
Data-driven Schema Normalization

Thorsten Papenbrock
Hasso Plattner Institute (HPI)

14482 Potsdam, Germany
thorsten.papenbrock@hpi.de

Felix Naumann
Hasso Plattner Institute (HPI)

14482 Potsdam, Germany
felix.naumann@hpi.de

ABSTRACT
Ensuring Boyce-Codd Normal Form (BCNF) is the most
popular way to remove redundancy and anomalies from
datasets. Normalization to BCNF forces functional depen-
dencies (FDs) into keys and foreign keys, which eliminates
duplicate values and makes data constraints explicit. De-
spite being well researched in theory, converting the schema
of an existing dataset into BCNF is still a complex, manual
task, especially because the number of functional dependen-
cies is huge and deriving keys and foreign keys is NP-hard.

In this paper, we present a novel normalization algorithm
called Normalize, which uses discovered functional depen-
dencies to normalize relational datasets into BCNF. Nor-
malize runs entirely data-driven, which means that redun-
dancy is removed only where it can be observed, and it
is (semi-)automatic, which means that a user may or may
not interfere with the normalization process. The algorithm
introduces an efficient method for calculating the closure
over sets of functional dependencies and novel features for
choosing appropriate constraints. Our evaluation shows that
Normalize can process millions of FDs within a few min-
utes and that the constraint selection techniques support the
construction of meaningful relations during normalization.

1. FUNCTIONAL DEPENDENCIES
A functional dependency (FD) is a statement of the form

X → A with X being a set of attributes and A being a single
attribute from the same relation R. We say that the left-
hand-side (Lhs) X functionally determines the right-hand-
side (Rhs) A. This means that whenever two records in an
instance r of R agree on all their X values, they must also
agree on their A value [7]. More formally, an FD X → A
holds in r, iff ∀t1, t2 ∈ r : t1[X] = t2[X]⇒ t1[A] = t2[A]. In
the following, we consider only non-trivial FDs, which are
FDs with A /∈ X.

Table 1 depicts an example address dataset for which
the two functional dependencies Postcode→City and Post-
code→Mayor hold. Because both FDs have the same Lhs, we

c©2017, Copyright is with the authors. Published in Proc. 20th Inter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

Table 1: Example address dataset
First Last Postcode City Mayor

Thomas Miller 14482 Potsdam Jakobs
Sarah Miller 14482 Potsdam Jakobs
Peter Smith 60329 Frankfurt Feldmann

Jasmine Cone 01069 Dresden Orosz
Mike Cone 14482 Potsdam Jakobs

Thomas Moore 60329 Frankfurt Feldmann

can aggregate them to the notation Postcode→City,Mayor.
The presence of this FD introduces anomalies in the data-
set, because the values Potsdam, Frankfurt, Jakobs, and
Feldmann are stored redundantly and updating these values
might cause inconsistencies. So if, for instance, some Mr.
Schmidt was elected as the new mayor of Potsdam, we must
correctly change all three occurrences of Jakobs to Schmidt.

Such anomalies can be avoided by normalizing relations
into the Boyce-Codd Normal Form (BCNF). A relational
schema R is in BCNF, iff for all FDs X → A in R the Lhs
X is either a key or superkey [7]. Because Postcode is neither
a key nor a superkey in the example dataset, this relation
does not meet the BCNF condition. To bring all relations of
a schema into BCNF, one has to perform six steps, which are
explained in more detail later: (1) discover all FDs, (2) ex-
tend the FDs, (3) derive all necessary keys from the extended
FDs, (4) identify the BCNF-violating FDs, (5) select a vio-
lating FD for decomposition (6) split the relation according
to the chosen violating FD. The steps (3) to (5) repeat un-
til step (4) finds no more violating FDs and the resulting
schema is BCNF-conform. We find several FD discovery
algorithms, such as Tane [14] and HyFD [19], that serve
step (1), but there are, thus far, no algorithms available to
efficiently and automatically solve the steps (2) to (6).

For the example dataset, an FD discovery algorithm would
find twelve valid FDs in step (1). These FDs must be ag-
gregated and transitively extended in step (2) so that we
find, inter alia, First,Last→Postcode,City,Mayor and Post-
code→City,Mayor. In step (3), the former FD lets us derive
the key {First, Last}, because these two attributes function-
ally determine all other attributes of the relation. Step (4),
then, determines that the second FD violates the BCNF
condition, because its Lhs Postcode is neither a key nor su-
perkey. If we assume that step (5) is able to automatically
select the second FD for decomposition, step (6) decom-
poses the example relation into R1(First, Last,Postcode) and
R2(Postcode,City,Mayor) with {First, Last} and {Postcode}
being primary keys and R1.Postcode→R2.Postcode a foreign
key constraint. Table 2 shows this result. When again check-
ing for violating FDs, we do not find any and stop the nor-

Series ISSN: 2367-2005 342 10.5441/002/edbt.2017.31

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2017.31

Table 2: Normalized example address dataset
First Last Postcode

Thomas Miller 14482
Sarah Miller 14482
Peter Smith 60329

Jasmine Cone 01069
Mike Cone 14482

Thomas Moore 60329

Postcode City Mayor

14482 Potsdam Jakobs
60329 Frankfurt Feldmann
01069 Dresden Orosz

malization process with a BCNF-conform result. Note that
the redundancy in City and Mayor has been removed and the
total size of the dataset was reduced from 36 to 27 values.

Because memory became a lot cheeper in the last years,
there is a trend of not normalizing datasets for performance
reasons. Normalization is, hence, today often claimed to be
obsolete. This claim is false and ignoring normalization is
dangerous for the following reasons [8]:

1. Normalization removes redundancy and, in this way, de-
creases error susceptibility and memory consumption. While
memory might be relatively cheep, data errors can have se-
rious and expensive consequences and should be avoided at
all costs.

2. Normalization does not necessarily decrease query perfor-
mance; in fact, it can even increase the performance. Some
queries might need some additional joins after normaliza-
tion, but others can read the smaller relations much faster.
Also, more focused locks can be set, increasing parallel ac-
cess to the data, if the data has to be changed. So the
performance impact of normalization is not determined by
the normalized dataset but by the application that uses it.

3. Normalization increases the understanding of the schema
and of queries against this schema: Relations become
smaller and closer to the entities they describe; their com-
plexity decreases making them easier to maintain and ex-
tend. Furthermore, queries against the relations become eas-
ier to formulate and many mistakes are easier to avoid. For
instance, aggregations over columns with redundant values
are hard to formulate correctly.

In summary, normalization should be the default and
denormalization a conscious decision, i.e., ”we should de-
normalize only at a last resort [and] back off from a fully
normalized design only if all other strategies for improving
performance have failed, somehow, to meet requiremnts“,
C. J. Date, p. 88 [8].

The objective of this work is to normalize a given rela-
tional instance into Boyce-Codd Normal Form. Note that
we do not aim to recover a certain schema nor do we aim to
design a new schema using business logic. To solve the nor-
malization task, we propose a data-driven, (semi-)automatic
normalization algorithm that removes all FD-related redun-
dancy while still providing full information recoverability.
Being data-driven means that all FDs used in the normal-
ization process are extracted directly from the data and
that all decomposition proposals are based solely on data-
characteristics. In other words, we consider only redundancy
that can actually be observed in a given relational instance.

The advantage of a data-driven normalization approach
over state-of-the-art schema-driven approaches is that it can

use the data to expose all syntactically valid normalization
options, i.e., functional dependencies with evidence in the
data, so that the algorithm (or the user) must only decide for
a normalization path and not find one. The number of FDs
can, indeed, become large, but we show that an algorithm
can effectively propose the semantically most appropriate
options. Furthermore, knowing all FDs allows for a more
efficient normalization algorithm as opposed to having only
a subset of FDs.

Research challenges. In contrast to the vast amount of
research on normalization in the past decades, we do not
assume that the FDs are given, because this is almost never
the case in practice. We also do not assume that a human
data expert is able to manually identify them, because the
search is difficult by nature and the actual FDs are often
not obvious. The FD Postcode→City from our example, for
instance, is commonly believed to be true although it is usu-
ally violated by exceptions where two cities share the same
postcode; the FD Atmosphere→Rings, on the other hand, is
difficult to discover for a human but in fact holds on various
datasets about planets. For this reason, we automatically
discover all (minimal) FDs. This introduces a new challenge,
because we now deal with much larger, often spurious, but
complete sets of FDs.

Using all FDs of a particular relational instance in the
normalization process further introduces the challenge of
selecting appropriate keys and foreign keys from the FDs
(see Step (5)), because most of the FDs are coincidental,
i.e., they are syntactically true but semantically false. This
means that when the data changes these semantically invalid
FDs could be violated and, hence, no longer work as a con-
straint. So we introduce features to automatically identify
(and choose) reliable constraints from the set of FDs, which
is usually too large for a human to manually examine.

Even if all FDs are semantically correct, selecting ap-
propriate keys and foreign keys is still difficult. The deci-
sions made here define which decompositions are executed,
because decomposition options are often mutually exclu-
sive: If, for instance, two violating FDs overlap, one split
can make the other split infeasible. This happens, because
BCNF normalization is not dependency preserving [12]. In
all these constellations, however, some violating FDs are se-
mantically better choices than others, which is why violating
FDs must not only be filtered but also ranked by such qual-
ity features.

Another challenge, besides guiding the normalization pro-
cess in the right direction, is the computational complexity
of the normalization. Beeri and Bernstein have proven that
the question “Given a set of FDs and a relational schema
that embodies it, does the schema violate BCNF?” is NP-
complete in the number of attributes [3]. To test this, we
need to check that the Lhs of each of these FDs is a key or
a super key, i.e., if each Lhs determines all other attributes.
This is trivial if all FDs are transitively fully extended, i.e.,
they are transitively closed. For this reason, the complex-
ity lies in calculating these closures (see Step (2)). Because
no current algorithm is able to solve the closure calculation
efficiently, we propose novel techniques for this sub-task of
schema normalization.

Overall, the number of functional dependencies in datasets
is typically much greater than a human expert can manually
cope with [18]. A normalization algorithm must, therefore,
be able to handle such very large inputs automatically.

343

Contributions. We propose a novel, instance-based
schema normalization algorithm called Normalize that can
perform the normalization of a relational dataset automati-
cally or supervised by an expert. Being able to put a human
in the loop enables the algorithm to combine its analytical
strengths with the domain knowledge of an expert. With
Normalize and this paper, we make the following contri-
butions:

a) Schema normalization. We show how the entire schema
normalization process can be implemented as one algorithm,
which no previous work has done before. We discuss each
component of this algorithm in detail. The main contribu-
tion of our (semi-)automatic approach is to incrementally
weed out semantically false FDs by focusing on those FDs
that are most likely true.

b) Closure calculation. We present two efficient closure al-
gorithms, one for general FD result sets and one for complete
result sets. Their core innovations include a more focused ex-
tension procedure, the use of efficient index-structures, and
parallelization. These algorithms are not only useful in the
normalization context, but also for many other FD-related
tasks, such as query optimization, data cleansing, or schema
reverse-engineering.

c) Violation detection. We propose a compact data struc-
ture, i.e., a prefix tree, to efficiently detect FDs that violate
BCNF. This is the first approach to algorithmically improve
this step. We also discuss how this step can be changed to
discover violating FDs for normal forms other than BCNF.

d) Constraint selection. We contribute several features to
rate the probability of key and foreign key candidates for
actually being constraints. With the results, the candidates
can be ranked, filtered, and selected as constraints during
the normalization process. The selection can be done by
either an expert or by the algorithm itself. Because all pre-
vious works on schema normalization assumed all input FDs
to be correct, this is the first solution for a problem that has
been ignored until now.

e) Evaluation. We evaluate our algorithms on several
datasets demonstrating the efficiency of the closure calcu-
lation on complete, real-world FD result sets and the feasi-
bility of (semi-)automatic schema normalization.

The remainder of this paper is structured as follows: First,
we discuss related work in Section 2. Then, we introduce the
schema normalization algorithm Normalize in Section 3.
The following sections go into more detail explaining the
closure calculation in Section 4, the key derivation in Sec-
tion 5, and the violation detection in Section 6. Section 7,
then, introduces assessment techniques for key and foreign
key candidates. The normalization algorithm is finally eval-
uated in Section 8 and we conclude in Section 9.

2. RELATED WORK
Normal forms for relational data have been extensively

studied since the proposal of the relational data model it-
self [6]. For this reason, many normal forms have been pro-
posed. Instead of giving a survey on normal forms here, we
refer the interested reader to [10]. The Boyce-Codd Nor-
mal Form (BCNF) [7] is the most popular normal form, be-
cause it removes most kinds of redundancy from relational
schemata. This is why we focus on this particular normal
form in this paper. Most of the proposed techniques can,

however, likewise be used to create other normal forms. The
idea for our normalization algorithm follows the BCNF de-
composition algorithm proposed in [12] and many other text
books on database systems. The algorithm eliminates all
anomalies related to functional dependencies while still guar-
anteeing full information recoverability via natural joins.

Schema normalization and especially the normalization
into BCNF are well studied problems [3, 5, 16]. Bernstein
presents a complete procedure for performing schema syn-
thesis based on functional dependencies [4]. In particular,
he shows that calculating the closure over a set of FDs is a
crucial step in the normalization process. He also lays the
theoretical foundation for our paper. But like most other
works on schema normalization, Bernstein takes the func-
tional dependencies and their semantic validity as a given –
an assumption that hardly applies, because FDs are usually
hidden in the data and must be discovered. For this reason,
existing works on schema normalization greatly underesti-
mate the number of valid FDs in non-normalized datasets
and they also ignore the task of filtering the syntactically
correct FDs for semantically meaningful ones. These reasons
make those normalization approaches inapplicable in prac-
tice. In this paper, we propose a normalization system that
covers the entire process from FD discovery over constraint
selection up to the final relation decomposition. We show
the feasibility of this approach in practical experiments.

There are other works on schema normalization, such as
the work of Diederich and Milton [9], who understood that
calculating the transitive closure over the FDs is a compu-
tational complex task that becomes infeasible facing real-
world FD sets. As a solution, they propose to remove so
called extraneous attributes from the FDs before calculat-
ing the closure, which reduces the calculation costs signifi-
cantly. However, if all FDs are minimal, which is the case
in our normalization process, then no extraneous attributes
exist, and the proposed pruning strategy is futile.

One important difference between traditional normaliza-
tion approaches and our algorithm is that we retrieve all
minimal FDs from a given relational instance to exploit
them for closure calculation (syntactic step) and constraint
selection (semantic step). The latter has received little at-
tention in previous research. In [2], Andritsos et al. proposed
to rank the FDs used for normalization by the entropy of
their attribute sets: The more duplication an FD removes,
the better it is. The problem with this approach is that it
weights the FDs only for effectiveness and not for semantic
relevance. Entropy is also expensive to calculate, which is
why we use different features. In fact, we use techniques
inspired by [20], who extracted foreign keys from inclusion
dependencies.

Schema normalization is a sub-task in schema design and
evolution. There are numerous database administration
tools, such as Navicat1, Toad2, and MySQL Workbench3,
that support these overall tasks. Most of them transform
a given schema into an ER-diagram that a user can manip-
ulate. All manipulations are then translated back to the
schema and its data. Such tools are partly able to support
normalization processes, but none of them can automatically
propose normalizations with FDs retrieved from the data.

1https://www.navicat.com/
2http://www.toadworld.com/
3http://www.mysql.com/products/workbench/

344

In [3], the authors propose an efficient algorithm for the
membership problem, i.e., the problem of testing whether
one given FD is in the cover or not. This algorithm does
not solve the closure calculation problem, but the authors
propose some improvements in that algorithm that our im-
proved closure algorithm uses as well, e.g., testing only for
missing attributes on the Rhs. They also propose derivation
trees as a model for FD derivations, i.e., deriving further FDs
from a set of known FDs using Armstrong’s inference rules.
Because no algorithm is given for their model, we cannot
compare our solution against it.

As stated above, the discovery of functional dependencies
from relational data is a prerequisite for schema normaliza-
tion. Fortunately, FD discovery is a well researched problem
and we find various algorithms to solve it. In this work, we
utilize the HyFD algorithm, which is the most efficient FD
discovery algorithm at the time [19]. This algorithm discov-
ers – like almost all FD discovery algorithms – the complete
set of all minimal, syntactically valid FDs in a given rela-
tional dataset. We exploit these properties, i.e., minimality
and completeness in our closure algorithm.

3. SCHEMA NORMALIZATION
To normalize a schema into Boyce-Codd Normal Form

(BCNF), we implement the straightforward BCNF decom-
position algorithm shown in most textbooks on database sys-
tems, such as [12]. The BCNF-conform schema produced by
this algorithm is always a tree-shaped snowflake schema, i.e.,
the foreign key structure is hierarchical and cycle-free. For
this reason, our normalization algorithm is not designed to
(re-)construct arbitrary non-snowflake schemata. It, how-
ever, removes all redundancy related to functional depen-
dencies from the relations. If other schema design decisions
that lead to alternative schema topologies are necessary, the
user must (and can!) interactively choose different decom-
positions other than the ones our algorithm can propose.

In the following, we propose a normalization process that
takes an arbitrary relational instance as input and returns a
BCNF-conform schema for it. The input dataset can contain
one or more relations, and no other metadata than the data-
set’s schema is required. This schema, which is incremen-
tally changed during the normalization process, is globally
known to all algorithmic components. We refer to a dataset’s
schema as its set of relations, specifying attributes, tables,
and key/foreign key constraints. For instance, the schema of
our example dataset in Table 2 is {R1(First, Last,Postcode),
R2(Postcode,City,Mayor)}. Underlined attributes represent
keys and same attribute names represent foreign keys.

Figure 1 gives an overview of the normalization algorithm,
which we call Normalize. In contrast to other normaliza-
tion algorithms, such as those proposed in [4] or [9], Nor-
malize does not have any components responsible for min-
imizing FDs or removing extraneous FDs. This is because
the set of FDs on which we operate, is not arbitrary; it con-
tains only minimal and, hence, no extraneous FDs due to
the FD discovery step. We now introduce the components
step by step and discuss the entire normalization process.

(1) FD Discovery. Given a relational dataset, the first
component is responsible for discovering all minimal func-
tional dependencies. Any known FD discovery algorithm,
such as Tane [14] or Dfd [1], can be used, because all these
algorithms are able to discover the complete set of minimal

Figure 1: “Normalize” and its components.

FDs in relational datasets. We make use of our HyFD [19]
algorithm here, because it is the most efficient algorithm for
this task and it offers special pruning capabilities that we
can exploit later in the normalization process. In summary,
the first component reads the data, discovers all FDs, and
sends them to the second component. For more details on
this discovery step, we refer to [19].

(2) Closure Calculation. The second component calcu-
lates the closure over the given FDs. The closure is needed
by subsequent components to infer keys and normal form
violations. Formally, the closure X+

F over a set of attributes
X given the FDs F is defined as the set of attributes X
plus all additional attributes Y that we can add to X us-
ing F and Armstrong’s transitivity axiom [9]. If, for ex-
ample, X = {A,B} and F = {A → C, C → D}, then
X+

F = {A,B,C,D}. We now define the closure F+ over a
set of FDs F as a set of extended FDs: The Rhs Y of each
FD X → Y ∈ F is extended such that X∪Y = X+

F . In other
words, each FD in F is maximized using Armstrong’s tran-
sitivity axiom. Because, as Beeri et al. have shown [3], this
is an NP-hard task with respect to the number of attributes
in the input relation, we shall propose an efficient FD exten-
sion algorithm that finds transitive dependencies via prefix
tree lookups. This algorithm iterates the set of FDs only
once and is able to parallelize its work. It exploits the fact
that the given FDs are minimal and complete (Section 4).

(3) Key Derivation. The key derivation component col-
lects those keys from the extended FDs that the algorithm
requires for schema normalization. Such a key X is a set of
attributes for which X → Y ∈ F+ and X ∪ Y = Ri with Ri

being all attributes of relation i. In other words, if X deter-
mines all other attributes, it is a key for its relation. Once
discovered, these keys are passed to the next component.
Our method of deriving keys from extended functional de-
pendencies does not reveal all existing keys in the schema,
but we prove in Section 5 that only the derived keys are
needed for BCNF normalization.

(4) Violating FD Identification. Given the extended
FDs and the set of keys, the violation detection component
checks all relations for being BCNF-conform. Recall that
a relation R is BCNF-conform, iff for all FDs X → A in

345

that relation the Lhs X is either a key or superkey. So
Normalize checks the Lhs of each FD for having a (sub)set
in the set of keys; if no such (sub)set can be found, the FD
is reported as a BCNF violation. Note that one could setup
other normalization criteria in this component to accomplish
3NF or other normal forms. If FD violations were identified,
these are reported to the next component; otherwise, the
schema is BCNF-conform and can be sent to the primary
key selection. We propose an efficient technique to find all
violating FDs in Section 6.

(5) Violating FD Selection. The violating FD selection
component is called with a set of violating FDs, if some
relations are not yet in BCNF. In this case, the compo-
nent scores all violating FDs for being good foreign key con-
straints. With these scores, the algorithm creates a ranking
of violating FDs for each non-BCNF relation. From each
ranking, a user picks the most suitable violating FD for nor-
malization; if no user is present, the algorithm automatically
picks the top ranked FD. Note that the user, if present, can
also decide to pick none of the FDs, which ends the normal-
ization process for the current relation. This is reasonable if
all presented FDs are obviously semantically incorrect, i.e.,
the FDs hold on the given data accidentally but have no real
meaning. Such FDs are presented with a relatively low score
at the end of the ranking. Eventually, the iterative process
automatically weeds out most of the semantically incorrect
FDs by selecting only semantically reliable FDs in each step.
We discuss the violating FD selection together with the key
selection in Section 7.

(6) Schema Decomposition. Knowing the violating FDs,
the actual schema decomposition is a straight-forward task:
Each relation R, for which a violating FD X → Y is given,
is split into two parts – one part without the redundant at-
tributes R1 = R\Y and one part with the FD’s attributes
R2 = X ∪ Y . Now X automatically becomes the new pri-
mary key in R2 and a foreign key in R1. With these new re-
lations, the algorithm goes back into step (3), the key selec-
tion, because new keys might have appeared in R2, namely
those keys Z for which Z → X holds. Because the decompo-
sition itself is straightforward, we do not go into more detail
for this component in this paper.

(7) Primary Key Selection. The primary key selection is
the last component in the normalization process. It makes
sure that every BCNF-conform relation has a primary key
constraint. Because the decomposition component already
assigns keys and foreign keys when splitting relations, most
relations already have a primary key. Only those relations
that had no primary key at the beginning of the normal-
ization process are processed by this component. For them,
the algorithm assigns a primary key in a (semi-)automated
way: All keys of the respective relation are scored for being
a good primary key; then the keys are ranked by their score
and either a human picks a primary key from this ranking,
or the algorithm automatically picks the highest ranked key
as the relation’s primary key. Section 7 describes the scoring
and selection of keys in more detail.

Once the closure of all FDs is calculated, the compo-
nents (3) to (6) form a loop: This loop drives the normal-
ization process until component (4) finds the schema to be
BCNF-conform. Overall, the proposed components can be
grouped into two classes: The first class includes the compo-

nents (1), (2), (3), (4), and (6) and operates on a syntactic
level; the results in this class are well defined and the focus is
set on performance optimization. The second class includes
the components (5) and (7) and operates on a semantic level;
the computations here are easy to execute but the choices
are difficult and the quality of the result matters.

4. CLOSURE CALCULATION
Armstrong formulated the following three axioms for func-

tional dependencies on attribute sets X, Y , and Z [3]:

1. Reflexivity : If Y ⊆ X, then X → Y .
2. Augmentation: If X → Y , then X ∪ Z → Y ∪ Z.
3. Transitivity : If X → Y and Y → Z, then X → Z.

For schema normalization, we are given a set of FDs F and
need to find a cover F+ that maximizes the right hand side
of each FD in F . The maximization of FDs is important
to identify keys and to decompose relations correctly. In
our running example, for instance, we might be given Post-
code→City and City→Mayor. A correct decomposition with
foreign key Postcode requires Postcode→City,Mayor; other-
wise we would lose City→Mayor, because the attributes City
and Mayor would end up in different relations. Therefore,
we apply Armstrong’s transitivity axiom on F to calculate
its cover F+.

The closure F+ extends each FD using Armstrong’s re-
flexivity and transitivity axioms. Augmentation need not
be used, because this rule generates new, non-minimal FDs
instead of extending existing ones. The decomposition steps
require the FDs’ Lhs to be minimal, i.e., removing any at-
tribute from X would invalidate X → Y , because X should
become a minimal key after decomposition.

The reflexivity axiom adds all Lhs attributes to an FD’s
Rhs. To reduce memory consumption, we make this exten-
sion only implicit: We assume that Lhs attributes always
also belong to an FD’s Rhs without explicitly storing them
on that side. For this reason, we apply the transitivity axiom
for attribute sets W , X, Y , and Z as follows: If W → X,
Y → Z, and Y ⊆ W ∪X, then W → Z. So if, for instance,
the FD First,Last→Mayor is given, we can extend the FD
First,Postcode→Last with the Rhs attribute Mayor, because
{First, Last} ⊆ {First, Postcode} ∪ {Last}.

In the following, we discuss three algorithms for calculat-
ing F+ from F : A naive algorithm, an improved algorithm
for arbitrary sets of FDs, and an optimized algorithm for
complete sets of minimal FDs. While the second algorithm
might be useful for closure calculation in other contexts,
such as query optimization or data cleansing, we recommend
the third algorithm for our normalization system. All three
algorithms store F , which is transformed into F+, in the
variable fds.

4.1 Naive closure algorithm
The naive closure algorithm, which was already intro-

duced as such in [9], is given as Algorithm 1. For each
functional dependency in fds (Line 3), the algorithm iter-
ates all other FDs (Line 4) and tests if these extend the
current FD (Line 5). If an extension is possible, the cur-
rent FD is updated (Line 6). These updates might enable
further updates for already tested FDs. For this reason, the
naive algorithm iterates the FDs until an entire pass has not
added any further extensions (Line 8).

346

Algorithm 1: Naive Closure Calculation

Data: fds
Result: fds

do1

somethingChanged ← false;2

foreach fd ∈ fds do3

foreach otherFd ∈ fds do4

if otherFd.lhs ⊆ fd.lhs ∪ fd.rhs then5

fd.rhs ← fd.rhs ∪ otherFd.rhs;6

somethingChanged ← true;7

while somethingChanged ;8

return fds;9

4.2 Improved closure algorithm
There are several ways to improve the naive closure algo-

rithm, some of which have already been proposed in similar
form in [9] and [3]. We now present an improved closure
algorithm that solves the following three issues: First, the
algorithm should not check all other FDs when extending
one specific FD, but only those that can possibly link to a
missing Rhs attribute. Second, when looking for a miss-
ing Rhs attribute, the algorithm should not check all other
FDs that can provide it, but only those that have a subset-
relation with the current FD, i.e., those that are relevant for
extensions. Third, the change-loop should not iterate the
entire FD set, because some FDs must be extended more
often than others so that many extension tests are executed
superfluously.

Algorithm 2 shows our improved version. First, we remove
the nested loop over all other FDs and replace it with index
lookups. The index structure we propose is a set of prefix-
trees, aka. tries. Each trie stores all FD Lhss that have the
same, trie-specific Rhs attribute. Having an index for each
Rhs attribute allows the algorithm to check only those other
FDs that can deliver a link to a Rhs attribute that a current
FD is actually missing (Line 8).

The lhsTries are constructed before the algorithm starts
extending the given FDs (Lines 1 to 4). Each index-lookup
must then not iterate all FDs referencing the missing Rhs
attribute; it instead performs a subset search in the accord-
ing prefix tree, because the algorithm is specifically looking
for an FD whose Lhs is contained in the current FD’s Rhs
attributes (Line 9). The subset search is much more effec-
tive than iterating all possible extension candidates and has
already been proposed for FD generalization lookups in [11].

As a third optimization, we propose to move the change-
loop inside the FD-loop (Line 6). Now, a single FD that
requires many transitive extensions in subsequent iterations
does not trigger the same number of iterations over all FDs,
which mostly are already fully extended.

4.3 Optimized closure algorithm
Algorithm 2 works well for all sets of FDs, but we can

further optimize the algorithm with the assumption that
these sets contain all minimal FDs. Algorithm 3 shows this
more efficient version for complete sets of minimal FDs.

Like Algorithm 2, the optimized closure algorithm also
uses the Lhs tries for efficient FD extensions, but it does
not require a change-loop so that it iterates the missing Rhs
attributes of an FD only once. The algorithm also checks

Algorithm 2: Improved Closure Calculation

Data: fds
Result: fds

array lhsTries size | schema.attributes | as trie;1

foreach fd ∈ fds do2

foreach rhsAttr ∈ fd.rhs do3

lhsTries[rhsAttr].insert (fd.lhs);4

foreach fd ∈ fds do5

do6

somethingChanged ← false;7

foreach attr /∈ fd.rhs ∪ fd.lhs do8

if fd.lhs ∪ fd.rhs ⊇ lhsTries[attr] then9

fd.rhs ← fd.rhs ∪ attr ;10

somethingChanged ← true;11

while somethingChanged ;12

return fds;13

only the Lhs attributes of an FD for subsets and not all
attributes of a current FD (Line 7). These two optimizations
are possible, because the set of FDs is complete and minimal
so that we always find a subset-FD for any valid extension
attribute. The following lemma states this formally:

Lemma 1. Let F be a complete set of minimal FDs. If
X → Y ∈ F and X → A with A /∈ Y is valid, then there
must exist an X ′ ⊂ X so that X ′ → A ∈ F .

Proof. If X → A and X → A /∈ F , then X → A is not
minimal and a minimal FD X ′ → A with X ′ ⊂ X must exist.
If X ′ → A /∈ F , then F is not a complete set of minimal
FDs, which contradicts the premise that F is complete.

The fact that all minimal FDs are required for Algorithm 3
to work correctly has the disadvantage that complete sets of
FDs are usually much larger than sets of FDs that have
already been reduced to meaningful FDs. Reducing a set
of FDs to meaningful ones is, on the contrary, a difficult
and use-case specific task that becomes more accurate if the
FDs’ closure is known. For this reason, we perform the
closure calculation before the FD selection and accept the
increased processing time and memory consumption.

The increased processing time is hardly an issue, because
the performance gain of Algorithm 3 over Algorithm 2 on
same sized inputs is so significant that larger sets of FDs
can still easily be processed. We show this in Section 8. The

Algorithm 3: Optimized Closure Calculation

Data: fds
Result: fds

array lhsTries size | schema.attributes | as trie;1

foreach fd ∈ fds do2

foreach rhsAttr ∈ fd.rhs do3

lhsTries[rhsAttr].insert (fd.lhs);4

foreach fd ∈ fds do5

foreach attr /∈ fd.rhs ∪ fd.lhs do6

if fd.lhs ⊇ lhsTries[attr] then7

fd.rhs ← fd.rhs ∪ attr ;8

return fds;9

347

increased memory consumption, on the other hand, becomes
a problem if the complete set of minimal FDs is too large to
be held in memory or maybe even too large to be held on
disk. We then need to prune FDs, but which FDs can be
pruned so that Algorithm 3 still computes a correct closure
on the remainder? To fully extend an FD X → Y , the
algorithm requires all subset-FDs X ′ → Z with X ′ ⊂ X to
be available. So if we prune all superset-FDs with larger
Lhs than |X|, the calculated closure for X → Y and all its
subset-FDs X ′ → Z would still be correct. In general, we
can define a maximum Lhs size and prune all FDs with a
larger Lhs size while still being able to compute the complete
and correct closure for the remaining FDs with Algorithm 3.
This pruning fits our normalization use-case well, because
FDs with shorter Lhs are semantically better candidates
for key and foreign key constraints as we argue in Section 7.
Normalize achieves the maximum Lhs size pruning for free,
because it is already implemented in the HyFD algorithm
that we proposed using for the FD discovery.

All three closure algorithms can easily be parallelized by
splitting the FD-loops (Lines 3, 2, and 5 respectively) to dif-
ferent worker threads. This is possible, because each worker
changes only its own FD and changes made to other FDs
can, but do not have to be seen by this worker.

Considering the complexity of the three algorithms with
respect to the number of input FDs, the naive algorithm is
in O(|fds|3), the improved in O(|fds|2) and the optimized
in O(|fds|). But because the number of FDs potentially in-
creases exponentially with the number of attributes, all three
algorithms are NP-complete in the number of attributes. We
compare the algorithms experimentally in Section 8.

5. KEY DERIVATION
Keys are important in normalization processes, because

they do not contain any redundancy due to their unique-
ness. Hence, they do not cause anomalies in the data. Keys
basically indicate normalized schema elements that do not
need to be decomposed, i.e., decomposing them would not
remove any redundancy in the given relational instance. In
this section, we first discuss how keys can be derived from
extended FDs. Then, we prove that the set of derived keys
is sufficient for BCNF schema normalization.

Deriving keys from extended FDs. By definition, a
key is any attribute or attribute combination whose values
uniquely define all other records [6]. In other words, the
attributes of a key X functionally determine all other at-
tributes Y of a relation R. So given the extended FDs, the
keys can easily be found by checking each FD X → Y for
X ∪ Y = R.

The set of keys that we can directly derive from the
extended FDs does, however, not necessarily contain all
minimal keys of a given relation. Consider here, for
instance, the relations Professor(name, department, salary),
Teaches(name, label), and Class(label, room, date) with
Teaches being a join table for the n:m-relationship between
Professor and Class. When we denormalize this schema
by calculating R = Professor ./ Teaches ./ Class, we get
R(name, label, department, salary, room, date) with primary
key {name, label}. This key cannot directly be derived
from the minimal FDs, because name,label→A is not a
minimal FD for any A ∈ Ri; the two minimal FDs are
name→department,salary and label→room,date.

Skipping missing keys. The discovery of missing keys is
an expensive task, especially when we consider the number
of FDs that can be huge for non-normalized datasets. The
BCNF-normalization, however, only requires those keys that
we can directly derive from the extended FDs. We can basi-
cally ignore the missing keys, because the algorithm checks
normal form violations only with keys that are subsets of an
FD’s Lhs (see Section 6) and all such keys can directly be
derived. The following lemma states this more formally:

Lemma 2. If X ′ is a key and X → Y ∈ F+ is an FD
with X ′ ⊆ X, then X ′ can directly be derived from F+.

Proof. Let X ′ be a key of relation R and let X → Y ∈
F+ be an FD with X ′ ⊆ X. To directly derive the key X ′

from F+, we must prove the existence of an FD X ′ → Z ∈
F+ with Z = R \X ′.
X must be a minimal Lhs in some FD X → Y ′ with

Y ′ ⊆ Y , because X → Y ∈ F+ and F is the set of all
minimal FDs. Now consider the precondition X ′ ⊆ X: If
X ′ ⊂ X, then X → Y 6∈ F+, because X is a key and, hence,
it determines any attribute A that X could contain more
than X ′. Therefore, X = X ′ must be true. At this point,
we have that X → Y ′ ∈ F+ and X = X ′. So X ′ → Y ′ ∈ F+

must be true as well, which also shows that Y ′ = Y = Z,
because X ′ is a key.

The key derivation component in Normalize in fact dis-
covers only those keys that are relevant for the normalization
process by checking X ∪ Y = R for each FD X → Y . The
primary key selection component in the end of the normal-
ization process must, however, discover all keys for those re-
lations that did not receive a primary key from any previous
decomposition operation. For this task, we use the DUCC
algorithm by Heise et al. [13], which is specialized in key
discovery. The key discovery is an NP complete problem,
but because the normalized relations are much smaller than
the non-normalized starting relations, it is a fast operation
at this stage of the algorithm.

6. VIOLATION DETECTION
Given the extended fds and the keys, detecting BCNF vi-

olations is straightforward: Each FD whose Lhs is neither a
key nor a super-key must be classified as a violation. Algo-
rithm 4 shows how this can be efficiently done again using
a prefix tree for subset searches.

At first, the violation detection algorithm inserts all given
keys into a trie (Lines 1 to 3). Then, it iterates the fds
and, for each FD, it checks if the FD’s Lhs contains a null

value ⊥. Such FDs do not need to be considered for de-
compositions, because the Lhs becomes a primary key con-
straint in the new, split off relation and SQL prohibits null
values in key constraints. Note that there is work on possi-
ble/certain key constraints that permit ⊥ values in keys [15],
but we continue with the standard for now. If the Lhs con-
tains no null values, the algorithm queries the keyTrie for
subsets of the FD’s Lhs (Line 8). If a subset is found, the
FD does not violate BCNF and we continue with the next
FD; otherwise, the FD violates BCNF.

To preserve existing constraints, we remove all primary
key attributes from a violating FD’s Rhs, if a primary key is
present (Line 11). Not removing the primary key attributes
from the FD’s Rhs could cause the decomposition step to
break the primary key apart. Some key attributes would

348

Algorithm 4: Violation Detection

Data: fds, keys
Result: violatingFds

keyTrie ← new trie;1

foreach key ∈ keys do2

keyTrie.insert (key);3

violatingFds ← ∅;4

foreach fd ∈ fds do5

if ⊥ ∈ fd.lhs then6

continue;7

if fd.lhs ⊇ keyTrie then8

continue;9

if currentSchema.primaryKey 6= null then10

fd.rhs ← fd.rhs − currentSchema.primaryKey ;11

if ∃ fk ∈ currentSchema.foreignKeys:12

(fk ∩ fd.rhs 6= ∅) ∧ (fk 6⊆ fd.lhs ∪ fd.rhs) then13

continue;14

violatingFds ← violatingFds ∪ fd ;15

return violatingFds;16

then be moved into another relation breaking the primary
key constraint and possible foreign key constraints referenc-
ing this primary key. Because the current schema might also
contain foreign key constraints, we test if the violating FD
preserves all such constraints when used for decomposition:
Each foreign key fk must stay intact in either of the two
new relations or otherwise we do not use the violating FD
for normalization (Line 12). The algorithm finally adds each
constraint preserving violating FD to the violatingFds result
set (Line 15). In Section 7 we propose a method to select
one of them for decomposition.

When a violating FD X → Y is used to decompose a
relation R, we obtain two new relations, which are R1(R\Y ∪
X) and R2(X ∪ Y). Due to this split of attributes, not all
previous FDs hold in R1 and R2. It is obvious that the FDs
in R1 are exactly those FDs V →W for which V ∪W ⊆ R1

and V → W ′ ∈ F+ with W ⊆ W ′, because the records
for V → W are still the same in R1; R1 just lost some
attributes that are irrelevant for all V → W . The same
observation holds for R2 although the number of records
has been reduced:

Lemma 3. The relation R2(X ∪Y) produced by a decom-
position on FD X → Y retains exactly all FDs V →W , for
which V ∪W ⊆ R2 and V →W is valid in R.

Proof. (1) Any valid V → W of R is still valid in R2:
Assume that V → W is valid in R but invalid in R2. Then
R2 must contain at least two records violating V → W .
Because the decomposition only removes records in V ∪W
and V ∪W ⊆ R2 ⊆ R, these violating records must also exist
in R. But such records cannot exist in R, because V → W
is valid in R; hence, the FD must also be valid in R2.

(2) No valid V → W of R2 can be invalid in R: Assume
V →W is valid in R2 but invalid in R. Then R must contain
at least two records violating V → W . Because these two
records are not completely equal in their V ∪W values and
V ∪W ⊆ R2, the decomposition does not remove them and
they also exist in R2. So V → W must also be invalid in
R2. Therefore, there can be no FD valid in R2 but invalid
in R.

Assume that, instead of BCNF, we would aim to assure
3NF, which is slightly less strict than BCNF: In contrast
to BCNF, 3NF does not remove all FD-related redundancy,
but it is dependency preserving. Consequently, no decom-
position may split an FD other than the violating FD [4].
To calculate 3NF instead of BCNF, we could additionally
remove all those groups of violating FDs from the result of
Algorithm 4 that are mutually exclusive, i.e., any FD that
would split the Lhs of some other FD. To calculate stricter
normal forms than BCNF, we would need to have detected
other kinds of dependencies. For example, constructing 4NF
requires all multi-valued dependencies (MVDs) and, hence,
an algorithm that discovers MVDs. The normalization al-
gorithm, then, would work in the same manner.

7. CONSTRAINT SELECTION
During schema normalization, we need to define key and

foreign key constraints. Syntactically, all keys are equally
correct and all violating FDs form correct foreign keys, but
semantically the choice of primary keys and violating FDs
makes a difference. Judging the relevance of keys and FDs
from a semantic point of view is a difficult task for an algo-
rithm – and in many cases for humans as well – but in the
following, we define some quality features that serve to au-
tomatically score keys and FDs for being “good” constraints,
i.e., constraints that are not only valid on the given instance
but are true for its schema.

The two selection components of Normalize use these
features to score the key and foreign-key candidates, respec-
tively. Then, they sort the candidates by their score. The
most reasonable candidates are presented at the top of the
list and likely accidental candidates appear at the end. By
default, Normalize uses the top-ranked candidate and pro-
ceeds; if a user is involved, she can choose the constraint or
stop the process. The candidate list can, of course, become
too large for a full manual inspection, but (1) the user al-
ways needs to pick only one element, i.e., she does not need
to classify all elements in the list as either true or false, (2)
the candidate list becomes shorter in every step of the al-
gorithm as many options are implicitly weeded out, and (3)
the problem of finding a split candidate in a ranked enumer-
ation of options is easier than finding a split without any
ordering, as it would be the case without our method.

7.1 Primary key selection
If a relation has no primary key, we must assign one from

the relation’s set of keys. To find the semantically best key,
Normalize scores all keys X using the following features:

(1) Length score: 1
|X|

Semantically correct keys are usually shorter than random
keys (in their number of attributes |X|), because schema
designers tend to use short keys: Short keys can more effi-
ciently be indexed and they are easier to understand.

(2) Value score: 1
max(1,|max(X)|−7)

The values in primary keys are typically short, because they
serve to identify records and usually do not contain much
business logic. Most relational database management sys-
tems (RDBMS) also restrict the maximum length of values
in primary key attributes, because primary keys are indexed
by default and indices with too long values are more diffi-
cult to manage. So we downgrade keys with values longer

349

than 8 characters using the function max(X) that returns
the longest value in attribute (combination) X; for multiple
attributes, max(X) concatenates their values.

(3) Position score: 1
2
(1
|left(X)|+1

+ 1
|between(X)|+1

)

When considering the order of attributes in their relations,
key attributes are typically located left and without non-key
attributes between them. This is intuitive, because humans
tend to place keys first and logically coherent attributes to-
gether. The position score exploits this by assigning de-
creasing score values to keys depending on the number of
non-key attributes left left(X) and between between(X) key
attributes X.

The formulas we propose for the ranking reflect only our
intuition. The list of features is most likely also not com-
plete, but the proposed features produce good results for
key scoring in our experiments. For the final key score, we
simply calculate the mean of the individual scores. The per-
fect key with one attribute, a maximum value length of 8
characters and position one in the relation, then, has a key
score of 1; less perfect keys have lower scores.

After scoring, Normalize ranks the keys by their score
and lets the user choose a primary key amongst the top
ranked keys; if no user interaction is desired (or possible),
the algorithm automatically selects the top-ranked key.

7.2 Violating FD selection
During normalization, we need to select some violating

FDs for the schema decompositions. Because the selected
FDs become foreign key constraints after the decomposi-
tions, the violating FD selection problem is similar to the
foreign key selection problem [20], which scores inclusion
dependencies (INDs) for being good foreign keys. The view-
points are, however, different: Selecting foreign keys from
INDs aims to identify semantically correct links between ex-
isting tables; selecting foreign keys from FDs, on the other
hand, is about forming redundancy-free tables with appro-
priate keys.

Recall that selecting semantically correct violating FDs
is crucial, because some decompositions are mutually exclu-
sive. If possible, a user should also discard violating FDs
that hold only accidentally in the given relational instance.
Otherwise, Normalize might drive the normalization a bit
too far by splitting attribute sets – in particular sparsely
populated attributes – into separate relations.

In the following, we discuss our features for scoring vio-
lating FDs X → Y as good foreign key constraints:

(1) Length score: 1
2
(1
|X| + 1

|Y |·(|R|−2)
)

Because the Lhs X of a violating FD becomes a primary
key for the Lhs attributes after decomposition, it should be
short in length. The Rhs Y , on the contrary, should be long
so that we create large new relations: Large right-hand sides
not only raise the confidence of the FD to be semantically
correct, they also make the decomposition more effective.
Because the Rhs can be at most |R| − 2 attributes long
in relation R (one attribute must be X and one must not
depend on X so that X is not a key in R), we weight the
Rhs’s length by this factor.

(2) Value score: 1
max(1,|max(X)|−7)

The value score for a violating FD is the same as the value
score for a primary key X, because X becomes a primary
key after decomposition.

(3) Position score: 1
2
(1
|between(X)|+1

+ 1
|between(Y)|+1

)

The attributes of a semantically correct FD are most likely
placed close to one another due to their common context.
We expect this to hold for both the FD’s Lhs and Rhs. The
space between Lhs and Rhs attributes, however, is only a
very weak indicator, and we ignore it. For this reason, we
weight the violating FD anti-proportionally to the number
of attributes between Lhs attributes and between Rhs at-
tributes.

(4) Duplication score: 1
2
(2− |uniques(X)|

|values(X)| −
|uniques(Y)|
|values(Y)|)

A violating FD is well suited for normalization if both Lhs
X and Rhs Y contain possibly many duplicate values and,
hence, much redundancy. The decomposition can, then, re-
move many of these redundant values. As for most scoring
features, a high duplication score in the Lhs values reduces
the probability that the FD holds by coincidence, because
only duplicate values in an FD’s Lhs can invalidate the FD
and having many duplicate values in Lhs X without any vi-
olation is a good indicator for its semantic correctness. For
scoring, we estimate the number of unique values in X and
Y with |uniques()|; because exactly calculating this number
is computationally expensive, we create a Bloom-filter for
each attribute and use their false positive probabilities to
efficiently estimate the number of unique values.

We calculate the final violating FD score as the mean of
the individual scores. In this way, the most promising vio-
lating FD is one that has a single Lhs attribute determining
almost the entire relation with short and few distinct val-
ues. Like for the key scoring, the proposed features reflect
our intuitions and observations; they might not be optimal
or complete, but they produce reasonable results for a dif-
ficult selection problem: In our experiments the top-ranked
violating FDs usually indicate the semantically best decom-
position points.

After choosing a violating FD for becoming a foreign key
constraint, we could in principle decide to remove indovid-
ual attributes from the FD’s Rhs. One reason might be that
these attributes also appear in another FD’s Rhs and can be
used in a subsequent decomposition. So when a user guides
the normalization process, we present all Rhs attributes that
are also contained in other violating FDs. He/she can then
decide to remove such attributes. If no user is present, noth-
ing is removed.

8. EVALUATION
In this section, we evaluate the efficiency and effective-

ness of our normalization algorithm Normalize. At first,
we introduce our experimental setup. Then, we evaluate the
performance of Normalize and in particular its closure cal-
culation component. In the end, we assess the quality of the
normalization output.

8.1 Experimental setup
Normalize has been implemented using the Metanome

data profiling framework (www.metanome.de), which defines
standard interfaces for different kinds of profiling algo-
rithms [17]. In particular, Metanome provided the imple-
mentation of the HyFD FD discovery algorithm. Common
tasks, such as input parsing, result formatting, and perfor-
mance measurement, are standardized by the framework and
decoupled from the algorithm itself.

350

Table 3: The datasets, their characteristics, and their processing times
Name Size Attr. Records FDs FD-Keys FD Disc. Closureimpr Closureopt Key Der. Viol. Iden.
Horse 25.5 kB 27 368 128,727 40 4,157 ms 1,765 ms 486 ms 40 ms 246 ms
Plista 588.8 kB 63 1000 178,152 1 9,847 ms 6,652 ms 857 ms 49 ms 55 ms
Amalgam1 61.6 kB 87 50 450,020 2,737 3,462 ms 745 ms 333 ms 7 ms 25 ms
Flight 582.2 kB 109 1000 982,631 25,260 20,921 ms 132,085 ms 1,662 ms 77 ms 93 ms
MusicBrainz 1.2 GB 106 1,000,000 12,358,548 0 2,132 min 215.5 min 1.4 min 331 ms 26 ms
TPC-H 6.7 GB 52 6,001,215 13,262,106 347,805 3,651 min 3.8 min 0.5 min 163 ms 4093 ms

Hardware. We ran all our experiments on a Dell Pow-
erEdge R620 with two Intel Xeon E5-2650 2.00 GHz CPUs
and 128 GB DDR3 RAM. The server runs on CentOS 6.7
and uses OpenJDK 64-Bit 1.8.0 71 as Java environment.

Datasets. We primarily use the synthetic TPC-H 4 dataset
(scale factor one), which models generic business data, and
the MusicBrainz 5 dataset, which is a user-maintained ency-
clopedia on music and artists. To evaluate the effectiveness
of Normalize, we denormalized the two datasets by join-
ing all their relations into a single, universal relation. In this
way, we can compare the normalization result to the original
datasets. For MusicBrainz, we had to restrict this join to
eleven selected core tables, because the number of tables in
this dataset is huge. We also limited the number of records
for the denormalized MusicBrainz dataset, because the asso-
ciative tables produce an enormous amount of records when
used for complete joins.

For the efficiency evaluation, we use four additional
datasets, namely Horse, Plista, Amalgam1, and Flight. We
provide these datasets and more detailed descriptions on our
web-page6. In our evaluation, each dataset consists of one
relation with the characteristics shown in Table 3; the input
of Normalize can, in general, consist of multiple relations.

8.2 Efficiency analysis
Table 3 lists six datasets with different properties. The

amount of minimal functional dependencies in these datasets
is between 128 thousand and 13 million, and thus too great
to manually select meaningful ones. The column FD-Keys
counts all those keys that we can directly derive from the
FDs. Their number does not depend on the number of FDs
but on the structure of the data: Amalgam1 and TPC-H
have a snow-flake schema while, for instance, MusicBrainz
has a more complex link structure in its schema.

We executed Normalize on each of these datasets and
measured the execution time for the components (1) FD
Discovery, (2) Closure Calculation, (3) Key Derivation, and
(4) Violating FD Identification. The first two components
are parallelized so that they fully use all 32 cores of our
evaluation machine. The necessary discovery of the com-
plete FD set still requires 36 and 61 hours on the two larger
datasets, respectively.

First of all, we notice that the key derivation and vio-
lating FD identification steps are much faster than the FD
discovery and closure calculation steps; they usually finish
in less than a second. This is important, because the two
components are executed multiple times in the normaliza-
tion process and a user might be in the loop interacting
with the system at the same time. In Table 3, we show only
the execution times for the first call of these components;

4http://tpc.org/tpch
5https://musicbrainz.org
6https://hpi.de/naumann/projects/repeatability

subsequent calls can be handled even faster, because their
input sizes shrink continuously. The time needed to deter-
mine the violating FDs depends primarily on the number of
FD-keys, because the search for Lhs generalizations in the
trie of keys is the most expensive operation. This explains
the long execution time of 4 seconds for the TPC-H dataset.

For the closure calculation, Table 3 shows the execution
times of the improved (impr) and optimized (opt) algorithm.
The naive algorithm already took 13 seconds for the Amal-
gam1 dataset (compared to less than 1 s for both impr
and opt), 23 minutes for Horse (<2 s and <1 s for impr
and opt, respectively), and 41 minutes for Plista (<7 s and
<1 s). These runtimes are so much worse than the improved
and optimized algorithm versions that we stopped testing
it. The optimized closure algorithm, then, outperforms the
improved version by factors of 2 (Amalgam1) to 159 (Mu-
sicBrainz), because it can exploit the completeness of the
given FD set. The more extensions of right-hand sides the
algorithm must perform, the higher this advantage becomes.
The average Rhs size for Amalgam1 FDs, for instance, in-
creases from 32 to 56, whereas the average Rhs size for Mu-
sicBrainz FDs increases from 3 to 40. For TPC-H, the av-
erage Rhs size increases from 10 to 23. The runtimes of the
optimized closure calculation are, overall, acceptable when
compared to the FD discovery time. Therefore, it is not
necessary to filter FDs prior to the closure calculation.

Because closure calculation is not only important for nor-
malization but for many other use cases as well, Figure 2
analyses the scalability of this step in more detail. The
graphs show the execution times of the improved and the
optimized algorithm for an increasing number of input FDs.
The experiment takes these input FDs randomly from the 12
million MusicBrainz FDs; the number of attributes is kept
constant to 106. We again omit the naive algorithm, because
it is orders of magnitude slower than both other approaches.

Figure 2: Scaling the number of input FDs for clo-
sure calculation.

351

Figure 3: Relations after normalizing TPC-H.

Both runtimes in Figure 2 appear to scale almost linearly
with the number of FDs, because the extension costs for each
single FD are low due to the efficient index lookups. Never-
theless, the index lookups become more expensive with an
increasing number of FDs in the indexes (and they would
also become more numerous, if we would increase the num-
ber of attributes as well). Because the improved algorithm
performs the index lookups more often than the optimized
version (i.e. changed loop) and with larger search keys (i.e.
Lhs and Rhs), the optimized version is faster and scales bet-
ter with the number of FDs: It is from 4 to 16 times faster
in this experiment.

8.3 Effectiveness analysis
For a fair effectiveness analysis, we perform the normal-

ization automatically, i.e., without human interaction. Un-
der human supervision, better (but possibly also worse)
schemata than presented below can be produced. For the fol-
lowing experiments, we focus on TPC-H and MusicBrainz,
because we denormalized these datasets before so that we
can use their original schemata as gold standards for their
normalization results.

Figure 3 shows the BCNF normalized TPC-H dataset.
The color coding indicates the original relations of the dif-
ferent attributes. So we first notice that Normalize almost
perfectly restored the original schema: We can identify all
original relations in the normalized result. The automati-
cally selected constraints, i.e., keys and foreign keys are all
correct w.r.t. the original schema, which is possible because
the original schema was snow-flake shaped.

Nevertheless, we also observe two interesting flaws in the
automatically normalized schema: First, Normalize de-
composed the LINEITEM relation a bit too far; syntacti-
cally, the result is correct and perfectly BCNF-conform, but
semantically, the splits with only one dependent and more
than three foreign key attributes are not reasonable. Second,
the attribute shippriority originally belongs to the ORDERS
relation but was placed into the REGION relation. This is
syntactically a good decision, because the region also deter-
mines the shipping priority and putting the attribute into
this relation removes more redundant values than putting it
into the ORDERS relation.

Figure 4 shows the BCNF-normalized MusicBrainz data-
set. Although MusicBrainz has originally no snow-flake
schema, Normalize was still able to reconstruct almost all
original relations. Only ARTIST CREDIT NAME was not
reconstructed and its attributes now lie in the semantically

Figure 4: Relations after normalizing MusicBrainz.

related ARTIST relation. Because MusicBrainz is originally
not snow-flake shaped, the normalization produced a new
top-level relation that represents all many-to-many relation-
ships between artists, places, release labels, and tracks. This
top-level relation can be likened to a fact table.

Most mistakes are made for the ARTIST CREDIT rela-
tion, which was the first proposed split. This split took
away some attributes from other relations, because these
attributes do not contain many values and assigning them
to the ARTIST CREDIT relation makes syntactically sense.
A human expert, if involved, would have likely avoided that,
because Normalize does report to the user that these at-
tributes are also dependent on other violating FDs Lhs at-
tributes. Overall, however, the normalization result is quite
satisfactory, keeping in mind that no human was involved in
creating it.

We also tested Normalize on various other datasets with
similar findings: If datasets have been de-normalized be-
fore, we can find the original tables in the proposed schema;
if sparsely populated columns exist, these are often moved
into smaller relations; and if no human is in the loop, some
decompositions become detailed. All results were BCNF-
conform and semantically understandable.

9. CONCLUSION
We proposed Normalize, an instance-driven, (semi-) au-

tomatic algorithm for schema normalization. The algorithm
has shown that functional dependency profiling results of
any size can efficiently be used for the specific task of schema
normalization. We also presented techniques for guiding
the BCNF decomposition algorithm in order to produce se-
mantically good normalization results that also conform to
changes of the data.

Our implementation is publicly available at http://hpi.
de/naumann/projects/repeatability. It is currently console-
based, offering only basic user interaction. Future work
shall concentrate on emphasizing the user-in-the-loop, for
instance, by employing graphical previews of normalized re-
lations and their connections. We also suggest research on
other features for the key and foreign key selection that may
yield even better results. Another open research question is
how normalization processes should handle dynamic data
and errors in the data.

352

10. REFERENCES
[1] Z. Abedjan, P. Schulze, and F. Naumann. DFD:

Efficient functional dependency discovery. In
Proceedings of the International Conference on
Information and Knowledge Management (CIKM),
pages 949–958, 2014.

[2] P. Andritsos, R. J. Miller, and P. Tsaparas.
Information-theoretic tools for mining database
structure from large data sets. In Proceedings of the
International Conference on Management of Data
(SIGMOD), pages 731–742, 2004.

[3] C. Beeri and P. A. Bernstein. Computational problems
related to the design of normal form relational
schemas. ACM Transactions on Database Systems
(TODS), 4(1):30–59, 1979.

[4] P. A. Bernstein. Synthesizing third normal form
relations from functional dependencies. ACM
Transactions on Database Systems (TODS),
1(4):277–298, 1976.

[5] S. Ceri and G. Gottlob. Normalization of relations and
prolog. Communications of the ACM, 29(6):524–544,
1986.

[6] E. F. Codd. Derivability, redundancy and consistency
of relations stored in large data banks. IBM Research
Report, San Jose, California, RJ599, 1969.

[7] E. F. Codd. Further normalization of the data base
relational model. IBM Research Report, San Jose,
California, RJ909, 1971.

[8] C. J. Date. Database Design & Relational Theory.
O’Reilly Media, 2012.

[9] J. Diederich and J. Milton. New methods and fast
algorithms for database normalization. ACM
Transactions on Database Systems (TODS),
13(3):339–365, 1988.

[10] R. Fagin. Normal forms and relational database
operators. In Proceedings of the International
Conference on Management of Data (SIGMOD),
pages 153–160, 1979.

[11] P. A. Flach and I. Savnik. Database dependency
discovery: a machine learning approach. AI
Communications, 12(3):139–160, 1999.

[12] H. Garcia-Molina, J. D. Ullman, and J. Widom.
Database Systems: The Complete Book. Prentice Hall
Press, Upper Saddle River, NJ, USA, 2 edition, 2008.

[13] A. Heise, J.-A. Quiané-Ruiz, Z. Abedjan, A. Jentzsch,
and F. Naumann. Scalable discovery of unique column
combinations. Proceedings of the VLDB Endowment,
7(4):301–312, 2013.

[14] Y. Huhtala, J. Kärkkäinen, P. Porkka, and
H. Toivonen. TANE: An efficient algorithm for
discovering functional and approximate dependencies.
The Computer Journal, 42(2):100–111, 1999.

[15] H. Köhler, S. Link, and X. Zhou. Possible and certain
SQL key. Proceedings of the VLDB Endowment,
8(11):1118–1129, 2015.

[16] H. Mannila and K.-J. Räihä. Dependency inference. In
Proceedings of the International Conference on Very
Large Databases (VLDB), pages 155–158, 1987.

[17] T. Papenbrock, T. Bergmann, M. Finke, J. Zwiener,
and F. Naumann. Data profiling with Metanome.
Proceedings of the VLDB Endowment,
8(12):1860–1871, 2015.

[18] T. Papenbrock, J. Ehrlich, J. Marten, T. Neubert,
J.-P. Rudolph, M. Schönberg, J. Zwiener, and
F. Naumann. Functional dependency discovery: An
experimental evaluation of seven algorithms.
Proceedings of the VLDB Endowment,
8(10):1082–1093, 2015.

[19] T. Papenbrock and F. Naumann. A hybrid approach
to functional dependency discovery. In Proceedings of
the International Conference on Management of Data
(SIGMOD), 2016.

[20] A. Rostin, O. Albrecht, J. Bauckmann, F. Naumann,
and U. Leser. A machine learning approach to foreign
key discovery. In Proceedings of the ACM Workshop
on the Web and Databases (WebDB), 2009.

353

	Data-driven Schema NormalizationThorsten Papenbrock, Felix Naumann

