=0 
indicates that s and t are completely dissimilar. We also introduce 
a similarity threshold (0,1]. We leave match and  unspecified 
at this point. 
The set MM[K,S] of metadata matches between K and the metadata 
descriptions of the classes and properties in S is defined as: 

MM[K,T] = { (k,(r,p,v))KT / (r,p,v)S  match(k,v) } 
The set VM[K,T] of property value matches between K and 
property values of T is defined as (recall that S  T): 

VM[K,T] = { (k,(r,p,v))KT / (r,p,v)S  match(k,v) } 
The set of matches between K and T is then defined as:  

M[K,T] = MM[K,T]  VM[K,T] 
An answer for K over T is a subset A of T such that: 
(1) There is a subset of K, denoted K/A, such that, for each kK/A: 

a. There are (s,rdf:type,cn), (cn,rdfs:subClassOf,cn-1),..., 
(c1,rdfs:subClassOf,c0) and (c0,p0,v0) in A such that 
(k,(c0,p0,v0))MM[K,T]; or 

b. There are (s,qn,vn), (qn,rdfs:subPropertyOf,qn-1),..., 
(q1,rdfs:subPropertyOf,q0) and (q0,p0,v0) in A such that 
(k,(q0,p0,v0))MM[K,T]; or 

c. There is (r,p,v)A such that (k,(r,p,v))VM[K,T]. 
(2) There is no other answer B for K over T such that K/A  K/B. 
We say that K/A is the set of keywords matched by A. 
Condition (1a) says that a keyword k has a class metadata match for 
a class c0 and the answer A must contain an instance of c0 or one of 
its sub-classes cn, in which case A must include all triples indicating 
that cn is a sub-class of c0. Likewise, Condition (1b) says that a 
keyword k has a property metadata match for a property q0 and the 
answer A must contain an instance of q0 or one of its sub-properties 
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qn, in which case A must include all triples indicating that qn is a 
sub-property of q0. Condition (1c) simply says that k matches the 
literal of a triple (r,p,v) in A. Also, Condition (1) does not require 
that all keywords in K be matched in an answer. Indeed, we say that 
A is total iff K/A = K, and partial otherwise. Condition (2) requires 
that an answer must match as many keywords in K as possible.  
The definition of an answer is quite liberal. In particular, it allows 
an answer A to be a set of disconnected triples, as in Figure 1c. To 
circumvent this problem, we define a partial order between answers 
as follows. Given a directed graph G, let |G| denote the number of 
nodes and edges of G and #c(G) denote the number of connected 
components of G, when the direction of the edges of G is 
disregarded. We define a partial order “<” for graphs such that, 
given two graphs G and G’,  

G < G’ iff  (#c(G) + |G|) < (#c(G’) + |G’|) or 
(#c(G) + |G|) = (#c(G’) + |G’|) and #c(G) < #c(G’) 

We use the partial order “<” between graphs to compare answers. 
We say that an answer A is smaller than an answer B iff GA < GB, 
where GA and GB are the RDF graphs of A and B (which may 
include metadata, since the RDF schema is part of the dataset). An 
answer A for K over T is minimal iff there is no other answer B for 
K over T such that GA < GB. 
In this paper, we focus on heuristics to find, possibly, minimal 
answers for keyword-based queries. We are especially interested in 
heuristics that, given a keyword-based query K, generate a 
CONSTRUCT SPARQL query Q over T which is a correct query 
interpretation for K, in the sense that each set of triples returned by 
Q is an answer for K over T and, preferably, a minimal answer.  
Example 1: Consider an RDF dataset T, whose RDF graph GT is 
shown in Figure 1a, where the darker boxes with boldface italic 
labels partly denote the RDF schema. Consider the   
keyword-based query K = {Mature, Sergipe}. Then, we have 
the following set of matches of K for T: 

M[K,T] ={ (Mature, (r1, :stage, “Mature”)),  
  (Mature, (r2, :stage, “Mature”)), 
  (Sergipe, (r1, :inState, “Sergipe”)), 

 (Sergipe, (r3, :name, “Sergipe Field”)) }  
There are several possible answers for K over T, two of which are 
represented in Figures 1b and 1c (in the form of their RDF graphs; 
note that the dashed node labelled “Alagoas” is not part of answer 
A2; it is depicted just to alert that A2 includes resource r2). Note that 
answers A1 and A2 match both keywords in K. However, since 
|GA1|=5, |GA2|=6, #c(GA1)=1, and #c(GA2)=2, we have GA1 < GA2, 
and hence A1 should be preferred to A2. 
However, the keyword-based query K is ambiguous, since it does 
not indicate whether the keyword Sergipe refers to a state or to an 
oil field. To disambiguate, we might consider the keyword-based 
query K’ = { Mature, “located in”,  “Sergipe Field”}. 
Indeed, we would obtain answer A3, shown in Figure 1d. The 
dashed rectangle highlights components of the RDF schema which 
are part of the answer. Indeed, note that there is a property metadata 
match between the keyword “located in” and the label value 
“located in” of property :locIn (note again that the dashed node 
labelled “Alagoas” is not part of the answer). Furthermore, as 
required by the definition of an answer, note that (r2, :locIn, r3) is an 
instance of property :locIn. Naturally, a second answer to K’, 
similarly defined but involving resource r1, would also be 
acceptable, since r1 represents a mature well and is located in the 
Sergipe Field.    

4. TRANSLATION OF KEYWORD 
QUERIES TO SPARQL QUERIES 
4.1 Overview of the Translation Algorithm 
The translation algorithm accepts a keyword-based query K and an 
RDF dataset T, and outputs a SPARQL query Q, which is a correct 
interpretation for K, in the sense that any result of Q is an answer 
for K over T. It assumes that T follows a simple RDF schema S.  
In what follows, let GT denote the RDF graph corresponding to T 
and DS denote the RDF schema diagram of S. 
Given a set of metadata matches MM[K,T] and a set of property 
value matches VM[K,T], we define two functions that group all 
keywords that match the same class or property: 

mm[K,T] : IRI  2K such that  
mm[K,T](r)={kK / (pIRI)(vL)((k,(r,p,v))MM[K,T])} 
vm[K,T] : IRI  2K such that  
vm[K,T](q)={kK / (sIRI)(vL)((k,(s,q,v))VM[K,T])} 

 
Figure 1a. The RDF graph G of Example 1. 

 
Figure 1b. An answer A1 for the keyword-based query  

K = {Mature, Sergipe}. 

 

Figure 1c. A second answer A2 for the keyword-based query  
K = {Mature, Sergipe}.  

 
Figure 1d. An answer A3 for the keyword-based query 
K’ = {Location, Dakota, Actor, Washington}. 
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We then define a nucleus as a triple N=(C,PL,PVL), where  
(1) C=(K0,c), with K0 = mm[K,T](c), such that c is a class of S 
(2) PL={(K1,p1),…,(Km,pm)}, with Ki = mm[K,T](pi),  

such that c is the domain of a property pi of S, for i[1,m] 
(3) PVL={(Km+1,q1),…,(Km+n,qn)}, with Kj = vm[K,T](qj),  

such that c is the domain of a property qj of S, for j[1,n] 
Note that, since there might be several keywords that match the 
same element of N, we consider sets of keywords, rather than a 
single keyword. Furthermore, since a keyword may match more 
than one element of N, we do not require that Ki and Kj be disjoint, 
for 0  i  j  m+n. We say that N covers the set of keywords  
KN = K0  K1 … Km  Km+1 … Km+n.  
Given a set of nucleuses N={N1,…,Nm}, we also say that N covers 
KN1 … KNm. Furthermore, we denote by NC the set of classes of 
the nucleuses in N (which are nodes of DS). 
The translation algorithm implements two heuristics, called the 
scoring and the minimization heuristics. Intuitively, the scoring 
heuristic tries to capture the user intensions expressed in the list of 
keywords of a keyword-based query. Briefly, the scoring heuristic: 
(1) considers how good a match is, say “city” matches “Cities” 
better than “Sin City”; (2) assigns a higher score to metadata 
matches, on the grounds that, if the user specifies a keyword, say 
“city”, that matches both a class label, say, “Cities”, and the 
property value of an instance, say the film title “Sin City”, then the 
user is probably more interested in the class labelled “Cities” than 
the specific film “Sin City”; (3) assigns a higher score to nucleuses 
that cover a larger number of keywords. The heuristic is formalized 
by defining a score function for the nucleuses, as follows.  
Given a nucleus N=(C,PL,PVL), the score of N, denoted score(N), 
is the summation of all matches that N expresses, weighted by the 
type of the matches:  

𝑠𝑐𝑜𝑟𝑒(𝑁) = (𝛼𝑠𝐶 + 𝛽𝑠𝑃 + (1− 𝛼 − 𝛽)𝑠𝑉) 
with 

𝑠𝐶 = 𝑚𝑒𝑡𝑎_𝑠𝑖𝑚((𝐾0, 𝑐)) 

𝑠𝑃 =∑ 𝑚𝑒𝑡𝑎_𝑠𝑖𝑚((𝐾𝑖 , 𝑝𝑖))
(𝐾𝑖,𝑝𝑖)∈𝑃𝐿

 

𝑠𝑉 =∑ 𝑣𝑎𝑙𝑢𝑒_𝑠𝑖𝑚((𝐾𝑗 , 𝑞𝑗))
(𝐾𝑗 ,𝑞𝑗)∈𝑃𝑉𝐿

 

where  
•  and , with 0 <  +   1, are parameters that weight between 

sC, sP and sV, and which are experimentally set 
• sC is the combined score of the metadata matches for class c 
• sP is the combined score of the metadata matches for the 

properties in PL 
• sV is the combined score of the property value matches in PVL 
• meta_sim((K,c)) is the sum of metadata match scores of class c  
• meta_sim((K,pi)) is the sum of metadata match scores of 

property pi in PV 
• value_sim((K,qj)) is the sum of property value match scores of 

property qj in PVL 

Section 4.2 illustrates how to estimate meta_sim and value_sim and 
compute the score of a nucleus. 
The minimization heuristic tries to generate minimal answers, in 
two stages. Ideally, we should try to find the smallest set of 
nucleuses that covers the largest set of keywords and that has the 
largest combined score. However, this is an NP-complete problem 
(by a reduction to the bin packing problem). The first stage of the 
minimization heuristic then implements a greedy algorithm that 

prioritizes the nucleuses with the largest scores and generates a set 
N of nucleuses such that:  
(1) N covers a large subset of K. 
(2) All nodes in NC are in the same connected component of DS.  
where, we recall, NC denotes the set of classes of the nucleuses in 
N (which are again nodes of the RDF schema diagram DS).  
If we synthesized a SPARQL query Q based only on the nucleuses 
in N, then an answer of Q – which would induce an answer for the 
keyword-based query K – would have as many connected 
components as there are classes in NC. Since answers are measured 
in terms of the number of nodes and connected components, this 
situation would be unsatisfactory. The second stage of the 
minimization heuristic then forces an answer to have a single 
connected component by connecting the classes in CN, using a 
small number of edges of DS. This is equivalent to generating a 
Steiner tree ST of DS whose nodes are the classes in NC. Then, the 
algorithm uses the edges of ST to generate equijoin clauses of the 
SPARQL query Q in such a way that any answer of Q indeed has a 
single connected component.   
Note that ST exists since all nodes in NC belong to the same 
connected component of DS, by (2). Furthermore, note that we use 
the RDF schema diagram DS, and not the RDF dataset graph GT. In 
fact, this is the only step of the algorithm that depends on the 
assumption that T has a schema S.  
Figure 2 shows a high level description of the translation algorithm, 
while Section 4.2 illustrates the synthesis of a SPARQL query. 

Step 1 removes stop words from K and matches the remaining 
elements in K with literals in T, creating a set of metadata matches 
MM[K,T] and a set of property value matches VM[K,T], as defined 
in Section 3.2. Step 1 uses auxiliary tables to speed up computing 
matches (see also Section 4.2). For each class declared in S, the 
ClassTable table stores the IRI, label, description and other property 
values declared in S for the class. The PropertyTable stores the 
property metadata, as for the classes. The JoinTable stores domains 
and ranges declared in S. A forth table, ValueTable, stores all distinct 
property value pairs that occur in T. 
Step 2 uses MM[K,T] and VM[K,T] to compute a set M of 
nucleuses as follows. It first processes class metadata matches, 
generating primary nucleuses; all class metadata matches with the 
same class will be mapped to a single nucleus. Then, it processes 
property metadata matches, creating the property lists of the 
primary nucleuses, or generating secondary nucleuses, for 
properties whose domains are not in any primary nucleus; finally, 
it processes property value matches, creating the property value 
lists of the existing nucleuses, or generating new secondary 
nucleuses, again for those properties whose domains are not in any 
previously constructed nucleus. 

Step 3 computes the score of each nucleus in M, as defined above.  
Step 4 corresponds to the first stage of the minimization heuristic 
and creates a set N of nucleuses as follows. It first adds to N the 
nucleus N0 in M with the largest score, removing it from M. Let H0 
be the connected component of the RDF schema diagram DS that 
contains the class of N0. It also removes from M all nucleuses 
whose classes are not in H0. This guarantees that Step 5 will be able 
to run correctly. Let KN0 be the set of keywords covered by N0. The 
keywords in KN0 need no longer be considered and are disregarded 
from the nucleuses remaining in M, which therefore have their 
scores recomputed. Step 4 continues by adding to N the nucleus in 
M with the largest (recomputed) score that covers a keyword not 
covered by any of the nucleuses previously selected. Since such 
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nucleuses are selected from M, they necessarily have a class that is 
in H0. It stops when all keywords in K are covered by the nucleuses 
in N, or when no nucleus in M covers an uncovered keyword.  

Step 5 implements the second stage of the minimization heuristic. 
It computes an (approximated) minimal Steiner tree ST of the RDF 
schema diagram DS that covers NC, the set of nodes that correspond 
to the classes of the nucleuses in N.  
Although not shown in Figure 2, Step 5 proceeds as follows. It first 
computes a new labelled directed graph GN whose nodes are those 
in NC and there is an edge (m,n) in GN labelled with k iff the shortest 
path in the RDF schema diagram DS connecting nodes m and n has 
length k. Then, Step 5 computes a minimal directed spanning tree 
TN for GN. If no such directed spanning tree exists, then Step 5 tries 
to compute a minimal spanning tree TN for GN, but ignoring the 
edge direction. TN will then induce the desired Steiner tree ST of 
DS covering the nodes in NC by simply replacing each edge of TN 
by the corresponding path in DS.
Step 6 synthesizes a CONSTRUCT query Q such that: 

(1) Q returns a subset of T. 
(2) The WHERE clause of Q contains filters that correspond to the 

elements of the property value pairs of the nucleuses in N.  
(3) The WHERE clause of Q contains equijoin clauses that 

correspond to the edges in ST.  
Section 4.2 illustrates the synthesis of SPARQL queries. 
To conclude, we state a lemma that captures the correctness of the 
algorithm: 
Lemma 2: Let T be an RDF dataset, S be the RDF schema of T and 

K be a keyword-based query. Let Q be the SPARQL query the 
translation algorithm outputs for K, T and S. Then, any result of 
Q is an answer for K over T with a single connected component.  

Proof Sketch 
Step 1 of translation algorithm computes all possible matches 
between keywords in K and the RDF dataset T. Step 2 constructs 
the nucleuses by combining the matches found in Step 1. Steps 3 
and 4 create a set of nucleuses N such that N covers as many 
keywords as possible. Let CN be the set of the classes of the 

Translation Algorithm: 
Input:  A keyword query K 
 An RDF dataset T, with a simple RDF schema S 
Output:  A SPARQL query Q over T 
1. Keyword matching: 

1.1. Eliminate stop words from K. 
1.2. Match each keyword with the classes, properties and property values in GT, returning the set of metadata matches 

MM[K,T] and the set of property value matches VM[K,T], as defined in Section 3.2.2. 
2. Nucleus generation: 

2.1. M = empty.  
2.2. For each class c such that there is a class metadata match for c in MM[K,T], do: 

2.2.1. If a nucleus with class c does not exist in M,                                             /* a metadata match for d exists   */  
add to M a primary nucleus N = ((Kc,c),,), with Kc = mm[K,T](c).         /* which implies Kc                   */ 

2.3. For each property p such that there is a property metadata match for p in MM[K,T], do: 
2.3.1. Let d be the domain of p. If a nucleus N with class d does not exist in M, /* no primary nucleus exists for d */ 

add to M a secondary nucleus N = ((Kd,d),,), with Kd = .                   /* which implies Kd =                 */ 
2.3.2. Let N be the nucleus with class d. Add (Kp,p), with Kp = mm[K,T](p), to the property list of N.  

2.4. For each property q such that there is a property value match for q in VM[K,T], do: 
2.4.1. Let d be the domain of q. If a nucleus N with class d does not exist in M, /* no nucleus exists for d              */ 

add to M a secondary nucleus N= ((Kd,d),,), with Kd = .                    /* which implies Kd =                 */ 
2.4.2. Let N be the nucleus with class d. Add (Kq,q), with Kq = vm[K,T](q), to the property value list of N. 

3. Nucleus score computation: 
3.1. Compute the score of each nucleus in M. 

4. Nucleus selection: 
4.1. Initialize a set N with the nucleus N0 in M with the largest score and remove N0 from M. 
4.2. Let DS be the RDF schema diagram of S and H0 be the connected component of S that contains the class of N0.  

Remove from M all nucleuses whose classes are not in H0. 
4.3. Update the sets of keywords and scores of the remaining nucleuses in M by dropping the keywords covered by N0. 
4.4. While  there are keywords not covered by the nucleuses in N and  

      there is a nucleus in M that covers such keywords do: 
4.4.1. Add to N the nucleus Ns in M with the largest score such that Ns covers such keywords. 
4.4.2. Remove Ns from M. 
4.4.3. Update the sets of keywords and scores of the remaining nucleuses in M by dropping the keywords covered 

by Ns. 
5. Steiner tree generation: 

5.1. Let DS again be the RDF schema diagram of S.  
Compute a Steiner tree ST of DS that contains the set of classes of the nucleuses in N.  

6. Synthesis of the SPARQL query Q: 
6.1. Construct the WHERE and the TARGET clauses of Q from the nodes and edges of ST and the nucleuses in N. 
6.2. Return Q. 

Figure 2. Outline of the Translation Algorithm. 
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nucleuses in N. Note that CN can be viewed as a set of nodes of the 
RDF schema diagram DS. Step 5 connects, as much as possible, the 
nodes in CN by paths in DS, generating a Steiner tree ST of DS that 
covers all nodes in CN. Finally, let Q be the CONSTRUCT query 
synthesized in Step 6 and A be a result of Q. Then, A is a subset of 
T and, by the construction of N and the filters in the WHERE clause 
of Q, A matches as many keywords in K as possible. Hence, A is 
answer for K over T. Furthermore, since ST is a Steiner tree of DS 
that covers all nodes in CN, by the construction of the equijoin 
clauses in the WHERE clause of Q, the result A of Q will have a single 
connected component. � 

4.2 An Example the Translation Process  
This section illustrates how the algorithm synthesizes a SPARQL 
query for the following keyword-based query K: 

Well Submarine Sergipe Vertical Sample 

Step 1 searches the auxiliary tables ClassTable, PropertyTable and 
ValueTable to find matches with the keywords in K. For example, 
the following SQL query processes Sergipe against the ValueTable 
auxiliary table, whose columns are Property, Domain and Value 
(“fuzzy” is an Oracle function): 
1.  SELECT DISTINCT Property  
2.  FROM ValueTable  
3.  WHERE CONTAINS (Value, 'fuzzy({sergipe}, 70, 1)', 1) > 0 

For the industrial dataset, Step 1 returns the following matches: 
• A class metadata match  

M1 = (Sample, (Sample, rdfs:label, “Sample”)) 
• A class metadata match  

M2 = (Well, (DomesticWell, rdfs:label, “Domestic Well”)) 
• A property value match  

M3 = (Vertical, (s, DomesticWell#Direction, v)) 
since Vertical matches some value v of property 
DomesticWell#Direction (with domain DomesticWell). 

• Two property value matches  
M4 = (Sergipe, (s’, DomesticWell#Location, v’)) 
M5 = (Submarine, (s”, DomesticWell#Location, v”)) 
since Submarine and Sergipe match some values v’ and v” 
of property DomesticWell#Location (with domain DomesticWell). 

Step 2 then generates two nucleuses: 
• A first nucleus with just class Sample, using match M1: 

N1 = (({Sample}, Sample), , )   
• A second nucleus with class DomesticWell, using match M2, and 

a property value list using matches M3, M4 and M5: 
N2 = (({Well}, DomesticWell), ,  
       {({Vertical}, DomesticWell#Direction), 
          ({Sergipe, Submarine}, DomesticWell#Location)}) 

Step 3 computes the scores of nucleuses N1 and N2 as follows. The 
score of nucleus N1 is simple the score of the match of the keyword 
Sample with the value of the class label, which is the string 
“Sample”. The score of nucleus N2 is given by: 

𝑠𝑐𝑜𝑟𝑒(𝑁2) = (𝛼𝑠𝐶 + 𝛽𝑠𝑃 + (1− 𝛼 − 𝛽)𝑠𝑉) 
where 
• sC = meta_sim(({Well}, DomesticWell)), which is the score of 

the match of the keyword Well with the value of the class label, 
which is the string “Domestic Well” 

• sP = 0, since the property list of the nucleus is empty 
• sV = value_sim(({Vertical}, DomesticWell#Direction)) + 

      value_sim(({Submarine, Sergipe},  

                             DomesticWell#Location)) 
For example, the value of  

value_sim(({Submarine, Sergipe}, DomesticWell#Location)) 
is estimated by the following SQL query over the ValueTable 
auxiliary table, whose columns again are Property, Domain and Value 
(the prefix “ex:” is fictitious to preserve confidentiality of the data 
and “fuzzy” and “accum” are Oracle functions): 
1.  SELECT  
2.      SCORE(1)/LENGTH(REGEXP_REPLACE(Value,'[^a-zA-Z0-9 -]',''))    
3.      as score  
4.  FROM ValueTable  
5.  WHERE  
6.       Domain = 'ex:DomesticWell' AND 
7.       Property = ‘ex:DomesticWell#Location’ AND 
8.       CONTAINS (Value,  
9.             'fuzzy({submarine}, 70, 1) accum fuzzy({sergipe}, 70, 1)', 1) > 0  
10. ORDER BY score DESC  
11. OFFSET 0 ROWS FETCH NEXT 1 ROWS ONLY 

Step 4 then selects the two nucleuses and Step 5 constructs a simple 
Steiner tree with just two nodes, corresponding to classes Sample 
and DomesticWell, connected by one edge, labelled with the object 
property Sample#DomesticWellCode.  
Step 6 generates the SPARQL query Q below (which again uses the 
fictitious prefix “ex:”): 
1.  SELECT  ?C0 ?C1 ?P0 ?P1 
2.   (<http://xmlns.oracle.com/rdf/textScore>(1) AS ?score1)  
3.   (<http://xmlns.oracle.com/rdf/textScore>(2) AS ?score2) .  
4.  WHERE 
5.    { ?I_C1 <ex:Sample#DomesticWellCode> ?I_C0 .  
6.      ?I_C0 <ex:DomesticWell#Direction> ?P0 . 
7.      ?I_C0 <ex:/DomesticWell#Location> ?P1 
8.      FILTER (http://xmlns.oracle.com/rdf/textContains(?P0, 
9.                                                                      "fuzzy({vertical}, 70, 1)", 1) 
10.      || http://xmlns.oracle.com/rdf/textContains(?P1, 
11.              "fuzzy({submarine}, 70, 1) accum fuzzy({sergipe}, 70, 1)", 2)) 
12.    ?I_C0 rdfs:label ?C0 . 
13.    ?I_C1 rdfs:label ?C1 
14.  } 
15. ORDER BY DESC(?score1 + ?score2) 
16. LIMIT   750 

The TARGET clause in Line 1 returns a table with variable bindings 
(the SELECT form of the query results). Although we adopted the 
CONSTRUCT form of a query, which returns a set of triples, to 
explain the notion of a keyword-based query answer, users 
preferred to see the results as a table, as discussed in Section 4.3. 
Step 6 constructs the WHERE clause of the SPARQL query as 
follows. The (only) edge of the Steiner tree, labelled with the object 
property Sample#DomesticWellCode, generates the triple pattern in 
Line 5. Note that, since the domain of Sample#DomesticWellCode is 
the class Sample and the range is the class DomesticWell, variables 
?I_C1 and ?I_C0 will respectively bind to instances of these classes. 
Hence, it is not necessary to include triple patterns that force ?I_C1 
to be of type Sample and ?I_C0 to be of type DomesticWell. 
The property value list of nucleus N2 generates the triple patterns in 
Lines 6 to 11. The triple pattern in Line 6 instantiates variable ?P0 
with the value of property DomesticWell#Direction for instance ?I_C0. 
Likewise, the triple pattern in line 7 instantiates variable ?P1 with 
the value of property DomesticWell#Location for instance ?I_C0.  
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The FILTER declaration in lines 8 and 9 matches the keyword 
Vertical with the value in ?P0, using the Oracle fuzzy matching 
function with the appropriate parameters (70 and 1). The matching 
score is returned in the Oracle predefined variable ?score1 (which 
is indicated by the “1” that appears as the last parameter in line 9).  
The FILTER declaration in Lines 10 and 11 matches one of the 
keywords Submarine or Sergipe, or both, with the value in ?P1, 
using the Oracle fuzzy matching function, with the appropriate 
parameters (70 and 1), and the accum parameter, to sum the 
matching scores, if indeed both keywords match the value in ?P1. 
The matching score is returned in the Oracle predefined variable 
?score2 (which is indicated by the “2” that appears as the last 
parameter in line 11).  
Lines 12 and 13 translate the URIs in ?I_C0 and ?I_C1 to labels, 
which are hopefully user-friendly, and bind them to ?C0 and ?C1. 
Finally, lines 15 and 16 order the query results in descending order 
of the combined scores and limit the result to 750 lines. 

4.3 User Interface 
The user interface offers an auto-completion feature to help users 
formulate a keyword-based query, as in Figure 3a. The interface 
suggests new keywords based on the previous keywords, the RDF 
schema vocabulary, and the labels that are resource identifiers 
(such as the “Sergipe”, the name of a state). 
Since an answer A for a keyword-based query K over an RDF 
dataset T is formally a subset of T, it would be consistent to present 
A as a set of triples. However, this option proved to be inconvenient 
for the users, which are more familiar with tabular data, as in 
relational systems. We then implemented a user interface that 
presents the results of K by combining a table with the Steiner tree 
underlying the SPARQL query, as in Figure 3b. The user may also 
select additional properties to be included in the table, as in Fig. 3c.  
Finally, the interface allows the user to specify a keyword-based 
query which includes filters, such as: 

Sample with Top between 2000m and 3000m 

A simple filter involves only comparison operators, expressed in 
symbolic form, such as “<”, or using reserved words, such as 
“between”, whereas a complex filter is a Boolean combination of 
simple filters, expressed using Boolean operators. A filter typically 
involves constants, perhaps with a unit of measure, such as 
“2000m”; the tool converts all constants to the unit of measure 
adopt for the property being filtered. The syntax of the filters is 
specified by a grammar defined in ANTLR4 (ANother Tool for 
Language Recognition) [16]. 

5. EXPERIMENTS 
5.1 Experiment setup 
All experiments were conducted using a RESTful Web application 
develop in Java. The app ran on a desktop machine with OS 
Windows 7 Ultimate, a quad-core processor Intel(R) Core(TM)  
i5-2450M CPU @ 2.50GHz, 4 GB of RAM. To store and manage 
the RDF data, we used the Oracle Spatial and Graph for Semantic 
Technologies of Oracle 12c [14], running on a quad-core machine 
with processor Intel(R) Core(TM) i5 CPU 660 @ 3.33GHz, 7GB 
of RAM, and 4096 KB of Cache size. The database was configured 
with a PGA size of 324 MB and an SGA size of 612 MB with 148 
MB of cache size and 296 MB of buffer cache. 
The label and description columns of the auxiliary tables (see 
Section 4.1) were indexed using the CREATE INDEX statement of 
Oracle Text [19] to facilitate full text search over the stored values. 

In the case of RDF data, the Semantic Network feature of Oracle 
allows B-Tree indexing for RDF models and entailments [23].  

5.2 Experiments with the Industrial Dataset 
The data was originally stored in a conventional relational database, 
with well-documented tables and columns, which proved to be very 
helpful to identify metadata matches. The relational schema was 
normalized, as usual, which implies that a single table may 
represent several concepts and properties. 
The triplification process used R2RML, the W3C standard RDB to 
RDF Mapping Language [6]. However, we soon realized that we 
had to capture additional metadata, such as which table columns 
were keys, which contained external names for the objects (such as 
state names and acronyms), etc. These additional metadata were 
important to guide keyword matches and to define how the object 
IDs were exposed to the users. Therefore, we proceeded as follows. 
First, on the relational side, we defined a set of views that 
denormalize the tables. Then, we created an XML document that 
defines all classes and properties of the RDF schema, as well as 
additional details, and that maps the RDF classes and properties 
one-to-one to the relational views. We developed a module that, 
using the XML document, generates the R2RML statements to map 
the relational data to triples and to load the auxiliary tables 
mentioned in Section 4.1.  
Figure 4 shows a partial RDF schema diagram. The diagram depicts 
all classes (in rectangles), object properties (in single arrows, 
starting on the domain and ending on the range), with their names 
omitted to avoid cluttering the diagram, and subClassOf axioms (in 

 
Figure 3a. Example of auto-completion. 

 
Figure 3b. Example of a query graph. 

 
Figure 3c. Selection of additional properties. 
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dashed arrows, starting on the sub-class and ending on the super-
class).  

The dataset is about hydrocarbon exploration (that is, oil and gas 
exploration). The instances of the central class, Sample, describe 
geological samples obtained during well drilling or directly from 
outcrops (rock formations visible on the surface). The instances of 
the classes DrillCuttings, SidewallCore, Core, CorePlug and 
OutcropSample correspond to sample sub-classes. The instances of 
the classes at the bottom of the diagram represent laboratory 
products, their macroscopic and microscopic analysis and where 
the products are stored.  
The dataset has a large number of datatype properties (558). In 
particular, the values of the datatype properties of the instances of 
the classes Macroscopy and Microscopy are mostly literals, with a rich 
description of the laboratory products, which are highly amenable 
to keyword search. In fact, this motivated the project since users of 
the original relational database were mostly geologists, which were 
not happy with the relational database interface. 
It took, on the average, 3 hours to triplify the relational database, 
generating an RDF dataset with about 130M triples (see Table 1), 
which implies that it is feasible to fully rematerialize the RDF 
dataset when needed, although we could have implemented an 
incremental rematerialization strategy.  
We ran a suite of keyword-based queries to assess the performance 
of the tool, the correctness of the translation of the keyword-based 
queries and the adequacy of the result ranking. Table 2 (at the end 
of the paper) shows the runtime to process the keyword-based 

queries up until the first 75 answers were sent to the user, which 

corresponds to the first Web page (the time reported is the average 
of 10 executions for each sample query). The results show that all 
queries were successfully executed in less than 0.5 sec, which is 
quite reasonable, considering the size of the dataset.  
Finally, as a very preliminary user assessment, before early 
deployment, we asked 2 questions to 3 geologists to evaluate the 
same set of keyword-based queries. The results were very 
encouraging:  
Question 1 (Correctness of the translation): “The results returned 
are a correct answer for the keyword-based query?” 
Results: 8 x “Very Good”, 9 x “Good” and 1 x “Regular.  
Question 2 (Adequacy of the ranking of the results): “The expected 
results appear in the first Web page returned?” 
Results: 6 x “Very Good”, 11 x “Good” and 1 x “Regular. 
Both “Regular” ratings were given by one of the users to the 
keyword-based query “field exploration macroscopy 
microscopy lithologic collection”, which is fairly generic 
and returns a large number of answers.   
We also opened the tool to a small user community, all of whom 
were quite surprised with the ease of use of the tool and the quality 
of the answers, and manifested their interest in expanding the tool 
to other Petrobras databases, which attests the success of the 
project. 

5.3 Experiments with Mondial and IMDb  
We tested the tool against triplified versions of the Mondial dataset 
(https://www.dbis.informatik.uni-goettingen.de/Mondial/) and IMDb 
(https://sites.google.com/site/ontopiswc13/home/imdb-mo). Contrasting 
with the versions adopted in Coffman’s benchmark [4], these 
versions feature conceptual schemas with a complexity closer to the 
schema of the target industrial dataset (see Table 1). We used the 
same list of keyword queries as in Coffman’s benchmark, albeit 
they are much simpler than those expected from the typical users 
of the industrial dataset. We ran all queries against each of these 
datasets and compared the results returned with the expected results 
(the full results are available at www.inf.puc-rio.br/~casanova/ under 
the Recent Tools section).  
A summary of the results for the Mondial RDF dataset follows:  
Queries 1-5 – countries: All queries correctly answered. 
Queries 6-10 – cities: Queries correctly answered, except Query 6, 

which returned 2 results, since there are 2 cities named 
“Alexandria”. 

Query 11-15 – geographical: Queries correctly answered, except 
Query 12, which returned 2 results, since “Niger” is both a 
country and a river. 

Queries 16-20 – organization: Some queries were not correctly 
answered since the expected values were not listed in class 
Organization (in the version of Mondial used). 

Queries 21-25 – border between countries: Keywords match the 
labels of two instances of class Country; but the keywords are 
not sufficient to infer that the question is about the borders 
between countries and, thus, were not correctly answered. 

Queries 26-35 – geopolitical or demographic information: Queries 
correctly answered, except Query 32. 

Queries 36-45 – member organizations two countries belong to: 
The expected answer is the list of organizations that the 
countries belong to; however, the translation algorithm did not 
identify the IS_MEMBER class when generating the nucleuses.  

Queries 46-50 – Miscellaneous: Some queries were successfully 
answered, while others were not, since the keywords do not 
always reflect the intended question. 

 
Figure 4. RDF schema of the industrial dataset. 

Table 1. Statistics – Industrial dataset, IMDb and Mondial. 
Triple Type #Triples 

Industrial IMDb Mondial 
Class declarations  18 21 40 
Object property declarations 26 24 62 
Datatype property declarations 558 24 130 
subClassOf axioms 5 - - 
Indexed properties 413 34 71 
Distinct indexed prop instances  7.103.544 14.259.846 11.094 
Class instances 8.981.679 72.973.275 43.869 
Object property instances 11.072.953 184.818.637 63.652 
Total triples 130.058.210 395.394.424 235.387 
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A total of 32 queries, 64% of the 50 queries in Coffman’s 
benchmark for Mondial, were correctly answered. As pointed out 
above, an analysis of the failed queries (see Table 3 for examples) 
reveals that: some may not be classified as failures (failed queries 
in the first 20 queries); some can be blamed to the lack of keyword 
semantics (failed queries in groups 21-25 and 46-50); and some to 
the lack of accuracy of the keywords (as Query 50 in Table 3). 
These results actually indicate that the list of queries and query 
results in Coffman’s benchmark should be reassessed. 
Table 4 (also at the end of the paper) reports the results for the 
IMDb dataset. A total of 36 queries, 72% of the 50 queries in 
Coffman benchmark for IMDb, were correctly answered. Again, an 
analysis of the failed queries is instructive. For example, when 
running Query 41, we found a 1951 film with “Audrey Hepburn” 
in the title, rather than all 1951 films that the actress Audrey 
Hepburn starred. However, we would rather classify this result as a 
serendipitous discovery, rather than a failure. 

6. CONCLUSIONS 
We presented the results of an industrial project to facilitate access 
to a large relational database by combining RDF technology with 
keyword search. The algorithm to translate keyword-based queries 
to SPARQL queries takes advantage of the schema of the RDF 
dataset to avoid user intervention and achieve good performance, 
even for large RDF datasets. The user interface allows the user to 
specify keywords, as well as filters and unit measures. The interface 
presents the result of a keyword query with the help of tables, which 
is a familiar form of expressing query results, rather than as an RDF 
graph. Finally, the experiments covered both a real-world industrial 
dataset, as well as two familiar benchmarks. The tool proved to be 
quite robust to keyword-based queries over datasets with complex 
conceptual schemas, and not just toy schemas, which encourages 
its wider adoption at Petrobras, the industrial partner that supported 
the project reported in this paper.  
As for future work, we plan to incorporate a domain ontology, 
being developed as a separated project, to expand keywords and 
therefore improve the usefulness of the tool. We also plan to allow 
filters with spatial operators. Lastly, we are working on a version 
of the application for a dataset federation. 
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Table 2. Runtime to process sample keyword-based queries. 
Keywords Structure of the SPARQL 

query 
Description of the nucleuses Elapsed time (in milliseconds) 

Query 
Synthesis 

Query 
Execution 

Total* 

well sergipe 
 

 A single nucleus with class DomesticWell 
 sergipe matches values of properties Basin, 

Localization, Federation, among others,  
of DomesticWell  

15,4 446,3 462,0 

well salema 

 

 Two nucleuses with classes DomesticWell and Field, 
where the first one matches well 

 salema matches values of property Name of Field 

25,0 246,4 271,6 

microscopy well 
sergipe 

 

 Two nucleuses with classes DomesticWell and 
Microscopy, which match the first two keywords 

 sergipe matches values of properties Localization, 
Basin, Federation, among others, of DomesticWell 

 The path from Microscopy to DomesticWell goes through 
the class Sample 

23,2 327,3 350,8 

container well  
field salema 

 

 The first three keywords respectively match classes 
Container, DomesticWell and Field 

 salema matches values of property Name of Field 
 The non-directed path to join Container with 

DomesticWell and Field goes through Sample and 
LithologicCollection 

24,3 315 339,5 

field 
exploration 
macroscopy 
microscopy 
lithologic 
collection 

 

 exploration matches values of properties 
OperativeUnit and AdministrativeUnit of class Field 

 According to the order they appear, the other 
keywords match classes Field, Macroscopy, Microscopy, 
and LithologicColletion 

 The paths leaving from Macroscopy, Microscopy, and 
LithologicColletion to Field go through the classes Sample 
and DomesticWell 

43,8 180,1 224,1 

well  
coast distance < 

1km  
microscopy  

bio-accumulated  
cadastral date  

between  
October 16, 2013  

and  
October 18, 2013 

 

 Two nucleuses with classes DomesticWell and 
Microscopy 

 coast distance is a property of class 
DomesticWell filtered by the condition “< 1km” 

 bio-accumulated matches property Name of 
Microscopy 

 cadastral date is a property of class Microscopy, 
whose data type is date and is subjected to a filter 

 The path from Microscopy to DomesticWell goes through 
the class Sample 

95,4 108,4 204,1 

(*) Up to sending the first 75 answers. 
 

Table 3. Selected queries from the Mondial Benchmark. 
#Query Keywords Expected Answer Application Answer Observation 

Query 16 arab 
cooperation 
council 

Arab Cooperation 
Council 

75 instances of class Organization “Arab Cooperation Council” is not listed in class 
Organization (in the version of Mondial used) 

Query 32 Uzbekistan 
eastern 
orthodox 

Uzbekistan - “eastern orthodox” does not exist for property 
Name of class Religion (in the version of Mondial 
used) 

Query 50:  
Which Egyptian 
provinces does the 
Nile River flow 
through? 

egypt nile Asyut 
Beni Suef 
El Giza 

El Minya 
El Qahira (munic.) 

Egypt Nile 

 

If the keyword city were added, we would 
correctly obtain: 

Egypt Al Minya Nile 
Egypt Al Qahirah Nile 
Egypt Al Jizah Nile 
Egypt Bani Suwayf Nile 
Egypt Asyut Nile 
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Table 4. Analysis of the IMDb Benchmark. 
Queries 1-10: consist of the name of movie stars, such as “denzel washington”. Relevant results contain a single tuple from the person relation 
that is the tuple of the specified individual.  
Accuracy: 10 of 10. The result contained more than one tuple, if the movie star’s name matched one of the keywords, but the top result was the 
expected actor. 
Queries 11-20: consist of the name of movies, such as “gone with the wind”. Relevant results contain a single tuple from the title relation that is 
the tuple of the specified film. 
Accuracy: 9 of 10. Again, the result contained more than one tuple, if the movie name matched one of the keywords, but the top result was the 
expected movie.  
Error in Query 13 – “casablanca”. “casablanca” is the name of a movie and of an actor; the score for both values was the same, but the algorithm 
returned the name of the actor, since the Actor class had a higher score than the Movies class. The movie name was the second generated query. 
Queries 21-30: consist of the keyword “'title'” plus the name of film characters, such as “title atticus finch”. Relevant results contain 3 tuples (1 
from the char_name relation, 1 from the cast_info relation, and 1 from the title relation) that link the character to the film(s) in which s/he appears. 
(The keyword “title” is intentionally added to differentiate this group of topics from topics 1-20) 
Accuracy: 7 of 10. Again, the result contained more than one tuple. 
Error in Queries 22, 23. The name of the character is part of the name of some title. The nucleus with class Title contained all keywords and had 
the best score. The answers of the algorithm were the titles with the character names. 
Error in Query 28. In this case, the class AKA_TITLE has “darth vader” in one of its values. This nucleus was the best scored because the label of 
the class had the keyword “title” and “darth vader” as a value. Class Title only matched the keyword “title” and class char_name only matched “darth 
vader”. 
Queries 31-35: consist of the keyword “'title'” plus a film quote, such as “title frankly my dear i don't give a damn”. Relevant results contain 2 
tuples (1 from the movie_info relation and 1 from the title relation) that link the movie quote to the film in which it appears. (The keyword “title” 
is intentionally added so that relevant results answer the question "In which film does this quote appear?".) Note that a quote may appear in multiple 
films. 
Accuracy: 4 of 5. The result was not a single tuple, as in previous blocks. 
Error in Query 32: The quotes were not in the dataset used for the tests. 
Query 36 “mark hamill luke skywalker”. Relevant results must denote the films in which the actor Mark Hamill plays the character Luke Skywalker.  
Accuracy: 1 of 1 
Query 37 “tom hanks 2004”: Relevant results contain 3 tuples (name <- cast_info -> title) that must denote all films in which the actor Tom Hanks 
appeared in the year 2004. 
Accuracy: 1 of 1 
Queries 38-40: Relevant results must denote the character that an actor plays in a film, such as “henry fonda yours mine ours char_name” 
Accuracy: 1 of 3 
Error in Queries 38 and 39: There are values in char_name that match “Henry Fonda” and “Russell Crowe”. The algorithm assumed that the query 
was about these character names and tested with the movie name. 
Query 41 “audrey hepburn 1951”: Relevant results contain 3 tuples (name <- cast_info -> title) that must denote all films in which the actor Audry 
Hepburn appeared in the year 1951. 
Accuracy: 0 of 1 
Error: The nucleus with Title covered all three keywords since there is a film whose name matches “Audrey Hepburn” and whose production year 
matches 1951. 
Query 42 “name jacques clouseau”: A relevant result must identify an actor who plays Jacques Clouseau in a movie. 
Accuracy: 0 of 2 
Error: The algorithm found only the nucleus with class char_name, the character name matched with property name, and the keyword “name” 
matched with the label of the nucleus. 
Query 44 “rocky stallone”: Relevant results must denote a film in which Sylvester Stallone plays the character Rocky. Note that because of 
limitations of existing systems, relevant results are *not* required to include the appropriate tuple from the title relation (which would prevent any 
system from identifying a single relevant result). 
Accuracy: 0 of 1 
Error: the keywords are very ambiguous. The algorithm found both keywords in a PERSON_INFO#INFO value. 
Query 45 “name terminator”: A relevant result must identify an actor who plays "The Terminator" 
Accuracy: 0 of 1 
Error: same as for Queries 42-43. 
Queries 46-49: Relevant results identify relationships (through the title relation) between an actor and another class, such as “harrison ford george 
lucas”. 
Accuracy: 3 of 4 
Error in Query 48: “wachowski” only had matches in the AKA_NAME class. 
Query 50 “indiana jones last crusade lost ark”: Relevant results identify cast members in common between the films "Raiders of the Lost Ark" 
and "Indiana Jones and the Last Crusade." 
Accuracy: 0 of 1 
Error: The algorithm did not return the actors that both movies had in common, but returned the movies themselves. 
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ABSTRACT
Scientific workflows provide a means to model, execute, and
exchange the increasingly complex analysis pipelines nec-
essary for today’s data-driven science. However, existing
scientific workflow management systems (SWfMSs) are of-
ten limited to a single workflow language and lack adequate
support for large-scale data analysis. On the other hand,
current distributed dataflow systems are based on a semi-
structured data model, which makes integration of arbitrary
tools cumbersome or forces re-implementation. We present
the scientific workflow execution engine Hi-WAY, which im-
plements a strict black-box view on tools to be integrated
and data to be processed. Its generic yet powerful execu-
tion model allows Hi-WAY to execute workflows specified in
a multitude of different languages. Hi-WAY compiles work-
flows into schedules for Hadoop YARN, harnessing its proven
scalability. It allows for iterative and recursive workflow
structures and optimizes performance through adaptive and
data-aware scheduling. Reproducibility of workflow execu-
tions is achieved through automated setup of infrastructures
and re-executable provenance traces. In this application
paper we discuss limitations of current SWfMSs regarding
scalable data analysis, describe the architecture of Hi-WAY,
highlight its most important features, and report on several
large-scale experiments from different scientific domains.

1. INTRODUCTION
Recent years have brought an unprecedented influx of data

across many fields of science. In genomics, for instance, the
latest generation of genomic sequencing machines can handle
up to 18,000 human genomes per year [41], generating about
50 terabytes of sequence data per week. Similarly, astro-

c©2017, Copyright is with the authors. Published in Proc. 20th Inter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

nomical research facilities and social networks are also gen-
erating terabytes of data per week [34]. To synthesize suc-
cinct results from these readouts, scientists assemble com-
plex graph-structured analysis pipelines, which chain a mul-
titude of different tools for transforming, filtering, and aggre-
gating the data [18]. The tools used within these pipelines
are implemented by thousands of researchers around the
world, rely on domain-specific data exchange formats, and
are updated frequently (e.g., [27, 31]). Consequently, easy
ways of assembling and altering analysis pipelines are of ut-
most importance [11]. Moreover, to ensure reproducibility
of scientific experiments, analysis pipelines should be easily
sharable and execution traces must be accessible [12].

Systems fulfilling these requirements are generally called
scientific workflow management systems (SWfMSs). From
an abstract perspective, scientific workflows are composi-
tions of sequential and concurrent data processing tasks,
whose order is determined by data interdependencies [36].
Tasks are treated as black boxes and can therefore range
from a simple shell script over a local command-line tool to
an external service call. Also, the data exchanged by tasks
is typically not parsed by the SWfMS but only forwarded
according to the workflow structure. While these black-box
data and operator models prohibit the automated detection
of potentials for data-parallel execution, their strengths lie
in their flexibility and the simplicity of integrating external
tools.

To deal with the ever-increasing amounts of data preva-
lent in today’s science, SWfMSs have to provide support for
parallel and distributed storage and computation [26]. How-
ever, while extensible distributed computing frameworks like
Hadoop YARN [42] or MESOS [19] keep developing rapidly,
established SWfMSs, such as Taverna [47] or Pegasus [13]
are not able to keep pace. A particular problem is that
most SWfMSs tightly couple their own custom workflow
language to a specific execution engine, which can be dif-
ficult to configure and maintain alongside other execution
engines that are already present on the cluster. In addition,
many of these execution engines fail to keep up with the
latest developments in distributed computing, e.g., by stor-
ing data in a central location, or by neglecting data locality
and heterogeneity of distributed resources during workflow
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scheduling [10]. Furthermore, despite reproducibility being
advocated as a major strength of scientific workflows, most
systems focus only on sharing workflows, disregarding the
provisioning of input data and setup of the execution envi-
ronment [15, 33]. Finally, many systems severely limit the
expressiveness of their workflow language, e.g., by disallow-
ing conditional or recursive structures. While the scientific
workflow community is becoming increasingly aware of these
issues (e.g., [8, 33, 50]), to date only isolated, often domain-
specific solutions addressing only subsets of these problems
have been proposed (e.g., [6, 14, 38]).

At the same time, support for many of these features has
been implemented in several recently developed distributed
dataflow systems, such as Spark [49] or Flink [5]. However,
such systems employ a semi-structured white-box (e.g., key-
value-based) data model to automatically partition and par-
allelize dataflows. Unfortunately, a structured data model
impedes the flexibility in workflow design when integrating
external tools that read and write file-based data. To cir-
cumvent this problem, additional glue code for transforming
to and from the structured data model has to be provided.
This introduces unnecessary overhead in terms of time re-
quired for implementing the glue code as well as for the
necessary data transformations at runtime [48].

In this application paper, we present the Hi-WAY Work-
flow Application master for YARN. Technically, Hi-WAY
is yet another application master for YARN. Conceptually,
it is a (surprisingly thin) layer between scientific workflow
specifications expressed in different languages and Hadoop
YARN. It emphasizes data center compatibility by being
able to run on YARN installations of any size and type of
underlying infrastructure. Compared to other SWfMSs, Hi-
WAY brings the following specific features.

1. Multi-language support. Hi-WAY employs a generic
yet powerful execution model. It has no own specifica-
tion language, but instead comes with an extensible
language interface and built-in support for multiple
workflow languages, such as Cuneiform [8], Pegasus
DAX [13], and Galaxy [17] (see Section 3.2).

2. Iterative workflows. Hi-WAY’s execution model is ex-
pressive enough to support data-dependent control-
flow decisions. This allows for the design of condi-
tional, iterative, and recursive structures, which are in-
creasingly common in distributed dataflows (e.g., [28]),
yet are just beginning to emerge in scientific workflows
(see Section 3.3).

3. Performance gains through adaptive scheduling. Hi-
WAY supports various workflow scheduling algorithms.
It utilizes statistics of earlier workflow executions to es-
timate the resource requirements of tasks awaiting ex-
ecution and exploit heterogeneity in the computational
infrastructures during scheduling. Also, Hi-WAY sup-
ports adaption of schedules to both data locality and
resource availability (see Section 3.4).

4. Reproducible experiments. Hi-WAY generates compre-
hensive provenance traces, which can be directly re-
executed as workflows (see Section 3.5). Also, Hi-WAY
uses Chef [2] and Karamel [1] for specifying automated
setups of a workflow’s software requirements and in-
put data, including (if necessary) the installation of
Hi-WAY and Hadoop (see Section 3.6).

5. Scalable execution. By employing Hadoop YARN as
its underlying execution engine, Hi-WAY harnesses its
scalable resource management, fault tolerance, and dis-
tributed file management (see Section 3.1).

While some of these features have been briefly outlined
in the context of a demonstration paper [9], this is the first
comprehensive description of Hi-WAY.

The remainder of this paper is structured as follows: Sec-
tion 2 gives an overview of related work. Section 3 presents
the architecture of Hi-WAY and gives detailed descriptions
of the aforementioned core features, which are highlighted
in italic font throughout the rest of the document. Section 4
describes several experiments showcasing these feature in
real-life workflows on both local clusters and cloud comput-
ing infrastructure. Section 5 concludes the paper.

2. RELATED WORK
Projects with goals similar to Hi-WAY can be separated

into two groups. The first group of systems comprises tradi-
tional SWfMSs, which, like Hi-WAY, employ black-box data
and operator models. The second group encompasses dis-
tributed dataflow systems developed to process mostly struc-
tured or semi-structured (white-box) data. For a compre-
hensive overview of data-intensive scientific workflow man-
agement, readers are referred to [10] and [26].

2.1 Scientific Workflow Management
The SWfMS Pegasus [13] emphasizes scalability, utilizing

HTCondor as its underlying execution engine. It enforces
the usage of its own XML-based workflow language called
DAX. Pegasus supports a number of scheduling policies, all
of which are static, yet some of which can be considered
adaptive (such as HEFT [39]). Finally, Pegasus does not
allow for iterative workflow structures, since every task in-
vocation has to be explicitly described in the DAX file. In
contrast to Hi-WAY, Pegasus does not provide any means
of reproducing scientific experiments across datacenters. Hi-
WAY complements Pegasus by enabling Pegasus workflows
to be run on top of Hadoop YARN, as outlined in Section 3.2.

Taverna [47] is an established SWfMS that focuses on us-
ability, providing a graphical user interface for workflow de-
sign and monitoring as well as a comprehensive collection of
pre-defined tools and remote services. Taverna emphasizes
reproducibility of experiments and workflow sharing by inte-
grating the public myExperiment workflow repository [16],
in which over a thousand Taverna workflows have been made
available. However, Taverna is mostly used to integrate web
services and short-running tasks and thus does not support
scalable distribution of workload across several worker nodes
or any adaptive scheduling policies.

Galaxy [17] is a SWfMS that provides a web-based graph-
ical user interface, an array of built-in libraries with a fo-
cus on computational biology, and a repository for sharing
workflows and data. CloudMan [3] extends Galaxy with
limited scalability by enabling Galaxy clusters of up to 20
nodes to be set up on Amazon’s EC2 through an easy-to-use
web interface. Unfortunately, Galaxy neither supports adap-
tive scheduling nor iterative workflow structures. Similar to
Pegasus and as described in Section 3.2, Hi-WAY comple-
ments Galaxy by allowing exported Galaxy workflows to be
run on Hadoop YARN. For a comparative evaluation of Hi-
WAY and Galaxy CloudMan, refer to Section 4.2.
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Text-based parallel scripting languages like Makeflow [4],
Snakemake [23], or Swift [45] are more light-weight alter-
natives to full-fledged SWfMSs. Swift [45] provides a func-
tional scripting language that facilitates the design of inher-
ently data-parallel workflows. Conversely, Snakemake [23]
and Makeflow [4] are inspired by the build automation tool
GNU make, enabling a goal-driven assembly of workflow
scripts. All of these system have in common that they
support the scalable execution of implemented workflows
on distributed infrastructures, yet disregard other features
typically present in SWfMSs, such as adaptive scheduling
mechanisms or support for reproducibility.

Nextflow [38] is a recently proposed SWfMS [14], which
brings its own domain-specific language. In Nextflow, soft-
ware dependencies can be provided in the form of Docker
or Shifter containers, which facilitates the design of repro-
ducible workflows. Nextflow enables scalable execution by
supporting several general-purpose batch schedulers. Com-
pared to Hi-WAY, execution traces are less detailed and not
re-executable. Furthermore, Nextflow does not exploit data-
aware and adaptive scheduling potentials.

Toil [43] is a multi-language SWfMS that supports scalable
workflow execution by interfacing with several distributed
resource management systems. Its supported languages in-
clude the Common Workflow Language (CWL) [6], a YAML-
based workflow language that unifies concepts of various
other languages, and a custom Python-based DSL that sup-
ports the design of iterative workflows. Similar to Nextflow,
Toil enables sharable and reproducible workflow runs by al-
lowing tasks to be wrapped in re-usable Docker containers.
In contrast to Hi-WAY, Toil does not gather comprehensive
provenance and statistics data and, consequently, does not
support any means of adaptive workflow scheduling.

2.2 Distributed Dataflows Systems
Distributed dataflow systems like Spark [49] or Flink [5]

have recently achieved strong momentum both in academia
and in industry. These systems operate on semi-structured
data and support different programming models, such as
SQL-like expression languages or real-time stream process-
ing. Departing from the black-box data model along with
natively supporting concepts like data streaming and in-
memory computing allows these systems to in many cases
execute even sequential processing steps in parallel and cir-
cumvent the materialization of intermediate data on the
hard disk. It also enables the automatic detection and ex-
ploitation of potentials for data parallelism. However, the
resulting gains in performance come at the cost of reduced
flexibility for workflow designers. This is especially prob-
lematic for scientists from domains other than the compu-
tational sciences. Since integrating external tools process-
ing unstructured, file-based data is often tedious and under-
mines the benefits provided by dataflow systems, a substan-
tial amount of researchers continue to rely on traditional
scripting and programming languages to tackle their data-
intensive analysis tasks (e.g., [27, 31]).

Tez [32] is an application master for YARN that enables
the execution of DAGs comprising map, reduce, and custom
tasks. Being a low-level library intended to be interfaced
by higher-level applications, external tools consuming and
producing file-based data need to be wrapped in order to be
used in Tez. For a comparative evaluation between Hi-WAY
and Tez, see Section 4.1.

While Tez runs DAGs comprising mostly map and re-
duce tasks, Hadoop workflow schedulers like Oozie [20] or
Azkaban [35] have been developed to schedule DAGs con-
sisting mostly of Hadoop jobs (e.g., MapReduce, Pig, Hive)
on a Hadoop installation. In Oozie, tasks composing a work-
flow are transformed into a number of MapReduce jobs at
runtime. When used to run arbitrary scientific workflows,
systems like Oozie or Azkaban either introduce unneces-
sary overhead by wrapping the command-line tasks into de-
generate MapReduce jobs or do not dispatch such tasks to
Hadoop, but run them locally instead.

Chiron [30] is a scalable workflow management system in
which data is represented as relations and workflow tasks
implement one out of six higher-order functions (e.g., map,
reduce, and filter). This departure from the black-box view
on data inherent to most SWfMSs enables Chiron to apply
concepts of database query optimization to optimize per-
formance through structural workflow reordering [29]. In
contrast to Hi-WAY, Chiron is limited to a single, custom,
XML-based workflow language, which does not support iter-
ative workflow structures. Furthermore, while Chiron, like
Hi-WAY, is one of few systems in which a workflow’s (in-
complete) provenance data can be queried during execution
of that same workflow, Chiron does not employ this data to
perform any adaptive scheduling.

3. ARCHITECTURE
Hi-WAY utilizes Hadoop as its underlying system for the

management of both distributed computational resources
and storage (see Section 3.1). It comprises three main com-
ponents, as shown in Figure 1. First, the Workflow Driver
parses a scientific workflow specified in any of the supported
workflow languages and reports any discovered tasks to the
Workflow Scheduler (see Sections 3.2 and 3.3). Secondly, the
Workflow Scheduler assigns tasks to compute resources pro-
vided by Hadoop YARN according to a selected scheduling
policy (see Section 3.4). Finally, the Provenance Manager
gathers comprehensive provenance and statistics informa-
tion obtained during task and workflow execution, handling
their long-term storage and providing the Workflow Sched-
uler with up-to-date statistics on previous task executions
(see Section 3.5). Automated installation routines for the
setup of Hadoop, Hi-WAY, and selected workflows are de-
scribed in Section 3.6.

3.1 Interface with Hadoop YARN
Hadoop version 2.0 introduced the resource management

component YARN along with the concept of job-specific ap-
plication masters (AMs), increasing scalability beyond 4,000
computational nodes and enabling native support for non-
MapReduce AMs. Hi-WAY seizes this concept by providing
its own AM that interfaces with YARN.

To submit workflows for execution, Hi-WAY provides a
light-weight client program. Each workflow that is launched
from a client results in a separate instance of a Hi-WAY AM
being spawned in its own container. Containers are YARN’s
basic unit of computation, encapsulating a fixed amount of
virtual processor cores and memory which can be specified
in Hi-WAY’s configuration. Having one dedicated AM per
workflow results in a distribution of the workload associated
with workflow execution management and is therefore re-
quired to fully unlock the scalability potential provided by
Hadoop.
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Figure 1: The architecture of the Hi-WAY applica-
tion master: The Workflow Driver, described in Sec-
tions 3.2 and 3.3, parses a textual workflow file, mon-
itors workflow execution, and notifies the Workflow
Scheduler whenever it discovers new tasks. For tasks
that are ready to be executed, the Workflow Sched-
uler, presented in Section 3.4, assembles a sched-
ule. Provenance and statistics data obtained during
workflow execution are handled by the Provenance
Manager (see Section 3.5) and can be stored in a lo-
cal file as well as a MySQL or Couchbase database.

For any of a workflow’s tasks that await execution, the Hi-
WAY AM responsible for running this particular workflow
then requests an additional worker container from YARN.
Once allocated, the lifecycle of these worker containers in-
volves (i) obtaining the task’s input data from HDFS, (ii) in-
voking the commands associated with the task, and (iii) stor-
ing any generated output data in HDFS for consumption by
other containers executing tasks in the future and possibly
running on other compute nodes. Figure 2 illustrates this
interaction between Hi-WAY’s client application, AM and
worker containers, as well as Hadoop’s HDFS and YARN
components.

Besides having dedicated AM instances per workflow, an-
other prerequisite for scalable workflow execution is the abil-
ity to recover from failures. To this end, Hi-WAY is able to
re-try failed tasks, requesting YARN to allocate the addi-
tional containers on different compute nodes. Also, data
processed and produced by Hi-WAY persists through the
crash of a storage node, since Hi-WAY exploits the redun-
dant file storage of HDFS for any input, output, and inter-
mediate data associated with a workflow.

3.2 Workflow Language Interface
Hi-WAY sunders the tight coupling of scientific workflow

languages and execution engines prevalent in established
SWfMSs. For this purpose, its Workflow Driver (see Sec-
tion 3.3) provides an extensible, multilingual language inter-
face, which is able to interpret scientific workflows written
in a number of established workflow languages. Currently,
four scientific workflow languages are supported: (i) the tex-
tual workflow language Cuneiform [8], (ii) DAX, which is the
XML-based workflow language of the SWfMS Pegasus [13],
(iii) workflows exported from the SWfMS Galaxy [17], and
(iv) Hi-WAY provenance traces, which can also be inter-
preted as scientific workflows (see Section 3.5).

Cuneiform [8] is a minimal workflow language that sup-
ports direct integration of code written in a large range of ex-
ternal programming languages (e.g., Bash, Python, R, Perl,
Java). It supports iterative workflows and treats tasks as
black boxes, allowing the integration of various tools and

Figure 2: Functional interaction between the com-
ponents of Hi-WAY and Hadoop (white boxes; see
Section 3.1) as well as further requirements for run-
ning workflows (gray boxes; see Section 3.6). A
workflow is launched from a client application, re-
sulting in a new instance of a Hi-WAY AM within
a container provided by one of YARN’s NodeMan-
agers (NMs). This AM parses the workflow file re-
siding in HDFS and prompts YARN to spawn addi-
tional worker containers for tasks that are ready to
run. During task execution, these worker containers
obtain input data from HDFS, invoke locally avail-
able executables, and generate output data, which is
placed in HDFS for use by other worker containers.

libraries independent of their programming API. Cuneiform
facilitates the assembly of highly parallel data processing
pipelines by providing a range of second-order functions ex-
tending beyond map and reduce operations.

DAX [13] is Pegasus’ built-in workflow description lan-
guage, in which workflows are specified in an XML file.
Contrary to Cuneiform, DAX workflows are static, explic-
itly specifying every task to be invoked and every file to be
processed or produced by these tasks during workflow execu-
tion. Consequently, DAX workflows can become quite large
and are not intended to be read or written by workflow de-
velopers directly. Instead, APIs enabling the generation of
DAX workflows are provided for Java, Python, and Perl.

Workflows in the web-based SWfMS Galaxy [17] can be
created using a graphical user interface, in which the tasks
comprising the workflow can be selected from a large range
of software libraries that are part of any Galaxy installa-
tion. This process of workflow assembly results in a static
workflow graph that can be exported to a JSON file, which
can then be interpreted by Hi-WAY. In workflows exported
from Galaxy, the workflow’s input files are not explicitly
designated. Instead, input ports serve as placeholders for
the input files, which are resolved interactively when the
workflow is committed to Hi-WAY for execution.

In addition to these workflow languages, Hi-WAY can eas-
ily be extended to parse and execute other non-interactive
workflow languages. For non-iterative languages, one only
needs to extend the Workflow Driver class and implement
the method that parses a textual workflow file to determine
the tasks and data dependencies composing the workflow.

3.3 Iterative Workflow Driver
On execution onset, the Workflow Driver parses the work-

flow file to determine inferable tasks along with the files they
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process and produce. Any discovered tasks are passed to the
Workflow Scheduler, which then assembles a schedule and
creates container requests whenever a task’s data dependen-
cies are met. Subsequently, the Workflow Driver supervises
workflow execution, waiting for container requests to be ful-
filled or for tasks to terminate. In the former case, the Work-
flow Driver requests the Workflow Scheduler to choose a task
to be launched in that container. In the latter case, the
Workflow Driver registers any newly produced data, which
may induce new tasks becoming ready for execution and
thus new container requests to be issued.

One of Hi-WAY’s core strengths is its ability to interpret
iterative workflows, which may contain unbounded loops,
conditionals, and recursive tasks. In such iterative work-
flows, the termination of a task may entail the discovery of
entirely new tasks. For this reason, the Workflow Driver
dynamically evaluates the results of completed tasks, for-
warding newly discovered tasks to the Workflow Scheduler,
similar to during workflow parsing. See Figure 3 for a visu-
alization of the Workflow Driver’s execution model.

Figure 3: The iterative Workflow Driver’s execution
model. A workflow is parsed, entailing the discov-
ery of tasks as well as the request for and eventual
allocation of containers for ready tasks. Upon termi-
nation of a task executed in an allocated container,
previously discovered tasks might become ready (re-
sulting in new container requests), new tasks might
be discovered, or the workflow might terminate.

As an example for an iterative workflow, consider an im-
plementation of the k -means clustering algorithm commonly
encountered in machine learning applications. k -means pro-
vides a heuristic for partitioning a number of data points
into k clusters. To this end, over a sequence of paralleliz-
able steps, an initial random clustering is iteratively refined
until convergence is reached. Only by means of conditional
task execution and unbounded iteration can this algorithm
be implemented as a workflow, which underlines the impor-
tance of such iterative control structures in scientific work-
flows. The implementation of the k -means algorithm as a
Cuneiform workflow has been published in [9].

3.4 Workflow Scheduler
Determining a suitable assignment of tasks to compute

nodes is called workflow scheduling. To this end, the Work-
flow Scheduler receives tasks discovered by the Workflow
Driver, from which it builds a schedule and creates container
requests. Based on this schedule, the Workflow Scheduler
selects a task for execution whenever a container has been
allocated. This higher-level scheduler is different to YARN’s
internal schedulers, which, at a lower level, determine how to
distribute resources between multiple users and applications.
Hi-WAY provides a selection of workflow scheduling policies

that optimize performance for different workflow structures
and computational architectures.

Most established SWfMSs employ a first-come-first-served
(FCFS) scheduling policy in which tasks are placed at the
tail of a queue, from whose head they are removed and dis-
patched for execution whenever new resources become avail-
able. While Hi-WAY supports FCFS scheduling as well, its
default scheduling policy is a data-aware scheduler intended
for I/O-intensive workflows. The data-aware scheduler min-
imizes data transfer by assigning tasks to compute nodes
based on the amount of input data that is already present
locally. To this end, whenever a new container is allocated,
the data-aware scheduler skims through all tasks pending
execution, from which it selects the task with the highest
fraction of input data available locally (in HDFS) on the
compute node hosting the newly allocated container.

In contrast to data-aware and FCFS scheduling, static
scheduling policies employ a pre-built schedule, which dic-
tates how the tasks composing a workflow are to be assigned
to available compute nodes. When configured to employ a
static scheduling policy, Hi-WAY’s Workflow Scheduler as-
sembles this schedule at the beginning of workflow execution
and enforces containers to be placed on specific compute
nodes according to this schedule. A basic static schedul-
ing policy supported by Hi-WAY is a round-robin scheduler
that assigns tasks in turn, and thus in equal numbers, to the
available compute nodes.

In addition to these scheduling policies, Hi-WAY is also
able to employ adaptive scheduling in which the assignment
of tasks to compute nodes is based on continually updated
runtime estimates and is therefore adapted to the computa-
tional infrastructure. To determine such runtime estimates,
the Provenance Manager, which is responsible for gather-
ing, storing, and providing provenance and statistics data
(see Section 3.5), supplies the Workflow Scheduler with ex-
haustive statistics. For instance, when deciding whether to
assign a task to a newly allocated container on a certain
compute node, the Workflow Scheduler can query the Prove-
nance Manager for (i) the observed runtimes of earlier tasks
of the same signature (i.e., invoking the same tools) running
on either the same or other compute nodes, (ii) the names
and sizes of the files being processed in these tasks, and
(iii) the data transfer times for obtaining this input data.

If available, based on this information the Workflow Sched-
uler is able to determine runtime estimates for running any
task on any machine. In order to quickly adapt to per-
formance changes in the computational infrastructure, the
current strategy for computing these runtime estimates is to
always use the latest observed runtime. If no runtimes have
been observed yet for a particular task-machine-assignment,
a default runtime of zero is assumed to encourage trying out
new assignments and thus obtain a more complete picture
of which task performs well on which machine.

To make use of these runtime estimates, Hi-WAY supports
heterogeneous earliest finish time (HEFT) [39] scheduling.
HEFT exploits heterogeneity in both the tasks to be exe-
cuted as well as the underlying computational infrastruc-
ture. To this end, it uses runtime estimates to rank tasks
by the expected time required from task onset to workflow
terminus. By decreasing rank, tasks are assigned to com-
pute nodes with a favorable runtime estimate, i.e., critical
tasks with a longer time to finish are placed on the best-
performing nodes first.
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Since static schedulers like round-robin and HEFT require
the complete invocation graph of a workflow to be deductible
at the onset of computation, static scheduling can not be
used in conjunction with workflow languages that allow it-
erative workflows. Hence, the latter two (static) scheduling
policies are not compatible with Cuneiform workflows (see
Section 3.3).

Additional (non-static) adaptive scheduling policies are
in the process of being integrated and will be described and
evaluated in a separate manuscript. However, note that due
to the black-box operator model, scheduling policies may
not conduct structural alterations to the workflow automat-
ically, as commonly found in database query optimization.

3.5 Provenance Manager
The Provenance Manager surveys workflow execution and

registers events at different levels of granularity. First, it
traces events at the workflow level, including the name of
the workflow and its total execution time. Secondly, it logs
events for each task, e.g., the commands invoked to spawn
the task, its makespan, its standard output and error chan-
nels and the compute node on which it ran. Thirdly, it stores
events for each file consumed and produced by a task. This
includes its size and the time it took to move the file between
HDFS and the local file system. All of this provenance data
is supplemented with timestamps as well as unique iden-
tifiers and stored as JSON objects in a trace file in HDFS,
from where it can be accessed by other instances of Hi-WAY.

Since this trace file holds information about all of a work-
flow’s tasks and data dependencies, it can be interpreted as
a workflow itself. Hi-WAY promotes reproducibility of ex-
periments by being able to parse and execute such workflow
traces directly through its Workflow Driver, albeit not nec-
essarily on the same compute nodes. Hence, workflow trace
files generated by Hi-WAY constitute a fourth supported
workflow language.

Evidently, the amount of workflow traces can become diffi-
cult to handle for heavily-used installations of Hi-WAY with
thousands of trace files or more. To cope with such high
volumes of data, Hi-WAY provides prototypical implemen-
tations for storing and accessing this provenance data in a
MySQL or Couchbase database as an alternative to stor-
ing trace files in HDFS. The usage of a database for storing
this provenance data brings the added benefit of facilitating
manual queries and aggregation.

3.6 Reproducible Installation
The properties of the scientific workflow programming

model with its black-box data and operator models, as well
as the usage of Hadoop for resource management and data
distribution, both dictate requirements for workflow design-
ers (for an illustration of some of these requirements, refer to
Figure 2). First, all of a workflow’s software dependencies
(executables, software libraries, etc.) have to be available
on each of the compute nodes managed by YARN, since any
of the tasks composing a workflow could be assigned to any
compute node. Secondly, any input data required to run the
workflow has to be placed in HDFS or made locally available
on all nodes.

To set up an installation of Hi-WAY and Hadoop, con-
figuration routines are available online in the form of Chef
recipes. Chef is a configuration management software for the
automated setup of computational infrastructures [2]. These

Chef installation routines, called recipes, allow for the setup
of standalone or distributed Hi-WAY installations, either on
local machines or in public compute clouds such as Amazon’s
EC2. In addition, recipes are available for setting up a large
variety of execution-ready workflows. This includes obtain-
ing their input data, placing it in HDFS, and installing any
software dependencies required to run the workflow. Besides
providing a broad array of use cases, these recipes enable
reproducibility of all the experiments outlined in Section 4.
The procedure of running these Chef recipes via the orches-
tration engine Karamel [1] to set up a distributed Hi-WAY
execution environment along with a selection of workflows
is described in [9] and on http://saasfee.io.

Note that this means of providing reproducibility exists in
addition to the executable provenance traces described in
Section 3.5. However, while the Chef recipes are well-suited
for reproducing experiments across different research groups
and compute clusters, the executable trace files are intended
for use on the same cluster, since running a trace file requires
input data to be located and software requirements to be
available just like during the workflow run from which the
trace file was derived.

4. EVALUATION
We conducted a number of experiments in which we eval-

uated Hi-WAY’s core features of scalability, performant ex-
ecution, and adaptive workflow scheduling. The remaining
properties (support for multilingualism, reproducible experi-
ments, and iterative workflows) are achieved by design. The
workflows outlined in this section are written in three dif-
ferent languages and can be automatically set up (including
input data) and run on Hi-WAY with only a few clicks fol-
lowing the procedure described in Section 3.6.

Across the experiments described here, we executed rele-
vant workflows from different areas of research on both vir-
tual clusters of Amazon’s EC2 and local computational in-
frastructure. Section 4.1 outlines two experiments in which
we analyze the scalability and performance behavior of Hi-
WAY when increasing the number of available computa-
tional nodes to very large numbers. In Section 4.2, we
then describe an experiment that contrasts the performance
of running a computationally intensive Galaxy workflow on
both Hi-WAY and Galaxy CloudMan. Finally, in Section 4.3
we report on an experiment in which the effect of provenance
data on adaptive scheduling is evaluated. Table 1 gives an
overview of all experiments described in this section.

4.1 Scalability / Genomics
For evaluating the scalability of Hi-WAY, we employed

a single nucleotide variant calling workflow [31], which de-
termines and characterizes genomic variants in a number
of genomes. The input of this workflow are genomic reads
emitted from a next-generation sequencing machine, which
are aligned against a reference genome in the first step of
the workflow using Bowtie 2 [24]. In the second step of the
workflow, alignments are sorted using SAMtools [25] and ge-
nomic variants are determined using VarScan [22]. Finally,
detected variants are annotated using the ANNOVAR [44]
toolkit. Input data, in the form of genomic reads, was ob-
tained from the 1000 Genomes Project [37].

In a first experiment we implemented this workflow in
both Cuneiform and Tez. We ran both Hi-WAY and Tez on
a Hadoop installation set up on a local cluster comprising
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Table 1: Overview of conducted experiments, their evaluation goals and the section in which they are outlined.

workflow domain language scheduler infrastructure runs evaluation section

SNV Calling genomics Cuneiform data-aware 24 Xeon E5-2620 3 performance, scalability 4.1
SNV Calling genomics Cuneiform FCFS 128 EC2 m3.large 3 scalability 4.1
RNA-seq bioinformatics Galaxy data-aware 6 EC2 c3.2xlarge 5 performance 4.2
Montage astronomy DAX HEFT 8 EC2 m3.large 80 adaptive scheduling 4.3

24 compute nodes connected via a one gigabit switch. Each
compute node provided 24 gigabyte of memory as well as
two Intel Xeon E5-2620 processors with 24 virtual cores.
This resulted in a maximum of 576 concurrently running
containers, of which each one was provided with its own
virtual processor core and one gigabyte of memory.

The results of this experiment are illustrated in Figure 4.
Scalability beyond 96 containers was limited by network
bandwidth. The results indicate that Hi-WAY performs
comparably to Tez while network resources are sufficient,
yet scales favorably in light of limited network resources
due to its data-aware scheduling policy, which reduced data
transfer by preferring to assign the data-intensive reference
alignment tasks to containers on compute nodes with a lo-
cally available replicate of the input data. However, proba-
bly the most important finding of this experiment was that
the implementation of the workflow in Cuneiform resulted
in very little code and was finished in a few days, whereas
it took several weeks and a lot of code in Tez.
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Figure 4: Mean runtimes of the variant calling work-
flow with increasing number of containers. Note
that both axes are in logarithmic scale.

In a second experiment, we increased the volume of input
data while at the same time reducing network load by (i) us-
ing additional genomic read files from the 1000 Genomes
Project, (ii) compressing intermediate alignment data using
CRAM referential compression [25], and (iii) obtaining in-
put read data during workflow execution from the Amazon
S3 bucket of the 1000 Genomes Project instead of storing
them on the cluster in HDFS.

In the process of this second experiment, the workflow
was first run using a single worker node, processing a single
genomic sample comprising eight files, each about one giga-
byte in size, thus amounting to eight gigabytes of input data
in total. In subsequent runs, we then repeatedly doubled the
number of worker nodes and volume of input data. In the
last run (after seven duplications), the computational infras-
tructure consisted of 128 worker nodes, whereas the work-

flow’s input data comprised 128 samples of eight roughly
gigabyte-sized files each, amounting to a total volume of
more than a terabyte of data.

The experiment was run three times on virtual clusters of
Amazon’s EC2. To investigate potential effects of datacen-
ter locality on workflow runtime (which we did not observe
during the experiment), these clusters were set up in differ-
ent EC2 regions – once in the EU West (Ireland) and twice
in the US East (North Virginia) region. Since we intended
to analyze the scalability of Hi-WAY, we isolated the Hi-
WAY AM from the worker threads and Hadoop’s master
threads. To this end, dedicated compute nodes were pro-
vided for (i) the Hi-WAY AM, running in its own YARN
container, and (ii) the two Hadoop master threads (HDFS’s
NameNode and YARN’s ResourceManager). All compute
nodes – the two master nodes and all of the up to 128 worker
nodes – were configured to be of type m3.large, each pro-
viding two virtual processing cores, 7.5 gigabytes of main
memory, and 32 gigabytes of local SSD storage.

All of the experiment runs were set up automatically using
Karamel [1]. Over the course of the experiment we deter-
mined the runtime of the workflow. Furthermore, the CPU,
I/O, and network performance of the master and worker
nodes was monitored during workflow execution using the
Linux tools uptime, ifstat, and iostat. Since the workflow’s
tasks required the whole memory provided by a single com-
pute node, we configured Hi-WAY to only allow a single
container per worker node at the same time, enabling multi-
threading for tasks running within that container whenever
possible. Hi-WAY was configured to utilize the basic FCFS
queue scheduler (see Section 3.4). Other than that, both
Hi-WAY and Hadoop were set up with default parameters.

The average of measured runtimes with steadily increasing
amounts of both compute nodes and input data is displayed
in Table 2 and Figure 5. The regression curve indicates
near-linear scalability : The doubling of input data and the
associated doubling of workload is almost fully offset by a
doubling of worker nodes. This is even true for the maxi-
mum investigated cluster size of 128 nodes, in which a ter-
abyte of genomic reads was aligned and analyzed against the
whole human genome. Note that extrapolating the average
runtime for processing eight gigabytes of data on a single
machine reveals that aligning a whole terabyte of genomic
read data against the whole human genome along with fur-
ther downstream processing would easily take a month on a
single machine.

We identified and evaluated several potential bottlenecks
when scaling out a Hi-WAY installation beyond 128 nodes.
For instance, Hadoop’s master processes, YARN’s Resource-
Manager and HDFS’s NameNode, could prove to limit scal-
ability. Similarly, the Hi-WAY AM process that handles the
scheduling of tasks, the assembly of results, and the tracing
of provenance, could collapse when further increasing the
workload and the number of available compute nodes. To
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Table 2: Summary of the scalability experiment described in Section 4.1. The number of provisioned VMs is
displayed alongside the volume of processed data, average runtime (over three runs), and the incurred cost.

number of worker VMs 1 2 4 8 16 32 64 128
number of master VMs 2 2 2 2 2 2 2 2

data volume 8.06 GB 16.97 GB 33.10 GB 69.47 GB 136.14 GB 270.98 GB 546.76 GB 1096.83 GB

avg. runtime in min. 340.12 350.36 351.62 344.82 375.57 372.09 380.24 353.39
runtime std. dev. 1.96 0.14 2.15 1.88 14.84 22.10 22.34 6.01

avg. cost1 per run $2.48 $3.41 $5.13 $8.39 $16.45 $30.78 $61.07 $111.79
avg. cost1 per GB $0.31 $0.20 $0.16 $0.12 $0.12 $0.11 $0.11 $0.10
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Figure 5: Mean runtimes for three runs of the variant calling workflow described in Section 4.1 when repeat-
edly doubling the number of compute nodes available to Hi-WAY along with the input data to be processed.
The error bars represent the standard deviation, whereas the line represents the (linear) regression curve2.

this end, we were interested in the resource utilization of
these potential bottlenecks, which is displayed in Figure 6.

We observe a steady increase in load across all resources
for the Hadoop and Hi-WAY master nodes when repeatedly
doubling the workload and number of worker nodes. How-
ever, resource load stays well below maximum utilization at
all cluster sizes. In fact, all resources are still utilized less
than 5 % even when processing one terabyte of data across
128 worker nodes. Furthermore, we observe that resource
utilization for Hi-WAY’s master process is of the same or-
der of magnitude as for Hadoop’s master processes, which
have been developed to scale to 10,000 compute nodes and
beyond [42].

While resource utilization on the master nodes increases
when growing the workload and computational infrastruc-
ture, we observe that CPU utilization stays close to the
maximum of 2.0 on the worker nodes, whereas the other
resources stay under-utilized. This finding is unsurprising,

1Here, we assume a price of $0.146 per minute, as listed for
m3.large instances in EC2’s EU West region at the time of
writing. We also assume billing per minute and disregard
time required to set up the experiment.
2The standard deviation is higher for cluster sizes of 16,
32, and 64 nodes, which is due to the observed runtime of
the CPU-bound variant calling step being notably higher in
one run of the experiment. Since these three measurements
were temporally co-located and we did not observe similar
distortions at any other point in time, this observation can
most likely be attributed to external factors.

since both the alignment step and the variant calling step of
the workflow support multithreading and are known to be
CPU-bound. Hence, this finding confirms that the cluster
is nearly fully utilized for processing the workflow, whereas
the master processes appear to be able to cope with a con-
siderable amount of additional load.

4.2 Performance / Bioinformatics
RNA sequencing (RNA-seq) methodology makes use of

next-generation sequencing technology to enable researchers
to determine and quantify the transcription of genes in a
given tissue sample. Trapnell et al. [40] have developed a
workflow that has has been established as the de facto stan-
dard for processing and comparing RNA-seq data.

In the first step of this workflow, genomic reads are aligned
against a reference genome using the two alignment tools
Bowtie 2 [24] and TopHat 2 [21]. The alignment serves the
purpose of identifying the reads’ genomic positions, which
have been lost during the sequencing process. This first step
is comparable to the first step in the variant calling work-
flow described in Section 4.1. However, in this workflow,
reads are obtained by sequencing only the transcriptome,
i.e., the set of transcribed genes, as opposed to sequencing
the whole genome. In the second step of the workflow, the
Cufflinks [40] package is utilized to assemble and quantify
transcripts of genes from these aligned reads and, finally, to
compare quantified transcripts for different input samples,
for instance between diseased and healthy samples. See Fig-
ure 7 for a visualization of the RNA-seq workflow.
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Figure 6: Resource utilization (CPU load, I/O utilization, and network throughput) of virtual machines
hosting the Hadoop master processes, the Hi-WAY AM and a Hi-WAY worker process. Average values
over the time of workflow execution and across experiment runs are shown along with their exponential
regression curve. We observed the following peak values for worker nodes: 2.0 for CPU load (due to two
virtual processing cores being available per machine), 1.0 for I/O utilization (since 1.0 corresponds to device
saturation, i.e., 100 % of CPU time spent for I/O requests) and 109.35 MB per second for network throughput.
Note the different scales for the master nodes on the left and the worker nodes on the right.

Wolfien et al. [46] implemented an extended version of this
workflow in Galaxy, making it available through Galaxy’s
public workflow repository. Their implementation of the
workflow, called TRAPLINE, compares two genomic sam-
ples. Since each of these two samples is expected to be avail-
able in triplicates and the majority of data processing tasks
composing the workflow are arranged in sequential order,
the workflow, without any manual alterations, has a degree
of parallelism of six across most of its parts.

We executed the TRAPLINE workflow on virtual clus-
ters of Amazon’s EC2 consisting of compute nodes of type
c3.2xlarge. Each of these nodes provides eight virtual pro-
cessing cores, 15 gigabytes of main memory and 160 giga-
bytes of local SSD storage. Due to the workflow’s degree of
parallelism of six, we ran the workflow on clusters of sizes
one up to six. For each cluster size, we executed this Galaxy
workflow five times on Hi-WAY, comparing the average run-
time against an execution on Galaxy CloudMan. Each run
was launched in its own cluster, set up in Amazon’s US East
(North Virginia) region.

As workflow input data, we used RNA-seq data of young
versus aged mice, obtained from the Gene Expression Om-
nibus (GEO) repository3, amounting to more than ten gi-
gabytes in total. We set up Hi-WAY using Karamel [1] and
CloudMan using its Cloud Launch web application. De-

3series GSE62762, samples GSM15330[14|15|16|45|46|47]

fault parameters were left unchanged. However, since sev-
eral tasks in TRAPLINE require large amounts of memory,
we configured both Hi-WAY as well as CloudMan’s default
underlying distributed resource manager, Slurm, to only al-
low execution of a single task per worker node at any time.
Omitting this configuration would lead either of the two sys-
tems to run out of memory at some point during workflow
execution. The results of executing the TRAPLINE work-
flow on both Hi-WAY and Galaxy CloudMan are displayed
in Figure 8. Across all of the tested cluster sizes, we ob-
served that Hi-WAY outperformed Galaxy CloudMan by at
least 25 %. These differences were found to be significant
by means of a one-sample t-test (p-values of 0.000127 and
lower).

The observed difference in performance is most notable
in the computationally costly TopHat2 step, which makes
heavy use of multithreading and generates large amounts of
intermediate files. Therefore, this finding can be attributed
to Hi-WAY utilizing the worker node’s transient local SSD
storage, since both HDFS as well as the storage of YARN
containers reside on the local file system. Conversely, Galaxy
CloudMan stores all of its data on an Amazon Elastic Block
Store (EBS) volume, a persistent drive that is accessed over
the network and shared among all compute nodes4.

4While EBS continues to be CloudMan’s default storage op-
tion, a recent update has introduced support for using tran-
sient storage instead.
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Figure 7: The RNA sequencing workflow described
in Section 4.2. Genomic reads, the output of whole
transcriptome sequencing, are aligned against a ref-
erence genome. Transcribed genes are then deter-
mined and quantified based on these alignments. Fi-
nally, transcription is compared between samples.

Apart from the observed gap in performance, it is im-
portant to point out that Galaxy CloudMan only supports
the automated setup of virtual clusters of up to 20 nodes.
Compared to Hi-WAY, it therefore only provides very lim-
ited scalability. We conclude that Hi-WAY leverages the
strengths of Galaxy, which lie in its intuitive means of work-
flow design and vast number of supported tools, by pro-
viding a more performant, flexible, and scalable alternative
to Galaxy CloudMan for executing data-intensive Galaxy
workflows with a high degree of parallelism.

4.3 Adaptive Scheduling / Astronomy
To underline the benefits of adaptive scheduling on hetero-

geneous computational infrastructures, an additional exper-
iment was performed in which we generated a Pegasus DAX
workflow using the Montage toolkit [7]. The resulting work-
flow assembles a 0.25 degree mosaic image of the Omega
Nebula. It comprises a number of steps in which images
obtained from telescopic readings are projected onto a com-
mon plane, analyzed for overlapping regions, cleaned from
background radiation noise and finally merged into a mosaic.

The Montage toolkit can be used to generate workflows
with very large number of tasks by increasing the degree
value. However, the degree of 0.25 used in this experiment
resulted in a comparably small workflow with a maximum
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Figure 8: Average runtime of executing the RNA-
seq workflow described in Section 4.2 on Hi-WAY
and Galaxy CloudMan. The number of EC2 com-
pute nodes of type c3.2xlarge was increased from
one up to six. Note that both axes are in logarith-
mic scale.

degree of parallelism of eleven during the image projection
and background radiation correction phases of the workflow.
In the experiment, this workflow was repeatedly executed on
a Hi-WAY installation set up on a virtual cluster in the EU
West (Ireland) region of Amazon’s EC2. The cluster com-
prised a single master node as well as eleven worker nodes to
match the workflow’s degree of parallelism. Similar to the
scalability experiment in Section 4.1, all of the provisioned
virtual machines were of type m3.large.

To simulate a heterogeneous and potentially shared com-
putational infrastructure, synthetic load was introduced on
these machines by means of the Linux tool stress. To this
end, only one worker machine was left unperturbed, whereas
five worker machines were taxed with increasingly many
CPU-bound processes and five other machines were impaired
by launching increasingly many (in both cases 1, 4, 16, 64,
and 256) processes writing data to the local disk.

A single run of the experiment, of which 80 were con-
ducted in total, encompassed (i) running the Montage work-
flow once using a FCFS scheduling policy, which served as a
baseline to compare against, and (ii) running the workflow
20 times consecutively using the HEFT scheduler. In the
process of these consecutive runs, larger and larger amounts
of provenance data became available over time as a conse-
quence of prior workflow executions. Hence, workflow execu-
tions using the HEFT scheduler were provided with increas-
ingly comprehensive runtime estimates. Between iterations
however, all provenance data was removed.

The results of this experiment are illustrated in Figure 9.
Evidently, the performance of HEFT scheduling improves
with more and more provenance data becoming available.
Employing HEFT scheduling in the absence of any available
provenance data results in subpar performance compared
to FCFS scheduling. This is due to HEFT being a static
scheduling policy, which entails that task assignments are
fixed, even if one worker node still has many tasks to run
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while another, possibly more performant worker node is idle.
However, with a single prior workflow run, HEFT already

outperforms FCFS scheduling significantly (two-sample t-
test, p-value of 0.033). The next significant performance
gain can then be observed between ten and eleven prior
workflow execution (two-sample t-test, p-value of 6.22·10−7).
At this point, any task composing the workflow, even the
ones that are only executed once per workflow run, have
been executed on all eleven worker nodes at least once.
Hence, runtime estimates are complete and scheduling is no
longer driven by the need to test additional task-machine-
assignments. Note that this also leads to more stable work-
flow runtimes, which is reflected in a major reduction of the
standard deviation of runtime. We argue that the observed
performance gains of HEFT over baseline FCFS schedul-
ing emphasize the importance of and potential for adaptive
scheduling in distributed scientific workflow execution.
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Figure 9: Median runtime of executing Montage on
a heterogeneous infrastructure when using HEFT
scheduling and increasing the number of previous
workflow runs and thus the amount of available
provenance data. The error bars represent the stan-
dard deviation.

5. CONCLUSION AND FUTURE WORK
In this paper, we presented Hi-WAY, an application mas-

ter for executing arbitrary scientific workflows on top of
Hadoop YARN. Hi-WAY’s core features are a multilingual
workflow language interface, support for iterative workflow
structures, adaptive scheduling policies optimizing perfor-
mance, tools to provide reproducibility of experiments, and,
by employing Hadoop for resource management and storage,
scalability. We described Hi-WAY’s interface with YARN
as well as its architecture, which is built around the afore-
mentioned concepts. We then outlined four experiments, in
which real-life workflows from different domains were exe-
cuted on different computational infrastructures comprising
up to 128 worker machines.

As future work, we intend to further harness the statistics
on resource utilization provided by Hi-WAY’s Provenance
Manager. Currently, the containers requested by Hi-WAY
and provided by YARN all share an identical configuration,
i.e., they all have the same amounts of virtual processing
cores and memory. This can lead to under-utilization of
resources, since some tasks might not be able to put all of the

provided resources to use. To this end, we intend to extend
Hi-WAY with a mode of operation, in which containers are
custom-tailored to the tasks that are to be executed.
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ABSTRACT 

Oracle’s Real Application Cluster (RAC) allows multiple database 

instances to run on different server nodes in a cluster against a 

shared set of data files. A critical aspect of an Oracle RAC system 

is that of instance recovery. When a node suffers from a hardware 

failure, or a database instance suffers from a software failure, 

instance recovery is performed by a surviving instance to ensure 

that the database remains in a consistent state. High-availability 

comes from the surviving database instances, each running on a 

surviving node, that are still able to provide database services. 

During instance recovery, the set of database resources that are in 

need of recovery must be identified and then repaired.  Until such 

time as the identification of these resources has been done, Oracle 

needs to block any requests by database clients to all database 

resources. The whole database appears to be frozen during this 

time, a period that is called application brown-out. In the interests 

of availability it is therefore important that instance recovery 

endeavors to keep this period of identification as short as possible. 

In doing so, not only is the brown-out period reduced, but also the 

overall time to make available those resources that need repair, is 

reduced. 

This paper describes the use of a Buddy Instance, a mechanism 

that significantly reduces the brown-out time and therefore also, 

the duration of instance recovery. Each database instance has a 

buddy database instance whose purpose is to construct in-memory 

metadata that describes the resources needing recovery, on a 

continuous basis at run-time. In the event of node or instance 

failure, the buddy instance for the failed instance uses the in-

memory metadata in performing instance recovery. The buddy 

instance mechanism for single instance failures is available in the 

12.2 release of Oracle Database. Performance results show a 

significant reduction in brown-out time and also in overall 

instance recovery time. 

Categories and Subject Descriptors 

H.2.4 [Database Management Systems]: Database transaction 

processing➝ Database recovery, C.4 [Performance of Systems]: 

reliability availability and serviceability 

General Terms 

Algorithms, Design, Performance 

Keywords 

Database, Real Application Cluster, Recovery, Availability 

1. INTRODUCTION 
Oracle RAC [1] transparently extends database applications from 

single-node systems to multi-node systems which share the disks 

that provide storage for the database. The database spans multiple 

hardware systems yet appears as a single unified database to the 

application. An instance is a collection of processes and memory 

accessing a set of data files. Single-instance Oracle databases have 

a one-to-one relationship between the database and the instance. 

Oracle RAC environments, however, have a one-to-many 

relationship between the database and instances. 

 

                                        

 

 

 

 

 

 

 

  

 

 

 

Figure 1. Real Application Cluster Architecture 
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An interconnect serves as the communication path between each 

node in the cluster database. Each Oracle instance uses the 

interconnect to exchange messages that synchronize each 

instance's use of shared resources. 

RAC is so called since it transparently allows any database 

application to run on a cluster without requiring any application 

changes. RAC improves application performance since the 

application is executed in parallel across multiple systems. RAC 

also improves availability since the application is available as 

long as at least one of the cluster nodes is alive. 

Each database instance in RAC has its own redo log. The redo log 

is a set of files that records all the changes to the database that 

have been made by the instance.  

An Oracle RAC database is a shared everything database. All data 

files and redo log files must reside on cluster-aware shared disks 

so that all the instances can access these storage components. 

In Oracle RAC, Cache Fusion [3] allows the data blocks to be 

shipped directly between Oracle instances through fast inter-node 

messaging, without requiring expensive disk I/O. Oracle instances 

therefore directly share the contents of their volatile buffer caches 

[8], resulting in a shared-cache clustered database architecture. 

When some but not all instances of an Oracle RAC database fail, 

instance recovery is performed automatically by a surviving 

instance in the cluster. Instance recovery ensures that the database 

is in a consistent state after such a failure.  

Instance recovery is done in two phases. The first phase, cache 

recovery or rolling forward [7], involves reapplying (or rolling 

forward) all necessary changes recorded in the redo log to the data 

blocks of data files. After cache recovery, data files could contain 

the changes of transactions that had not yet been committed at the 

time of failure. 

The second phase of instance recovery, transaction recovery or 

rolling back [7], uses changes recorded in the undo segment to 

roll back uncommitted changes in data blocks. After transaction 

recovery, data files reflect a transactionally-consistent image of 

the database at the time of failure. 

 

 

 

 

 

 

 

 

 

Figure 2. Recovery Phases: Cache Recovery and Transaction 

Recovery 

 

Cache recovery must scan the redo log of each failed instance to 

recover the data blocks that were lost when these instances failed. 

Cache recovery scans the redo log in two passes [2]. The first pass 

constructs the metadata that is subsequently used by the second 

pass to speed-up recovery.  Section 2 discusses the details of 

cache recovery in more detail. 

The buddy instance mechanism potentially eliminates the first 

pass of cache recovery, thereby improving the performance of 

instance recovery.  

Each instance in the cluster becomes a protected instance when 

another instance is designated to serve it as its buddy instance. As 

the protected instance records changes to the database in its redo 

log at runtime, its buddy instance proactively scans its log to build 

the metadata that the second pass can make use of if a failure were 

to happen at this moment. When the protected instance fails, its 

buddy instance performs cache recovery for the failed instance 

and uses the metadata it has accumulated to shortcut this process. 

The rest of this paper is organized as follows. First, the motivation 

behind this new technique is described. After this, the existing 

two-pass recovery scheme is outlined. Then, the buddy instance 

mechanism that optimizes the two-pass recovery scheme for 

single instance failure is detailed. Following this there is a 

discussion on extending the buddy instance mechanism to multi-

instance failure. Finally a performance study is tabled and related 

work is looked at. 

2. MOTIVATING USE CASE 
A major e-retail customer of the Oracle RAC database has been 

impacted by application brown-out that happens during instance 

recovery. The vast majority of these failures were single instance 

failures. A mechanism was needed to improve availability by 

reducing the length of brown-out. It was clear that this use case 

was not a specific one and that any improvements made, would 

benefit the majority of customers using RAC.  

As the number of nodes increase in Oracle RAC database, 

probability of node failure increases and there is a need to perform 

instance recovery in a seamless manner, without affecting the 

database throughput. 

The result was the buddy instance functionality, made available in 

the 12.2 release of Oracle Database.  

3. CACHE RECOVERY 
Each Oracle RAC instance is configured with its own cache of 

disk buffers which together, form a global buffer cache. In order 

to maintain cache coherency across this, global resource control is 

needed. The Global Cache Service (GCS) [3] tracks and maintains 

the locations and access modes of all data blocks in the global 

cache thereby maintaining the consistency of the database at the 

cluster level. Database blocks accessed concurrently by cluster 

instances have corresponding GCS resources to ensure the same 

data block is not updated without coordination across different 

instances.  

GCS adopts a distributed architecture. Each instance shares the 

responsibility of managing a subset of the global cache. GCS 

maintains the status of global cache resources to ensure the 

overall consistency of database. When one or more instances fail, 

Oracle needs to rebuild the global cache resource information. 

Only the cache resources that reside on or are mastered by the 

GCS on the failed instances, need to be rebuilt or re-mastered.  
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3.1 Checkpointing 
Cache recovery uses checkpoints to determine the set of changes 

that must be applied to the data files. A checkpoint represents the 

point at which all changes to the database have been made 

persistent. 

Each instance in Oracle has its own redo log which is effectively, 

an ever-growing list of redo records generated by an instance [4]. 

The position of each record in the redo log may be identified by 

its redo byte address (RBA) [4]. The location of the checkpoint is 

identified using the checkpoint RBA. This is the position in the 

redo log of an instance at which all changes to data blocks made 

by that instance are known to be on disk. Hence, recovery for that 

instance needs to recover only those data blocks whose redo 

records occur between the checkpoint RBA and the end of the log 

[4]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Checkpoint Position in Redo Log 

 

Cache recovery must scan the redo log of each failed instance and 

apply the changes that occur between the marker for the last 

checkpoint and the end of the redo log. 

3.1.1 Instance Checkpoint  
The low RBA for a disk buffer is the RBA corresponding to the 

first (in-memory) modification of the data block. Oracle Database 

maintains a buffer checkpoint queue [4] which contains modified 

buffers linked in ascending order of their low RBA. Each buffer 

header contains the value of the low RBA associated with the 

buffer; this value is set when the buffer is first modified. A buffer 

that contains a yet-to-be-changed block does not have a low RBA 

in its buffer header and is not linked on the checkpoint queue. 

After a changed buffer is written, it is unlinked from its 

checkpoint queue. 

As buffers from the head of the queue are written to disk, the 

instance checkpoint (lowest low-RBA of the modified buffers) 

will keep advancing [4]. This lowest low-RBA is referred to as the 

current position of the instance checkpoint for the instance. The 

instance checkpoint advances the database checkpoint RBA as a 

lightweight background activity. 

3.1.2 Database Checkpoint 
Each change in Oracle is associated with a time, known as the 

system change number (SCN). Instance checkpoint is also 

associated with a SCN. The database checkpoint in RAC is the 

instance checkpoint that has the lowest checkpoint SCN of all the 

instances. 

3.2 Two-pass Recovery Scheme 
Instance recovery for all failed instances is triggered automatically 

on a surviving instance. Oracle uses a two-pass database recovery 

scheme [2] to recover the changes to data blocks that were lost on 

the failed instances. The first pass scans the redo logs of each 

failed instance to decide the data blocks that need to be recovered. 

This list of blocks is referred to as the recovery set. The second 

pass applies redo from the redo logs to the blocks in the recovery 

set. 

A Block Written Record (BWR) is recorded in the redo log 

whenever an instance writes a block to a data file. When the first 

pass encounters a BWR, the corresponding data block entry in the 

recovery set is removed because it is known that at this point in 

time, the block changes have been made persistent on disk. BWRs 

allow instance recovery to avoid unnecessary reads of data blocks 

that were not modified between being written to disk and the 

point at which instance failure occurred. BWRs ensure that the 

recovery set constructed by the first pass is much smaller than the 

total number of blocks that were actually modified on the failed 

instances.  

The first and second passes both start at the lowest checkpoint 

SCN of all failed instances. The redo records of all the failed 

instances are merged in SCN order. In both passes, Oracle scans 

the redo until the end of all redo logs for all the failed instances, 

proceeding through as many log files as necessary to complete 

cache recovery and roll forward the database to the state it was in 

at the time of instance failure. Because changes to blocks in the 

undo segment are recorded in the redo log, rolling forward the 

redo log also regenerates the corresponding undo blocks that 

contain a record of changes that need to be undone when 

transaction recovery is run to roll back incomplete transactions. 

Oracle can initiate the first pass of the recovery process 

concurrently with the GCS rebuild process. After the first pass 

completes, the database is made available for service to 

applications for all but the data blocks impacted by the failure [2] 

(that is, for all data blocks but those in the recovery set). The 

buddy instance mechanism can potentially eliminate the first pass 

thereby making the database available for service almost 

immediately. 

4. BUDDY INSTANCE MECHANISM TO 

HANDLE SINGLE INSTANCE FAILURES 
Under the buddy instance mechanism, each RAC instance 

becomes a protected instance by virtue of having a designated 

instance to serve as its buddy. In a two instance RAC database 

shown in Figure 4, instance-1 is designated to serve instance-2 as 

its buddy instance and instance-2 is designated to serve instance-1 

as its buddy instance. This designation of buddy instances is 

referred to as buddy instance map. This is also called as one-on-

one buddy instance map as each protected instance has one 

designated buddy instance. 
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As changes to the database are recorded at run-time by an instance 

in its redo log, a server process in its buddy instance continuously 

scans that redo to construct the recovery set. The server process 

starts at the checkpoint RBA (referred to as the start RBA) and 

scans the redo till the end of the log. By default, the rate at which 

this server process scans the redo is adjusted to the ongoing redo 

generation rate. This can be overridden by using the 

_buddy_instance_num_read_buffers parameter to establish a 

constant redo scan rate. This parameter dictates the number of 

buffers, each of size 4MB, which will be read and processed 

approximately every three seconds.  If the value of the parameter 

is low, the server process scans less aggressively. This results in 

less load on the system but has the disadvantage that the amount 

of work required by the first pass of instance recovery may 

increase. 

 

 

                                        

 

 

 

 

 

 

 

 

Figure 4. Buddy instance map in two instance RAC database  

 

At regular intervals, the server process estimates the amount of 

time required for the first pass of instance recovery, if a crash 

were to happen at that time. If that amount of time is less than the 

value of the _buddy_instance_scan_phase_threshold parameter 

(which has a default value of 3 seconds), the redo is not scanned. 

For each block in the recovery set, Oracle maintains the last RBA 

which refers to the RBA of the last redo record that changed or 

created that block. If defined, this RBA must be between the start 

RBA and the end of the log. 

4.1 Recovery Set Pruning 
As the checkpoint of an instance progresses, its buddy instance 

must advance its start RBA to that of the instance’s checkpoint 

RBA. After advancing this, the recovery set can be pruned by 

removing blocks which have a last RBA that is less than the new 

start RBA. 

4.2 RAC Membership Changes 
Oracle RAC Database maintains the buddy instance map and 

automatically updates it as and when instances join or leave the 

cluster. Instances can be added or taken out of an Oracle RAC 

system without shutting the database down. When an instance 

joins or leaves the cluster, the buddy instance map must be 

dynamically adjusted to reflect the new cluster configuration. 

When instance-3 joins the Oracle RAC system shown in Figure 4, 

the buddy instance map is updated to that shown in Figure 5. 

Here, instance-1 is designated to serve instance-2 as its buddy 

instance, instance-2 is designated to serve instance-3 as its buddy 

instance and instance-3 is designated to serve instance-1 as its 

buddy instance. 

In the similar way, when instance-3 leaves the Oracle RAC system 

shown in Figure 5, the buddy instance map is updated to that 

shown in Figure 4. 

 

 

                                         

 

 

 

 

 

 

 

 

 

Figure 5. Buddy instance map in three instance RAC database 

to handle single instance failure 

 

4.3 Handshake with Instance Recovery 
When an instance fails, its buddy instance is asked to perform 

instance recovery of the failed instance. In the first pass of 

instance recovery, the buddy instance uses the recovery set that 

was constructed during run-time. If the checkpoint RBA of the 

recovery set that was constructed during runtime is behind the 

checkpoint RBA as determined by instance recovery, the buddy 

instance prunes the recovery set using the checkpoint RBA for 

instance recovery. If the buddy instance had not scanned till the 

end of the redo log prior to instance failure, it will do so during 

the first pass of instance recovery.  

GCS can make the global cache available to surviving instances as 

soon as the recovery set is constructed by the first pass of instance 

recovery. Since Oracle is expected to spend significantly less in 

the first pass, the availability of the database is significantly 

increased by using the buddy instance mechanism. 

5. EXTENDING BUDDY INSTANCE 

MECHANISM TO HANDLE MULTI-

INSTANCE FAILURES 
The buddy instance mechanism of Oracle RAC currently handles 

single instance failure only. This section presents a possible 

implementation of the buddy instance mechanism for multi-

instance failures. This does not constitute a commitment by 

Oracle to deliver any code or functionality and should not be 

relied upon in making purchasing decisions.  
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One possible implementation to handle multi-instance failure is to 

give each protected RAC instance more than one buddy instance 

each continuously scanning the redo log of the protected instance 

during runtime to construct its recovery set. The number of 

instances that serve as buddies determines the degree of multi-

instance failure that can be handled while fully getting the benefit 

of the buddy instance mechanism. In a RAC of n-instances, each 

instance can have up to (n-1) buddies. 

The recommended buddies for an instance depend on statistics 

such as number of instances that previously failed together and 

which instances failed together. It is possible for Oracle Database 

to recommend the buddies for each of the RAC instances based on 

the statistics that were collected during previous instance failures. 

 

 

                                         

 

 

 

 

 

 

 

 

 

Figure 6. Buddy instance map in three instance RAC database 

to handle multi-instance failure 

 

Figure 6 shows an example of a three instance Oracle RAC system 

in which a single instance is protected by two buddies. This 

system can tolerate up to two instances failing simultaneously, 

while still taking advantage of the buddy instance mechanism. 

5.1 Recovery Set Pruning 
For each protected RAC instance, all its buddy instances must 

perform the steps detailed in Section 4.1.  

As the checkpoint of an instance progresses, all its buddy 

instances must advance the start RBA to that of the instance’s 

checkpoint RBA and prune its recovery set by removing the 

blocks which have a last RBA that is less than the new start RBA. 

5.2 RAC Membership Changes 
This is an extension of the RAC membership changes described in 

Section 4.2, where instances can be added or taken out of an 

Oracle RAC system without shutting the database down.  

When an instance joins or leaves the cluster configuration, the 

buddy map needs to be updated based on the statistics that were 

collected during previous instance failures with the same cluster 

configuration. 

5.3 Handshake with Instance Recovery 
When one or more instances fail, instance recovery is performed 

by a surviving buddy instance which has the recovery set for the 

most number of failed instances. This instance is designated the 

recovery instance. Below is the sequence of events that are 

performed on recovery instance during the first pass of recovery. 

1. If the recovery instance is the buddy of a failed instance and 

it did not scan the redo till the end of the log prior to the 

failure, the recovery instance needs to do so now. 

2. If the recovery instance does not have the recovery set for a 

specific failed instance, it needs to receive the recovery set 

from the buddy of that specific instance (if there is one). If 

that buddy instance had not scanned the redo till the end of 

the log prior to the failure, the recovery instance needs to do 

so now. 

3. If a failed instance does not have a surviving buddy instance, 

the recovery instance needs to scan the entire redo of that 

failed instance from the checkpoint of the failed instance to 

the end of the log.  

4. The recovery instance needs to merge the recovery sets of all 

the failed instances. 

In the Oracle RAC system shown in Figure 6, if both instance-1 

and instance-2 fail, instance recovery needs to be performed by 

instance-3 which has the recovery set for both of the failed 

instances. 

6. PERFORMANCE STUDY 
Experiments were conducted to measure the impact on database 

throughput and also to measure the acceleration in instance 

recovery. 

6.1 Impact on Run Time Performance 
Experiments were conducted using a TPC-C workload to evaluate 

the impact on database throughput with the buddy instance 

mechanism enabled. 

6.1.1 Hardware Setup 
The study was conducted using an Oracle Exadata Database 

Machine [6] with an InfiniBand cluster interconnection for Oracle 

RAC servers. An X3-2 RAC configuration was used, comprising 

two database server nodes, each equipped with 32, 8-core Intel 

Xeon processors running at 2.9 GHz and 128 GB of memory. 

6.1.2 TPC-C Workload 
TPC-C benchmark is the industry standard for evaluating the 

performance of OLTP systems [5]. The setup consisted of 1000 

warehouses and 512 clients. 

CPU utilization at 91%, was not affected when using the buddy 

instance mechanism. Not surprisingly however, the number of 

reads of the redo log increased. 

Figure 7 shows the impact on database throughput for a fully-

cached TPC-C workload (where the buffer cache is sized large 

enough to accommodate the entire database), and a partially-

cached TPC-C workload (where the buffer cache is sized at 

approximately 20% of the database size). For a fully-cached TPC-

C workload, no impact was observed on database throughput 
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when the buddy instance mechanism was enabled. Due to the 

nature of the workload, around 1% variation is expected across 

different runs. The impact on database throughput was less than 

2% for the partially cached TPC-C workload. 
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Figure 7. Impact on database throughput (tpmC) for a TPC-C 

workload  

 

6.2 Acceleration in Instance Recovery 

6.2.1 Hardware Setup 
This study was also conducted using an Oracle Exadata Database 

Machine [6] with an InfiniBand cluster interconnection for Oracle 

RAC servers. An X2-8 RAC configuration was used, comprising 

two database server nodes, each equipped with 8, 12-core Intel 

Xeon processors running at 2.40 GHz, 2 TB of memory  and 14 

shared storage servers amounting to 200 TB total storage capacity 

over a Direct-to-Wire 3 x 36 port QDR (40 Gb/sec) InfiniBand 

interconnect. 

6.2.2 TPC-C Workload 
The TPC-C benchmark application was run to generate a 

workload. The FAST_START_MTTR_TARGET parameter [10] 

which affects the rate of checkpointing and hence the duration of 

instance recovery, was set to its default value of “0” in line with 

what is done on most customer systems.  After running the TPC-C 

benchmark for 27 minutes, an instance was crashed. Figure 8 

shows the time taken both by the first pass of instance recovery 

and the time taken overall by instance recovery. The time taken 

for instance recovery as a whole has been reduced because of the 

decrease in the time taken for the first pass. 

Without making use of the buddy instance, instance recovery 

spent 130 seconds in its first pass when the second pass needed to 

apply 11.5 GB of redo. By comparison, when using the buddy 

instance mechanism, instance recovery spent only 1 second in its 

first pass when the second pass needed to apply a similar amount 

of redo. 

Since the first pass correlates with brown-out time, the time that 

the database was completely unavailable to applications was 

reduced from 130 seconds to 1 second. 
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Figure 8. Elapsed times (seconds) for a TPC-C workload 

 

6.2.3 Results for a Commercial Workload 
The experiment was repeated using a real customer workload. The 

database consisted of 31 tables and 35 indexes. The total on-disk 

size of the database was approximately 200GB. This workload 

generated redo by having multiple concurrent users repeatedly 

perform updates and inserts into their own tables. An instance was 

then crashed. Figure 9 shows the time taken by the first pass and 

the time taken overall for instance recovery. This experiment had 

set the FAST_START_MTTR_TARGET [10] parameter to 100. 
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Figure 9. Elapsed times (seconds) for a commercial workload 
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Without using the buddy instance, instance recovery spent 20 

seconds in its first pass when the second pass needed to apply 

1.5GB of redo. By comparison, when using the buddy instance 

mechanism, instance recovery spent only 3 seconds in the first 

pass when the second pass needed to apply a similar amount of 

redo.  

Oracle database became available on surviving instances in 3 

seconds versus 20 seconds. In addition, the overall time for 

instance recovery was reduced from 48 seconds to 29 seconds. 

This experiment validates the key claims in this paper by reducing 

both the brown-out time and overall time for instance recovery. 

7. RELATED WORK 
The fast-start fault recovery [10] technology in Oracle Database 

allows control over the duration of the roll-forward phase by 

adaptively varying the rate of checkpointing. This is applicable 

more to crash recovery which takes place when every RAC 

instance fails. In Oracle RAC Database, each instance may have 

differing amounts of workload and different instances may 

perform checkpoint activity at different rates. The database 

checkpoint in RAC is the instance checkpoint that has the lowest 

checkpoint SCN of all the instances. For instance recovery, the 

instance checkpoint determines the set of redo log changes that 

need to be applied.  Unlike fast-start fault recovery which relies 

on the database checkpoint, the buddy instance mechanism relies 

on the instance checkpoint and is therefore a more customized 

solution for instance recovery in Oracle RAC Database. Since 

checkpoint issues disk writes for data blocks, aggressive 

checkpoint activity can be detrimental for database throughput. 

The buddy instance mechanism only issues disk reads for the redo 

log which do not mandate acquisition of locks as no 

synchronization is required. The buddy instance mechanism is 

therefore less intrusive than using fast-start fault recovery. This 

paper recommends that the buddy instance mechanism be used in 

conjunction with fast-start fault recovery technology for best 

results. 

Regarding other database vendors that have a shared disk cluster 

database solution, published documentation for both SAP Sybase 

ASE Cluster Edition [11] and IBM DB2 pureScale Clustered 

Database [12] indicates that neither make use of a scheme similar 

to the buddy instance mechanism. 

8. CONCLUSION 
The availability of a cluster system can be improved by making 

use of the buddy instance mechanism1 which significantly reduces 

the amount of time the database spends in the first pass of 

instance recovery. Since the database can be made available as 

soon as the first pass of instance recovery completes, the 

availability of the cluster increases significantly. In addition, the 

overall time taken for instance recovery is reduced. 
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ABSTRACT
There are several major attractions that Cloud Computing
promises when dealing with computing environments, such
as the ease with which databases can be provisioned, main-
tained and accounted for seamlessly. However, this efficiency
panacea that company executives look for when managing
their estates often brings further challenges. Databases are
an integral part of any organisation and can be a source of
bottlenecks when it comes to provisioning, managing and
maintenance. Cloud computing certainly can address some
of these concerns when Database-as-a-Service (DBaaS) is
employed. However, one major aspect prior to adopting
DBaaS is Capacity Planning, with the aim of avoiding under-
estimation or over-estimation of the new resources required
from the cloud architecture, with the aim of consolidating
databases together or provisioning new databases into the
new architecture that DBaaS clouds will provide. Capac-
ity Planning has not evolved sufficiently to accommodate
complex database systems that employ advanced features
such as Clustered or Standby Databases that are required
to satisfy enterprise SLAs. Being able to efficiently capacity
plan an estate of databases accurately will allow executives
to expedite cloud adoption quickly, allowing the enterprise
to enjoy the benefits that cloud adoption brings. This pa-
per investigates the extent to which the physical properties
resulting from a workload, in terms of CPU, IO and mem-
ory, are preserved when the workload is run on different
platforms. Experiments are reported that represent OLTP,
OLAP and Data Mart workloads running on a range of ar-
chitectures, specifically single instance, single instance with
a standby, and clustered databases.

c©2017, Copyright is with the authors. Published in Proc. 20th Inter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

This paper proposes and empirically evaluates an approach
to capacity planing for complex database deployments.

Keywords
Cloud, DBaaS, Capacity Planning, Database, Provisioning,
Standby, Clustering

1. INTRODUCTION
Traditionally, companies accounted for the cost of assets

associated with their I.T. using Capex (Capital Expendi-
ture) type models, where assets such as hardware, licenses
and support, etc, were accounted for yearly. For example,
a software license usually is based on an on-premises model
that would be user based, or by the CPU if the application
served many thousands of users. The advent of Cloud com-
puting, with the pay-as-you-go subscription based model,
has changed the way company executives look at the cost-
ing models of their I.T.

A similar paradigm unfolds when I.T. departments such
as Development, Delivery and Support teams need to pro-
vision environments quickly to meet their business goals.
Traditional project methodologies would request environ-
ments aiding development and testing with the goal of going
live. Procurement and provisioning took time that was often
added to the project lifecycle. Cloud computing addresses
such issues so that a user can, with ease, request the rapid
provision of resources for a period of time.

Once the system went live those Delivery and Support
teams would then need to account for resources those partic-
ular systems consumed, reconciling with the Line Of Busi-
ness (LOB). The results of that analysis would then feed
back into next year’s Capex model. This ongoing capacity
planning to assess if they have enough resources is needed to
ensure is that, as systems grow, there are enough resources
to ensure that the system is able to meet QoS (Quality
of Service) expectations. Cloud Computing has also made
some advances here by enabling a metering or charge-back
facility that can accurately account for the resources used
(CPU, Memory, Storage). Cloud Computing can dynami-
cally modify the cloud to reduce or increase those resources
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Figure 1: Example Architecture: Typical customer legacy database architecture.

as needed by the client.
However, companies with large estates have the additional

challenge of having a plethora of database versions, for ex-
ample, each database version offering a different feature that
has a performance benefit over another database version.
Similarly, the databases may be running on a eclectic set of
operating systems and hardware, each affecting the work-
load in a subtle or major way. For example, the latest run-
ning version of a database may run on a highly configured
SAN utilising the latest techniques in query optimization
and storage. Comparing this footprint with an older version
of software and infrastructure often leads to a Finger-in-the-
air type approach.

A key feature of DBaaS is the ability to multi-tenant
those databases where different workloads and database con-
figurations can coexist in the shared resources, adding to
the challenge of making effective capacity planning deci-
sions. Determining the allocation is further complicated if
the database utilises advanced features such as Clustering
or Failover Technology, as workloads shift from one instance
to another or are shared across multiple instances based on
their own resource allocation managers. Furthermore, if a
database employs a standby, this further complicates capac-
ity planning decisions.

Cloud Computing is in its infancy, with incremental adop-
tion within the industry as companies try and determine how
to unpick their database estates and move them to cloud in-
frastructure. Databases often grow organically over many
years in terms of their data and complexity, which often
leads to major projects being derived when a major upgrade
or re-platform exercise is required. With the introduction of
cloud these exercises are becoming more prudent. This often
leads to a series of questions on Capacity Planning.

• What is the current footprint of the database including
any advanced features such as Standby or Clustering?

• What is the current configuration of the database?

• What type of DBaaS should I create?

• What size of DBaaS should I create?

• Can I consolidate databases that have similar configu-
ration and utilisation foot-prints?

• Will my SLAs be compromised if I move to a cloud?

Such questions become very important prior to any pro-
visioning or migration exercise.

The time taken to perform this analysis on databases also
has a major impact on a company’s ability to adopt cloud
technologies often squeezing the bandwidth of the delivery
and support teams. The departments suffer paralysis-by-
analysis, and the migration to the cloud becomes more pro-
tracted to the frustration of all involved. If the analysis is
not performed accurately then the risks of over-estimation
and under-estimation increase. Being able to automate the
gathering of data, analysing the data and then making a
decision becomes ever more important in enterprises with
large estates.

In this paper we look at the challenges of Capacity Plan-
ning for advanced database systems that employ cluster-
ing and standby databases, with a view to migration to a
cloud. Our hypothesis is: “That a model based on physical
measures can be used to provide dependable predictions of
performance for diverse applications”. We make two main
contributions:

1. We propose an approach to workload analysis based on
physical metrics that are important to capacity plan-
ning for database systems with advanced configura-
tions.

2. We report the results of an empirical analysis of the
metrics for several representative workloads on diverse
real-life configurations.

The remainder of the paper is organised as follows. Sec-
tion 2 introduces the Background and Related Work. In
Section 3 we detail the environmental setup for conducting
experiments outlining the database capacity planning prob-
lem. In Section 4 we introduce our solution in detail and
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provide details on the experiments and analysis. Section 5
gives conclusions and future work.

2. BACKGROUND AND RELATED WORK

2.1 Background
Fig 1 shows an example environment of a company that

is running different versions and configurations of databases
on VM hardware. Physical machines are dissected into 10
VM’s giving a level of separation. On these 10 VM’s a total
of 12 databases are run, of which 6 are primary databases
and 6 are standby databases. This MAA (Maximum Avail-
ability Architecture) allows the company some comfort by
running their primary (Platinum) SLA level applications
on VM numbers 3, 4, 5 and 6, which host two clustered
databases (offering a degree of resilience against node fail-
ure). In addition, these clustered databases have a physi-
cal standby database running on VM’s 9 and 10 in case of
database failure or corruption. Similarly, the 4 single in-
stance stand alone databases that are running on VM’s 1
and 2 also have a replicated standby database running on
VM’s 7 and 8, again offering the company some comfort
that their secondary (Gold) level of applications will have a
standby database for failover, should they need it.

The company also wish to increase their ROI (Return on
Investment) with this environment and thus often open up
the standby databases in “Read Only” mode during special
times for applications that need to run year-end or month-
end type BI (Business Intelligent) reports. This particular
type of architectural pattern is a typical configuration com-
panies use today to manage their database environments and
applications that have 24*7 type SLAs. The difficulty be-
comes apparent when a new exercise is introduced that looks
at consolidating, upgrading and migrating those environ-
ments listed in Fig 1 to a new cloud architecture, where re-
sources can be tightly accounted and dynamically assigned.
We are then faced with a capacity planning exercise.

2.2 Related Work
The objective of capacity planning is to provide an ac-

curate estimate of the resources required to run a set of
applications in a database cloud. Achieving this answer re-
lies on the accurate capture of some base metrics, based on
historical patterns, and applying some modelling techniques
to form a prediction. There are two main viewpoints: the
viewpoint of the CSP (Cloud Service Provider) in what they
offer and their capabilities, i.e are there enough resources to
provide services to consumers; and the viewpoint of the con-
sumer, for example, can a customer capacity plan their sys-
tems against the CSP’s capability? Indeed if the customer
wishes to become a CSP but in a private cloud configuration,
then the first viewpoint also becomes important.

A CSP offers resources, and existing models use various
techniques to help customers assess the CSP capabilities.
MCDM (Multi Criteria Decision Making) weighs the at-
tributes of an individual database by their importance in
helping to choose the right cloud (Mozafari et al 2013 [16]
and Shari et al 2014 [19]. CSP’s can also be assessed us-
ing a pricing model to validate their capability based on a
consumers single systems workload as suggested by (Shang
et al [20]); using this financial approach contributes to the
value-for-money question that many enterprises seek when
deciding on the right cloud.

If a consumer has a cloud, knowing where to place the
workload based on utilisation to achieve the best fit is criti-
cal when beginning to answer the QoS (Quality of Service)
question, and techniques such as bin-packing algorithms (Yu
et al [21]) help achieve this answer. However systems may
have dynamic workloads, which may evolve organically as
datasets and/or numbers of users grow or shrink, as is espe-
cially common in internet based systems. There is a need for
constant assessment of said workloads. Hacigumns et al [10]
and Kouki et al [11] both look at the workload of an applica-
tion or the query being executed, and then decide what type
of database in a cloud would satisfy QoS. Mozafari et al [15]
suggests using techniques that capture log and performance
data over a period of time, storing them in a central repos-
itory, and modelling the workloads at a database instance
level. With the advent of Virtualisation that enterprises
utilise, including CSP’s, when running their estates, several
techniques such as coefficient of variation and distribution
profiling are used to look at the utilisation of a Virtual Ma-
chine to try and capacity plan. Mahambre and Chafle [13]
look at the workload of a Virtual Machine to create relation-
ship patterns of workloads to understand how resources are
being utilised, analysing the actual query being executed to
predict if and when it is likely to exhaust resources available.

There seems to be a consensus among several academics
(Shang et al [20], Loboz [12] and Guidolin et al 2008 [9]) on
the need for long term capacity planning and the inadequacy
of capacity planning in this new age of cloud computing us-
ing current techniques. The techniques used today assume
that the architecture is simple, in that the architecture does
not utilise virtualisation or advanced database features such
as standby’s and clustering technology, but in the age of con-
solidation and drive for standardisation, the architecture is
not simple. Enterprises use combinations of technology in
different configurations to achieve their goals of consolida-
tion or standardisation. Most models use a form of linear
regression to predict growth patterns. Guidolin et al 2008
[9] conducted a study of those linear regression models and
came to the conclusion that as more parameters are added
the models become less accurate, something also highlighted
by Mozafari et al 2013 [15]. To mitigate against this inac-
curacy more controls are added at the cost of performance
of the model itself. For example, predicting the growth of
several databases based on resource utilisation may become
more inaccurate as the number of source systems being anal-
ysed increases, therefore requiring more controls to keep the
accuracy. This is certainly interesting when trying to ca-
pacity plan several applications running on different config-
urations prior to a migration to a cloud. In addition, trying
to simulate cloud computing workloads to develop new tech-
niques is also an issue; Moussa and Badir 2013 [14] explained
that the TPC-H [4] and TPC-DS [3] benchmarks are not de-
signed for Data Warehouses in the cloud, further adding to
the problem of developing and evaluating models.

3. EXPERIMENTAL SETUP
Given a description of an existing deployment, including

the Operating System, Database and Applications running
on that database (Activity), a collection of monitors on the
existing deployment that report on CPU, Memory, IOPS’s
and Storage, the goal is to develop models of the existing
configuration that contain enough information to allow reli-
able estimates to be made of the performance of a deploy-
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Workload
Type

Workload Profile DBNAME(S) Workload Description Number of
Users

Duration
(hh:mi)

Avg Transac-
tion per sec

OLTP General usage RAPIDKIT
RAPIDKIT2
DBM01

General Online Application with updates, inserts and
deletes simulate working day

100
2000 (DBM01)

23:59 0.2

OLTP Morning Peak
Logon Surge

RAPIDKIT
RAPIDKIT2
DBM01

Morning Surge to simulate users logging on to the Online
Application with updates, inserts and deletes

100
1000 (DBM01)

2:00 0.2

OLTP Lunch Time
Peak Logon
Surge

RAPIDKIT
RAPIDKIT2
DBM01

Lunch Time Surge to simulate users logging on to the
Online Application with updates, inserts and deletes

100
1000 (DBM01)

1:00 0.2

OLTP Evening Time
Peak Logon
Surge

RAPIDKIT
RAPIDKIT2
DBM01

Evening Time Surge to simulate users logging on to the
Online Application with updates, inserts and deletes

100
1000 (DBM01)

5:00 0.2

Daily OLTP Hot Backup taken at 23:00

OLAP Data Warehouse
General Usage

RAPIDKIT
RAPIDKIT2
DBM01

General Data Warehousing Application with heavy Se-
lects taking place out of hours building Business Intel-
ligence data

5
400 (DBM01)

8:00 0.4

Daily OLAP Hot Backup taken at 06:00

Daily OLAP archivelog backups taken at 12:00,18:00,00:00

DM OLTP General
Usage

RAPIDKIT
RAPIDKIT2
DBM01

Combination of DML taking place during the business day
and heavy DML taking out of ours

200
1000 (DBM01)

23:59 0.2

DM OLTP Morning
Peak Logon
Surge

RAPIDKIT
RAPIDKIT2
DBM01

Morning Surge to simulate users logging on to the Online
Application with updates, inserts and deletes

100
500 (DBM01)

2:00 0.2

DM OLTP Lunch
Time Peak
Logon Surge

RAPIDKIT
RAPIDKIT2
DBM01

Morning Surge to simulate users logging on to the Online
Application with updates, inserts and deletes

100
500 (DBM01)

2:00 0.3

DM OLTP Evening
Time Peak
Logon Surge

RAPIDKIT
RAPIDKIT2
DBM01

Evening Time Surge to simulate users logging on to the
Online Application with updates, inserts and deletes

100
500 (DBM01)

5:00 0.3

DM OLAP Batch
Loads Peak

RAPIDKIT
RAPIDKIT2
DBM01

Evening Time Surge to simulate users logging on to the
Online Application with updates, inserts and deletes

5
400 (DBM01)

8:00 0.3

Daily DM Hot Backup taken at 06:00

Daily DM archivelog backups taken at 12:00,18:00,00:00

Table 1: Database Workloads

ment when it is migrated to a cloud platform that may in-
volve a Single Database, a Clustered Database or Standby
Databases. To meet this objective, we must find out if a
workload executed on one database is comparable to the
same workload running on the same database on a different
host.

Our approach to this question is by way of empirical eval-
uation. Using increasingly complex deployments, of the type
illustrated in Fig 2, and representative workloads, we estab-
lish the extent to which we can predict the load on a target
deployment based on readings on a source deployment. This
section describes the workloads and the platforms used in
the experiments.

3.1 Workloads
A Workload can be described as the activity being per-

formed on the database at a point-in-time, and essentially
is broken down into the following areas:

• Database - An Oracle database is a set of physical files
on disk(s) that store data. Data may be in the form
of logical objects, such as tables, Views and indexes,
which are attached to those tables to aid speed of ac-
cess, reducing the resources consumed in accessing the
data.

• Instance - An Oracle instance is a set memory struc-
tures and processes that manage the database files.
The instance exists in memory and a database exists
on disk, an instance can exist without a database and
a database can exist without an instance.

• Activity - The DML (Data Modification Language)/DDL
(Data Definition Language) i.e. SQL that is being exe-
cuted on the database by the application, creates load
consisting of CPU, memory and IOPS/s.

.

The monitors used to capture the data report on IOPS’s
(Physical reads and Physical Writes), Memory (RAM as-
signed to a database or host) and CPU (SPECINT’s). SPECInt
is a benchmark based on the CINT92, which measures the
integer speed performance of the CPU, (Dixit) [6]. The ex-
periments involve controlled execution of several types of
workloads on several configurations of database. Moussa
and Badir 2013 [14] describe how running of controlled work-
loads using TPC has not evolved for clouds, therefore we will
use a utility called swingbench (Giles)[8] to generate a con-
trolled load based on TPC-C [5]. The workload is generated
on several Gb’s of sample data based on the Orders Entry
(OE) schema that comes with Oracle 12C. The OE schema is
useful for dealing with intermediate complexity and is based
on a company that sells several products such as software,
hardware, clothing and tools. Scripts are then executed to
generate a load against the OE schema to simulate DML
transactions performed on the database of a number of users
over a period of Hour.

3.2 Outline of the Platforms
Three different types of workload were created (OLTP,

OLAP and Data Mart) as shown in Table 1. The Database
is placed in archivelog mode during each execution of the
workload further creating IO on the Host and allowing for
a hot backup to be performed on the database. The backup
acts as a ’houskeeping’ routine by clearing down the archivel-
ogs to ensure the host does not run out of storage space.
This type of backup routine is normal when dealing with
databases and each backup routine is executed periodically
depending upon the workload.

4. EXPERIMENTS AND ANALYSIS
A number of experiments were conducted to investigate

if a workload executed on one machine consumes similar
resources when the workload is executed on another envi-
ronment. The aim was to investigate what could cause dif-
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VM Name OS Type CPU De-
tails

Memory Storage Database Type Products and Versions

Single Database Instance Configuration

Virtual Machine 1 OEL Linux
2.6.39

4 * 2.9 Ghz 32Gb 300Gb Oracle Single In-
stance Database
(RapidKit)

• Enterprise Edition (12.1.0.2),
• Data Guard (12.1.0.2),
• Enterprise Manager Agent (12.1.0.4),

Virtual Machine 2 OEL Linux
2.6.39

4 * 2.9 Ghz 32Gb 300Gb Oracle Single In-
stance Database
(RapidKit2)

• Enterprise Edition (12.1.0.2),
• Data Guard (12.1.0.2),
• Enterprise Manager Agent (12.1.0.4),

Clustered Database Instance Configuration

Clustered Com-
pute Node 1

OEL Linux
2.6.39

24 * 2.9
Ghz

96Gb 14Tb Oracle Clustered
Multi-tenant
Database Instance
(DBM011)

• Enterprise Edition (12.1.0.2),
• Data Guard (12.1.0.2),
• Enterprise Manager Agent (12.1.0.4,
• Grid Infrastructure (12.1.0.2),
• Oracle Automatic Storage Manager (12.1.0.2),

Clustered Com-
pute Node 2

OEL Linux
2.6.39

24 * 2.9
Ghz

96Gb 14Tb Oracle Clustered
Multi-tenant
Database Instance
(DBM012)

• Enterprise Edition (12.1.0.2),
• Data Guard (12.1.0.2),
• Enterprise Manager Agent (12.1.0.4,
• Grid Infrastructure (12.1.0.2),
• Oracle Automatic Storage Manager (12.1.0.2),

Standby Database Instance Configuration

Virtual Machine 3 OEL Linux
2.6.39

4 * 2.9 Ghz 32Gb 1Tb Oracle Sin-
gle Instance
Standby Database
(STBYRapidKit,
STBYRapidKit2)

• Enterprise Edition (12.1.0.2),
• Data Guard (12.1.0.2),
• Enterprise Manager Agent (12.1.0.4),

Central Repository Details

Storage Repository OEL Linux
2.6.39

24 * 2.4
Ghz

32Gb 500Gb Oracle Single In-
stance Database
(EMREPCTA)

• Enterprise Edition (11.2.0.3),
• Enterprise Manager R4 including Webserver and

BIPublisher (12.1.0.4),
• Enterprise Manager Agent (12.1.0.4),

Table 2: Platform Outline

(a) Single Instance (b) Single Instances with Standby Databases (c) Two Node Clustered Database

Figure 2: Experiment Architecture: different database combinations used for experiments.

ferences in the consumption of resources between workloads.
The experiment focused on three types of database configu-
ration:

• Experiment 1 - Running three workloads (OLTP,OLAP
and DM) on a single instance database.

• Experiment 2 - Running the workloads (OLTP,OLAP
and DM) on a single instance database with a Physical
Standby Database.

• Experiment 3 - Running the three workloads (OLTP,OLAP
and DM) on a two node clustered database.

The database was always the same version between each
host, the data set was always the same size to start, the
workload was always repeatable in that the workload could
be executed, stopped, the database reset and the same work-
load replayed.

4.1 Experimental Methodology
The experiments involve an eclectic set of hardware con-

figured to run several different types of database as shown in
Table 2. An agent polls the database instance every few min-
utes for specific metrics namely; Database Instance Memory,
IOPS’s (physical Reads/Writes) and CPU per sec. The met-
ric results are stored in a central repository database, and
are aggregated at hourly intervals. The configuration of the
hardware, such as CPU Make model and SPECInt, and the
database configuration are also stored in a central reposi-
tory, which is then used as lookup data when performing
comparisons between the performance of one workload on
one database with the same workload on another database.

4.2 Experiment One - Single Database Instance
The first experiment was to execute three workloads on

one single instance database on a virtual host (VM1) and

691



then execute the same three workloads on another single in-
stance database on another virtual host (VM2) as shown in
Fig 2a. The database configurations were the same in In-
stance Parameters, Software Version and Patch Level. The
Hardware configurations were the same in OS Level, Kernel
Version, and memory configuration. Some differences exist
in the underlying architecture such as the Physical hardware
and the Storage as these where VM’s created on different
physical machines. We capture the metrics for each work-
load and analyse the extent to which physical properties are
consistent across platforms. This is shown graphically in Fig
3

4.3 Results and Analysis Experiment One -
OLTP Workload

The results for OLTP, covering Memory, CPU and IOPS/s
are shown graphically in Fig 3. These are simple line graphs
from the OLTP workload shown in Table 1. It was observed
that the OLTP workload from a CPU perspective had sev-
eral distinguishing features. It clearly shows that the work-
load starts off low until the beginning of the experiment
where a sudden jump takes place and the OLTP workload
begins. Then there is a general plateau that relates to the
24 hour periods and at various times from there on in there
are spikes.

• CPU utilisation - CPU over a 72 hour period was not
the same between the two databases but at it largest
peak (evening surge) there was a difference of approxi-
mately 300 SPECInts or +88% (day 24 hour 11) in its
utilisation. The difference in utilization between the
two workloads without the peaks was approximately
+20%.

• CPU Spikes (Backup) - There were several spikes in
CPU at 00:00 - 02:00 and relate to the daily hot RMAN
backup that is taken for the databases.

• CPU Spikes (Morning Surge) - A large CPU spike
was observed for several hundred users accessing the
database at 08:00.

• IOPS/s (general) - There is a large difference in IOPS
(day 23 hour 9) where the difference at peak is +88%.
The difference in general usage (i.e. without the peaks)
was +7%.

CPU, Memory and IOPS/s over a 72 hour period show
similar traits in that the workload begins and there is a
jump in the activity as the users logon. The first set of
results show that even when executed on similar platforms,
the metrics for the OLTP workloads can be substantially
different, especially in the CPU and IOPS utilisation.

4.4 Results and Analysis Experiment One -
OLAP Workload

The results for OLAP covering Memory, CPU and IOPS/s
are shown graphically in Fig 4. The difference between the
OLTP and OLAP workload is that the OLAP workload is
high in Select statements and the result set is larger. The
IO is representative of a Data Warehouse building cubes for
interrogation by a Business Intelligence reporting tool. The
execution times for the workload are also different; OLTP is
fairly constant in its usage, whereas OLAP is more concen-
trated out of normal working hours. It was observed that

the OLAP workload runs out of hours for a period of around
five hours and this matches the description shown in Table
1.

• CPU Spikes (General Usage) - CPU over a 72 hour
period was not the same for the two databases, but at
it largest peak there was a difference of only +1% (day
17 hour 05) in utilisation. Two workloads outside the
peaks were essentially the same.

• IOPS/s utilisation - IOPS over a 72 hour period had a
difference of approximately +50% in utilisation (Day
16 Hour 8); outside the peaks (Day 16 Hour 19) the
utilisation is 0%.

• IOPS/s Spikes (Backup) - There are four backups that
run during the 24 hours. Three of those backups are
used as housekeeping routines that backup and delete
the archivelogs; these backups are executed at 12:00,
18:00 and 00:00. One backup backs up the database
(level-0) and the associated archivelogs, and this is ex-
ecuted at 06:00. There was no spike for 18:00 because
the backup at 12:00 had removed the archivelogs and
thus there was nothing to backup.

The OLAP Memory chart also showed the same charac-
teristics as the IOPS/s and CPU charts in that there is a
uniform pattern to there being a plateau and a spike over
the 72 hours. Each of the databases had a memory con-
figuration of 3.5Gb, given the OLAP workload would have
had SQL requiring larger memory than 3.5Gb for sorting,
thus sorts would have gone to disk rather than memory, ac-
counting for the higher IOPS’s readings in Fig 4 than in Fig
3.

4.5 Results and Analysis Experiment One -
DataMart Workload

The results for the Data Mart covering Memory, CPU
and IOPS/s are shown in Fig 5. It was observed that the
Data Mart workload from a CPU perspective had several
distinguishing features. It clearly shows that the workload
starts off as the users connect and the workload is running,
a sudden jump takes place at Day 10 Hour 3 as the Batch
Loads are executed for approximately 6 hours, and this is
repeated twice more throughout the 72 hours. There are also
other peaks and troughs observed and these are consistent
with the workload described in Table 1.

• CPU utilisation - CPU over a 72 hour period between
the two databases and had a difference of approxi-
mately +64% during the normal day (Day 9 Hour 21).
When the batch loads ran (Day 11 Hour 05) the dif-
ference in utilisation was +1%.

• CPU Spikes (General) - generally, the CPU utilisation
between the two databases was the same, there is a
difference of +1% at peak times.

• IOPS/s Utilisation - IOPS at peak (Day 9 Hour 21)
had a difference of approximately +24%

• Memory utilisation - Memory was the same in general
footprint however there were differences at peaks times
of 300mb or +4%
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(a) CPU 72 hours (b) IOPS’s 72 Hours (c) Memory 72 Hours

Figure 3: Results Single Instance OLTP: workload patterns for the 72 hour period.

(a) CPU 72 hours (b) IOPS’s 72 Hours (c) Memory 72 Hours

Figure 4: Results Single Instance OLAP: workload patterns for the 72 hour period.

(a) CPU 72 hours (b) IOPS’s 72 Hours (c) Memory 72 Hours

Figure 5: Results Single Instance Data Mart: workload patterns for the 72 hour period.

In general there is a difference in the VM’s at a CPU level.
The VM named acs-163 has a configuration of 16 Threads(s)
per core (based on the lscpu command) from the VM infra-
69 which only has 1 thread per core. We believe this ac-
counts for the difference in CPU for small concurrent trans-
actions in the OLTP workload. Each of the databases had
a memory (SGA) configuration of 3.5Gb, if the SQL state-

ment executed in the workload requires a memory larger
than 3.5Gb, which is more common in OLAP and Data Mart
workloads then sorts will go to disk. Database memory con-
figurations influence the database execution plans and opti-
misers and this sensitivity is reflected in the IOPS’s charts
shown in Fig’s 3b, 4b and 5b.
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(a) Host Total IO’s Made 72 hours (a) Host CPU Load Avg (15Mins) 72 hours (b) Host CPU Utilisation 72 Hours

Figure 6: Results HOST Metrics OLTP: workload patterns for the 72 hour period.

4.6 Experiment Two - Single Instance Standby
Configurations

The Second set of experiments was to introduce a more
complicated environment executing one workload (OLTP)
on a single instance primary database with a physical standby
database kept in sync using the Data Guard technology (Or-
acle Data Guard [18]) across the two sites, as shown in Fig
2b. A key factor in this experiment is that the physical
standby database is always in a recovering state and there-
fore is not opened to accept SQL connections in the same
way as a normal (primary) database. Therefore the agent is
unable to gather the instance based metrics, so we capture
host based metrics to compare and contrast the workload:

• CPU load over 15mins - This is the output from the
“Top” command executed in linux, this measurement
is a number using or waiting for CPU resources. For
example if there is a 1, then on average 1 process over
the 15 min time period is using or waiting for CPU.

• CPU Utilisation Percentage - This is based on the
“MPSTAT -P ALL” command and looks at the per-
centage of all cpu’s being used .

• TotalIOSMade - This is the total physical reads and
total physical writes per 15 minute interval on the host.

• MaxIOSperSec - This is the Maximum physical reads
and physical writes per sec.

The two VM’s are located within the same site but in
different rooms, Data Guard is configured using Maximum
Performance mode to allow for network drops in the con-
nectivity between the two physical locations. The database
configurations were the same in Instance Parameters, Soft-
ware Version and Patch Level. The Hardware configurations
were the same in OS Level, Kernel Version and memory con-
figuration. We capture the metrics of each workload and
analyse the consistency of the metrics, as shown graphically
in Figure 6.

4.7 Results and Analysis Experiment Two -
OLTP Workload

The results for OLTP covering CPU and IOPS/s are shown
graphically in Figure 6. Relying on host based metrics has

a profound effect in the ability to compare and contrast
different CPU models, as there is no common denomina-
tor (SPECInt) calculated. It also becomes difficult if there
are multiple standby databases existing in the same envi-
ronment. When the workloads were compared between the
hosts, due to the nature of the physical standby and the pri-
mary behaving, as designed, in a completely different way,
the graphs clearly show that the standby database has a con-
siderably lower utilisation of CPU and IO resources. This is
for several reasons:

• A physical Standby Database is in recovery mode there-
fore is not open for SQL DML or DDL in the same
manner as a primary database is opened in normal
mode. Therefore processes are not spawned at OS
level/Database level, consuming resources such as Mem-
ory, CPU.

• A Physical standby applies“Archivelogs”and therefore
is much more dependent on Physical Writes as these
logs (changes) are applied on the standby from the
primary database, therefore less IO load is generated.

• The reduction in IOPS/s is also attributed to DML/DDL
is not being executed on the standby database in the
same manner as a primary database (e.g. rows are not
being returned as part of a query result set).

It was clear after the first experiment OLTP, that the
workloads would be profoundly different in their footprint
regardless of the workload being executed, so we have not
included the results of the other workloads namely, OLAP
and Data Mart.

4.8 Experiment Three - Clustered Database
(Advanced Configuration)

The final set of experiments was to execute three the work-
loads on a more advanced configuration, a two-node clus-
tered database running in an Engineered system (Exadata
X5-2 platform) [1], illustrated in Fig 2. During the experi-
ment, compute nodes are closed down to simulate a fail-over.
The database configurations were the same in Instance Pa-
rameters, Software Version and Patch Level. The hardware
configurations were the same in OS Level, Kernel Version
and memory configuration. A difference in this experiment
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from the previous two is that the physical hardware and
database are clustered. In this experiment we leverage the
Exadata Technology in the IO substructure.

4.9 Results and Analysis Experiment Three -
OLTP Workload

The results for OLTP covering Memory, CPU and IOPS/s
are shown graphically in Fig 7. The OLTP workload was
amended to run from node 1 for the second 24 hours and
this is reflected in all three of the graphs, when the instance
DBM012 is very much busier than instance DBM011. The
workloads are then spread evenly for the following 48 hours.

• CPU utilisation - for the first 24 hours, the workloads
were executed fairly evenly across the cluster with a
workload of 2000 users connecting consistently with
peaks of 1000 users at peak times, and the CPU showed
similar patterns during the workload execution.

• CPU utilisation - When the workload ran abnormally
and all users (3000 users) ran from one node, in the
second 24 hours, then the CPU utilisation did almost
double in usage as expected. The increase was approx-
imately +99% (Day 7 Hour 15)

• IOPS/s - The IOPS’s utilisation for the first 24 hours
was similar, as expected, when the workloads were
evenly spread. However when the workloads were run
from node 2 in the second 24 hours the IOPS increase
significantly, as expected. The IOPS during the failure
period was as expected, an increase of +99% (Day 7
Hour 15).

• IOPS/S Spike - there are two major spikes occurring
at Day 7 Hour 2 and Day 8 Hour 2, these are Level 0
database backups than only run from node 1 (DBM011)

• Memory Consumption - The maximum memory utili-
sation across both instances was consistent during the
first 24 hours when the workload was evenly spread.
The memory configuration on DBM012 is sufficient to
handle the 3000 users during the failover period, al-
though the increase in memory used on DBM012 was
only +45%

In general, the conclusion from this experiment when ex-
ecuting the OLTP workloads was, it cannot be assumed
that when a workload fails over from one node (database
instance) to another node (database instance) the footprint
will be double in terms of Memory. The workload did double
for CPU and IOPS/s. The results show there is an increase
in IOPS/s, Memory and CPU. The difference during normal
running conditions (i.e. when workloads are evenly spread)
was the following: +31% (Day 7 Hour 3) CPU, +2% Mem-
ory (Day 6 Hour 21) and +1% (Day 6 Hour 12) IOPS. When
the workload failed over there was a difference of +97% (Day
7 Hour 9) CPU, +99% (Day 7 Hour 20) Memory and +99%
(Day 08 Hour 10) IOPS. There are two large spikes at Day 7
Hour 2 and Day 8 Hour 2; these are Level 0 RMAN backups
which account for the large IOPS readings. The database
instance was sufficiently sized to handle both workloads oth-
erwise we would of expected to see out of memory errors in
the database instance alert file.

4.10 Results and Analysis Experiment Three
- OLAP Workload

The results OLAP covering Memory, CPU and IOPS/s
are shown graphically in Fig 8. The OLAP workload was
amended to run from node 1 for the first 24 hours and this
is clearly reflected in all three of the graphs, as the instance
DBM011 is very much busier than instance DBM012 during
this period. The workloads are then spread evenly for the
following 48 hours.

• CPU utilisation - for the first 24 hours, node 1 ran the
whole workload of 400 users and thus the DBM011
instance is busier compared with the workload across
days two and three; as expected, utilization is effec-
tively doubled, at +99%.

• CPU utilisation - when the workload ran normally (400
users) across both nodes then the utilisation was sim-
ilar in its SPECint count with a difference of approxi-
mately +20%.

• IOPS/s - The IOPS’s utilisation for the first 24 hours
was busier on node 1, as expected, than node 2 given
that both workloads were executed from DBM011 in-
stance. The IOPS utilisation was almost double +99%
(Day 25 Hour 05) the amount from the second period
of time (Day 26 Hour 05) when the workloads were
spread evenly across both instances.

• Memory Consumption - The maximum memory util-
isation observed across both instances was consistent
with the workload, the first 24 hours when the work-
load ran from node 1 is as expected in that there was
sufficient memory to serve both workloads. However
there is a difference of +55% (Day 25 Hour 04) in mem-
ory between nodes 1 and 2. For the second 24 hours,
as the workloads reverted back to their normal hosts
I.E. spread evenly across both nodes, their utilisation
is similar with a difference of +1% (Day 26 Hour 04)
between the nodes in memory utilisation.

In general, the conclusion from this experiment when exe-
cuting the OLAP workloads was that it cannot be assumed
that when a workload fails over from one node (database
instance) to another node the footprint will be double in
terms of Memory. For the metrics IOPS and CPU the in-
crease was almost double; CPU had a difference of +99%
(Day 25 Hour 04) and IOPS +99% (Day 24 Hour 04). When
the workload was spread evenly across both nodes the differ-
ences between the nodes where CPU +20% (Day 26 Hour
3), Memory +2% (Day 26 Hour 3) and IOPS +1% (Day
26 Hour 4). The database instance was sufficiently sized to
handle both workloads otherwise we would of expected to
see out of memory errors in the database instance alert file.

4.11 Results and Analysis Experiment Three
- Data Mart Workload

The results are as follows for the Data Mart workloads
covering Memory, CPU and IOPS/s, as shown graphically
in Fig 9. The Data Mart workload was run normally for the
first 24 hours, which is reflected in the workloads being sim-
ilar for this period. A simulated failure of database instance
DBM011 is then performed and all connections then fail-
over to DBM012 on node 2 for the second 24 hours. This is
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(a) CPU 72 hours (b) IOPS/s 72 Hours (c) Memory 72 Hours

Figure 7: Results RAC OLTP: workload patterns for the 72 hour period.

(a) CPU 72 hours (b) IOPS/s 72 Hours (c) Memory 72 Hours

Figure 8: Results RAC OLAP: workload patterns for the 72 hour period.

(a) CPU 72 hours (b) IOPS/s 72 Hours (c) Memory 72 Hours

Figure 9: Results RAC Data Mart: workload patterns for the 72 hour period.

reflected in all three of the graphs as the instance DBM012
becomes much busier than instance DBM011.

• CPU utilisation - For the first 24 hours, the workloads
were executed fairly evenly across the cluster with a
workload of 2700 users connecting at different times
from the two nodes and the SPECInt count was similar

with a average CPU difference of +15% (Day 2 Hour
04).

• CPU utilisation - When the workload ran abnormally
and all users (2700 users) ran from one node, in the
second 24 hours, then the CPU utilisation almost dou-
bled in usage as expected +99% (Day 3 Hour 04).
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(a) Volatility of workload Peak (b) Volatility of workload Avg

Figure 10: Workload Impacts

• IOPS/s - The IOPS’s utilisation for the first 24 hours
was similar, as expected, when the workloads were
evenly spread with a difference on average of +17%
(Day 2 Hour 04). However, when the workloads were
run from node 2 in the second 24 hours the IOPS in-
creased significantly, rising to almost double at +99%
(Day 3 Hour 04).

• Memory Consumption - The maximum memory utili-
sation across both instances was as expected during the
first 24 hours, when the workloads were evenly spread,
showing a difference of +9% (Day 2 Hour 04). This
behaviour was not expected during the failover period
when all users execute their workload on DBM012 as
the utilisation difference is +60% (day 3 Hour 04). The
memory configuration on DBM012 is sufficient to han-
dle the 2700 users.

In general, the conclusion from this experiment when exe-
cuting the Data Mart workloads was, it cannot be assumed
that when a workload fails over from one node (database in-
stance) to another node the footprint will be double in terms
of memory, as it only increased by approximately +60%.
CPU and IOPS however, did double in its usage to approx-
imately +99%. When the workload was spread evenly the
average utilisation had a difference of CPU +15% (Day 2
Hour 04), Memory +9% (Day 2 Hour 04) and IOPS +17%
(Day 2 Hour 04).

5. CONCLUSIONS AND FUTURE WORK
From the experiments conducted and the model we pro-

posed, we conclude that capacity planning of databases that
employ advanced configurations such as Clustering and Standby
Databases is not a simple exercise. Taking the Average and
Maximum readings for each metric (CPU, Memory Utilisa-
tion and IOPS) over a period of 72 hours, the outputs are
volatile. One should not assume that a workload running
on one database instance configured in one type of system
will consume the same amount of resource as an another
database instance running on another system, regardless of
similarity; this is clearly shown in Fig 10 (a) (OLTP, OLAP,
Data Mart RAC Failovers). These charts show us that as
workloads become assimilated they completely change as the
difference grows, sometimes considerably. The differences

between the footprints based on configuration can vary be-
tween +10% (CPU OLAP RAC) in normal circumstances
shown in Fig 10 (b) to 99% (CPU OLAP RAC) as shown
in Fig 10 (a). Fig 10(a & b, OLTP Standby) also highlights
that configuration has a big impact on capacity planning
databases with advanced configurations, such as standby
databases.

In this paper we highlighted the problems that organisa-
tions are faced with over-estimation and under-estimation
when trying to budget on non-cloud compliant financial mod-
els such as capex or cloud compliant models, which are sub-
scription based. Accurate capacity planning can help in re-
ducing wastage when metrics are captured and the assump-
tion of workloads being the same is not employed. Capturing
and storing the data in a central repository, like the approach
we proposed, allowed us to mine the data successfully with-
out the labour intensive analysis that often accompanies a
capacity planning exercise.

The main points from this work are.

1. When capacity planning DBaaS, it should be done on a
instance-by-instance basis and not at a database level
- this is especially the case in clustered environments
where workloads can move between one database and
another or fail-over technology is employed.

2. Metrics need to be captured at different layers of the
infrastructure in advanced configurations, for example
in the storage layer, caching can mask IOPS causing
the workload to behave differently.

3. Hypervisors and VMManagers can influence capacity
planning as these tools allocate resource. For exam-
ple, a CPU can be dissected and allocated as a vcpu
(Oracle VM) [2]. How does one know that the CPU
assigned is a full CPU? The Oracle Software and the
database itself may assume that a full CPU was made
available, when in fact it was assigned 0.9 of a CPU
due to overheads.

4. CPU configuration (Thread(s) per core) within a VM
has a profound effect when capacity planning. We ob-
served in experiment one (OLTP and Data Mart) that
small concurrent transactions in the OLTP workload
executed on VM acs-163 were a lot more efficient than
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the same workload executed on another VM with lower
thread(s) per core, and this is reflected in Figures 3, 4
and 5.

5. SPECInt benchmark is a valid benchmark when com-
paring one varient of CPU with another, especially
when trying to capacity plan databases with a view
to a migration or upgrade of the infrastructure.

6. Standby Databases presented a different footprint. A
standby database is always in a mounted state and
therefore is configured in a recovering mode by apply-
ing logs or changes from the primary. It should not be
assumed that the footprints are the same.

7. In environments that employ standby database con-
figurations, metrics that are available for collection on
the primary database are not available on the standby,
namely physical reads/writes, CPU and memory, thus
gathering accurate metrics is impractical. Metrics can
be gathered at a host level, however if multiple standby
databases are running on the same host this makes
reconciliation of which database is using what more
challenging.

8. In environments that employ clustered databases, if
a workload running on one node fails-over from an-
other node within the cluster, one should not assume
that the properties of the composed workload will fol-
low obviously from its constituents. Upon failover, the
workload from the failing node is assimilated, with the
result being the formation of a completely new foot-
print.

Future work is to conduct the same type of experiments
between different database versions, for example a workload
running on Oracle Database Version 10G/11G and Oracle
Database Version 12C, analysing if the internal database al-
gorithms have any influence and by how much. However
techniques already exist that go some way to answering this
question through the use of a product called Database replay
[7]. Being able to gather metrics from a standby database in-
stance for CPU, IOPS and Memory is critical for our model
as this would allow us to accurately analyse the CPU such
as SPECInt, Memory and IOPS’s. We could configure a cus-
tom metric to execute internal queries against the standby
database, and this is now in the design phase, but until then
capacity planning architectures with standby database will
need to rely on host metrics.
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ABSTRACT
With the growing maturity of SQL-on-Hadoop engines such
as Hive, Impala, and Spark SQL, many enterprise customers
are deploying new and legacy SQL applications on them to
reduce costs and exploit the storage and computing power
of large Hadoop clusters. On the enterprise data ware-
house (EDW) front, customers want to reduce operational
overhead of their legacy applications by processing portions
of SQL workloads better suited to Hadoop on these SQL-
on-Hadoop platforms - while retaining operational queries
on their existing EDW systems. Once they identify the
SQL queries to offload, deploying them to Hadoop as-is may
not be prudent or even possible, given the disparities in
the underlying architectures and the different levels of SQL
support on EDW and the SQL-on-Hadoop platforms. The
scale at which these SQL applications operate on Hadoop
is sometimes factors larger than what traditional relational
databases handle, calling for new workload level analytics
mechanisms, optimized data models and in some instances
query rewrites in order to best exploit Hadoop.

An example is aggregate tables (also known as material-
ized tables) that reporting and analytical workloads heavily
depend on. These tables need to be crafted carefully to
benefit significant portions of the SQL workload. Another
is the handling of UPDATEs - in ETL workloads where a ta-
ble may require updating; or in slowly changing dimension
tables. Both these SQL features are not fully supported
and hence have been underutilized in the Hadoop context,
largely because UPDATEs are difficult to support given the
immutable properties of the underlying HDFS.

In this paper we elaborate on techniques to take advan-
tage of these important SQL features at scale. First, we
propose extensions and optimizations to scale existing tech-
niques that discover the most appropriate aggregate tables
to create. Our approach uses advanced analytics over SQL
queries in an entire workload to identify clusters of simi-
lar queries; each cluster then serves as a targeted query set
for discovering the best-suited aggregate tables. We com-

c©2017, Copyright is with the authors. Published in Proc. 20th Inter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

pare the performance and quality of the aggregate tables
created with and without this clustering approach. Next,
we describe an algorithm to consolidate similar UPDATEs
together to reduce the number of UPDATEs to be applied
to a given table.

While our implementation is discussed in the context of
Hadoop, the underlying concepts are generic and can be
adopted by EDW and BI systems to optimize aggregate ta-
ble creation and consolidate UPDATEs.

CCS Concepts
•Information systems→Database utilities and tools;
Relational database model;

Keywords
Query optimization; Hadoop; Hive; Impala; BI reporting

1. INTRODUCTION
Large customer deployments on Hadoop often include sev-

eral thousand tables many of which are very wide. For ex-
ample, in the retail sector, we have observed customer work-
loads that issue over 500K queries a day over a million tables
some of which have 50,000 columns. Many of these queries
share some common clustering characteristics; i.e. in a BI or
reporting workload we may find clusters of queries that per-
form highly similar operations on a common set of columns
over a common set of tables. Or in an ETL workload, UP-
DATEs on a certain set of columns over a common set of
tables may be highly prevalent. But at such large scales, de-
tecting common characteristics, identifying the set of queries
that exhibit these characteristics and using this knowledge
to choose the right data models to optimize these queries
is a challenging task. Automated workload level optimiza-
tion strategies that analyze these large volumes of queries
and offer the most relevant optimization recommendations
can go a long way in easing this task. Thus for the BI or
reporting workload, creating a set of aggregate tables that
benefit performance of a set of queries is a useful recommen-
dation; while for the ETL case detecting UPDATEs that can
be consolidated together can help overall performance of the
UPDATEs.

Aggregate tables are an important feature for Business
Intelligence (BI) workloads and various forms of it are sup-
ported by many EDW vendors including Oracle [8], Mi-
crosoft SQL Server [7] and IBM DB2 [15] as well as BI tools
such as Microstrategy [13] and IBM Cognos [9]. Here, data
required by several different user or application queries are
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joined and aggregated apriori and materialized into an ag-
gregate table. Reporting and analytic queries then query
these aggregate tables, which reduces processing time dur-
ing query execution resulting in improved performance of
the queries. This is an example aggregate table over the
TPC-H workload schema:

CREATE TABLE aggtable_888026409 AS

SELECT lineitem.l_quantity

, lineitem.l_discount

, lineitem.l_shipinstruct

, lineitem.l_commitdate

, lineitem.l_shipmode

, orders.o_orderpriority

, orders.o_orderdate

, orders.o_orderstatus

, supplier.s_name

, supplier.s_comment

, Sum (orders.o_totalprice)

, Sum (lineitem.l_extendedprice)

FROM lineitem

, orders

, supplier

WHERE lineitem.l_orderkey = orders.o_orderkey

AND lineitem.l_suppkey = supplier.s_suppkey

GROUP BY lineitem.l_quantity

, lineitem.l_discount

, lineitem.l_shipinstruct

, lineitem.l_commitdate

, lineitem.l_shipmode

, orders.o_orderdate

, orders.o_orderpriority

, orders.o_orderstatus

, supplier.s_name

, supplier.s_comment

The aggregate table above can be used to answer queries
which refer the same set of tables(or more), joined on same
condition and refer columns which are projected in aggre-
gated table. Few sample queries which can benefit from the
above aggregate table are:

SELECT Concat(supplier.s_name,

orders.o_orderdate) supp_namedate

, lineitem.l_quantity

, lineitem.l_discount

, Sum(lineitem.l_extendedprice) sum_price

, Sum(orders.o_totalprice) total_price

FROM lineitem

JOIN part

ON ( lineitem.l_partkey = part.p_partkey )

JOIN orders

ON ( lineitem.l_orderkey = orders.o_orderkey )

JOIN supplier

ON ( lineitem.l_suppkey = supplier.s_suppkey )

WHERE lineitem.l_quantity BETWEEN 10 AND 150

AND lineitem.l_shipinstruct <> ‘deliver IN person’

AND lineitem.commitdate BETWEEN ‘11/01/2014’

AND ‘11/30/2014’

AND lineitem.l_shipmode NOT IN (‘AIR’, ‘air reg’)

AND orders.o_orderpriority IN (‘1-URGENT’, ‘2-high’)

GROUP BY Concat(supplier.s_name, orders.o_orderdate)

, lineitem.l_quantity

, lineitem.l_discount

or

SELECT lineitem.l_shipmode

, Sum(orders.o_totalprice)

, Sum (lineitem.l_extendedprice)

FROM lineitem

JOIN orders

ON ( lineitem.l_orderkey = orders.o_orderkey )

JOIN supplier

ON ( lineitem.l_suppkey = supplier.s_suppkey )

WHERE ( lineitem.l_quantity BETWEEN 10 AND 150

AND lineitem.l_shipinstruct <> ‘DELIVER IN PERSON’

AND lineitem.commitdate BETWEEN

‘11/01/2014’ AND ‘11/30/2014’

AND supplier.s_comment Like ‘\%customer\%complaints\%’

AND orders.o_orderstatus =‘f’

GROUP BY

lineitem.l_shipmode

Similarly, UPDATE statements in various flavors that mod-
ify rows in a table via a direct UPDATE or with the query
results from another query, have been supported in relational
DBMS offerings for several decades. In some scenarios, con-
solidating UPDATEs can produce performance benefits. For
example combining the following two simple statements:

UPDATE customer

SET customer.email_id=‘bob.johnson@edbt.org’

WHERE customer.firstname=‘Bob’

AND customer.last_name=‘Johnson’

UPDATE customer

SET customer.organization=‘Engineering’

WHERE customer.firstname=‘Bob’

AND customer.last_name=‘Johnson’

into a single UPDATE statement as follows:

UPDATE customer

SET customer.email_id=‘bob.johnson@edbt.org’,

customer.organization=‘Engineering’

WHERE customer.firstname=‘Bob’

AND customer.last_name=‘Johnson’

Such consolidation reduces the number of UPDATE queries
on the source table ‘customer’ and minimizes the I/O on the
table.

Existing commercial offerings also support the ‘REFRESH’
option to propagate changes to aggregate tables whenever
the underlying source tables are updated. Generally, this
requires a mechanism to UPDATE rows in the aggregate ta-
bles. However, the immutable properties of HDFS in Hadoop,
which is highly optimized for write-once-read-many data op-
erations, poses problems for implementing the ‘REFRESH’
option in Hive and Impala. This hampers developing func-
tionality for UPDATE statements - which has largely lead
Hadoop-based SQL vendors to shy away from or offer limited
support for UPDATE-related features.

Based on our learnings from several customer engage-
ments, some important observations surface:

1. In Hadoop, highly parallelized processing and opti-
mized execution engines on systems such as Hive and
Impala enable rebuilding aggregate tables from scratch
very quickly, making UPDATEs unnecessary and mit-
igating the HDFS related immutability issues in many
EDW workloads.
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2. Many aggregate tables are temporal in nature. For
example, quarterly financial reports that require data
from only three months, in which case the aggregate ta-
bles that feed these reports can be data partitioned on
a monthly basis on Hive and Impala. Smaller portions
of giant source tables need to be queried to populate
these aggregate tables. Only the impacted partitions of
the aggregate tables need to be written, making mod-
ifications to aggregate tables less expensive. Hence,
instead of using UPDATES to modify them, new time-
based partitions (by month or day) can be added and
older ones discarded. SQL constructs such as INSERT
with OVERWRITE supported on Hive and Impala,
can be used to mimic this REFRESH functionality.
And SQL views can be used to allow easy switching
between an older and newer version of the same data.

3. With the introduction of new Hadoop features such as
the Apache Kudu integration [12], a viable alternative
to using HDFS is now available. Hence UPDATEs can
now be supported for certain workloads.

UPDATE statements used to perform tasks such as ad-
dress cleanup in ETL workloads or modify slowly-changing
dimension tables in BI and Analytic workloads are differ-
ent in nature from highly concurrent OLTP style UPDATEs
present in traditional operational systems. In this case, UP-
DATEs are concentrated on certain tables and are less fre-
quent. If the temporal nature of data mentioned above can
be exploited, partitioning techniques to mimic UPDATEs
are possible as are some other SQL join-based techniques
discussed later in this paper.

Given the importance of these two SQL features, BI Users
and Hadoop developers are adopting one of the above men-
tioned strategies; and require recommendations on which ag-
gregate tables to create, and how to consolidate UPDATE
statements, to optimize the performance of their queries on
Hadoop. In the following sections, we describe our algorithm
for aggregate table creation. And compare the efficiency and
quality of the aggregate tables generated when the input to
the algorithm is all queries in a workload versus targeted sets
of highly similar queries derived from the workload. A clus-
tering algorithm performs advanced analytics over all the
queries in a workload, to extract these highly similar query
sets. We also discuss techniques and algorithms for consol-
idation of UPDATE statements, prior to applying them on
Hadoop.

2. BACKGROUND AND RELATED WORK
Aggregate table advisors are available in several commer-

cial EDW and BI offerings. In some of these offerings, the
onus is on the user to provide a representative workload -
i.e. a sample set of queries to use for deriving aggregate
tables. Others require query execution plans to provide rec-
ommendations. The DB2 Design Advisor in [15] discusses
the issue of reducing the size of the sample workload to re-
duce the search space for aggregate table recommendations,
while the Microsoft paper [3] details specific mechanisms
to compress SQL workloads. Our approach takes a SQL
query log as an input workload ( all queries executed over
a period of time in a EDW system) and identifies semanti-
cally unique queries discarding duplicates. We use the struc-
ture of the SQL query when identifying the duplicates which
means the changes in the literal values result in identifying

these queries as duplicates. Advanced analytics are then de-
ployed on the SQL structures of these semantically unique
queries to discover clusters of similar query sets. This en-
ables quicker and more relevant aggregate table definitions
because the set of queries that serve as input to aggregate
table recommendations are highly similar.

After aggregate tables are set up, some DBMS and BI
tools offerings are further capable of rewriting queries inter-
nally to use aggregate tables versus the base tables to opti-
mize performance of queries. This feature also known as ma-
terialized views is not addressed in our paper. An example
Hadoop implementation of materialized views is described
in [14]. In our experience, BI tools are frequently used in re-
porting and analytic workloads deployed atop Hadoop and
necessarily support materialized views. Hence we provide
recommendations and the DDL definitions for the aggre-
gate tables that users can create, using the BI tools of their
choice.

On the Hadoop side, the [5] features revolve around us-
ing materialized views to better exploit Hadoop clusters.
And in the Hive community, explicit support for material-
ized views is under development [10]. Again, these efforts
are orthogonal to the aggregate table recommendations we
provide. [11] seeks to solve the HDFS immutability issue
and lift UPDATE restrictions. The techniques we propose
in this paper are orthogonal and applicable at the SQL level
- and seek to boost performance of SQL queries on Hadoop.
Thus they can benefit both HDFS and Kudu-based Hadoop
deployments.

3. THE SYSTEM
Our system is a workload-level optimization tool that an-

alyzes SQL queries (from many popular RDBMS vendors)
from sources such as query logs. It breaks down the individ-
ual SQL constructs in these queries and employs advanced
analytics to

• identify semantically unique queries, thus eliminating
duplicates

• discover top tables and queries in a workload as shown
in Figure 1

• surface popular patterns like joins, filters and other
SQL constructs used in the workload.

This analysis is further used to alert users to SQL syntax
compatibility issues and other potential risks such as many-
table joins that these queries could encounter on Hive or Im-
pala providing recommendations on data model changes and
query rewrites that can benefit performance of the queries
on Hadoop.

The tool operates directly on SQL queries so does not
require access to the underlying data in tables or to the
Hadoop clusters that the workload may be deployed on.
However, information such as the elapsed time for a query
and statistics such as table volumes and number of distinct
values (NDV) in columns, help improve the quality of our
recommendations.

The recommendations include candidates for partitioning
keys, denormalization, inline view materialization, aggregate
tables and update consolidation. The last two recommen-
dations are the focus of this paper.
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Figure 1: Workload Insights: Popular Queries and
Patterns.

3.1 Aggregate Table Recommendation
Our algorithm to determine aggregate tables, is similar to

[2] with a few important modifications, which are elaborated
in the subsequent sections. The first step in determining the
aggregate tables is to find a set of interesting table subsets.
A table-subset T is interesting if materializing one or more
views on T has the potential to reduce the cost of the work-
load significantly, i.e., above a given threshold.

In BI workloads, joins over 30 tables in a single query is
not an infrequent scenario. Such workload characteristics
could incur exponential costs while enumerating all inter-
esting subsets. The enumeration of all interesting subsets of
30 tables is not practical hence we need a mechanism to re-
duce the overall number of interesting subsets. [1] presents
efficient algorithms to enumerate all frequent sets and [4]
presents a compact way of representing all the frequent sets.
However generating aggregate tables on a subset of tables
may be more beneficial than generating it over supersets.
Since enumerating all subsets can be exponential, we need
to select the subsets which are still a good representation of
all the interesting subsets.

3.1.1 Merge and Prune
We address the problem of exponential subsets by con-

straining the size of the items at every step. During each
step in subset formation, we merge some of the subsets early
and then prune some of these subsets, without compromis-
ing on the quality of the output. We use the notations men-
tioned in Table 1 to describe the various concepts used in
our mergeAndPrune algorithm. The detailed steps are out-
lined in the algorithm 1. The algorithm takes a set of sets
of tables of a given size and returns the new set with some
elements merged and removed from the input.

The metric TS-Cost(T) we use is the same as that men-
tioned in [2] which is the total cost of all queries in the
workload where table-subset T occurs. After we enumerate
all 2-subsets ( subsets of size 2) we execute the algorithm in
each step for merging and pruning the sets early. We start
with a given element and collect the list of all candidates
that it can be merged with. The merges are performed as
long as the merged set is within a certain threshold. Ex-
perimental results indicated that a value of .85 to 0.95 is a
good candidate for this threshold. We maintain a merge list
and add the elements from the merge list to the prune list,

Table 1: Notations used in mergeAndPrune
input Set of sets of a given size formed by

tables in the queries.
pruneSet A subset of input that holds the list

of elements that will be pruned from
the input at the end of the iteration.

M Holds the current table set that is con-
sidered for meging.

MList Holds all the sets that can be merged
with M .

mergedSets Set of sets of tables that are formed by
merging some elements from input.

only if there is no potential for the elements to form further
combinations of tables.

Algorithm 1 Algorithm for merging and pruning interest-
ing table subsets

function mergeAndPrune
for each i ∈ input and i /∈ pruneSet do

M ← i
MList← {i}
for each c ∈ input do

if c ⊂M then
MList←MList ∪ c
continue

end if
. determine if the merge item is effective and not

too far off from the original
if TS-cost(M ∪ c)/TS-cost(M) >

MERGE THRESHOLD then
M ←M ∪ c
MList←MList ∪ c

end if
end for
for each m ∈ MList do

. retain candidates that we should not be
pruning.

if @ s| s ∈ input and s /∈ MList and s ∩ m 6= φ
then

. find the candidates for pruning from input
in the later step.

pruneSet← pruneSet ∪m
end if

end for
mergedSets← mergedSets ∪M

end for
input← input− pruneSet
return mergedSet

end function

3.1.2 Aggregate table creation using query cluster-
ing

BI reporting workloads and analytical workloads typically
generate queries against the same star/snowflake schema,
but these queries select different sets of columns and in-
voke different sets of aggregate functions i.e SUM, COUNT
etc. The clustering algorithm compares the similarity of
each clause in the SQL query (i.e. SELECT list, FROM,
WHERE, GROUPBY, etc.) to pull together highly similar
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Figure 2: Aggregate Table Candidate Queries

Figure 3: Aggregate Table DDL Generation

queries. Clustering queries in the workload based on the sim-
ilarity of the SQL query structure collects together queries
that access the same or almost similar table sets. Figure 2
and figure 3, depicts our implementation. Figure 2 shows
the aggregate query that is beneficial to the given cluster of
queries.The number of queries in the cluster are shown on
the right side. As shown in figure 3, users can also generate
the DDL that creates the specified aggregate table.

3.2 Update Consolidation
Several customers have legacy applications that encapsu-

late ETL logic in SQL stored procedures and SQL script-
ing languages (such as Oracle PL/SQL or Teradata BTEQ).
Neither Hive nor Impala support stored procedures, so the
individual queries in these stored procedures need to be exe-
cuted on Hive/Impala. This ETL logic many times includes
UPDATE queries.

In this section, we focus on such UPDATE queries, specif-
ically the issue of converting a sequence of UPDATE queries
in a workflow into a smaller set of UPDATE queries. We call
this UPDATE consolidation.

Most UPDATE queries in ETL workflows are not complex
and largely following the patterns like:

UPDATE employee emp

SET salary = salary * 1.1

WHERE emp.title = ‘Engineer’;

UPDATE emp

FROM employee emp ,

department dept

SET emp.deptid = dept.deptid

WHERE emp.deptid = dept.deptid

AND dept.deptno = 1

AND emp.title = ‘Engineer’

Table 2: Notations used in update consolidation
Qi ith query in the sequence.
sourceTables(Qi) All the tables that the query

reads from.
targetTable(Qi) The table that is updated as

part of the given INSERT/
UPDATE/ DELETE query.

Ci consolidation set i contain-
ing one or more queries.

readCols(e) Set of all the columns that
are read by the given query
e. For a consolidated set e,
this is the union of all the
columns belonging to every
query in the set.

writeCols(e) Set of all the columns that
will be written by the given
query e. For a consolidated
set e, this is the union of all
the columns belonging to ev-
ery query in the set.

type(Qi) type of the UPDATE query,
1 if it is a single table UP-
DATE; and 2 if more than
one table is referenced in the
query.

type(C) UPDATE type of all the
queries contained in the set.
A set only contains queries
of same type. Hence its a
single value indicating the
update type of all queries.

setExprEqual(Qi, C) returns true if the set expres-
sion in the UPDATE query
Qi is same as one of the set
expression in consolidate set
C all other columns except
those in set expression are
not write conflicted

AND emp.status = ‘active’;

We classify these UPDATE queries into two categories:
Type 1 and Type 2 UPDATEs:

• Type 1 UPDATEs are single table UPDATE queries
with an optional WHERE clause.

• Type 2 UPDATEs involve updates to a single table
based on querying multiple tables.

This distinction between UPDATE queries is important, be-
cause Type 1 and Type 2 UPDATE queries can never be con-
solidated together. To execute UPDATE queries on Hadoop,
the typical process is to use the CREATE-JOIN-RENAME
conversion mechanism. The three steps of the CREATE-
JOIN-RENAME conversion mechanism are:

1. Create a temporary table by converting the UPDATE
query into CREATE+SELECT query, containing the
primary key and updated columns of the target table.

2. Create a new table by performing a LEFT OUTER
JOIN of the original table with the temporary table.Non
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null values in the temporary table get priority over the
original table.

3. Drop the original table and RENAME the newly cre-
ated table to that of the original table.

If these 3 steps are needed to process each UPDATE, exe-
cuting a sequence of UPDATEs can become very expensive
if the steps are repeated for each UPDATE query individu-
ally. An efficient way of executing sequential UPDATEs on
Hadoop is to first consolidate the UPDATEs into a smaller
set of queries. However, it is very important to attempt con-
solidation only when we can guarantee that the end state of
the data in the tables remains exactly the same with both
approaches - i.e. when applying one UPDATE at a time
versus a consolidated UPDATE. Therefore, the algorithm
has to check for interleaved INSERT/UPDATE/DELETE
queries, be mindful of transactional boundaries, etc. - and
only perform consolidation when it is safe to do so.

Partitioned tables can be updated using the PARTITION
OVERWRITE functionality. If the UPDATE statement con-
tains a WHERE clause on the partitioning column, then we
can convert the corresponding UPDATE query into an IN-
SERT OVERWRITE query along with the required parti-
tion specification. If the query is modifying a selected subset
of rows in the partition, we still have to follow the above ap-
proach to compute the new rows for the partition, including
the modified rows. In this case too, since a join is involved,
it is beneficial to look at consolidation options.

Another commonly used workaround to mitigate UPDATE
issues is to use database views, i.e. users access data pointed
to by a normal table or in the Hadoop context a partitioned
table through a view. After UPDATEs to the table are
propagated to Hadoop by adding a new partition that con-
tains updated data to the existing table or re-building the
entire table that now reflects UPDATEs, the view definition
is changed to now point at the newly available data. This
way users have access to the ‘old’ data till the point of the
switch. A similar approach, (but for the compaction use
case) is discussed here [6]. Even with this mechanism, con-
solidating updates to a particular partition or table prior to
applying the updates, can minimize IO costs.

3.2.1 Update Consolidation Algorithm
We use the notations mentioned in Table 2 to describe the

various concepts used in our UPDATE consolidation algo-
rithm.

The findConsolidatedSets algorithm to consolidate UP-
DATE queries is shown in Algorithm 4. The algorithm starts
with an empty set and adds the first UPDATE query it finds
into the current consolidation set. Then it checks subse-
quent queries to see if there are any potential conflicts with
the group in hand. Query Qi conflicts with Qj if Qj is ei-
ther reading or writing a table that Qi writes to. We use
the procedure isReadWriteConfict in Algorithm 2 to de-
termine the same.The UPDATE queries Qi and Qj that are
reading from the same set of tables and writing to the same
table can conflict if one of the queries is writing to a col-
umn, which the other query is reading from. We use the
procedure isColumnConflict in Algorithm 3 to determine
the conflict.

When we encounter a conflicting query, we stop the con-
solidation process. When two UPDATE queries Qi and Qj

are in sequence with no conflicting queries in between, they

Algorithm 2 Procedure to detect conflicting queries

function isReadWriteConfict(e1,e2)
if targetTable(e1) ∩ sourceTables(e2) = φ &&

targetTable(e2) ∩ sourceTables(e1) = φ && target-
Table(e2) ∩ targetTable(e1) = φ then

return True
else

return False
end if

end function

Algorithm 3 Procedure to detect conflicting read/write
columns
function isColumnConflict(e1,e2)

if writeCols(e1) ∩ readCols(e2) = φ &&
writeCols(e2) ∩ readCols(e1) = φ && writeCols(e2)
∩ writeCols(e1) = φ then

return True
else

return False
end if

end function

can be considered for consolidation. So we check Qi and Qj

for compatibility. Qi and Qj can be consolidated into one
group if all the following conditions are met:

1. Qi and Qj are of the same UPDATE types - i.e. either
both are Type 1 or both are Type 2.

2. For Type 1 UPDATEs, the target table is the same for
Qi and Qj and there are no columns of Qi and Qj that
are write conflicted.

3. For Type 2 UPDATEs, the source and target tables are
the same for Qi and Qj (along with same join predi-
cate) and there are no columns of Qi and Qj that are
write conflicted.

Finally, we maintain a visited flag with each UPDATE query
so that if there are interleaved UPDATEs between totally
different UPDATE queries in the same stored procedure,
they can be considered for consolidation.

Once we have identified a group of all consolidated sets,
the conversion to the equivalent CREATE-JOIN-RENAME
queries follows these steps. Here, without loss of generality,
we assume that all WHERE predicates are in Conjunctive
Normal Form.

1. We convert each of the
‘SET<col>=<colexpression>WHERE<predicates>’
into
‘CASE WHEN <predicates> THEN <colexpression>
ELSE <col> END as <col>’

2. For queries with same SET expression and different
WHERE predicates, we create an OR clause for each
of the WHERE predicates in the CASE block.

3. We take the WHERE predicates of all the queries and
combine them using disjunction with the OR operator.
If there is a common subexpression among WHERE
predicates, we promote the common subexpression out-
wards.
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Algorithm 4 Procedure to find and consolidate queries

function findConsolidatedSets
C ← {} . current consolidated set
Q← setOfInputQueries
while ∃ update query with visited(q) = False do

for i←1 to |Q| do
if Qi 6= Update Query then . insert or delete query

if ¬ isReadWriteConflict(C,Qi) then . conclude the current consolidated set and start a new set
output ← output ∪ C

end if
visited(Qi)← True ; continue

end if
if |C| = 0 and Qi is Update Query and visited(Qi) = False then

visited(Qi)← True ; continue
end if
if type(Qi) 6= type(C) then

output ← output ∪ C
if visited(Qi) = False then

C ← {Qi}
else

C ← φ
end if
visited(Qi)← True ; continue

end if
if type(Qi) = 1 and type(C) = 1 then . Type 1 : Single table update query

if targetTable(Qi) = targetTable(C) then
if isColumnConflict(C,Qi) or setExprEqual(Qi,C) then

if visited(Qi) = False then
C ← C ∪ Qi

end if
else

output ← output ∪ C
if visited(Qi) = False then

C ← {Qi}
else

C ← φ
end if

end if
visited(Qi)← True ; continue

end if
end if
if type(Qi) = 2 and type(C) = 2 then . Type 2 : Multi table update query

if targetTable(Qi) = targetTable(C) and sourceTable(Qi) = sourceTable(C) then
if isColumnConflict(C,Qi) or setExprEqual(Qi,C) then

if visited(Qi) = False then
C ← C ∪ Qi

end if
visited(Qi)← True ; continue

end if
end if
if ¬ isReadWriteConflict(C,Qi) then

output ← output ∪ C
if visited(Qi) = False then

C ← {Qi}
else

C ← φ
end if
visited(Qi)← True ; continue

end if
end if

end for
end while
return output

end function
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Here are some examples of consolidations. The following
Type 1 UPDATE queries that modify the table ‘lineitem’ -
with or without filtering conditions:

UPDATE lineitem

SET l_receiptdate = Date_add(l_commitdate, 1)

UPDATE lineitem

SET l_shipmode = concat(l_shipmode,‘-usps’),

WHERE l_shipmode = ‘MAIL’

UPDATE lineitem

SET l_discount = 0.2

WHERE l_quantity > 20

can be consolidated and converted into a CREATE-JOIN-
RENAME flow as follows:

CREATE table lineitem_tmp AS

SELECT Date_add(l_commitdate, 1) AS l_receiptdate

, CASE

WHEN l_shipmode = ‘MAIL’

THEN concat(l_shipmode,‘-usps’)

ELSE l_shipmode

END AS l_shipmode

, CASE

WHEN l_quantity > 20

THEN 0.2

ELSE l_discount 0

END AS l_discount

, l_orderkey

, l_linenumber

FROM lineitem;

CREATE TABLE lineitem_updated AS

SELECT orig.l_orderkey

, orig.l_linenumber

, Nvl(tmp.l_receiptdate, orig.l_receiptdate)

AS l_receiptdate

, Nvl(tmp.l_shipmode, orig.l_shipmode)

AS l_shipmode

, Nvl(tmp.l_discount, orig.l_discount)

AS l_discount

, l_partkey, l_suppkey, l_quantity, l_extendedprice

, l_tax, l_returnflag, l_linestatus, l_shipdate

, l_commitdate, l_shipinstruct, l_comment

FROM lineitem orig

LEFT OUTER JOIN lineitem_tmp tmp

-- lineitem table primary key

ON ( orig.l_orderkey = tmp.l_orderkey

AND orig.l_linenumber = tmp.l_linenumber )

DROP TABLE lineitem;

ALTER TABLE lineitem_updated RENAME TO lineitem;

As another example consider the following Type 2 UP-
DATE queries, that modify the ‘lineitem’ table based on
the results of a join with the ‘orders’ table:

UPDATE lineitem

FROM lineitem l

, orders o

SET l.l_tax = 0.1

WHERE l.l_orderkey = o.o_orderkey

AND o.o_totalprice BETWEEN 0 AND 50000

AND o.o_orderpriority = ‘2-HIGH’

AND o.o_orderstatus = ‘F’;

UPDATE lineitem

FROM lineitem l

, orders o

SET l_shipmode = ‘AIR’

WHERE l.l_orderkey = o.o_orderkey

AND o.o_totalprice BETWEEN 50001 AND 100000

AND o.o_orderpriority = ‘2-HIGH’

AND o.o_orderstatus = ‘F’;

can be consolidated and converted into a CREATE-JOIN-
RENAME flow as follows:

CREATE TABLE lineitem_tmp AS

SELECT CASE

WHEN o.o_totalprice BETWEEN 0 AND 50000

THEN 0.1 ELSE l_tax END AS l_tax

, CASE

WHEN o.o_totalprice BETWEEN 50001 AND 100000

THEN ‘AIR’ ELSE l_shipmode

END AS l_shipmode

, l_orderkey

, l_linenumber

FROM lineitem l

, orders o

WHERE l.l_orderkey = o.o_orderkey

AND o.o_totalprice BETWEEN 0 and 100000

AND o.o_orderpriority = ‘2-HIGH’

AND o.o_orderstatus = ‘F’;

CREATE TABLE lineitem_updated AS

SELECT orig.l_shipdate

, orig.l_commitdate

, orig.l_receiptdate

, orig.l_orderkey

, orig.l_partkey

, orig.l_suppkey

, orig.l_linenumber

, orig.l_extendedprice

, Nvl(tmp.l_tax, orig.l_tax) AS l_tax

, orig.l_returnflag

, orig.l_linestatus

, Nvl(tmp.l_shipmode, orig.l_shipmode) AS l_shipmode

, orig.l_shipinstruct

, orig.l_discount

, orig.l_comment

FROM lineitem orig

LEFT OUTER JOIN lineitem_tmp tmp

ON ( orig.l_orderkey = tmp.l_orderkey

AND orig.l_linenumber = tmp.l_linenumber )

DROP TABLE lineitem;

ALTER TABLE lineitem_updated RENAME TO lineitem;

We also looked at the problem of constructing a control
flow graph of the stored procedure and performed a static
analysis on this graph. If the number of different flows are
manageably finite, we can generate a consolidation sequence
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for each of the different flows independently thus enabling
the user to script these flows independently. However we
omit all the implementation details here, as it is beyond the
scope of this paper.

4. EXPERIMENTAL EVALUATION
In this section, we evaluate the performance of the various

recommendations discussed in the previous sections using
two different workloads. The first workload is TPC-H at
the 100 GB scale, which we call TPCH-100. Our second
workload belongs to a customer in the financial sector. This
customer has 578 tables with 3038 number of columns. The
table sizes vary from 500 GB to 5TB. We call this workload
CUST-1.

We have setup representative clusters to measure the per-
formance of the system. This cluster has 21 nodes with 1
master and 20 data nodes. The data nodes are the AWS
m3.xlarge kind, with 4 core vCpu, 2.6 GHZ, 15GB of main
memory and 2 X 40GB SSD storage. In all the experiments
’time’ refers to the wall clock time as reported by the execut-
ing Hive query. There are no other queries running on the
system. For simplicity, we ignore the HDFS and other OS
caches. The experiments presented should be interpreted as
directional rather than exhaustive empirical validation.

4.1 Aggregate Table Recommendation
For aggregate table generation we ran our experiments on

the CUST-1 setup.

4.1.1 Clustering similar queries
In our first set of experiments we evaluate the quality

of aggregate tables generated with and without clustering
similar queries together. We divided a workload with 6597
queries into set of clusters using the clustering algorithm,
thus reducing the number of queries to a group of smaller
workloads. We empirically show how this approach provides
aggregate table recommendations with better run time bene-
fits. The first four smaller workloads are comprised of similar
queries detected by a clustering algorithm that is run over
the 6597 queries. In the fifth workload we bundle all the
6597 queries together. Figure 4 displays how the workloads
vary in size from 18 to 6597 queries.

Figure 5 and figure 6 show the results of executing the
aggregate table recommendation algorithm on these 5 work-
loads. As demonstrated in these results, the time taken for
the algorithm does not have a direct correlation to the input
workload size. The algorithm converges to a solution when
it reaches a locally optimum solution. When similar queries
are clustered together the chances of the locally optimum so-
lution being globally optimum are high. In our experiments
when the algorithm is run on all the queries it converges
to a globally sub-optimum solution, recommending an ag-
gregate table that benefits fewer queries - and hence has a
lower estimated cost saving. The estimated cost savings for
each cluster is computed as the sum of the estimated cost
savings for each query in that cluster. The estimated cost
of each query is derived by computing the IO scans required
for each table and then propagating these up the join ladder
to get the final estimated cost of the query. The cost savings
is the difference in estimated cost when a query runs on base
tables versus the aggregated table.

Figure 4: Number of queries per workload.

Figure 5: Execution time of aggregate table algo-
rithm.

Figure 6: Estimated Cost savings per workload.
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Table 3: Merge and Prune
Execution Time in milli seconds

Workload Name With merge
and prune

Without merge
and prune

Cluster 1 2.092 2.107
Cluster 2 18.919 > 4hrs.
Cluster 3 26.567 > 4hrs.
Cluster 4 31.972 > 4hrs.
Entire Workload 5.279 5.160

4.1.2 Merge and prune
In this set of experiments we evaluate the run time of

the algorithm with and without the merge and prune en-
hancement. We run the algorithm on the same workloads
we created for the earlier experiment. We terminated the
execution of the algorithm after 4 hours. In the case where
the algorithm converges to a solution early on, removal of
merge and prune has no effect. But in the other cases the al-
gorithm without merge and prune enhancements takes more
than 4 hours to complete and so was terminated. When the
algorithm ran to completion without merge and prune, we
found no change in the definition of the output aggregate
table. The results are tabulated in Table 3.

4.2 Update Consolidation
For update consolidation, we ran our experiments on the

TPCH-100 setup. We hand-crafted 2 stored procedures atop
TPC-H data inspired from a real world customer workload.
The number of consolidations we found in the stored pro-
cedure are shown in Table 4. Column 2 shows the number
of queries in each stored procedure. Column 3 shows the
groups of consolidated queries represented by the index of
the query in the stored procedure. We see that sometime
there are as many as 14 queries that are consolidated into a
single group. We also observed that with templatized code
generation, there is a lot of scope for consolidating queries.

For comparison purposes, we take the entire stored pro-
cedure and convert the queries inside it to equivalent IN-
SERT/UPDATE queries. Any loops in the stored proce-
dures are expanded to evaluate all updated columns - and
consider each one for consolidation. Two-way IF/ELSE con-
ditions are simplified to take all the IF logic in one run, and
ELSE logic in the other run. N-way IF/ELSE conditions
were ignored.

From our results, we observe that on consolidating 5 queries
into a single query, the performance impact is not 5x, for the
following reasons:

1. The consolidated CREATE query might have more
columns than the individual queries, therefore the amount
of data it writes will be larger.

2. If there are few or no common subexpressions, then
we re-write the whole table or a significantly higher
portion of the table.

But our performance results indicate that even with these
caveats, UPDATE consolidation is very efficient compared
to individually mapped queries. In all our cases, we found
that consolidating even two queries is better than individu-
ally executing these queries.

Figure 7: Execution time of consolidated vs non-
consolidated queries.

Figure 8: Storage requirements of update queries.
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Table 4: Update Consolidation groups
Stored procedure Number of queries Consolidation groups
1 38 {6,7,9} ,{10,11} ,{12,14,16,18,20,22,24,26,28} ,{30,32,34,36}
2 219 {113,119,125,131} ,{173,175,177,179,181,183,185,187,189,191,193,195,197,199}

The time taken for detecting UPDATE consolidations is
less than a second; hence it was ignored in these measure-
ments. We assume that the database has no triggers, all
the tables are independent and updating a table does not
incur UPDATEs to tables that are not part of the query.
We plot the execution time of non-consolidated queries to
consolidated queries in figure 7. The largest group with 14
queries shows a performance improvement of 10x. Even for
a group of 2 queries, we see a minimum performance im-
provement of 80%. The baseline update performance which
is spanning few minutes is not an uncommon scenario in
SQL-on-Hadoop engines.

The graph in figure 8 shows the storage ratio for consol-
idated and non-consolidated queries for the size of the con-
solidation group. If there are multiple groups with the same
size, we take the harmonic average of all the groups of the
given size. The intermediate storage required for consolida-
tion varies from approximately 2x to as large as 10x when
compared to the average storage requirement for individual
non-consolidated queries. However in many cases the size of
the intermediate table is also significantly less than the orig-
inal table. In the Hadoop ecosystem, storage is considered a
cheap resource and if performance of the UPDATE queries
is important, it is certainly worth the trade-off.

These stored procedures are part of a daily workflow that
the customer executes, hence the time savings obtained by
update consolidation are not only significant but also ex-
tremely useful in the big data environment.

5. CONCLUSION & FUTURE WORK
As large scale new and legacy applications are deployed on

Hadoop, automated workload-level optimization strategies
can greatly help improve the performance of SQL queries.
In this paper, we propose creating aggregate tables after
first deriving clusters of similar queries from SQL workloads,
and demonstrate that in some cases execution time and ef-
ficiency improvements of about 1500% can be achieved by
using clustered set of queries versus a disparate set of queries
as input to the aggregate table creation algorithm. We have
also shown empirically that a merge and prune optimiza-
tion strategy helps the aggregate table creation algorithm
converge to a solution, even in cases where it could not con-
verge to a solution. We also showed that 2 to 10X execution
time savings can be realized in some cases, when UPDATE
queries can be consolidated. Both these optimizations are
critical in the Hadoop environment when tables, columns
and queries are at very large scales and query response times
are of significance.

Advisors [8] [7] [15] [13] [9] rightly emphasize the need
for an integrated strategy that evaluates and recommends
aggregate table and indexing candidates, together. In the
Hadoop ecosystem, partitioning features are the closest log-
ical equivalent to indexes. Currently, if statistical informa-
tion on a table (such as table volume and column NDVs) is
provided, our tool recommends partitioning key candidates
for a given table based on the analysis of filter and join pat-

terns most heavily used by queries on the table. We plan to
extend this logic to discover partitioning keys for the aggre-
gate tables, thus providing an integrated recommendation
strategy.

A further area of focus for the UPDATE consolidation op-
timization is to explore opportunities to coalesce operations.
For example, operations on the temporary table generated
in our algorithm can be consolidated to reduce the size of
these tables and improve the efficiency of UPDATEs. We are
also investigating UPDATE consolidation techniques when
UPDATEs are interleaved with control-flow-logic.

Apart from the applicability of our work to adopters of
Hive, Impala and Spark SQL who want to optimize their
workloads, EDW and BI tools can also use these techniques
to improve the efficiency of their workloads.
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